efiblock.c revision 1.18 1 /* $NetBSD: efiblock.c,v 1.18 2021/10/30 11:18:51 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2016 Kimihiro Nonaka <nonaka (at) netbsd.org>
5 * Copyright (c) 2018 Jared McNeill <jmcneill (at) invisible.ca>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #define FSTYPENAMES
31
32 #include <sys/param.h>
33 #include <sys/md5.h>
34 #include <sys/uuid.h>
35
36 #include <fs/cd9660/iso.h>
37
38 #include "efiboot.h"
39 #include "efiblock.h"
40
41 #define EFI_BLOCK_READAHEAD (64 * 1024)
42 #define EFI_BLOCK_TIMEOUT 120
43 #define EFI_BLOCK_TIMEOUT_CODE 0x810c0000
44
45 /*
46 * The raidframe support is basic. Ideally, it should be expanded to
47 * consider raid volumes a first-class citizen like the x86 efiboot does,
48 * but for now, we simply assume each RAID is potentially bootable.
49 */
50 #define RF_PROTECTED_SECTORS 64 /* XXX refer to <.../rf_optnames.h> */
51
52 static EFI_HANDLE *efi_block;
53 static UINTN efi_nblock;
54 static struct efi_block_part *efi_block_booted = NULL;
55
56 static bool efi_ra_enable = false;
57 static UINT8 *efi_ra_buffer = NULL;
58 static UINT32 efi_ra_media_id;
59 static UINT64 efi_ra_start = 0;
60 static UINT64 efi_ra_length = 0;
61
62 static TAILQ_HEAD(, efi_block_dev) efi_block_devs = TAILQ_HEAD_INITIALIZER(efi_block_devs);
63
64 static int
65 efi_block_parse(const char *fname, struct efi_block_part **pbpart, char **pfile)
66 {
67 struct efi_block_dev *bdev;
68 struct efi_block_part *bpart;
69 char pathbuf[PATH_MAX], *default_device, *ep = NULL;
70 const char *full_path;
71 intmax_t dev;
72 int part;
73
74 default_device = get_default_device();
75 if (strchr(fname, ':') == NULL) {
76 if (strlen(default_device) > 0) {
77 snprintf(pathbuf, sizeof(pathbuf), "%s:%s", default_device, fname);
78 full_path = pathbuf;
79 *pfile = __UNCONST(fname);
80 } else {
81 return EINVAL;
82 }
83 } else {
84 full_path = fname;
85 *pfile = strchr(fname, ':') + 1;
86 }
87
88 if (*pfile[0] == '\0') {
89 *pfile = __UNCONST("/");
90 }
91
92 if (strncasecmp(full_path, "hd", 2) != 0)
93 return EINVAL;
94 dev = strtoimax(full_path + 2, &ep, 10);
95 if (dev < 0 || dev >= efi_nblock)
96 return ENXIO;
97 if (ep[0] < 'a' || ep[0] >= 'a' + MAXPARTITIONS || ep[1] != ':')
98 return EINVAL;
99 part = ep[0] - 'a';
100 TAILQ_FOREACH(bdev, &efi_block_devs, entries) {
101 if (bdev->index == dev) {
102 TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
103 if (bpart->index == part) {
104 *pbpart = bpart;
105 return 0;
106 }
107 }
108 }
109 }
110
111 return ENOENT;
112 }
113
114 static void
115 efi_block_generate_hash_mbr(struct efi_block_part *bpart, struct mbr_sector *mbr)
116 {
117 MD5_CTX md5ctx;
118
119 MD5Init(&md5ctx);
120 MD5Update(&md5ctx, (void *)mbr, sizeof(*mbr));
121 MD5Final(bpart->hash, &md5ctx);
122 }
123
124 static EFI_STATUS
125 efi_block_do_read_blockio(struct efi_block_dev *bdev, UINT64 off, void *buf,
126 UINTN bufsize)
127 {
128 UINT8 *blkbuf, *blkbuf_start;
129 EFI_STATUS status;
130 EFI_LBA lba_start, lba_end;
131 UINT64 blkbuf_offset;
132 UINT64 blkbuf_size;
133
134 lba_start = off / bdev->bio->Media->BlockSize;
135 lba_end = (off + bufsize + bdev->bio->Media->BlockSize - 1) /
136 bdev->bio->Media->BlockSize;
137 blkbuf_offset = off % bdev->bio->Media->BlockSize;
138 blkbuf_size = (lba_end - lba_start) * bdev->bio->Media->BlockSize;
139 if (bdev->bio->Media->IoAlign > 1) {
140 blkbuf_size = (blkbuf_size + bdev->bio->Media->IoAlign - 1) /
141 bdev->bio->Media->IoAlign *
142 bdev->bio->Media->IoAlign;
143 }
144
145 blkbuf = AllocatePool(blkbuf_size);
146 if (blkbuf == NULL) {
147 return EFI_OUT_OF_RESOURCES;
148 }
149
150 if (bdev->bio->Media->IoAlign > 1) {
151 blkbuf_start = (void *)roundup2((intptr_t)blkbuf,
152 bdev->bio->Media->IoAlign);
153 } else {
154 blkbuf_start = blkbuf;
155 }
156
157 status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio,
158 bdev->media_id, lba_start, blkbuf_size, blkbuf_start);
159 if (EFI_ERROR(status)) {
160 goto done;
161 }
162
163 memcpy(buf, blkbuf_start + blkbuf_offset, bufsize);
164
165 done:
166 FreePool(blkbuf);
167 return status;
168 }
169
170 static EFI_STATUS
171 efi_block_do_read_diskio(struct efi_block_dev *bdev, UINT64 off, void *buf,
172 UINTN bufsize)
173 {
174 return uefi_call_wrapper(bdev->dio->ReadDisk, 5, bdev->dio,
175 bdev->media_id, off, bufsize, buf);
176 }
177
178 static EFI_STATUS
179 efi_block_do_read(struct efi_block_dev *bdev, UINT64 off, void *buf,
180 UINTN bufsize)
181 {
182 /*
183 * Perform read access using EFI_DISK_IO_PROTOCOL if available,
184 * otherwise use EFI_BLOCK_IO_PROTOCOL.
185 */
186 if (bdev->dio != NULL) {
187 return efi_block_do_read_diskio(bdev, off, buf, bufsize);
188 } else {
189 return efi_block_do_read_blockio(bdev, off, buf, bufsize);
190 }
191 }
192
193 static EFI_STATUS
194 efi_block_readahead(struct efi_block_dev *bdev, UINT64 off, void *buf,
195 UINTN bufsize)
196 {
197 EFI_STATUS status;
198 UINT64 mediasize, len;
199
200 if (efi_ra_buffer == NULL) {
201 efi_ra_buffer = AllocatePool(EFI_BLOCK_READAHEAD);
202 if (efi_ra_buffer == NULL) {
203 return EFI_OUT_OF_RESOURCES;
204 }
205 }
206
207 if (bdev->media_id != efi_ra_media_id ||
208 off < efi_ra_start ||
209 off + bufsize > efi_ra_start + efi_ra_length) {
210 mediasize = bdev->bio->Media->BlockSize *
211 (bdev->bio->Media->LastBlock + 1);
212 len = EFI_BLOCK_READAHEAD;
213 if (len > mediasize - off) {
214 len = mediasize - off;
215 }
216 status = efi_block_do_read(bdev, off, efi_ra_buffer, len);
217 if (EFI_ERROR(status)) {
218 efi_ra_start = efi_ra_length = 0;
219 return status;
220 }
221 efi_ra_start = off;
222 efi_ra_length = len;
223 efi_ra_media_id = bdev->media_id;
224 }
225
226 memcpy(buf, &efi_ra_buffer[off - efi_ra_start], bufsize);
227 return EFI_SUCCESS;
228 }
229
230 static EFI_STATUS
231 efi_block_read(struct efi_block_dev *bdev, UINT64 off, void *buf,
232 UINTN bufsize)
233 {
234 if (efi_ra_enable) {
235 return efi_block_readahead(bdev, off, buf, bufsize);
236 }
237
238 return efi_block_do_read(bdev, off, buf, bufsize);
239 }
240
241 static int
242 efi_block_find_partitions_cd9660(struct efi_block_dev *bdev)
243 {
244 struct efi_block_part *bpart;
245 struct iso_primary_descriptor vd;
246 EFI_STATUS status;
247 EFI_LBA lba;
248
249 for (lba = 16;; lba++) {
250 status = efi_block_read(bdev,
251 lba * ISO_DEFAULT_BLOCK_SIZE, &vd, sizeof(vd));
252 if (EFI_ERROR(status)) {
253 goto io_error;
254 }
255
256 if (memcmp(vd.id, ISO_STANDARD_ID, sizeof vd.id) != 0) {
257 goto io_error;
258 }
259 if (isonum_711(vd.type) == ISO_VD_END) {
260 goto io_error;
261 }
262 if (isonum_711(vd.type) == ISO_VD_PRIMARY) {
263 break;
264 }
265 }
266
267 if (isonum_723(vd.logical_block_size) != ISO_DEFAULT_BLOCK_SIZE) {
268 goto io_error;
269 }
270
271 bpart = alloc(sizeof(*bpart));
272 bpart->index = 0;
273 bpart->bdev = bdev;
274 bpart->type = EFI_BLOCK_PART_CD9660;
275 TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
276
277 return 0;
278
279 io_error:
280 return EIO;
281 }
282
283 static int
284 efi_block_find_partitions_disklabel(struct efi_block_dev *bdev,
285 struct mbr_sector *mbr, uint32_t start, uint32_t size)
286 {
287 struct efi_block_part *bpart;
288 char buf[DEV_BSIZE];
289 struct disklabel d;
290 struct partition *p;
291 EFI_STATUS status;
292 int n;
293
294 status = efi_block_read(bdev,
295 ((EFI_LBA)start + LABELSECTOR) * DEV_BSIZE, buf, sizeof(buf));
296 if (EFI_ERROR(status) || getdisklabel(buf, &d) != NULL) {
297 FreePool(buf);
298 return EIO;
299 }
300
301 if (le32toh(d.d_magic) != DISKMAGIC || le32toh(d.d_magic2) != DISKMAGIC)
302 return EINVAL;
303 if (le16toh(d.d_npartitions) > MAXPARTITIONS)
304 return EINVAL;
305
306 for (n = 0; n < le16toh(d.d_npartitions); n++) {
307 p = &d.d_partitions[n];
308 switch (p->p_fstype) {
309 case FS_BSDFFS:
310 case FS_MSDOS:
311 case FS_BSDLFS:
312 break;
313 case FS_RAID:
314 p->p_size -= RF_PROTECTED_SECTORS;
315 p->p_offset += RF_PROTECTED_SECTORS;
316 break;
317 default:
318 continue;
319 }
320
321 bpart = alloc(sizeof(*bpart));
322 bpart->index = n;
323 bpart->bdev = bdev;
324 bpart->type = EFI_BLOCK_PART_DISKLABEL;
325 bpart->disklabel.secsize = d.d_secsize;
326 bpart->disklabel.part = *p;
327 efi_block_generate_hash_mbr(bpart, mbr);
328 TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
329 }
330
331 return 0;
332 }
333
334 static int
335 efi_block_find_partitions_mbr(struct efi_block_dev *bdev)
336 {
337 struct mbr_sector mbr;
338 struct mbr_partition *mbr_part;
339 EFI_STATUS status;
340 int n;
341
342 status = efi_block_read(bdev, 0, &mbr, sizeof(mbr));
343 if (EFI_ERROR(status))
344 return EIO;
345
346 if (le32toh(mbr.mbr_magic) != MBR_MAGIC)
347 return ENOENT;
348
349 for (n = 0; n < MBR_PART_COUNT; n++) {
350 mbr_part = &mbr.mbr_parts[n];
351 if (le32toh(mbr_part->mbrp_size) == 0)
352 continue;
353 if (mbr_part->mbrp_type == MBR_PTYPE_NETBSD) {
354 efi_block_find_partitions_disklabel(bdev, &mbr,
355 le32toh(mbr_part->mbrp_start),
356 le32toh(mbr_part->mbrp_size));
357 break;
358 }
359 }
360
361 return 0;
362 }
363
364 static const struct {
365 struct uuid guid;
366 uint8_t fstype;
367 } gpt_guid_to_str[] = {
368 { GPT_ENT_TYPE_NETBSD_FFS, FS_BSDFFS },
369 { GPT_ENT_TYPE_NETBSD_LFS, FS_BSDLFS },
370 { GPT_ENT_TYPE_NETBSD_RAIDFRAME, FS_RAID },
371 { GPT_ENT_TYPE_NETBSD_CCD, FS_CCD },
372 { GPT_ENT_TYPE_NETBSD_CGD, FS_CGD },
373 { GPT_ENT_TYPE_MS_BASIC_DATA, FS_MSDOS }, /* or NTFS? ambiguous */
374 { GPT_ENT_TYPE_EFI, FS_MSDOS },
375 };
376
377 static int
378 efi_block_find_partitions_gpt_entry(struct efi_block_dev *bdev,
379 struct gpt_hdr *hdr, struct gpt_ent *ent, UINT32 index)
380 {
381 struct efi_block_part *bpart;
382 uint8_t fstype = FS_UNUSED;
383 struct uuid uuid;
384 int n;
385
386 memcpy(&uuid, ent->ent_type, sizeof(uuid));
387 for (n = 0; n < __arraycount(gpt_guid_to_str); n++)
388 if (memcmp(ent->ent_type, &gpt_guid_to_str[n].guid,
389 sizeof(ent->ent_type)) == 0) {
390 fstype = gpt_guid_to_str[n].fstype;
391 break;
392 }
393 if (fstype == FS_UNUSED)
394 return 0;
395
396 bpart = alloc(sizeof(*bpart));
397 bpart->index = index;
398 bpart->bdev = bdev;
399 bpart->type = EFI_BLOCK_PART_GPT;
400 bpart->gpt.fstype = fstype;
401 bpart->gpt.ent = *ent;
402 if (fstype == FS_RAID) {
403 bpart->gpt.ent.ent_lba_start += RF_PROTECTED_SECTORS;
404 bpart->gpt.ent.ent_lba_end -= RF_PROTECTED_SECTORS;
405 }
406 memcpy(bpart->hash, ent->ent_guid, sizeof(bpart->hash));
407 TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
408
409 return 0;
410 }
411
412 static int
413 efi_block_find_partitions_gpt(struct efi_block_dev *bdev)
414 {
415 struct gpt_hdr hdr;
416 struct gpt_ent ent;
417 EFI_STATUS status;
418 UINT32 entry;
419 void *buf;
420 UINTN sz;
421
422 status = efi_block_read(bdev, GPT_HDR_BLKNO * DEV_BSIZE, &hdr,
423 sizeof(hdr));
424 if (EFI_ERROR(status)) {
425 return EIO;
426 }
427
428 if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0)
429 return ENOENT;
430 if (le32toh(hdr.hdr_entsz) < sizeof(ent))
431 return EINVAL;
432
433 sz = le32toh(hdr.hdr_entsz) * le32toh(hdr.hdr_entries);
434 buf = AllocatePool(sz);
435 if (buf == NULL)
436 return ENOMEM;
437
438 status = efi_block_read(bdev,
439 le64toh(hdr.hdr_lba_table) * DEV_BSIZE, buf, sz);
440 if (EFI_ERROR(status)) {
441 FreePool(buf);
442 return EIO;
443 }
444
445 for (entry = 0; entry < le32toh(hdr.hdr_entries); entry++) {
446 memcpy(&ent, buf + (entry * le32toh(hdr.hdr_entsz)),
447 sizeof(ent));
448 efi_block_find_partitions_gpt_entry(bdev, &hdr, &ent, entry);
449 }
450
451 FreePool(buf);
452
453 return 0;
454 }
455
456 static int
457 efi_block_find_partitions(struct efi_block_dev *bdev)
458 {
459 int error;
460
461 error = efi_block_find_partitions_gpt(bdev);
462 if (error)
463 error = efi_block_find_partitions_mbr(bdev);
464 if (error)
465 error = efi_block_find_partitions_cd9660(bdev);
466
467 return error;
468 }
469
470 void
471 efi_block_probe(void)
472 {
473 struct efi_block_dev *bdev;
474 struct efi_block_part *bpart;
475 EFI_BLOCK_IO *bio;
476 EFI_DISK_IO *dio;
477 EFI_STATUS status;
478 uint16_t devindex = 0;
479 int depth = -1;
480 int n;
481
482 status = LibLocateHandle(ByProtocol, &BlockIoProtocol, NULL, &efi_nblock, &efi_block);
483 if (EFI_ERROR(status))
484 return;
485
486 if (efi_bootdp) {
487 depth = efi_device_path_depth(efi_bootdp, MEDIA_DEVICE_PATH);
488 if (depth == 0)
489 depth = 1;
490 else if (depth == -1)
491 depth = 2;
492 }
493
494 for (n = 0; n < efi_nblock; n++) {
495 /* EFI_BLOCK_IO_PROTOCOL is required */
496 status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n],
497 &BlockIoProtocol, (void **)&bio);
498 if (EFI_ERROR(status) || !bio->Media->MediaPresent)
499 continue;
500
501 /* Ignore logical partitions (we do our own partition discovery) */
502 if (bio->Media->LogicalPartition)
503 continue;
504
505 /* EFI_DISK_IO_PROTOCOL is optional */
506 status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n],
507 &DiskIoProtocol, (void **)&dio);
508 if (EFI_ERROR(status)) {
509 dio = NULL;
510 }
511
512 bdev = alloc(sizeof(*bdev));
513 bdev->index = devindex++;
514 bdev->bio = bio;
515 bdev->dio = dio;
516 bdev->media_id = bio->Media->MediaId;
517 bdev->path = DevicePathFromHandle(efi_block[n]);
518 TAILQ_INIT(&bdev->partitions);
519 TAILQ_INSERT_TAIL(&efi_block_devs, bdev, entries);
520
521 efi_block_find_partitions(bdev);
522
523 if (depth > 0 && efi_device_path_ncmp(efi_bootdp, DevicePathFromHandle(efi_block[n]), depth) == 0) {
524 TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
525 uint8_t fstype = FS_UNUSED;
526 switch (bpart->type) {
527 case EFI_BLOCK_PART_DISKLABEL:
528 fstype = bpart->disklabel.part.p_fstype;
529 break;
530 case EFI_BLOCK_PART_GPT:
531 fstype = bpart->gpt.fstype;
532 break;
533 case EFI_BLOCK_PART_CD9660:
534 fstype = FS_ISO9660;
535 break;
536 }
537 if (fstype == FS_BSDFFS || fstype == FS_ISO9660 || fstype == FS_RAID) {
538 char devname[9];
539 snprintf(devname, sizeof(devname), "hd%u%c", bdev->index, bpart->index + 'a');
540 set_default_device(devname);
541 set_default_fstype(fstype);
542 break;
543 }
544 }
545 }
546 }
547 }
548
549 static void
550 print_guid(const uint8_t *guid)
551 {
552 const int index[] = { 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15 };
553 int i;
554
555 for (i = 0; i < 16; i++) {
556 printf("%02x", guid[index[i]]);
557 if (i == 3 || i == 5 || i == 7 || i == 9)
558 printf("-");
559 }
560 }
561
562 void
563 efi_block_show(void)
564 {
565 struct efi_block_dev *bdev;
566 struct efi_block_part *bpart;
567 uint64_t size;
568 CHAR16 *path;
569
570 TAILQ_FOREACH(bdev, &efi_block_devs, entries) {
571 printf("hd%u (", bdev->index);
572
573 /* Size in MB */
574 size = ((bdev->bio->Media->LastBlock + 1) * bdev->bio->Media->BlockSize) / (1024 * 1024);
575 if (size >= 10000)
576 printf("%"PRIu64" GB", size / 1024);
577 else
578 printf("%"PRIu64" MB", size);
579 printf("): ");
580
581 path = DevicePathToStr(bdev->path);
582 Print(L"%s", path);
583 FreePool(path);
584
585 printf("\n");
586
587 TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
588 switch (bpart->type) {
589 case EFI_BLOCK_PART_DISKLABEL:
590 printf(" hd%u%c (", bdev->index, bpart->index + 'a');
591
592 /* Size in MB */
593 size = ((uint64_t)bpart->disklabel.secsize * bpart->disklabel.part.p_size) / (1024 * 1024);
594 if (size >= 10000)
595 printf("%"PRIu64" GB", size / 1024);
596 else
597 printf("%"PRIu64" MB", size);
598 printf("): ");
599
600 printf("%s\n", fstypenames[bpart->disklabel.part.p_fstype]);
601 break;
602 case EFI_BLOCK_PART_GPT:
603 printf(" hd%u%c ", bdev->index, bpart->index + 'a');
604
605 if (bpart->gpt.ent.ent_name[0] == 0x0000) {
606 printf("\"");
607 print_guid(bpart->gpt.ent.ent_guid);
608 printf("\"");
609 } else {
610 Print(L"\"%s\"", bpart->gpt.ent.ent_name);
611 }
612
613 /* Size in MB */
614 size = (le64toh(bpart->gpt.ent.ent_lba_end) - le64toh(bpart->gpt.ent.ent_lba_start)) * bdev->bio->Media->BlockSize;
615 size /= (1024 * 1024);
616 if (size >= 10000)
617 printf(" (%"PRIu64" GB): ", size / 1024);
618 else
619 printf(" (%"PRIu64" MB): ", size);
620
621 printf("%s\n", fstypenames[bpart->gpt.fstype]);
622 break;
623 case EFI_BLOCK_PART_CD9660:
624 printf(" hd%u%c %s\n", bdev->index, bpart->index + 'a', fstypenames[FS_ISO9660]);
625 break;
626 default:
627 break;
628 }
629 }
630 }
631 }
632
633 struct efi_block_part *
634 efi_block_boot_part(void)
635 {
636 return efi_block_booted;
637 }
638
639 int
640 efi_block_open(struct open_file *f, ...)
641 {
642 struct efi_block_part *bpart;
643 const char *fname;
644 char **file;
645 char *path;
646 va_list ap;
647 int rv, n;
648
649 va_start(ap, f);
650 fname = va_arg(ap, const char *);
651 file = va_arg(ap, char **);
652 va_end(ap);
653
654 rv = efi_block_parse(fname, &bpart, &path);
655 if (rv != 0)
656 return rv;
657
658 for (n = 0; n < ndevs; n++)
659 if (strcmp(DEV_NAME(&devsw[n]), "efiblock") == 0) {
660 f->f_dev = &devsw[n];
661 break;
662 }
663 if (n == ndevs)
664 return ENXIO;
665
666 f->f_devdata = bpart;
667
668 *file = path;
669
670 efi_block_booted = bpart;
671
672 return 0;
673 }
674
675 int
676 efi_block_close(struct open_file *f)
677 {
678 return 0;
679 }
680
681 int
682 efi_block_strategy(void *devdata, int rw, daddr_t dblk, size_t size, void *buf, size_t *rsize)
683 {
684 struct efi_block_part *bpart = devdata;
685 EFI_STATUS status;
686 UINT64 off;
687
688 if (rw != F_READ)
689 return EROFS;
690
691 efi_set_watchdog(EFI_BLOCK_TIMEOUT, EFI_BLOCK_TIMEOUT_CODE);
692
693 switch (bpart->type) {
694 case EFI_BLOCK_PART_DISKLABEL:
695 off = (dblk + bpart->disklabel.part.p_offset) * DEV_BSIZE;
696 break;
697 case EFI_BLOCK_PART_GPT:
698 off = (dblk + le64toh(bpart->gpt.ent.ent_lba_start)) * DEV_BSIZE;
699 break;
700 case EFI_BLOCK_PART_CD9660:
701 off = dblk * ISO_DEFAULT_BLOCK_SIZE;
702 break;
703 default:
704 return EINVAL;
705 }
706
707 status = efi_block_read(bpart->bdev, off, buf, size);
708 if (EFI_ERROR(status))
709 return EIO;
710
711 *rsize = size;
712
713 return 0;
714 }
715
716 void
717 efi_block_set_readahead(bool onoff)
718 {
719 efi_ra_enable = onoff;
720 }
721