vm.c revision 1.93 1 /* $NetBSD: vm.c,v 1.93 2010/09/08 21:14:32 pooka Exp $ */
2
3 /*
4 * Copyright (c) 2007-2010 Antti Kantee. All Rights Reserved.
5 *
6 * Development of this software was supported by
7 * The Finnish Cultural Foundation and the Research Foundation of
8 * The Helsinki University of Technology.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
20 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Virtual memory emulation routines.
34 */
35
36 /*
37 * XXX: we abuse pg->uanon for the virtual address of the storage
38 * for each page. phys_addr would fit the job description better,
39 * except that it will create unnecessary lossage on some platforms
40 * due to not being a pointer type.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.93 2010/09/08 21:14:32 pooka Exp $");
45
46 #include <sys/param.h>
47 #include <sys/atomic.h>
48 #include <sys/buf.h>
49 #include <sys/kernel.h>
50 #include <sys/kmem.h>
51 #include <sys/mman.h>
52 #include <sys/null.h>
53 #include <sys/vnode.h>
54
55 #include <machine/pmap.h>
56
57 #include <rump/rumpuser.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_ddb.h>
61 #include <uvm/uvm_pdpolicy.h>
62 #include <uvm/uvm_prot.h>
63 #include <uvm/uvm_readahead.h>
64
65 #include "rump_private.h"
66 #include "rump_vfs_private.h"
67
68 kmutex_t uvm_pageqlock;
69 kmutex_t uvm_swap_data_lock;
70
71 struct uvmexp uvmexp;
72 struct uvm uvm;
73
74 struct vm_map rump_vmmap;
75 static struct vm_map_kernel kmem_map_store;
76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
77
78 static struct vm_map_kernel kernel_map_store;
79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
80
81 static unsigned int pdaemon_waiters;
82 static kmutex_t pdaemonmtx;
83 static kcondvar_t pdaemoncv, oomwait;
84
85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
86 static unsigned long curphysmem;
87 static unsigned long dddlim; /* 90% of memory limit used */
88 #define NEED_PAGEDAEMON() \
89 (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
90
91 /*
92 * Try to free two pages worth of pages from objects.
93 * If this succesfully frees a full page cache page, we'll
94 * free the released page plus PAGE_SIZE/sizeof(vm_page).
95 */
96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
97
98 /*
99 * Keep a list of least recently used pages. Since the only way a
100 * rump kernel can "access" a page is via lookup, we put the page
101 * at the back of queue every time a lookup for it is done. If the
102 * page is in front of this global queue and we're short of memory,
103 * it's a candidate for pageout.
104 */
105 static struct pglist vmpage_lruqueue;
106 static unsigned vmpage_onqueue;
107
108 static int
109 pg_compare_key(const struct rb_node *n, const void *key)
110 {
111 voff_t a = ((const struct vm_page *)n)->offset;
112 voff_t b = *(const voff_t *)key;
113
114 if (a < b)
115 return 1;
116 else if (a > b)
117 return -1;
118 else
119 return 0;
120 }
121
122 static int
123 pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
124 {
125
126 return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
127 }
128
129 const struct rb_tree_ops uvm_page_tree_ops = {
130 .rbto_compare_nodes = pg_compare_nodes,
131 .rbto_compare_key = pg_compare_key,
132 };
133
134 /*
135 * vm pages
136 */
137
138 static int
139 pgctor(void *arg, void *obj, int flags)
140 {
141 struct vm_page *pg = obj;
142
143 memset(pg, 0, sizeof(*pg));
144 pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
145 return 0;
146 }
147
148 static void
149 pgdtor(void *arg, void *obj)
150 {
151 struct vm_page *pg = obj;
152
153 rump_hyperfree(pg->uanon, PAGE_SIZE);
154 }
155
156 static struct pool_cache pagecache;
157
158 /*
159 * Called with the object locked. We don't support anons.
160 */
161 struct vm_page *
162 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
163 int flags, int strat, int free_list)
164 {
165 struct vm_page *pg;
166
167 KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
168 KASSERT(anon == NULL);
169
170 pg = pool_cache_get(&pagecache, PR_WAITOK);
171 pg->offset = off;
172 pg->uobject = uobj;
173
174 pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
175 if (flags & UVM_PGA_ZERO) {
176 uvm_pagezero(pg);
177 }
178
179 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
180 rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
181
182 /*
183 * Don't put anons on the LRU page queue. We can't flush them
184 * (there's no concept of swap in a rump kernel), so no reason
185 * to bother with them.
186 */
187 if (!UVM_OBJ_IS_AOBJ(uobj)) {
188 atomic_inc_uint(&vmpage_onqueue);
189 mutex_enter(&uvm_pageqlock);
190 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
191 mutex_exit(&uvm_pageqlock);
192 }
193
194 uobj->uo_npages++;
195
196 return pg;
197 }
198
199 /*
200 * Release a page.
201 *
202 * Called with the vm object locked.
203 */
204 void
205 uvm_pagefree(struct vm_page *pg)
206 {
207 struct uvm_object *uobj = pg->uobject;
208
209 KASSERT(mutex_owned(&uvm_pageqlock));
210
211 if (pg->flags & PG_WANTED)
212 wakeup(pg);
213
214 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
215
216 uobj->uo_npages--;
217 rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
218
219 if (!UVM_OBJ_IS_AOBJ(uobj)) {
220 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
221 atomic_dec_uint(&vmpage_onqueue);
222 }
223
224 pool_cache_put(&pagecache, pg);
225 }
226
227 void
228 uvm_pagezero(struct vm_page *pg)
229 {
230
231 pg->flags &= ~PG_CLEAN;
232 memset((void *)pg->uanon, 0, PAGE_SIZE);
233 }
234
235 /*
236 * Misc routines
237 */
238
239 static kmutex_t pagermtx;
240
241 void
242 uvm_init(void)
243 {
244 char buf[64];
245 int error;
246
247 if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
248 rump_physmemlimit = strtoll(buf, NULL, 10);
249 /* it's not like we'd get far with, say, 1 byte, but ... */
250 if (rump_physmemlimit == 0)
251 panic("uvm_init: no memory available");
252 #define HUMANIZE_BYTES 9
253 CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
254 format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
255 #undef HUMANIZE_BYTES
256 dddlim = 9 * (rump_physmemlimit / 10);
257 } else {
258 strlcpy(buf, "unlimited (host limit)", sizeof(buf));
259 }
260 aprint_verbose("total memory = %s\n", buf);
261
262 TAILQ_INIT(&vmpage_lruqueue);
263
264 uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
265
266 mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
267 mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
268 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
269
270 mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
271 cv_init(&pdaemoncv, "pdaemon");
272 cv_init(&oomwait, "oomwait");
273
274 kernel_map->pmap = pmap_kernel();
275 callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
276 kmem_map->pmap = pmap_kernel();
277 callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
278
279 pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
280 "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
281 }
282
283 void
284 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
285 {
286
287 vm->vm_map.pmap = pmap_kernel();
288 vm->vm_refcnt = 1;
289 }
290
291 void
292 uvm_pagewire(struct vm_page *pg)
293 {
294
295 /* nada */
296 }
297
298 void
299 uvm_pageunwire(struct vm_page *pg)
300 {
301
302 /* nada */
303 }
304
305 /* where's your schmonz now? */
306 #define PUNLIMIT(a) \
307 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
308 void
309 uvm_init_limits(struct proc *p)
310 {
311
312 PUNLIMIT(RLIMIT_STACK);
313 PUNLIMIT(RLIMIT_DATA);
314 PUNLIMIT(RLIMIT_RSS);
315 PUNLIMIT(RLIMIT_AS);
316 /* nice, cascade */
317 }
318 #undef PUNLIMIT
319
320 /*
321 * This satisfies the "disgusting mmap hack" used by proplib.
322 * We probably should grow some more assertables to make sure we're
323 * not satisfying anything we shouldn't be satisfying. At least we
324 * should make sure it's the local machine we're mmapping ...
325 */
326 int
327 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
328 vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
329 {
330 void *uaddr;
331 int error;
332
333 if (prot != (VM_PROT_READ | VM_PROT_WRITE))
334 panic("uvm_mmap() variant unsupported");
335 if (flags != (MAP_PRIVATE | MAP_ANON))
336 panic("uvm_mmap() variant unsupported");
337 /* no reason in particular, but cf. uvm_default_mapaddr() */
338 if (*addr != 0)
339 panic("uvm_mmap() variant unsupported");
340
341 uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
342 if (uaddr == NULL)
343 return error;
344
345 *addr = (vaddr_t)uaddr;
346 return 0;
347 }
348
349 struct pagerinfo {
350 vaddr_t pgr_kva;
351 int pgr_npages;
352 struct vm_page **pgr_pgs;
353 bool pgr_read;
354
355 LIST_ENTRY(pagerinfo) pgr_entries;
356 };
357 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
358
359 /*
360 * Pager "map" in routine. Instead of mapping, we allocate memory
361 * and copy page contents there. Not optimal or even strictly
362 * correct (the caller might modify the page contents after mapping
363 * them in), but what the heck. Assumes UVMPAGER_MAPIN_WAITOK.
364 */
365 vaddr_t
366 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
367 {
368 struct pagerinfo *pgri;
369 vaddr_t curkva;
370 int i;
371
372 /* allocate structures */
373 pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
374 pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
375 pgri->pgr_npages = npages;
376 pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
377 pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
378
379 /* copy contents to "mapped" memory */
380 for (i = 0, curkva = pgri->pgr_kva;
381 i < npages;
382 i++, curkva += PAGE_SIZE) {
383 /*
384 * We need to copy the previous contents of the pages to
385 * the window even if we are reading from the
386 * device, since the device might not fill the contents of
387 * the full mapped range and we will end up corrupting
388 * data when we unmap the window.
389 */
390 memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
391 pgri->pgr_pgs[i] = pgs[i];
392 }
393
394 mutex_enter(&pagermtx);
395 LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
396 mutex_exit(&pagermtx);
397
398 return pgri->pgr_kva;
399 }
400
401 /*
402 * map out the pager window. return contents from VA to page storage
403 * and free structures.
404 *
405 * Note: does not currently support partial frees
406 */
407 void
408 uvm_pagermapout(vaddr_t kva, int npages)
409 {
410 struct pagerinfo *pgri;
411 vaddr_t curkva;
412 int i;
413
414 mutex_enter(&pagermtx);
415 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
416 if (pgri->pgr_kva == kva)
417 break;
418 }
419 KASSERT(pgri);
420 if (pgri->pgr_npages != npages)
421 panic("uvm_pagermapout: partial unmapping not supported");
422 LIST_REMOVE(pgri, pgr_entries);
423 mutex_exit(&pagermtx);
424
425 if (pgri->pgr_read) {
426 for (i = 0, curkva = pgri->pgr_kva;
427 i < pgri->pgr_npages;
428 i++, curkva += PAGE_SIZE) {
429 memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
430 }
431 }
432
433 kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
434 kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
435 kmem_free(pgri, sizeof(*pgri));
436 }
437
438 /*
439 * convert va in pager window to page structure.
440 * XXX: how expensive is this (global lock, list traversal)?
441 */
442 struct vm_page *
443 uvm_pageratop(vaddr_t va)
444 {
445 struct pagerinfo *pgri;
446 struct vm_page *pg = NULL;
447 int i;
448
449 mutex_enter(&pagermtx);
450 LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
451 if (pgri->pgr_kva <= va
452 && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
453 break;
454 }
455 if (pgri) {
456 i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
457 pg = pgri->pgr_pgs[i];
458 }
459 mutex_exit(&pagermtx);
460
461 return pg;
462 }
463
464 /* Called with the vm object locked */
465 struct vm_page *
466 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
467 {
468 struct vm_page *pg;
469
470 pg = (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
471 if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
472 mutex_enter(&uvm_pageqlock);
473 TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
474 TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
475 mutex_exit(&uvm_pageqlock);
476 }
477
478 return pg;
479 }
480
481 void
482 uvm_page_unbusy(struct vm_page **pgs, int npgs)
483 {
484 struct vm_page *pg;
485 int i;
486
487 for (i = 0; i < npgs; i++) {
488 pg = pgs[i];
489 if (pg == NULL)
490 continue;
491
492 KASSERT(pg->flags & PG_BUSY);
493 if (pg->flags & PG_WANTED)
494 wakeup(pg);
495 if (pg->flags & PG_RELEASED)
496 uvm_pagefree(pg);
497 else
498 pg->flags &= ~(PG_WANTED|PG_BUSY);
499 }
500 }
501
502 void
503 uvm_estimatepageable(int *active, int *inactive)
504 {
505
506 /* XXX: guessing game */
507 *active = 1024;
508 *inactive = 1024;
509 }
510
511 struct vm_map_kernel *
512 vm_map_to_kernel(struct vm_map *map)
513 {
514
515 return (struct vm_map_kernel *)map;
516 }
517
518 bool
519 vm_map_starved_p(struct vm_map *map)
520 {
521
522 if (map->flags & VM_MAP_WANTVA)
523 return true;
524
525 return false;
526 }
527
528 int
529 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
530 {
531
532 panic("%s: unimplemented", __func__);
533 }
534
535 void
536 uvm_unloan(void *v, int npages, int flags)
537 {
538
539 panic("%s: unimplemented", __func__);
540 }
541
542 int
543 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
544 struct vm_page **opp)
545 {
546
547 return EBUSY;
548 }
549
550 #ifdef DEBUGPRINT
551 void
552 uvm_object_printit(struct uvm_object *uobj, bool full,
553 void (*pr)(const char *, ...))
554 {
555
556 pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
557 }
558 #endif
559
560 vaddr_t
561 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
562 {
563
564 return 0;
565 }
566
567 int
568 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
569 vm_prot_t prot, bool set_max)
570 {
571
572 return EOPNOTSUPP;
573 }
574
575 /*
576 * UVM km
577 */
578
579 vaddr_t
580 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
581 {
582 void *rv, *desired = NULL;
583 int alignbit, error;
584
585 #ifdef __x86_64__
586 /*
587 * On amd64, allocate all module memory from the lowest 2GB.
588 * This is because NetBSD kernel modules are compiled
589 * with -mcmodel=kernel and reserve only 4 bytes for
590 * offsets. If we load code compiled with -mcmodel=kernel
591 * anywhere except the lowest or highest 2GB, it will not
592 * work. Since userspace does not have access to the highest
593 * 2GB, use the lowest 2GB.
594 *
595 * Note: this assumes the rump kernel resides in
596 * the lowest 2GB as well.
597 *
598 * Note2: yes, it's a quick hack, but since this the only
599 * place where we care about the map we're allocating from,
600 * just use a simple "if" instead of coming up with a fancy
601 * generic solution.
602 */
603 extern struct vm_map *module_map;
604 if (map == module_map) {
605 desired = (void *)(0x80000000 - size);
606 }
607 #endif
608
609 alignbit = 0;
610 if (align) {
611 alignbit = ffs(align)-1;
612 }
613
614 rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
615 &error);
616 if (rv == NULL) {
617 if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
618 return 0;
619 else
620 panic("uvm_km_alloc failed");
621 }
622
623 if (flags & UVM_KMF_ZERO)
624 memset(rv, 0, size);
625
626 return (vaddr_t)rv;
627 }
628
629 void
630 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
631 {
632
633 rumpuser_unmap((void *)vaddr, size);
634 }
635
636 struct vm_map *
637 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
638 vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
639 {
640
641 return (struct vm_map *)417416;
642 }
643
644 vaddr_t
645 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
646 {
647
648 return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
649 waitok, "kmalloc");
650 }
651
652 void
653 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
654 {
655
656 rump_hyperfree((void *)addr, PAGE_SIZE);
657 }
658
659 vaddr_t
660 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
661 {
662
663 return uvm_km_alloc_poolpage(map, waitok);
664 }
665
666 void
667 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
668 {
669
670 uvm_km_free_poolpage(map, vaddr);
671 }
672
673 void
674 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
675 {
676
677 /* we eventually maybe want some model for available memory */
678 }
679
680 /*
681 * Mapping and vm space locking routines.
682 * XXX: these don't work for non-local vmspaces
683 */
684 int
685 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
686 {
687
688 KASSERT(vs == &vmspace0);
689 return 0;
690 }
691
692 void
693 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
694 {
695
696 KASSERT(vs == &vmspace0);
697 }
698
699 void
700 vmapbuf(struct buf *bp, vsize_t len)
701 {
702
703 bp->b_saveaddr = bp->b_data;
704 }
705
706 void
707 vunmapbuf(struct buf *bp, vsize_t len)
708 {
709
710 bp->b_data = bp->b_saveaddr;
711 bp->b_saveaddr = 0;
712 }
713
714 void
715 uvmspace_addref(struct vmspace *vm)
716 {
717
718 /*
719 * there is only vmspace0. we're not planning on
720 * feeding it to the fishes.
721 */
722 }
723
724 void
725 uvmspace_free(struct vmspace *vm)
726 {
727
728 /* nothing for now */
729 }
730
731 int
732 uvm_io(struct vm_map *map, struct uio *uio)
733 {
734
735 /*
736 * just do direct uio for now. but this needs some vmspace
737 * olympics for rump_sysproxy.
738 */
739 return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
740 }
741
742 /*
743 * page life cycle stuff. it really doesn't exist, so just stubs.
744 */
745
746 void
747 uvm_pageactivate(struct vm_page *pg)
748 {
749
750 /* nada */
751 }
752
753 void
754 uvm_pagedeactivate(struct vm_page *pg)
755 {
756
757 /* nada */
758 }
759
760 void
761 uvm_pagedequeue(struct vm_page *pg)
762 {
763
764 /* nada*/
765 }
766
767 void
768 uvm_pageenqueue(struct vm_page *pg)
769 {
770
771 /* nada */
772 }
773
774 void
775 uvmpdpol_anfree(struct vm_anon *an)
776 {
777
778 /* nada */
779 }
780
781 /*
782 * Routines related to the Page Baroness.
783 */
784
785 void
786 uvm_wait(const char *msg)
787 {
788
789 if (__predict_false(curlwp == uvm.pagedaemon_lwp))
790 panic("pagedaemon out of memory");
791 if (__predict_false(rump_threads == 0))
792 panic("pagedaemon missing (RUMP_THREADS = 0)");
793
794 mutex_enter(&pdaemonmtx);
795 pdaemon_waiters++;
796 cv_signal(&pdaemoncv);
797 cv_wait(&oomwait, &pdaemonmtx);
798 mutex_exit(&pdaemonmtx);
799 }
800
801 void
802 uvm_pageout_start(int npages)
803 {
804
805 /* we don't have the heuristics */
806 }
807
808 void
809 uvm_pageout_done(int npages)
810 {
811
812 /* could wakeup waiters, but just let the pagedaemon do it */
813 }
814
815 /*
816 * The Diabolical pageDaemon Director (DDD).
817 */
818 void
819 uvm_pageout(void *arg)
820 {
821 struct vm_page *pg;
822 struct pool *pp, *pp_first;
823 uint64_t where;
824 int timo = 0;
825 int cleaned, skip, skipped;
826 bool succ = false;
827
828 mutex_enter(&pdaemonmtx);
829 for (;;) {
830 if (succ) {
831 kernel_map->flags &= ~VM_MAP_WANTVA;
832 kmem_map->flags &= VM_MAP_WANTVA;
833 timo = 0;
834 }
835 succ = false;
836
837 /*
838 * Wake up everyone regardless of perceived success.
839 * They will just resleep if we're stil out of juice.
840 */
841 if (pdaemon_waiters) {
842 pdaemon_waiters = 0;
843 cv_broadcast(&oomwait);
844 }
845
846 cv_timedwait(&pdaemoncv, &pdaemonmtx, 0);
847 uvmexp.pdwoke++;
848
849 /* tell the world that we are hungry */
850 kernel_map->flags |= VM_MAP_WANTVA;
851 kmem_map->flags |= VM_MAP_WANTVA;
852
853 if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
854 continue;
855 mutex_exit(&pdaemonmtx);
856
857 /*
858 * step one: reclaim the page cache. this should give
859 * us the biggest earnings since whole pages are released
860 * into backing memory.
861 */
862 pool_cache_reclaim(&pagecache);
863 if (!NEED_PAGEDAEMON()) {
864 succ = true;
865 mutex_enter(&pdaemonmtx);
866 continue;
867 }
868
869 /*
870 * Ok, so that didn't help. Next, try to hunt memory
871 * by pushing out vnode pages. The pages might contain
872 * useful cached data, but we need the memory.
873 */
874 cleaned = 0;
875 skip = 0;
876 again:
877 mutex_enter(&uvm_pageqlock);
878 while (cleaned < PAGEDAEMON_OBJCHUNK) {
879 skipped = 0;
880 TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
881 struct uvm_object *uobj;
882
883 /*
884 * skip over pages we _might_ have tried
885 * to handle earlier. they might not be
886 * exactly the same ones, but I'm not too
887 * concerned.
888 */
889 while (skipped++ < skip)
890 continue;
891
892 uobj = pg->uobject;
893 if (mutex_tryenter(&uobj->vmobjlock)) {
894 if ((pg->flags & PG_BUSY) == 0) {
895 mutex_exit(&uvm_pageqlock);
896 uobj->pgops->pgo_put(uobj,
897 pg->offset,
898 pg->offset + PAGE_SIZE,
899 PGO_CLEANIT|PGO_FREE);
900 cleaned++;
901 goto again;
902 }
903 }
904
905 skip++;
906 }
907 break;
908 }
909 mutex_exit(&uvm_pageqlock);
910
911 /*
912 * And of course we need to reclaim the page cache
913 * again to actually release memory.
914 */
915 pool_cache_reclaim(&pagecache);
916 if (!NEED_PAGEDAEMON()) {
917 succ = true;
918 mutex_enter(&pdaemonmtx);
919 continue;
920 }
921
922 /*
923 * Still not there? sleeves come off right about now.
924 * First: do reclaim on kernel/kmem map.
925 */
926 callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
927 NULL);
928 callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
929 NULL);
930
931 /*
932 * And then drain the pools. Wipe them out ... all of them.
933 */
934
935 pool_drain_start(&pp_first, &where);
936 pp = pp_first;
937 for (;;) {
938 rump_vfs_drainbufs(10 /* XXX: estimate better */);
939 succ = pool_drain_end(pp, where);
940 if (succ)
941 break;
942 pool_drain_start(&pp, &where);
943 if (pp == pp_first) {
944 succ = pool_drain_end(pp, where);
945 break;
946 }
947 }
948
949 /*
950 * Need to use PYEC on our bag of tricks.
951 * Unfortunately, the wife just borrowed it.
952 */
953
954 if (!succ) {
955 rumpuser_dprintf("pagedaemoness: failed to reclaim "
956 "memory ... sleeping (deadlock?)\n");
957 kpause("dpdd", false, hz, NULL);
958 }
959
960 mutex_enter(&pdaemonmtx);
961 }
962
963 panic("you can swap out any time you like, but you can never leave");
964 }
965
966 void
967 uvm_kick_pdaemon()
968 {
969
970 /*
971 * Wake up the diabolical pagedaemon director if we are over
972 * 90% of the memory limit. This is a complete and utter
973 * stetson-harrison decision which you are allowed to finetune.
974 * Don't bother locking. If we have some unflushed caches,
975 * other waker-uppers will deal with the issue.
976 */
977 if (NEED_PAGEDAEMON()) {
978 cv_signal(&pdaemoncv);
979 }
980 }
981
982 void *
983 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
984 {
985 unsigned long newmem;
986 void *rv;
987
988 uvm_kick_pdaemon(); /* ouch */
989
990 /* first we must be within the limit */
991 limitagain:
992 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
993 newmem = atomic_add_long_nv(&curphysmem, howmuch);
994 if (newmem > rump_physmemlimit) {
995 newmem = atomic_add_long_nv(&curphysmem, -howmuch);
996 if (!waitok)
997 return NULL;
998 uvm_wait(wmsg);
999 goto limitagain;
1000 }
1001 }
1002
1003 /* second, we must get something from the backend */
1004 again:
1005 rv = rumpuser_malloc(howmuch, alignment);
1006 if (__predict_false(rv == NULL && waitok)) {
1007 uvm_wait(wmsg);
1008 goto again;
1009 }
1010
1011 return rv;
1012 }
1013
1014 void
1015 rump_hyperfree(void *what, size_t size)
1016 {
1017
1018 if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
1019 atomic_add_long(&curphysmem, -size);
1020 }
1021 rumpuser_free(what);
1022 }
1023