chfs_readinode.c revision 1.5.2.3 1 1.5.2.3 tls /* $NetBSD: chfs_readinode.c,v 1.5.2.3 2014/08/20 00:04:44 tls Exp $ */
2 1.1 ahoka
3 1.1 ahoka /*-
4 1.1 ahoka * Copyright (c) 2010 Department of Software Engineering,
5 1.1 ahoka * University of Szeged, Hungary
6 1.1 ahoka * Copyright (C) 2010 David Tengeri <dtengeri (at) inf.u-szeged.hu>
7 1.1 ahoka * Copyright (C) 2010 Tamas Toth <ttoth (at) inf.u-szeged.hu>
8 1.1 ahoka * Copyright (C) 2010 Adam Hoka <ahoka (at) NetBSD.org>
9 1.1 ahoka * All rights reserved.
10 1.1 ahoka *
11 1.1 ahoka * This code is derived from software contributed to The NetBSD Foundation
12 1.1 ahoka * by the Department of Software Engineering, University of Szeged, Hungary
13 1.1 ahoka *
14 1.1 ahoka * Redistribution and use in source and binary forms, with or without
15 1.1 ahoka * modification, are permitted provided that the following conditions
16 1.1 ahoka * are met:
17 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
18 1.1 ahoka * notice, this list of conditions and the following disclaimer.
19 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
20 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
21 1.1 ahoka * documentation and/or other materials provided with the distribution.
22 1.1 ahoka *
23 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 1.1 ahoka * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 1.1 ahoka * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 1.1 ahoka * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 1.1 ahoka * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 1.1 ahoka * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 1.1 ahoka * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 1.1 ahoka * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 ahoka * SUCH DAMAGE.
34 1.1 ahoka */
35 1.1 ahoka
36 1.1 ahoka #include <sys/buf.h>
37 1.1 ahoka
38 1.1 ahoka #include "chfs.h"
39 1.1 ahoka
40 1.1 ahoka /* tmp node operations */
41 1.1 ahoka int chfs_check_td_data(struct chfs_mount *,
42 1.1 ahoka struct chfs_tmp_dnode *);
43 1.1 ahoka int chfs_check_td_node(struct chfs_mount *,
44 1.1 ahoka struct chfs_tmp_dnode *);
45 1.1 ahoka struct chfs_node_ref *chfs_first_valid_data_ref(struct chfs_node_ref *);
46 1.1 ahoka int chfs_add_tmp_dnode_to_tree(struct chfs_mount *,
47 1.1 ahoka struct chfs_readinode_info *,
48 1.1 ahoka struct chfs_tmp_dnode *);
49 1.1 ahoka void chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *,
50 1.1 ahoka struct chfs_tmp_dnode *);
51 1.1 ahoka void chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *,
52 1.1 ahoka struct chfs_tmp_dnode *);
53 1.1 ahoka static void chfs_kill_td(struct chfs_mount *,
54 1.1 ahoka struct chfs_tmp_dnode *);
55 1.1 ahoka static void chfs_kill_tdi(struct chfs_mount *,
56 1.1 ahoka struct chfs_tmp_dnode_info *);
57 1.1 ahoka /* frag node operations */
58 1.1 ahoka struct chfs_node_frag *new_fragment(struct chfs_full_dnode *,
59 1.1 ahoka uint32_t,
60 1.1 ahoka uint32_t);
61 1.1 ahoka int no_overlapping_node(struct rb_tree *, struct chfs_node_frag *,
62 1.1 ahoka struct chfs_node_frag *, uint32_t);
63 1.1 ahoka int chfs_add_frag_to_fragtree(struct chfs_mount *,
64 1.1 ahoka struct rb_tree *,
65 1.1 ahoka struct chfs_node_frag *);
66 1.1 ahoka void chfs_obsolete_node_frag(struct chfs_mount *,
67 1.1 ahoka struct chfs_node_frag *);
68 1.1 ahoka /* general node operations */
69 1.1 ahoka int chfs_get_data_nodes(struct chfs_mount *,
70 1.1 ahoka struct chfs_inode *,
71 1.1 ahoka struct chfs_readinode_info *);
72 1.1 ahoka int chfs_build_fragtree(struct chfs_mount *,
73 1.1 ahoka struct chfs_inode *,
74 1.1 ahoka struct chfs_readinode_info *);
75 1.1 ahoka
76 1.1 ahoka
77 1.1 ahoka
78 1.5.2.1 tls /* tmp node rbtree operations */
79 1.1 ahoka static signed int
80 1.1 ahoka tmp_node_compare_nodes(void *ctx, const void *n1, const void *n2)
81 1.1 ahoka {
82 1.1 ahoka const struct chfs_tmp_dnode_info *tdi1 = n1;
83 1.1 ahoka const struct chfs_tmp_dnode_info *tdi2 = n2;
84 1.1 ahoka
85 1.1 ahoka return (tdi1->tmpnode->node->ofs - tdi2->tmpnode->node->ofs);
86 1.1 ahoka }
87 1.1 ahoka
88 1.1 ahoka static signed int
89 1.1 ahoka tmp_node_compare_key(void *ctx, const void *n, const void *key)
90 1.1 ahoka {
91 1.1 ahoka const struct chfs_tmp_dnode_info *tdi = n;
92 1.1 ahoka uint64_t ofs = *(const uint64_t *)key;
93 1.1 ahoka
94 1.1 ahoka return (tdi->tmpnode->node->ofs - ofs);
95 1.1 ahoka }
96 1.1 ahoka
97 1.1 ahoka const rb_tree_ops_t tmp_node_rbtree_ops = {
98 1.1 ahoka .rbto_compare_nodes = tmp_node_compare_nodes,
99 1.1 ahoka .rbto_compare_key = tmp_node_compare_key,
100 1.1 ahoka .rbto_node_offset = offsetof(struct chfs_tmp_dnode_info, rb_node),
101 1.1 ahoka .rbto_context = NULL
102 1.1 ahoka };
103 1.1 ahoka
104 1.1 ahoka
105 1.5.2.1 tls /* frag node rbtree operations */
106 1.1 ahoka static signed int
107 1.1 ahoka frag_compare_nodes(void *ctx, const void *n1, const void *n2)
108 1.1 ahoka {
109 1.1 ahoka const struct chfs_node_frag *frag1 = n1;
110 1.1 ahoka const struct chfs_node_frag *frag2 = n2;
111 1.1 ahoka
112 1.1 ahoka return (frag1->ofs - frag2->ofs);
113 1.1 ahoka }
114 1.1 ahoka
115 1.1 ahoka static signed int
116 1.1 ahoka frag_compare_key(void *ctx, const void *n, const void *key)
117 1.1 ahoka {
118 1.1 ahoka const struct chfs_node_frag *frag = n;
119 1.1 ahoka uint64_t ofs = *(const uint64_t *)key;
120 1.1 ahoka
121 1.1 ahoka return (frag->ofs - ofs);
122 1.1 ahoka }
123 1.1 ahoka
124 1.1 ahoka const rb_tree_ops_t frag_rbtree_ops = {
125 1.1 ahoka .rbto_compare_nodes = frag_compare_nodes,
126 1.1 ahoka .rbto_compare_key = frag_compare_key,
127 1.1 ahoka .rbto_node_offset = offsetof(struct chfs_node_frag, rb_node),
128 1.1 ahoka .rbto_context = NULL
129 1.1 ahoka };
130 1.1 ahoka
131 1.1 ahoka
132 1.1 ahoka /*
133 1.5.2.1 tls * chfs_check_td_data - checks the data CRC of the node
134 1.1 ahoka *
135 1.1 ahoka * Returns: 0 - if everything OK;
136 1.1 ahoka * 1 - if CRC is incorrect;
137 1.1 ahoka * 2 - else;
138 1.1 ahoka * error code if an error occured.
139 1.1 ahoka */
140 1.1 ahoka int
141 1.1 ahoka chfs_check_td_data(struct chfs_mount *chmp,
142 1.1 ahoka struct chfs_tmp_dnode *td)
143 1.1 ahoka {
144 1.1 ahoka int err;
145 1.1 ahoka size_t retlen, len, totlen;
146 1.1 ahoka uint32_t crc;
147 1.1 ahoka uint64_t ofs;
148 1.1 ahoka char *buf;
149 1.1 ahoka struct chfs_node_ref *nref = td->node->nref;
150 1.1 ahoka
151 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
152 1.1 ahoka KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
153 1.1 ahoka
154 1.1 ahoka ofs = CHFS_GET_OFS(nref->nref_offset) + sizeof(struct chfs_flash_data_node);
155 1.1 ahoka len = td->node->size;
156 1.1 ahoka if (!len)
157 1.1 ahoka return 0;
158 1.1 ahoka
159 1.5.2.1 tls /* Read data. */
160 1.1 ahoka buf = kmem_alloc(len, KM_SLEEP);
161 1.1 ahoka if (!buf) {
162 1.1 ahoka dbg("allocating error\n");
163 1.1 ahoka return 2;
164 1.1 ahoka }
165 1.1 ahoka err = chfs_read_leb(chmp, nref->nref_lnr, buf, ofs, len, &retlen);
166 1.1 ahoka if (err) {
167 1.5.2.2 tls dbg("error while reading: %d\n", err);
168 1.1 ahoka err = 2;
169 1.1 ahoka goto out;
170 1.1 ahoka }
171 1.1 ahoka
172 1.5.2.1 tls /* Check crc. */
173 1.1 ahoka if (len != retlen) {
174 1.1 ahoka dbg("len:%zu, retlen:%zu\n", len, retlen);
175 1.1 ahoka err = 2;
176 1.1 ahoka goto out;
177 1.1 ahoka }
178 1.1 ahoka crc = crc32(0, (uint8_t *)buf, len);
179 1.1 ahoka
180 1.1 ahoka if (crc != td->data_crc) {
181 1.1 ahoka dbg("crc failed, calculated: 0x%x, orig: 0x%x\n", crc, td->data_crc);
182 1.1 ahoka kmem_free(buf, len);
183 1.1 ahoka return 1;
184 1.1 ahoka }
185 1.1 ahoka
186 1.5.2.1 tls /* Correct sizes. */
187 1.3 ttoth CHFS_MARK_REF_NORMAL(nref);
188 1.1 ahoka totlen = CHFS_PAD(sizeof(struct chfs_flash_data_node) + len);
189 1.1 ahoka
190 1.1 ahoka mutex_enter(&chmp->chm_lock_sizes);
191 1.1 ahoka chfs_change_size_unchecked(chmp, &chmp->chm_blocks[nref->nref_lnr], -totlen);
192 1.1 ahoka chfs_change_size_used(chmp, &chmp->chm_blocks[nref->nref_lnr], totlen);
193 1.1 ahoka mutex_exit(&chmp->chm_lock_sizes);
194 1.1 ahoka KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
195 1.1 ahoka
196 1.1 ahoka err = 0;
197 1.1 ahoka out:
198 1.1 ahoka kmem_free(buf, len);
199 1.1 ahoka return err;
200 1.1 ahoka }
201 1.1 ahoka
202 1.5.2.1 tls /* chfs_check_td_node - checks a temporary node */
203 1.1 ahoka int
204 1.1 ahoka chfs_check_td_node(struct chfs_mount *chmp, struct chfs_tmp_dnode *td)
205 1.1 ahoka {
206 1.1 ahoka int ret;
207 1.1 ahoka
208 1.1 ahoka if (CHFS_REF_FLAGS(td->node->nref) != CHFS_UNCHECKED_NODE_MASK)
209 1.1 ahoka return 0;
210 1.1 ahoka
211 1.1 ahoka ret = chfs_check_td_data(chmp, td);
212 1.1 ahoka return ret;
213 1.1 ahoka }
214 1.1 ahoka
215 1.5.2.1 tls /*
216 1.5.2.1 tls * chfs_first_valid_data_ref -
217 1.5.2.1 tls * returns the first valid nref after the given nref
218 1.5.2.1 tls */
219 1.1 ahoka struct chfs_node_ref *
220 1.1 ahoka chfs_first_valid_data_ref(struct chfs_node_ref *nref)
221 1.1 ahoka {
222 1.1 ahoka while (nref) {
223 1.1 ahoka if (!CHFS_REF_OBSOLETE(nref)) {
224 1.1 ahoka #ifdef DGB_MSG_GC
225 1.1 ahoka if (nref->nref_lnr == REF_EMPTY_NODE) {
226 1.1 ahoka dbg("FIRST VALID IS EMPTY!\n");
227 1.1 ahoka }
228 1.1 ahoka #endif
229 1.1 ahoka return nref;
230 1.1 ahoka }
231 1.1 ahoka
232 1.1 ahoka if (nref->nref_next) {
233 1.1 ahoka nref = nref->nref_next;
234 1.1 ahoka } else
235 1.1 ahoka break;
236 1.1 ahoka }
237 1.1 ahoka return NULL;
238 1.1 ahoka }
239 1.1 ahoka
240 1.5.2.1 tls /*
241 1.5.2.1 tls * chfs_add_tmp_dnode_to_tdi -
242 1.5.2.1 tls * adds a temporary node to a temporary node descriptor
243 1.5.2.1 tls */
244 1.1 ahoka void
245 1.1 ahoka chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *tdi,
246 1.1 ahoka struct chfs_tmp_dnode *td)
247 1.1 ahoka {
248 1.1 ahoka if (!tdi->tmpnode) {
249 1.5.2.1 tls /* The chain is empty. */
250 1.1 ahoka tdi->tmpnode = td;
251 1.1 ahoka } else {
252 1.5.2.1 tls /* Insert into the chain. */
253 1.1 ahoka struct chfs_tmp_dnode *tmp = tdi->tmpnode;
254 1.1 ahoka while (tmp->next) {
255 1.1 ahoka tmp = tmp->next;
256 1.1 ahoka }
257 1.1 ahoka tmp->next = td;
258 1.1 ahoka }
259 1.1 ahoka }
260 1.1 ahoka
261 1.5.2.1 tls /*
262 1.5.2.1 tls * chfs_remove_tmp_dnode_from_tdi -
263 1.5.2.1 tls * removes a temporary node from its descriptor
264 1.5.2.1 tls */
265 1.1 ahoka void
266 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *tdi,
267 1.1 ahoka struct chfs_tmp_dnode *td)
268 1.1 ahoka {
269 1.1 ahoka if (tdi->tmpnode == td) {
270 1.5.2.1 tls /* It's the first in the chain. */
271 1.1 ahoka tdi->tmpnode = tdi->tmpnode->next;
272 1.1 ahoka } else {
273 1.5.2.1 tls /* Remove from the middle of the chain. */
274 1.1 ahoka struct chfs_tmp_dnode *tmp = tdi->tmpnode->next;
275 1.1 ahoka while (tmp->next && tmp->next != td) {
276 1.1 ahoka tmp = tmp->next;
277 1.1 ahoka }
278 1.1 ahoka if (tmp->next) {
279 1.1 ahoka tmp->next = td->next;
280 1.1 ahoka }
281 1.1 ahoka }
282 1.1 ahoka }
283 1.1 ahoka
284 1.5.2.1 tls /* chfs_kill_td - removes all components of a temporary node */
285 1.1 ahoka static void
286 1.1 ahoka chfs_kill_td(struct chfs_mount *chmp,
287 1.1 ahoka struct chfs_tmp_dnode *td)
288 1.1 ahoka {
289 1.3 ttoth struct chfs_vnode_cache *vc;
290 1.3 ttoth if (td->node) {
291 1.3 ttoth mutex_enter(&chmp->chm_lock_vnocache);
292 1.5.2.1 tls /* Remove the node from the vnode cache's data node chain. */
293 1.3 ttoth vc = chfs_nref_to_vc(td->node->nref);
294 1.3 ttoth chfs_remove_and_obsolete(chmp, vc, td->node->nref, &vc->dnode);
295 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
296 1.1 ahoka }
297 1.1 ahoka
298 1.1 ahoka chfs_free_tmp_dnode(td);
299 1.1 ahoka }
300 1.1 ahoka
301 1.5.2.1 tls /* chfs_kill_tdi - removes a temporary node descriptor */
302 1.1 ahoka static void
303 1.1 ahoka chfs_kill_tdi(struct chfs_mount *chmp,
304 1.1 ahoka struct chfs_tmp_dnode_info *tdi)
305 1.1 ahoka {
306 1.1 ahoka struct chfs_tmp_dnode *next, *tmp = tdi->tmpnode;
307 1.1 ahoka
308 1.5.2.1 tls /* Iterate the chain and remove all temporary node from it. */
309 1.1 ahoka while (tmp) {
310 1.1 ahoka next = tmp->next;
311 1.1 ahoka chfs_kill_td(chmp, tmp);
312 1.1 ahoka tmp = next;
313 1.1 ahoka }
314 1.1 ahoka
315 1.1 ahoka chfs_free_tmp_dnode_info(tdi);
316 1.1 ahoka }
317 1.1 ahoka
318 1.5.2.1 tls /*
319 1.5.2.1 tls * chfs_add_tmp_dnode_to_tree -
320 1.5.2.1 tls * adds a temporary node to the temporary tree
321 1.5.2.1 tls */
322 1.1 ahoka int
323 1.1 ahoka chfs_add_tmp_dnode_to_tree(struct chfs_mount *chmp,
324 1.1 ahoka struct chfs_readinode_info *rii,
325 1.1 ahoka struct chfs_tmp_dnode *newtd)
326 1.1 ahoka {
327 1.1 ahoka uint64_t end_ofs = newtd->node->ofs + newtd->node->size;
328 1.1 ahoka struct chfs_tmp_dnode_info *this;
329 1.1 ahoka struct rb_node *node, *prev_node;
330 1.1 ahoka struct chfs_tmp_dnode_info *newtdi;
331 1.1 ahoka
332 1.1 ahoka node = rb_tree_find_node(&rii->tdi_root, &newtd->node->ofs);
333 1.1 ahoka if (node) {
334 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
335 1.1 ahoka while (this->tmpnode->overlapped) {
336 1.1 ahoka prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
337 1.1 ahoka if (!prev_node) {
338 1.1 ahoka this->tmpnode->overlapped = 0;
339 1.1 ahoka break;
340 1.1 ahoka }
341 1.1 ahoka node = prev_node;
342 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
343 1.1 ahoka }
344 1.1 ahoka }
345 1.5.2.1 tls
346 1.1 ahoka while (node) {
347 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
348 1.1 ahoka if (this->tmpnode->node->ofs > end_ofs)
349 1.1 ahoka break;
350 1.1 ahoka
351 1.1 ahoka struct chfs_tmp_dnode *tmp_td = this->tmpnode;
352 1.1 ahoka while (tmp_td) {
353 1.1 ahoka if (tmp_td->version == newtd->version) {
354 1.5.2.1 tls /* This is a new version of an old node. */
355 1.1 ahoka if (!chfs_check_td_node(chmp, tmp_td)) {
356 1.1 ahoka dbg("calling kill td 0\n");
357 1.1 ahoka chfs_kill_td(chmp, newtd);
358 1.1 ahoka return 0;
359 1.1 ahoka } else {
360 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
361 1.1 ahoka chfs_kill_td(chmp, tmp_td);
362 1.1 ahoka chfs_add_tmp_dnode_to_tdi(this, newtd);
363 1.1 ahoka return 0;
364 1.1 ahoka }
365 1.1 ahoka }
366 1.1 ahoka if (tmp_td->version < newtd->version &&
367 1.1 ahoka tmp_td->node->ofs >= newtd->node->ofs &&
368 1.1 ahoka tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
369 1.1 ahoka /* New node entirely overlaps 'this' */
370 1.1 ahoka if (chfs_check_td_node(chmp, newtd)) {
371 1.1 ahoka dbg("calling kill td 2\n");
372 1.1 ahoka chfs_kill_td(chmp, newtd);
373 1.1 ahoka return 0;
374 1.1 ahoka }
375 1.1 ahoka /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
376 1.1 ahoka while (tmp_td && tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
377 1.1 ahoka struct rb_node *next = rb_tree_iterate(&rii->tdi_root, this, RB_DIR_RIGHT);
378 1.1 ahoka struct chfs_tmp_dnode_info *next_tdi = (struct chfs_tmp_dnode_info *)next;
379 1.1 ahoka struct chfs_tmp_dnode *next_td = NULL;
380 1.1 ahoka if (tmp_td->next) {
381 1.1 ahoka next_td = tmp_td->next;
382 1.1 ahoka } else if (next_tdi) {
383 1.1 ahoka next_td = next_tdi->tmpnode;
384 1.1 ahoka }
385 1.1 ahoka if (tmp_td->version < newtd->version) {
386 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
387 1.1 ahoka chfs_kill_td(chmp, tmp_td);
388 1.1 ahoka if (!this->tmpnode) {
389 1.1 ahoka rb_tree_remove_node(&rii->tdi_root, this);
390 1.1 ahoka chfs_kill_tdi(chmp, this);
391 1.1 ahoka this = next_tdi;
392 1.1 ahoka }
393 1.1 ahoka }
394 1.1 ahoka tmp_td = next_td;
395 1.1 ahoka }
396 1.1 ahoka continue;
397 1.1 ahoka }
398 1.1 ahoka if (tmp_td->version > newtd->version &&
399 1.1 ahoka tmp_td->node->ofs <= newtd->node->ofs &&
400 1.1 ahoka tmp_td->node->ofs + tmp_td->node->size >= end_ofs) {
401 1.1 ahoka /* New node entirely overlapped by 'this' */
402 1.1 ahoka if (!chfs_check_td_node(chmp, tmp_td)) {
403 1.2 agc dbg("this version: %llu\n",
404 1.2 agc (unsigned long long)tmp_td->version);
405 1.2 agc dbg("this ofs: %llu, size: %u\n",
406 1.2 agc (unsigned long long)tmp_td->node->ofs,
407 1.2 agc tmp_td->node->size);
408 1.1 ahoka dbg("calling kill td 4\n");
409 1.1 ahoka chfs_kill_td(chmp, newtd);
410 1.1 ahoka return 0;
411 1.1 ahoka }
412 1.1 ahoka /* ... but 'this' was bad. Replace it... */
413 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
414 1.1 ahoka chfs_kill_td(chmp, tmp_td);
415 1.1 ahoka if (!this->tmpnode) {
416 1.1 ahoka rb_tree_remove_node(&rii->tdi_root, this);
417 1.1 ahoka chfs_kill_tdi(chmp, this);
418 1.1 ahoka }
419 1.1 ahoka dbg("calling kill td 5\n");
420 1.1 ahoka chfs_kill_td(chmp, newtd);
421 1.1 ahoka break;
422 1.1 ahoka }
423 1.1 ahoka tmp_td = tmp_td->next;
424 1.1 ahoka }
425 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
426 1.1 ahoka }
427 1.1 ahoka
428 1.1 ahoka newtdi = chfs_alloc_tmp_dnode_info();
429 1.1 ahoka chfs_add_tmp_dnode_to_tdi(newtdi, newtd);
430 1.1 ahoka /* We neither completely obsoleted nor were completely
431 1.1 ahoka obsoleted by an earlier node. Insert into the tree */
432 1.1 ahoka struct chfs_tmp_dnode_info *tmp_tdi = rb_tree_insert_node(&rii->tdi_root, newtdi);
433 1.1 ahoka if (tmp_tdi != newtdi) {
434 1.3 ttoth chfs_remove_tmp_dnode_from_tdi(newtdi, newtd);
435 1.1 ahoka chfs_add_tmp_dnode_to_tdi(tmp_tdi, newtd);
436 1.1 ahoka chfs_kill_tdi(chmp, newtdi);
437 1.1 ahoka }
438 1.1 ahoka
439 1.1 ahoka /* If there's anything behind that overlaps us, note it */
440 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
441 1.1 ahoka if (node) {
442 1.1 ahoka while (1) {
443 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
444 1.1 ahoka if (this->tmpnode->node->ofs + this->tmpnode->node->size > newtd->node->ofs) {
445 1.1 ahoka newtd->overlapped = 1;
446 1.1 ahoka }
447 1.1 ahoka if (!this->tmpnode->overlapped)
448 1.1 ahoka break;
449 1.1 ahoka
450 1.1 ahoka prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
451 1.1 ahoka if (!prev_node) {
452 1.1 ahoka this->tmpnode->overlapped = 0;
453 1.1 ahoka break;
454 1.1 ahoka }
455 1.1 ahoka node = prev_node;
456 1.1 ahoka }
457 1.1 ahoka }
458 1.1 ahoka
459 1.1 ahoka /* If the new node overlaps anything ahead, note it */
460 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
461 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
462 1.1 ahoka while (this && this->tmpnode->node->ofs < end_ofs) {
463 1.1 ahoka this->tmpnode->overlapped = 1;
464 1.1 ahoka node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
465 1.1 ahoka this = (struct chfs_tmp_dnode_info *)node;
466 1.1 ahoka }
467 1.1 ahoka return 0;
468 1.1 ahoka }
469 1.1 ahoka
470 1.1 ahoka
471 1.5.2.1 tls /* new_fragment - creates a new fragment for a data node */
472 1.1 ahoka struct chfs_node_frag *
473 1.1 ahoka new_fragment(struct chfs_full_dnode *fdn, uint32_t ofs, uint32_t size)
474 1.1 ahoka {
475 1.1 ahoka struct chfs_node_frag *newfrag;
476 1.1 ahoka newfrag = chfs_alloc_node_frag();
477 1.1 ahoka if (newfrag) {
478 1.5.2.1 tls /* Initialize fragment. */
479 1.1 ahoka newfrag->ofs = ofs;
480 1.1 ahoka newfrag->size = size;
481 1.1 ahoka newfrag->node = fdn;
482 1.3 ttoth if (newfrag->node) {
483 1.3 ttoth newfrag->node->frags++;
484 1.3 ttoth }
485 1.1 ahoka } else {
486 1.1 ahoka chfs_err("cannot allocate a chfs_node_frag object\n");
487 1.1 ahoka }
488 1.1 ahoka return newfrag;
489 1.1 ahoka }
490 1.1 ahoka
491 1.5.2.1 tls /*
492 1.5.2.1 tls * no_overlapping_node - inserts a node to the fragtree
493 1.5.2.1 tls * Puts hole frag into the holes between fragments.
494 1.5.2.1 tls */
495 1.1 ahoka int
496 1.1 ahoka no_overlapping_node(struct rb_tree *fragtree,
497 1.1 ahoka struct chfs_node_frag *newfrag,
498 1.1 ahoka struct chfs_node_frag *this, uint32_t lastend)
499 1.1 ahoka {
500 1.1 ahoka if (lastend < newfrag->node->ofs) {
501 1.1 ahoka struct chfs_node_frag *holefrag;
502 1.1 ahoka
503 1.1 ahoka holefrag = new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
504 1.1 ahoka if (!holefrag) {
505 1.1 ahoka chfs_free_node_frag(newfrag);
506 1.1 ahoka return ENOMEM;
507 1.1 ahoka }
508 1.1 ahoka
509 1.1 ahoka rb_tree_insert_node(fragtree, holefrag);
510 1.1 ahoka }
511 1.1 ahoka
512 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
513 1.1 ahoka
514 1.1 ahoka return 0;
515 1.1 ahoka }
516 1.1 ahoka
517 1.5.2.1 tls /*
518 1.5.2.1 tls * chfs_add_frag_to_fragtree -
519 1.5.2.1 tls * adds a fragment to a data node's fragtree
520 1.5.2.1 tls */
521 1.1 ahoka int
522 1.1 ahoka chfs_add_frag_to_fragtree(struct chfs_mount *chmp,
523 1.1 ahoka struct rb_tree *fragtree,
524 1.1 ahoka struct chfs_node_frag *newfrag)
525 1.1 ahoka {
526 1.1 ahoka struct chfs_node_frag *this;
527 1.1 ahoka uint32_t lastend;
528 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
529 1.1 ahoka
530 1.5.2.1 tls /* Find the offset of frag which is before the new one. */
531 1.1 ahoka this = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &newfrag->ofs);
532 1.1 ahoka
533 1.1 ahoka if (this) {
534 1.1 ahoka lastend = this->ofs + this->size;
535 1.1 ahoka } else {
536 1.1 ahoka lastend = 0;
537 1.1 ahoka }
538 1.1 ahoka
539 1.5.2.1 tls /* New fragment is end of the file and there is no overlapping. */
540 1.1 ahoka if (lastend <= newfrag->ofs) {
541 1.1 ahoka if (lastend && (lastend - 1) >> PAGE_SHIFT == newfrag->ofs >> PAGE_SHIFT) {
542 1.1 ahoka if (this->node)
543 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
544 1.1 ahoka CHFS_MARK_REF_NORMAL(newfrag->node->nref);
545 1.1 ahoka }
546 1.1 ahoka return no_overlapping_node(fragtree, newfrag, this, lastend);
547 1.1 ahoka }
548 1.1 ahoka
549 1.1 ahoka if (newfrag->ofs > this->ofs) {
550 1.1 ahoka CHFS_MARK_REF_NORMAL(newfrag->node->nref);
551 1.1 ahoka if (this->node)
552 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
553 1.1 ahoka
554 1.1 ahoka if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
555 1.5.2.1 tls /* Newfrag is inside of this. */
556 1.1 ahoka struct chfs_node_frag *newfrag2;
557 1.1 ahoka
558 1.1 ahoka newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
559 1.1 ahoka this->ofs + this->size - newfrag->ofs - newfrag->size);
560 1.1 ahoka if (!newfrag2)
561 1.1 ahoka return ENOMEM;
562 1.1 ahoka
563 1.1 ahoka this->size = newfrag->ofs - this->ofs;
564 1.1 ahoka
565 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
566 1.1 ahoka rb_tree_insert_node(fragtree, newfrag2);
567 1.1 ahoka
568 1.1 ahoka return 0;
569 1.1 ahoka }
570 1.5.2.1 tls /* Newfrag is bottom of this. */
571 1.1 ahoka this->size = newfrag->ofs - this->ofs;
572 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
573 1.1 ahoka } else {
574 1.5.2.1 tls /* Newfrag start at same point */
575 1.1 ahoka //TODO replace instead of remove and insert
576 1.1 ahoka rb_tree_remove_node(fragtree, this);
577 1.1 ahoka rb_tree_insert_node(fragtree, newfrag);
578 1.1 ahoka
579 1.1 ahoka if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
580 1.1 ahoka chfs_obsolete_node_frag(chmp, this);
581 1.1 ahoka } else {
582 1.1 ahoka this->ofs += newfrag->size;
583 1.1 ahoka this->size -= newfrag->size;
584 1.1 ahoka
585 1.1 ahoka rb_tree_insert_node(fragtree, this);
586 1.1 ahoka return 0;
587 1.1 ahoka }
588 1.1 ahoka }
589 1.1 ahoka /* OK, now we have newfrag added in the correct place in the tree, but
590 1.1 ahoka frag_next(newfrag) may be a fragment which is overlapped by it
591 1.1 ahoka */
592 1.1 ahoka while ((this = frag_next(fragtree, newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
593 1.1 ahoka rb_tree_remove_node(fragtree, this);
594 1.1 ahoka chfs_obsolete_node_frag(chmp, this);
595 1.1 ahoka }
596 1.1 ahoka
597 1.1 ahoka if (!this || newfrag->ofs + newfrag->size == this->ofs)
598 1.1 ahoka return 0;
599 1.1 ahoka
600 1.1 ahoka this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
601 1.1 ahoka this->ofs = newfrag->ofs + newfrag->size;
602 1.1 ahoka
603 1.1 ahoka if (this->node)
604 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
605 1.1 ahoka CHFS_MARK_REF_NORMAL(newfrag->node->nref);
606 1.1 ahoka
607 1.1 ahoka return 0;
608 1.1 ahoka }
609 1.1 ahoka
610 1.5.2.1 tls /*
611 1.5.2.1 tls * chfs_remove_frags_of_node -
612 1.5.2.1 tls * removes all fragments from a fragtree and DOESN'T OBSOLETE them
613 1.5.2.1 tls */
614 1.1 ahoka void
615 1.3 ttoth chfs_remove_frags_of_node(struct chfs_mount *chmp, struct rb_tree *fragtree,
616 1.3 ttoth struct chfs_node_ref *nref)
617 1.3 ttoth {
618 1.3 ttoth KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
619 1.3 ttoth struct chfs_node_frag *this, *next;
620 1.3 ttoth
621 1.5 ttoth if (nref == NULL) {
622 1.5 ttoth return;
623 1.5 ttoth }
624 1.5 ttoth
625 1.5.2.1 tls /* Iterate the tree and clean all elements. */
626 1.3 ttoth this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
627 1.3 ttoth while (this) {
628 1.3 ttoth next = frag_next(fragtree, this);
629 1.3 ttoth if (this->node->nref == nref) {
630 1.3 ttoth rb_tree_remove_node(fragtree, this);
631 1.4 ttoth chfs_free_node_frag(this);
632 1.3 ttoth }
633 1.3 ttoth this = next;
634 1.3 ttoth }
635 1.3 ttoth }
636 1.3 ttoth
637 1.5.2.1 tls /*
638 1.5.2.1 tls * chfs_kill_fragtree -
639 1.5.2.1 tls * removes all fragments from a fragtree and OBSOLETES them
640 1.5.2.1 tls */
641 1.3 ttoth void
642 1.3 ttoth chfs_kill_fragtree(struct chfs_mount *chmp, struct rb_tree *fragtree)
643 1.1 ahoka {
644 1.3 ttoth KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
645 1.1 ahoka struct chfs_node_frag *this, *next;
646 1.1 ahoka
647 1.5.2.1 tls /* Iterate the tree and clean all elements. */
648 1.1 ahoka this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
649 1.1 ahoka while (this) {
650 1.1 ahoka next = frag_next(fragtree, this);
651 1.1 ahoka rb_tree_remove_node(fragtree, this);
652 1.3 ttoth chfs_obsolete_node_frag(chmp, this);
653 1.1 ahoka this = next;
654 1.1 ahoka }
655 1.1 ahoka }
656 1.1 ahoka
657 1.5.2.1 tls /* chfs_truncate_fragtree - truncates the tree to a specified size */
658 1.1 ahoka uint32_t
659 1.1 ahoka chfs_truncate_fragtree(struct chfs_mount *chmp,
660 1.1 ahoka struct rb_tree *fragtree, uint32_t size)
661 1.1 ahoka {
662 1.3 ttoth KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
663 1.1 ahoka struct chfs_node_frag *frag;
664 1.1 ahoka
665 1.1 ahoka dbg("truncate to size: %u\n", size);
666 1.1 ahoka
667 1.1 ahoka frag = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &size);
668 1.1 ahoka
669 1.1 ahoka /* Find the last frag before size and set its new size. */
670 1.1 ahoka if (frag && frag->ofs != size) {
671 1.1 ahoka if (frag->ofs + frag->size > size) {
672 1.1 ahoka frag->size = size - frag->ofs;
673 1.1 ahoka }
674 1.1 ahoka frag = frag_next(fragtree, frag);
675 1.1 ahoka }
676 1.1 ahoka
677 1.1 ahoka /* Delete frags after new size. */
678 1.1 ahoka while (frag && frag->ofs >= size) {
679 1.1 ahoka struct chfs_node_frag *next = frag_next(fragtree, frag);
680 1.1 ahoka
681 1.1 ahoka rb_tree_remove_node(fragtree, frag);
682 1.1 ahoka chfs_obsolete_node_frag(chmp, frag);
683 1.1 ahoka frag = next;
684 1.1 ahoka }
685 1.1 ahoka
686 1.1 ahoka if (size == 0) {
687 1.1 ahoka return 0;
688 1.1 ahoka }
689 1.1 ahoka
690 1.1 ahoka frag = frag_last(fragtree);
691 1.1 ahoka
692 1.1 ahoka if (!frag) {
693 1.1 ahoka return 0;
694 1.1 ahoka }
695 1.1 ahoka
696 1.1 ahoka if (frag->ofs + frag->size < size) {
697 1.1 ahoka return frag->ofs + frag->size;
698 1.1 ahoka }
699 1.1 ahoka
700 1.1 ahoka /* FIXME Should we check the postion of the last node? (PAGE_CACHE size, etc.) */
701 1.1 ahoka if (frag->node && (frag->ofs & (PAGE_SIZE - 1)) == 0) {
702 1.3 ttoth frag->node->nref->nref_offset =
703 1.3 ttoth CHFS_GET_OFS(frag->node->nref->nref_offset) | CHFS_PRISTINE_NODE_MASK;
704 1.1 ahoka }
705 1.1 ahoka
706 1.1 ahoka return size;
707 1.1 ahoka }
708 1.1 ahoka
709 1.5.2.1 tls /* chfs_obsolete_node_frag - obsoletes a fragment of a node */
710 1.1 ahoka void
711 1.1 ahoka chfs_obsolete_node_frag(struct chfs_mount *chmp,
712 1.1 ahoka struct chfs_node_frag *this)
713 1.1 ahoka {
714 1.3 ttoth struct chfs_vnode_cache *vc;
715 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
716 1.1 ahoka if (this->node) {
717 1.5.2.1 tls /* The fragment is in a node. */
718 1.3 ttoth KASSERT(this->node->frags != 0);
719 1.1 ahoka this->node->frags--;
720 1.3 ttoth if (this->node->frags == 0) {
721 1.5.2.1 tls /* This is the last fragment. (There is no more.) */
722 1.3 ttoth KASSERT(!CHFS_REF_OBSOLETE(this->node->nref));
723 1.3 ttoth mutex_enter(&chmp->chm_lock_vnocache);
724 1.3 ttoth vc = chfs_nref_to_vc(this->node->nref);
725 1.3 ttoth dbg("[MARK] lnr: %u ofs: %u\n", this->node->nref->nref_lnr,
726 1.3 ttoth this->node->nref->nref_offset);
727 1.3 ttoth
728 1.3 ttoth chfs_remove_and_obsolete(chmp, vc, this->node->nref, &vc->dnode);
729 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
730 1.3 ttoth
731 1.1 ahoka chfs_free_full_dnode(this->node);
732 1.1 ahoka } else {
733 1.5.2.1 tls /* There is more frags in the node. */
734 1.1 ahoka CHFS_MARK_REF_NORMAL(this->node->nref);
735 1.1 ahoka }
736 1.1 ahoka }
737 1.1 ahoka chfs_free_node_frag(this);
738 1.1 ahoka }
739 1.1 ahoka
740 1.5.2.1 tls /* chfs_add_full_dnode_to_inode - adds a data node to an inode */
741 1.1 ahoka int
742 1.1 ahoka chfs_add_full_dnode_to_inode(struct chfs_mount *chmp,
743 1.1 ahoka struct chfs_inode *ip,
744 1.1 ahoka struct chfs_full_dnode *fd)
745 1.1 ahoka {
746 1.1 ahoka int ret;
747 1.1 ahoka struct chfs_node_frag *newfrag;
748 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
749 1.1 ahoka
750 1.1 ahoka if (unlikely(!fd->size))
751 1.1 ahoka return 0;
752 1.1 ahoka
753 1.5.2.1 tls /* Create a new fragment from the data node and add it to the fragtree. */
754 1.1 ahoka newfrag = new_fragment(fd, fd->ofs, fd->size);
755 1.1 ahoka if (unlikely(!newfrag))
756 1.1 ahoka return ENOMEM;
757 1.1 ahoka
758 1.1 ahoka ret = chfs_add_frag_to_fragtree(chmp, &ip->fragtree, newfrag);
759 1.1 ahoka if (ret)
760 1.1 ahoka return ret;
761 1.1 ahoka
762 1.5.2.1 tls /* Check previous fragment. */
763 1.1 ahoka if (newfrag->ofs & (PAGE_SIZE - 1)) {
764 1.1 ahoka struct chfs_node_frag *prev = frag_prev(&ip->fragtree, newfrag);
765 1.1 ahoka
766 1.1 ahoka CHFS_MARK_REF_NORMAL(fd->nref);
767 1.1 ahoka if (prev->node)
768 1.1 ahoka CHFS_MARK_REF_NORMAL(prev->node->nref);
769 1.1 ahoka }
770 1.1 ahoka
771 1.5.2.1 tls /* Check next fragment. */
772 1.1 ahoka if ((newfrag->ofs+newfrag->size) & (PAGE_SIZE - 1)) {
773 1.1 ahoka struct chfs_node_frag *next = frag_next(&ip->fragtree, newfrag);
774 1.1 ahoka
775 1.1 ahoka if (next) {
776 1.1 ahoka CHFS_MARK_REF_NORMAL(fd->nref);
777 1.1 ahoka if (next->node)
778 1.1 ahoka CHFS_MARK_REF_NORMAL(next->node->nref);
779 1.1 ahoka }
780 1.1 ahoka }
781 1.1 ahoka
782 1.1 ahoka return 0;
783 1.1 ahoka }
784 1.1 ahoka
785 1.1 ahoka
786 1.5.2.1 tls /* chfs_get_data_nodes - get temporary nodes of an inode */
787 1.1 ahoka int
788 1.1 ahoka chfs_get_data_nodes(struct chfs_mount *chmp,
789 1.1 ahoka struct chfs_inode *ip,
790 1.1 ahoka struct chfs_readinode_info *rii)
791 1.1 ahoka {
792 1.1 ahoka uint32_t crc;
793 1.1 ahoka int err;
794 1.1 ahoka size_t len, retlen;
795 1.1 ahoka struct chfs_node_ref *nref;
796 1.1 ahoka struct chfs_flash_data_node *dnode;
797 1.1 ahoka struct chfs_tmp_dnode *td;
798 1.1 ahoka char* buf;
799 1.1 ahoka
800 1.1 ahoka len = sizeof(struct chfs_flash_data_node);
801 1.1 ahoka buf = kmem_alloc(len, KM_SLEEP);
802 1.1 ahoka
803 1.1 ahoka dnode = kmem_alloc(len, KM_SLEEP);
804 1.1 ahoka if (!dnode)
805 1.1 ahoka return ENOMEM;
806 1.1 ahoka
807 1.1 ahoka nref = chfs_first_valid_data_ref(ip->chvc->dnode);
808 1.1 ahoka
809 1.5.2.1 tls /* Update highest version. */
810 1.1 ahoka rii->highest_version = ip->chvc->highest_version;
811 1.1 ahoka
812 1.1 ahoka while(nref && (struct chfs_vnode_cache *)nref != ip->chvc) {
813 1.1 ahoka err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), len, &retlen);
814 1.1 ahoka if (err || len != retlen)
815 1.1 ahoka goto out;
816 1.1 ahoka dnode = (struct chfs_flash_data_node*)buf;
817 1.1 ahoka
818 1.5.2.1 tls /* Check header crc. */
819 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
820 1.1 ahoka if (crc != le32toh(dnode->hdr_crc)) {
821 1.1 ahoka chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
822 1.1 ahoka goto cont;
823 1.1 ahoka }
824 1.5.2.1 tls
825 1.5.2.1 tls /* Check header magic bitmask. */
826 1.1 ahoka if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
827 1.1 ahoka chfs_err("Wrong magic bitmask.\n");
828 1.1 ahoka goto cont;
829 1.1 ahoka }
830 1.5.2.1 tls
831 1.5.2.1 tls /* Check node crc. */
832 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
833 1.1 ahoka if (crc != le32toh(dnode->node_crc)) {
834 1.1 ahoka chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
835 1.1 ahoka goto cont;
836 1.1 ahoka }
837 1.5.2.1 tls
838 1.1 ahoka td = chfs_alloc_tmp_dnode();
839 1.1 ahoka if (!td) {
840 1.1 ahoka chfs_err("Can't allocate tmp dnode info.\n");
841 1.1 ahoka err = ENOMEM;
842 1.1 ahoka goto out;
843 1.1 ahoka }
844 1.5.2.1 tls
845 1.1 ahoka /* We don't check data crc here, just add nodes to tmp frag tree, because
846 1.1 ahoka * we don't want to check nodes which have been overlapped by a new node
847 1.1 ahoka * with a higher version number.
848 1.1 ahoka */
849 1.1 ahoka td->node = chfs_alloc_full_dnode();
850 1.1 ahoka if (!td->node) {
851 1.1 ahoka chfs_err("Can't allocate full dnode info.\n");
852 1.1 ahoka err = ENOMEM;
853 1.1 ahoka goto out_tmp_dnode;
854 1.1 ahoka }
855 1.1 ahoka td->version = le64toh(dnode->version);
856 1.1 ahoka td->node->ofs = le64toh(dnode->offset);
857 1.1 ahoka td->data_crc = le32toh(dnode->data_crc);
858 1.1 ahoka td->node->nref = nref;
859 1.1 ahoka td->node->size = le32toh(dnode->data_length);
860 1.3 ttoth td->node->frags = 1;
861 1.1 ahoka td->overlapped = 0;
862 1.1 ahoka
863 1.1 ahoka if (td->version > rii->highest_version) {
864 1.1 ahoka rii->highest_version = td->version;
865 1.1 ahoka }
866 1.1 ahoka
867 1.5.2.1 tls /* Add node to the tree. */
868 1.1 ahoka err = chfs_add_tmp_dnode_to_tree(chmp, rii, td);
869 1.1 ahoka if (err)
870 1.1 ahoka goto out_full_dnode;
871 1.1 ahoka
872 1.1 ahoka cont:
873 1.1 ahoka nref = chfs_first_valid_data_ref(nref->nref_next);
874 1.1 ahoka }
875 1.1 ahoka
876 1.1 ahoka ip->chvc->highest_version = rii->highest_version;
877 1.1 ahoka return 0;
878 1.1 ahoka
879 1.1 ahoka out_full_dnode:
880 1.1 ahoka chfs_free_full_dnode(td->node);
881 1.1 ahoka out_tmp_dnode:
882 1.1 ahoka chfs_free_tmp_dnode(td);
883 1.1 ahoka out:
884 1.1 ahoka kmem_free(buf, len);
885 1.1 ahoka kmem_free(dnode, len);
886 1.1 ahoka return err;
887 1.1 ahoka }
888 1.1 ahoka
889 1.1 ahoka
890 1.5.2.1 tls /* chfs_build_fragtree - builds fragtree from temporary tree */
891 1.1 ahoka int
892 1.1 ahoka chfs_build_fragtree(struct chfs_mount *chmp, struct chfs_inode *ip,
893 1.1 ahoka struct chfs_readinode_info *rii)
894 1.1 ahoka {
895 1.1 ahoka struct chfs_tmp_dnode_info *pen, *last, *this;
896 1.5.2.1 tls struct rb_tree ver_tree; /* version tree, used only temporary */
897 1.1 ahoka uint64_t high_ver = 0;
898 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
899 1.1 ahoka
900 1.1 ahoka rb_tree_init(&ver_tree, &tmp_node_rbtree_ops);
901 1.1 ahoka
902 1.5.2.1 tls /* Update highest version and latest node reference. */
903 1.1 ahoka if (rii->mdata_tn) {
904 1.1 ahoka high_ver = rii->mdata_tn->tmpnode->version;
905 1.1 ahoka rii->latest_ref = rii->mdata_tn->tmpnode->node->nref;
906 1.1 ahoka }
907 1.1 ahoka
908 1.5.2.1 tls /* Iterate the temporary tree in reverse order. */
909 1.1 ahoka pen = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&rii->tdi_root);
910 1.1 ahoka
911 1.1 ahoka while((last = pen)) {
912 1.1 ahoka pen = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&rii->tdi_root, last, RB_DIR_LEFT);
913 1.1 ahoka
914 1.5.2.1 tls /* We build here a version tree from overlapped nodes. */
915 1.1 ahoka rb_tree_remove_node(&rii->tdi_root, last);
916 1.1 ahoka rb_tree_insert_node(&ver_tree, last);
917 1.1 ahoka
918 1.1 ahoka if (last->tmpnode->overlapped) {
919 1.1 ahoka if (pen)
920 1.1 ahoka continue;
921 1.1 ahoka
922 1.1 ahoka last->tmpnode->overlapped = 0;
923 1.1 ahoka }
924 1.1 ahoka
925 1.1 ahoka this = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&ver_tree);
926 1.1 ahoka
927 1.5.2.1 tls /* Start to build the fragtree. */
928 1.1 ahoka while (this) {
929 1.1 ahoka struct chfs_tmp_dnode_info *vers_next;
930 1.1 ahoka int ret;
931 1.1 ahoka
932 1.1 ahoka vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
933 1.1 ahoka rb_tree_remove_node(&ver_tree, this);
934 1.1 ahoka
935 1.1 ahoka struct chfs_tmp_dnode *tmp_td = this->tmpnode;
936 1.1 ahoka while (tmp_td) {
937 1.1 ahoka struct chfs_tmp_dnode *next_td = tmp_td->next;
938 1.1 ahoka
939 1.5.2.1 tls /* Check temporary node. */
940 1.1 ahoka if (chfs_check_td_node(chmp, tmp_td)) {
941 1.1 ahoka if (next_td) {
942 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
943 1.3 ttoth chfs_kill_td(chmp, tmp_td);
944 1.1 ahoka } else {
945 1.1 ahoka break;
946 1.1 ahoka }
947 1.1 ahoka } else {
948 1.1 ahoka if (tmp_td->version > high_ver) {
949 1.1 ahoka high_ver = tmp_td->version;
950 1.2 agc dbg("highver: %llu\n", (unsigned long long)high_ver);
951 1.1 ahoka rii->latest_ref = tmp_td->node->nref;
952 1.1 ahoka }
953 1.1 ahoka
954 1.5.2.1 tls /* Add node to inode and its fragtree. */
955 1.1 ahoka ret = chfs_add_full_dnode_to_inode(chmp, ip, tmp_td->node);
956 1.1 ahoka if (ret) {
957 1.5.2.1 tls /* On error, clean the whole version tree. */
958 1.1 ahoka while (1) {
959 1.1 ahoka vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
960 1.1 ahoka while (tmp_td) {
961 1.1 ahoka next_td = tmp_td->next;
962 1.3 ttoth
963 1.1 ahoka chfs_free_full_dnode(tmp_td->node);
964 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
965 1.3 ttoth chfs_kill_td(chmp, tmp_td);
966 1.1 ahoka tmp_td = next_td;
967 1.1 ahoka }
968 1.1 ahoka chfs_free_tmp_dnode_info(this);
969 1.1 ahoka this = vers_next;
970 1.1 ahoka if (!this)
971 1.1 ahoka break;
972 1.1 ahoka rb_tree_remove_node(&ver_tree, vers_next);
973 1.3 ttoth chfs_kill_tdi(chmp, vers_next);
974 1.1 ahoka }
975 1.1 ahoka return ret;
976 1.1 ahoka }
977 1.1 ahoka
978 1.5.2.1 tls /* Remove temporary node from temporary descriptor.
979 1.5.2.1 tls * Shouldn't obsolete tmp_td here, because tmp_td->node
980 1.5.2.1 tls * was added to the inode. */
981 1.1 ahoka chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
982 1.1 ahoka chfs_free_tmp_dnode(tmp_td);
983 1.1 ahoka }
984 1.1 ahoka tmp_td = next_td;
985 1.1 ahoka }
986 1.5.2.1 tls /* Continue with the previous element of version tree. */
987 1.1 ahoka chfs_kill_tdi(chmp, this);
988 1.1 ahoka this = vers_next;
989 1.1 ahoka }
990 1.1 ahoka }
991 1.1 ahoka
992 1.1 ahoka return 0;
993 1.1 ahoka }
994 1.1 ahoka
995 1.5.2.1 tls /* chfs_read_inode - checks the state of the inode then reads and builds it */
996 1.1 ahoka int chfs_read_inode(struct chfs_mount *chmp, struct chfs_inode *ip)
997 1.1 ahoka {
998 1.1 ahoka struct chfs_vnode_cache *vc = ip->chvc;
999 1.1 ahoka
1000 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
1001 1.1 ahoka
1002 1.1 ahoka retry:
1003 1.3 ttoth mutex_enter(&chmp->chm_lock_vnocache);
1004 1.1 ahoka switch (vc->state) {
1005 1.5.2.1 tls case VNO_STATE_UNCHECKED:
1006 1.5.2.1 tls /* FALLTHROUGH */
1007 1.5.2.1 tls case VNO_STATE_CHECKEDABSENT:
1008 1.5.2.1 tls vc->state = VNO_STATE_READING;
1009 1.5.2.1 tls break;
1010 1.5.2.1 tls case VNO_STATE_CHECKING:
1011 1.5.2.1 tls /* FALLTHROUGH */
1012 1.5.2.1 tls case VNO_STATE_GC:
1013 1.5.2.1 tls mutex_exit(&chmp->chm_lock_vnocache);
1014 1.5.2.1 tls goto retry;
1015 1.5.2.1 tls break;
1016 1.5.2.1 tls case VNO_STATE_PRESENT:
1017 1.5.2.1 tls /* FALLTHROUGH */
1018 1.5.2.1 tls case VNO_STATE_READING:
1019 1.5.2.1 tls chfs_err("Reading inode #%llu in state %d!\n",
1020 1.5.2.1 tls (unsigned long long)vc->vno, vc->state);
1021 1.5.2.1 tls chfs_err("wants to read a nonexistent ino %llu\n",
1022 1.5.2.1 tls (unsigned long long)vc->vno);
1023 1.5.2.1 tls return ENOENT;
1024 1.5.2.1 tls default:
1025 1.5.2.1 tls panic("BUG() Bad vno cache state.");
1026 1.1 ahoka }
1027 1.3 ttoth mutex_exit(&chmp->chm_lock_vnocache);
1028 1.1 ahoka
1029 1.1 ahoka return chfs_read_inode_internal(chmp, ip);
1030 1.1 ahoka }
1031 1.1 ahoka
1032 1.1 ahoka /*
1033 1.5.2.1 tls * chfs_read_inode_internal - reads and builds an inode
1034 1.5.2.1 tls * Firstly get temporary nodes then build fragtree.
1035 1.1 ahoka */
1036 1.1 ahoka int
1037 1.1 ahoka chfs_read_inode_internal(struct chfs_mount *chmp, struct chfs_inode *ip)
1038 1.1 ahoka {
1039 1.1 ahoka int err;
1040 1.1 ahoka size_t len, retlen;
1041 1.1 ahoka char* buf;
1042 1.1 ahoka struct chfs_readinode_info rii;
1043 1.1 ahoka struct chfs_flash_vnode *fvnode;
1044 1.1 ahoka
1045 1.1 ahoka KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
1046 1.1 ahoka
1047 1.1 ahoka len = sizeof(*fvnode);
1048 1.1 ahoka
1049 1.1 ahoka memset(&rii, 0, sizeof(rii));
1050 1.1 ahoka
1051 1.1 ahoka rb_tree_init(&rii.tdi_root, &tmp_node_rbtree_ops);
1052 1.1 ahoka
1053 1.5.2.1 tls /* Build a temporary node tree. */
1054 1.1 ahoka err = chfs_get_data_nodes(chmp, ip, &rii);
1055 1.1 ahoka if (err) {
1056 1.1 ahoka if (ip->chvc->state == VNO_STATE_READING)
1057 1.1 ahoka ip->chvc->state = VNO_STATE_CHECKEDABSENT;
1058 1.1 ahoka /* FIXME Should we kill fragtree or something here? */
1059 1.1 ahoka return err;
1060 1.1 ahoka }
1061 1.1 ahoka
1062 1.5.2.1 tls /* Build fragtree from temp nodes. */
1063 1.1 ahoka rb_tree_init(&ip->fragtree, &frag_rbtree_ops);
1064 1.5.2.1 tls
1065 1.1 ahoka err = chfs_build_fragtree(chmp, ip, &rii);
1066 1.1 ahoka if (err) {
1067 1.1 ahoka if (ip->chvc->state == VNO_STATE_READING)
1068 1.1 ahoka ip->chvc->state = VNO_STATE_CHECKEDABSENT;
1069 1.1 ahoka /* FIXME Should we kill fragtree or something here? */
1070 1.1 ahoka return err;
1071 1.1 ahoka }
1072 1.1 ahoka
1073 1.1 ahoka if (!rii.latest_ref) {
1074 1.1 ahoka return 0;
1075 1.1 ahoka }
1076 1.1 ahoka
1077 1.1 ahoka buf = kmem_alloc(len, KM_SLEEP);
1078 1.1 ahoka if (!buf)
1079 1.1 ahoka return ENOMEM;
1080 1.1 ahoka
1081 1.5.2.1 tls /* Set inode size from its vnode information node. */
1082 1.1 ahoka err = chfs_read_leb(chmp, ip->chvc->v->nref_lnr, buf, CHFS_GET_OFS(ip->chvc->v->nref_offset), len, &retlen);
1083 1.1 ahoka if (err || retlen != len) {
1084 1.1 ahoka kmem_free(buf, len);
1085 1.1 ahoka return err?err:EIO;
1086 1.1 ahoka }
1087 1.1 ahoka
1088 1.1 ahoka fvnode = (struct chfs_flash_vnode*)buf;
1089 1.1 ahoka
1090 1.1 ahoka dbg("set size from v: %u\n", fvnode->dn_size);
1091 1.1 ahoka chfs_set_vnode_size(ITOV(ip), fvnode->dn_size);
1092 1.1 ahoka uint32_t retsize = chfs_truncate_fragtree(chmp, &ip->fragtree, fvnode->dn_size);
1093 1.1 ahoka if (retsize != fvnode->dn_size) {
1094 1.1 ahoka dbg("Truncating failed. It is %u instead of %u\n", retsize, fvnode->dn_size);
1095 1.1 ahoka }
1096 1.1 ahoka
1097 1.1 ahoka kmem_free(buf, len);
1098 1.1 ahoka
1099 1.1 ahoka if (ip->chvc->state == VNO_STATE_READING) {
1100 1.1 ahoka ip->chvc->state = VNO_STATE_PRESENT;
1101 1.1 ahoka }
1102 1.1 ahoka
1103 1.1 ahoka return 0;
1104 1.1 ahoka }
1105 1.1 ahoka
1106 1.5.2.1 tls /* chfs_read_data - reads and checks data of a file */
1107 1.1 ahoka int
1108 1.1 ahoka chfs_read_data(struct chfs_mount* chmp, struct vnode *vp,
1109 1.1 ahoka struct buf *bp)
1110 1.1 ahoka {
1111 1.1 ahoka off_t ofs;
1112 1.1 ahoka struct chfs_node_frag *frag;
1113 1.1 ahoka char * buf;
1114 1.1 ahoka int err = 0;
1115 1.1 ahoka size_t size, retlen;
1116 1.1 ahoka uint32_t crc;
1117 1.1 ahoka struct chfs_inode *ip = VTOI(vp);
1118 1.1 ahoka struct chfs_flash_data_node *dnode;
1119 1.1 ahoka struct chfs_node_ref *nref;
1120 1.1 ahoka
1121 1.1 ahoka memset(bp->b_data, 0, bp->b_bcount);
1122 1.1 ahoka
1123 1.5.2.1 tls /* Calculate the size of the file from its fragtree. */
1124 1.1 ahoka ofs = bp->b_blkno * PAGE_SIZE;
1125 1.1 ahoka frag = (struct chfs_node_frag *)rb_tree_find_node_leq(&ip->fragtree, &ofs);
1126 1.1 ahoka
1127 1.1 ahoka if (!frag || frag->ofs > ofs || frag->ofs + frag->size <= ofs) {
1128 1.5 ttoth bp->b_resid = 0;
1129 1.1 ahoka dbg("not found in frag tree\n");
1130 1.1 ahoka return 0;
1131 1.1 ahoka }
1132 1.1 ahoka
1133 1.1 ahoka if (!frag->node) {
1134 1.1 ahoka dbg("no node in frag\n");
1135 1.1 ahoka return 0;
1136 1.1 ahoka }
1137 1.1 ahoka
1138 1.1 ahoka nref = frag->node->nref;
1139 1.1 ahoka size = sizeof(*dnode) + frag->size;
1140 1.1 ahoka
1141 1.1 ahoka buf = kmem_alloc(size, KM_SLEEP);
1142 1.1 ahoka
1143 1.5.2.1 tls /* Read node from flash. */
1144 1.1 ahoka dbg("reading from lnr: %u, offset: %u, size: %zu\n", nref->nref_lnr, CHFS_GET_OFS(nref->nref_offset), size);
1145 1.1 ahoka err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), size, &retlen);
1146 1.1 ahoka if (err) {
1147 1.1 ahoka chfs_err("error after reading: %d\n", err);
1148 1.1 ahoka goto out;
1149 1.1 ahoka }
1150 1.1 ahoka if (retlen != size) {
1151 1.1 ahoka chfs_err("retlen: %zu != size: %zu\n", retlen, size);
1152 1.1 ahoka err = EIO;
1153 1.1 ahoka goto out;
1154 1.1 ahoka }
1155 1.1 ahoka
1156 1.5.2.1 tls /* Read data from flash. */
1157 1.1 ahoka dnode = (struct chfs_flash_data_node *)buf;
1158 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
1159 1.1 ahoka if (crc != le32toh(dnode->hdr_crc)) {
1160 1.1 ahoka chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
1161 1.1 ahoka err = EIO;
1162 1.1 ahoka goto out;
1163 1.1 ahoka }
1164 1.5.2.1 tls
1165 1.5.2.1 tls /* Check header magic bitmask. */
1166 1.1 ahoka if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
1167 1.1 ahoka chfs_err("Wrong magic bitmask.\n");
1168 1.1 ahoka err = EIO;
1169 1.1 ahoka goto out;
1170 1.1 ahoka }
1171 1.5.2.1 tls
1172 1.5.2.1 tls /* Check crc of node. */
1173 1.1 ahoka crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
1174 1.1 ahoka if (crc != le32toh(dnode->node_crc)) {
1175 1.1 ahoka chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
1176 1.1 ahoka err = EIO;
1177 1.1 ahoka goto out;
1178 1.1 ahoka }
1179 1.5.2.1 tls
1180 1.5.2.1 tls /* Check crc of data. */
1181 1.1 ahoka crc = crc32(0, (uint8_t *)dnode->data, dnode->data_length);
1182 1.1 ahoka if (crc != le32toh(dnode->data_crc)) {
1183 1.1 ahoka chfs_err("Data CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->data_crc));
1184 1.1 ahoka err = EIO;
1185 1.1 ahoka goto out;
1186 1.1 ahoka }
1187 1.1 ahoka
1188 1.1 ahoka memcpy(bp->b_data, dnode->data, dnode->data_length);
1189 1.1 ahoka bp->b_resid = 0;
1190 1.1 ahoka
1191 1.1 ahoka out:
1192 1.1 ahoka kmem_free(buf, size);
1193 1.1 ahoka return err;
1194 1.1 ahoka }
1195