Home | History | Annotate | Line # | Download | only in rumpkern
vm.c revision 1.96
      1 /*	$NetBSD: vm.c,v 1.96 2010/09/24 22:51:51 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007-2010 Antti Kantee.  All Rights Reserved.
      5  *
      6  * Development of this software was supported by
      7  * The Finnish Cultural Foundation and the Research Foundation of
      8  * The Helsinki University of Technology.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
     20  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     22  * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Virtual memory emulation routines.
     34  */
     35 
     36 /*
     37  * XXX: we abuse pg->uanon for the virtual address of the storage
     38  * for each page.  phys_addr would fit the job description better,
     39  * except that it will create unnecessary lossage on some platforms
     40  * due to not being a pointer type.
     41  */
     42 
     43 #include <sys/cdefs.h>
     44 __KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.96 2010/09/24 22:51:51 rmind Exp $");
     45 
     46 #include <sys/param.h>
     47 #include <sys/atomic.h>
     48 #include <sys/buf.h>
     49 #include <sys/kernel.h>
     50 #include <sys/kmem.h>
     51 #include <sys/mman.h>
     52 #include <sys/null.h>
     53 #include <sys/vnode.h>
     54 
     55 #include <machine/pmap.h>
     56 
     57 #include <rump/rumpuser.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_ddb.h>
     61 #include <uvm/uvm_pdpolicy.h>
     62 #include <uvm/uvm_prot.h>
     63 #include <uvm/uvm_readahead.h>
     64 
     65 #include "rump_private.h"
     66 #include "rump_vfs_private.h"
     67 
     68 kmutex_t uvm_pageqlock;
     69 kmutex_t uvm_swap_data_lock;
     70 
     71 struct uvmexp uvmexp;
     72 struct uvm uvm;
     73 
     74 struct vm_map rump_vmmap;
     75 static struct vm_map_kernel kmem_map_store;
     76 struct vm_map *kmem_map = &kmem_map_store.vmk_map;
     77 
     78 static struct vm_map_kernel kernel_map_store;
     79 struct vm_map *kernel_map = &kernel_map_store.vmk_map;
     80 
     81 static unsigned int pdaemon_waiters;
     82 static kmutex_t pdaemonmtx;
     83 static kcondvar_t pdaemoncv, oomwait;
     84 
     85 unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
     86 static unsigned long curphysmem;
     87 static unsigned long dddlim;		/* 90% of memory limit used */
     88 #define NEED_PAGEDAEMON() \
     89     (rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
     90 
     91 /*
     92  * Try to free two pages worth of pages from objects.
     93  * If this succesfully frees a full page cache page, we'll
     94  * free the released page plus PAGE_SIZE/sizeof(vm_page).
     95  */
     96 #define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
     97 
     98 /*
     99  * Keep a list of least recently used pages.  Since the only way a
    100  * rump kernel can "access" a page is via lookup, we put the page
    101  * at the back of queue every time a lookup for it is done.  If the
    102  * page is in front of this global queue and we're short of memory,
    103  * it's a candidate for pageout.
    104  */
    105 static struct pglist vmpage_lruqueue;
    106 static unsigned vmpage_onqueue;
    107 
    108 static int
    109 pg_compare_key(void *ctx, const void *n, const void *key)
    110 {
    111 	voff_t a = ((const struct vm_page *)n)->offset;
    112 	voff_t b = *(const voff_t *)key;
    113 
    114 	if (a < b)
    115 		return -1;
    116 	else if (a > b)
    117 		return 1;
    118 	else
    119 		return 0;
    120 }
    121 
    122 static int
    123 pg_compare_nodes(void *ctx, const void *n1, const void *n2)
    124 {
    125 
    126 	return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
    127 }
    128 
    129 const rb_tree_ops_t uvm_page_tree_ops = {
    130 	.rbto_compare_nodes = pg_compare_nodes,
    131 	.rbto_compare_key = pg_compare_key,
    132 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
    133 	.rbto_context = NULL
    134 };
    135 
    136 /*
    137  * vm pages
    138  */
    139 
    140 static int
    141 pgctor(void *arg, void *obj, int flags)
    142 {
    143 	struct vm_page *pg = obj;
    144 
    145 	memset(pg, 0, sizeof(*pg));
    146 	pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE, true, "pgalloc");
    147 	return 0;
    148 }
    149 
    150 static void
    151 pgdtor(void *arg, void *obj)
    152 {
    153 	struct vm_page *pg = obj;
    154 
    155 	rump_hyperfree(pg->uanon, PAGE_SIZE);
    156 }
    157 
    158 static struct pool_cache pagecache;
    159 
    160 /*
    161  * Called with the object locked.  We don't support anons.
    162  */
    163 struct vm_page *
    164 uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
    165 	int flags, int strat, int free_list)
    166 {
    167 	struct vm_page *pg;
    168 
    169 	KASSERT(uobj && mutex_owned(&uobj->vmobjlock));
    170 	KASSERT(anon == NULL);
    171 
    172 	pg = pool_cache_get(&pagecache, PR_WAITOK);
    173 	pg->offset = off;
    174 	pg->uobject = uobj;
    175 
    176 	pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
    177 	if (flags & UVM_PGA_ZERO) {
    178 		uvm_pagezero(pg);
    179 	}
    180 
    181 	TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
    182 	(void)rb_tree_insert_node(&uobj->rb_tree, pg);
    183 
    184 	/*
    185 	 * Don't put anons on the LRU page queue.  We can't flush them
    186 	 * (there's no concept of swap in a rump kernel), so no reason
    187 	 * to bother with them.
    188 	 */
    189 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    190 		atomic_inc_uint(&vmpage_onqueue);
    191 		mutex_enter(&uvm_pageqlock);
    192 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    193 		mutex_exit(&uvm_pageqlock);
    194 	}
    195 
    196 	uobj->uo_npages++;
    197 
    198 	return pg;
    199 }
    200 
    201 /*
    202  * Release a page.
    203  *
    204  * Called with the vm object locked.
    205  */
    206 void
    207 uvm_pagefree(struct vm_page *pg)
    208 {
    209 	struct uvm_object *uobj = pg->uobject;
    210 
    211 	KASSERT(mutex_owned(&uvm_pageqlock));
    212 	KASSERT(mutex_owned(&uobj->vmobjlock));
    213 
    214 	if (pg->flags & PG_WANTED)
    215 		wakeup(pg);
    216 
    217 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
    218 
    219 	uobj->uo_npages--;
    220 	rb_tree_remove_node(&uobj->rb_tree, pg);
    221 
    222 	if (!UVM_OBJ_IS_AOBJ(uobj)) {
    223 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    224 		atomic_dec_uint(&vmpage_onqueue);
    225 	}
    226 
    227 	pool_cache_put(&pagecache, pg);
    228 }
    229 
    230 void
    231 uvm_pagezero(struct vm_page *pg)
    232 {
    233 
    234 	pg->flags &= ~PG_CLEAN;
    235 	memset((void *)pg->uanon, 0, PAGE_SIZE);
    236 }
    237 
    238 /*
    239  * Misc routines
    240  */
    241 
    242 static kmutex_t pagermtx;
    243 
    244 void
    245 uvm_init(void)
    246 {
    247 	char buf[64];
    248 	int error;
    249 
    250 	if (rumpuser_getenv("RUMP_MEMLIMIT", buf, sizeof(buf), &error) == 0) {
    251 		rump_physmemlimit = strtoll(buf, NULL, 10);
    252 		/* it's not like we'd get far with, say, 1 byte, but ... */
    253 		if (rump_physmemlimit == 0)
    254 			panic("uvm_init: no memory available");
    255 #define HUMANIZE_BYTES 9
    256 		CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
    257 		format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
    258 #undef HUMANIZE_BYTES
    259 		dddlim = 9 * (rump_physmemlimit / 10);
    260 	} else {
    261 		strlcpy(buf, "unlimited (host limit)", sizeof(buf));
    262 	}
    263 	aprint_verbose("total memory = %s\n", buf);
    264 
    265 	TAILQ_INIT(&vmpage_lruqueue);
    266 
    267 	uvmexp.free = 1024*1024; /* XXX: arbitrary & not updated */
    268 
    269 	mutex_init(&pagermtx, MUTEX_DEFAULT, 0);
    270 	mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, 0);
    271 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, 0);
    272 
    273 	mutex_init(&pdaemonmtx, MUTEX_DEFAULT, 0);
    274 	cv_init(&pdaemoncv, "pdaemon");
    275 	cv_init(&oomwait, "oomwait");
    276 
    277 	kernel_map->pmap = pmap_kernel();
    278 	callback_head_init(&kernel_map_store.vmk_reclaim_callback, IPL_VM);
    279 	kmem_map->pmap = pmap_kernel();
    280 	callback_head_init(&kmem_map_store.vmk_reclaim_callback, IPL_VM);
    281 
    282 	pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
    283 	    "page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
    284 }
    285 
    286 void
    287 uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax)
    288 {
    289 
    290 	vm->vm_map.pmap = pmap_kernel();
    291 	vm->vm_refcnt = 1;
    292 }
    293 
    294 void
    295 uvm_pagewire(struct vm_page *pg)
    296 {
    297 
    298 	/* nada */
    299 }
    300 
    301 void
    302 uvm_pageunwire(struct vm_page *pg)
    303 {
    304 
    305 	/* nada */
    306 }
    307 
    308 /* where's your schmonz now? */
    309 #define PUNLIMIT(a)	\
    310 p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
    311 void
    312 uvm_init_limits(struct proc *p)
    313 {
    314 
    315 	PUNLIMIT(RLIMIT_STACK);
    316 	PUNLIMIT(RLIMIT_DATA);
    317 	PUNLIMIT(RLIMIT_RSS);
    318 	PUNLIMIT(RLIMIT_AS);
    319 	/* nice, cascade */
    320 }
    321 #undef PUNLIMIT
    322 
    323 /*
    324  * This satisfies the "disgusting mmap hack" used by proplib.
    325  * We probably should grow some more assertables to make sure we're
    326  * not satisfying anything we shouldn't be satisfying.  At least we
    327  * should make sure it's the local machine we're mmapping ...
    328  */
    329 int
    330 uvm_mmap(struct vm_map *map, vaddr_t *addr, vsize_t size, vm_prot_t prot,
    331 	vm_prot_t maxprot, int flags, void *handle, voff_t off, vsize_t locklim)
    332 {
    333 	void *uaddr;
    334 	int error;
    335 
    336 	if (prot != (VM_PROT_READ | VM_PROT_WRITE))
    337 		panic("uvm_mmap() variant unsupported");
    338 	if (flags != (MAP_PRIVATE | MAP_ANON))
    339 		panic("uvm_mmap() variant unsupported");
    340 	/* no reason in particular, but cf. uvm_default_mapaddr() */
    341 	if (*addr != 0)
    342 		panic("uvm_mmap() variant unsupported");
    343 
    344 	uaddr = rumpuser_anonmmap(NULL, size, 0, 0, &error);
    345 	if (uaddr == NULL)
    346 		return error;
    347 
    348 	*addr = (vaddr_t)uaddr;
    349 	return 0;
    350 }
    351 
    352 struct pagerinfo {
    353 	vaddr_t pgr_kva;
    354 	int pgr_npages;
    355 	struct vm_page **pgr_pgs;
    356 	bool pgr_read;
    357 
    358 	LIST_ENTRY(pagerinfo) pgr_entries;
    359 };
    360 static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
    361 
    362 /*
    363  * Pager "map" in routine.  Instead of mapping, we allocate memory
    364  * and copy page contents there.  Not optimal or even strictly
    365  * correct (the caller might modify the page contents after mapping
    366  * them in), but what the heck.  Assumes UVMPAGER_MAPIN_WAITOK.
    367  */
    368 vaddr_t
    369 uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
    370 {
    371 	struct pagerinfo *pgri;
    372 	vaddr_t curkva;
    373 	int i;
    374 
    375 	/* allocate structures */
    376 	pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
    377 	pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
    378 	pgri->pgr_npages = npages;
    379 	pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
    380 	pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
    381 
    382 	/* copy contents to "mapped" memory */
    383 	for (i = 0, curkva = pgri->pgr_kva;
    384 	    i < npages;
    385 	    i++, curkva += PAGE_SIZE) {
    386 		/*
    387 		 * We need to copy the previous contents of the pages to
    388 		 * the window even if we are reading from the
    389 		 * device, since the device might not fill the contents of
    390 		 * the full mapped range and we will end up corrupting
    391 		 * data when we unmap the window.
    392 		 */
    393 		memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
    394 		pgri->pgr_pgs[i] = pgs[i];
    395 	}
    396 
    397 	mutex_enter(&pagermtx);
    398 	LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
    399 	mutex_exit(&pagermtx);
    400 
    401 	return pgri->pgr_kva;
    402 }
    403 
    404 /*
    405  * map out the pager window.  return contents from VA to page storage
    406  * and free structures.
    407  *
    408  * Note: does not currently support partial frees
    409  */
    410 void
    411 uvm_pagermapout(vaddr_t kva, int npages)
    412 {
    413 	struct pagerinfo *pgri;
    414 	vaddr_t curkva;
    415 	int i;
    416 
    417 	mutex_enter(&pagermtx);
    418 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    419 		if (pgri->pgr_kva == kva)
    420 			break;
    421 	}
    422 	KASSERT(pgri);
    423 	if (pgri->pgr_npages != npages)
    424 		panic("uvm_pagermapout: partial unmapping not supported");
    425 	LIST_REMOVE(pgri, pgr_entries);
    426 	mutex_exit(&pagermtx);
    427 
    428 	if (pgri->pgr_read) {
    429 		for (i = 0, curkva = pgri->pgr_kva;
    430 		    i < pgri->pgr_npages;
    431 		    i++, curkva += PAGE_SIZE) {
    432 			memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
    433 		}
    434 	}
    435 
    436 	kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
    437 	kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
    438 	kmem_free(pgri, sizeof(*pgri));
    439 }
    440 
    441 /*
    442  * convert va in pager window to page structure.
    443  * XXX: how expensive is this (global lock, list traversal)?
    444  */
    445 struct vm_page *
    446 uvm_pageratop(vaddr_t va)
    447 {
    448 	struct pagerinfo *pgri;
    449 	struct vm_page *pg = NULL;
    450 	int i;
    451 
    452 	mutex_enter(&pagermtx);
    453 	LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
    454 		if (pgri->pgr_kva <= va
    455 		    && va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
    456 			break;
    457 	}
    458 	if (pgri) {
    459 		i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
    460 		pg = pgri->pgr_pgs[i];
    461 	}
    462 	mutex_exit(&pagermtx);
    463 
    464 	return pg;
    465 }
    466 
    467 /* Called with the vm object locked */
    468 struct vm_page *
    469 uvm_pagelookup(struct uvm_object *uobj, voff_t off)
    470 {
    471 	struct vm_page *pg;
    472 
    473 	pg = rb_tree_find_node(&uobj->rb_tree, &off);
    474 	if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject)) {
    475 		mutex_enter(&uvm_pageqlock);
    476 		TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
    477 		TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
    478 		mutex_exit(&uvm_pageqlock);
    479 	}
    480 
    481 	return pg;
    482 }
    483 
    484 void
    485 uvm_page_unbusy(struct vm_page **pgs, int npgs)
    486 {
    487 	struct vm_page *pg;
    488 	int i;
    489 
    490 	KASSERT(npgs > 0);
    491 	KASSERT(mutex_owned(&pgs[0]->uobject->vmobjlock));
    492 
    493 	for (i = 0; i < npgs; i++) {
    494 		pg = pgs[i];
    495 		if (pg == NULL)
    496 			continue;
    497 
    498 		KASSERT(pg->flags & PG_BUSY);
    499 		if (pg->flags & PG_WANTED)
    500 			wakeup(pg);
    501 		if (pg->flags & PG_RELEASED)
    502 			uvm_pagefree(pg);
    503 		else
    504 			pg->flags &= ~(PG_WANTED|PG_BUSY);
    505 	}
    506 }
    507 
    508 void
    509 uvm_estimatepageable(int *active, int *inactive)
    510 {
    511 
    512 	/* XXX: guessing game */
    513 	*active = 1024;
    514 	*inactive = 1024;
    515 }
    516 
    517 struct vm_map_kernel *
    518 vm_map_to_kernel(struct vm_map *map)
    519 {
    520 
    521 	return (struct vm_map_kernel *)map;
    522 }
    523 
    524 bool
    525 vm_map_starved_p(struct vm_map *map)
    526 {
    527 
    528 	if (map->flags & VM_MAP_WANTVA)
    529 		return true;
    530 
    531 	return false;
    532 }
    533 
    534 int
    535 uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
    536 {
    537 
    538 	panic("%s: unimplemented", __func__);
    539 }
    540 
    541 void
    542 uvm_unloan(void *v, int npages, int flags)
    543 {
    544 
    545 	panic("%s: unimplemented", __func__);
    546 }
    547 
    548 int
    549 uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
    550 	struct vm_page **opp)
    551 {
    552 
    553 	return EBUSY;
    554 }
    555 
    556 #ifdef DEBUGPRINT
    557 void
    558 uvm_object_printit(struct uvm_object *uobj, bool full,
    559 	void (*pr)(const char *, ...))
    560 {
    561 
    562 	pr("VM OBJECT at %p, refs %d", uobj, uobj->uo_refs);
    563 }
    564 #endif
    565 
    566 vaddr_t
    567 uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
    568 {
    569 
    570 	return 0;
    571 }
    572 
    573 int
    574 uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
    575 	vm_prot_t prot, bool set_max)
    576 {
    577 
    578 	return EOPNOTSUPP;
    579 }
    580 
    581 /*
    582  * UVM km
    583  */
    584 
    585 vaddr_t
    586 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    587 {
    588 	void *rv, *desired = NULL;
    589 	int alignbit, error;
    590 
    591 #ifdef __x86_64__
    592 	/*
    593 	 * On amd64, allocate all module memory from the lowest 2GB.
    594 	 * This is because NetBSD kernel modules are compiled
    595 	 * with -mcmodel=kernel and reserve only 4 bytes for
    596 	 * offsets.  If we load code compiled with -mcmodel=kernel
    597 	 * anywhere except the lowest or highest 2GB, it will not
    598 	 * work.  Since userspace does not have access to the highest
    599 	 * 2GB, use the lowest 2GB.
    600 	 *
    601 	 * Note: this assumes the rump kernel resides in
    602 	 * the lowest 2GB as well.
    603 	 *
    604 	 * Note2: yes, it's a quick hack, but since this the only
    605 	 * place where we care about the map we're allocating from,
    606 	 * just use a simple "if" instead of coming up with a fancy
    607 	 * generic solution.
    608 	 */
    609 	extern struct vm_map *module_map;
    610 	if (map == module_map) {
    611 		desired = (void *)(0x80000000 - size);
    612 	}
    613 #endif
    614 
    615 	alignbit = 0;
    616 	if (align) {
    617 		alignbit = ffs(align)-1;
    618 	}
    619 
    620 	rv = rumpuser_anonmmap(desired, size, alignbit, flags & UVM_KMF_EXEC,
    621 	    &error);
    622 	if (rv == NULL) {
    623 		if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
    624 			return 0;
    625 		else
    626 			panic("uvm_km_alloc failed");
    627 	}
    628 
    629 	if (flags & UVM_KMF_ZERO)
    630 		memset(rv, 0, size);
    631 
    632 	return (vaddr_t)rv;
    633 }
    634 
    635 void
    636 uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
    637 {
    638 
    639 	rumpuser_unmap((void *)vaddr, size);
    640 }
    641 
    642 struct vm_map *
    643 uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
    644 	vsize_t size, int pageable, bool fixed, struct vm_map_kernel *submap)
    645 {
    646 
    647 	return (struct vm_map *)417416;
    648 }
    649 
    650 vaddr_t
    651 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    652 {
    653 
    654 	return (vaddr_t)rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
    655 	    waitok, "kmalloc");
    656 }
    657 
    658 void
    659 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    660 {
    661 
    662 	rump_hyperfree((void *)addr, PAGE_SIZE);
    663 }
    664 
    665 vaddr_t
    666 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    667 {
    668 
    669 	return uvm_km_alloc_poolpage(map, waitok);
    670 }
    671 
    672 void
    673 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t vaddr)
    674 {
    675 
    676 	uvm_km_free_poolpage(map, vaddr);
    677 }
    678 
    679 void
    680 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    681 {
    682 
    683 	/* we eventually maybe want some model for available memory */
    684 }
    685 
    686 /*
    687  * Mapping and vm space locking routines.
    688  * XXX: these don't work for non-local vmspaces
    689  */
    690 int
    691 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
    692 {
    693 
    694 	KASSERT(vs == &vmspace0);
    695 	return 0;
    696 }
    697 
    698 void
    699 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    700 {
    701 
    702 	KASSERT(vs == &vmspace0);
    703 }
    704 
    705 void
    706 vmapbuf(struct buf *bp, vsize_t len)
    707 {
    708 
    709 	bp->b_saveaddr = bp->b_data;
    710 }
    711 
    712 void
    713 vunmapbuf(struct buf *bp, vsize_t len)
    714 {
    715 
    716 	bp->b_data = bp->b_saveaddr;
    717 	bp->b_saveaddr = 0;
    718 }
    719 
    720 void
    721 uvmspace_addref(struct vmspace *vm)
    722 {
    723 
    724 	/*
    725 	 * there is only vmspace0.  we're not planning on
    726 	 * feeding it to the fishes.
    727 	 */
    728 }
    729 
    730 void
    731 uvmspace_free(struct vmspace *vm)
    732 {
    733 
    734 	/* nothing for now */
    735 }
    736 
    737 int
    738 uvm_io(struct vm_map *map, struct uio *uio)
    739 {
    740 
    741 	/*
    742 	 * just do direct uio for now.  but this needs some vmspace
    743 	 * olympics for rump_sysproxy.
    744 	 */
    745 	return uiomove((void *)(vaddr_t)uio->uio_offset, uio->uio_resid, uio);
    746 }
    747 
    748 /*
    749  * page life cycle stuff.  it really doesn't exist, so just stubs.
    750  */
    751 
    752 void
    753 uvm_pageactivate(struct vm_page *pg)
    754 {
    755 
    756 	/* nada */
    757 }
    758 
    759 void
    760 uvm_pagedeactivate(struct vm_page *pg)
    761 {
    762 
    763 	/* nada */
    764 }
    765 
    766 void
    767 uvm_pagedequeue(struct vm_page *pg)
    768 {
    769 
    770 	/* nada*/
    771 }
    772 
    773 void
    774 uvm_pageenqueue(struct vm_page *pg)
    775 {
    776 
    777 	/* nada */
    778 }
    779 
    780 void
    781 uvmpdpol_anfree(struct vm_anon *an)
    782 {
    783 
    784 	/* nada */
    785 }
    786 
    787 /*
    788  * Routines related to the Page Baroness.
    789  */
    790 
    791 void
    792 uvm_wait(const char *msg)
    793 {
    794 
    795 	if (__predict_false(curlwp == uvm.pagedaemon_lwp))
    796 		panic("pagedaemon out of memory");
    797 	if (__predict_false(rump_threads == 0))
    798 		panic("pagedaemon missing (RUMP_THREADS = 0)");
    799 
    800 	mutex_enter(&pdaemonmtx);
    801 	pdaemon_waiters++;
    802 	cv_signal(&pdaemoncv);
    803 	cv_wait(&oomwait, &pdaemonmtx);
    804 	mutex_exit(&pdaemonmtx);
    805 }
    806 
    807 void
    808 uvm_pageout_start(int npages)
    809 {
    810 
    811 	/* we don't have the heuristics */
    812 }
    813 
    814 void
    815 uvm_pageout_done(int npages)
    816 {
    817 
    818 	/* could wakeup waiters, but just let the pagedaemon do it */
    819 }
    820 
    821 static bool
    822 processpage(struct vm_page *pg)
    823 {
    824 	struct uvm_object *uobj;
    825 
    826 	uobj = pg->uobject;
    827 	if (mutex_tryenter(&uobj->vmobjlock)) {
    828 		if ((pg->flags & PG_BUSY) == 0) {
    829 			mutex_exit(&uvm_pageqlock);
    830 			uobj->pgops->pgo_put(uobj, pg->offset,
    831 			    pg->offset + PAGE_SIZE,
    832 			    PGO_CLEANIT|PGO_FREE);
    833 			KASSERT(!mutex_owned(&uobj->vmobjlock));
    834 			return true;
    835 		} else {
    836 			mutex_exit(&uobj->vmobjlock);
    837 		}
    838 	}
    839 
    840 	return false;
    841 }
    842 
    843 /*
    844  * The Diabolical pageDaemon Director (DDD).
    845  */
    846 void
    847 uvm_pageout(void *arg)
    848 {
    849 	struct vm_page *pg;
    850 	struct pool *pp, *pp_first;
    851 	uint64_t where;
    852 	int timo = 0;
    853 	int cleaned, skip, skipped;
    854 	bool succ = false;
    855 
    856 	mutex_enter(&pdaemonmtx);
    857 	for (;;) {
    858 		if (succ) {
    859 			kernel_map->flags &= ~VM_MAP_WANTVA;
    860 			kmem_map->flags &= ~VM_MAP_WANTVA;
    861 			timo = 0;
    862 			if (pdaemon_waiters) {
    863 				pdaemon_waiters = 0;
    864 				cv_broadcast(&oomwait);
    865 			}
    866 		}
    867 		succ = false;
    868 
    869 		cv_timedwait(&pdaemoncv, &pdaemonmtx, timo);
    870 		uvmexp.pdwoke++;
    871 
    872 		/* tell the world that we are hungry */
    873 		kernel_map->flags |= VM_MAP_WANTVA;
    874 		kmem_map->flags |= VM_MAP_WANTVA;
    875 
    876 		if (pdaemon_waiters == 0 && !NEED_PAGEDAEMON())
    877 			continue;
    878 		mutex_exit(&pdaemonmtx);
    879 
    880 		/*
    881 		 * step one: reclaim the page cache.  this should give
    882 		 * us the biggest earnings since whole pages are released
    883 		 * into backing memory.
    884 		 */
    885 		pool_cache_reclaim(&pagecache);
    886 		if (!NEED_PAGEDAEMON()) {
    887 			succ = true;
    888 			mutex_enter(&pdaemonmtx);
    889 			continue;
    890 		}
    891 
    892 		/*
    893 		 * Ok, so that didn't help.  Next, try to hunt memory
    894 		 * by pushing out vnode pages.  The pages might contain
    895 		 * useful cached data, but we need the memory.
    896 		 */
    897 		cleaned = 0;
    898 		skip = 0;
    899  again:
    900 		mutex_enter(&uvm_pageqlock);
    901 		while (cleaned < PAGEDAEMON_OBJCHUNK) {
    902 			skipped = 0;
    903 			TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
    904 
    905 				/*
    906 				 * skip over pages we _might_ have tried
    907 				 * to handle earlier.  they might not be
    908 				 * exactly the same ones, but I'm not too
    909 				 * concerned.
    910 				 */
    911 				while (skipped++ < skip)
    912 					continue;
    913 
    914 				if (processpage(pg)) {
    915 					cleaned++;
    916 					goto again;
    917 				}
    918 
    919 				skip++;
    920 			}
    921 			break;
    922 		}
    923 		mutex_exit(&uvm_pageqlock);
    924 
    925 		/*
    926 		 * And of course we need to reclaim the page cache
    927 		 * again to actually release memory.
    928 		 */
    929 		pool_cache_reclaim(&pagecache);
    930 		if (!NEED_PAGEDAEMON()) {
    931 			succ = true;
    932 			mutex_enter(&pdaemonmtx);
    933 			continue;
    934 		}
    935 
    936 		/*
    937 		 * Still not there?  sleeves come off right about now.
    938 		 * First: do reclaim on kernel/kmem map.
    939 		 */
    940 		callback_run_roundrobin(&kernel_map_store.vmk_reclaim_callback,
    941 		    NULL);
    942 		callback_run_roundrobin(&kmem_map_store.vmk_reclaim_callback,
    943 		    NULL);
    944 
    945 		/*
    946 		 * And then drain the pools.  Wipe them out ... all of them.
    947 		 */
    948 
    949 		pool_drain_start(&pp_first, &where);
    950 		pp = pp_first;
    951 		for (;;) {
    952 			rump_vfs_drainbufs(10 /* XXX: estimate better */);
    953 			succ = pool_drain_end(pp, where);
    954 			if (succ)
    955 				break;
    956 			pool_drain_start(&pp, &where);
    957 			if (pp == pp_first) {
    958 				succ = pool_drain_end(pp, where);
    959 				break;
    960 			}
    961 		}
    962 
    963 		/*
    964 		 * Need to use PYEC on our bag of tricks.
    965 		 * Unfortunately, the wife just borrowed it.
    966 		 */
    967 
    968 		if (!succ) {
    969 			rumpuser_dprintf("pagedaemoness: failed to reclaim "
    970 			    "memory ... sleeping (deadlock?)\n");
    971 			timo = hz;
    972 		}
    973 
    974 		mutex_enter(&pdaemonmtx);
    975 	}
    976 
    977 	panic("you can swap out any time you like, but you can never leave");
    978 }
    979 
    980 void
    981 uvm_kick_pdaemon()
    982 {
    983 
    984 	/*
    985 	 * Wake up the diabolical pagedaemon director if we are over
    986 	 * 90% of the memory limit.  This is a complete and utter
    987 	 * stetson-harrison decision which you are allowed to finetune.
    988 	 * Don't bother locking.  If we have some unflushed caches,
    989 	 * other waker-uppers will deal with the issue.
    990 	 */
    991 	if (NEED_PAGEDAEMON()) {
    992 		cv_signal(&pdaemoncv);
    993 	}
    994 }
    995 
    996 void *
    997 rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
    998 {
    999 	unsigned long newmem;
   1000 	void *rv;
   1001 
   1002 	uvm_kick_pdaemon(); /* ouch */
   1003 
   1004 	/* first we must be within the limit */
   1005  limitagain:
   1006 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1007 		newmem = atomic_add_long_nv(&curphysmem, howmuch);
   1008 		if (newmem > rump_physmemlimit) {
   1009 			newmem = atomic_add_long_nv(&curphysmem, -howmuch);
   1010 			if (!waitok)
   1011 				return NULL;
   1012 			uvm_wait(wmsg);
   1013 			goto limitagain;
   1014 		}
   1015 	}
   1016 
   1017 	/* second, we must get something from the backend */
   1018  again:
   1019 	rv = rumpuser_malloc(howmuch, alignment);
   1020 	if (__predict_false(rv == NULL && waitok)) {
   1021 		uvm_wait(wmsg);
   1022 		goto again;
   1023 	}
   1024 
   1025 	return rv;
   1026 }
   1027 
   1028 void
   1029 rump_hyperfree(void *what, size_t size)
   1030 {
   1031 
   1032 	if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
   1033 		atomic_add_long(&curphysmem, -size);
   1034 	}
   1035 	rumpuser_free(what);
   1036 }
   1037