efiblock.c revision 1.15 1 /* $NetBSD: efiblock.c,v 1.15 2021/06/22 21:56:51 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2016 Kimihiro Nonaka <nonaka (at) netbsd.org>
5 * Copyright (c) 2018 Jared McNeill <jmcneill (at) invisible.ca>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #define FSTYPENAMES
31
32 #include <sys/param.h>
33 #include <sys/md5.h>
34 #include <sys/uuid.h>
35
36 #include <fs/cd9660/iso.h>
37
38 #include "efiboot.h"
39 #include "efiblock.h"
40
41 #define EFI_BLOCK_READAHEAD (64 * 1024)
42 #define EFI_BLOCK_TIMEOUT 120
43 #define EFI_BLOCK_TIMEOUT_CODE 0x810c0000
44
45 /*
46 * The raidframe support is basic. Ideally, it should be expanded to
47 * consider raid volumes a first-class citizen like the x86 efiboot does,
48 * but for now, we simply assume each RAID is potentially bootable.
49 */
50 #define RF_PROTECTED_SECTORS 64 /* XXX refer to <.../rf_optnames.h> */
51
52 static EFI_HANDLE *efi_block;
53 static UINTN efi_nblock;
54 static struct efi_block_part *efi_block_booted = NULL;
55
56 static bool efi_ra_enable = false;
57 static UINT8 *efi_ra_buffer = NULL;
58 static UINT32 efi_ra_media_id;
59 static UINT64 efi_ra_start = 0;
60 static UINT64 efi_ra_length = 0;
61
62 static TAILQ_HEAD(, efi_block_dev) efi_block_devs = TAILQ_HEAD_INITIALIZER(efi_block_devs);
63
64 static int
65 efi_block_parse(const char *fname, struct efi_block_part **pbpart, char **pfile)
66 {
67 struct efi_block_dev *bdev;
68 struct efi_block_part *bpart;
69 char pathbuf[PATH_MAX], *default_device, *ep = NULL;
70 const char *full_path;
71 intmax_t dev;
72 int part;
73
74 default_device = get_default_device();
75 if (strchr(fname, ':') == NULL) {
76 if (strlen(default_device) > 0) {
77 snprintf(pathbuf, sizeof(pathbuf), "%s:%s", default_device, fname);
78 full_path = pathbuf;
79 *pfile = __UNCONST(fname);
80 } else {
81 return EINVAL;
82 }
83 } else {
84 full_path = fname;
85 *pfile = strchr(fname, ':') + 1;
86 }
87
88 if (strncasecmp(full_path, "hd", 2) != 0)
89 return EINVAL;
90 dev = strtoimax(full_path + 2, &ep, 10);
91 if (dev < 0 || dev >= efi_nblock)
92 return ENXIO;
93 if (ep[0] < 'a' || ep[0] >= 'a' + MAXPARTITIONS || ep[1] != ':')
94 return EINVAL;
95 part = ep[0] - 'a';
96 TAILQ_FOREACH(bdev, &efi_block_devs, entries) {
97 if (bdev->index == dev) {
98 TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
99 if (bpart->index == part) {
100 *pbpart = bpart;
101 return 0;
102 }
103 }
104 }
105 }
106
107 return ENOENT;
108 }
109
110 static void
111 efi_block_generate_hash_mbr(struct efi_block_part *bpart, struct mbr_sector *mbr)
112 {
113 MD5_CTX md5ctx;
114
115 MD5Init(&md5ctx);
116 MD5Update(&md5ctx, (void *)mbr, sizeof(*mbr));
117 MD5Final(bpart->hash, &md5ctx);
118 }
119
120 static EFI_STATUS
121 efi_block_do_read_blockio(struct efi_block_dev *bdev, UINT64 off, void *buf,
122 UINTN bufsize)
123 {
124 UINT8 *blkbuf, *blkbuf_start;
125 EFI_STATUS status;
126 EFI_LBA lba_start, lba_end;
127 UINT64 blkbuf_offset;
128 UINT64 blkbuf_size;
129
130 lba_start = off / bdev->bio->Media->BlockSize;
131 lba_end = (off + bufsize + bdev->bio->Media->BlockSize - 1) /
132 bdev->bio->Media->BlockSize;
133 blkbuf_offset = off % bdev->bio->Media->BlockSize;
134 blkbuf_size = (lba_end - lba_start) * bdev->bio->Media->BlockSize;
135 if (bdev->bio->Media->IoAlign > 1) {
136 blkbuf_size += bdev->bio->Media->IoAlign - 1;
137 }
138
139 blkbuf = AllocatePool(blkbuf_size);
140 if (blkbuf == NULL) {
141 return EFI_OUT_OF_RESOURCES;
142 }
143
144 if (bdev->bio->Media->IoAlign > 1) {
145 blkbuf_start = (void *)roundup2((intptr_t)blkbuf,
146 bdev->bio->Media->IoAlign);
147 } else {
148 blkbuf_start = blkbuf;
149 }
150
151 status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio,
152 bdev->media_id, lba_start, blkbuf_size, blkbuf_start);
153 if (EFI_ERROR(status)) {
154 goto done;
155 }
156
157 memcpy(buf, blkbuf_start + blkbuf_offset, bufsize);
158
159 done:
160 FreePool(blkbuf);
161 return status;
162 }
163
164 static EFI_STATUS
165 efi_block_do_read_diskio(struct efi_block_dev *bdev, UINT64 off, void *buf,
166 UINTN bufsize)
167 {
168 return uefi_call_wrapper(bdev->dio->ReadDisk, 5, bdev->dio,
169 bdev->media_id, off, bufsize, buf);
170 }
171
172 static EFI_STATUS
173 efi_block_do_read(struct efi_block_dev *bdev, UINT64 off, void *buf,
174 UINTN bufsize)
175 {
176 /*
177 * Perform read access using EFI_DISK_IO_PROTOCOL if available,
178 * otherwise use EFI_BLOCK_IO_PROTOCOL.
179 */
180 if (bdev->dio != NULL) {
181 return efi_block_do_read_diskio(bdev, off, buf, bufsize);
182 } else {
183 return efi_block_do_read_blockio(bdev, off, buf, bufsize);
184 }
185 }
186
187 static EFI_STATUS
188 efi_block_readahead(struct efi_block_dev *bdev, UINT64 off, void *buf,
189 UINTN bufsize)
190 {
191 EFI_STATUS status;
192 UINT64 mediasize, len;
193
194 if (efi_ra_buffer == NULL) {
195 efi_ra_buffer = AllocatePool(EFI_BLOCK_READAHEAD);
196 if (efi_ra_buffer == NULL) {
197 return EFI_OUT_OF_RESOURCES;
198 }
199 }
200
201 if (bdev->media_id != efi_ra_media_id ||
202 off < efi_ra_start ||
203 off + bufsize > efi_ra_start + efi_ra_length) {
204 mediasize = bdev->bio->Media->BlockSize *
205 (bdev->bio->Media->LastBlock + 1);
206 len = EFI_BLOCK_READAHEAD;
207 if (len > mediasize - off) {
208 len = mediasize - off;
209 }
210 status = efi_block_do_read(bdev, off, efi_ra_buffer, len);
211 if (EFI_ERROR(status)) {
212 efi_ra_start = efi_ra_length = 0;
213 return status;
214 }
215 efi_ra_start = off;
216 efi_ra_length = len;
217 efi_ra_media_id = bdev->media_id;
218 }
219
220 memcpy(buf, &efi_ra_buffer[off - efi_ra_start], bufsize);
221 return EFI_SUCCESS;
222 }
223
224 static EFI_STATUS
225 efi_block_read(struct efi_block_dev *bdev, UINT64 off, void *buf,
226 UINTN bufsize)
227 {
228 if (efi_ra_enable) {
229 return efi_block_readahead(bdev, off, buf, bufsize);
230 }
231
232 return efi_block_do_read(bdev, off, buf, bufsize);
233 }
234
235 static int
236 efi_block_find_partitions_cd9660(struct efi_block_dev *bdev)
237 {
238 struct efi_block_part *bpart;
239 struct iso_primary_descriptor vd;
240 EFI_STATUS status;
241 EFI_LBA lba;
242
243 for (lba = 16;; lba++) {
244 status = efi_block_read(bdev,
245 lba * ISO_DEFAULT_BLOCK_SIZE, &vd, sizeof(vd));
246 if (EFI_ERROR(status)) {
247 goto io_error;
248 }
249
250 if (memcmp(vd.id, ISO_STANDARD_ID, sizeof vd.id) != 0) {
251 goto io_error;
252 }
253 if (isonum_711(vd.type) == ISO_VD_END) {
254 goto io_error;
255 }
256 if (isonum_711(vd.type) == ISO_VD_PRIMARY) {
257 break;
258 }
259 }
260
261 if (isonum_723(vd.logical_block_size) != ISO_DEFAULT_BLOCK_SIZE) {
262 goto io_error;
263 }
264
265 bpart = alloc(sizeof(*bpart));
266 bpart->index = 0;
267 bpart->bdev = bdev;
268 bpart->type = EFI_BLOCK_PART_CD9660;
269 TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
270
271 return 0;
272
273 io_error:
274 return EIO;
275 }
276
277 static int
278 efi_block_find_partitions_disklabel(struct efi_block_dev *bdev,
279 struct mbr_sector *mbr, uint32_t start, uint32_t size)
280 {
281 struct efi_block_part *bpart;
282 char buf[DEV_BSIZE];
283 struct disklabel d;
284 struct partition *p;
285 EFI_STATUS status;
286 int n;
287
288 status = efi_block_read(bdev,
289 ((EFI_LBA)start + LABELSECTOR) * DEV_BSIZE, buf, sizeof(buf));
290 if (EFI_ERROR(status) || getdisklabel(buf, &d) != NULL) {
291 FreePool(buf);
292 return EIO;
293 }
294
295 if (le32toh(d.d_magic) != DISKMAGIC || le32toh(d.d_magic2) != DISKMAGIC)
296 return EINVAL;
297 if (le16toh(d.d_npartitions) > MAXPARTITIONS)
298 return EINVAL;
299
300 for (n = 0; n < le16toh(d.d_npartitions); n++) {
301 p = &d.d_partitions[n];
302 switch (p->p_fstype) {
303 case FS_BSDFFS:
304 case FS_MSDOS:
305 case FS_BSDLFS:
306 break;
307 case FS_RAID:
308 p->p_size -= RF_PROTECTED_SECTORS;
309 p->p_offset += RF_PROTECTED_SECTORS;
310 break;
311 default:
312 continue;
313 }
314
315 bpart = alloc(sizeof(*bpart));
316 bpart->index = n;
317 bpart->bdev = bdev;
318 bpart->type = EFI_BLOCK_PART_DISKLABEL;
319 bpart->disklabel.secsize = d.d_secsize;
320 bpart->disklabel.part = *p;
321 efi_block_generate_hash_mbr(bpart, mbr);
322 TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
323 }
324
325 return 0;
326 }
327
328 static int
329 efi_block_find_partitions_mbr(struct efi_block_dev *bdev)
330 {
331 struct mbr_sector mbr;
332 struct mbr_partition *mbr_part;
333 EFI_STATUS status;
334 int n;
335
336 status = efi_block_read(bdev, 0, &mbr, sizeof(mbr));
337 if (EFI_ERROR(status))
338 return EIO;
339
340 if (le32toh(mbr.mbr_magic) != MBR_MAGIC)
341 return ENOENT;
342
343 for (n = 0; n < MBR_PART_COUNT; n++) {
344 mbr_part = &mbr.mbr_parts[n];
345 if (le32toh(mbr_part->mbrp_size) == 0)
346 continue;
347 if (mbr_part->mbrp_type == MBR_PTYPE_NETBSD) {
348 efi_block_find_partitions_disklabel(bdev, &mbr,
349 le32toh(mbr_part->mbrp_start),
350 le32toh(mbr_part->mbrp_size));
351 break;
352 }
353 }
354
355 return 0;
356 }
357
358 static const struct {
359 struct uuid guid;
360 uint8_t fstype;
361 } gpt_guid_to_str[] = {
362 { GPT_ENT_TYPE_NETBSD_FFS, FS_BSDFFS },
363 { GPT_ENT_TYPE_NETBSD_LFS, FS_BSDLFS },
364 { GPT_ENT_TYPE_NETBSD_RAIDFRAME, FS_RAID },
365 { GPT_ENT_TYPE_NETBSD_CCD, FS_CCD },
366 { GPT_ENT_TYPE_NETBSD_CGD, FS_CGD },
367 { GPT_ENT_TYPE_MS_BASIC_DATA, FS_MSDOS }, /* or NTFS? ambiguous */
368 { GPT_ENT_TYPE_EFI, FS_MSDOS },
369 };
370
371 static int
372 efi_block_find_partitions_gpt_entry(struct efi_block_dev *bdev,
373 struct gpt_hdr *hdr, struct gpt_ent *ent, UINT32 index)
374 {
375 struct efi_block_part *bpart;
376 uint8_t fstype = FS_UNUSED;
377 struct uuid uuid;
378 int n;
379
380 memcpy(&uuid, ent->ent_type, sizeof(uuid));
381 for (n = 0; n < __arraycount(gpt_guid_to_str); n++)
382 if (memcmp(ent->ent_type, &gpt_guid_to_str[n].guid,
383 sizeof(ent->ent_type)) == 0) {
384 fstype = gpt_guid_to_str[n].fstype;
385 break;
386 }
387 if (fstype == FS_UNUSED)
388 return 0;
389
390 bpart = alloc(sizeof(*bpart));
391 bpart->index = index;
392 bpart->bdev = bdev;
393 bpart->type = EFI_BLOCK_PART_GPT;
394 bpart->gpt.fstype = fstype;
395 bpart->gpt.ent = *ent;
396 if (fstype == FS_RAID) {
397 bpart->gpt.ent.ent_lba_start += RF_PROTECTED_SECTORS;
398 bpart->gpt.ent.ent_lba_end -= RF_PROTECTED_SECTORS;
399 }
400 memcpy(bpart->hash, ent->ent_guid, sizeof(bpart->hash));
401 TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
402
403 return 0;
404 }
405
406 static int
407 efi_block_find_partitions_gpt(struct efi_block_dev *bdev)
408 {
409 struct gpt_hdr hdr;
410 struct gpt_ent ent;
411 EFI_STATUS status;
412 UINT32 entry;
413 void *buf;
414 UINTN sz;
415
416 status = efi_block_read(bdev, GPT_HDR_BLKNO * DEV_BSIZE, &hdr,
417 sizeof(hdr));
418 if (EFI_ERROR(status)) {
419 return EIO;
420 }
421
422 if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0)
423 return ENOENT;
424 if (le32toh(hdr.hdr_entsz) < sizeof(ent))
425 return EINVAL;
426
427 sz = le32toh(hdr.hdr_entsz) * le32toh(hdr.hdr_entries);
428 buf = AllocatePool(sz);
429 if (buf == NULL)
430 return ENOMEM;
431
432 status = efi_block_read(bdev,
433 le64toh(hdr.hdr_lba_table) * DEV_BSIZE, buf, sz);
434 if (EFI_ERROR(status)) {
435 FreePool(buf);
436 return EIO;
437 }
438
439 for (entry = 0; entry < le32toh(hdr.hdr_entries); entry++) {
440 memcpy(&ent, buf + (entry * le32toh(hdr.hdr_entsz)),
441 sizeof(ent));
442 efi_block_find_partitions_gpt_entry(bdev, &hdr, &ent, entry);
443 }
444
445 FreePool(buf);
446
447 return 0;
448 }
449
450 static int
451 efi_block_find_partitions(struct efi_block_dev *bdev)
452 {
453 int error;
454
455 error = efi_block_find_partitions_gpt(bdev);
456 if (error)
457 error = efi_block_find_partitions_mbr(bdev);
458 if (error)
459 error = efi_block_find_partitions_cd9660(bdev);
460
461 return error;
462 }
463
464 void
465 efi_block_probe(void)
466 {
467 struct efi_block_dev *bdev;
468 struct efi_block_part *bpart;
469 EFI_BLOCK_IO *bio;
470 EFI_DISK_IO *dio;
471 EFI_STATUS status;
472 uint16_t devindex = 0;
473 int depth = -1;
474 int n;
475
476 status = LibLocateHandle(ByProtocol, &BlockIoProtocol, NULL, &efi_nblock, &efi_block);
477 if (EFI_ERROR(status))
478 return;
479
480 if (efi_bootdp) {
481 depth = efi_device_path_depth(efi_bootdp, MEDIA_DEVICE_PATH);
482 if (depth == 0)
483 depth = 1;
484 else if (depth == -1)
485 depth = 2;
486 }
487
488 for (n = 0; n < efi_nblock; n++) {
489 /* EFI_BLOCK_IO_PROTOCOL is required */
490 status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n],
491 &BlockIoProtocol, (void **)&bio);
492 if (EFI_ERROR(status) || !bio->Media->MediaPresent)
493 continue;
494
495 /* Ignore logical partitions (we do our own partition discovery) */
496 if (bio->Media->LogicalPartition)
497 continue;
498
499 /* EFI_DISK_IO_PROTOCOL is optional */
500 status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n],
501 &DiskIoProtocol, (void **)&dio);
502 if (EFI_ERROR(status)) {
503 dio = NULL;
504 }
505
506 bdev = alloc(sizeof(*bdev));
507 bdev->index = devindex++;
508 bdev->bio = bio;
509 bdev->dio = dio;
510 bdev->media_id = bio->Media->MediaId;
511 bdev->path = DevicePathFromHandle(efi_block[n]);
512 TAILQ_INIT(&bdev->partitions);
513 TAILQ_INSERT_TAIL(&efi_block_devs, bdev, entries);
514
515 efi_block_find_partitions(bdev);
516
517 if (depth > 0 && efi_device_path_ncmp(efi_bootdp, DevicePathFromHandle(efi_block[n]), depth) == 0) {
518 TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
519 uint8_t fstype = FS_UNUSED;
520 switch (bpart->type) {
521 case EFI_BLOCK_PART_DISKLABEL:
522 fstype = bpart->disklabel.part.p_fstype;
523 break;
524 case EFI_BLOCK_PART_GPT:
525 fstype = bpart->gpt.fstype;
526 break;
527 case EFI_BLOCK_PART_CD9660:
528 fstype = FS_ISO9660;
529 break;
530 }
531 if (fstype == FS_BSDFFS || fstype == FS_ISO9660 || fstype == FS_RAID) {
532 char devname[9];
533 snprintf(devname, sizeof(devname), "hd%u%c", bdev->index, bpart->index + 'a');
534 set_default_device(devname);
535 set_default_fstype(fstype);
536 break;
537 }
538 }
539 }
540 }
541 }
542
543 static void
544 print_guid(const uint8_t *guid)
545 {
546 const int index[] = { 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15 };
547 int i;
548
549 for (i = 0; i < 16; i++) {
550 printf("%02x", guid[index[i]]);
551 if (i == 3 || i == 5 || i == 7 || i == 9)
552 printf("-");
553 }
554 }
555
556 void
557 efi_block_show(void)
558 {
559 struct efi_block_dev *bdev;
560 struct efi_block_part *bpart;
561 uint64_t size;
562 CHAR16 *path;
563
564 TAILQ_FOREACH(bdev, &efi_block_devs, entries) {
565 printf("hd%u (", bdev->index);
566
567 /* Size in MB */
568 size = ((bdev->bio->Media->LastBlock + 1) * bdev->bio->Media->BlockSize) / (1024 * 1024);
569 if (size >= 10000)
570 printf("%"PRIu64" GB", size / 1024);
571 else
572 printf("%"PRIu64" MB", size);
573 printf("): ");
574
575 path = DevicePathToStr(bdev->path);
576 Print(L"%s", path);
577 FreePool(path);
578
579 printf("\n");
580
581 TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
582 switch (bpart->type) {
583 case EFI_BLOCK_PART_DISKLABEL:
584 printf(" hd%u%c (", bdev->index, bpart->index + 'a');
585
586 /* Size in MB */
587 size = ((uint64_t)bpart->disklabel.secsize * bpart->disklabel.part.p_size) / (1024 * 1024);
588 if (size >= 10000)
589 printf("%"PRIu64" GB", size / 1024);
590 else
591 printf("%"PRIu64" MB", size);
592 printf("): ");
593
594 printf("%s\n", fstypenames[bpart->disklabel.part.p_fstype]);
595 break;
596 case EFI_BLOCK_PART_GPT:
597 printf(" hd%u%c ", bdev->index, bpart->index + 'a');
598
599 if (bpart->gpt.ent.ent_name[0] == 0x0000) {
600 printf("\"");
601 print_guid(bpart->gpt.ent.ent_guid);
602 printf("\"");
603 } else {
604 Print(L"\"%s\"", bpart->gpt.ent.ent_name);
605 }
606
607 /* Size in MB */
608 size = (le64toh(bpart->gpt.ent.ent_lba_end) - le64toh(bpart->gpt.ent.ent_lba_start)) * bdev->bio->Media->BlockSize;
609 size /= (1024 * 1024);
610 if (size >= 10000)
611 printf(" (%"PRIu64" GB): ", size / 1024);
612 else
613 printf(" (%"PRIu64" MB): ", size);
614
615 printf("%s\n", fstypenames[bpart->gpt.fstype]);
616 break;
617 case EFI_BLOCK_PART_CD9660:
618 printf(" hd%u%c %s\n", bdev->index, bpart->index + 'a', fstypenames[FS_ISO9660]);
619 break;
620 default:
621 break;
622 }
623 }
624 }
625 }
626
627 struct efi_block_part *
628 efi_block_boot_part(void)
629 {
630 return efi_block_booted;
631 }
632
633 int
634 efi_block_open(struct open_file *f, ...)
635 {
636 struct efi_block_part *bpart;
637 const char *fname;
638 char **file;
639 char *path;
640 va_list ap;
641 int rv, n;
642
643 va_start(ap, f);
644 fname = va_arg(ap, const char *);
645 file = va_arg(ap, char **);
646 va_end(ap);
647
648 rv = efi_block_parse(fname, &bpart, &path);
649 if (rv != 0)
650 return rv;
651
652 for (n = 0; n < ndevs; n++)
653 if (strcmp(DEV_NAME(&devsw[n]), "efiblock") == 0) {
654 f->f_dev = &devsw[n];
655 break;
656 }
657 if (n == ndevs)
658 return ENXIO;
659
660 f->f_devdata = bpart;
661
662 *file = path;
663
664 efi_block_booted = bpart;
665
666 return 0;
667 }
668
669 int
670 efi_block_close(struct open_file *f)
671 {
672 return 0;
673 }
674
675 int
676 efi_block_strategy(void *devdata, int rw, daddr_t dblk, size_t size, void *buf, size_t *rsize)
677 {
678 struct efi_block_part *bpart = devdata;
679 EFI_STATUS status;
680 UINT64 off;
681
682 if (rw != F_READ)
683 return EROFS;
684
685 efi_set_watchdog(EFI_BLOCK_TIMEOUT, EFI_BLOCK_TIMEOUT_CODE);
686
687 switch (bpart->type) {
688 case EFI_BLOCK_PART_DISKLABEL:
689 off = (dblk + bpart->disklabel.part.p_offset) * DEV_BSIZE;
690 break;
691 case EFI_BLOCK_PART_GPT:
692 off = (dblk + le64toh(bpart->gpt.ent.ent_lba_start)) * DEV_BSIZE;
693 break;
694 case EFI_BLOCK_PART_CD9660:
695 off = dblk * ISO_DEFAULT_BLOCK_SIZE;
696 break;
697 default:
698 return EINVAL;
699 }
700
701 status = efi_block_read(bpart->bdev, off, buf, size);
702 if (EFI_ERROR(status))
703 return EIO;
704
705 *rsize = size;
706
707 return 0;
708 }
709
710 void
711 efi_block_set_readahead(bool onoff)
712 {
713 efi_ra_enable = onoff;
714 }
715