Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.95
      1 /*	$NetBSD: vm.c,v 1.95 2010/09/09 12:23:06 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.95 2010/09/09 12:23:06 pooka Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 struct uvm uvm;
     73 
     74 struct vm_map rump_vmmap;
     75 static struct vm_map_kernel kmem_map_store;
     76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     77 
     78 static struct vm_map_kernel kernel_map_store;
     79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     80 
     81 static unsigned int pdaemon_waiters;
     82 static kmutex_t pdaemonmtx;
     83 static kcondvar_t pdaemoncv, oomwait;
     84 
     85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     86 static unsigned long curphysmem;
     87 static unsigned long dddlim;		/* 90% of memory limit used */
     88 #define NEED_PAGEDAEMON() \
     89     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     90 
     91 /*
     92  * Try to free two pages worth of pages from objects.
     93  * If this succesfully frees a full page cache page, we'll
     94  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     95  */
     96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
     97 
     98 /*
     99  * Keep a list of least recently used pages.  Since the only way a
    100  * rump kernel can "access" a page is via lookup, we put the page
    101  * at the back of queue every time a lookup for it is done.  If the
    102  * page is in front of this global queue and we're short of memory,
    103  * it's a candidate for pageout.
    104  */
    105 static struct pglist vmpage_lruqueue;
    106 static unsigned vmpage_onqueue;
    107 
    108 static int
    109 pg_compare_key(const struct rb_node *n, const void *key)
    110 {
    111 	voff_t a = ((const struct vm_page *)n)->offset;
    112 	voff_t b = *(const voff_t *)key;
    113 
    114 	if (a < b)
    115 		return 1;
    116 	else if (a > b)
    117 		return -1;
    118 	else
    119 		return 0;
    120 }
    121 
    122 static int
    123 pg_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
    124 {
    125 
    126 	return pg_compare_key(n1, &((const struct vm_page *)n2)->offset);
    127 }
    128 
    129 const struct rb_tree_ops uvm_page_tree_ops = {
    130 	.rbto_compare_nodes = pg_compare_nodes,
    131 	.rbto_compare_key = pg_compare_key,
    132 };
    133 
    134 /*
    135  * vm pages
    136  */
    137 
    138 static int
    139 pgctor(void *arg, void *obj, int flags)
    140 {
    141 	struct vm_page *pg = obj;
    142 
    143 	memset(pg, 0, sizeof(*pg));
    144 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    145 	return 0;
    146 }
    147 
    148 static void
    149 pgdtor(void *arg, void *obj)
    150 {
    151 	struct vm_page *pg = obj;
    152 
    153 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    154 }
    155 
    156 static struct pool_cache pagecache;
    157 
    158 /*
    159  * Called with the object locked.  We don't support anons.
    160  */
    161 struct vm_page *
    162 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    163 	int flags, int strat, int free_list)
    164 {
    165 	struct vm_page *pg;
    166 
    167 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    168 	KASSERT(anon == NULL);
    169 
    170 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    171 	pg->offset = off;
    172 	pg->uobject = uobj;
    173 
    174 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    175 	if (flags & UVM_PGA_ZERO) {
    176 		uvm_pagezero(pg);
    177 	}
    178 
    179 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    180 	rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
    181 
    182 	/*
    183 	 * Don't put anons on the LRU page queue.  We can't flush them
    184 	 * (there's no concept of swap in a rump kernel), so no reason
    185 	 * to bother with them.
    186 	 */
    187 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    188 		atomic_inc_uint(&vmpage_onqueue);
    189 		mutex_enter(&uvm_pageqlock);
    190 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    191 		mutex_exit(&uvm_pageqlock);
    192 	}
    193 
    194 	uobj->uo_npages++;
    195 
    196 	return pg;
    197 }
    198 
    199 /*
    200  * Release a page.
    201  *
    202  * Called with the vm object locked.
    203  */
    204 void
    205 uvm_pagefree(struct vm_page *pg)
    206 {
    207 	struct uvm_object *uobj = pg->uobject;
    208 
    209 	KASSERT(mutex_owned(&uvm_pageqlock));
    210 	KASSERT(mutex_owned(&uobj->vmobjlock));
    211 
    212 	if (pg->flags & PG_WANTED)
    213 		wakeup(pg);
    214 
    215 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    216 
    217 	uobj->uo_npages--;
    218 	rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
    219 
    220 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    221 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    222 		atomic_dec_uint(&vmpage_onqueue);
    223 	}
    224 
    225 	pool_cache_put(&pagecache, pg);
    226 }
    227 
    228 void
    229 uvm_pagezero(struct vm_page *pg)
    230 {
    231 
    232 	pg->flags &= ~PG_CLEAN;
    233 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    234 }
    235 
    236 /*
    237  * Misc routines
    238  */
    239 
    240 static kmutex_t pagermtx;
    241 
    242 void
    243 uvm_init(void)
    244 {
    245 	char buf[64];
    246 	int error;
    247 
    248 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    249 		rump_physmemlimit = strtoll(buf, NULL, 10);
    250 		/* it's not like we'd get far with, say, 1 byte, but ... */
    251 		if (rump_physmemlimit == 0)
    252 			panic("uvm_init: no memory available");
    253 #define HUMANIZE_BYTES 9
    254 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    255 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    256 #undef HUMANIZE_BYTES
    257 		dddlim = 9 * (rump_physmemlimit / 10);
    258 	} else {
    259 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    260 	}
    261 	aprint_verbose("total memory = %s\n", buf);
    262 
    263 	TAILQ_INIT(&vmpage_lruqueue);
    264 
    265 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    266 
    267 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    268 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    269 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    270 
    271 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    272 	cv_init(&pdaemoncv, "pdaemon");
    273 	cv_init(&oomwait, "oomwait");
    274 
    275 	kernel_map->pmap = pmap_kernel();
    276 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    277 	kmem_map->pmap = pmap_kernel();
    278 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    279 
    280 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    281 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    282 }
    283 
    284 void
    285 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    286 {
    287 
    288 	vm->vm_map.pmap = pmap_kernel();
    289 	vm->vm_refcnt = 1;
    290 }
    291 
    292 void
    293 uvm_pagewire(struct vm_page *pg)
    294 {
    295 
    296 	/* nada */
    297 }
    298 
    299 void
    300 uvm_pageunwire(struct vm_page *pg)
    301 {
    302 
    303 	/* nada */
    304 }
    305 
    306 /* where's your schmonz now? */
    307 #define PUNLIMIT(a)	\
    308 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    309 void
    310 uvm_init_limits(struct proc *p)
    311 {
    312 
    313 	PUNLIMIT(RLIMIT_STACK);
    314 	PUNLIMIT(RLIMIT_DATA);
    315 	PUNLIMIT(RLIMIT_RSS);
    316 	PUNLIMIT(RLIMIT_AS);
    317 	/* nice, cascade */
    318 }
    319 #undef PUNLIMIT
    320 
    321 /*
    322  * This satisfies the "disgusting mmap hack" used by proplib.
    323  * We probably should grow some more assertables to make sure we're
    324  * not satisfying anything we shouldn't be satisfying.  At least we
    325  * should make sure it's the local machine we're mmapping ...
    326  */
    327 int
    328 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    329 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    330 {
    331 	void *uaddr;
    332 	int error;
    333 
    334 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    335 		panic("uvm_mmap() variant unsupported");
    336 	if (flags != (MAP_PRIVATE | MAP_ANON))
    337 		panic("uvm_mmap() variant unsupported");
    338 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    339 	if (*addr != 0)
    340 		panic("uvm_mmap() variant unsupported");
    341 
    342 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    343 	if (uaddr == NULL)
    344 		return error;
    345 
    346 	*addr = (vaddr_t)uaddr;
    347 	return 0;
    348 }
    349 
    350 struct pagerinfo {
    351 	vaddr_t pgr_kva;
    352 	int pgr_npages;
    353 	struct vm_page **pgr_pgs;
    354 	bool pgr_read;
    355 
    356 	LIST_ENTRY(pagerinfo) pgr_entries;
    357 };
    358 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    359 
    360 /*
    361  * Pager "map" in routine.  Instead of mapping, we allocate memory
    362  * and copy page contents there.  Not optimal or even strictly
    363  * correct (the caller might modify the page contents after mapping
    364  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    365  */
    366 vaddr_t
    367 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    368 {
    369 	struct pagerinfo *pgri;
    370 	vaddr_t curkva;
    371 	int i;
    372 
    373 	/* allocate structures */
    374 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    375 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    376 	pgri->pgr_npages = npages;
    377 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    378 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    379 
    380 	/* copy contents to "mapped" memory */
    381 	for (i = 0, curkva = pgri->pgr_kva;
    382 	    i < npages;
    383 	    i++, curkva += PAGE_SIZE) {
    384 		/*
    385 		 * We need to copy the previous contents of the pages to
    386 		 * the window even if we are reading from the
    387 		 * device, since the device might not fill the contents of
    388 		 * the full mapped range and we will end up corrupting
    389 		 * data when we unmap the window.
    390 		 */
    391 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    392 		pgri->pgr_pgs[i] = pgs[i];
    393 	}
    394 
    395 	mutex_enter(&pagermtx);
    396 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    397 	mutex_exit(&pagermtx);
    398 
    399 	return pgri->pgr_kva;
    400 }
    401 
    402 /*
    403  * map out the pager window.  return contents from VA to page storage
    404  * and free structures.
    405  *
    406  * Note: does not currently support partial frees
    407  */
    408 void
    409 uvm_pagermapout(vaddr_t kva, int npages)
    410 {
    411 	struct pagerinfo *pgri;
    412 	vaddr_t curkva;
    413 	int i;
    414 
    415 	mutex_enter(&pagermtx);
    416 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    417 		if (pgri->pgr_kva == kva)
    418 			break;
    419 	}
    420 	KASSERT(pgri);
    421 	if (pgri->pgr_npages != npages)
    422 		panic("uvm_pagermapout: partial unmapping not supported");
    423 	LIST_REMOVE(pgri, pgr_entries);
    424 	mutex_exit(&pagermtx);
    425 
    426 	if (pgri->pgr_read) {
    427 		for (i = 0, curkva = pgri->pgr_kva;
    428 		    i < pgri->pgr_npages;
    429 		    i++, curkva += PAGE_SIZE) {
    430 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    431 		}
    432 	}
    433 
    434 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    435 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    436 	kmem_free(pgri, sizeof(*pgri));
    437 }
    438 
    439 /*
    440  * convert va in pager window to page structure.
    441  * XXX: how expensive is this (global lock, list traversal)?
    442  */
    443 struct vm_page *
    444 uvm_pageratop(vaddr_t va)
    445 {
    446 	struct pagerinfo *pgri;
    447 	struct vm_page *pg = NULL;
    448 	int i;
    449 
    450 	mutex_enter(&pagermtx);
    451 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    452 		if (pgri->pgr_kva <= va
    453 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    454 			break;
    455 	}
    456 	if (pgri) {
    457 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    458 		pg = pgri->pgr_pgs[i];
    459 	}
    460 	mutex_exit(&pagermtx);
    461 
    462 	return pg;
    463 }
    464 
    465 /* Called with the vm object locked */
    466 struct vm_page *
    467 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    468 {
    469 	struct vm_page *pg;
    470 
    471 	pg = (struct vm_page *)rb_tree_find_node(&uobj->rb_tree, &off);
    472 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
    473 		mutex_enter(&uvm_pageqlock);
    474 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    475 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    476 		mutex_exit(&uvm_pageqlock);
    477 	}
    478 
    479 	return pg;
    480 }
    481 
    482 void
    483 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    484 {
    485 	struct vm_page *pg;
    486 	int i;
    487 
    488 	KASSERT(npgs > 0);
    489 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    490 
    491 	for (i = 0; i < npgs; i++) {
    492 		pg = pgs[i];
    493 		if (pg == NULL)
    494 			continue;
    495 
    496 		KASSERT(pg->flags & PG_BUSY);
    497 		if (pg->flags & PG_WANTED)
    498 			wakeup(pg);
    499 		if (pg->flags & PG_RELEASED)
    500 			uvm_pagefree(pg);
    501 		else
    502 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    503 	}
    504 }
    505 
    506 void
    507 uvm_estimatepageable(int *active, int *inactive)
    508 {
    509 
    510 	/* XXX: guessing game */
    511 	*active = 1024;
    512 	*inactive = 1024;
    513 }
    514 
    515 struct vm_map_kernel *
    516 vm_map_to_kernel(struct vm_map *map)
    517 {
    518 
    519 	return (struct vm_map_kernel *)map;
    520 }
    521 
    522 bool
    523 vm_map_starved_p(struct vm_map *map)
    524 {
    525 
    526 	if (map->flags & VM_MAP_WANTVA)
    527 		return true;
    528 
    529 	return false;
    530 }
    531 
    532 int
    533 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    534 {
    535 
    536 	panic("%s: unimplemented", __func__);
    537 }
    538 
    539 void
    540 uvm_unloan(void *v, int npages, int flags)
    541 {
    542 
    543 	panic("%s: unimplemented", __func__);
    544 }
    545 
    546 int
    547 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    548 	struct vm_page **opp)
    549 {
    550 
    551 	return EBUSY;
    552 }
    553 
    554 #ifdef DEBUGPRINT
    555 void
    556 uvm_object_printit(struct uvm_object *uobj, bool full,
    557 	void (*pr)(const char *, ...))
    558 {
    559 
    560 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    561 }
    562 #endif
    563 
    564 vaddr_t
    565 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    566 {
    567 
    568 	return 0;
    569 }
    570 
    571 int
    572 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    573 	vm_prot_t prot, bool set_max)
    574 {
    575 
    576 	return EOPNOTSUPP;
    577 }
    578 
    579 /*
    580  * UVM km
    581  */
    582 
    583 vaddr_t
    584 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    585 {
    586 	void *rv, *desired = NULL;
    587 	int alignbit, error;
    588 
    589 #ifdef __x86_64__
    590 	/*
    591 	 * On amd64, allocate all module memory from the lowest 2GB.
    592 	 * This is because NetBSD kernel modules are compiled
    593 	 * with -mcmodel=kernel and reserve only 4 bytes for
    594 	 * offsets.  If we load code compiled with -mcmodel=kernel
    595 	 * anywhere except the lowest or highest 2GB, it will not
    596 	 * work.  Since userspace does not have access to the highest
    597 	 * 2GB, use the lowest 2GB.
    598 	 *
    599 	 * Note: this assumes the rump kernel resides in
    600 	 * the lowest 2GB as well.
    601 	 *
    602 	 * Note2: yes, it's a quick hack, but since this the only
    603 	 * place where we care about the map we're allocating from,
    604 	 * just use a simple "if" instead of coming up with a fancy
    605 	 * generic solution.
    606 	 */
    607 	extern struct vm_map *module_map;
    608 	if (map == module_map) {
    609 		desired = (void *)(0x80000000 - size);
    610 	}
    611 #endif
    612 
    613 	alignbit = 0;
    614 	if (align) {
    615 		alignbit = ffs(align)-1;
    616 	}
    617 
    618 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    619 	    &error);
    620 	if (rv == NULL) {
    621 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    622 			return 0;
    623 		else
    624 			panic("uvm_km_alloc failed");
    625 	}
    626 
    627 	if (flags & UVM_KMF_ZERO)
    628 		memset(rv, 0, size);
    629 
    630 	return (vaddr_t)rv;
    631 }
    632 
    633 void
    634 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    635 {
    636 
    637 	rumpuser_unmap((void *)vaddr, size);
    638 }
    639 
    640 struct vm_map *
    641 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    642 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    643 {
    644 
    645 	return (struct vm_map *)417416;
    646 }
    647 
    648 vaddr_t
    649 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    650 {
    651 
    652 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    653 	    waitok, "kmalloc");
    654 }
    655 
    656 void
    657 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    658 {
    659 
    660 	rump_hyperfree((void *)addr, PAGE_SIZE);
    661 }
    662 
    663 vaddr_t
    664 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    665 {
    666 
    667 	return uvm_km_alloc_poolpage(map, waitok);
    668 }
    669 
    670 void
    671 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    672 {
    673 
    674 	uvm_km_free_poolpage(map, vaddr);
    675 }
    676 
    677 void
    678 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    679 {
    680 
    681 	/* we eventually maybe want some model for available memory */
    682 }
    683 
    684 /*
    685  * Mapping and vm space locking routines.
    686  * XXX: these don't work for non-local vmspaces
    687  */
    688 int
    689 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    690 {
    691 
    692 	KASSERT(vs == &vmspace0);
    693 	return 0;
    694 }
    695 
    696 void
    697 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    698 {
    699 
    700 	KASSERT(vs == &vmspace0);
    701 }
    702 
    703 void
    704 vmapbuf(struct buf *bp, vsize_t len)
    705 {
    706 
    707 	bp->b_saveaddr = bp->b_data;
    708 }
    709 
    710 void
    711 vunmapbuf(struct buf *bp, vsize_t len)
    712 {
    713 
    714 	bp->b_data = bp->b_saveaddr;
    715 	bp->b_saveaddr = 0;
    716 }
    717 
    718 void
    719 uvmspace_addref(struct vmspace *vm)
    720 {
    721 
    722 	/*
    723 	 * there is only vmspace0.  we're not planning on
    724 	 * feeding it to the fishes.
    725 	 */
    726 }
    727 
    728 void
    729 uvmspace_free(struct vmspace *vm)
    730 {
    731 
    732 	/* nothing for now */
    733 }
    734 
    735 int
    736 uvm_io(struct vm_map *map, struct uio *uio)
    737 {
    738 
    739 	/*
    740 	 * just do direct uio for now.  but this needs some vmspace
    741 	 * olympics for rump_sysproxy.
    742 	 */
    743 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    744 }
    745 
    746 /*
    747  * page life cycle stuff.  it really doesn't exist, so just stubs.
    748  */
    749 
    750 void
    751 uvm_pageactivate(struct vm_page *pg)
    752 {
    753 
    754 	/* nada */
    755 }
    756 
    757 void
    758 uvm_pagedeactivate(struct vm_page *pg)
    759 {
    760 
    761 	/* nada */
    762 }
    763 
    764 void
    765 uvm_pagedequeue(struct vm_page *pg)
    766 {
    767 
    768 	/* nada*/
    769 }
    770 
    771 void
    772 uvm_pageenqueue(struct vm_page *pg)
    773 {
    774 
    775 	/* nada */
    776 }
    777 
    778 void
    779 uvmpdpol_anfree(struct vm_anon *an)
    780 {
    781 
    782 	/* nada */
    783 }
    784 
    785 /*
    786  * Routines related to the Page Baroness.
    787  */
    788 
    789 void
    790 uvm_wait(const char *msg)
    791 {
    792 
    793 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    794 		panic("pagedaemon out of memory");
    795 	if (__predict_false(rump_threads == 0))
    796 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    797 
    798 	mutex_enter(&pdaemonmtx);
    799 	pdaemon_waiters++;
    800 	cv_signal(&pdaemoncv);
    801 	cv_wait(&oomwait, &pdaemonmtx);
    802 	mutex_exit(&pdaemonmtx);
    803 }
    804 
    805 void
    806 uvm_pageout_start(int npages)
    807 {
    808 
    809 	/* we don't have the heuristics */
    810 }
    811 
    812 void
    813 uvm_pageout_done(int npages)
    814 {
    815 
    816 	/* could wakeup waiters, but just let the pagedaemon do it */
    817 }
    818 
    819 static bool
    820 processpage(struct vm_page *pg)
    821 {
    822 	struct uvm_object *uobj;
    823 
    824 	uobj = pg->uobject;
    825 	if (mutex_tryenter(&uobj->vmobjlock)) {
    826 		if ((pg->flags & PG_BUSY) == 0) {
    827 			mutex_exit(&uvm_pageqlock);
    828 			uobj->pgops->pgo_put(uobj, pg->offset,
    829 			    pg->offset + PAGE_SIZE,
    830 			    PGO_CLEANIT|PGO_FREE);
    831 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    832 			return true;
    833 		} else {
    834 			mutex_exit(&uobj->vmobjlock);
    835 		}
    836 	}
    837 
    838 	return false;
    839 }
    840 
    841 /*
    842  * The Diabolical pageDaemon Director (DDD).
    843  */
    844 void
    845 uvm_pageout(void *arg)
    846 {
    847 	struct vm_page *pg;
    848 	struct pool *pp, *pp_first;
    849 	uint64_t where;
    850 	int timo = 0;
    851 	int cleaned, skip, skipped;
    852 	bool succ = false;
    853 
    854 	mutex_enter(&pdaemonmtx);
    855 	for (;;) {
    856 		if (succ) {
    857 			kernel_map->flags &= ~VM_MAP_WANTVA;
    858 			kmem_map->flags &= ~VM_MAP_WANTVA;
    859 			timo = 0;
    860 			if (pdaemon_waiters) {
    861 				pdaemon_waiters = 0;
    862 				cv_broadcast(&oomwait);
    863 			}
    864 		}
    865 		succ = false;
    866 
    867 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    868 		uvmexp.pdwoke++;
    869 
    870 		/* tell the world that we are hungry */
    871 		kernel_map->flags |= VM_MAP_WANTVA;
    872 		kmem_map->flags |= VM_MAP_WANTVA;
    873 
    874 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    875 			continue;
    876 		mutex_exit(&pdaemonmtx);
    877 
    878 		/*
    879 		 * step one: reclaim the page cache.  this should give
    880 		 * us the biggest earnings since whole pages are released
    881 		 * into backing memory.
    882 		 */
    883 		pool_cache_reclaim(&pagecache);
    884 		if (!NEED_PAGEDAEMON()) {
    885 			succ = true;
    886 			mutex_enter(&pdaemonmtx);
    887 			continue;
    888 		}
    889 
    890 		/*
    891 		 * Ok, so that didn't help.  Next, try to hunt memory
    892 		 * by pushing out vnode pages.  The pages might contain
    893 		 * useful cached data, but we need the memory.
    894 		 */
    895 		cleaned = 0;
    896 		skip = 0;
    897  again:
    898 		mutex_enter(&uvm_pageqlock);
    899 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    900 			skipped = 0;
    901 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    902 
    903 				/*
    904 				 * skip over pages we _might_ have tried
    905 				 * to handle earlier.  they might not be
    906 				 * exactly the same ones, but I'm not too
    907 				 * concerned.
    908 				 */
    909 				while (skipped++ < skip)
    910 					continue;
    911 
    912 				if (processpage(pg)) {
    913 					cleaned++;
    914 					goto again;
    915 				}
    916 
    917 				skip++;
    918 			}
    919 			break;
    920 		}
    921 		mutex_exit(&uvm_pageqlock);
    922 
    923 		/*
    924 		 * And of course we need to reclaim the page cache
    925 		 * again to actually release memory.
    926 		 */
    927 		pool_cache_reclaim(&pagecache);
    928 		if (!NEED_PAGEDAEMON()) {
    929 			succ = true;
    930 			mutex_enter(&pdaemonmtx);
    931 			continue;
    932 		}
    933 
    934 		/*
    935 		 * Still not there?  sleeves come off right about now.
    936 		 * First: do reclaim on kernel/kmem map.
    937 		 */
    938 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    939 		    NULL);
    940 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    941 		    NULL);
    942 
    943 		/*
    944 		 * And then drain the pools.  Wipe them out ... all of them.
    945 		 */
    946 
    947 		pool_drain_start(&pp_first, &where);
    948 		pp = pp_first;
    949 		for (;;) {
    950 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    951 			succ = pool_drain_end(pp, where);
    952 			if (succ)
    953 				break;
    954 			pool_drain_start(&pp, &where);
    955 			if (pp == pp_first) {
    956 				succ = pool_drain_end(pp, where);
    957 				break;
    958 			}
    959 		}
    960 
    961 		/*
    962 		 * Need to use PYEC on our bag of tricks.
    963 		 * Unfortunately, the wife just borrowed it.
    964 		 */
    965 
    966 		if (!succ) {
    967 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    968 			    "memory ... sleeping (deadlock?)\n");
    969 			timo = hz;
    970 		}
    971 
    972 		mutex_enter(&pdaemonmtx);
    973 	}
    974 
    975 	panic("you can swap out any time you like, but you can never leave");
    976 }
    977 
    978 void
    979 uvm_kick_pdaemon()
    980 {
    981 
    982 	/*
    983 	 * Wake up the diabolical pagedaemon director if we are over
    984 	 * 90% of the memory limit.  This is a complete and utter
    985 	 * stetson-harrison decision which you are allowed to finetune.
    986 	 * Don't bother locking.  If we have some unflushed caches,
    987 	 * other waker-uppers will deal with the issue.
    988 	 */
    989 	if (NEED_PAGEDAEMON()) {
    990 		cv_signal(&pdaemoncv);
    991 	}
    992 }
    993 
    994 void *
    995 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    996 {
    997 	unsigned long newmem;
    998 	void *rv;
    999 
   1000 	uvm_kick_pdaemon(); /* ouch */
   1001 
   1002 	/* first we must be within the limit */
   1003  limitagain:
   1004 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1005 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1006 		if (newmem > rump_physmemlimit) {
   1007 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1008 			if (!waitok)
   1009 				return NULL;
   1010 			uvm_wait(wmsg);
   1011 			goto limitagain;
   1012 		}
   1013 	}
   1014 
   1015 	/* second, we must get something from the backend */
   1016  again:
   1017 	rv = rumpuser_malloc(howmuch, alignment);
   1018 	if (__predict_false(rv == NULL && waitok)) {
   1019 		uvm_wait(wmsg);
   1020 		goto again;
   1021 	}
   1022 
   1023 	return rv;
   1024 }
   1025 
   1026 void
   1027 rump_hyperfree(void *what, size_t size)
   1028 {
   1029 
   1030 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1031 		atomic_add_long(&curphysmem, -size);
   1032 	}
   1033 	rumpuser_free(what);
   1034 }
   1035