chfs_malloc.c revision 1.2.2.2 1 /* $NetBSD: chfs_malloc.c,v 1.2.2.2 2012/04/17 00:08:54 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (C) 2010 Tamas Toth <ttoth (at) inf.u-szeged.hu>
7 * Copyright (C) 2010 Adam Hoka <ahoka (at) NetBSD.org>
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to The NetBSD Foundation
11 * by the Department of Software Engineering, University of Szeged, Hungary
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #include "chfs.h"
36 #include <sys/pool.h>
37
38 pool_cache_t chfs_vnode_cache;
39 pool_cache_t chfs_nrefs_cache;
40 pool_cache_t chfs_flash_vnode_cache;
41 pool_cache_t chfs_flash_dirent_cache;
42 pool_cache_t chfs_flash_dnode_cache;
43 pool_cache_t chfs_node_frag_cache;
44 pool_cache_t chfs_tmp_dnode_cache;
45 pool_cache_t chfs_tmp_dnode_info_cache;
46
47 int
48 chfs_alloc_pool_caches(void)
49 {
50 chfs_vnode_cache = pool_cache_init(
51 sizeof(struct chfs_vnode_cache),
52 0, 0, 0, "chfs_vnode_cache", NULL, IPL_NONE, NULL, NULL,
53 NULL);
54 if (!chfs_vnode_cache)
55 goto err_vnode;
56
57 chfs_nrefs_cache = pool_cache_init(
58 (REFS_BLOCK_LEN + 1) * sizeof(struct chfs_node_ref), 0, 0,
59 0, "chfs_nrefs_pool", NULL, IPL_NONE, NULL, NULL, NULL);
60 if (!chfs_nrefs_cache)
61 goto err_nrefs;
62
63 chfs_flash_vnode_cache = pool_cache_init(
64 sizeof(struct chfs_flash_vnode), 0, 0, 0,
65 "chfs_flash_vnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
66 if (!chfs_flash_vnode_cache)
67 goto err_flash_vnode;
68
69 chfs_flash_dirent_cache = pool_cache_init(
70 sizeof(struct chfs_flash_dirent_node), 0, 0, 0,
71 "chfs_flash_dirent_pool", NULL, IPL_NONE, NULL, NULL, NULL);
72 if (!chfs_flash_dirent_cache)
73 goto err_flash_dirent;
74
75 chfs_flash_dnode_cache = pool_cache_init(
76 sizeof(struct chfs_flash_data_node), 0, 0, 0,
77 "chfs_flash_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
78 if (!chfs_flash_dnode_cache)
79 goto err_flash_dnode;
80
81 chfs_node_frag_cache = pool_cache_init(
82 sizeof(struct chfs_node_frag), 0, 0, 0,
83 "chfs_node_frag_pool", NULL, IPL_NONE, NULL, NULL, NULL);
84 if (!chfs_node_frag_cache)
85 goto err_node_frag;
86
87 chfs_tmp_dnode_cache = pool_cache_init(
88 sizeof(struct chfs_tmp_dnode), 0, 0, 0,
89 "chfs_tmp_dnode_pool", NULL, IPL_NONE, NULL, NULL, NULL);
90 if (!chfs_tmp_dnode_cache)
91 goto err_tmp_dnode;
92
93 chfs_tmp_dnode_info_cache = pool_cache_init(
94 sizeof(struct chfs_tmp_dnode_info), 0, 0, 0,
95 "chfs_tmp_dnode_info_pool", NULL, IPL_NONE, NULL, NULL, NULL);
96 if (!chfs_tmp_dnode_info_cache)
97 goto err_tmp_dnode_info;
98
99 return 0;
100
101 err_tmp_dnode_info:
102 pool_cache_destroy(chfs_tmp_dnode_cache);
103 err_tmp_dnode:
104 pool_cache_destroy(chfs_node_frag_cache);
105 err_node_frag:
106 pool_cache_destroy(chfs_flash_dnode_cache);
107 err_flash_dnode:
108 pool_cache_destroy(chfs_flash_dirent_cache);
109 err_flash_dirent:
110 pool_cache_destroy(chfs_flash_vnode_cache);
111 err_flash_vnode:
112 pool_cache_destroy(chfs_nrefs_cache);
113 err_nrefs:
114 pool_cache_destroy(chfs_vnode_cache);
115 err_vnode:
116
117 return ENOMEM;
118 }
119
120 void
121 chfs_destroy_pool_caches(void)
122 {
123 if (chfs_vnode_cache)
124 pool_cache_destroy(chfs_vnode_cache);
125
126 if (chfs_nrefs_cache)
127 pool_cache_destroy(chfs_nrefs_cache);
128
129 if (chfs_flash_vnode_cache)
130 pool_cache_destroy(chfs_flash_vnode_cache);
131
132 if (chfs_flash_dirent_cache)
133 pool_cache_destroy(chfs_flash_dirent_cache);
134
135 if (chfs_flash_dnode_cache)
136 pool_cache_destroy(chfs_flash_dnode_cache);
137
138 if (chfs_node_frag_cache)
139 pool_cache_destroy(chfs_node_frag_cache);
140
141 if (chfs_tmp_dnode_cache)
142 pool_cache_destroy(chfs_tmp_dnode_cache);
143
144 if (chfs_tmp_dnode_info_cache)
145 pool_cache_destroy(chfs_tmp_dnode_info_cache);
146 }
147
148 struct chfs_vnode_cache *
149 chfs_vnode_cache_alloc(ino_t vno)
150 {
151 struct chfs_vnode_cache* vc;
152 vc = pool_cache_get(chfs_vnode_cache, PR_WAITOK);
153
154 memset(vc, 0, sizeof(*vc));
155 vc->vno = vno;
156 vc->v = (void *)vc;
157 vc->dirents = (void *)vc;
158 vc->dnode = (void *)vc;
159 TAILQ_INIT(&vc->scan_dirents);
160 vc->highest_version = 0;
161
162 return vc;
163 }
164
165 void
166 chfs_vnode_cache_free(struct chfs_vnode_cache *vc)
167 {
168 //kmem_free(vc->vno_version, sizeof(uint64_t));
169 pool_cache_put(chfs_vnode_cache, vc);
170 }
171
172 /**
173 * chfs_alloc_refblock - allocating a refblock
174 *
175 * Returns a pointer of the first element in the block.
176 *
177 * We are not allocating just one node ref, instead we allocating REFS_BLOCK_LEN
178 * number of node refs, the last element will be a pointer to the next block.
179 * We do this, because we need a chain of nodes which have been ordered by the
180 * physical address of them.
181 *
182 */
183 struct chfs_node_ref*
184 chfs_alloc_refblock(void)
185 {
186 int i;
187 struct chfs_node_ref *nref;
188 nref = pool_cache_get(chfs_nrefs_cache, PR_WAITOK);
189
190 for (i = 0; i < REFS_BLOCK_LEN; i++) {
191 nref[i].nref_lnr = REF_EMPTY_NODE;
192 nref[i].nref_next = NULL;
193 }
194 i = REFS_BLOCK_LEN;
195 nref[i].nref_lnr = REF_LINK_TO_NEXT;
196 nref[i].nref_next = NULL;
197
198 return nref;
199 }
200
201 /**
202 * chfs_free_refblock - freeing a refblock
203 */
204 void
205 chfs_free_refblock(struct chfs_node_ref *nref)
206 {
207 pool_cache_put(chfs_nrefs_cache, nref);
208 }
209
210 /**
211 * chfs_alloc_node_ref - allocating a node ref from a refblock
212 * @cheb: eraseblock information structure
213 *
214 * Allocating a node ref from a refblock, it there isn't any free element in the
215 * block, a new block will be allocated and be linked to the current block.
216 */
217 struct chfs_node_ref*
218 chfs_alloc_node_ref(struct chfs_eraseblock *cheb)
219 {
220 struct chfs_node_ref *nref, *new, *old;
221 old = cheb->last_node;
222 nref = cheb->last_node;
223
224 if (!nref) {
225 //There haven't been any nref allocated for this block yet
226 nref = chfs_alloc_refblock();
227
228 cheb->first_node = nref;
229 cheb->last_node = nref;
230 nref->nref_lnr = cheb->lnr;
231 KASSERT(cheb->lnr == nref->nref_lnr);
232
233 return nref;
234 }
235
236 nref++;
237 if (nref->nref_lnr == REF_LINK_TO_NEXT) {
238 new = chfs_alloc_refblock();
239 nref->nref_next = new;
240 nref = new;
241 }
242
243 cheb->last_node = nref;
244 nref->nref_lnr = cheb->lnr;
245
246 KASSERT(old->nref_lnr == nref->nref_lnr &&
247 nref->nref_lnr == cheb->lnr);
248
249 return nref;
250 }
251
252 /**
253 * chfs_free_node_refs - freeing an eraseblock's node refs
254 * @cheb: eraseblock information structure
255 */
256 void
257 chfs_free_node_refs(struct chfs_eraseblock *cheb)
258 {
259 struct chfs_node_ref *nref, *block;
260
261 block = nref = cheb->first_node;
262
263 while (nref) {
264 if (nref->nref_lnr == REF_LINK_TO_NEXT) {
265 nref = nref->nref_next;
266 chfs_free_refblock(block);
267 block = nref;
268 continue;
269 }
270 nref++;
271 }
272 }
273
274 struct chfs_dirent*
275 chfs_alloc_dirent(int namesize)
276 {
277 struct chfs_dirent *ret;
278 size_t size = sizeof(struct chfs_dirent) + namesize;
279
280 ret = kmem_alloc(size, KM_SLEEP);
281 //ret->alloc_size = size;
282
283 return ret;
284 }
285
286 void
287 chfs_free_dirent(struct chfs_dirent *dirent)
288 {
289 //size_t size = dirent->alloc_size;
290 size_t size = sizeof(struct chfs_dirent) + dirent->nsize + 1;
291
292 kmem_free(dirent, size);
293 }
294
295 struct chfs_full_dnode*
296 chfs_alloc_full_dnode(void)
297 {
298 struct chfs_full_dnode *ret;
299 ret = kmem_alloc(sizeof(struct chfs_full_dnode), KM_SLEEP);
300 return ret;
301 }
302
303 void
304 chfs_free_full_dnode(struct chfs_full_dnode *fd)
305 {
306 kmem_free(fd,(sizeof(struct chfs_full_dnode)));
307 }
308
309 struct chfs_flash_vnode*
310 chfs_alloc_flash_vnode(void)
311 {
312 struct chfs_flash_vnode *ret;
313 ret = pool_cache_get(chfs_flash_vnode_cache, 0);
314 return ret;
315 }
316
317 void
318 chfs_free_flash_vnode(struct chfs_flash_vnode *fvnode)
319 {
320 pool_cache_put(chfs_flash_vnode_cache, fvnode);
321 }
322
323 struct chfs_flash_dirent_node*
324 chfs_alloc_flash_dirent(void)
325 {
326 struct chfs_flash_dirent_node *ret;
327 ret = pool_cache_get(chfs_flash_dirent_cache, 0);
328 return ret;
329 }
330
331 void
332 chfs_free_flash_dirent(struct chfs_flash_dirent_node *fdnode)
333 {
334 pool_cache_put(chfs_flash_dirent_cache, fdnode);
335 }
336
337 struct chfs_flash_data_node*
338 chfs_alloc_flash_dnode(void)
339 {
340 struct chfs_flash_data_node *ret;
341 ret = pool_cache_get(chfs_flash_dnode_cache, 0);
342 return ret;
343 }
344
345 void
346 chfs_free_flash_dnode(struct chfs_flash_data_node *fdnode)
347 {
348 pool_cache_put(chfs_flash_dnode_cache, fdnode);
349 }
350
351
352 struct chfs_node_frag*
353 chfs_alloc_node_frag(void)
354 {
355 struct chfs_node_frag *ret;
356 ret = pool_cache_get(chfs_node_frag_cache, 0);
357 return ret;
358
359 }
360
361 void
362 chfs_free_node_frag(struct chfs_node_frag *frag)
363 {
364 pool_cache_put(chfs_node_frag_cache, frag);
365 }
366
367 struct chfs_tmp_dnode *
368 chfs_alloc_tmp_dnode(void)
369 {
370 struct chfs_tmp_dnode *ret;
371 ret = pool_cache_get(chfs_tmp_dnode_cache, 0);
372 ret->next = NULL;
373 return ret;
374 }
375
376 void
377 chfs_free_tmp_dnode(struct chfs_tmp_dnode *td)
378 {
379 pool_cache_put(chfs_tmp_dnode_cache, td);
380 }
381
382 struct chfs_tmp_dnode_info *
383 chfs_alloc_tmp_dnode_info(void)
384 {
385 struct chfs_tmp_dnode_info *ret;
386 ret = pool_cache_get(chfs_tmp_dnode_info_cache, 0);
387 ret->tmpnode = NULL;
388 return ret;
389 }
390
391 void
392 chfs_free_tmp_dnode_info(struct chfs_tmp_dnode_info *di)
393 {
394 pool_cache_put(chfs_tmp_dnode_info_cache, di);
395 }
396
397