Home | History | Annotate | Line # | Download | only in chfs
chfs_readinode.c revision 1.7
      1  1.7  mbalmer /*	$NetBSD: chfs_readinode.c,v 1.7 2012/12/01 11:31:01 mbalmer Exp $	*/
      2  1.1    ahoka 
      3  1.1    ahoka /*-
      4  1.1    ahoka  * Copyright (c) 2010 Department of Software Engineering,
      5  1.1    ahoka  *		      University of Szeged, Hungary
      6  1.1    ahoka  * Copyright (C) 2010 David Tengeri <dtengeri (at) inf.u-szeged.hu>
      7  1.1    ahoka  * Copyright (C) 2010 Tamas Toth <ttoth (at) inf.u-szeged.hu>
      8  1.1    ahoka  * Copyright (C) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      9  1.1    ahoka  * All rights reserved.
     10  1.1    ahoka  *
     11  1.1    ahoka  * This code is derived from software contributed to The NetBSD Foundation
     12  1.1    ahoka  * by the Department of Software Engineering, University of Szeged, Hungary
     13  1.1    ahoka  *
     14  1.1    ahoka  * Redistribution and use in source and binary forms, with or without
     15  1.1    ahoka  * modification, are permitted provided that the following conditions
     16  1.1    ahoka  * are met:
     17  1.1    ahoka  * 1. Redistributions of source code must retain the above copyright
     18  1.1    ahoka  *    notice, this list of conditions and the following disclaimer.
     19  1.1    ahoka  * 2. Redistributions in binary form must reproduce the above copyright
     20  1.1    ahoka  *    notice, this list of conditions and the following disclaimer in the
     21  1.1    ahoka  *    documentation and/or other materials provided with the distribution.
     22  1.1    ahoka  *
     23  1.1    ahoka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  1.1    ahoka  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  1.1    ahoka  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  1.1    ahoka  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  1.1    ahoka  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     28  1.1    ahoka  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     29  1.1    ahoka  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     30  1.1    ahoka  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     31  1.1    ahoka  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.1    ahoka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.1    ahoka  * SUCH DAMAGE.
     34  1.1    ahoka  */
     35  1.1    ahoka 
     36  1.1    ahoka #include <sys/buf.h>
     37  1.1    ahoka 
     38  1.1    ahoka #include "chfs.h"
     39  1.1    ahoka 
     40  1.1    ahoka /* tmp node operations */
     41  1.1    ahoka int chfs_check_td_data(struct chfs_mount *,
     42  1.1    ahoka     struct chfs_tmp_dnode *);
     43  1.1    ahoka int chfs_check_td_node(struct chfs_mount *,
     44  1.1    ahoka     struct chfs_tmp_dnode *);
     45  1.1    ahoka struct chfs_node_ref *chfs_first_valid_data_ref(struct chfs_node_ref *);
     46  1.1    ahoka int chfs_add_tmp_dnode_to_tree(struct chfs_mount *,
     47  1.1    ahoka     struct chfs_readinode_info *,
     48  1.1    ahoka     struct chfs_tmp_dnode *);
     49  1.1    ahoka void chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *,
     50  1.1    ahoka 	struct chfs_tmp_dnode *);
     51  1.1    ahoka void chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *,
     52  1.1    ahoka 	struct chfs_tmp_dnode *);
     53  1.1    ahoka static void chfs_kill_td(struct chfs_mount *,
     54  1.1    ahoka     struct chfs_tmp_dnode *);
     55  1.1    ahoka static void chfs_kill_tdi(struct chfs_mount *,
     56  1.1    ahoka     struct chfs_tmp_dnode_info *);
     57  1.1    ahoka /* frag node operations */
     58  1.1    ahoka struct chfs_node_frag *new_fragment(struct chfs_full_dnode *,
     59  1.1    ahoka     uint32_t,
     60  1.1    ahoka     uint32_t);
     61  1.1    ahoka int no_overlapping_node(struct rb_tree *, struct chfs_node_frag *,
     62  1.1    ahoka     struct chfs_node_frag *, uint32_t);
     63  1.1    ahoka int chfs_add_frag_to_fragtree(struct chfs_mount *,
     64  1.1    ahoka     struct rb_tree *,
     65  1.1    ahoka     struct chfs_node_frag *);
     66  1.1    ahoka void chfs_obsolete_node_frag(struct chfs_mount *,
     67  1.1    ahoka     struct chfs_node_frag *);
     68  1.1    ahoka /* general node operations */
     69  1.1    ahoka int chfs_get_data_nodes(struct chfs_mount *,
     70  1.1    ahoka     struct chfs_inode *,
     71  1.1    ahoka     struct chfs_readinode_info *);
     72  1.1    ahoka int chfs_build_fragtree(struct chfs_mount *,
     73  1.1    ahoka     struct chfs_inode *,
     74  1.1    ahoka     struct chfs_readinode_info *);
     75  1.1    ahoka 
     76  1.1    ahoka 
     77  1.1    ahoka 
     78  1.6    ttoth /* tmp node rbtree operations */
     79  1.1    ahoka static signed int
     80  1.1    ahoka tmp_node_compare_nodes(void *ctx, const void *n1, const void *n2)
     81  1.1    ahoka {
     82  1.1    ahoka 	const struct chfs_tmp_dnode_info *tdi1 = n1;
     83  1.1    ahoka 	const struct chfs_tmp_dnode_info *tdi2 = n2;
     84  1.1    ahoka 
     85  1.1    ahoka 	return (tdi1->tmpnode->node->ofs - tdi2->tmpnode->node->ofs);
     86  1.1    ahoka }
     87  1.1    ahoka 
     88  1.1    ahoka static signed int
     89  1.1    ahoka tmp_node_compare_key(void *ctx, const void *n, const void *key)
     90  1.1    ahoka {
     91  1.1    ahoka 	const struct chfs_tmp_dnode_info *tdi = n;
     92  1.1    ahoka 	uint64_t ofs =  *(const uint64_t *)key;
     93  1.1    ahoka 
     94  1.1    ahoka 	return (tdi->tmpnode->node->ofs - ofs);
     95  1.1    ahoka }
     96  1.1    ahoka 
     97  1.1    ahoka const rb_tree_ops_t tmp_node_rbtree_ops = {
     98  1.1    ahoka 	.rbto_compare_nodes = tmp_node_compare_nodes,
     99  1.1    ahoka 	.rbto_compare_key = tmp_node_compare_key,
    100  1.1    ahoka 	.rbto_node_offset = offsetof(struct chfs_tmp_dnode_info, rb_node),
    101  1.1    ahoka 	.rbto_context = NULL
    102  1.1    ahoka };
    103  1.1    ahoka 
    104  1.1    ahoka 
    105  1.6    ttoth /* frag node rbtree operations */
    106  1.1    ahoka static signed int
    107  1.1    ahoka frag_compare_nodes(void *ctx, const void *n1, const void *n2)
    108  1.1    ahoka {
    109  1.1    ahoka 	const struct chfs_node_frag *frag1 = n1;
    110  1.1    ahoka 	const struct chfs_node_frag *frag2 = n2;
    111  1.1    ahoka 
    112  1.1    ahoka 	return (frag1->ofs - frag2->ofs);
    113  1.1    ahoka }
    114  1.1    ahoka 
    115  1.1    ahoka static signed int
    116  1.1    ahoka frag_compare_key(void *ctx, const void *n, const void *key)
    117  1.1    ahoka {
    118  1.1    ahoka 	const struct chfs_node_frag *frag = n;
    119  1.1    ahoka 	uint64_t ofs = *(const uint64_t *)key;
    120  1.1    ahoka 
    121  1.1    ahoka 	return (frag->ofs - ofs);
    122  1.1    ahoka }
    123  1.1    ahoka 
    124  1.1    ahoka const rb_tree_ops_t frag_rbtree_ops = {
    125  1.1    ahoka 	.rbto_compare_nodes = frag_compare_nodes,
    126  1.1    ahoka 	.rbto_compare_key   = frag_compare_key,
    127  1.1    ahoka 	.rbto_node_offset = offsetof(struct chfs_node_frag, rb_node),
    128  1.1    ahoka 	.rbto_context = NULL
    129  1.1    ahoka };
    130  1.1    ahoka 
    131  1.1    ahoka 
    132  1.1    ahoka /*
    133  1.6    ttoth  * chfs_check_td_data - checks the data CRC of the node
    134  1.1    ahoka  *
    135  1.1    ahoka  * Returns: 0 - if everything OK;
    136  1.1    ahoka  * 	    	1 - if CRC is incorrect;
    137  1.1    ahoka  * 	    	2 - else;
    138  1.1    ahoka  *	    	error code if an error occured.
    139  1.1    ahoka  */
    140  1.1    ahoka int
    141  1.1    ahoka chfs_check_td_data(struct chfs_mount *chmp,
    142  1.1    ahoka     struct chfs_tmp_dnode *td)
    143  1.1    ahoka {
    144  1.1    ahoka 	int err;
    145  1.1    ahoka 	size_t retlen, len, totlen;
    146  1.1    ahoka 	uint32_t crc;
    147  1.1    ahoka 	uint64_t ofs;
    148  1.1    ahoka 	char *buf;
    149  1.1    ahoka 	struct chfs_node_ref *nref = td->node->nref;
    150  1.1    ahoka 
    151  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    152  1.1    ahoka 	KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
    153  1.1    ahoka 
    154  1.1    ahoka 	ofs = CHFS_GET_OFS(nref->nref_offset) + sizeof(struct chfs_flash_data_node);
    155  1.1    ahoka 	len = td->node->size;
    156  1.1    ahoka 	if (!len)
    157  1.1    ahoka 		return 0;
    158  1.1    ahoka 
    159  1.6    ttoth 	/* Read data. */
    160  1.1    ahoka 	buf = kmem_alloc(len, KM_SLEEP);
    161  1.1    ahoka 	if (!buf) {
    162  1.1    ahoka 		dbg("allocating error\n");
    163  1.1    ahoka 		return 2;
    164  1.1    ahoka 	}
    165  1.1    ahoka 	err = chfs_read_leb(chmp, nref->nref_lnr, buf, ofs, len, &retlen);
    166  1.1    ahoka 	if (err) {
    167  1.7  mbalmer 		dbg("error while reading: %d\n", err);
    168  1.1    ahoka 		err = 2;
    169  1.1    ahoka 		goto out;
    170  1.1    ahoka 	}
    171  1.1    ahoka 
    172  1.6    ttoth 	/* Check crc. */
    173  1.1    ahoka 	if (len != retlen) {
    174  1.1    ahoka 		dbg("len:%zu, retlen:%zu\n", len, retlen);
    175  1.1    ahoka 		err = 2;
    176  1.1    ahoka 		goto out;
    177  1.1    ahoka 	}
    178  1.1    ahoka 	crc = crc32(0, (uint8_t *)buf, len);
    179  1.1    ahoka 
    180  1.1    ahoka 	if (crc != td->data_crc) {
    181  1.1    ahoka 		dbg("crc failed, calculated: 0x%x, orig: 0x%x\n", crc, td->data_crc);
    182  1.1    ahoka 		kmem_free(buf, len);
    183  1.1    ahoka 		return 1;
    184  1.1    ahoka 	}
    185  1.1    ahoka 
    186  1.6    ttoth 	/* Correct sizes. */
    187  1.3    ttoth 	CHFS_MARK_REF_NORMAL(nref);
    188  1.1    ahoka 	totlen = CHFS_PAD(sizeof(struct chfs_flash_data_node) + len);
    189  1.1    ahoka 
    190  1.1    ahoka 	mutex_enter(&chmp->chm_lock_sizes);
    191  1.1    ahoka 	chfs_change_size_unchecked(chmp, &chmp->chm_blocks[nref->nref_lnr], -totlen);
    192  1.1    ahoka 	chfs_change_size_used(chmp, &chmp->chm_blocks[nref->nref_lnr], totlen);
    193  1.1    ahoka 	mutex_exit(&chmp->chm_lock_sizes);
    194  1.1    ahoka 	KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
    195  1.1    ahoka 
    196  1.1    ahoka 	err = 0;
    197  1.1    ahoka out:
    198  1.1    ahoka 	kmem_free(buf, len);
    199  1.1    ahoka 	return err;
    200  1.1    ahoka }
    201  1.1    ahoka 
    202  1.6    ttoth /* chfs_check_td_node - checks a temporary node */
    203  1.1    ahoka int
    204  1.1    ahoka chfs_check_td_node(struct chfs_mount *chmp, struct chfs_tmp_dnode *td)
    205  1.1    ahoka {
    206  1.1    ahoka 	int ret;
    207  1.1    ahoka 
    208  1.1    ahoka 	if (CHFS_REF_FLAGS(td->node->nref) != CHFS_UNCHECKED_NODE_MASK)
    209  1.1    ahoka 		return 0;
    210  1.1    ahoka 
    211  1.1    ahoka 	ret = chfs_check_td_data(chmp, td);
    212  1.1    ahoka 	return ret;
    213  1.1    ahoka }
    214  1.1    ahoka 
    215  1.6    ttoth /*
    216  1.6    ttoth  * chfs_first_valid_data_ref -
    217  1.6    ttoth  * returns the first valid nref after the given nref
    218  1.6    ttoth  */
    219  1.1    ahoka struct chfs_node_ref *
    220  1.1    ahoka chfs_first_valid_data_ref(struct chfs_node_ref *nref)
    221  1.1    ahoka {
    222  1.1    ahoka 	while (nref) {
    223  1.1    ahoka 		if (!CHFS_REF_OBSOLETE(nref)) {
    224  1.1    ahoka #ifdef DGB_MSG_GC
    225  1.1    ahoka 			if (nref->nref_lnr == REF_EMPTY_NODE) {
    226  1.1    ahoka 				dbg("FIRST VALID IS EMPTY!\n");
    227  1.1    ahoka 			}
    228  1.1    ahoka #endif
    229  1.1    ahoka 			return nref;
    230  1.1    ahoka 		}
    231  1.1    ahoka 
    232  1.1    ahoka 		if (nref->nref_next) {
    233  1.1    ahoka 			nref = nref->nref_next;
    234  1.1    ahoka 		} else
    235  1.1    ahoka 			break;
    236  1.1    ahoka 	}
    237  1.1    ahoka 	return NULL;
    238  1.1    ahoka }
    239  1.1    ahoka 
    240  1.6    ttoth /*
    241  1.6    ttoth  * chfs_add_tmp_dnode_to_tdi -
    242  1.6    ttoth  * adds a temporary node to a temporary node descriptor
    243  1.6    ttoth  */
    244  1.1    ahoka void
    245  1.1    ahoka chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *tdi,
    246  1.1    ahoka 	struct chfs_tmp_dnode *td)
    247  1.1    ahoka {
    248  1.1    ahoka 	if (!tdi->tmpnode) {
    249  1.6    ttoth 	/* The chain is empty. */
    250  1.1    ahoka 		tdi->tmpnode = td;
    251  1.1    ahoka 	} else {
    252  1.6    ttoth 	/* Insert into the chain. */
    253  1.1    ahoka 		struct chfs_tmp_dnode *tmp = tdi->tmpnode;
    254  1.1    ahoka 		while (tmp->next) {
    255  1.1    ahoka 			tmp = tmp->next;
    256  1.1    ahoka 		}
    257  1.1    ahoka 		tmp->next = td;
    258  1.1    ahoka 	}
    259  1.1    ahoka }
    260  1.1    ahoka 
    261  1.6    ttoth /*
    262  1.6    ttoth  * chfs_remove_tmp_dnode_from_tdi -
    263  1.6    ttoth  * removes a temporary node from its descriptor
    264  1.6    ttoth  */
    265  1.1    ahoka void
    266  1.1    ahoka chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *tdi,
    267  1.1    ahoka 	struct chfs_tmp_dnode *td)
    268  1.1    ahoka {
    269  1.1    ahoka 	if (tdi->tmpnode == td) {
    270  1.6    ttoth 	/* It's the first in the chain. */
    271  1.1    ahoka 		tdi->tmpnode = tdi->tmpnode->next;
    272  1.1    ahoka 	} else {
    273  1.6    ttoth 	/* Remove from the middle of the chain. */
    274  1.1    ahoka 		struct chfs_tmp_dnode *tmp = tdi->tmpnode->next;
    275  1.1    ahoka 		while (tmp->next && tmp->next != td) {
    276  1.1    ahoka 			tmp = tmp->next;
    277  1.1    ahoka 		}
    278  1.1    ahoka 		if (tmp->next) {
    279  1.1    ahoka 			tmp->next = td->next;
    280  1.1    ahoka 		}
    281  1.1    ahoka 	}
    282  1.1    ahoka }
    283  1.1    ahoka 
    284  1.6    ttoth /* chfs_kill_td - removes all components of a temporary node */
    285  1.1    ahoka static void
    286  1.1    ahoka chfs_kill_td(struct chfs_mount *chmp,
    287  1.1    ahoka     struct chfs_tmp_dnode *td)
    288  1.1    ahoka {
    289  1.3    ttoth 	struct chfs_vnode_cache *vc;
    290  1.3    ttoth 	if (td->node) {
    291  1.3    ttoth 		mutex_enter(&chmp->chm_lock_vnocache);
    292  1.6    ttoth 		/* Remove the node from the vnode cache's data node chain. */
    293  1.3    ttoth 		vc = chfs_nref_to_vc(td->node->nref);
    294  1.3    ttoth 		chfs_remove_and_obsolete(chmp, vc, td->node->nref, &vc->dnode);
    295  1.3    ttoth 		mutex_exit(&chmp->chm_lock_vnocache);
    296  1.1    ahoka 	}
    297  1.1    ahoka 
    298  1.1    ahoka 	chfs_free_tmp_dnode(td);
    299  1.1    ahoka }
    300  1.1    ahoka 
    301  1.6    ttoth /* chfs_kill_tdi - removes a temporary node descriptor */
    302  1.1    ahoka static void
    303  1.1    ahoka chfs_kill_tdi(struct chfs_mount *chmp,
    304  1.1    ahoka     struct chfs_tmp_dnode_info *tdi)
    305  1.1    ahoka {
    306  1.1    ahoka 	struct chfs_tmp_dnode *next, *tmp = tdi->tmpnode;
    307  1.1    ahoka 
    308  1.6    ttoth 	/* Iterate the chain and remove all temporary node from it. */
    309  1.1    ahoka 	while (tmp) {
    310  1.1    ahoka 		next = tmp->next;
    311  1.1    ahoka 		chfs_kill_td(chmp, tmp);
    312  1.1    ahoka 		tmp = next;
    313  1.1    ahoka 	}
    314  1.1    ahoka 
    315  1.1    ahoka 	chfs_free_tmp_dnode_info(tdi);
    316  1.1    ahoka }
    317  1.1    ahoka 
    318  1.6    ttoth /*
    319  1.6    ttoth  * chfs_add_tmp_dnode_to_tree -
    320  1.6    ttoth  * adds a temporary node to the temporary tree
    321  1.6    ttoth  */
    322  1.1    ahoka int
    323  1.1    ahoka chfs_add_tmp_dnode_to_tree(struct chfs_mount *chmp,
    324  1.1    ahoka     struct chfs_readinode_info *rii,
    325  1.1    ahoka     struct chfs_tmp_dnode *newtd)
    326  1.1    ahoka {
    327  1.1    ahoka 	uint64_t end_ofs = newtd->node->ofs + newtd->node->size;
    328  1.1    ahoka 	struct chfs_tmp_dnode_info *this;
    329  1.1    ahoka 	struct rb_node *node, *prev_node;
    330  1.1    ahoka 	struct chfs_tmp_dnode_info *newtdi;
    331  1.1    ahoka 
    332  1.1    ahoka 	node = rb_tree_find_node(&rii->tdi_root, &newtd->node->ofs);
    333  1.1    ahoka 	if (node) {
    334  1.1    ahoka 		this = (struct chfs_tmp_dnode_info *)node;
    335  1.1    ahoka 		while (this->tmpnode->overlapped) {
    336  1.1    ahoka 			prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
    337  1.1    ahoka 			if (!prev_node) {
    338  1.1    ahoka 				this->tmpnode->overlapped = 0;
    339  1.1    ahoka 				break;
    340  1.1    ahoka 			}
    341  1.1    ahoka 			node = prev_node;
    342  1.1    ahoka 			this = (struct chfs_tmp_dnode_info *)node;
    343  1.1    ahoka 		}
    344  1.1    ahoka 	}
    345  1.6    ttoth 
    346  1.1    ahoka 	while (node) {
    347  1.1    ahoka 		this = (struct chfs_tmp_dnode_info *)node;
    348  1.1    ahoka 		if (this->tmpnode->node->ofs > end_ofs)
    349  1.1    ahoka 			break;
    350  1.1    ahoka 
    351  1.1    ahoka 		struct chfs_tmp_dnode *tmp_td = this->tmpnode;
    352  1.1    ahoka 		while (tmp_td) {
    353  1.1    ahoka 			if (tmp_td->version == newtd->version) {
    354  1.6    ttoth 				/* This is a new version of an old node. */
    355  1.1    ahoka 				if (!chfs_check_td_node(chmp, tmp_td)) {
    356  1.1    ahoka 					dbg("calling kill td 0\n");
    357  1.1    ahoka 					chfs_kill_td(chmp, newtd);
    358  1.1    ahoka 					return 0;
    359  1.1    ahoka 				} else {
    360  1.1    ahoka 					chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    361  1.1    ahoka 					chfs_kill_td(chmp, tmp_td);
    362  1.1    ahoka 					chfs_add_tmp_dnode_to_tdi(this, newtd);
    363  1.1    ahoka 					return 0;
    364  1.1    ahoka 				}
    365  1.1    ahoka 			}
    366  1.1    ahoka 			if (tmp_td->version < newtd->version &&
    367  1.1    ahoka 				tmp_td->node->ofs >= newtd->node->ofs &&
    368  1.1    ahoka 				tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
    369  1.1    ahoka 				/* New node entirely overlaps 'this' */
    370  1.1    ahoka 				if (chfs_check_td_node(chmp, newtd)) {
    371  1.1    ahoka 					dbg("calling kill td 2\n");
    372  1.1    ahoka 					chfs_kill_td(chmp, newtd);
    373  1.1    ahoka 					return 0;
    374  1.1    ahoka 				}
    375  1.1    ahoka 				/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
    376  1.1    ahoka 				while (tmp_td && tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
    377  1.1    ahoka 					struct rb_node *next = rb_tree_iterate(&rii->tdi_root, this, RB_DIR_RIGHT);
    378  1.1    ahoka 					struct chfs_tmp_dnode_info *next_tdi = (struct chfs_tmp_dnode_info *)next;
    379  1.1    ahoka 					struct chfs_tmp_dnode *next_td = NULL;
    380  1.1    ahoka 					if (tmp_td->next) {
    381  1.1    ahoka 						next_td = tmp_td->next;
    382  1.1    ahoka 					} else if (next_tdi) {
    383  1.1    ahoka 						next_td = next_tdi->tmpnode;
    384  1.1    ahoka 					}
    385  1.1    ahoka 					if (tmp_td->version < newtd->version) {
    386  1.1    ahoka 						chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    387  1.1    ahoka 						chfs_kill_td(chmp, tmp_td);
    388  1.1    ahoka 						if (!this->tmpnode) {
    389  1.1    ahoka 							rb_tree_remove_node(&rii->tdi_root, this);
    390  1.1    ahoka 							chfs_kill_tdi(chmp, this);
    391  1.1    ahoka 							this = next_tdi;
    392  1.1    ahoka 						}
    393  1.1    ahoka 					}
    394  1.1    ahoka 					tmp_td = next_td;
    395  1.1    ahoka 				}
    396  1.1    ahoka 				continue;
    397  1.1    ahoka 			}
    398  1.1    ahoka 			if (tmp_td->version > newtd->version &&
    399  1.1    ahoka 				tmp_td->node->ofs <= newtd->node->ofs &&
    400  1.1    ahoka 				tmp_td->node->ofs + tmp_td->node->size >= end_ofs) {
    401  1.1    ahoka 				/* New node entirely overlapped by 'this' */
    402  1.1    ahoka 				if (!chfs_check_td_node(chmp, tmp_td)) {
    403  1.2      agc 					dbg("this version: %llu\n",
    404  1.2      agc 						(unsigned long long)tmp_td->version);
    405  1.2      agc 					dbg("this ofs: %llu, size: %u\n",
    406  1.2      agc 						(unsigned long long)tmp_td->node->ofs,
    407  1.2      agc 						tmp_td->node->size);
    408  1.1    ahoka 					dbg("calling kill td 4\n");
    409  1.1    ahoka 					chfs_kill_td(chmp, newtd);
    410  1.1    ahoka 					return 0;
    411  1.1    ahoka 				}
    412  1.1    ahoka 				/* ... but 'this' was bad. Replace it... */
    413  1.1    ahoka 				chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    414  1.1    ahoka 				chfs_kill_td(chmp, tmp_td);
    415  1.1    ahoka 				if (!this->tmpnode) {
    416  1.1    ahoka 					rb_tree_remove_node(&rii->tdi_root, this);
    417  1.1    ahoka 					chfs_kill_tdi(chmp, this);
    418  1.1    ahoka 				}
    419  1.1    ahoka 				dbg("calling kill td 5\n");
    420  1.1    ahoka 				chfs_kill_td(chmp, newtd);
    421  1.1    ahoka 				break;
    422  1.1    ahoka 			}
    423  1.1    ahoka 			tmp_td = tmp_td->next;
    424  1.1    ahoka 		}
    425  1.1    ahoka 		node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
    426  1.1    ahoka 	}
    427  1.1    ahoka 
    428  1.1    ahoka 	newtdi = chfs_alloc_tmp_dnode_info();
    429  1.1    ahoka 	chfs_add_tmp_dnode_to_tdi(newtdi, newtd);
    430  1.1    ahoka 	/* We neither completely obsoleted nor were completely
    431  1.1    ahoka 	   obsoleted by an earlier node. Insert into the tree */
    432  1.1    ahoka 	struct chfs_tmp_dnode_info *tmp_tdi = rb_tree_insert_node(&rii->tdi_root, newtdi);
    433  1.1    ahoka 	if (tmp_tdi != newtdi) {
    434  1.3    ttoth 		chfs_remove_tmp_dnode_from_tdi(newtdi, newtd);
    435  1.1    ahoka 		chfs_add_tmp_dnode_to_tdi(tmp_tdi, newtd);
    436  1.1    ahoka 		chfs_kill_tdi(chmp, newtdi);
    437  1.1    ahoka 	}
    438  1.1    ahoka 
    439  1.1    ahoka 	/* If there's anything behind that overlaps us, note it */
    440  1.1    ahoka 	node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
    441  1.1    ahoka 	if (node) {
    442  1.1    ahoka 		while (1) {
    443  1.1    ahoka 			this = (struct chfs_tmp_dnode_info *)node;
    444  1.1    ahoka 			if (this->tmpnode->node->ofs + this->tmpnode->node->size > newtd->node->ofs) {
    445  1.1    ahoka 				newtd->overlapped = 1;
    446  1.1    ahoka 			}
    447  1.1    ahoka 			if (!this->tmpnode->overlapped)
    448  1.1    ahoka 				break;
    449  1.1    ahoka 
    450  1.1    ahoka 			prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
    451  1.1    ahoka 			if (!prev_node) {
    452  1.1    ahoka 				this->tmpnode->overlapped = 0;
    453  1.1    ahoka 				break;
    454  1.1    ahoka 			}
    455  1.1    ahoka 			node = prev_node;
    456  1.1    ahoka 		}
    457  1.1    ahoka 	}
    458  1.1    ahoka 
    459  1.1    ahoka 	/* If the new node overlaps anything ahead, note it */
    460  1.1    ahoka 	node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
    461  1.1    ahoka 	this = (struct chfs_tmp_dnode_info *)node;
    462  1.1    ahoka 	while (this && this->tmpnode->node->ofs < end_ofs) {
    463  1.1    ahoka 		this->tmpnode->overlapped = 1;
    464  1.1    ahoka 		node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
    465  1.1    ahoka 		this = (struct chfs_tmp_dnode_info *)node;
    466  1.1    ahoka 	}
    467  1.1    ahoka 	return 0;
    468  1.1    ahoka }
    469  1.1    ahoka 
    470  1.1    ahoka 
    471  1.6    ttoth /* new_fragment - creates a new fragment for a data node */
    472  1.1    ahoka struct chfs_node_frag *
    473  1.1    ahoka new_fragment(struct chfs_full_dnode *fdn, uint32_t ofs, uint32_t size)
    474  1.1    ahoka {
    475  1.1    ahoka 	struct chfs_node_frag *newfrag;
    476  1.1    ahoka 	newfrag = chfs_alloc_node_frag();
    477  1.1    ahoka 	if (newfrag) {
    478  1.6    ttoth 		/* Initialize fragment. */
    479  1.1    ahoka 		newfrag->ofs = ofs;
    480  1.1    ahoka 		newfrag->size = size;
    481  1.1    ahoka 		newfrag->node = fdn;
    482  1.3    ttoth 		if (newfrag->node) {
    483  1.3    ttoth 			newfrag->node->frags++;
    484  1.3    ttoth 		}
    485  1.1    ahoka 	} else {
    486  1.1    ahoka 		chfs_err("cannot allocate a chfs_node_frag object\n");
    487  1.1    ahoka 	}
    488  1.1    ahoka 	return newfrag;
    489  1.1    ahoka }
    490  1.1    ahoka 
    491  1.6    ttoth /*
    492  1.6    ttoth  * no_overlapping_node - inserts a node to the fragtree
    493  1.6    ttoth  * Puts hole frag into the holes between fragments.
    494  1.6    ttoth  */
    495  1.1    ahoka int
    496  1.1    ahoka no_overlapping_node(struct rb_tree *fragtree,
    497  1.1    ahoka     struct chfs_node_frag *newfrag,
    498  1.1    ahoka     struct chfs_node_frag *this, uint32_t lastend)
    499  1.1    ahoka {
    500  1.1    ahoka 	if (lastend < newfrag->node->ofs) {
    501  1.1    ahoka 		struct chfs_node_frag *holefrag;
    502  1.1    ahoka 
    503  1.1    ahoka 		holefrag = new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
    504  1.1    ahoka 		if (!holefrag) {
    505  1.1    ahoka 			chfs_free_node_frag(newfrag);
    506  1.1    ahoka 			return ENOMEM;
    507  1.1    ahoka 		}
    508  1.1    ahoka 
    509  1.1    ahoka 		rb_tree_insert_node(fragtree, holefrag);
    510  1.1    ahoka 		this = holefrag;
    511  1.1    ahoka 	}
    512  1.1    ahoka 
    513  1.1    ahoka 	rb_tree_insert_node(fragtree, newfrag);
    514  1.1    ahoka 
    515  1.1    ahoka 	return 0;
    516  1.1    ahoka }
    517  1.1    ahoka 
    518  1.6    ttoth /*
    519  1.6    ttoth  * chfs_add_frag_to_fragtree -
    520  1.6    ttoth  * adds a fragment to a data node's fragtree
    521  1.6    ttoth  */
    522  1.1    ahoka int
    523  1.1    ahoka chfs_add_frag_to_fragtree(struct chfs_mount *chmp,
    524  1.1    ahoka     struct rb_tree *fragtree,
    525  1.1    ahoka     struct chfs_node_frag *newfrag)
    526  1.1    ahoka {
    527  1.1    ahoka 	struct chfs_node_frag *this;
    528  1.1    ahoka 	uint32_t lastend;
    529  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    530  1.1    ahoka 
    531  1.6    ttoth 	/* Find the offset of frag which is before the new one. */
    532  1.1    ahoka 	this = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &newfrag->ofs);
    533  1.1    ahoka 
    534  1.1    ahoka 	if (this) {
    535  1.1    ahoka 		lastend = this->ofs + this->size;
    536  1.1    ahoka 	} else {
    537  1.1    ahoka 		lastend = 0;
    538  1.1    ahoka 	}
    539  1.1    ahoka 
    540  1.6    ttoth 	/* New fragment is end of the file and there is no overlapping. */
    541  1.1    ahoka 	if (lastend <= newfrag->ofs) {
    542  1.1    ahoka 		if (lastend && (lastend - 1) >> PAGE_SHIFT == newfrag->ofs >> PAGE_SHIFT) {
    543  1.1    ahoka 			if (this->node)
    544  1.1    ahoka 				CHFS_MARK_REF_NORMAL(this->node->nref);
    545  1.1    ahoka 			CHFS_MARK_REF_NORMAL(newfrag->node->nref);
    546  1.1    ahoka 		}
    547  1.1    ahoka 		return no_overlapping_node(fragtree, newfrag, this, lastend);
    548  1.1    ahoka 	}
    549  1.1    ahoka 
    550  1.1    ahoka 	if (newfrag->ofs > this->ofs) {
    551  1.1    ahoka 		CHFS_MARK_REF_NORMAL(newfrag->node->nref);
    552  1.1    ahoka 		if (this->node)
    553  1.1    ahoka 			CHFS_MARK_REF_NORMAL(this->node->nref);
    554  1.1    ahoka 
    555  1.1    ahoka 		if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
    556  1.6    ttoth 			/* Newfrag is inside of this. */
    557  1.1    ahoka 			struct chfs_node_frag *newfrag2;
    558  1.1    ahoka 
    559  1.1    ahoka 			newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
    560  1.1    ahoka 			    this->ofs + this->size - newfrag->ofs - newfrag->size);
    561  1.1    ahoka 			if (!newfrag2)
    562  1.1    ahoka 				return ENOMEM;
    563  1.1    ahoka 
    564  1.1    ahoka 			this->size = newfrag->ofs - this->ofs;
    565  1.1    ahoka 
    566  1.1    ahoka 			rb_tree_insert_node(fragtree, newfrag);
    567  1.1    ahoka 			rb_tree_insert_node(fragtree, newfrag2);
    568  1.1    ahoka 
    569  1.1    ahoka 			return 0;
    570  1.1    ahoka 		}
    571  1.6    ttoth 		/* Newfrag is bottom of this. */
    572  1.1    ahoka 		this->size = newfrag->ofs - this->ofs;
    573  1.1    ahoka 		rb_tree_insert_node(fragtree, newfrag);
    574  1.1    ahoka 	} else {
    575  1.6    ttoth 		/* Newfrag start at same point */
    576  1.1    ahoka 		//TODO replace instead of remove and insert
    577  1.1    ahoka 		rb_tree_remove_node(fragtree, this);
    578  1.1    ahoka 		rb_tree_insert_node(fragtree, newfrag);
    579  1.1    ahoka 
    580  1.1    ahoka 		if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
    581  1.1    ahoka 			chfs_obsolete_node_frag(chmp, this);
    582  1.1    ahoka 		} else {
    583  1.1    ahoka 			this->ofs += newfrag->size;
    584  1.1    ahoka 			this->size -= newfrag->size;
    585  1.1    ahoka 
    586  1.1    ahoka 			rb_tree_insert_node(fragtree, this);
    587  1.1    ahoka 			return 0;
    588  1.1    ahoka 		}
    589  1.1    ahoka 	}
    590  1.1    ahoka 	/* OK, now we have newfrag added in the correct place in the tree, but
    591  1.1    ahoka 	   frag_next(newfrag) may be a fragment which is overlapped by it
    592  1.1    ahoka 	*/
    593  1.1    ahoka 	while ((this = frag_next(fragtree, newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
    594  1.1    ahoka 		rb_tree_remove_node(fragtree, this);
    595  1.1    ahoka 		chfs_obsolete_node_frag(chmp, this);
    596  1.1    ahoka 	}
    597  1.1    ahoka 
    598  1.1    ahoka 	if (!this || newfrag->ofs + newfrag->size == this->ofs)
    599  1.1    ahoka 		return 0;
    600  1.1    ahoka 
    601  1.1    ahoka 	this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
    602  1.1    ahoka 	this->ofs = newfrag->ofs + newfrag->size;
    603  1.1    ahoka 
    604  1.1    ahoka 	if (this->node)
    605  1.1    ahoka 		CHFS_MARK_REF_NORMAL(this->node->nref);
    606  1.1    ahoka 	CHFS_MARK_REF_NORMAL(newfrag->node->nref);
    607  1.1    ahoka 
    608  1.1    ahoka 	return 0;
    609  1.1    ahoka }
    610  1.1    ahoka 
    611  1.6    ttoth /*
    612  1.6    ttoth  * chfs_remove_frags_of_node -
    613  1.6    ttoth  * removes all fragments from a fragtree and DOESN'T OBSOLETE them
    614  1.6    ttoth  */
    615  1.1    ahoka void
    616  1.3    ttoth chfs_remove_frags_of_node(struct chfs_mount *chmp, struct rb_tree *fragtree,
    617  1.3    ttoth 	struct chfs_node_ref *nref)
    618  1.3    ttoth {
    619  1.3    ttoth 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    620  1.3    ttoth 	struct chfs_node_frag *this, *next;
    621  1.3    ttoth 
    622  1.5    ttoth 	if (nref == NULL) {
    623  1.5    ttoth 		return;
    624  1.5    ttoth 	}
    625  1.5    ttoth 
    626  1.6    ttoth 	/* Iterate the tree and clean all elements. */
    627  1.3    ttoth 	this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
    628  1.3    ttoth 	while (this) {
    629  1.3    ttoth 		next = frag_next(fragtree, this);
    630  1.3    ttoth 		if (this->node->nref == nref) {
    631  1.3    ttoth 			rb_tree_remove_node(fragtree, this);
    632  1.4    ttoth 			chfs_free_node_frag(this);
    633  1.3    ttoth 		}
    634  1.3    ttoth 		this = next;
    635  1.3    ttoth 	}
    636  1.3    ttoth }
    637  1.3    ttoth 
    638  1.6    ttoth /*
    639  1.6    ttoth  * chfs_kill_fragtree -
    640  1.6    ttoth  * removes all fragments from a fragtree and OBSOLETES them
    641  1.6    ttoth  */
    642  1.3    ttoth void
    643  1.3    ttoth chfs_kill_fragtree(struct chfs_mount *chmp, struct rb_tree *fragtree)
    644  1.1    ahoka {
    645  1.3    ttoth 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    646  1.1    ahoka 	struct chfs_node_frag *this, *next;
    647  1.1    ahoka 
    648  1.6    ttoth 	/* Iterate the tree and clean all elements. */
    649  1.1    ahoka 	this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
    650  1.1    ahoka 	while (this) {
    651  1.1    ahoka 		next = frag_next(fragtree, this);
    652  1.1    ahoka 		rb_tree_remove_node(fragtree, this);
    653  1.3    ttoth 		chfs_obsolete_node_frag(chmp, this);
    654  1.1    ahoka 		this = next;
    655  1.1    ahoka 	}
    656  1.1    ahoka }
    657  1.1    ahoka 
    658  1.6    ttoth /* chfs_truncate_fragtree - truncates the tree to a specified size */
    659  1.1    ahoka uint32_t
    660  1.1    ahoka chfs_truncate_fragtree(struct chfs_mount *chmp,
    661  1.1    ahoka 	struct rb_tree *fragtree, uint32_t size)
    662  1.1    ahoka {
    663  1.3    ttoth 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    664  1.1    ahoka 	struct chfs_node_frag *frag;
    665  1.1    ahoka 
    666  1.1    ahoka 	dbg("truncate to size: %u\n", size);
    667  1.1    ahoka 
    668  1.1    ahoka 	frag = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &size);
    669  1.1    ahoka 
    670  1.1    ahoka 	/* Find the last frag before size and set its new size. */
    671  1.1    ahoka 	if (frag && frag->ofs != size) {
    672  1.1    ahoka 		if (frag->ofs + frag->size > size) {
    673  1.1    ahoka 			frag->size = size - frag->ofs;
    674  1.1    ahoka 		}
    675  1.1    ahoka 		frag = frag_next(fragtree, frag);
    676  1.1    ahoka 	}
    677  1.1    ahoka 
    678  1.1    ahoka 	/* Delete frags after new size. */
    679  1.1    ahoka 	while (frag && frag->ofs >= size) {
    680  1.1    ahoka 		struct chfs_node_frag *next = frag_next(fragtree, frag);
    681  1.1    ahoka 
    682  1.1    ahoka 		rb_tree_remove_node(fragtree, frag);
    683  1.1    ahoka 		chfs_obsolete_node_frag(chmp, frag);
    684  1.1    ahoka 		frag = next;
    685  1.1    ahoka 	}
    686  1.1    ahoka 
    687  1.1    ahoka 	if (size == 0) {
    688  1.1    ahoka 		return 0;
    689  1.1    ahoka 	}
    690  1.1    ahoka 
    691  1.1    ahoka 	frag = frag_last(fragtree);
    692  1.1    ahoka 
    693  1.1    ahoka 	if (!frag) {
    694  1.1    ahoka 		return 0;
    695  1.1    ahoka 	}
    696  1.1    ahoka 
    697  1.1    ahoka 	if (frag->ofs + frag->size < size) {
    698  1.1    ahoka 		return frag->ofs + frag->size;
    699  1.1    ahoka 	}
    700  1.1    ahoka 
    701  1.1    ahoka 	/* FIXME Should we check the postion of the last node? (PAGE_CACHE size, etc.) */
    702  1.1    ahoka 	if (frag->node && (frag->ofs & (PAGE_SIZE - 1)) == 0) {
    703  1.3    ttoth 		frag->node->nref->nref_offset =
    704  1.3    ttoth 			CHFS_GET_OFS(frag->node->nref->nref_offset) | CHFS_PRISTINE_NODE_MASK;
    705  1.1    ahoka 	}
    706  1.1    ahoka 
    707  1.1    ahoka 	return size;
    708  1.1    ahoka }
    709  1.1    ahoka 
    710  1.6    ttoth /* chfs_obsolete_node_frag - obsoletes a fragment of a node */
    711  1.1    ahoka void
    712  1.1    ahoka chfs_obsolete_node_frag(struct chfs_mount *chmp,
    713  1.1    ahoka     struct chfs_node_frag *this)
    714  1.1    ahoka {
    715  1.3    ttoth 	struct chfs_vnode_cache *vc;
    716  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    717  1.1    ahoka 	if (this->node) {
    718  1.6    ttoth 	/* The fragment is in a node. */
    719  1.3    ttoth 		KASSERT(this->node->frags != 0);
    720  1.1    ahoka 		this->node->frags--;
    721  1.3    ttoth 		if (this->node->frags == 0) {
    722  1.6    ttoth 		/* This is the last fragment. (There is no more.) */
    723  1.3    ttoth 			KASSERT(!CHFS_REF_OBSOLETE(this->node->nref));
    724  1.3    ttoth 			mutex_enter(&chmp->chm_lock_vnocache);
    725  1.3    ttoth 			vc = chfs_nref_to_vc(this->node->nref);
    726  1.3    ttoth 			dbg("[MARK] lnr: %u ofs: %u\n", this->node->nref->nref_lnr,
    727  1.3    ttoth 				this->node->nref->nref_offset);
    728  1.3    ttoth 
    729  1.3    ttoth 			chfs_remove_and_obsolete(chmp, vc, this->node->nref, &vc->dnode);
    730  1.3    ttoth 			mutex_exit(&chmp->chm_lock_vnocache);
    731  1.3    ttoth 
    732  1.1    ahoka 			chfs_free_full_dnode(this->node);
    733  1.1    ahoka 		} else {
    734  1.6    ttoth 		/* There is more frags in the node. */
    735  1.1    ahoka 			CHFS_MARK_REF_NORMAL(this->node->nref);
    736  1.1    ahoka 		}
    737  1.1    ahoka 	}
    738  1.1    ahoka 	chfs_free_node_frag(this);
    739  1.1    ahoka }
    740  1.1    ahoka 
    741  1.6    ttoth /* chfs_add_full_dnode_to_inode - adds a data node to an inode */
    742  1.1    ahoka int
    743  1.1    ahoka chfs_add_full_dnode_to_inode(struct chfs_mount *chmp,
    744  1.1    ahoka     struct chfs_inode *ip,
    745  1.1    ahoka     struct chfs_full_dnode *fd)
    746  1.1    ahoka {
    747  1.1    ahoka 	int ret;
    748  1.1    ahoka 	struct chfs_node_frag *newfrag;
    749  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    750  1.1    ahoka 
    751  1.1    ahoka 	if (unlikely(!fd->size))
    752  1.1    ahoka 		return 0;
    753  1.1    ahoka 
    754  1.6    ttoth 	/* Create a new fragment from the data node and add it to the fragtree. */
    755  1.1    ahoka 	newfrag = new_fragment(fd, fd->ofs, fd->size);
    756  1.1    ahoka 	if (unlikely(!newfrag))
    757  1.1    ahoka 		return ENOMEM;
    758  1.1    ahoka 
    759  1.1    ahoka 	ret = chfs_add_frag_to_fragtree(chmp, &ip->fragtree, newfrag);
    760  1.1    ahoka 	if (ret)
    761  1.1    ahoka 		return ret;
    762  1.1    ahoka 
    763  1.6    ttoth 	/* Check previous fragment. */
    764  1.1    ahoka 	if (newfrag->ofs & (PAGE_SIZE - 1)) {
    765  1.1    ahoka 		struct chfs_node_frag *prev = frag_prev(&ip->fragtree, newfrag);
    766  1.1    ahoka 
    767  1.1    ahoka 		CHFS_MARK_REF_NORMAL(fd->nref);
    768  1.1    ahoka 		if (prev->node)
    769  1.1    ahoka 			CHFS_MARK_REF_NORMAL(prev->node->nref);
    770  1.1    ahoka 	}
    771  1.1    ahoka 
    772  1.6    ttoth 	/* Check next fragment. */
    773  1.1    ahoka 	if ((newfrag->ofs+newfrag->size) & (PAGE_SIZE - 1)) {
    774  1.1    ahoka 		struct chfs_node_frag *next = frag_next(&ip->fragtree, newfrag);
    775  1.1    ahoka 
    776  1.1    ahoka 		if (next) {
    777  1.1    ahoka 			CHFS_MARK_REF_NORMAL(fd->nref);
    778  1.1    ahoka 			if (next->node)
    779  1.1    ahoka 				CHFS_MARK_REF_NORMAL(next->node->nref);
    780  1.1    ahoka 		}
    781  1.1    ahoka 	}
    782  1.1    ahoka 
    783  1.1    ahoka 	return 0;
    784  1.1    ahoka }
    785  1.1    ahoka 
    786  1.1    ahoka 
    787  1.6    ttoth /* chfs_get_data_nodes - get temporary nodes of an inode */
    788  1.1    ahoka int
    789  1.1    ahoka chfs_get_data_nodes(struct chfs_mount *chmp,
    790  1.1    ahoka     struct chfs_inode *ip,
    791  1.1    ahoka     struct chfs_readinode_info *rii)
    792  1.1    ahoka {
    793  1.1    ahoka 	uint32_t crc;
    794  1.1    ahoka 	int err;
    795  1.1    ahoka 	size_t len, retlen;
    796  1.1    ahoka 	struct chfs_node_ref *nref;
    797  1.1    ahoka 	struct chfs_flash_data_node *dnode;
    798  1.1    ahoka 	struct chfs_tmp_dnode *td;
    799  1.1    ahoka 	char* buf;
    800  1.1    ahoka 
    801  1.1    ahoka 	len = sizeof(struct chfs_flash_data_node);
    802  1.1    ahoka 	buf = kmem_alloc(len, KM_SLEEP);
    803  1.1    ahoka 
    804  1.1    ahoka 	dnode = kmem_alloc(len, KM_SLEEP);
    805  1.1    ahoka 	if (!dnode)
    806  1.1    ahoka 		return ENOMEM;
    807  1.1    ahoka 
    808  1.1    ahoka 	nref = chfs_first_valid_data_ref(ip->chvc->dnode);
    809  1.1    ahoka 
    810  1.6    ttoth 	/* Update highest version. */
    811  1.1    ahoka 	rii->highest_version = ip->chvc->highest_version;
    812  1.1    ahoka 
    813  1.1    ahoka 	while(nref && (struct chfs_vnode_cache *)nref != ip->chvc) {
    814  1.1    ahoka 		err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), len, &retlen);
    815  1.1    ahoka 		if (err || len != retlen)
    816  1.1    ahoka 			goto out;
    817  1.1    ahoka 		dnode = (struct chfs_flash_data_node*)buf;
    818  1.1    ahoka 
    819  1.6    ttoth 		/* Check header crc. */
    820  1.1    ahoka 		crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
    821  1.1    ahoka 		if (crc != le32toh(dnode->hdr_crc)) {
    822  1.1    ahoka 			chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
    823  1.1    ahoka 			goto cont;
    824  1.1    ahoka 		}
    825  1.6    ttoth 
    826  1.6    ttoth 		/* Check header magic bitmask. */
    827  1.1    ahoka 		if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
    828  1.1    ahoka 			chfs_err("Wrong magic bitmask.\n");
    829  1.1    ahoka 			goto cont;
    830  1.1    ahoka 		}
    831  1.6    ttoth 
    832  1.6    ttoth 		/* Check node crc. */
    833  1.1    ahoka 		crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
    834  1.1    ahoka 		if (crc != le32toh(dnode->node_crc)) {
    835  1.1    ahoka 			chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
    836  1.1    ahoka 			goto cont;
    837  1.1    ahoka 		}
    838  1.6    ttoth 
    839  1.1    ahoka 		td = chfs_alloc_tmp_dnode();
    840  1.1    ahoka 		if (!td) {
    841  1.1    ahoka 			chfs_err("Can't allocate tmp dnode info.\n");
    842  1.1    ahoka 			err = ENOMEM;
    843  1.1    ahoka 			goto out;
    844  1.1    ahoka 		}
    845  1.6    ttoth 
    846  1.1    ahoka 		/* We don't check data crc here, just add nodes to tmp frag tree, because
    847  1.1    ahoka 		 * we don't want to check nodes which have been overlapped by a new node
    848  1.1    ahoka 		 * with a higher version number.
    849  1.1    ahoka 		 */
    850  1.1    ahoka 		td->node = chfs_alloc_full_dnode();
    851  1.1    ahoka 		if (!td->node) {
    852  1.1    ahoka 			chfs_err("Can't allocate full dnode info.\n");
    853  1.1    ahoka 			err = ENOMEM;
    854  1.1    ahoka 			goto out_tmp_dnode;
    855  1.1    ahoka 		}
    856  1.1    ahoka 		td->version = le64toh(dnode->version);
    857  1.1    ahoka 		td->node->ofs = le64toh(dnode->offset);
    858  1.1    ahoka 		td->data_crc = le32toh(dnode->data_crc);
    859  1.1    ahoka 		td->node->nref = nref;
    860  1.1    ahoka 		td->node->size = le32toh(dnode->data_length);
    861  1.3    ttoth 		td->node->frags = 1;
    862  1.1    ahoka 		td->overlapped = 0;
    863  1.1    ahoka 
    864  1.1    ahoka 		if (td->version > rii->highest_version) {
    865  1.1    ahoka 			rii->highest_version = td->version;
    866  1.1    ahoka 		}
    867  1.1    ahoka 
    868  1.6    ttoth 		/* Add node to the tree. */
    869  1.1    ahoka 		err = chfs_add_tmp_dnode_to_tree(chmp, rii, td);
    870  1.1    ahoka 		if (err)
    871  1.1    ahoka 			goto out_full_dnode;
    872  1.1    ahoka 
    873  1.1    ahoka cont:
    874  1.1    ahoka 		nref = chfs_first_valid_data_ref(nref->nref_next);
    875  1.1    ahoka 	}
    876  1.1    ahoka 
    877  1.1    ahoka 	ip->chvc->highest_version = rii->highest_version;
    878  1.1    ahoka 	return 0;
    879  1.1    ahoka 
    880  1.1    ahoka out_full_dnode:
    881  1.1    ahoka 	chfs_free_full_dnode(td->node);
    882  1.1    ahoka out_tmp_dnode:
    883  1.1    ahoka 	chfs_free_tmp_dnode(td);
    884  1.1    ahoka out:
    885  1.1    ahoka 	kmem_free(buf, len);
    886  1.1    ahoka 	kmem_free(dnode, len);
    887  1.1    ahoka 	return err;
    888  1.1    ahoka }
    889  1.1    ahoka 
    890  1.1    ahoka 
    891  1.6    ttoth /* chfs_build_fragtree - builds fragtree from temporary tree */
    892  1.1    ahoka int
    893  1.1    ahoka chfs_build_fragtree(struct chfs_mount *chmp, struct chfs_inode *ip,
    894  1.1    ahoka     struct chfs_readinode_info *rii)
    895  1.1    ahoka {
    896  1.1    ahoka 	struct chfs_tmp_dnode_info *pen, *last, *this;
    897  1.6    ttoth 	struct rb_tree ver_tree;    /* version tree, used only temporary */
    898  1.1    ahoka 	uint64_t high_ver = 0;
    899  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
    900  1.1    ahoka 
    901  1.1    ahoka 	rb_tree_init(&ver_tree, &tmp_node_rbtree_ops);
    902  1.1    ahoka 
    903  1.6    ttoth 	/* Update highest version and latest node reference. */
    904  1.1    ahoka 	if (rii->mdata_tn) {
    905  1.1    ahoka 		high_ver = rii->mdata_tn->tmpnode->version;
    906  1.1    ahoka 		rii->latest_ref = rii->mdata_tn->tmpnode->node->nref;
    907  1.1    ahoka 	}
    908  1.1    ahoka 
    909  1.6    ttoth 	/* Iterate the temporary tree in reverse order. */
    910  1.1    ahoka 	pen = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&rii->tdi_root);
    911  1.1    ahoka 
    912  1.1    ahoka 	while((last = pen)) {
    913  1.1    ahoka 		pen = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&rii->tdi_root, last, RB_DIR_LEFT);
    914  1.1    ahoka 
    915  1.6    ttoth 		/* We build here a version tree from overlapped nodes. */
    916  1.1    ahoka 		rb_tree_remove_node(&rii->tdi_root, last);
    917  1.1    ahoka 		rb_tree_insert_node(&ver_tree, last);
    918  1.1    ahoka 
    919  1.1    ahoka 		if (last->tmpnode->overlapped) {
    920  1.1    ahoka 			if (pen)
    921  1.1    ahoka 				continue;
    922  1.1    ahoka 
    923  1.1    ahoka 			last->tmpnode->overlapped = 0;
    924  1.1    ahoka 		}
    925  1.1    ahoka 
    926  1.1    ahoka 		this = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&ver_tree);
    927  1.1    ahoka 
    928  1.6    ttoth 		/* Start to build the fragtree. */
    929  1.1    ahoka 		while (this) {
    930  1.1    ahoka 			struct chfs_tmp_dnode_info *vers_next;
    931  1.1    ahoka 			int ret;
    932  1.1    ahoka 
    933  1.1    ahoka 			vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
    934  1.1    ahoka 			rb_tree_remove_node(&ver_tree, this);
    935  1.1    ahoka 
    936  1.1    ahoka 			struct chfs_tmp_dnode *tmp_td = this->tmpnode;
    937  1.1    ahoka 			while (tmp_td) {
    938  1.1    ahoka 				struct chfs_tmp_dnode *next_td = tmp_td->next;
    939  1.1    ahoka 
    940  1.6    ttoth 				/* Check temporary node. */
    941  1.1    ahoka 				if (chfs_check_td_node(chmp, tmp_td)) {
    942  1.1    ahoka 					if (next_td) {
    943  1.1    ahoka 						chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    944  1.3    ttoth 						chfs_kill_td(chmp, tmp_td);
    945  1.1    ahoka 					} else {
    946  1.1    ahoka 						break;
    947  1.1    ahoka 					}
    948  1.1    ahoka 				} else {
    949  1.1    ahoka 					if (tmp_td->version > high_ver) {
    950  1.1    ahoka 						high_ver = tmp_td->version;
    951  1.2      agc 						dbg("highver: %llu\n", (unsigned long long)high_ver);
    952  1.1    ahoka 						rii->latest_ref = tmp_td->node->nref;
    953  1.1    ahoka 					}
    954  1.1    ahoka 
    955  1.6    ttoth 					/* Add node to inode and its fragtree. */
    956  1.1    ahoka 					ret = chfs_add_full_dnode_to_inode(chmp, ip, tmp_td->node);
    957  1.1    ahoka 					if (ret) {
    958  1.6    ttoth 						/* On error, clean the whole version tree. */
    959  1.1    ahoka 						while (1) {
    960  1.1    ahoka 							vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
    961  1.1    ahoka 							while (tmp_td) {
    962  1.1    ahoka 								next_td = tmp_td->next;
    963  1.3    ttoth 
    964  1.1    ahoka 								chfs_free_full_dnode(tmp_td->node);
    965  1.1    ahoka 								chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    966  1.3    ttoth 								chfs_kill_td(chmp, tmp_td);
    967  1.1    ahoka 								tmp_td = next_td;
    968  1.1    ahoka 							}
    969  1.1    ahoka 							chfs_free_tmp_dnode_info(this);
    970  1.1    ahoka 							this = vers_next;
    971  1.1    ahoka 							if (!this)
    972  1.1    ahoka 								break;
    973  1.1    ahoka 							rb_tree_remove_node(&ver_tree, vers_next);
    974  1.3    ttoth 							chfs_kill_tdi(chmp, vers_next);
    975  1.1    ahoka 						}
    976  1.1    ahoka 						return ret;
    977  1.1    ahoka 					}
    978  1.1    ahoka 
    979  1.6    ttoth 					/* Remove temporary node from temporary descriptor.
    980  1.6    ttoth 					 * Shouldn't obsolete tmp_td here, because tmp_td->node
    981  1.6    ttoth 					 * was added to the inode. */
    982  1.1    ahoka 					chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
    983  1.1    ahoka 					chfs_free_tmp_dnode(tmp_td);
    984  1.1    ahoka 				}
    985  1.1    ahoka 				tmp_td = next_td;
    986  1.1    ahoka 			}
    987  1.6    ttoth 			/* Continue with the previous element of version tree. */
    988  1.1    ahoka 			chfs_kill_tdi(chmp, this);
    989  1.1    ahoka 			this = vers_next;
    990  1.1    ahoka 		}
    991  1.1    ahoka 	}
    992  1.1    ahoka 
    993  1.1    ahoka 	return 0;
    994  1.1    ahoka }
    995  1.1    ahoka 
    996  1.6    ttoth /* chfs_read_inode - checks the state of the inode then reads and builds it */
    997  1.1    ahoka int chfs_read_inode(struct chfs_mount *chmp, struct chfs_inode *ip)
    998  1.1    ahoka {
    999  1.1    ahoka 	struct chfs_vnode_cache *vc = ip->chvc;
   1000  1.1    ahoka 
   1001  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
   1002  1.1    ahoka 
   1003  1.1    ahoka retry:
   1004  1.3    ttoth 	mutex_enter(&chmp->chm_lock_vnocache);
   1005  1.1    ahoka 	switch (vc->state) {
   1006  1.6    ttoth 		case VNO_STATE_UNCHECKED:
   1007  1.6    ttoth 			/* FALLTHROUGH */
   1008  1.6    ttoth 		case VNO_STATE_CHECKEDABSENT:
   1009  1.6    ttoth 			vc->state = VNO_STATE_READING;
   1010  1.6    ttoth 			break;
   1011  1.6    ttoth 		case VNO_STATE_CHECKING:
   1012  1.6    ttoth 			/* FALLTHROUGH */
   1013  1.6    ttoth 		case VNO_STATE_GC:
   1014  1.6    ttoth 			mutex_exit(&chmp->chm_lock_vnocache);
   1015  1.6    ttoth 			goto retry;
   1016  1.6    ttoth 			break;
   1017  1.6    ttoth 		case VNO_STATE_PRESENT:
   1018  1.6    ttoth 			/* FALLTHROUGH */
   1019  1.6    ttoth 		case VNO_STATE_READING:
   1020  1.6    ttoth 			chfs_err("Reading inode #%llu in state %d!\n",
   1021  1.6    ttoth 				(unsigned long long)vc->vno, vc->state);
   1022  1.6    ttoth 			chfs_err("wants to read a nonexistent ino %llu\n",
   1023  1.6    ttoth 				(unsigned long long)vc->vno);
   1024  1.6    ttoth 			return ENOENT;
   1025  1.6    ttoth 		default:
   1026  1.6    ttoth 			panic("BUG() Bad vno cache state.");
   1027  1.1    ahoka 	}
   1028  1.3    ttoth 	mutex_exit(&chmp->chm_lock_vnocache);
   1029  1.1    ahoka 
   1030  1.1    ahoka 	return chfs_read_inode_internal(chmp, ip);
   1031  1.1    ahoka }
   1032  1.1    ahoka 
   1033  1.1    ahoka /*
   1034  1.6    ttoth  * chfs_read_inode_internal - reads and builds an inode
   1035  1.6    ttoth  * Firstly get temporary nodes then build fragtree.
   1036  1.1    ahoka  */
   1037  1.1    ahoka int
   1038  1.1    ahoka chfs_read_inode_internal(struct chfs_mount *chmp, struct chfs_inode *ip)
   1039  1.1    ahoka {
   1040  1.1    ahoka 	int err;
   1041  1.1    ahoka 	size_t len, retlen;
   1042  1.1    ahoka 	char* buf;
   1043  1.1    ahoka 	struct chfs_readinode_info rii;
   1044  1.1    ahoka 	struct chfs_flash_vnode *fvnode;
   1045  1.1    ahoka 
   1046  1.1    ahoka 	KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
   1047  1.1    ahoka 
   1048  1.1    ahoka 	len = sizeof(*fvnode);
   1049  1.1    ahoka 
   1050  1.1    ahoka 	memset(&rii, 0, sizeof(rii));
   1051  1.1    ahoka 
   1052  1.1    ahoka 	rb_tree_init(&rii.tdi_root, &tmp_node_rbtree_ops);
   1053  1.1    ahoka 
   1054  1.6    ttoth 	/* Build a temporary node tree. */
   1055  1.1    ahoka 	err = chfs_get_data_nodes(chmp, ip, &rii);
   1056  1.1    ahoka 	if (err) {
   1057  1.1    ahoka 		if (ip->chvc->state == VNO_STATE_READING)
   1058  1.1    ahoka 			ip->chvc->state = VNO_STATE_CHECKEDABSENT;
   1059  1.1    ahoka 		/* FIXME Should we kill fragtree or something here? */
   1060  1.1    ahoka 		return err;
   1061  1.1    ahoka 	}
   1062  1.1    ahoka 
   1063  1.6    ttoth 	/* Build fragtree from temp nodes. */
   1064  1.1    ahoka 	rb_tree_init(&ip->fragtree, &frag_rbtree_ops);
   1065  1.6    ttoth 
   1066  1.1    ahoka 	err = chfs_build_fragtree(chmp, ip, &rii);
   1067  1.1    ahoka 	if (err) {
   1068  1.1    ahoka 		if (ip->chvc->state == VNO_STATE_READING)
   1069  1.1    ahoka 			ip->chvc->state = VNO_STATE_CHECKEDABSENT;
   1070  1.1    ahoka 		/* FIXME Should we kill fragtree or something here? */
   1071  1.1    ahoka 		return err;
   1072  1.1    ahoka 	}
   1073  1.1    ahoka 
   1074  1.1    ahoka 	if (!rii.latest_ref) {
   1075  1.1    ahoka 		return 0;
   1076  1.1    ahoka 	}
   1077  1.1    ahoka 
   1078  1.1    ahoka 	buf = kmem_alloc(len, KM_SLEEP);
   1079  1.1    ahoka 	if (!buf)
   1080  1.1    ahoka 		return ENOMEM;
   1081  1.1    ahoka 
   1082  1.6    ttoth 	/* Set inode size from its vnode information node. */
   1083  1.1    ahoka 	err = chfs_read_leb(chmp, ip->chvc->v->nref_lnr, buf, CHFS_GET_OFS(ip->chvc->v->nref_offset), len, &retlen);
   1084  1.1    ahoka 	if (err || retlen != len) {
   1085  1.1    ahoka 		kmem_free(buf, len);
   1086  1.1    ahoka 		return err?err:EIO;
   1087  1.1    ahoka 	}
   1088  1.1    ahoka 
   1089  1.1    ahoka 	fvnode = (struct chfs_flash_vnode*)buf;
   1090  1.1    ahoka 
   1091  1.1    ahoka 	dbg("set size from v: %u\n", fvnode->dn_size);
   1092  1.1    ahoka 	chfs_set_vnode_size(ITOV(ip), fvnode->dn_size);
   1093  1.1    ahoka 	uint32_t retsize = chfs_truncate_fragtree(chmp, &ip->fragtree, fvnode->dn_size);
   1094  1.1    ahoka 	if (retsize != fvnode->dn_size) {
   1095  1.1    ahoka 		dbg("Truncating failed. It is %u instead of %u\n", retsize, fvnode->dn_size);
   1096  1.1    ahoka 	}
   1097  1.1    ahoka 
   1098  1.1    ahoka 	kmem_free(buf, len);
   1099  1.1    ahoka 
   1100  1.1    ahoka 	if (ip->chvc->state == VNO_STATE_READING) {
   1101  1.1    ahoka 		ip->chvc->state = VNO_STATE_PRESENT;
   1102  1.1    ahoka 	}
   1103  1.1    ahoka 
   1104  1.1    ahoka 	return 0;
   1105  1.1    ahoka }
   1106  1.1    ahoka 
   1107  1.6    ttoth /* chfs_read_data - reads and checks data of a file */
   1108  1.1    ahoka int
   1109  1.1    ahoka chfs_read_data(struct chfs_mount* chmp, struct vnode *vp,
   1110  1.1    ahoka     struct buf *bp)
   1111  1.1    ahoka {
   1112  1.1    ahoka 	off_t ofs;
   1113  1.1    ahoka 	struct chfs_node_frag *frag;
   1114  1.1    ahoka 	char * buf;
   1115  1.1    ahoka 	int err = 0;
   1116  1.1    ahoka 	size_t size, retlen;
   1117  1.1    ahoka 	uint32_t crc;
   1118  1.1    ahoka 	struct chfs_inode *ip = VTOI(vp);
   1119  1.1    ahoka 	struct chfs_flash_data_node *dnode;
   1120  1.1    ahoka 	struct chfs_node_ref *nref;
   1121  1.1    ahoka 
   1122  1.1    ahoka 	memset(bp->b_data, 0, bp->b_bcount);
   1123  1.1    ahoka 
   1124  1.6    ttoth 	/* Calculate the size of the file from its fragtree. */
   1125  1.1    ahoka 	ofs = bp->b_blkno * PAGE_SIZE;
   1126  1.1    ahoka 	frag = (struct chfs_node_frag *)rb_tree_find_node_leq(&ip->fragtree, &ofs);
   1127  1.1    ahoka 
   1128  1.1    ahoka 	if (!frag || frag->ofs > ofs || frag->ofs + frag->size <= ofs) {
   1129  1.5    ttoth 		bp->b_resid = 0;
   1130  1.1    ahoka 		dbg("not found in frag tree\n");
   1131  1.1    ahoka 		return 0;
   1132  1.1    ahoka 	}
   1133  1.1    ahoka 
   1134  1.1    ahoka 	if (!frag->node) {
   1135  1.1    ahoka 		dbg("no node in frag\n");
   1136  1.1    ahoka 		return 0;
   1137  1.1    ahoka 	}
   1138  1.1    ahoka 
   1139  1.1    ahoka 	nref = frag->node->nref;
   1140  1.1    ahoka 	size = sizeof(*dnode) + frag->size;
   1141  1.1    ahoka 
   1142  1.1    ahoka 	buf = kmem_alloc(size, KM_SLEEP);
   1143  1.1    ahoka 
   1144  1.6    ttoth 	/* Read node from flash. */
   1145  1.1    ahoka 	dbg("reading from lnr: %u, offset: %u, size: %zu\n", nref->nref_lnr, CHFS_GET_OFS(nref->nref_offset), size);
   1146  1.1    ahoka 	err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), size, &retlen);
   1147  1.1    ahoka 	if (err) {
   1148  1.1    ahoka 		chfs_err("error after reading: %d\n", err);
   1149  1.1    ahoka 		goto out;
   1150  1.1    ahoka 	}
   1151  1.1    ahoka 	if (retlen != size) {
   1152  1.1    ahoka 		chfs_err("retlen: %zu != size: %zu\n", retlen, size);
   1153  1.1    ahoka 		err = EIO;
   1154  1.1    ahoka 		goto out;
   1155  1.1    ahoka 	}
   1156  1.1    ahoka 
   1157  1.6    ttoth 	/* Read data from flash. */
   1158  1.1    ahoka 	dnode = (struct chfs_flash_data_node *)buf;
   1159  1.1    ahoka 	crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
   1160  1.1    ahoka 	if (crc != le32toh(dnode->hdr_crc)) {
   1161  1.1    ahoka 		chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
   1162  1.1    ahoka 		err = EIO;
   1163  1.1    ahoka 		goto out;
   1164  1.1    ahoka 	}
   1165  1.6    ttoth 
   1166  1.6    ttoth 	/* Check header magic bitmask. */
   1167  1.1    ahoka 	if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
   1168  1.1    ahoka 		chfs_err("Wrong magic bitmask.\n");
   1169  1.1    ahoka 		err = EIO;
   1170  1.1    ahoka 		goto out;
   1171  1.1    ahoka 	}
   1172  1.6    ttoth 
   1173  1.6    ttoth 	/* Check crc of node. */
   1174  1.1    ahoka 	crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
   1175  1.1    ahoka 	if (crc != le32toh(dnode->node_crc)) {
   1176  1.1    ahoka 		chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
   1177  1.1    ahoka 		err = EIO;
   1178  1.1    ahoka 		goto out;
   1179  1.1    ahoka 	}
   1180  1.6    ttoth 
   1181  1.6    ttoth 	/* Check crc of data. */
   1182  1.1    ahoka 	crc = crc32(0, (uint8_t *)dnode->data, dnode->data_length);
   1183  1.1    ahoka 	if (crc != le32toh(dnode->data_crc)) {
   1184  1.1    ahoka 		chfs_err("Data CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->data_crc));
   1185  1.1    ahoka 		err = EIO;
   1186  1.1    ahoka 		goto out;
   1187  1.1    ahoka 	}
   1188  1.1    ahoka 
   1189  1.1    ahoka 	memcpy(bp->b_data, dnode->data, dnode->data_length);
   1190  1.1    ahoka 	bp->b_resid = 0;
   1191  1.1    ahoka 
   1192  1.1    ahoka out:
   1193  1.1    ahoka 	kmem_free(buf, size);
   1194  1.1    ahoka 	return err;
   1195  1.1    ahoka }
   1196