chfs_readinode.c revision 1.4 1 1.4 ttoth /* $NetBSD: chfs_readinode.c,v 1.4 2012/08/13 13:12:51 ttoth Exp $ */
2 1.1 ahoka
3 1.1 ahoka /*-
4 1.1 ahoka * Copyright (c) 2010 Department of Software Engineering,
5 1.1 ahoka * University of Szeged, Hungary
6 1.1 ahoka * Copyright (C) 2010 David Tengeri <dtengeri (at) inf.u-szeged.hu>
7 1.1 ahoka * Copyright (C) 2010 Tamas Toth <ttoth (at) inf.u-szeged.hu>
8 1.1 ahoka * Copyright (C) 2010 Adam Hoka <ahoka (at) NetBSD.org>
9 1.1 ahoka * All rights reserved.
10 1.1 ahoka *
11 1.1 ahoka * This code is derived from software contributed to The NetBSD Foundation
12 1.1 ahoka * by the Department of Software Engineering, University of Szeged, Hungary
13 1.1 ahoka *
14 1.1 ahoka * Redistribution and use in source and binary forms, with or without
15 1.1 ahoka * modification, are permitted provided that the following conditions
16 1.1 ahoka * are met:
17 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
18 1.1 ahoka * notice, this list of conditions and the following disclaimer.
19 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
21 1.1 ahoka * documentation and/or other materials provided with the distribution.
22 1.1 ahoka *
23 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.1 ahoka * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.1 ahoka * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.1 ahoka * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 1.1 ahoka * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 1.1 ahoka * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 1.1 ahoka * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 1.1 ahoka * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 ahoka * SUCH DAMAGE.
34 1.1 ahoka */
35 1.1 ahoka
36 1.1 ahoka /*
37 1.1 ahoka * chfs_readinode.c
38 1.1 ahoka *
39 1.1 ahoka * Created on: 2010.05.31.
40 1.1 ahoka * Author: dtengeri
41 1.1 ahoka */
42 1.1 ahoka
43 1.1 ahoka #include <sys/buf.h>
44 1.1 ahoka
45 1.1 ahoka #include "chfs.h"
46 1.1 ahoka
47 1.1 ahoka /* tmp node operations */
48 1.1 ahoka int chfs_check_td_data(struct chfs_mount *,
49 1.1 ahoka struct chfs_tmp_dnode *);
50 1.1 ahoka int chfs_check_td_node(struct chfs_mount *,
51 1.1 ahoka struct chfs_tmp_dnode *);
52 1.1 ahoka struct chfs_node_ref *chfs_first_valid_data_ref(struct chfs_node_ref *);
53 1.1 ahoka int chfs_add_tmp_dnode_to_tree(struct chfs_mount *,
54 1.1 ahoka struct chfs_readinode_info *,
55 1.1 ahoka struct chfs_tmp_dnode *);
56 1.1 ahoka void chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *,
57 1.1 ahoka struct chfs_tmp_dnode *);
58 1.1 ahoka void chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *,
59 1.1 ahoka struct chfs_tmp_dnode *);
60 1.1 ahoka static void chfs_kill_td(struct chfs_mount *,
61 1.1 ahoka struct chfs_tmp_dnode *);
62 1.1 ahoka static void chfs_kill_tdi(struct chfs_mount *,
63 1.1 ahoka struct chfs_tmp_dnode_info *);
64 1.1 ahoka /* frag node operations */
65 1.1 ahoka struct chfs_node_frag *new_fragment(struct chfs_full_dnode *,
66 1.1 ahoka uint32_t,
67 1.1 ahoka uint32_t);
68 1.1 ahoka int no_overlapping_node(struct rb_tree *, struct chfs_node_frag *,
69 1.1 ahoka struct chfs_node_frag *, uint32_t);
70 1.1 ahoka int chfs_add_frag_to_fragtree(struct chfs_mount *,
71 1.1 ahoka struct rb_tree *,
72 1.1 ahoka struct chfs_node_frag *);
73 1.1 ahoka void chfs_obsolete_node_frag(struct chfs_mount *,
74 1.1 ahoka struct chfs_node_frag *);
75 1.1 ahoka /* general node operations */
76 1.1 ahoka int chfs_get_data_nodes(struct chfs_mount *,
77 1.1 ahoka struct chfs_inode *,
78 1.1 ahoka struct chfs_readinode_info *);
79 1.1 ahoka int chfs_build_fragtree(struct chfs_mount *,
80 1.1 ahoka struct chfs_inode *,
81 1.1 ahoka struct chfs_readinode_info *);
82 1.1 ahoka
83 1.1 ahoka
84 1.1 ahoka
85 1.1 ahoka /*
86 1.1 ahoka * --------------------------
87 1.1 ahoka * tmp node rbtree operations
88 1.1 ahoka * --------------------------
89 1.1 ahoka */
90 1.1 ahoka static signed int
91 1.1 ahoka tmp_node_compare_nodes(void *ctx, const void *n1, const void *n2)
92 1.1 ahoka {
93 1.1 ahoka const struct chfs_tmp_dnode_info *tdi1 = n1;
94 1.1 ahoka const struct chfs_tmp_dnode_info *tdi2 = n2;
95 1.1 ahoka
96 1.1 ahoka return (tdi1->tmpnode->node->ofs - tdi2->tmpnode->node->ofs);
97 1.1 ahoka }
98 1.1 ahoka
99 1.1 ahoka static signed int
100 1.1 ahoka tmp_node_compare_key(void *ctx, const void *n, const void *key)
101 1.1 ahoka {
102 1.1 ahoka const struct chfs_tmp_dnode_info *tdi = n;
103 1.1 ahoka uint64_t ofs = *(const uint64_t *)key;
104 1.1 ahoka
105 1.1 ahoka return (tdi->tmpnode->node->ofs - ofs);
106 1.1 ahoka }
107 1.1 ahoka
108 1.1 ahoka const rb_tree_ops_t tmp_node_rbtree_ops = {
109 1.1 ahoka .rbto_compare_nodes = tmp_node_compare_nodes,
110 1.1 ahoka .rbto_compare_key = tmp_node_compare_key,
111 1.1 ahoka .rbto_node_offset = offsetof(struct chfs_tmp_dnode_info, rb_node),
112 1.1 ahoka .rbto_context = NULL
113 1.1 ahoka };
114 1.1 ahoka
115 1.1 ahoka
116 1.1 ahoka /*
117 1.1 ahoka * ---------------------------
118 1.1 ahoka * frag node rbtree operations
119 1.1 ahoka * ---------------------------
120 1.1 ahoka */
121 1.1 ahoka static signed int
122 1.1 ahoka frag_compare_nodes(void *ctx, const void *n1, const void *n2)
123 1.1 ahoka {
124 1.1 ahoka const struct chfs_node_frag *frag1 = n1;
125 1.1 ahoka const struct chfs_node_frag *frag2 = n2;
126 1.1 ahoka
127 1.1 ahoka return (frag1->ofs - frag2->ofs);
128 1.1 ahoka }
129 1.1 ahoka
130 1.1 ahoka static signed int
131 1.1 ahoka frag_compare_key(void *ctx, const void *n, const void *key)
132 1.1 ahoka {
133 1.1 ahoka const struct chfs_node_frag *frag = n;
134 1.1 ahoka uint64_t ofs = *(const uint64_t *)key;
135 1.1 ahoka
136 1.1 ahoka return (frag->ofs - ofs);
137 1.1 ahoka }
138 1.1 ahoka
139 1.1 ahoka const rb_tree_ops_t frag_rbtree_ops = {
140 1.1 ahoka .rbto_compare_nodes = frag_compare_nodes,
141 1.1 ahoka .rbto_compare_key = frag_compare_key,
142 1.1 ahoka .rbto_node_offset = offsetof(struct chfs_node_frag, rb_node),
143 1.1 ahoka .rbto_context = NULL
144 1.1 ahoka };
145 1.1 ahoka
146 1.1 ahoka
147 1.1 ahoka /*
148 1.1 ahoka * -------------------
149 1.1 ahoka * tmp node operations
150 1.1 ahoka * -------------------
151 1.1 ahoka */
152 1.1 ahoka /*
153 1.1 ahoka * Check the data CRC of the node.
154 1.1 ahoka *
155 1.1 ahoka * Returns: 0 - if everything OK;
156 1.1 ahoka * 1 - if CRC is incorrect;
157 1.1 ahoka * 2 - else;
158 1.1 ahoka * error code if an error occured.
159 1.1 ahoka */
160 1.1 ahoka int
161 1.1 ahoka chfs_check_td_data(struct chfs_mount *chmp,
162 1.1 ahoka struct chfs_tmp_dnode *td)
163 1.1 ahoka {
164 1.1 ahoka int err;
165 1.1 ahoka size_t retlen, len, totlen;
166 1.1 ahoka uint32_t crc;
167 1.1 ahoka uint64_t ofs;
168 1.1 ahoka char *buf;
169 1.1 ahoka struct chfs_node_ref *nref = td->node->nref;
170 1.1 ahoka
171 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
172 1.1 ahoka KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
173 1.1 ahoka
174 1.1 ahoka ofs = CHFS_GET_OFS(nref->nref_offset) + sizeof(struct chfs_flash_data_node);
175 1.1 ahoka len = td->node->size;
176 1.1 ahoka if (!len)
177 1.1 ahoka return 0;
178 1.1 ahoka
179 1.1 ahoka buf = kmem_alloc(len, KM_SLEEP);
180 1.1 ahoka if (!buf) {
181 1.1 ahoka dbg("allocating error\n");
182 1.1 ahoka return 2;
183 1.1 ahoka }
184 1.1 ahoka err = chfs_read_leb(chmp, nref->nref_lnr, buf, ofs, len, &retlen);
185 1.1 ahoka if (err) {
186 1.1 ahoka dbg("error wile reading: %d\n", err);
187 1.1 ahoka err = 2;
188 1.1 ahoka goto out;
189 1.1 ahoka }
190 1.1 ahoka
191 1.1 ahoka if (len != retlen) {
192 1.1 ahoka dbg("len:%zu, retlen:%zu\n", len, retlen);
193 1.1 ahoka err = 2;
194 1.1 ahoka goto out;
195 1.1 ahoka }
196 1.1 ahoka crc = crc32(0, (uint8_t *)buf, len);
197 1.1 ahoka
198 1.1 ahoka if (crc != td->data_crc) {
199 1.1 ahoka dbg("crc failed, calculated: 0x%x, orig: 0x%x\n", crc, td->data_crc);
200 1.1 ahoka kmem_free(buf, len);
201 1.1 ahoka return 1;
202 1.1 ahoka }
203 1.1 ahoka
204 1.3 ttoth CHFS_MARK_REF_NORMAL(nref);
205 1.1 ahoka totlen = CHFS_PAD(sizeof(struct chfs_flash_data_node) + len);
206 1.1 ahoka
207 1.1 ahoka mutex_enter(&chmp->chm_lock_sizes);
208 1.1 ahoka chfs_change_size_unchecked(chmp, &chmp->chm_blocks[nref->nref_lnr], -totlen);
209 1.1 ahoka chfs_change_size_used(chmp, &chmp->chm_blocks[nref->nref_lnr], totlen);
210 1.1 ahoka mutex_exit(&chmp->chm_lock_sizes);
211 1.1 ahoka KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
212 1.1 ahoka
213 1.1 ahoka err = 0;
214 1.1 ahoka out:
215 1.1 ahoka kmem_free(buf, len);
216 1.1 ahoka return err;
217 1.1 ahoka }
218 1.1 ahoka
219 1.1 ahoka int
220 1.1 ahoka chfs_check_td_node(struct chfs_mount *chmp, struct chfs_tmp_dnode *td)
221 1.1 ahoka {
222 1.1 ahoka int ret;
223 1.1 ahoka
224 1.1 ahoka if (CHFS_REF_FLAGS(td->node->nref) != CHFS_UNCHECKED_NODE_MASK)
225 1.1 ahoka return 0;
226 1.1 ahoka
227 1.1 ahoka ret = chfs_check_td_data(chmp, td);
228 1.1 ahoka return ret;
229 1.1 ahoka }
230 1.1 ahoka
231 1.1 ahoka
232 1.1 ahoka struct chfs_node_ref *
233 1.1 ahoka chfs_first_valid_data_ref(struct chfs_node_ref *nref)
234 1.1 ahoka {
235 1.1 ahoka while (nref) {
236 1.1 ahoka if (!CHFS_REF_OBSOLETE(nref)) {
237 1.1 ahoka #ifdef DGB_MSG_GC
238 1.1 ahoka if (nref->nref_lnr == REF_EMPTY_NODE) {
239 1.1 ahoka dbg("FIRST VALID IS EMPTY!\n");
240 1.1 ahoka }
241 1.1 ahoka #endif
242 1.1 ahoka return nref;
243 1.1 ahoka }
244 1.1 ahoka
245 1.1 ahoka if (nref->nref_next) {
246 1.1 ahoka nref = nref->nref_next;
247 1.1 ahoka } else
248 1.1 ahoka break;
249 1.1 ahoka }
250 1.1 ahoka return NULL;
251 1.1 ahoka }
252 1.1 ahoka
253 1.1 ahoka void
254 1.1 ahoka chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *tdi,
255 1.1 ahoka struct chfs_tmp_dnode *td)
256 1.1 ahoka {
257 1.1 ahoka if (!tdi->tmpnode) {
258 1.1 ahoka tdi->tmpnode = td;
259 1.1 ahoka } else {
260 1.1 ahoka struct chfs_tmp_dnode *tmp = tdi->tmpnode;
261 1.1 ahoka while (tmp->next) {
262 1.1 ahoka tmp = tmp->next;
263 1.1 ahoka }
264 1.1 ahoka tmp->next = td;
265 1.1 ahoka }
266 1.1 ahoka }
267 1.1 ahoka
268 1.1 ahoka void
269 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *tdi,
270 1.1 ahoka struct chfs_tmp_dnode *td)
271 1.1 ahoka {
272 1.1 ahoka if (tdi->tmpnode == td) {
273 1.1 ahoka tdi->tmpnode = tdi->tmpnode->next;
274 1.1 ahoka } else {
275 1.1 ahoka struct chfs_tmp_dnode *tmp = tdi->tmpnode->next;
276 1.1 ahoka while (tmp->next && tmp->next != td) {
277 1.1 ahoka tmp = tmp->next;
278 1.1 ahoka }
279 1.1 ahoka if (tmp->next) {
280 1.1 ahoka tmp->next = td->next;
281 1.1 ahoka }
282 1.1 ahoka }
283 1.1 ahoka }
284 1.1 ahoka
285 1.1 ahoka static void
286 1.1 ahoka chfs_kill_td(struct chfs_mount *chmp,
287 1.1 ahoka struct chfs_tmp_dnode *td)
288 1.1 ahoka {
289 1.3 ttoth struct chfs_vnode_cache *vc;
290 1.3 ttoth if (td->node) {
291 1.3 ttoth mutex_enter(&chmp->chm_lock_vnocache);
292 1.3 ttoth vc = chfs_nref_to_vc(td->node->nref);
293 1.3 ttoth chfs_remove_and_obsolete(chmp, vc, td->node->nref, &vc->dnode);
294 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
295 1.1 ahoka }
296 1.1 ahoka
297 1.1 ahoka chfs_free_tmp_dnode(td);
298 1.1 ahoka }
299 1.1 ahoka
300 1.1 ahoka static void
301 1.1 ahoka chfs_kill_tdi(struct chfs_mount *chmp,
302 1.1 ahoka struct chfs_tmp_dnode_info *tdi)
303 1.1 ahoka {
304 1.1 ahoka struct chfs_tmp_dnode *next, *tmp = tdi->tmpnode;
305 1.1 ahoka
306 1.1 ahoka while (tmp) {
307 1.1 ahoka next = tmp->next;
308 1.1 ahoka chfs_kill_td(chmp, tmp);
309 1.1 ahoka tmp = next;
310 1.1 ahoka }
311 1.1 ahoka
312 1.1 ahoka chfs_free_tmp_dnode_info(tdi);
313 1.1 ahoka }
314 1.1 ahoka
315 1.1 ahoka int
316 1.1 ahoka chfs_add_tmp_dnode_to_tree(struct chfs_mount *chmp,
317 1.1 ahoka struct chfs_readinode_info *rii,
318 1.1 ahoka struct chfs_tmp_dnode *newtd)
319 1.1 ahoka {
320 1.1 ahoka uint64_t end_ofs = newtd->node->ofs + newtd->node->size;
321 1.1 ahoka struct chfs_tmp_dnode_info *this;
322 1.1 ahoka struct rb_node *node, *prev_node;
323 1.1 ahoka struct chfs_tmp_dnode_info *newtdi;
324 1.1 ahoka
325 1.1 ahoka node = rb_tree_find_node(&rii->tdi_root, &newtd->node->ofs);
326 1.1 ahoka if (node) {
327 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
328 1.1 ahoka while (this->tmpnode->overlapped) {
329 1.1 ahoka prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
330 1.1 ahoka if (!prev_node) {
331 1.1 ahoka this->tmpnode->overlapped = 0;
332 1.1 ahoka break;
333 1.1 ahoka }
334 1.1 ahoka node = prev_node;
335 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
336 1.1 ahoka }
337 1.1 ahoka }
338 1.1 ahoka while (node) {
339 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
340 1.1 ahoka if (this->tmpnode->node->ofs > end_ofs)
341 1.1 ahoka break;
342 1.1 ahoka
343 1.1 ahoka struct chfs_tmp_dnode *tmp_td = this->tmpnode;
344 1.1 ahoka while (tmp_td) {
345 1.1 ahoka if (tmp_td->version == newtd->version) {
346 1.1 ahoka if (!chfs_check_td_node(chmp, tmp_td)) {
347 1.1 ahoka dbg("calling kill td 0\n");
348 1.1 ahoka chfs_kill_td(chmp, newtd);
349 1.1 ahoka return 0;
350 1.1 ahoka } else {
351 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
352 1.1 ahoka chfs_kill_td(chmp, tmp_td);
353 1.1 ahoka chfs_add_tmp_dnode_to_tdi(this, newtd);
354 1.1 ahoka return 0;
355 1.1 ahoka }
356 1.1 ahoka }
357 1.1 ahoka if (tmp_td->version < newtd->version &&
358 1.1 ahoka tmp_td->node->ofs >= newtd->node->ofs &&
359 1.1 ahoka tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
360 1.1 ahoka /* New node entirely overlaps 'this' */
361 1.1 ahoka if (chfs_check_td_node(chmp, newtd)) {
362 1.1 ahoka dbg("calling kill td 2\n");
363 1.1 ahoka chfs_kill_td(chmp, newtd);
364 1.1 ahoka return 0;
365 1.1 ahoka }
366 1.1 ahoka /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
367 1.1 ahoka while (tmp_td && tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
368 1.1 ahoka struct rb_node *next = rb_tree_iterate(&rii->tdi_root, this, RB_DIR_RIGHT);
369 1.1 ahoka struct chfs_tmp_dnode_info *next_tdi = (struct chfs_tmp_dnode_info *)next;
370 1.1 ahoka struct chfs_tmp_dnode *next_td = NULL;
371 1.1 ahoka if (tmp_td->next) {
372 1.1 ahoka next_td = tmp_td->next;
373 1.1 ahoka } else if (next_tdi) {
374 1.1 ahoka next_td = next_tdi->tmpnode;
375 1.1 ahoka }
376 1.1 ahoka if (tmp_td->version < newtd->version) {
377 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
378 1.1 ahoka chfs_kill_td(chmp, tmp_td);
379 1.1 ahoka if (!this->tmpnode) {
380 1.1 ahoka rb_tree_remove_node(&rii->tdi_root, this);
381 1.1 ahoka chfs_kill_tdi(chmp, this);
382 1.1 ahoka this = next_tdi;
383 1.1 ahoka }
384 1.1 ahoka }
385 1.1 ahoka tmp_td = next_td;
386 1.1 ahoka }
387 1.1 ahoka continue;
388 1.1 ahoka }
389 1.1 ahoka if (tmp_td->version > newtd->version &&
390 1.1 ahoka tmp_td->node->ofs <= newtd->node->ofs &&
391 1.1 ahoka tmp_td->node->ofs + tmp_td->node->size >= end_ofs) {
392 1.1 ahoka /* New node entirely overlapped by 'this' */
393 1.1 ahoka if (!chfs_check_td_node(chmp, tmp_td)) {
394 1.2 agc dbg("this version: %llu\n",
395 1.2 agc (unsigned long long)tmp_td->version);
396 1.2 agc dbg("this ofs: %llu, size: %u\n",
397 1.2 agc (unsigned long long)tmp_td->node->ofs,
398 1.2 agc tmp_td->node->size);
399 1.1 ahoka dbg("calling kill td 4\n");
400 1.1 ahoka chfs_kill_td(chmp, newtd);
401 1.1 ahoka return 0;
402 1.1 ahoka }
403 1.1 ahoka /* ... but 'this' was bad. Replace it... */
404 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
405 1.1 ahoka chfs_kill_td(chmp, tmp_td);
406 1.1 ahoka if (!this->tmpnode) {
407 1.1 ahoka rb_tree_remove_node(&rii->tdi_root, this);
408 1.1 ahoka chfs_kill_tdi(chmp, this);
409 1.1 ahoka }
410 1.1 ahoka dbg("calling kill td 5\n");
411 1.1 ahoka chfs_kill_td(chmp, newtd);
412 1.1 ahoka break;
413 1.1 ahoka }
414 1.1 ahoka tmp_td = tmp_td->next;
415 1.1 ahoka }
416 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
417 1.1 ahoka }
418 1.1 ahoka
419 1.1 ahoka newtdi = chfs_alloc_tmp_dnode_info();
420 1.1 ahoka chfs_add_tmp_dnode_to_tdi(newtdi, newtd);
421 1.1 ahoka /* We neither completely obsoleted nor were completely
422 1.1 ahoka obsoleted by an earlier node. Insert into the tree */
423 1.1 ahoka struct chfs_tmp_dnode_info *tmp_tdi = rb_tree_insert_node(&rii->tdi_root, newtdi);
424 1.1 ahoka if (tmp_tdi != newtdi) {
425 1.3 ttoth chfs_remove_tmp_dnode_from_tdi(newtdi, newtd);
426 1.1 ahoka chfs_add_tmp_dnode_to_tdi(tmp_tdi, newtd);
427 1.1 ahoka chfs_kill_tdi(chmp, newtdi);
428 1.1 ahoka }
429 1.1 ahoka
430 1.1 ahoka /* If there's anything behind that overlaps us, note it */
431 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
432 1.1 ahoka if (node) {
433 1.1 ahoka while (1) {
434 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
435 1.1 ahoka if (this->tmpnode->node->ofs + this->tmpnode->node->size > newtd->node->ofs) {
436 1.1 ahoka newtd->overlapped = 1;
437 1.1 ahoka }
438 1.1 ahoka if (!this->tmpnode->overlapped)
439 1.1 ahoka break;
440 1.1 ahoka
441 1.1 ahoka prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
442 1.1 ahoka if (!prev_node) {
443 1.1 ahoka this->tmpnode->overlapped = 0;
444 1.1 ahoka break;
445 1.1 ahoka }
446 1.1 ahoka node = prev_node;
447 1.1 ahoka }
448 1.1 ahoka }
449 1.1 ahoka
450 1.1 ahoka /* If the new node overlaps anything ahead, note it */
451 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
452 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
453 1.1 ahoka while (this && this->tmpnode->node->ofs < end_ofs) {
454 1.1 ahoka this->tmpnode->overlapped = 1;
455 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
456 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
457 1.1 ahoka }
458 1.1 ahoka return 0;
459 1.1 ahoka }
460 1.1 ahoka
461 1.1 ahoka
462 1.1 ahoka /*
463 1.1 ahoka * --------------------
464 1.1 ahoka * frag node operations
465 1.1 ahoka * --------------------
466 1.1 ahoka */
467 1.1 ahoka struct chfs_node_frag *
468 1.1 ahoka new_fragment(struct chfs_full_dnode *fdn, uint32_t ofs, uint32_t size)
469 1.1 ahoka {
470 1.1 ahoka struct chfs_node_frag *newfrag;
471 1.1 ahoka newfrag = chfs_alloc_node_frag();
472 1.1 ahoka if (newfrag) {
473 1.1 ahoka newfrag->ofs = ofs;
474 1.1 ahoka newfrag->size = size;
475 1.1 ahoka newfrag->node = fdn;
476 1.3 ttoth if (newfrag->node) {
477 1.3 ttoth newfrag->node->frags++;
478 1.3 ttoth }
479 1.1 ahoka } else {
480 1.1 ahoka chfs_err("cannot allocate a chfs_node_frag object\n");
481 1.1 ahoka }
482 1.1 ahoka return newfrag;
483 1.1 ahoka }
484 1.1 ahoka
485 1.1 ahoka int
486 1.1 ahoka no_overlapping_node(struct rb_tree *fragtree,
487 1.1 ahoka struct chfs_node_frag *newfrag,
488 1.1 ahoka struct chfs_node_frag *this, uint32_t lastend)
489 1.1 ahoka {
490 1.1 ahoka if (lastend < newfrag->node->ofs) {
491 1.1 ahoka struct chfs_node_frag *holefrag;
492 1.1 ahoka
493 1.1 ahoka holefrag = new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
494 1.1 ahoka if (!holefrag) {
495 1.1 ahoka chfs_free_node_frag(newfrag);
496 1.1 ahoka return ENOMEM;
497 1.1 ahoka }
498 1.1 ahoka
499 1.1 ahoka rb_tree_insert_node(fragtree, holefrag);
500 1.1 ahoka this = holefrag;
501 1.1 ahoka }
502 1.1 ahoka
503 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
504 1.1 ahoka
505 1.1 ahoka return 0;
506 1.1 ahoka }
507 1.1 ahoka
508 1.1 ahoka int
509 1.1 ahoka chfs_add_frag_to_fragtree(struct chfs_mount *chmp,
510 1.1 ahoka struct rb_tree *fragtree,
511 1.1 ahoka struct chfs_node_frag *newfrag)
512 1.1 ahoka {
513 1.1 ahoka struct chfs_node_frag *this;
514 1.1 ahoka uint32_t lastend;
515 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
516 1.1 ahoka
517 1.1 ahoka this = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &newfrag->ofs);
518 1.1 ahoka
519 1.1 ahoka if (this) {
520 1.1 ahoka lastend = this->ofs + this->size;
521 1.1 ahoka } else {
522 1.1 ahoka lastend = 0;
523 1.1 ahoka }
524 1.1 ahoka
525 1.1 ahoka if (lastend <= newfrag->ofs) {
526 1.1 ahoka //dbg("no overlapping node\n");
527 1.1 ahoka if (lastend && (lastend - 1) >> PAGE_SHIFT == newfrag->ofs >> PAGE_SHIFT) {
528 1.1 ahoka if (this->node)
529 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
530 1.1 ahoka CHFS_MARK_REF_NORMAL(newfrag->node->nref);
531 1.1 ahoka }
532 1.1 ahoka return no_overlapping_node(fragtree, newfrag, this, lastend);
533 1.1 ahoka }
534 1.1 ahoka
535 1.1 ahoka if (newfrag->ofs > this->ofs) {
536 1.1 ahoka
537 1.1 ahoka CHFS_MARK_REF_NORMAL(newfrag->node->nref);
538 1.1 ahoka if (this->node)
539 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
540 1.1 ahoka
541 1.1 ahoka if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
542 1.1 ahoka /* newfrag is inside of this */
543 1.1 ahoka //dbg("newfrag is inside of this\n");
544 1.1 ahoka struct chfs_node_frag *newfrag2;
545 1.1 ahoka
546 1.1 ahoka newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
547 1.1 ahoka this->ofs + this->size - newfrag->ofs - newfrag->size);
548 1.1 ahoka if (!newfrag2)
549 1.1 ahoka return ENOMEM;
550 1.1 ahoka
551 1.1 ahoka this->size = newfrag->ofs - this->ofs;
552 1.1 ahoka
553 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
554 1.1 ahoka rb_tree_insert_node(fragtree, newfrag2);
555 1.1 ahoka
556 1.1 ahoka return 0;
557 1.1 ahoka }
558 1.1 ahoka /* newfrag is bottom of this */
559 1.1 ahoka //dbg("newfrag is bottom of this\n");
560 1.1 ahoka this->size = newfrag->ofs - this->ofs;
561 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
562 1.1 ahoka } else {
563 1.1 ahoka /* newfrag start at same point */
564 1.1 ahoka //dbg("newfrag start at same point\n");
565 1.1 ahoka //TODO replace instead of remove and insert
566 1.1 ahoka rb_tree_remove_node(fragtree, this);
567 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
568 1.1 ahoka
569 1.1 ahoka if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
570 1.1 ahoka chfs_obsolete_node_frag(chmp, this);
571 1.1 ahoka } else {
572 1.1 ahoka this->ofs += newfrag->size;
573 1.1 ahoka this->size -= newfrag->size;
574 1.1 ahoka
575 1.1 ahoka rb_tree_insert_node(fragtree, this);
576 1.1 ahoka return 0;
577 1.1 ahoka }
578 1.1 ahoka }
579 1.1 ahoka /* OK, now we have newfrag added in the correct place in the tree, but
580 1.1 ahoka frag_next(newfrag) may be a fragment which is overlapped by it
581 1.1 ahoka */
582 1.1 ahoka while ((this = frag_next(fragtree, newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
583 1.1 ahoka rb_tree_remove_node(fragtree, this);
584 1.1 ahoka chfs_obsolete_node_frag(chmp, this);
585 1.1 ahoka }
586 1.1 ahoka
587 1.1 ahoka if (!this || newfrag->ofs + newfrag->size == this->ofs)
588 1.1 ahoka return 0;
589 1.1 ahoka
590 1.1 ahoka this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
591 1.1 ahoka this->ofs = newfrag->ofs + newfrag->size;
592 1.1 ahoka
593 1.1 ahoka if (this->node)
594 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
595 1.1 ahoka CHFS_MARK_REF_NORMAL(newfrag->node->nref);
596 1.1 ahoka
597 1.1 ahoka return 0;
598 1.1 ahoka }
599 1.1 ahoka
600 1.1 ahoka void
601 1.3 ttoth chfs_remove_frags_of_node(struct chfs_mount *chmp, struct rb_tree *fragtree,
602 1.3 ttoth struct chfs_node_ref *nref)
603 1.3 ttoth {
604 1.3 ttoth KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
605 1.3 ttoth struct chfs_node_frag *this, *next;
606 1.3 ttoth
607 1.3 ttoth this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
608 1.3 ttoth while (this) {
609 1.3 ttoth next = frag_next(fragtree, this);
610 1.3 ttoth if (this->node->nref == nref) {
611 1.3 ttoth rb_tree_remove_node(fragtree, this);
612 1.4 ttoth chfs_free_node_frag(this);
613 1.3 ttoth }
614 1.3 ttoth this = next;
615 1.3 ttoth }
616 1.3 ttoth }
617 1.3 ttoth
618 1.3 ttoth void
619 1.3 ttoth chfs_kill_fragtree(struct chfs_mount *chmp, struct rb_tree *fragtree)
620 1.1 ahoka {
621 1.3 ttoth KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
622 1.1 ahoka struct chfs_node_frag *this, *next;
623 1.1 ahoka //dbg("start\n");
624 1.1 ahoka
625 1.1 ahoka this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
626 1.1 ahoka while (this) {
627 1.1 ahoka next = frag_next(fragtree, this);
628 1.1 ahoka rb_tree_remove_node(fragtree, this);
629 1.3 ttoth chfs_obsolete_node_frag(chmp, this);
630 1.1 ahoka //dbg("one frag killed\n");
631 1.1 ahoka this = next;
632 1.1 ahoka }
633 1.1 ahoka //dbg("end\n");
634 1.1 ahoka }
635 1.1 ahoka
636 1.1 ahoka uint32_t
637 1.1 ahoka chfs_truncate_fragtree(struct chfs_mount *chmp,
638 1.1 ahoka struct rb_tree *fragtree, uint32_t size)
639 1.1 ahoka {
640 1.3 ttoth KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
641 1.1 ahoka struct chfs_node_frag *frag;
642 1.1 ahoka
643 1.1 ahoka dbg("truncate to size: %u\n", size);
644 1.1 ahoka
645 1.1 ahoka frag = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &size);
646 1.1 ahoka
647 1.1 ahoka /* Find the last frag before size and set its new size. */
648 1.1 ahoka if (frag && frag->ofs != size) {
649 1.1 ahoka if (frag->ofs + frag->size > size) {
650 1.1 ahoka frag->size = size - frag->ofs;
651 1.1 ahoka }
652 1.1 ahoka frag = frag_next(fragtree, frag);
653 1.1 ahoka }
654 1.1 ahoka
655 1.1 ahoka /* Delete frags after new size. */
656 1.1 ahoka while (frag && frag->ofs >= size) {
657 1.1 ahoka struct chfs_node_frag *next = frag_next(fragtree, frag);
658 1.1 ahoka
659 1.1 ahoka rb_tree_remove_node(fragtree, frag);
660 1.1 ahoka chfs_obsolete_node_frag(chmp, frag);
661 1.1 ahoka frag = next;
662 1.1 ahoka }
663 1.1 ahoka
664 1.1 ahoka if (size == 0) {
665 1.1 ahoka return 0;
666 1.1 ahoka }
667 1.1 ahoka
668 1.1 ahoka frag = frag_last(fragtree);
669 1.1 ahoka
670 1.1 ahoka if (!frag) {
671 1.1 ahoka return 0;
672 1.1 ahoka }
673 1.1 ahoka
674 1.1 ahoka if (frag->ofs + frag->size < size) {
675 1.1 ahoka return frag->ofs + frag->size;
676 1.1 ahoka }
677 1.1 ahoka
678 1.1 ahoka /* FIXME Should we check the postion of the last node? (PAGE_CACHE size, etc.) */
679 1.1 ahoka if (frag->node && (frag->ofs & (PAGE_SIZE - 1)) == 0) {
680 1.3 ttoth frag->node->nref->nref_offset =
681 1.3 ttoth CHFS_GET_OFS(frag->node->nref->nref_offset) | CHFS_PRISTINE_NODE_MASK;
682 1.1 ahoka }
683 1.1 ahoka
684 1.1 ahoka return size;
685 1.1 ahoka }
686 1.1 ahoka
687 1.1 ahoka void
688 1.1 ahoka chfs_obsolete_node_frag(struct chfs_mount *chmp,
689 1.1 ahoka struct chfs_node_frag *this)
690 1.1 ahoka {
691 1.3 ttoth struct chfs_vnode_cache *vc;
692 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
693 1.1 ahoka if (this->node) {
694 1.3 ttoth KASSERT(this->node->frags != 0);
695 1.1 ahoka this->node->frags--;
696 1.3 ttoth if (this->node->frags == 0) {
697 1.3 ttoth KASSERT(!CHFS_REF_OBSOLETE(this->node->nref));
698 1.3 ttoth mutex_enter(&chmp->chm_lock_vnocache);
699 1.3 ttoth vc = chfs_nref_to_vc(this->node->nref);
700 1.3 ttoth dbg("[MARK] lnr: %u ofs: %u\n", this->node->nref->nref_lnr,
701 1.3 ttoth this->node->nref->nref_offset);
702 1.3 ttoth
703 1.3 ttoth chfs_remove_and_obsolete(chmp, vc, this->node->nref, &vc->dnode);
704 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
705 1.3 ttoth
706 1.1 ahoka chfs_free_full_dnode(this->node);
707 1.1 ahoka } else {
708 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
709 1.1 ahoka }
710 1.1 ahoka }
711 1.1 ahoka chfs_free_node_frag(this);
712 1.1 ahoka }
713 1.1 ahoka
714 1.1 ahoka int
715 1.1 ahoka chfs_add_full_dnode_to_inode(struct chfs_mount *chmp,
716 1.1 ahoka struct chfs_inode *ip,
717 1.1 ahoka struct chfs_full_dnode *fd)
718 1.1 ahoka {
719 1.1 ahoka int ret;
720 1.1 ahoka struct chfs_node_frag *newfrag;
721 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
722 1.1 ahoka
723 1.1 ahoka if (unlikely(!fd->size))
724 1.1 ahoka return 0;
725 1.1 ahoka
726 1.1 ahoka newfrag = new_fragment(fd, fd->ofs, fd->size);
727 1.1 ahoka if (unlikely(!newfrag))
728 1.1 ahoka return ENOMEM;
729 1.1 ahoka
730 1.1 ahoka ret = chfs_add_frag_to_fragtree(chmp, &ip->fragtree, newfrag);
731 1.1 ahoka if (ret)
732 1.1 ahoka return ret;
733 1.1 ahoka
734 1.1 ahoka if (newfrag->ofs & (PAGE_SIZE - 1)) {
735 1.1 ahoka struct chfs_node_frag *prev = frag_prev(&ip->fragtree, newfrag);
736 1.1 ahoka
737 1.1 ahoka CHFS_MARK_REF_NORMAL(fd->nref);
738 1.1 ahoka if (prev->node)
739 1.1 ahoka CHFS_MARK_REF_NORMAL(prev->node->nref);
740 1.1 ahoka }
741 1.1 ahoka
742 1.1 ahoka if ((newfrag->ofs+newfrag->size) & (PAGE_SIZE - 1)) {
743 1.1 ahoka struct chfs_node_frag *next = frag_next(&ip->fragtree, newfrag);
744 1.1 ahoka
745 1.1 ahoka if (next) {
746 1.1 ahoka CHFS_MARK_REF_NORMAL(fd->nref);
747 1.1 ahoka if (next->node)
748 1.1 ahoka CHFS_MARK_REF_NORMAL(next->node->nref);
749 1.1 ahoka }
750 1.1 ahoka }
751 1.1 ahoka
752 1.1 ahoka return 0;
753 1.1 ahoka }
754 1.1 ahoka
755 1.1 ahoka
756 1.1 ahoka /*
757 1.1 ahoka * -----------------------
758 1.1 ahoka * general node operations
759 1.1 ahoka * -----------------------
760 1.1 ahoka */
761 1.1 ahoka /* get tmp nodes of an inode */
762 1.1 ahoka int
763 1.1 ahoka chfs_get_data_nodes(struct chfs_mount *chmp,
764 1.1 ahoka struct chfs_inode *ip,
765 1.1 ahoka struct chfs_readinode_info *rii)
766 1.1 ahoka {
767 1.1 ahoka uint32_t crc;
768 1.1 ahoka int err;
769 1.1 ahoka size_t len, retlen;
770 1.1 ahoka struct chfs_node_ref *nref;
771 1.1 ahoka struct chfs_flash_data_node *dnode;
772 1.1 ahoka struct chfs_tmp_dnode *td;
773 1.1 ahoka char* buf;
774 1.1 ahoka
775 1.1 ahoka len = sizeof(struct chfs_flash_data_node);
776 1.1 ahoka buf = kmem_alloc(len, KM_SLEEP);
777 1.1 ahoka
778 1.1 ahoka dnode = kmem_alloc(len, KM_SLEEP);
779 1.1 ahoka if (!dnode)
780 1.1 ahoka return ENOMEM;
781 1.1 ahoka
782 1.1 ahoka nref = chfs_first_valid_data_ref(ip->chvc->dnode);
783 1.1 ahoka
784 1.1 ahoka rii->highest_version = ip->chvc->highest_version;
785 1.1 ahoka
786 1.1 ahoka while(nref && (struct chfs_vnode_cache *)nref != ip->chvc) {
787 1.1 ahoka err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), len, &retlen);
788 1.1 ahoka if (err || len != retlen)
789 1.1 ahoka goto out;
790 1.1 ahoka dnode = (struct chfs_flash_data_node*)buf;
791 1.1 ahoka
792 1.1 ahoka //check header crc
793 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
794 1.1 ahoka if (crc != le32toh(dnode->hdr_crc)) {
795 1.1 ahoka chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
796 1.1 ahoka goto cont;
797 1.1 ahoka }
798 1.1 ahoka //check header magic bitmask
799 1.1 ahoka if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
800 1.1 ahoka chfs_err("Wrong magic bitmask.\n");
801 1.1 ahoka goto cont;
802 1.1 ahoka }
803 1.1 ahoka //check node crc
804 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
805 1.1 ahoka if (crc != le32toh(dnode->node_crc)) {
806 1.1 ahoka chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
807 1.1 ahoka goto cont;
808 1.1 ahoka }
809 1.1 ahoka td = chfs_alloc_tmp_dnode();
810 1.1 ahoka if (!td) {
811 1.1 ahoka chfs_err("Can't allocate tmp dnode info.\n");
812 1.1 ahoka err = ENOMEM;
813 1.1 ahoka goto out;
814 1.1 ahoka }
815 1.1 ahoka /* We don't check data crc here, just add nodes to tmp frag tree, because
816 1.1 ahoka * we don't want to check nodes which have been overlapped by a new node
817 1.1 ahoka * with a higher version number.
818 1.1 ahoka */
819 1.1 ahoka td->node = chfs_alloc_full_dnode();
820 1.1 ahoka if (!td->node) {
821 1.1 ahoka chfs_err("Can't allocate full dnode info.\n");
822 1.1 ahoka err = ENOMEM;
823 1.1 ahoka goto out_tmp_dnode;
824 1.1 ahoka }
825 1.1 ahoka td->version = le64toh(dnode->version);
826 1.1 ahoka td->node->ofs = le64toh(dnode->offset);
827 1.1 ahoka td->data_crc = le32toh(dnode->data_crc);
828 1.1 ahoka td->node->nref = nref;
829 1.1 ahoka td->node->size = le32toh(dnode->data_length);
830 1.3 ttoth td->node->frags = 1;
831 1.1 ahoka td->overlapped = 0;
832 1.1 ahoka
833 1.1 ahoka if (td->version > rii->highest_version) {
834 1.1 ahoka rii->highest_version = td->version;
835 1.1 ahoka }
836 1.1 ahoka
837 1.1 ahoka err = chfs_add_tmp_dnode_to_tree(chmp, rii, td);
838 1.1 ahoka if (err)
839 1.1 ahoka goto out_full_dnode;
840 1.1 ahoka
841 1.1 ahoka cont:
842 1.1 ahoka nref = chfs_first_valid_data_ref(nref->nref_next);
843 1.1 ahoka }
844 1.1 ahoka
845 1.1 ahoka ip->chvc->highest_version = rii->highest_version;
846 1.1 ahoka return 0;
847 1.1 ahoka
848 1.1 ahoka /* Exit points */
849 1.1 ahoka out_full_dnode:
850 1.1 ahoka chfs_free_full_dnode(td->node);
851 1.1 ahoka out_tmp_dnode:
852 1.1 ahoka chfs_free_tmp_dnode(td);
853 1.1 ahoka out:
854 1.1 ahoka kmem_free(buf, len);
855 1.1 ahoka kmem_free(dnode, len);
856 1.1 ahoka return err;
857 1.1 ahoka }
858 1.1 ahoka
859 1.1 ahoka
860 1.1 ahoka /* Build final normal fragtree from tdi tree. */
861 1.1 ahoka int
862 1.1 ahoka chfs_build_fragtree(struct chfs_mount *chmp, struct chfs_inode *ip,
863 1.1 ahoka struct chfs_readinode_info *rii)
864 1.1 ahoka {
865 1.1 ahoka struct chfs_tmp_dnode_info *pen, *last, *this;
866 1.1 ahoka struct rb_tree ver_tree; /* version tree */
867 1.1 ahoka uint64_t high_ver = 0;
868 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
869 1.1 ahoka
870 1.1 ahoka rb_tree_init(&ver_tree, &tmp_node_rbtree_ops);
871 1.1 ahoka
872 1.1 ahoka if (rii->mdata_tn) {
873 1.1 ahoka high_ver = rii->mdata_tn->tmpnode->version;
874 1.1 ahoka rii->latest_ref = rii->mdata_tn->tmpnode->node->nref;
875 1.1 ahoka }
876 1.1 ahoka
877 1.1 ahoka pen = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&rii->tdi_root);
878 1.1 ahoka
879 1.1 ahoka while((last = pen)) {
880 1.1 ahoka pen = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&rii->tdi_root, last, RB_DIR_LEFT);
881 1.1 ahoka
882 1.1 ahoka rb_tree_remove_node(&rii->tdi_root, last);
883 1.1 ahoka rb_tree_insert_node(&ver_tree, last);
884 1.1 ahoka
885 1.1 ahoka if (last->tmpnode->overlapped) {
886 1.1 ahoka if (pen)
887 1.1 ahoka continue;
888 1.1 ahoka
889 1.1 ahoka last->tmpnode->overlapped = 0;
890 1.1 ahoka }
891 1.1 ahoka
892 1.1 ahoka this = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&ver_tree);
893 1.1 ahoka
894 1.1 ahoka while (this) {
895 1.1 ahoka struct chfs_tmp_dnode_info *vers_next;
896 1.1 ahoka int ret;
897 1.1 ahoka
898 1.1 ahoka vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
899 1.1 ahoka rb_tree_remove_node(&ver_tree, this);
900 1.1 ahoka
901 1.1 ahoka struct chfs_tmp_dnode *tmp_td = this->tmpnode;
902 1.1 ahoka while (tmp_td) {
903 1.1 ahoka struct chfs_tmp_dnode *next_td = tmp_td->next;
904 1.1 ahoka
905 1.1 ahoka if (chfs_check_td_node(chmp, tmp_td)) {
906 1.1 ahoka if (next_td) {
907 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
908 1.3 ttoth chfs_kill_td(chmp, tmp_td);
909 1.1 ahoka } else {
910 1.1 ahoka break;
911 1.1 ahoka }
912 1.1 ahoka } else {
913 1.1 ahoka if (tmp_td->version > high_ver) {
914 1.1 ahoka high_ver = tmp_td->version;
915 1.2 agc dbg("highver: %llu\n", (unsigned long long)high_ver);
916 1.1 ahoka rii->latest_ref = tmp_td->node->nref;
917 1.1 ahoka }
918 1.1 ahoka
919 1.1 ahoka ret = chfs_add_full_dnode_to_inode(chmp, ip, tmp_td->node);
920 1.1 ahoka if (ret) {
921 1.1 ahoka while (1) {
922 1.1 ahoka vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
923 1.1 ahoka while (tmp_td) {
924 1.1 ahoka next_td = tmp_td->next;
925 1.3 ttoth
926 1.1 ahoka chfs_free_full_dnode(tmp_td->node);
927 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
928 1.3 ttoth chfs_kill_td(chmp, tmp_td);
929 1.1 ahoka tmp_td = next_td;
930 1.1 ahoka }
931 1.1 ahoka chfs_free_tmp_dnode_info(this);
932 1.1 ahoka this = vers_next;
933 1.1 ahoka if (!this)
934 1.1 ahoka break;
935 1.1 ahoka rb_tree_remove_node(&ver_tree, vers_next);
936 1.3 ttoth chfs_kill_tdi(chmp, vers_next);
937 1.1 ahoka }
938 1.1 ahoka return ret;
939 1.1 ahoka }
940 1.1 ahoka
941 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
942 1.1 ahoka chfs_free_tmp_dnode(tmp_td);
943 1.3 ttoth // shouldn't obsolete tmp_td here,
944 1.3 ttoth // because tmp_td->node was added to the inode
945 1.1 ahoka }
946 1.1 ahoka tmp_td = next_td;
947 1.1 ahoka }
948 1.1 ahoka chfs_kill_tdi(chmp, this);
949 1.1 ahoka this = vers_next;
950 1.1 ahoka }
951 1.1 ahoka }
952 1.1 ahoka
953 1.1 ahoka return 0;
954 1.1 ahoka }
955 1.1 ahoka
956 1.1 ahoka int chfs_read_inode(struct chfs_mount *chmp, struct chfs_inode *ip)
957 1.1 ahoka {
958 1.1 ahoka struct chfs_vnode_cache *vc = ip->chvc;
959 1.1 ahoka
960 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
961 1.1 ahoka
962 1.1 ahoka retry:
963 1.3 ttoth mutex_enter(&chmp->chm_lock_vnocache);
964 1.1 ahoka switch (vc->state) {
965 1.1 ahoka case VNO_STATE_UNCHECKED:
966 1.1 ahoka case VNO_STATE_CHECKEDABSENT:
967 1.1 ahoka vc->state = VNO_STATE_READING;
968 1.1 ahoka break;
969 1.1 ahoka case VNO_STATE_CHECKING:
970 1.1 ahoka case VNO_STATE_GC:
971 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
972 1.1 ahoka //sleep_on_spinunlock(&chmp->chm_lock_vnocache);
973 1.1 ahoka //KASSERT(!mutex_owned(&chmp->chm_lock_vnocache));
974 1.1 ahoka goto retry;
975 1.1 ahoka break;
976 1.1 ahoka case VNO_STATE_PRESENT:
977 1.1 ahoka case VNO_STATE_READING:
978 1.2 agc chfs_err("Reading inode #%llu in state %d!\n",
979 1.2 agc (unsigned long long)vc->vno, vc->state);
980 1.2 agc chfs_err("wants to read a nonexistent ino %llu\n",
981 1.2 agc (unsigned long long)vc->vno);
982 1.1 ahoka return ENOENT;
983 1.1 ahoka default:
984 1.1 ahoka panic("BUG() Bad vno cache state.");
985 1.1 ahoka }
986 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
987 1.1 ahoka
988 1.1 ahoka return chfs_read_inode_internal(chmp, ip);
989 1.1 ahoka }
990 1.1 ahoka
991 1.1 ahoka /*
992 1.1 ahoka * Read inode frags.
993 1.1 ahoka * Firstly get tmp nodes,
994 1.1 ahoka * secondly build fragtree from those.
995 1.1 ahoka */
996 1.1 ahoka int
997 1.1 ahoka chfs_read_inode_internal(struct chfs_mount *chmp, struct chfs_inode *ip)
998 1.1 ahoka {
999 1.1 ahoka int err;
1000 1.1 ahoka size_t len, retlen;
1001 1.1 ahoka char* buf;
1002 1.1 ahoka struct chfs_readinode_info rii;
1003 1.1 ahoka struct chfs_flash_vnode *fvnode;
1004 1.1 ahoka
1005 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
1006 1.1 ahoka
1007 1.1 ahoka len = sizeof(*fvnode);
1008 1.1 ahoka
1009 1.1 ahoka memset(&rii, 0, sizeof(rii));
1010 1.1 ahoka
1011 1.1 ahoka rb_tree_init(&rii.tdi_root, &tmp_node_rbtree_ops);
1012 1.1 ahoka
1013 1.1 ahoka /* build up a temp node frag tree */
1014 1.1 ahoka err = chfs_get_data_nodes(chmp, ip, &rii);
1015 1.1 ahoka if (err) {
1016 1.1 ahoka if (ip->chvc->state == VNO_STATE_READING)
1017 1.1 ahoka ip->chvc->state = VNO_STATE_CHECKEDABSENT;
1018 1.1 ahoka /* FIXME Should we kill fragtree or something here? */
1019 1.1 ahoka return err;
1020 1.1 ahoka }
1021 1.1 ahoka
1022 1.1 ahoka rb_tree_init(&ip->fragtree, &frag_rbtree_ops);
1023 1.1 ahoka /*
1024 1.1 ahoka * build fragtree from temp nodes
1025 1.1 ahoka */
1026 1.1 ahoka err = chfs_build_fragtree(chmp, ip, &rii);
1027 1.1 ahoka if (err) {
1028 1.1 ahoka if (ip->chvc->state == VNO_STATE_READING)
1029 1.1 ahoka ip->chvc->state = VNO_STATE_CHECKEDABSENT;
1030 1.1 ahoka /* FIXME Should we kill fragtree or something here? */
1031 1.1 ahoka return err;
1032 1.1 ahoka }
1033 1.1 ahoka
1034 1.1 ahoka if (!rii.latest_ref) {
1035 1.1 ahoka return 0;
1036 1.1 ahoka }
1037 1.1 ahoka
1038 1.1 ahoka buf = kmem_alloc(len, KM_SLEEP);
1039 1.1 ahoka if (!buf)
1040 1.1 ahoka return ENOMEM;
1041 1.1 ahoka
1042 1.1 ahoka /*
1043 1.1 ahoka * set inode size from chvc->v
1044 1.1 ahoka */
1045 1.1 ahoka err = chfs_read_leb(chmp, ip->chvc->v->nref_lnr, buf, CHFS_GET_OFS(ip->chvc->v->nref_offset), len, &retlen);
1046 1.1 ahoka if (err || retlen != len) {
1047 1.1 ahoka kmem_free(buf, len);
1048 1.1 ahoka return err?err:EIO;
1049 1.1 ahoka }
1050 1.1 ahoka
1051 1.1 ahoka fvnode = (struct chfs_flash_vnode*)buf;
1052 1.1 ahoka
1053 1.1 ahoka dbg("set size from v: %u\n", fvnode->dn_size);
1054 1.1 ahoka chfs_set_vnode_size(ITOV(ip), fvnode->dn_size);
1055 1.1 ahoka uint32_t retsize = chfs_truncate_fragtree(chmp, &ip->fragtree, fvnode->dn_size);
1056 1.1 ahoka if (retsize != fvnode->dn_size) {
1057 1.1 ahoka dbg("Truncating failed. It is %u instead of %u\n", retsize, fvnode->dn_size);
1058 1.1 ahoka }
1059 1.1 ahoka
1060 1.1 ahoka kmem_free(buf, len);
1061 1.1 ahoka
1062 1.1 ahoka if (ip->chvc->state == VNO_STATE_READING) {
1063 1.1 ahoka ip->chvc->state = VNO_STATE_PRESENT;
1064 1.1 ahoka }
1065 1.1 ahoka
1066 1.1 ahoka return 0;
1067 1.1 ahoka }
1068 1.1 ahoka
1069 1.1 ahoka int
1070 1.1 ahoka chfs_read_data(struct chfs_mount* chmp, struct vnode *vp,
1071 1.1 ahoka struct buf *bp)
1072 1.1 ahoka {
1073 1.1 ahoka off_t ofs;
1074 1.1 ahoka struct chfs_node_frag *frag;
1075 1.1 ahoka char * buf;
1076 1.1 ahoka int err = 0;
1077 1.1 ahoka size_t size, retlen;
1078 1.1 ahoka uint32_t crc;
1079 1.1 ahoka struct chfs_inode *ip = VTOI(vp);
1080 1.1 ahoka struct chfs_flash_data_node *dnode;
1081 1.1 ahoka struct chfs_node_ref *nref;
1082 1.1 ahoka
1083 1.1 ahoka memset(bp->b_data, 0, bp->b_bcount);
1084 1.1 ahoka
1085 1.1 ahoka ofs = bp->b_blkno * PAGE_SIZE;
1086 1.1 ahoka frag = (struct chfs_node_frag *)rb_tree_find_node_leq(&ip->fragtree, &ofs);
1087 1.1 ahoka
1088 1.1 ahoka if (!frag || frag->ofs > ofs || frag->ofs + frag->size <= ofs) {
1089 1.1 ahoka dbg("not found in frag tree\n");
1090 1.1 ahoka return 0;
1091 1.1 ahoka }
1092 1.1 ahoka
1093 1.1 ahoka if (!frag->node) {
1094 1.1 ahoka dbg("no node in frag\n");
1095 1.1 ahoka return 0;
1096 1.1 ahoka }
1097 1.1 ahoka
1098 1.1 ahoka nref = frag->node->nref;
1099 1.1 ahoka
1100 1.1 ahoka size = sizeof(*dnode) + frag->size;
1101 1.1 ahoka
1102 1.1 ahoka buf = kmem_alloc(size, KM_SLEEP);
1103 1.1 ahoka
1104 1.1 ahoka dbg("reading from lnr: %u, offset: %u, size: %zu\n", nref->nref_lnr, CHFS_GET_OFS(nref->nref_offset), size);
1105 1.1 ahoka err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), size, &retlen);
1106 1.1 ahoka if (err) {
1107 1.1 ahoka chfs_err("error after reading: %d\n", err);
1108 1.1 ahoka goto out;
1109 1.1 ahoka }
1110 1.1 ahoka if (retlen != size) {
1111 1.1 ahoka chfs_err("retlen: %zu != size: %zu\n", retlen, size);
1112 1.1 ahoka err = EIO;
1113 1.1 ahoka goto out;
1114 1.1 ahoka }
1115 1.1 ahoka
1116 1.1 ahoka dnode = (struct chfs_flash_data_node *)buf;
1117 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
1118 1.1 ahoka if (crc != le32toh(dnode->hdr_crc)) {
1119 1.1 ahoka chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
1120 1.1 ahoka err = EIO;
1121 1.1 ahoka goto out;
1122 1.1 ahoka }
1123 1.1 ahoka //check header magic bitmask
1124 1.1 ahoka if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
1125 1.1 ahoka chfs_err("Wrong magic bitmask.\n");
1126 1.1 ahoka err = EIO;
1127 1.1 ahoka goto out;
1128 1.1 ahoka }
1129 1.1 ahoka //check node crc
1130 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
1131 1.1 ahoka if (crc != le32toh(dnode->node_crc)) {
1132 1.1 ahoka chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
1133 1.1 ahoka err = EIO;
1134 1.1 ahoka goto out;
1135 1.1 ahoka }
1136 1.1 ahoka crc = crc32(0, (uint8_t *)dnode->data, dnode->data_length);
1137 1.1 ahoka if (crc != le32toh(dnode->data_crc)) {
1138 1.1 ahoka chfs_err("Data CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->data_crc));
1139 1.1 ahoka err = EIO;
1140 1.1 ahoka goto out;
1141 1.1 ahoka }
1142 1.1 ahoka
1143 1.1 ahoka memcpy(bp->b_data, dnode->data, dnode->data_length);
1144 1.1 ahoka bp->b_resid = 0;
1145 1.1 ahoka
1146 1.1 ahoka out:
1147 1.1 ahoka kmem_free(buf, size);
1148 1.1 ahoka return err;
1149 1.1 ahoka }
1150