Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.94
      1 /*	$NetBSD: vm.c,v 1.94 2010/09/09 10:02:14 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.94 2010/09/09 10:02:14 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 struct uvm uvm;
     73 
     74 struct vm_map rump_vmmap;
     75 static struct vm_map_kernel kmem_map_store;
     76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     77 
     78 static struct vm_map_kernel kernel_map_store;
     79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     80 
     81 static unsigned int pdaemon_waiters;
     82 static kmutex_t pdaemonmtx;
     83 static kcondvar_t pdaemoncv, oomwait;
     84 
     85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     86 static unsigned long curphysmem;
     87 static unsigned long dddlim;		/* 90% of memory limit used */
     88 #define NEED_PAGEDAEMON() \
     89     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     90 
     91 /*
     92  * Try to free two pages worth of pages from objects.
     93  * If this succesfully frees a full page cache page, we'll
     94  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     95  */
     96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
     97 
     98 /*
     99  * Keep a list of least recently used pages.  Since the only way a
    100  * rump kernel can "access" a page is via lookup, we put the page
    101  * at the back of queue every time a lookup for it is done.  If the
    102  * page is in front of this global queue and we're short of memory,
    103  * it's a candidate for pageout.
    104  */
    105 static struct pglist vmpage_lruqueue;
    106 static unsigned vmpage_onqueue;
    107 
    108 static int
    109 pg_compare_key(const struct rb_node *n, const void *key)
    110 {
    111 	voff_t a = ((const struct vm_page *)n)->offset;
    112 	voff_t b = *(const voff_t *)key;
    113 
    114 	if (a < b)
    115 		return 1;
    116 	else if (a > b)
    117 		return -1;
    118 	else
    119 		return 0;
    120 }
    121 
    122 static int
    123 pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    124 {
    125 
    126 	return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
    127 }
    128 
    129 const struct rb_tree_ops uvm_page_tree_ops = {
    130 	.rbto_compare_nodes = pg_compare_nodes,
    131 	.rbto_compare_key = pg_compare_key,
    132 };
    133 
    134 /*
    135  * vm pages
    136  */
    137 
    138 static int
    139 pgctor(void *arg, void *obj, int flags)
    140 {
    141 	struct vm_page *pg = obj;
    142 
    143 	memset(pg, 0, sizeof(*pg));
    144 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    145 	return 0;
    146 }
    147 
    148 static void
    149 pgdtor(void *arg, void *obj)
    150 {
    151 	struct vm_page *pg = obj;
    152 
    153 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    154 }
    155 
    156 static struct pool_cache pagecache;
    157 
    158 /*
    159  * Called with the object locked.  We don't support anons.
    160  */
    161 struct vm_page *
    162 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    163 	int flags, int strat, int free_list)
    164 {
    165 	struct vm_page *pg;
    166 
    167 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    168 	KASSERT(anon == NULL);
    169 
    170 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    171 	pg->offset = off;
    172 	pg->uobject = uobj;
    173 
    174 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    175 	if (flags & UVM_PGA_ZERO) {
    176 		uvm_pagezero(pg);
    177 	}
    178 
    179 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    180 	rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    181 
    182 	/*
    183 	 * Don't put anons on the LRU page queue.  We can't flush them
    184 	 * (there's no concept of swap in a rump kernel), so no reason
    185 	 * to bother with them.
    186 	 */
    187 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    188 		atomic_inc_uint(&vmpage_onqueue);
    189 		mutex_enter(&uvm_pageqlock);
    190 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    191 		mutex_exit(&uvm_pageqlock);
    192 	}
    193 
    194 	uobj->uo_npages++;
    195 
    196 	return pg;
    197 }
    198 
    199 /*
    200  * Release a page.
    201  *
    202  * Called with the vm object locked.
    203  */
    204 void
    205 uvm_pagefree(struct vm_page *pg)
    206 {
    207 	struct uvm_object *uobj = pg->uobject;
    208 
    209 	KASSERT(mutex_owned(&uvm_pageqlock));
    210 
    211 	if (pg->flags & PG_WANTED)
    212 		wakeup(pg);
    213 
    214 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    215 
    216 	uobj->uo_npages--;
    217 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    218 
    219 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    220 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    221 		atomic_dec_uint(&vmpage_onqueue);
    222 	}
    223 
    224 	pool_cache_put(&pagecache, pg);
    225 }
    226 
    227 void
    228 uvm_pagezero(struct vm_page *pg)
    229 {
    230 
    231 	pg->flags &= ~PG_CLEAN;
    232 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    233 }
    234 
    235 /*
    236  * Misc routines
    237  */
    238 
    239 static kmutex_t pagermtx;
    240 
    241 void
    242 uvm_init(void)
    243 {
    244 	char buf[64];
    245 	int error;
    246 
    247 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    248 		rump_physmemlimit = strtoll(buf, NULL, 10);
    249 		/* it's not like we'd get far with, say, 1 byte, but ... */
    250 		if (rump_physmemlimit == 0)
    251 			panic("uvm_init: no memory available");
    252 #define HUMANIZE_BYTES 9
    253 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    254 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    255 #undef HUMANIZE_BYTES
    256 		dddlim = 9 * (rump_physmemlimit / 10);
    257 	} else {
    258 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    259 	}
    260 	aprint_verbose("total memory = %s\n", buf);
    261 
    262 	TAILQ_INIT(&vmpage_lruqueue);
    263 
    264 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    265 
    266 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    267 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    268 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    269 
    270 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    271 	cv_init(&pdaemoncv, "pdaemon");
    272 	cv_init(&oomwait, "oomwait");
    273 
    274 	kernel_map->pmap = pmap_kernel();
    275 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    276 	kmem_map->pmap = pmap_kernel();
    277 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    278 
    279 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    280 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    281 }
    282 
    283 void
    284 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    285 {
    286 
    287 	vm->vm_map.pmap = pmap_kernel();
    288 	vm->vm_refcnt = 1;
    289 }
    290 
    291 void
    292 uvm_pagewire(struct vm_page *pg)
    293 {
    294 
    295 	/* nada */
    296 }
    297 
    298 void
    299 uvm_pageunwire(struct vm_page *pg)
    300 {
    301 
    302 	/* nada */
    303 }
    304 
    305 /* where's your schmonz now? */
    306 #define PUNLIMIT(a)	\
    307 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    308 void
    309 uvm_init_limits(struct proc *p)
    310 {
    311 
    312 	PUNLIMIT(RLIMIT_STACK);
    313 	PUNLIMIT(RLIMIT_DATA);
    314 	PUNLIMIT(RLIMIT_RSS);
    315 	PUNLIMIT(RLIMIT_AS);
    316 	/* nice, cascade */
    317 }
    318 #undef PUNLIMIT
    319 
    320 /*
    321  * This satisfies the "disgusting mmap hack" used by proplib.
    322  * We probably should grow some more assertables to make sure we're
    323  * not satisfying anything we shouldn't be satisfying.  At least we
    324  * should make sure it's the local machine we're mmapping ...
    325  */
    326 int
    327 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    328 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    329 {
    330 	void *uaddr;
    331 	int error;
    332 
    333 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    334 		panic("uvm_mmap() variant unsupported");
    335 	if (flags != (MAP_PRIVATE | MAP_ANON))
    336 		panic("uvm_mmap() variant unsupported");
    337 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    338 	if (*addr != 0)
    339 		panic("uvm_mmap() variant unsupported");
    340 
    341 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    342 	if (uaddr == NULL)
    343 		return error;
    344 
    345 	*addr = (vaddr_t)uaddr;
    346 	return 0;
    347 }
    348 
    349 struct pagerinfo {
    350 	vaddr_t pgr_kva;
    351 	int pgr_npages;
    352 	struct vm_page **pgr_pgs;
    353 	bool pgr_read;
    354 
    355 	LIST_ENTRY(pagerinfo) pgr_entries;
    356 };
    357 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    358 
    359 /*
    360  * Pager "map" in routine.  Instead of mapping, we allocate memory
    361  * and copy page contents there.  Not optimal or even strictly
    362  * correct (the caller might modify the page contents after mapping
    363  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    364  */
    365 vaddr_t
    366 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    367 {
    368 	struct pagerinfo *pgri;
    369 	vaddr_t curkva;
    370 	int i;
    371 
    372 	/* allocate structures */
    373 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    374 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    375 	pgri->pgr_npages = npages;
    376 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    377 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    378 
    379 	/* copy contents to "mapped" memory */
    380 	for (i = 0, curkva = pgri->pgr_kva;
    381 	    i < npages;
    382 	    i++, curkva += PAGE_SIZE) {
    383 		/*
    384 		 * We need to copy the previous contents of the pages to
    385 		 * the window even if we are reading from the
    386 		 * device, since the device might not fill the contents of
    387 		 * the full mapped range and we will end up corrupting
    388 		 * data when we unmap the window.
    389 		 */
    390 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    391 		pgri->pgr_pgs[i] = pgs[i];
    392 	}
    393 
    394 	mutex_enter(&pagermtx);
    395 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    396 	mutex_exit(&pagermtx);
    397 
    398 	return pgri->pgr_kva;
    399 }
    400 
    401 /*
    402  * map out the pager window.  return contents from VA to page storage
    403  * and free structures.
    404  *
    405  * Note: does not currently support partial frees
    406  */
    407 void
    408 uvm_pagermapout(vaddr_t kva, int npages)
    409 {
    410 	struct pagerinfo *pgri;
    411 	vaddr_t curkva;
    412 	int i;
    413 
    414 	mutex_enter(&pagermtx);
    415 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    416 		if (pgri->pgr_kva == kva)
    417 			break;
    418 	}
    419 	KASSERT(pgri);
    420 	if (pgri->pgr_npages != npages)
    421 		panic("uvm_pagermapout: partial unmapping not supported");
    422 	LIST_REMOVE(pgri, pgr_entries);
    423 	mutex_exit(&pagermtx);
    424 
    425 	if (pgri->pgr_read) {
    426 		for (i = 0, curkva = pgri->pgr_kva;
    427 		    i < pgri->pgr_npages;
    428 		    i++, curkva += PAGE_SIZE) {
    429 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    430 		}
    431 	}
    432 
    433 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    434 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    435 	kmem_free(pgri, sizeof(*pgri));
    436 }
    437 
    438 /*
    439  * convert va in pager window to page structure.
    440  * XXX: how expensive is this (global lock, list traversal)?
    441  */
    442 struct vm_page *
    443 uvm_pageratop(vaddr_t va)
    444 {
    445 	struct pagerinfo *pgri;
    446 	struct vm_page *pg = NULL;
    447 	int i;
    448 
    449 	mutex_enter(&pagermtx);
    450 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    451 		if (pgri->pgr_kva <= va
    452 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    453 			break;
    454 	}
    455 	if (pgri) {
    456 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    457 		pg = pgri->pgr_pgs[i];
    458 	}
    459 	mutex_exit(&pagermtx);
    460 
    461 	return pg;
    462 }
    463 
    464 /* Called with the vm object locked */
    465 struct vm_page *
    466 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    467 {
    468 	struct vm_page *pg;
    469 
    470 	pg = (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
    471 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
    472 		mutex_enter(&uvm_pageqlock);
    473 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    474 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    475 		mutex_exit(&uvm_pageqlock);
    476 	}
    477 
    478 	return pg;
    479 }
    480 
    481 void
    482 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    483 {
    484 	struct vm_page *pg;
    485 	int i;
    486 
    487 	KASSERT(npgs > 0);
    488 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    489 
    490 	for (i = 0; i < npgs; i++) {
    491 		pg = pgs[i];
    492 		if (pg == NULL)
    493 			continue;
    494 
    495 		KASSERT(pg->flags & PG_BUSY);
    496 		if (pg->flags & PG_WANTED)
    497 			wakeup(pg);
    498 		if (pg->flags & PG_RELEASED)
    499 			uvm_pagefree(pg);
    500 		else
    501 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    502 	}
    503 }
    504 
    505 void
    506 uvm_estimatepageable(int *active, int *inactive)
    507 {
    508 
    509 	/* XXX: guessing game */
    510 	*active = 1024;
    511 	*inactive = 1024;
    512 }
    513 
    514 struct vm_map_kernel *
    515 vm_map_to_kernel(struct vm_map *map)
    516 {
    517 
    518 	return (struct vm_map_kernel *)map;
    519 }
    520 
    521 bool
    522 vm_map_starved_p(struct vm_map *map)
    523 {
    524 
    525 	if (map->flags & VM_MAP_WANTVA)
    526 		return true;
    527 
    528 	return false;
    529 }
    530 
    531 int
    532 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    533 {
    534 
    535 	panic("%s: unimplemented", __func__);
    536 }
    537 
    538 void
    539 uvm_unloan(void *v, int npages, int flags)
    540 {
    541 
    542 	panic("%s: unimplemented", __func__);
    543 }
    544 
    545 int
    546 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    547 	struct vm_page **opp)
    548 {
    549 
    550 	return EBUSY;
    551 }
    552 
    553 #ifdef DEBUGPRINT
    554 void
    555 uvm_object_printit(struct uvm_object *uobj, bool full,
    556 	void (*pr)(const char *, ...))
    557 {
    558 
    559 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    560 }
    561 #endif
    562 
    563 vaddr_t
    564 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    565 {
    566 
    567 	return 0;
    568 }
    569 
    570 int
    571 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    572 	vm_prot_t prot, bool set_max)
    573 {
    574 
    575 	return EOPNOTSUPP;
    576 }
    577 
    578 /*
    579  * UVM km
    580  */
    581 
    582 vaddr_t
    583 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    584 {
    585 	void *rv, *desired = NULL;
    586 	int alignbit, error;
    587 
    588 #ifdef __x86_64__
    589 	/*
    590 	 * On amd64, allocate all module memory from the lowest 2GB.
    591 	 * This is because NetBSD kernel modules are compiled
    592 	 * with -mcmodel=kernel and reserve only 4 bytes for
    593 	 * offsets.  If we load code compiled with -mcmodel=kernel
    594 	 * anywhere except the lowest or highest 2GB, it will not
    595 	 * work.  Since userspace does not have access to the highest
    596 	 * 2GB, use the lowest 2GB.
    597 	 *
    598 	 * Note: this assumes the rump kernel resides in
    599 	 * the lowest 2GB as well.
    600 	 *
    601 	 * Note2: yes, it's a quick hack, but since this the only
    602 	 * place where we care about the map we're allocating from,
    603 	 * just use a simple "if" instead of coming up with a fancy
    604 	 * generic solution.
    605 	 */
    606 	extern struct vm_map *module_map;
    607 	if (map == module_map) {
    608 		desired = (void *)(0x80000000 - size);
    609 	}
    610 #endif
    611 
    612 	alignbit = 0;
    613 	if (align) {
    614 		alignbit = ffs(align)-1;
    615 	}
    616 
    617 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    618 	    &error);
    619 	if (rv == NULL) {
    620 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    621 			return 0;
    622 		else
    623 			panic("uvm_km_alloc failed");
    624 	}
    625 
    626 	if (flags & UVM_KMF_ZERO)
    627 		memset(rv, 0, size);
    628 
    629 	return (vaddr_t)rv;
    630 }
    631 
    632 void
    633 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    634 {
    635 
    636 	rumpuser_unmap((void *)vaddr, size);
    637 }
    638 
    639 struct vm_map *
    640 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    641 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    642 {
    643 
    644 	return (struct vm_map *)417416;
    645 }
    646 
    647 vaddr_t
    648 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    649 {
    650 
    651 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    652 	    waitok, "kmalloc");
    653 }
    654 
    655 void
    656 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    657 {
    658 
    659 	rump_hyperfree((void *)addr, PAGE_SIZE);
    660 }
    661 
    662 vaddr_t
    663 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    664 {
    665 
    666 	return uvm_km_alloc_poolpage(map, waitok);
    667 }
    668 
    669 void
    670 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    671 {
    672 
    673 	uvm_km_free_poolpage(map, vaddr);
    674 }
    675 
    676 void
    677 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    678 {
    679 
    680 	/* we eventually maybe want some model for available memory */
    681 }
    682 
    683 /*
    684  * Mapping and vm space locking routines.
    685  * XXX: these don't work for non-local vmspaces
    686  */
    687 int
    688 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    689 {
    690 
    691 	KASSERT(vs == &vmspace0);
    692 	return 0;
    693 }
    694 
    695 void
    696 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    697 {
    698 
    699 	KASSERT(vs == &vmspace0);
    700 }
    701 
    702 void
    703 vmapbuf(struct buf *bp, vsize_t len)
    704 {
    705 
    706 	bp->b_saveaddr = bp->b_data;
    707 }
    708 
    709 void
    710 vunmapbuf(struct buf *bp, vsize_t len)
    711 {
    712 
    713 	bp->b_data = bp->b_saveaddr;
    714 	bp->b_saveaddr = 0;
    715 }
    716 
    717 void
    718 uvmspace_addref(struct vmspace *vm)
    719 {
    720 
    721 	/*
    722 	 * there is only vmspace0.  we're not planning on
    723 	 * feeding it to the fishes.
    724 	 */
    725 }
    726 
    727 void
    728 uvmspace_free(struct vmspace *vm)
    729 {
    730 
    731 	/* nothing for now */
    732 }
    733 
    734 int
    735 uvm_io(struct vm_map *map, struct uio *uio)
    736 {
    737 
    738 	/*
    739 	 * just do direct uio for now.  but this needs some vmspace
    740 	 * olympics for rump_sysproxy.
    741 	 */
    742 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    743 }
    744 
    745 /*
    746  * page life cycle stuff.  it really doesn't exist, so just stubs.
    747  */
    748 
    749 void
    750 uvm_pageactivate(struct vm_page *pg)
    751 {
    752 
    753 	/* nada */
    754 }
    755 
    756 void
    757 uvm_pagedeactivate(struct vm_page *pg)
    758 {
    759 
    760 	/* nada */
    761 }
    762 
    763 void
    764 uvm_pagedequeue(struct vm_page *pg)
    765 {
    766 
    767 	/* nada*/
    768 }
    769 
    770 void
    771 uvm_pageenqueue(struct vm_page *pg)
    772 {
    773 
    774 	/* nada */
    775 }
    776 
    777 void
    778 uvmpdpol_anfree(struct vm_anon *an)
    779 {
    780 
    781 	/* nada */
    782 }
    783 
    784 /*
    785  * Routines related to the Page Baroness.
    786  */
    787 
    788 void
    789 uvm_wait(const char *msg)
    790 {
    791 
    792 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    793 		panic("pagedaemon out of memory");
    794 	if (__predict_false(rump_threads == 0))
    795 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    796 
    797 	mutex_enter(&pdaemonmtx);
    798 	pdaemon_waiters++;
    799 	cv_signal(&pdaemoncv);
    800 	cv_wait(&oomwait, &pdaemonmtx);
    801 	mutex_exit(&pdaemonmtx);
    802 }
    803 
    804 void
    805 uvm_pageout_start(int npages)
    806 {
    807 
    808 	/* we don't have the heuristics */
    809 }
    810 
    811 void
    812 uvm_pageout_done(int npages)
    813 {
    814 
    815 	/* could wakeup waiters, but just let the pagedaemon do it */
    816 }
    817 
    818 /*
    819  * The Diabolical pageDaemon Director (DDD).
    820  */
    821 void
    822 uvm_pageout(void *arg)
    823 {
    824 	struct vm_page *pg;
    825 	struct pool *pp, *pp_first;
    826 	uint64_t where;
    827 	int timo = 0;
    828 	int cleaned, skip, skipped;
    829 	bool succ = false;
    830 
    831 	mutex_enter(&pdaemonmtx);
    832 	for (;;) {
    833 		if (succ) {
    834 			kernel_map->flags &= ~VM_MAP_WANTVA;
    835 			kmem_map->flags &= VM_MAP_WANTVA;
    836 			timo = 0;
    837 		}
    838 		succ = false;
    839 
    840 		/*
    841 		 * Wake up everyone regardless of perceived success.
    842 		 * They will just resleep if we're stil out of juice.
    843 		 */
    844 		if (pdaemon_waiters) {
    845 			pdaemon_waiters = 0;
    846 			cv_broadcast(&oomwait);
    847 		}
    848 
    849 		cv_timedwait(&pdaemoncv, &pdaemonmtx, 0);
    850 		uvmexp.pdwoke++;
    851 
    852 		/* tell the world that we are hungry */
    853 		kernel_map->flags |= VM_MAP_WANTVA;
    854 		kmem_map->flags |= VM_MAP_WANTVA;
    855 
    856 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    857 			continue;
    858 		mutex_exit(&pdaemonmtx);
    859 
    860 		/*
    861 		 * step one: reclaim the page cache.  this should give
    862 		 * us the biggest earnings since whole pages are released
    863 		 * into backing memory.
    864 		 */
    865 		pool_cache_reclaim(&pagecache);
    866 		if (!NEED_PAGEDAEMON()) {
    867 			succ = true;
    868 			mutex_enter(&pdaemonmtx);
    869 			continue;
    870 		}
    871 
    872 		/*
    873 		 * Ok, so that didn't help.  Next, try to hunt memory
    874 		 * by pushing out vnode pages.  The pages might contain
    875 		 * useful cached data, but we need the memory.
    876 		 */
    877 		cleaned = 0;
    878 		skip = 0;
    879  again:
    880 		mutex_enter(&uvm_pageqlock);
    881 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    882 			skipped = 0;
    883 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    884 				struct uvm_object *uobj;
    885 
    886 				/*
    887 				 * skip over pages we _might_ have tried
    888 				 * to handle earlier.  they might not be
    889 				 * exactly the same ones, but I'm not too
    890 				 * concerned.
    891 				 */
    892 				while (skipped++ < skip)
    893 					continue;
    894 
    895 				uobj = pg->uobject;
    896 				if (mutex_tryenter(&uobj->vmobjlock)) {
    897 					if ((pg->flags & PG_BUSY) == 0) {
    898 						mutex_exit(&uvm_pageqlock);
    899 						uobj->pgops->pgo_put(uobj,
    900 						    pg->offset,
    901 						    pg->offset + PAGE_SIZE,
    902 						    PGO_CLEANIT|PGO_FREE);
    903 						cleaned++;
    904 						goto again;
    905 					}
    906 				}
    907 
    908 				skip++;
    909 			}
    910 			break;
    911 		}
    912 		mutex_exit(&uvm_pageqlock);
    913 
    914 		/*
    915 		 * And of course we need to reclaim the page cache
    916 		 * again to actually release memory.
    917 		 */
    918 		pool_cache_reclaim(&pagecache);
    919 		if (!NEED_PAGEDAEMON()) {
    920 			succ = true;
    921 			mutex_enter(&pdaemonmtx);
    922 			continue;
    923 		}
    924 
    925 		/*
    926 		 * Still not there?  sleeves come off right about now.
    927 		 * First: do reclaim on kernel/kmem map.
    928 		 */
    929 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    930 		    NULL);
    931 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    932 		    NULL);
    933 
    934 		/*
    935 		 * And then drain the pools.  Wipe them out ... all of them.
    936 		 */
    937 
    938 		pool_drain_start(&pp_first, &where);
    939 		pp = pp_first;
    940 		for (;;) {
    941 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    942 			succ = pool_drain_end(pp, where);
    943 			if (succ)
    944 				break;
    945 			pool_drain_start(&pp, &where);
    946 			if (pp == pp_first) {
    947 				succ = pool_drain_end(pp, where);
    948 				break;
    949 			}
    950 		}
    951 
    952 		/*
    953 		 * Need to use PYEC on our bag of tricks.
    954 		 * Unfortunately, the wife just borrowed it.
    955 		 */
    956 
    957 		if (!succ) {
    958 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    959 			    "memory ... sleeping (deadlock?)\n");
    960 			kpause("dpdd", false, hz, NULL);
    961 		}
    962 
    963 		mutex_enter(&pdaemonmtx);
    964 	}
    965 
    966 	panic("you can swap out any time you like, but you can never leave");
    967 }
    968 
    969 void
    970 uvm_kick_pdaemon()
    971 {
    972 
    973 	/*
    974 	 * Wake up the diabolical pagedaemon director if we are over
    975 	 * 90% of the memory limit.  This is a complete and utter
    976 	 * stetson-harrison decision which you are allowed to finetune.
    977 	 * Don't bother locking.  If we have some unflushed caches,
    978 	 * other waker-uppers will deal with the issue.
    979 	 */
    980 	if (NEED_PAGEDAEMON()) {
    981 		cv_signal(&pdaemoncv);
    982 	}
    983 }
    984 
    985 void *
    986 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    987 {
    988 	unsigned long newmem;
    989 	void *rv;
    990 
    991 	uvm_kick_pdaemon(); /* ouch */
    992 
    993 	/* first we must be within the limit */
    994  limitagain:
    995 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
    996 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
    997 		if (newmem > rump_physmemlimit) {
    998 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
    999 			if (!waitok)
   1000 				return NULL;
   1001 			uvm_wait(wmsg);
   1002 			goto limitagain;
   1003 		}
   1004 	}
   1005 
   1006 	/* second, we must get something from the backend */
   1007  again:
   1008 	rv = rumpuser_malloc(howmuch, alignment);
   1009 	if (__predict_false(rv == NULL && waitok)) {
   1010 		uvm_wait(wmsg);
   1011 		goto again;
   1012 	}
   1013 
   1014 	return rv;
   1015 }
   1016 
   1017 void
   1018 rump_hyperfree(void *what, size_t size)
   1019 {
   1020 
   1021 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1022 		atomic_add_long(&curphysmem, -size);
   1023 	}
   1024 	rumpuser_free(what);
   1025 }
   1026