ebh.c revision 1.2 1 1.2 ahoka /* $NetBSD: ebh.c,v 1.2 2011/11/25 11:15:24 ahoka Exp $ */
2 1.1 ahoka
3 1.1 ahoka /*-
4 1.1 ahoka * Copyright (c) 2010 Department of Software Engineering,
5 1.1 ahoka * University of Szeged, Hungary
6 1.1 ahoka * Copyright (C) 2009 Ferenc Havasi <havasi (at) inf.u-szeged.hu>
7 1.1 ahoka * Copyright (C) 2009 Zoltan Sogor <weth (at) inf.u-szeged.hu>
8 1.1 ahoka * Copyright (C) 2009 David Tengeri <dtengeri (at) inf.u-szeged.hu>
9 1.1 ahoka * Copyright (C) 2009 Tamas Toth <ttoth (at) inf.u-szeged.hu>
10 1.1 ahoka * Copyright (C) 2010 Adam Hoka <ahoka (at) NetBSD.org>
11 1.1 ahoka * All rights reserved.
12 1.1 ahoka *
13 1.1 ahoka * This code is derived from software contributed to The NetBSD Foundation
14 1.1 ahoka * by the Department of Software Engineering, University of Szeged, Hungary
15 1.1 ahoka *
16 1.1 ahoka * Redistribution and use in source and binary forms, with or without
17 1.1 ahoka * modification, are permitted provided that the following conditions
18 1.1 ahoka * are met:
19 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
20 1.1 ahoka * notice, this list of conditions and the following disclaimer.
21 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
23 1.1 ahoka * documentation and/or other materials provided with the distribution.
24 1.1 ahoka *
25 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
26 1.1 ahoka * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
27 1.1 ahoka * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
28 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
29 1.1 ahoka * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 1.1 ahoka * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 1.1 ahoka * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32 1.1 ahoka * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33 1.1 ahoka * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 1.1 ahoka * SUCH DAMAGE.
36 1.1 ahoka */
37 1.1 ahoka
38 1.1 ahoka #include "ebh.h"
39 1.1 ahoka
40 1.1 ahoka /*****************************************************************************/
41 1.1 ahoka /* Flash specific operations */
42 1.1 ahoka /*****************************************************************************/
43 1.1 ahoka int nor_create_eb_hdr(struct chfs_eb_hdr *ebhdr, int lnr);
44 1.1 ahoka int nand_create_eb_hdr(struct chfs_eb_hdr *ebhdr, int lnr);
45 1.1 ahoka int nor_calc_data_offs(struct chfs_ebh *ebh, int pebnr, int offset);
46 1.1 ahoka int nand_calc_data_offs(struct chfs_ebh *ebh, int pebnr, int offset);
47 1.1 ahoka int nor_read_eb_hdr(struct chfs_ebh *ebh, int pebnr, struct chfs_eb_hdr *ebhdr);
48 1.1 ahoka int nand_read_eb_hdr(struct chfs_ebh *ebh, int pebnr, struct chfs_eb_hdr *ebhdr);
49 1.1 ahoka int nor_write_eb_hdr(struct chfs_ebh *ebh, int pebnr, struct chfs_eb_hdr *ebhdr);
50 1.1 ahoka int nand_write_eb_hdr(struct chfs_ebh *ebh, int pebnr,struct chfs_eb_hdr *ebhdr);
51 1.1 ahoka int nor_check_eb_hdr(struct chfs_ebh *ebh, void *buf);
52 1.1 ahoka int nand_check_eb_hdr(struct chfs_ebh *ebh, void *buf);
53 1.1 ahoka int nor_mark_eb_hdr_dirty_flash(struct chfs_ebh *ebh, int pebnr, int lid);
54 1.1 ahoka int nor_invalidate_eb_hdr(struct chfs_ebh *ebh, int pebnr);
55 1.1 ahoka int mark_eb_hdr_free(struct chfs_ebh *ebh, int pebnr, int ec);
56 1.1 ahoka
57 1.1 ahoka int ltree_entry_cmp(struct chfs_ltree_entry *le1, struct chfs_ltree_entry *le2);
58 1.1 ahoka int peb_in_use_cmp(struct chfs_peb *peb1, struct chfs_peb *peb2);
59 1.1 ahoka int peb_free_cmp(struct chfs_peb *peb1, struct chfs_peb *peb2);
60 1.1 ahoka int add_peb_to_erase_queue(struct chfs_ebh *ebh, int pebnr, int ec,struct peb_queue *queue);
61 1.1 ahoka struct chfs_peb * find_peb_in_use(struct chfs_ebh *ebh, int pebnr);
62 1.1 ahoka int add_peb_to_free(struct chfs_ebh *ebh, int pebnr, int ec);
63 1.1 ahoka int add_peb_to_in_use(struct chfs_ebh *ebh, int pebnr, int ec);
64 1.1 ahoka void erase_callback(struct flash_erase_instruction *ei);
65 1.1 ahoka int free_peb(struct chfs_ebh *ebh);
66 1.1 ahoka int release_peb(struct chfs_ebh *ebh, int pebnr);
67 1.1 ahoka void erase_thread(void *data);
68 1.1 ahoka static void erase_thread_start(struct chfs_ebh *ebh);
69 1.1 ahoka static void erase_thread_stop(struct chfs_ebh *ebh);
70 1.1 ahoka int scan_leb_used_cmp(struct chfs_scan_leb *sleb1, struct chfs_scan_leb *sleb2);
71 1.1 ahoka int nor_scan_add_to_used(struct chfs_ebh *ebh, struct chfs_scan_info *si,struct chfs_eb_hdr *ebhdr, int pebnr, int leb_status);
72 1.1 ahoka int nor_process_eb(struct chfs_ebh *ebh, struct chfs_scan_info *si,
73 1.1 ahoka int pebnr, struct chfs_eb_hdr *ebhdr);
74 1.1 ahoka int nand_scan_add_to_used(struct chfs_ebh *ebh, struct chfs_scan_info *si,struct chfs_eb_hdr *ebhdr, int pebnr);
75 1.1 ahoka int nand_process_eb(struct chfs_ebh *ebh, struct chfs_scan_info *si,
76 1.1 ahoka int pebnr, struct chfs_eb_hdr *ebhdr);
77 1.1 ahoka struct chfs_scan_info *chfs_scan(struct chfs_ebh *ebh);
78 1.1 ahoka void scan_info_destroy(struct chfs_scan_info *si);
79 1.1 ahoka int scan_media(struct chfs_ebh *ebh);
80 1.1 ahoka int get_peb(struct chfs_ebh *ebh);
81 1.1 ahoka /**
82 1.1 ahoka * nor_create_eb_hdr - creates an eraseblock header for NOR flash
83 1.1 ahoka * @ebhdr: ebhdr to set
84 1.1 ahoka * @lnr: LEB number
85 1.1 ahoka */
86 1.1 ahoka int
87 1.1 ahoka nor_create_eb_hdr(struct chfs_eb_hdr *ebhdr, int lnr)
88 1.1 ahoka {
89 1.1 ahoka ebhdr->u.nor_hdr.lid = htole32(lnr);
90 1.1 ahoka return 0;
91 1.1 ahoka }
92 1.1 ahoka
93 1.1 ahoka /**
94 1.1 ahoka * nand_create_eb_hdr - creates an eraseblock header for NAND flash
95 1.1 ahoka * @ebhdr: ebhdr to set
96 1.1 ahoka * @lnr: LEB number
97 1.1 ahoka */
98 1.1 ahoka int
99 1.1 ahoka nand_create_eb_hdr(struct chfs_eb_hdr *ebhdr, int lnr)
100 1.1 ahoka {
101 1.1 ahoka ebhdr->u.nand_hdr.lid = htole32(lnr);
102 1.1 ahoka return 0;
103 1.1 ahoka }
104 1.1 ahoka
105 1.1 ahoka /**
106 1.1 ahoka * nor_calc_data_offs - calculates data offset on NOR flash
107 1.1 ahoka * @ebh: chfs eraseblock handler
108 1.1 ahoka * @pebnr: eraseblock number
109 1.1 ahoka * @offset: offset within the eraseblock
110 1.1 ahoka */
111 1.1 ahoka int
112 1.1 ahoka nor_calc_data_offs(struct chfs_ebh *ebh, int pebnr, int offset)
113 1.1 ahoka {
114 1.1 ahoka return pebnr * ebh->flash_if->erasesize + offset +
115 1.1 ahoka CHFS_EB_EC_HDR_SIZE + CHFS_EB_HDR_NOR_SIZE;
116 1.1 ahoka }
117 1.1 ahoka
118 1.1 ahoka /**
119 1.1 ahoka * nand_calc_data_offs - calculates data offset on NAND flash
120 1.1 ahoka * @ebh: chfs eraseblock handler
121 1.1 ahoka * @pebnr: eraseblock number
122 1.1 ahoka * @offset: offset within the eraseblock
123 1.1 ahoka */
124 1.1 ahoka int
125 1.1 ahoka nand_calc_data_offs(struct chfs_ebh *ebh, int pebnr, int offset)
126 1.1 ahoka {
127 1.1 ahoka return pebnr * ebh->flash_if->erasesize + offset +
128 1.1 ahoka 2 * ebh->flash_if->page_size;
129 1.1 ahoka }
130 1.1 ahoka
131 1.1 ahoka /**
132 1.1 ahoka * nor_read_eb_hdr - read ereaseblock header from NOR flash
133 1.1 ahoka *
134 1.1 ahoka * @ebh: chfs eraseblock handler
135 1.1 ahoka * @pebnr: eraseblock number
136 1.1 ahoka * @ebhdr: whereto store the data
137 1.1 ahoka *
138 1.1 ahoka * Reads the eraseblock header from media.
139 1.1 ahoka * Returns zero in case of success, error code in case of fail.
140 1.1 ahoka */
141 1.1 ahoka int
142 1.1 ahoka nor_read_eb_hdr(struct chfs_ebh *ebh,
143 1.1 ahoka int pebnr, struct chfs_eb_hdr *ebhdr)
144 1.1 ahoka {
145 1.1 ahoka int ret;
146 1.1 ahoka size_t retlen;
147 1.1 ahoka off_t ofs = pebnr * ebh->flash_if->erasesize;
148 1.1 ahoka
149 1.1 ahoka KASSERT(pebnr >= 0 && pebnr < ebh->peb_nr);
150 1.1 ahoka
151 1.1 ahoka ret = flash_read(ebh->flash_dev,
152 1.1 ahoka ofs, CHFS_EB_EC_HDR_SIZE,
153 1.1 ahoka &retlen, (unsigned char *) &ebhdr->ec_hdr);
154 1.1 ahoka
155 1.1 ahoka if (ret || retlen != CHFS_EB_EC_HDR_SIZE)
156 1.1 ahoka return ret;
157 1.1 ahoka
158 1.1 ahoka ofs += CHFS_EB_EC_HDR_SIZE;
159 1.1 ahoka ret = flash_read(ebh->flash_dev,
160 1.1 ahoka ofs, CHFS_EB_HDR_NOR_SIZE,
161 1.1 ahoka &retlen, (unsigned char *) &ebhdr->u.nor_hdr);
162 1.1 ahoka
163 1.1 ahoka if (ret || retlen != CHFS_EB_HDR_NOR_SIZE)
164 1.1 ahoka return ret;
165 1.1 ahoka
166 1.1 ahoka return 0;
167 1.1 ahoka }
168 1.1 ahoka
169 1.1 ahoka /**
170 1.1 ahoka * nand_read_eb_hdr - read ereaseblock header from NAND flash
171 1.1 ahoka *
172 1.1 ahoka * @ebh: chfs eraseblock handler
173 1.1 ahoka * @pebnr: eraseblock number
174 1.1 ahoka * @ebhdr: whereto store the data
175 1.1 ahoka *
176 1.1 ahoka * Reads the eraseblock header from media. It is on the first two page.
177 1.1 ahoka * Returns zero in case of success, error code in case of fail.
178 1.1 ahoka */
179 1.1 ahoka int
180 1.1 ahoka nand_read_eb_hdr(struct chfs_ebh *ebh, int pebnr,
181 1.1 ahoka struct chfs_eb_hdr *ebhdr)
182 1.1 ahoka {
183 1.1 ahoka int ret;
184 1.1 ahoka size_t retlen;
185 1.1 ahoka off_t ofs;
186 1.1 ahoka
187 1.1 ahoka KASSERT(pebnr >= 0 && pebnr < ebh->peb_nr);
188 1.1 ahoka
189 1.1 ahoka /* Read erase counter header from the first page. */
190 1.1 ahoka ofs = pebnr * ebh->flash_if->erasesize;
191 1.1 ahoka ret = flash_read(ebh->flash_dev,
192 1.1 ahoka ofs, CHFS_EB_EC_HDR_SIZE, &retlen,
193 1.1 ahoka (unsigned char *) &ebhdr->ec_hdr);
194 1.1 ahoka if (ret || retlen != CHFS_EB_EC_HDR_SIZE)
195 1.1 ahoka return ret;
196 1.1 ahoka
197 1.1 ahoka /* Read NAND eraseblock header from the second page */
198 1.1 ahoka ofs += ebh->flash_if->page_size;
199 1.1 ahoka ret = flash_read(ebh->flash_dev,
200 1.1 ahoka ofs, CHFS_EB_HDR_NAND_SIZE, &retlen,
201 1.1 ahoka (unsigned char *) &ebhdr->u.nand_hdr);
202 1.1 ahoka if (ret || retlen != CHFS_EB_HDR_NAND_SIZE)
203 1.1 ahoka return ret;
204 1.1 ahoka
205 1.1 ahoka return 0;
206 1.1 ahoka }
207 1.1 ahoka
208 1.1 ahoka /**
209 1.1 ahoka * nor_write_eb_hdr - write ereaseblock header to NOR flash
210 1.1 ahoka *
211 1.1 ahoka * @ebh: chfs eraseblock handler
212 1.1 ahoka * @pebnr: eraseblock number whereto write
213 1.1 ahoka * @ebh: ebh to write
214 1.1 ahoka *
215 1.1 ahoka * Writes the eraseblock header to media.
216 1.1 ahoka * Returns zero in case of success, error code in case of fail.
217 1.1 ahoka */
218 1.1 ahoka int
219 1.1 ahoka nor_write_eb_hdr(struct chfs_ebh *ebh, int pebnr, struct chfs_eb_hdr *ebhdr)
220 1.1 ahoka {
221 1.1 ahoka int ret, crc;
222 1.1 ahoka size_t retlen;
223 1.1 ahoka
224 1.1 ahoka off_t ofs = pebnr * ebh->flash_if->erasesize + CHFS_EB_EC_HDR_SIZE;
225 1.1 ahoka
226 1.1 ahoka ebhdr->u.nor_hdr.lid = ebhdr->u.nor_hdr.lid
227 1.1 ahoka | htole32(CHFS_LID_NOT_DIRTY_BIT);
228 1.1 ahoka
229 1.1 ahoka crc = crc32(0, (uint8_t *)&ebhdr->u.nor_hdr + 4,
230 1.1 ahoka CHFS_EB_HDR_NOR_SIZE - 4);
231 1.1 ahoka ebhdr->u.nand_hdr.crc = htole32(crc);
232 1.1 ahoka
233 1.1 ahoka KASSERT(pebnr >= 0 && pebnr < ebh->peb_nr);
234 1.1 ahoka
235 1.1 ahoka ret = flash_write(ebh->flash_dev,
236 1.1 ahoka ofs, CHFS_EB_HDR_NOR_SIZE, &retlen,
237 1.1 ahoka (unsigned char *) &ebhdr->u.nor_hdr);
238 1.1 ahoka
239 1.1 ahoka if (ret || retlen != CHFS_EB_HDR_NOR_SIZE)
240 1.1 ahoka return ret;
241 1.1 ahoka
242 1.1 ahoka return 0;
243 1.1 ahoka }
244 1.1 ahoka
245 1.1 ahoka /**
246 1.1 ahoka * nand_write_eb_hdr - write ereaseblock header to NAND flash
247 1.1 ahoka *
248 1.1 ahoka * @ebh: chfs eraseblock handler
249 1.1 ahoka * @pebnr: eraseblock number whereto write
250 1.1 ahoka * @ebh: ebh to write
251 1.1 ahoka *
252 1.1 ahoka * Writes the eraseblock header to media.
253 1.1 ahoka * Returns zero in case of success, error code in case of fail.
254 1.1 ahoka */
255 1.1 ahoka int
256 1.1 ahoka nand_write_eb_hdr(struct chfs_ebh *ebh, int pebnr,
257 1.1 ahoka struct chfs_eb_hdr *ebhdr)
258 1.1 ahoka {
259 1.1 ahoka int ret, crc;
260 1.1 ahoka size_t retlen;
261 1.1 ahoka flash_off_t ofs;
262 1.1 ahoka
263 1.1 ahoka KASSERT(pebnr >= 0 && pebnr < ebh->peb_nr);
264 1.1 ahoka
265 1.1 ahoka ofs = pebnr * ebh->flash_if->erasesize +
266 1.1 ahoka ebh->flash_if->page_size;
267 1.1 ahoka
268 1.1 ahoka ebhdr->u.nand_hdr.serial = htole64(++(*ebh->max_serial));
269 1.1 ahoka
270 1.1 ahoka crc = crc32(0, (uint8_t *)&ebhdr->u.nand_hdr + 4,
271 1.1 ahoka CHFS_EB_HDR_NAND_SIZE - 4);
272 1.1 ahoka ebhdr->u.nand_hdr.crc = htole32(crc);
273 1.1 ahoka
274 1.1 ahoka ret = flash_write(ebh->flash_dev, ofs,
275 1.1 ahoka CHFS_EB_HDR_NAND_SIZE, &retlen,
276 1.1 ahoka (unsigned char *) &ebhdr->u.nand_hdr);
277 1.1 ahoka
278 1.1 ahoka if (ret || retlen != CHFS_EB_HDR_NAND_SIZE)
279 1.1 ahoka return ret;
280 1.1 ahoka
281 1.1 ahoka return 0;
282 1.1 ahoka }
283 1.1 ahoka
284 1.1 ahoka /**
285 1.1 ahoka * nor_check_eb_hdr - check ereaseblock header read from NOR flash
286 1.1 ahoka *
287 1.1 ahoka * @ebh: chfs eraseblock handler
288 1.1 ahoka * @buf: eraseblock header to check
289 1.1 ahoka *
290 1.1 ahoka * Returns eraseblock header status.
291 1.1 ahoka */
292 1.1 ahoka int
293 1.1 ahoka nor_check_eb_hdr(struct chfs_ebh *ebh, void *buf)
294 1.1 ahoka {
295 1.1 ahoka uint32_t magic, crc, hdr_crc;
296 1.1 ahoka struct chfs_eb_hdr *ebhdr = buf;
297 1.1 ahoka le32 lid_save;
298 1.1 ahoka
299 1.1 ahoka //check is there a header
300 1.1 ahoka if (check_pattern((void *) &ebhdr->ec_hdr,
301 1.1 ahoka 0xFF, 0, CHFS_EB_EC_HDR_SIZE)) {
302 1.1 ahoka dbg_ebh("no header found\n");
303 1.1 ahoka return EBHDR_LEB_NO_HDR;
304 1.1 ahoka }
305 1.1 ahoka
306 1.1 ahoka // check magic
307 1.1 ahoka magic = le32toh(ebhdr->ec_hdr.magic);
308 1.1 ahoka if (magic != CHFS_MAGIC_BITMASK) {
309 1.1 ahoka dbg_ebh("bad magic bitmask(exp: %x found %x)\n",
310 1.1 ahoka CHFS_MAGIC_BITMASK, magic);
311 1.1 ahoka return EBHDR_LEB_BADMAGIC;
312 1.1 ahoka }
313 1.1 ahoka
314 1.1 ahoka // check CRC_EC
315 1.1 ahoka hdr_crc = le32toh(ebhdr->ec_hdr.crc_ec);
316 1.1 ahoka crc = crc32(0, (uint8_t *) &ebhdr->ec_hdr + 8, 4);
317 1.1 ahoka if (hdr_crc != crc) {
318 1.1 ahoka dbg_ebh("bad crc_ec found\n");
319 1.1 ahoka return EBHDR_LEB_BADCRC;
320 1.1 ahoka }
321 1.1 ahoka
322 1.1 ahoka /* check if the PEB is free: magic, crc_ec and erase_cnt is good and
323 1.1 ahoka * everything else is FFF..
324 1.1 ahoka */
325 1.1 ahoka if (check_pattern((void *) &ebhdr->u.nor_hdr, 0xFF, 0,
326 1.1 ahoka CHFS_EB_HDR_NOR_SIZE)) {
327 1.1 ahoka dbg_ebh("free peb found\n");
328 1.1 ahoka return EBHDR_LEB_FREE;
329 1.1 ahoka }
330 1.1 ahoka
331 1.1 ahoka // check invalidated (CRC == LID == 0)
332 1.1 ahoka if (ebhdr->u.nor_hdr.crc == 0 && ebhdr->u.nor_hdr.lid == 0) {
333 1.1 ahoka dbg_ebh("invalidated ebhdr found\n");
334 1.1 ahoka return EBHDR_LEB_INVALIDATED;
335 1.1 ahoka }
336 1.1 ahoka
337 1.1 ahoka // check CRC
338 1.1 ahoka hdr_crc = le32toh(ebhdr->u.nor_hdr.crc);
339 1.1 ahoka lid_save = ebhdr->u.nor_hdr.lid;
340 1.1 ahoka
341 1.1 ahoka // mark lid as not dirty for crc calc
342 1.1 ahoka ebhdr->u.nor_hdr.lid = ebhdr->u.nor_hdr.lid | htole32(
343 1.1 ahoka CHFS_LID_NOT_DIRTY_BIT);
344 1.1 ahoka crc = crc32(0, (uint8_t *) &ebhdr->u.nor_hdr + 4,
345 1.1 ahoka CHFS_EB_HDR_NOR_SIZE - 4);
346 1.1 ahoka // restore the original lid value in ebh
347 1.1 ahoka ebhdr->u.nor_hdr.lid = lid_save;
348 1.1 ahoka
349 1.1 ahoka if (crc != hdr_crc) {
350 1.1 ahoka dbg_ebh("bad crc found\n");
351 1.1 ahoka return EBHDR_LEB_BADCRC;
352 1.1 ahoka }
353 1.1 ahoka
354 1.1 ahoka // check dirty
355 1.1 ahoka if (!(le32toh(lid_save) & CHFS_LID_NOT_DIRTY_BIT)) {
356 1.1 ahoka dbg_ebh("dirty ebhdr found\n");
357 1.1 ahoka return EBHDR_LEB_DIRTY;
358 1.1 ahoka }
359 1.1 ahoka
360 1.1 ahoka return EBHDR_LEB_OK;
361 1.1 ahoka }
362 1.1 ahoka
363 1.1 ahoka /**
364 1.1 ahoka * nand_check_eb_hdr - check ereaseblock header read from NAND flash
365 1.1 ahoka *
366 1.1 ahoka * @ebh: chfs eraseblock handler
367 1.1 ahoka * @buf: eraseblock header to check
368 1.1 ahoka *
369 1.1 ahoka * Returns eraseblock header status.
370 1.1 ahoka */
371 1.1 ahoka int
372 1.1 ahoka nand_check_eb_hdr(struct chfs_ebh *ebh, void *buf)
373 1.1 ahoka {
374 1.1 ahoka uint32_t magic, crc, hdr_crc;
375 1.1 ahoka struct chfs_eb_hdr *ebhdr = buf;
376 1.1 ahoka
377 1.1 ahoka //check is there a header
378 1.1 ahoka if (check_pattern((void *) &ebhdr->ec_hdr,
379 1.1 ahoka 0xFF, 0, CHFS_EB_EC_HDR_SIZE)) {
380 1.1 ahoka dbg_ebh("no header found\n");
381 1.1 ahoka return EBHDR_LEB_NO_HDR;
382 1.1 ahoka }
383 1.1 ahoka
384 1.1 ahoka // check magic
385 1.1 ahoka magic = le32toh(ebhdr->ec_hdr.magic);
386 1.1 ahoka if (magic != CHFS_MAGIC_BITMASK) {
387 1.1 ahoka dbg_ebh("bad magic bitmask(exp: %x found %x)\n",
388 1.1 ahoka CHFS_MAGIC_BITMASK, magic);
389 1.1 ahoka return EBHDR_LEB_BADMAGIC;
390 1.1 ahoka }
391 1.1 ahoka
392 1.1 ahoka // check CRC_EC
393 1.1 ahoka hdr_crc = le32toh(ebhdr->ec_hdr.crc_ec);
394 1.1 ahoka crc = crc32(0, (uint8_t *) &ebhdr->ec_hdr + 8, 4);
395 1.1 ahoka if (hdr_crc != crc) {
396 1.1 ahoka dbg_ebh("bad crc_ec found\n");
397 1.1 ahoka return EBHDR_LEB_BADCRC;
398 1.1 ahoka }
399 1.1 ahoka
400 1.1 ahoka /* check if the PEB is free: magic, crc_ec and erase_cnt is good and
401 1.1 ahoka * everything else is FFF..
402 1.1 ahoka */
403 1.1 ahoka if (check_pattern((void *) &ebhdr->u.nand_hdr, 0xFF, 0,
404 1.1 ahoka CHFS_EB_HDR_NAND_SIZE)) {
405 1.1 ahoka dbg_ebh("free peb found\n");
406 1.1 ahoka return EBHDR_LEB_FREE;
407 1.1 ahoka }
408 1.1 ahoka
409 1.1 ahoka // check CRC
410 1.1 ahoka hdr_crc = le32toh(ebhdr->u.nand_hdr.crc);
411 1.1 ahoka
412 1.1 ahoka crc = crc32(0, (uint8_t *) &ebhdr->u.nand_hdr + 4,
413 1.1 ahoka CHFS_EB_HDR_NAND_SIZE - 4);
414 1.1 ahoka
415 1.1 ahoka if (crc != hdr_crc) {
416 1.1 ahoka dbg_ebh("bad crc found\n");
417 1.1 ahoka return EBHDR_LEB_BADCRC;
418 1.1 ahoka }
419 1.1 ahoka
420 1.1 ahoka return EBHDR_LEB_OK;
421 1.1 ahoka }
422 1.1 ahoka
423 1.1 ahoka /**
424 1.1 ahoka * nor_mark_eb_hdr_dirty_flash- mark ereaseblock header dirty on NOR flash
425 1.1 ahoka *
426 1.1 ahoka * @ebh: chfs eraseblock handler
427 1.1 ahoka * @pebnr: eraseblock number
428 1.1 ahoka * @lid: leb id (it's bit number 31 will be set to 0)
429 1.1 ahoka *
430 1.1 ahoka * It pulls the CHFS_LID_NOT_DIRTY_BIT to zero on flash.
431 1.1 ahoka *
432 1.1 ahoka * Returns zero in case of success, error code in case of fail.
433 1.1 ahoka */
434 1.1 ahoka int
435 1.1 ahoka nor_mark_eb_hdr_dirty_flash(struct chfs_ebh *ebh, int pebnr, int lid)
436 1.1 ahoka {
437 1.1 ahoka int ret;
438 1.1 ahoka size_t retlen;
439 1.1 ahoka off_t ofs;
440 1.1 ahoka
441 1.1 ahoka /* mark leb id dirty */
442 1.1 ahoka lid = htole32(lid & CHFS_LID_DIRTY_BIT_MASK);
443 1.1 ahoka
444 1.1 ahoka /* calculate position */
445 1.1 ahoka ofs = pebnr * ebh->flash_if->erasesize + CHFS_EB_EC_HDR_SIZE
446 1.1 ahoka + CHFS_GET_MEMBER_POS(struct chfs_nor_eb_hdr , lid);
447 1.1 ahoka
448 1.1 ahoka ret = flash_write(ebh->flash_dev, ofs, sizeof(lid), &retlen,
449 1.1 ahoka (unsigned char *) &lid);
450 1.1 ahoka if (ret || retlen != sizeof(lid)) {
451 1.1 ahoka chfs_err("can't mark peb dirty");
452 1.1 ahoka return ret;
453 1.1 ahoka }
454 1.1 ahoka
455 1.1 ahoka return 0;
456 1.1 ahoka }
457 1.1 ahoka
458 1.1 ahoka /**
459 1.1 ahoka * nor_invalidate_eb_hdr - invalidate ereaseblock header on NOR flash
460 1.1 ahoka *
461 1.1 ahoka * @ebh: chfs eraseblock handler
462 1.1 ahoka * @pebnr: eraseblock number
463 1.1 ahoka *
464 1.1 ahoka * Sets crc and lip field to zero.
465 1.1 ahoka * Returns zero in case of success, error code in case of fail.
466 1.1 ahoka */
467 1.1 ahoka int
468 1.1 ahoka nor_invalidate_eb_hdr(struct chfs_ebh *ebh, int pebnr)
469 1.1 ahoka {
470 1.1 ahoka int ret;
471 1.1 ahoka size_t retlen;
472 1.1 ahoka off_t ofs;
473 1.1 ahoka char zero_buf[CHFS_INVALIDATE_SIZE];
474 1.1 ahoka
475 1.1 ahoka /* fill with zero */
476 1.1 ahoka memset(zero_buf, 0x0, CHFS_INVALIDATE_SIZE);
477 1.1 ahoka
478 1.1 ahoka /* calculate position (!!! lid is directly behind crc !!!) */
479 1.1 ahoka ofs = pebnr * ebh->flash_if->erasesize + CHFS_EB_EC_HDR_SIZE
480 1.1 ahoka + CHFS_GET_MEMBER_POS(struct chfs_nor_eb_hdr, crc);
481 1.1 ahoka
482 1.1 ahoka ret = flash_write(ebh->flash_dev,
483 1.1 ahoka ofs, CHFS_INVALIDATE_SIZE, &retlen,
484 1.1 ahoka (unsigned char *) &zero_buf);
485 1.1 ahoka if (ret || retlen != CHFS_INVALIDATE_SIZE) {
486 1.1 ahoka chfs_err("can't invalidate peb");
487 1.1 ahoka return ret;
488 1.1 ahoka }
489 1.1 ahoka
490 1.1 ahoka return 0;
491 1.1 ahoka }
492 1.1 ahoka
493 1.1 ahoka /**
494 1.1 ahoka * mark_eb_hdr_free - free ereaseblock header on NOR or NAND flash
495 1.1 ahoka *
496 1.1 ahoka * @ebh: chfs eraseblock handler
497 1.1 ahoka * @pebnr: eraseblock number
498 1.1 ahoka * @ec: erase counter of PEB
499 1.1 ahoka *
500 1.1 ahoka * Write out the magic and erase counter to the physical eraseblock.
501 1.1 ahoka * Returns zero in case of success, error code in case of fail.
502 1.1 ahoka */
503 1.1 ahoka int
504 1.1 ahoka mark_eb_hdr_free(struct chfs_ebh *ebh, int pebnr, int ec)
505 1.1 ahoka {
506 1.1 ahoka int ret, crc;
507 1.1 ahoka size_t retlen;
508 1.1 ahoka off_t ofs;
509 1.1 ahoka struct chfs_eb_hdr *ebhdr;
510 1.1 ahoka ebhdr = kmem_alloc(sizeof(struct chfs_eb_hdr), KM_SLEEP);
511 1.1 ahoka
512 1.1 ahoka ebhdr->ec_hdr.magic = htole32(CHFS_MAGIC_BITMASK);
513 1.1 ahoka ebhdr->ec_hdr.erase_cnt = htole32(ec);
514 1.1 ahoka crc = crc32(0, (uint8_t *) &ebhdr->ec_hdr + 8, 4);
515 1.1 ahoka ebhdr->ec_hdr.crc_ec = htole32(crc);
516 1.1 ahoka
517 1.1 ahoka ofs = pebnr * ebh->flash_if->erasesize;
518 1.1 ahoka
519 1.1 ahoka KASSERT(sizeof(ebhdr->ec_hdr) == CHFS_EB_EC_HDR_SIZE);
520 1.1 ahoka
521 1.1 ahoka ret = flash_write(ebh->flash_dev,
522 1.1 ahoka ofs, CHFS_EB_EC_HDR_SIZE, &retlen,
523 1.1 ahoka (unsigned char *) &ebhdr->ec_hdr);
524 1.1 ahoka
525 1.1 ahoka if (ret || retlen != CHFS_EB_EC_HDR_SIZE) {
526 1.1 ahoka chfs_err("can't mark peb as free: %d\n", pebnr);
527 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
528 1.1 ahoka return ret;
529 1.1 ahoka }
530 1.1 ahoka
531 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
532 1.1 ahoka return 0;
533 1.1 ahoka }
534 1.1 ahoka
535 1.1 ahoka /*****************************************************************************/
536 1.1 ahoka /* End of Flash specific operations */
537 1.1 ahoka /*****************************************************************************/
538 1.1 ahoka
539 1.1 ahoka /*****************************************************************************/
540 1.1 ahoka /* Lock Tree */
541 1.1 ahoka /*****************************************************************************/
542 1.1 ahoka
543 1.1 ahoka int
544 1.1 ahoka ltree_entry_cmp(struct chfs_ltree_entry *le1,
545 1.1 ahoka struct chfs_ltree_entry *le2)
546 1.1 ahoka {
547 1.1 ahoka return (le1->lnr - le2->lnr);
548 1.1 ahoka }
549 1.1 ahoka
550 1.1 ahoka /* Generate functions for Lock tree's red-black tree */
551 1.1 ahoka RB_PROTOTYPE( ltree_rbtree, chfs_ltree_entry, rb, ltree_entry_cmp);
552 1.1 ahoka RB_GENERATE( ltree_rbtree, chfs_ltree_entry, rb, ltree_entry_cmp);
553 1.1 ahoka
554 1.1 ahoka
555 1.1 ahoka /**
556 1.1 ahoka * ltree_lookup - looks up a logical eraseblock in the lock tree
557 1.1 ahoka * @ebh: chfs eraseblock handler
558 1.1 ahoka * @lid: identifier of the logical eraseblock
559 1.1 ahoka *
560 1.1 ahoka * This function returns a pointer to the wanted &struct chfs_ltree_entry
561 1.1 ahoka * if the logical eraseblock is in the lock tree, so it is locked, NULL
562 1.1 ahoka * otherwise.
563 1.1 ahoka * @ebh->ltree_lock has to be locked!
564 1.1 ahoka */
565 1.1 ahoka static struct chfs_ltree_entry *
566 1.1 ahoka ltree_lookup(struct chfs_ebh *ebh, int lnr)
567 1.1 ahoka {
568 1.1 ahoka struct chfs_ltree_entry le, *result;
569 1.1 ahoka le.lnr = lnr;
570 1.1 ahoka result = RB_FIND(ltree_rbtree, &ebh->ltree, &le);
571 1.1 ahoka return result;
572 1.1 ahoka }
573 1.1 ahoka
574 1.1 ahoka /**
575 1.1 ahoka * ltree_add_entry - add an entry to the lock tree
576 1.1 ahoka * @ebh: chfs eraseblock handler
577 1.1 ahoka * @lnr: identifier of the logical eraseblock
578 1.1 ahoka *
579 1.1 ahoka * This function adds a new logical eraseblock entry identified with @lnr to the
580 1.1 ahoka * lock tree. If the entry is already in the tree, it increases the user
581 1.1 ahoka * counter.
582 1.1 ahoka * Returns NULL if can not allocate memory for lock tree entry, or a pointer
583 1.1 ahoka * to the inserted entry otherwise.
584 1.1 ahoka */
585 1.1 ahoka static struct chfs_ltree_entry *
586 1.1 ahoka ltree_add_entry(struct chfs_ebh *ebh, int lnr)
587 1.1 ahoka {
588 1.1 ahoka struct chfs_ltree_entry *le, *result;
589 1.1 ahoka
590 1.1 ahoka le = kmem_alloc(sizeof(struct chfs_ltree_entry), KM_SLEEP);
591 1.1 ahoka
592 1.1 ahoka le->lnr = lnr;
593 1.1 ahoka le->users = 1;
594 1.1 ahoka rw_init(&le->mutex);
595 1.1 ahoka
596 1.1 ahoka //dbg_ebh("enter ltree lock\n");
597 1.1 ahoka mutex_enter(&ebh->ltree_lock);
598 1.1 ahoka //dbg_ebh("insert\n");
599 1.1 ahoka result = RB_INSERT(ltree_rbtree, &ebh->ltree, le);
600 1.1 ahoka //dbg_ebh("inserted\n");
601 1.1 ahoka if (result) {
602 1.1 ahoka //The entry is already in the tree
603 1.1 ahoka result->users++;
604 1.1 ahoka kmem_free(le, sizeof(struct chfs_ltree_entry));
605 1.1 ahoka }
606 1.1 ahoka else {
607 1.1 ahoka result = le;
608 1.1 ahoka }
609 1.1 ahoka mutex_exit(&ebh->ltree_lock);
610 1.1 ahoka
611 1.1 ahoka return result;
612 1.1 ahoka }
613 1.1 ahoka
614 1.1 ahoka /**
615 1.1 ahoka * leb_read_lock - lock a logical eraseblock for read
616 1.1 ahoka * @ebh: chfs eraseblock handler
617 1.1 ahoka * @lnr: identifier of the logical eraseblock
618 1.1 ahoka *
619 1.1 ahoka * Returns zero in case of success, error code in case of fail.
620 1.1 ahoka */
621 1.1 ahoka static int
622 1.1 ahoka leb_read_lock(struct chfs_ebh *ebh, int lnr)
623 1.1 ahoka {
624 1.1 ahoka struct chfs_ltree_entry *le;
625 1.1 ahoka
626 1.1 ahoka le = ltree_add_entry(ebh, lnr);
627 1.1 ahoka if (!le)
628 1.1 ahoka return ENOMEM;
629 1.1 ahoka
630 1.1 ahoka rw_enter(&le->mutex, RW_READER);
631 1.1 ahoka return 0;
632 1.1 ahoka }
633 1.1 ahoka
634 1.1 ahoka /**
635 1.1 ahoka * leb_read_unlock - unlock a logical eraseblock from read
636 1.1 ahoka * @ebh: chfs eraseblock handler
637 1.1 ahoka * @lnr: identifier of the logical eraseblock
638 1.1 ahoka *
639 1.1 ahoka * This function unlocks a logical eraseblock from read and delete it from the
640 1.1 ahoka * lock tree is there are no more users of it.
641 1.1 ahoka */
642 1.1 ahoka static void
643 1.1 ahoka leb_read_unlock(struct chfs_ebh *ebh, int lnr)
644 1.1 ahoka {
645 1.1 ahoka struct chfs_ltree_entry *le;
646 1.1 ahoka
647 1.1 ahoka mutex_enter(&ebh->ltree_lock);
648 1.1 ahoka //dbg_ebh("LOCK: ebh->ltree_lock spin locked in leb_read_unlock()\n");
649 1.1 ahoka le = ltree_lookup(ebh, lnr);
650 1.1 ahoka if (!le)
651 1.1 ahoka goto out;
652 1.1 ahoka
653 1.1 ahoka le->users -= 1;
654 1.1 ahoka KASSERT(le->users >= 0);
655 1.1 ahoka rw_exit(&le->mutex);
656 1.1 ahoka if (le->users == 0) {
657 1.1 ahoka le = RB_REMOVE(ltree_rbtree, &ebh->ltree, le);
658 1.1 ahoka if (le) {
659 1.1 ahoka KASSERT(!rw_lock_held(&le->mutex));
660 1.1 ahoka rw_destroy(&le->mutex);
661 1.1 ahoka
662 1.1 ahoka kmem_free(le, sizeof(struct chfs_ltree_entry));
663 1.1 ahoka }
664 1.1 ahoka }
665 1.1 ahoka
666 1.1 ahoka out:
667 1.1 ahoka mutex_exit(&ebh->ltree_lock);
668 1.1 ahoka //dbg_ebh("UNLOCK: ebh->ltree_lock spin unlocked in leb_read_unlock()\n");
669 1.1 ahoka }
670 1.1 ahoka
671 1.1 ahoka /**
672 1.1 ahoka * leb_write_lock - lock a logical eraseblock for write
673 1.1 ahoka * @ebh: chfs eraseblock handler
674 1.1 ahoka * @lnr: identifier of the logical eraseblock
675 1.1 ahoka *
676 1.1 ahoka * Returns zero in case of success, error code in case of fail.
677 1.1 ahoka */
678 1.1 ahoka static int
679 1.1 ahoka leb_write_lock(struct chfs_ebh *ebh, int lnr)
680 1.1 ahoka {
681 1.1 ahoka struct chfs_ltree_entry *le;
682 1.1 ahoka
683 1.1 ahoka le = ltree_add_entry(ebh, lnr);
684 1.1 ahoka if (!le)
685 1.1 ahoka return ENOMEM;
686 1.1 ahoka
687 1.1 ahoka rw_enter(&le->mutex, RW_WRITER);
688 1.1 ahoka return 0;
689 1.1 ahoka }
690 1.1 ahoka
691 1.1 ahoka /**
692 1.1 ahoka * leb_write_unlock - unlock a logical eraseblock from write
693 1.1 ahoka * @ebh: chfs eraseblock handler
694 1.1 ahoka * @lnr: identifier of the logical eraseblock
695 1.1 ahoka *
696 1.1 ahoka * This function unlocks a logical eraseblock from write and delete it from the
697 1.1 ahoka * lock tree is there are no more users of it.
698 1.1 ahoka */
699 1.1 ahoka static void
700 1.1 ahoka leb_write_unlock(struct chfs_ebh *ebh, int lnr)
701 1.1 ahoka {
702 1.1 ahoka struct chfs_ltree_entry *le;
703 1.1 ahoka
704 1.1 ahoka mutex_enter(&ebh->ltree_lock);
705 1.1 ahoka //dbg_ebh("LOCK: ebh->ltree_lock spin locked in leb_write_unlock()\n");
706 1.1 ahoka le = ltree_lookup(ebh, lnr);
707 1.1 ahoka if (!le)
708 1.1 ahoka goto out;
709 1.1 ahoka
710 1.1 ahoka le->users -= 1;
711 1.1 ahoka KASSERT(le->users >= 0);
712 1.1 ahoka rw_exit(&le->mutex);
713 1.1 ahoka if (le->users == 0) {
714 1.1 ahoka RB_REMOVE(ltree_rbtree, &ebh->ltree, le);
715 1.1 ahoka
716 1.1 ahoka KASSERT(!rw_lock_held(&le->mutex));
717 1.1 ahoka rw_destroy(&le->mutex);
718 1.1 ahoka
719 1.1 ahoka kmem_free(le, sizeof(struct chfs_ltree_entry));
720 1.1 ahoka }
721 1.1 ahoka
722 1.1 ahoka out:
723 1.1 ahoka mutex_exit(&ebh->ltree_lock);
724 1.1 ahoka //dbg_ebh("UNLOCK: ebh->ltree_lock spin unlocked in leb_write_unlock()\n");
725 1.1 ahoka }
726 1.1 ahoka
727 1.1 ahoka /*****************************************************************************/
728 1.1 ahoka /* End of Lock Tree */
729 1.1 ahoka /*****************************************************************************/
730 1.1 ahoka
731 1.1 ahoka /*****************************************************************************/
732 1.1 ahoka /* Erase related operations */
733 1.1 ahoka /*****************************************************************************/
734 1.1 ahoka
735 1.1 ahoka /**
736 1.1 ahoka * If the first argument is smaller than the second, the function
737 1.1 ahoka * returns a value smaller than zero. If they are equal, the function re-
738 1.1 ahoka * turns zero. Otherwise, it should return a value greater than zero.
739 1.1 ahoka */
740 1.1 ahoka int
741 1.1 ahoka peb_in_use_cmp(struct chfs_peb *peb1, struct chfs_peb *peb2)
742 1.1 ahoka {
743 1.1 ahoka return (peb1->pebnr - peb2->pebnr);
744 1.1 ahoka }
745 1.1 ahoka
746 1.1 ahoka int
747 1.1 ahoka peb_free_cmp(struct chfs_peb *peb1, struct chfs_peb *peb2)
748 1.1 ahoka {
749 1.1 ahoka int comp;
750 1.1 ahoka
751 1.1 ahoka comp = peb1->erase_cnt - peb2->erase_cnt;
752 1.1 ahoka if (0 == comp)
753 1.1 ahoka comp = peb1->pebnr - peb2->pebnr;
754 1.1 ahoka
755 1.1 ahoka return comp;
756 1.1 ahoka }
757 1.1 ahoka
758 1.1 ahoka /* Generate functions for in use PEB's red-black tree */
759 1.1 ahoka RB_PROTOTYPE(peb_in_use_rbtree, chfs_peb, u.rb, peb_in_use_cmp);
760 1.1 ahoka RB_GENERATE(peb_in_use_rbtree, chfs_peb, u.rb, peb_in_use_cmp);
761 1.1 ahoka RB_PROTOTYPE(peb_free_rbtree, chfs_peb, u.rb, peb_free_cmp);
762 1.1 ahoka RB_GENERATE(peb_free_rbtree, chfs_peb, u.rb, peb_free_cmp);
763 1.1 ahoka
764 1.1 ahoka /**
765 1.1 ahoka * add_peb_to_erase_queue: adds a PEB to to_erase/fully_erased queue
766 1.1 ahoka * @ebh - chfs eraseblock handler
767 1.1 ahoka * @pebnr - physical eraseblock's number
768 1.1 ahoka * @ec - erase counter of PEB
769 1.1 ahoka * @queue: the queue to add to
770 1.1 ahoka *
771 1.1 ahoka * This function adds a PEB to the erase queue specified by @queue.
772 1.1 ahoka * The @ebh->erase_lock must be locked before using this.
773 1.1 ahoka * Returns zero in case of success, error code in case of fail.
774 1.1 ahoka */
775 1.1 ahoka int
776 1.1 ahoka add_peb_to_erase_queue(struct chfs_ebh *ebh, int pebnr, int ec,
777 1.1 ahoka struct peb_queue *queue)
778 1.1 ahoka {
779 1.1 ahoka struct chfs_peb *peb;
780 1.1 ahoka
781 1.1 ahoka peb = kmem_alloc(sizeof(struct chfs_peb), KM_SLEEP);
782 1.1 ahoka
783 1.1 ahoka peb->erase_cnt = ec;
784 1.1 ahoka peb->pebnr = pebnr;
785 1.1 ahoka
786 1.1 ahoka TAILQ_INSERT_TAIL(queue, peb, u.queue);
787 1.1 ahoka
788 1.1 ahoka return 0;
789 1.1 ahoka
790 1.1 ahoka }
791 1.1 ahoka //TODO
792 1.1 ahoka /**
793 1.1 ahoka * find_peb_in_use - looks up a PEB in the RB-tree of used blocks
794 1.1 ahoka * @ebh - chfs eraseblock handler
795 1.1 ahoka *
796 1.1 ahoka * This function returns a pointer to the PEB found in the tree,
797 1.1 ahoka * NULL otherwise.
798 1.1 ahoka * The @ebh->erase_lock must be locked before using this.
799 1.1 ahoka */
800 1.1 ahoka struct chfs_peb *
801 1.1 ahoka find_peb_in_use(struct chfs_ebh *ebh, int pebnr)
802 1.1 ahoka {
803 1.1 ahoka struct chfs_peb peb, *result;
804 1.1 ahoka peb.pebnr = pebnr;
805 1.1 ahoka result = RB_FIND(peb_in_use_rbtree, &ebh->in_use, &peb);
806 1.1 ahoka return result;
807 1.1 ahoka }
808 1.1 ahoka
809 1.1 ahoka /**
810 1.1 ahoka * add_peb_to_free - adds a PEB to the RB-tree of free PEBs
811 1.1 ahoka * @ebh - chfs eraseblock handler
812 1.1 ahoka * @pebnr - physical eraseblock's number
813 1.1 ahoka * @ec - erase counter of PEB
814 1.1 ahoka *
815 1.1 ahoka *
816 1.1 ahoka * This function adds a physical eraseblock to the RB-tree of free PEBs
817 1.1 ahoka * stored in the @ebh. The key is the erase counter and pebnr.
818 1.1 ahoka * The @ebh->erase_lock must be locked before using this.
819 1.1 ahoka * Returns zero in case of success, error code in case of fail.
820 1.1 ahoka */
821 1.1 ahoka int
822 1.1 ahoka add_peb_to_free(struct chfs_ebh *ebh, int pebnr, int ec)
823 1.1 ahoka {
824 1.1 ahoka struct chfs_peb *peb, *result;
825 1.1 ahoka
826 1.1 ahoka peb = kmem_alloc(sizeof(struct chfs_peb), KM_SLEEP);
827 1.1 ahoka
828 1.1 ahoka peb->erase_cnt = ec;
829 1.1 ahoka peb->pebnr = pebnr;
830 1.1 ahoka result = RB_INSERT(peb_free_rbtree, &ebh->free, peb);
831 1.1 ahoka if (result)
832 1.1 ahoka return 1;
833 1.1 ahoka
834 1.1 ahoka return 0;
835 1.1 ahoka }
836 1.1 ahoka
837 1.1 ahoka /**
838 1.1 ahoka * add_peb_to_in_use - adds a PEB to the RB-tree of used PEBs
839 1.1 ahoka * @ebh - chfs eraseblock handler
840 1.1 ahoka * @pebnr - physical eraseblock's number
841 1.1 ahoka * @ec - erase counter of PEB
842 1.1 ahoka *
843 1.1 ahoka *
844 1.1 ahoka * This function adds a physical eraseblock to the RB-tree of used PEBs
845 1.1 ahoka * stored in the @ebh. The key is pebnr.
846 1.1 ahoka * The @ebh->erase_lock must be locked before using this.
847 1.1 ahoka * Returns zero in case of success, error code in case of fail.
848 1.1 ahoka */
849 1.1 ahoka int
850 1.1 ahoka add_peb_to_in_use(struct chfs_ebh *ebh, int pebnr, int ec)
851 1.1 ahoka {
852 1.1 ahoka struct chfs_peb *peb, *result;
853 1.1 ahoka
854 1.1 ahoka peb = kmem_alloc(sizeof(struct chfs_peb), KM_SLEEP);
855 1.1 ahoka
856 1.1 ahoka peb->erase_cnt = ec;
857 1.1 ahoka peb->pebnr = pebnr;
858 1.1 ahoka result = RB_INSERT(peb_in_use_rbtree, &ebh->in_use, peb);
859 1.1 ahoka if (result)
860 1.1 ahoka return 1;
861 1.1 ahoka
862 1.1 ahoka return 0;
863 1.1 ahoka }
864 1.1 ahoka
865 1.1 ahoka /**
866 1.1 ahoka * erase_callback - callback function for flash erase
867 1.1 ahoka * @ei: erase information
868 1.1 ahoka */
869 1.1 ahoka void
870 1.1 ahoka erase_callback(struct flash_erase_instruction *ei)
871 1.1 ahoka {
872 1.1 ahoka int err;
873 1.1 ahoka struct chfs_erase_info_priv *priv = (void *) ei->ei_priv;
874 1.1 ahoka //dbg_ebh("ERASE_CALLBACK() CALLED\n");
875 1.1 ahoka struct chfs_ebh *ebh = priv->ebh;
876 1.1 ahoka struct chfs_peb *peb = priv->peb;
877 1.1 ahoka
878 1.1 ahoka peb->erase_cnt += 1;
879 1.1 ahoka
880 1.1 ahoka if (ei->ei_state == FLASH_ERASE_DONE) {
881 1.1 ahoka
882 1.1 ahoka /* Write out erase counter */
883 1.1 ahoka err = ebh->ops->mark_eb_hdr_free(ebh,
884 1.1 ahoka peb->pebnr, peb->erase_cnt);
885 1.1 ahoka if (err) {
886 1.1 ahoka /* cannot mark PEB as free,so erase it again */
887 1.1 ahoka chfs_err(
888 1.1 ahoka "cannot mark eraseblock as free, PEB: %d\n",
889 1.1 ahoka peb->pebnr);
890 1.1 ahoka mutex_enter(&ebh->erase_lock);
891 1.1 ahoka /*dbg_ebh("LOCK: ebh->erase_lock spin locked in erase_callback() "
892 1.1 ahoka "after mark ebhdr free\n");*/
893 1.1 ahoka add_peb_to_erase_queue(ebh, peb->pebnr, peb->erase_cnt,
894 1.1 ahoka &ebh->to_erase);
895 1.1 ahoka mutex_exit(&ebh->erase_lock);
896 1.1 ahoka /*dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in erase_callback() "
897 1.1 ahoka "after mark ebhdr free\n");*/
898 1.1 ahoka kmem_free(peb, sizeof(struct chfs_peb));
899 1.1 ahoka return;
900 1.1 ahoka }
901 1.1 ahoka
902 1.1 ahoka mutex_enter(&ebh->erase_lock);
903 1.1 ahoka /*dbg_ebh("LOCK: ebh->erase_lock spin locked in erase_callback()\n");*/
904 1.1 ahoka err = add_peb_to_free(ebh, peb->pebnr, peb->erase_cnt);
905 1.1 ahoka mutex_exit(&ebh->erase_lock);
906 1.1 ahoka /*dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in erase_callback()\n");*/
907 1.1 ahoka kmem_free(peb, sizeof(struct chfs_peb));
908 1.1 ahoka } else {
909 1.1 ahoka /*
910 1.1 ahoka * Erase is finished, but there was a problem,
911 1.1 ahoka * so erase PEB again
912 1.1 ahoka */
913 1.1 ahoka chfs_err("erase failed, state is: 0x%x\n", ei->ei_state);
914 1.1 ahoka add_peb_to_erase_queue(ebh, peb->pebnr, peb->erase_cnt, &ebh->to_erase);
915 1.1 ahoka kmem_free(peb, sizeof(struct chfs_peb));
916 1.1 ahoka }
917 1.1 ahoka }
918 1.1 ahoka
919 1.1 ahoka /**
920 1.1 ahoka * free_peb: free a PEB
921 1.1 ahoka * @ebh: chfs eraseblock handler
922 1.1 ahoka *
923 1.1 ahoka * This function erases the first physical eraseblock from one of the erase
924 1.1 ahoka * lists and adds to the RB-tree of free PEBs.
925 1.1 ahoka * Returns zero in case of succes, error code in case of fail.
926 1.1 ahoka */
927 1.1 ahoka int
928 1.1 ahoka free_peb(struct chfs_ebh *ebh)
929 1.1 ahoka {
930 1.1 ahoka int err, retries = 0;
931 1.1 ahoka off_t ofs;
932 1.1 ahoka struct chfs_peb *peb = NULL;
933 1.1 ahoka struct flash_erase_instruction *ei;
934 1.1 ahoka
935 1.1 ahoka KASSERT(mutex_owned(&ebh->erase_lock));
936 1.1 ahoka
937 1.1 ahoka if (!TAILQ_EMPTY(&ebh->fully_erased)) {
938 1.1 ahoka //dbg_ebh("[FREE PEB] got a fully erased block\n");
939 1.1 ahoka peb = TAILQ_FIRST(&ebh->fully_erased);
940 1.1 ahoka TAILQ_REMOVE(&ebh->fully_erased, peb, u.queue);
941 1.1 ahoka err = ebh->ops->mark_eb_hdr_free(ebh,
942 1.1 ahoka peb->pebnr, peb->erase_cnt);
943 1.1 ahoka if (err) {
944 1.1 ahoka goto out_free;
945 1.1 ahoka }
946 1.1 ahoka err = add_peb_to_free(ebh, peb->pebnr, peb->erase_cnt);
947 1.1 ahoka goto out_free;
948 1.1 ahoka }
949 1.1 ahoka /* Erase PEB */
950 1.1 ahoka //dbg_ebh("[FREE PEB] eraseing a block\n");
951 1.1 ahoka peb = TAILQ_FIRST(&ebh->to_erase);
952 1.1 ahoka TAILQ_REMOVE(&ebh->to_erase, peb, u.queue);
953 1.1 ahoka mutex_exit(&ebh->erase_lock);
954 1.1 ahoka //dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in free_peb()\n");
955 1.1 ahoka ofs = peb->pebnr * ebh->flash_if->erasesize;
956 1.1 ahoka
957 1.1 ahoka /* XXX where do we free this? */
958 1.1 ahoka ei = kmem_alloc(sizeof(struct flash_erase_instruction)
959 1.1 ahoka + sizeof(struct chfs_erase_info_priv), KM_SLEEP);
960 1.1 ahoka retry:
961 1.1 ahoka memset(ei, 0, sizeof(*ei));
962 1.1 ahoka
963 1.1 ahoka // ei->ei_if = ebh->flash_if;
964 1.1 ahoka ei->ei_addr = ofs;
965 1.1 ahoka ei->ei_len = ebh->flash_if->erasesize;
966 1.1 ahoka ei->ei_callback = erase_callback;
967 1.1 ahoka ei->ei_priv = (unsigned long) (&ei[1]);
968 1.1 ahoka
969 1.1 ahoka ((struct chfs_erase_info_priv *) ei->ei_priv)->ebh = ebh;
970 1.1 ahoka ((struct chfs_erase_info_priv *) ei->ei_priv)->peb = peb;
971 1.1 ahoka
972 1.1 ahoka err = flash_erase(ebh->flash_dev, ei);
973 1.1 ahoka dbg_ebh("erased peb: %d\n", peb->pebnr);
974 1.1 ahoka
975 1.1 ahoka /* einval would mean we did something wrong */
976 1.1 ahoka KASSERT(err != EINVAL);
977 1.1 ahoka
978 1.1 ahoka if (err) {
979 1.1 ahoka dbg_ebh("errno: %d, ei->ei_state: %d\n", err, ei->ei_state);
980 1.1 ahoka if (CHFS_MAX_GET_PEB_RETRIES < ++retries &&
981 1.1 ahoka ei->ei_state == FLASH_ERASE_FAILED) {
982 1.1 ahoka /* The block went bad mark it */
983 1.1 ahoka dbg_ebh("ebh markbad! 0x%jx\n", (uintmax_t )ofs);
984 1.1 ahoka err = flash_block_markbad(ebh->flash_dev, ofs);
985 1.1 ahoka if (!err) {
986 1.1 ahoka ebh->peb_nr--;
987 1.1 ahoka }
988 1.1 ahoka
989 1.1 ahoka goto out;
990 1.1 ahoka }
991 1.1 ahoka chfs_err("can not erase PEB: %d, try again\n", peb->pebnr);
992 1.1 ahoka goto retry;
993 1.1 ahoka }
994 1.1 ahoka
995 1.1 ahoka out:
996 1.1 ahoka /* lock the erase_lock, because it was locked
997 1.1 ahoka * when the function was called */
998 1.1 ahoka mutex_enter(&ebh->erase_lock);
999 1.1 ahoka return err;
1000 1.1 ahoka
1001 1.1 ahoka out_free:
1002 1.1 ahoka kmem_free(peb, sizeof(struct chfs_peb));
1003 1.1 ahoka return err;
1004 1.1 ahoka }
1005 1.1 ahoka
1006 1.1 ahoka /**
1007 1.1 ahoka * release_peb - schedule an erase for the PEB
1008 1.1 ahoka * @ebh: chfs eraseblock handler
1009 1.1 ahoka * @pebnr: physical eraseblock number
1010 1.1 ahoka *
1011 1.1 ahoka * This function get the peb identified by @pebnr from the in_use RB-tree of
1012 1.1 ahoka * @ebh, removes it and schedule an erase for it.
1013 1.1 ahoka *
1014 1.1 ahoka * Returns zero on success, error code in case of fail.
1015 1.1 ahoka */
1016 1.1 ahoka int
1017 1.1 ahoka release_peb(struct chfs_ebh *ebh, int pebnr)
1018 1.1 ahoka {
1019 1.1 ahoka int err = 0;
1020 1.1 ahoka struct chfs_peb *peb;
1021 1.1 ahoka
1022 1.1 ahoka mutex_enter(&ebh->erase_lock);
1023 1.1 ahoka
1024 1.1 ahoka //dbg_ebh("LOCK: ebh->erase_lock spin locked in release_peb()\n");
1025 1.1 ahoka peb = find_peb_in_use(ebh, pebnr);
1026 1.1 ahoka if (!peb) {
1027 1.1 ahoka chfs_err("LEB is mapped, but is not in the 'in_use' "
1028 1.1 ahoka "tree of ebh\n");
1029 1.1 ahoka goto out_unlock;
1030 1.1 ahoka }
1031 1.1 ahoka err = add_peb_to_erase_queue(ebh, peb->pebnr, peb->erase_cnt,
1032 1.1 ahoka &ebh->to_erase);
1033 1.1 ahoka
1034 1.1 ahoka if (err)
1035 1.1 ahoka goto out_unlock;
1036 1.1 ahoka
1037 1.1 ahoka RB_REMOVE(peb_in_use_rbtree, &ebh->in_use, peb);
1038 1.1 ahoka out_unlock:
1039 1.1 ahoka mutex_exit(&ebh->erase_lock);
1040 1.1 ahoka //dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in release_peb()"
1041 1.1 ahoka // " at out_unlock\n");
1042 1.1 ahoka return err;
1043 1.1 ahoka }
1044 1.1 ahoka
1045 1.1 ahoka /**
1046 1.1 ahoka * erase_thread - background thread for erasing PEBs
1047 1.1 ahoka * @data: pointer to the eraseblock handler
1048 1.1 ahoka */
1049 1.1 ahoka /*void
1050 1.1 ahoka erase_thread(void *data)
1051 1.1 ahoka {
1052 1.1 ahoka struct chfs_ebh *ebh = data;
1053 1.1 ahoka
1054 1.1 ahoka dbg_ebh("erase thread started\n");
1055 1.1 ahoka while (ebh->bg_erase.eth_running) {
1056 1.1 ahoka int err;
1057 1.1 ahoka
1058 1.1 ahoka mutex_enter(&ebh->erase_lock);
1059 1.1 ahoka dbg_ebh("LOCK: ebh->erase_lock spin locked in erase_thread()\n");
1060 1.1 ahoka if (TAILQ_EMPTY(&ebh->to_erase) && TAILQ_EMPTY(&ebh->fully_erased)) {
1061 1.1 ahoka dbg_ebh("thread has nothing to do\n");
1062 1.1 ahoka mutex_exit(&ebh->erase_lock);
1063 1.1 ahoka mutex_enter(&ebh->bg_erase.eth_thread_mtx);
1064 1.1 ahoka cv_timedwait_sig(&ebh->bg_erase.eth_wakeup,
1065 1.1 ahoka &ebh->bg_erase.eth_thread_mtx, mstohz(100));
1066 1.1 ahoka mutex_exit(&ebh->bg_erase.eth_thread_mtx);
1067 1.1 ahoka
1068 1.1 ahoka dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in erase_thread()\n");
1069 1.1 ahoka continue;
1070 1.1 ahoka }
1071 1.1 ahoka mutex_exit(&ebh->erase_lock);
1072 1.1 ahoka dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in erase_thread()\n");
1073 1.1 ahoka
1074 1.1 ahoka err = free_peb(ebh);
1075 1.1 ahoka if (err)
1076 1.1 ahoka chfs_err("freeing PEB failed in the background thread: %d\n", err);
1077 1.1 ahoka
1078 1.1 ahoka }
1079 1.1 ahoka dbg_ebh("erase thread stopped\n");
1080 1.1 ahoka kthread_exit(0);
1081 1.1 ahoka }*/
1082 1.1 ahoka
1083 1.1 ahoka /**
1084 1.1 ahoka * erase_thread - background thread for erasing PEBs
1085 1.1 ahoka * @data: pointer to the eraseblock handler
1086 1.1 ahoka */
1087 1.1 ahoka void
1088 1.1 ahoka erase_thread(void *data) {
1089 1.1 ahoka dbg_ebh("[EBH THREAD] erase thread started\n");
1090 1.1 ahoka
1091 1.1 ahoka struct chfs_ebh *ebh = data;
1092 1.1 ahoka int err;
1093 1.1 ahoka
1094 1.1 ahoka mutex_enter(&ebh->erase_lock);
1095 1.1 ahoka while (ebh->bg_erase.eth_running) {
1096 1.1 ahoka if (TAILQ_EMPTY(&ebh->to_erase) &&
1097 1.1 ahoka TAILQ_EMPTY(&ebh->fully_erased)) {
1098 1.1 ahoka cv_timedwait_sig(&ebh->bg_erase.eth_wakeup,
1099 1.1 ahoka &ebh->erase_lock, mstohz(100));
1100 1.1 ahoka } else {
1101 1.1 ahoka /* XXX exiting this mutex is a bit odd here as
1102 1.1 ahoka * free_peb instantly reenters it...
1103 1.1 ahoka */
1104 1.1 ahoka err = free_peb(ebh);
1105 1.1 ahoka mutex_exit(&ebh->erase_lock);
1106 1.1 ahoka if (err) {
1107 1.1 ahoka chfs_err("freeing PEB failed in the"
1108 1.1 ahoka " background thread: %d\n", err);
1109 1.1 ahoka }
1110 1.1 ahoka mutex_enter(&ebh->erase_lock);
1111 1.1 ahoka }
1112 1.1 ahoka }
1113 1.1 ahoka mutex_exit(&ebh->erase_lock);
1114 1.1 ahoka
1115 1.1 ahoka dbg_ebh("[EBH THREAD] erase thread stopped\n");
1116 1.1 ahoka kthread_exit(0);
1117 1.1 ahoka }
1118 1.1 ahoka
1119 1.1 ahoka /**
1120 1.1 ahoka * erase_thread_start - init and start erase thread
1121 1.1 ahoka * @ebh: eraseblock handler
1122 1.1 ahoka */
1123 1.1 ahoka static void
1124 1.1 ahoka erase_thread_start(struct chfs_ebh *ebh)
1125 1.1 ahoka {
1126 1.1 ahoka cv_init(&ebh->bg_erase.eth_wakeup, "ebheracv");
1127 1.1 ahoka
1128 1.1 ahoka ebh->bg_erase.eth_running = true;
1129 1.1 ahoka kthread_create(PRI_NONE, KTHREAD_MPSAFE | KTHREAD_MUSTJOIN, NULL,
1130 1.1 ahoka erase_thread, ebh, &ebh->bg_erase.eth_thread, "ebherase");
1131 1.1 ahoka }
1132 1.1 ahoka
1133 1.1 ahoka /**
1134 1.1 ahoka * erase_thread_stop - stop background erase thread
1135 1.1 ahoka * @ebh: eraseblock handler
1136 1.1 ahoka */
1137 1.1 ahoka static void
1138 1.1 ahoka erase_thread_stop(struct chfs_ebh *ebh)
1139 1.1 ahoka {
1140 1.1 ahoka ebh->bg_erase.eth_running = false;
1141 1.1 ahoka cv_signal(&ebh->bg_erase.eth_wakeup);
1142 1.1 ahoka dbg_ebh("[EBH THREAD STOP] signaled\n");
1143 1.1 ahoka
1144 1.1 ahoka kthread_join(ebh->bg_erase.eth_thread);
1145 1.1 ahoka #ifdef BROKEN_KTH_JOIN
1146 1.1 ahoka kpause("chfsebhjointh", false, mstohz(1000), NULL);
1147 1.1 ahoka #endif
1148 1.1 ahoka
1149 1.1 ahoka cv_destroy(&ebh->bg_erase.eth_wakeup);
1150 1.1 ahoka }
1151 1.1 ahoka
1152 1.1 ahoka /*****************************************************************************/
1153 1.1 ahoka /* End of Erase related operations */
1154 1.1 ahoka /*****************************************************************************/
1155 1.1 ahoka
1156 1.1 ahoka /*****************************************************************************/
1157 1.1 ahoka /* Scan related operations */
1158 1.1 ahoka /*****************************************************************************/
1159 1.1 ahoka int
1160 1.1 ahoka scan_leb_used_cmp(struct chfs_scan_leb *sleb1, struct chfs_scan_leb *sleb2)
1161 1.1 ahoka {
1162 1.1 ahoka return (sleb1->lnr - sleb2->lnr);
1163 1.1 ahoka }
1164 1.1 ahoka
1165 1.1 ahoka RB_PROTOTYPE(scan_leb_used_rbtree, chfs_scan_leb, u.rb, scan_leb_used_cmp);
1166 1.1 ahoka RB_GENERATE(scan_leb_used_rbtree, chfs_scan_leb, u.rb, scan_leb_used_cmp);
1167 1.1 ahoka
1168 1.1 ahoka /**
1169 1.1 ahoka * scan_add_to_queue - adds a physical eraseblock to one of the
1170 1.1 ahoka * eraseblock queue
1171 1.1 ahoka * @si: chfs scanning information
1172 1.1 ahoka * @pebnr: physical eraseblock number
1173 1.1 ahoka * @erase_cnt: erase counter of the physical eraseblock
1174 1.1 ahoka * @list: the list to add to
1175 1.1 ahoka *
1176 1.1 ahoka * This function adds a physical eraseblock to one of the lists in the scanning
1177 1.1 ahoka * information.
1178 1.1 ahoka * Returns zero in case of success, negative error code in case of fail.
1179 1.1 ahoka */
1180 1.1 ahoka static int
1181 1.1 ahoka scan_add_to_queue(struct chfs_scan_info *si, int pebnr, int erase_cnt,
1182 1.1 ahoka struct scan_leb_queue *queue)
1183 1.1 ahoka {
1184 1.1 ahoka struct chfs_scan_leb *sleb;
1185 1.1 ahoka
1186 1.1 ahoka sleb = kmem_alloc(sizeof(struct chfs_scan_leb), KM_SLEEP);
1187 1.1 ahoka
1188 1.1 ahoka sleb->pebnr = pebnr;
1189 1.1 ahoka sleb->erase_cnt = erase_cnt;
1190 1.1 ahoka TAILQ_INSERT_TAIL(queue, sleb, u.queue);
1191 1.1 ahoka return 0;
1192 1.1 ahoka }
1193 1.1 ahoka
1194 1.1 ahoka /*
1195 1.1 ahoka * nor_scan_add_to_used - add a physical eraseblock to the
1196 1.1 ahoka * used tree of scan info
1197 1.1 ahoka * @ebh: chfs eraseblock handler
1198 1.1 ahoka * @si: chfs scanning information
1199 1.1 ahoka * @ebhdr: eraseblock header
1200 1.1 ahoka * @pebnr: physical eraseblock number
1201 1.1 ahoka * @leb_status: the status of the PEB's eraseblock header
1202 1.1 ahoka *
1203 1.1 ahoka * This function adds a PEB to the used tree of the scanning information.
1204 1.1 ahoka * It handles the situations if there are more physical eraseblock referencing
1205 1.1 ahoka * to the same logical eraseblock.
1206 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1207 1.1 ahoka */
1208 1.1 ahoka int
1209 1.1 ahoka nor_scan_add_to_used(struct chfs_ebh *ebh, struct chfs_scan_info *si,
1210 1.1 ahoka struct chfs_eb_hdr *ebhdr, int pebnr, int leb_status)
1211 1.1 ahoka {
1212 1.1 ahoka int err, lnr, ec;
1213 1.1 ahoka struct chfs_scan_leb *sleb, *old;
1214 1.1 ahoka
1215 1.1 ahoka lnr = CHFS_GET_LID(ebhdr->u.nor_hdr.lid);
1216 1.1 ahoka ec = le32toh(ebhdr->ec_hdr.erase_cnt);
1217 1.1 ahoka
1218 1.1 ahoka sleb = kmem_alloc(sizeof(struct chfs_scan_leb), KM_SLEEP);
1219 1.1 ahoka
1220 1.1 ahoka sleb->erase_cnt = ec;
1221 1.1 ahoka sleb->lnr = lnr;
1222 1.1 ahoka sleb->pebnr = pebnr;
1223 1.1 ahoka sleb->info = leb_status;
1224 1.1 ahoka
1225 1.1 ahoka old = RB_INSERT(scan_leb_used_rbtree, &si->used, sleb);
1226 1.1 ahoka if (old) {
1227 1.1 ahoka kmem_free(sleb, sizeof(struct chfs_scan_leb));
1228 1.1 ahoka /* There is already an eraseblock in the used tree */
1229 1.1 ahoka /* If the new one is bad */
1230 1.1 ahoka if (EBHDR_LEB_DIRTY == leb_status &&
1231 1.1 ahoka EBHDR_LEB_OK == old->info) {
1232 1.1 ahoka return scan_add_to_queue(si, pebnr, ec, &si->erase);
1233 1.1 ahoka } else {
1234 1.1 ahoka err = scan_add_to_queue(si, old->pebnr,
1235 1.1 ahoka old->erase_cnt, &si->erase);
1236 1.1 ahoka if (err) {
1237 1.1 ahoka return err;
1238 1.1 ahoka }
1239 1.1 ahoka
1240 1.1 ahoka old->erase_cnt = ec;
1241 1.1 ahoka old->lnr = lnr;
1242 1.1 ahoka old->pebnr = pebnr;
1243 1.1 ahoka old->info = leb_status;
1244 1.1 ahoka return 0;
1245 1.1 ahoka }
1246 1.1 ahoka }
1247 1.1 ahoka return 0;
1248 1.1 ahoka }
1249 1.1 ahoka
1250 1.1 ahoka /**
1251 1.1 ahoka * nor_process eb -read the headers from NOR flash, check them and add to
1252 1.1 ahoka * the scanning information
1253 1.1 ahoka * @ebh: chfs eraseblock handler
1254 1.1 ahoka * @si: chfs scanning information
1255 1.1 ahoka * @pebnr: physical eraseblock number
1256 1.1 ahoka *
1257 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1258 1.1 ahoka */
1259 1.1 ahoka int
1260 1.1 ahoka nor_process_eb(struct chfs_ebh *ebh, struct chfs_scan_info *si,
1261 1.1 ahoka int pebnr, struct chfs_eb_hdr *ebhdr)
1262 1.1 ahoka {
1263 1.1 ahoka int err, erase_cnt, leb_status;
1264 1.1 ahoka
1265 1.1 ahoka err = ebh->ops->read_eb_hdr(ebh, pebnr, ebhdr);
1266 1.1 ahoka if (err)
1267 1.1 ahoka return err;
1268 1.1 ahoka
1269 1.1 ahoka erase_cnt = le32toh(ebhdr->ec_hdr.erase_cnt);
1270 1.1 ahoka dbg_ebh("erase_cnt: %d\n", erase_cnt);
1271 1.1 ahoka leb_status = ebh->ops->check_eb_hdr(ebh, ebhdr);
1272 1.1 ahoka if (EBHDR_LEB_BADMAGIC == leb_status ||
1273 1.1 ahoka EBHDR_LEB_BADCRC == leb_status) {
1274 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->corrupted);
1275 1.1 ahoka return err;
1276 1.1 ahoka }
1277 1.1 ahoka else if (EBHDR_LEB_FREE == leb_status) {
1278 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->free);
1279 1.1 ahoka goto count_mean;
1280 1.1 ahoka }
1281 1.1 ahoka else if (EBHDR_LEB_NO_HDR == leb_status) {
1282 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->erased);
1283 1.1 ahoka return err;
1284 1.1 ahoka }
1285 1.1 ahoka else if (EBHDR_LEB_INVALIDATED == leb_status) {
1286 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->erase);
1287 1.1 ahoka return err;
1288 1.1 ahoka }
1289 1.1 ahoka
1290 1.1 ahoka err = nor_scan_add_to_used(ebh, si, ebhdr, pebnr, leb_status);
1291 1.1 ahoka if (err)
1292 1.1 ahoka return err;
1293 1.1 ahoka
1294 1.1 ahoka
1295 1.1 ahoka count_mean:
1296 1.1 ahoka si->sum_of_ec += erase_cnt;
1297 1.1 ahoka si->num_of_eb++;
1298 1.1 ahoka
1299 1.1 ahoka return err;
1300 1.1 ahoka }
1301 1.1 ahoka
1302 1.1 ahoka /*
1303 1.1 ahoka * nand_scan_add_to_used - add a physical eraseblock to the
1304 1.1 ahoka * used tree of scan info
1305 1.1 ahoka * @ebh: chfs eraseblock handler
1306 1.1 ahoka * @si: chfs scanning information
1307 1.1 ahoka * @ebhdr: eraseblock header
1308 1.1 ahoka * @pebnr: physical eraseblock number
1309 1.1 ahoka * @leb_status: the status of the PEB's eraseblock header
1310 1.1 ahoka *
1311 1.1 ahoka * This function adds a PEB to the used tree of the scanning information.
1312 1.1 ahoka * It handles the situations if there are more physical eraseblock referencing
1313 1.1 ahoka * to the same logical eraseblock.
1314 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1315 1.1 ahoka */
1316 1.1 ahoka int
1317 1.1 ahoka nand_scan_add_to_used(struct chfs_ebh *ebh, struct chfs_scan_info *si,
1318 1.1 ahoka struct chfs_eb_hdr *ebhdr, int pebnr)
1319 1.1 ahoka {
1320 1.1 ahoka int err, lnr, ec;
1321 1.1 ahoka struct chfs_scan_leb *sleb, *old;
1322 1.1 ahoka uint64_t serial = le64toh(ebhdr->u.nand_hdr.serial);
1323 1.1 ahoka
1324 1.1 ahoka lnr = CHFS_GET_LID(ebhdr->u.nor_hdr.lid);
1325 1.1 ahoka ec = le32toh(ebhdr->ec_hdr.erase_cnt);
1326 1.1 ahoka
1327 1.1 ahoka sleb = kmem_alloc(sizeof(struct chfs_scan_leb), KM_SLEEP);
1328 1.1 ahoka
1329 1.1 ahoka sleb->erase_cnt = ec;
1330 1.1 ahoka sleb->lnr = lnr;
1331 1.1 ahoka sleb->pebnr = pebnr;
1332 1.1 ahoka sleb->info = serial;
1333 1.1 ahoka
1334 1.1 ahoka old = RB_INSERT(scan_leb_used_rbtree, &si->used, sleb);
1335 1.1 ahoka if (old) {
1336 1.1 ahoka kmem_free(sleb, sizeof(struct chfs_scan_leb));
1337 1.1 ahoka /* There is already an eraseblock in the used tree */
1338 1.1 ahoka /* If the new one is bad */
1339 1.1 ahoka if (serial < old->info)
1340 1.1 ahoka return scan_add_to_queue(si, pebnr, ec, &si->erase);
1341 1.1 ahoka else {
1342 1.1 ahoka err = scan_add_to_queue(si,
1343 1.1 ahoka old->pebnr, old->erase_cnt, &si->erase);
1344 1.1 ahoka if (err)
1345 1.1 ahoka return err;
1346 1.1 ahoka
1347 1.1 ahoka old->erase_cnt = ec;
1348 1.1 ahoka old->lnr = lnr;
1349 1.1 ahoka old->pebnr = pebnr;
1350 1.1 ahoka old->info = serial;
1351 1.1 ahoka return 0;
1352 1.1 ahoka }
1353 1.1 ahoka }
1354 1.1 ahoka return 0;
1355 1.1 ahoka }
1356 1.1 ahoka
1357 1.1 ahoka /**
1358 1.1 ahoka * nand_process eb -read the headers from NAND flash, check them and add to the
1359 1.1 ahoka * scanning information
1360 1.1 ahoka * @ebh: chfs eraseblock handler
1361 1.1 ahoka * @si: chfs scanning information
1362 1.1 ahoka * @pebnr: physical eraseblock number
1363 1.1 ahoka *
1364 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1365 1.1 ahoka */
1366 1.1 ahoka int
1367 1.1 ahoka nand_process_eb(struct chfs_ebh *ebh, struct chfs_scan_info *si,
1368 1.1 ahoka int pebnr, struct chfs_eb_hdr *ebhdr)
1369 1.1 ahoka {
1370 1.1 ahoka int err, erase_cnt, leb_status;
1371 1.1 ahoka uint64_t max_serial;
1372 1.2 ahoka /* isbad() is defined on some ancient platforms, heh */
1373 1.2 ahoka bool is_bad;
1374 1.1 ahoka
1375 1.1 ahoka /* Check block is bad */
1376 1.1 ahoka err = flash_block_isbad(ebh->flash_dev,
1377 1.2 ahoka pebnr * ebh->flash_if->erasesize, &is_bad);
1378 1.1 ahoka if (err) {
1379 1.1 ahoka chfs_err("checking block is bad failed\n");
1380 1.1 ahoka return err;
1381 1.1 ahoka }
1382 1.2 ahoka if (is_bad) {
1383 1.1 ahoka si->bad_peb_cnt++;
1384 1.1 ahoka return 0;
1385 1.1 ahoka }
1386 1.1 ahoka
1387 1.1 ahoka err = ebh->ops->read_eb_hdr(ebh, pebnr, ebhdr);
1388 1.1 ahoka if (err)
1389 1.1 ahoka return err;
1390 1.1 ahoka
1391 1.1 ahoka erase_cnt = le32toh(ebhdr->ec_hdr.erase_cnt);
1392 1.1 ahoka leb_status = ebh->ops->check_eb_hdr(ebh, ebhdr);
1393 1.1 ahoka if (EBHDR_LEB_BADMAGIC == leb_status ||
1394 1.1 ahoka EBHDR_LEB_BADCRC == leb_status) {
1395 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->corrupted);
1396 1.1 ahoka return err;
1397 1.1 ahoka }
1398 1.1 ahoka else if (EBHDR_LEB_FREE == leb_status) {
1399 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->free);
1400 1.1 ahoka goto count_mean;
1401 1.1 ahoka }
1402 1.1 ahoka else if (EBHDR_LEB_NO_HDR == leb_status) {
1403 1.1 ahoka err = scan_add_to_queue(si, pebnr, erase_cnt, &si->erased);
1404 1.1 ahoka return err;
1405 1.1 ahoka }
1406 1.1 ahoka
1407 1.1 ahoka err = nand_scan_add_to_used(ebh, si, ebhdr, pebnr);
1408 1.1 ahoka if (err)
1409 1.1 ahoka return err;
1410 1.1 ahoka
1411 1.1 ahoka max_serial = le64toh(ebhdr->u.nand_hdr.serial);
1412 1.1 ahoka if (max_serial > *ebh->max_serial) {
1413 1.1 ahoka *ebh->max_serial = max_serial;
1414 1.1 ahoka }
1415 1.1 ahoka
1416 1.1 ahoka count_mean:
1417 1.1 ahoka si->sum_of_ec += erase_cnt;
1418 1.1 ahoka si->num_of_eb++;
1419 1.1 ahoka
1420 1.1 ahoka return err;
1421 1.1 ahoka }
1422 1.1 ahoka
1423 1.1 ahoka /**
1424 1.1 ahoka * chfs_scan - scans the media and returns informations about it
1425 1.1 ahoka * @ebh: chfs eraseblock handler
1426 1.1 ahoka *
1427 1.1 ahoka * This function scans through the media and returns information about it or if
1428 1.1 ahoka * it fails NULL will be returned.
1429 1.1 ahoka */
1430 1.1 ahoka struct chfs_scan_info *
1431 1.1 ahoka chfs_scan(struct chfs_ebh *ebh)
1432 1.1 ahoka {
1433 1.1 ahoka struct chfs_scan_info *si;
1434 1.1 ahoka struct chfs_eb_hdr *ebhdr;
1435 1.1 ahoka int pebnr, err;
1436 1.1 ahoka
1437 1.1 ahoka si = kmem_alloc(sizeof(*si), KM_SLEEP);
1438 1.1 ahoka
1439 1.1 ahoka TAILQ_INIT(&si->corrupted);
1440 1.1 ahoka TAILQ_INIT(&si->free);
1441 1.1 ahoka TAILQ_INIT(&si->erase);
1442 1.1 ahoka TAILQ_INIT(&si->erased);
1443 1.1 ahoka RB_INIT(&si->used);
1444 1.1 ahoka si->bad_peb_cnt = 0;
1445 1.1 ahoka si->num_of_eb = 0;
1446 1.1 ahoka si->sum_of_ec = 0;
1447 1.1 ahoka
1448 1.1 ahoka ebhdr = kmem_alloc(sizeof(*ebhdr), KM_SLEEP);
1449 1.1 ahoka
1450 1.1 ahoka for (pebnr = 0; pebnr < ebh->peb_nr; pebnr++) {
1451 1.1 ahoka dbg_ebh("processing PEB %d\n", pebnr);
1452 1.1 ahoka err = ebh->ops->process_eb(ebh, si, pebnr, ebhdr);
1453 1.1 ahoka if (err < 0)
1454 1.1 ahoka goto out_ebhdr;
1455 1.1 ahoka }
1456 1.1 ahoka kmem_free(ebhdr, sizeof(*ebhdr));
1457 1.1 ahoka dbg_ebh("[CHFS_SCAN] scanning information collected\n");
1458 1.1 ahoka return si;
1459 1.1 ahoka
1460 1.1 ahoka out_ebhdr:
1461 1.1 ahoka kmem_free(ebhdr, sizeof(*ebhdr));
1462 1.1 ahoka kmem_free(si, sizeof(*si));
1463 1.1 ahoka return NULL;
1464 1.1 ahoka }
1465 1.1 ahoka
1466 1.1 ahoka /**
1467 1.1 ahoka * scan_info_destroy - frees all lists and trees in the scanning information
1468 1.1 ahoka * @si: the scanning information
1469 1.1 ahoka */
1470 1.1 ahoka void
1471 1.1 ahoka scan_info_destroy(struct chfs_scan_info *si)
1472 1.1 ahoka {
1473 1.1 ahoka EBH_QUEUE_DESTROY(&si->corrupted,
1474 1.1 ahoka struct chfs_scan_leb, u.queue);
1475 1.1 ahoka
1476 1.1 ahoka EBH_QUEUE_DESTROY(&si->erase,
1477 1.1 ahoka struct chfs_scan_leb, u.queue);
1478 1.1 ahoka
1479 1.1 ahoka EBH_QUEUE_DESTROY(&si->erased,
1480 1.1 ahoka struct chfs_scan_leb, u.queue);
1481 1.1 ahoka
1482 1.1 ahoka EBH_QUEUE_DESTROY(&si->free,
1483 1.1 ahoka struct chfs_scan_leb, u.queue);
1484 1.1 ahoka
1485 1.1 ahoka EBH_TREE_DESTROY(scan_leb_used_rbtree,
1486 1.1 ahoka &si->used, struct chfs_scan_leb);
1487 1.1 ahoka
1488 1.1 ahoka kmem_free(si, sizeof(*si));
1489 1.1 ahoka dbg_ebh("[SCAN_INFO_DESTROY] scanning information destroyed\n");
1490 1.1 ahoka }
1491 1.1 ahoka
1492 1.1 ahoka /**
1493 1.1 ahoka * scan_media - scan media
1494 1.1 ahoka *
1495 1.1 ahoka * @ebh - chfs eraseblock handler
1496 1.1 ahoka *
1497 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1498 1.1 ahoka */
1499 1.1 ahoka
1500 1.1 ahoka int
1501 1.1 ahoka scan_media(struct chfs_ebh *ebh)
1502 1.1 ahoka {
1503 1.1 ahoka int err, i, avg_ec;
1504 1.1 ahoka struct chfs_scan_info *si;
1505 1.1 ahoka struct chfs_scan_leb *sleb;
1506 1.1 ahoka
1507 1.1 ahoka si = chfs_scan(ebh);
1508 1.1 ahoka /*
1509 1.1 ahoka * Process the scan info, manage the eraseblock lists
1510 1.1 ahoka */
1511 1.1 ahoka mutex_init(&ebh->ltree_lock, MUTEX_DEFAULT, IPL_NONE);
1512 1.1 ahoka mutex_init(&ebh->erase_lock, MUTEX_DEFAULT, IPL_NONE);
1513 1.1 ahoka RB_INIT(&ebh->ltree);
1514 1.1 ahoka RB_INIT(&ebh->free);
1515 1.1 ahoka RB_INIT(&ebh->in_use);
1516 1.1 ahoka TAILQ_INIT(&ebh->to_erase);
1517 1.1 ahoka TAILQ_INIT(&ebh->fully_erased);
1518 1.1 ahoka mutex_init(&ebh->alc_mutex, MUTEX_DEFAULT, IPL_NONE);
1519 1.1 ahoka
1520 1.1 ahoka ebh->peb_nr -= si->bad_peb_cnt;
1521 1.1 ahoka
1522 1.1 ahoka /*
1523 1.1 ahoka * Create background thread for erasing
1524 1.1 ahoka */
1525 1.1 ahoka erase_thread_start(ebh);
1526 1.1 ahoka
1527 1.1 ahoka ebh->lmap = kmem_alloc(ebh->peb_nr * sizeof(int), KM_SLEEP);
1528 1.1 ahoka
1529 1.1 ahoka for (i = 0; i < ebh->peb_nr; i++) {
1530 1.1 ahoka ebh->lmap[i] = EBH_LEB_UNMAPPED;
1531 1.1 ahoka }
1532 1.1 ahoka
1533 1.1 ahoka if (si->num_of_eb == 0) {
1534 1.1 ahoka /* The flash contains no data. */
1535 1.1 ahoka avg_ec = 0;
1536 1.1 ahoka }
1537 1.1 ahoka else {
1538 1.1 ahoka avg_ec = (int) (si->sum_of_ec / si->num_of_eb);
1539 1.1 ahoka }
1540 1.1 ahoka dbg_ebh("num_of_eb: %d\n", si->num_of_eb);
1541 1.1 ahoka
1542 1.1 ahoka mutex_enter(&ebh->erase_lock);
1543 1.1 ahoka
1544 1.1 ahoka RB_FOREACH(sleb, scan_leb_used_rbtree, &si->used) {
1545 1.1 ahoka ebh->lmap[sleb->lnr] = sleb->pebnr;
1546 1.1 ahoka err = add_peb_to_in_use(ebh, sleb->pebnr, sleb->erase_cnt);
1547 1.1 ahoka if (err)
1548 1.1 ahoka goto out_free;
1549 1.1 ahoka }
1550 1.1 ahoka
1551 1.1 ahoka TAILQ_FOREACH(sleb, &si->erased, u.queue) {
1552 1.1 ahoka err = add_peb_to_erase_queue(ebh, sleb->pebnr, avg_ec,
1553 1.1 ahoka &ebh->fully_erased);
1554 1.1 ahoka if (err)
1555 1.1 ahoka goto out_free;
1556 1.1 ahoka }
1557 1.1 ahoka
1558 1.1 ahoka TAILQ_FOREACH(sleb, &si->erase, u.queue) {
1559 1.1 ahoka err = add_peb_to_erase_queue(ebh, sleb->pebnr, avg_ec,
1560 1.1 ahoka &ebh->to_erase);
1561 1.1 ahoka if (err)
1562 1.1 ahoka goto out_free;
1563 1.1 ahoka }
1564 1.1 ahoka
1565 1.1 ahoka TAILQ_FOREACH(sleb, &si->free, u.queue) {
1566 1.1 ahoka err = add_peb_to_free(ebh, sleb->pebnr, sleb->erase_cnt);
1567 1.1 ahoka if (err)
1568 1.1 ahoka goto out_free;
1569 1.1 ahoka }
1570 1.1 ahoka
1571 1.1 ahoka TAILQ_FOREACH(sleb, &si->corrupted, u.queue) {
1572 1.1 ahoka err = add_peb_to_erase_queue(ebh, sleb->pebnr, avg_ec,
1573 1.1 ahoka &ebh->to_erase);
1574 1.1 ahoka if (err)
1575 1.1 ahoka goto out_free;
1576 1.1 ahoka }
1577 1.1 ahoka mutex_exit(&ebh->erase_lock);
1578 1.1 ahoka scan_info_destroy(si);
1579 1.1 ahoka return 0;
1580 1.1 ahoka
1581 1.1 ahoka out_free:
1582 1.1 ahoka mutex_exit(&ebh->erase_lock);
1583 1.1 ahoka kmem_free(ebh->lmap, ebh->peb_nr * sizeof(int));
1584 1.1 ahoka scan_info_destroy(si);
1585 1.1 ahoka dbg_ebh("[SCAN_MEDIA] returning with error: %d\n", err);
1586 1.1 ahoka return err;
1587 1.1 ahoka }
1588 1.1 ahoka
1589 1.1 ahoka /*****************************************************************************/
1590 1.1 ahoka /* End of Scan related operations */
1591 1.1 ahoka /*****************************************************************************/
1592 1.1 ahoka
1593 1.1 ahoka /**
1594 1.1 ahoka * ebh_open - opens mtd device and init ereaseblock header
1595 1.1 ahoka * @ebh: eraseblock handler
1596 1.1 ahoka * @flash_nr: flash device number to use
1597 1.1 ahoka *
1598 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1599 1.1 ahoka */
1600 1.1 ahoka int
1601 1.1 ahoka ebh_open(struct chfs_ebh *ebh, dev_t dev)
1602 1.1 ahoka {
1603 1.1 ahoka int err;
1604 1.1 ahoka
1605 1.1 ahoka ebh->flash_dev = flash_get_device(dev);
1606 1.1 ahoka if (!ebh->flash_dev) {
1607 1.1 ahoka aprint_error("ebh_open: cant get flash device\n");
1608 1.1 ahoka return ENODEV;
1609 1.1 ahoka }
1610 1.1 ahoka
1611 1.1 ahoka ebh->flash_if = flash_get_interface(dev);
1612 1.1 ahoka if (!ebh->flash_if) {
1613 1.1 ahoka aprint_error("ebh_open: cant get flash interface\n");
1614 1.1 ahoka return ENODEV;
1615 1.1 ahoka }
1616 1.1 ahoka
1617 1.1 ahoka ebh->flash_size = flash_get_size(dev);
1618 1.1 ahoka ebh->peb_nr = ebh->flash_size / ebh->flash_if->erasesize;
1619 1.1 ahoka // ebh->peb_nr = ebh->flash_if->size / ebh->flash_if->erasesize;
1620 1.1 ahoka /* Set up flash operations based on flash type */
1621 1.1 ahoka ebh->ops = kmem_alloc(sizeof(struct chfs_ebh_ops), KM_SLEEP);
1622 1.1 ahoka
1623 1.1 ahoka switch (ebh->flash_if->type) {
1624 1.1 ahoka case FLASH_TYPE_NOR:
1625 1.1 ahoka ebh->eb_size = ebh->flash_if->erasesize -
1626 1.1 ahoka CHFS_EB_EC_HDR_SIZE - CHFS_EB_HDR_NOR_SIZE;
1627 1.1 ahoka
1628 1.1 ahoka ebh->ops->read_eb_hdr = nor_read_eb_hdr;
1629 1.1 ahoka ebh->ops->write_eb_hdr = nor_write_eb_hdr;
1630 1.1 ahoka ebh->ops->check_eb_hdr = nor_check_eb_hdr;
1631 1.1 ahoka ebh->ops->mark_eb_hdr_dirty_flash =
1632 1.1 ahoka nor_mark_eb_hdr_dirty_flash;
1633 1.1 ahoka ebh->ops->invalidate_eb_hdr = nor_invalidate_eb_hdr;
1634 1.1 ahoka ebh->ops->mark_eb_hdr_free = mark_eb_hdr_free;
1635 1.1 ahoka
1636 1.1 ahoka ebh->ops->process_eb = nor_process_eb;
1637 1.1 ahoka
1638 1.1 ahoka ebh->ops->create_eb_hdr = nor_create_eb_hdr;
1639 1.1 ahoka ebh->ops->calc_data_offs = nor_calc_data_offs;
1640 1.1 ahoka
1641 1.1 ahoka ebh->max_serial = NULL;
1642 1.1 ahoka break;
1643 1.1 ahoka case FLASH_TYPE_NAND:
1644 1.1 ahoka ebh->eb_size = ebh->flash_if->erasesize -
1645 1.1 ahoka 2 * ebh->flash_if->page_size;
1646 1.1 ahoka
1647 1.1 ahoka ebh->ops->read_eb_hdr = nand_read_eb_hdr;
1648 1.1 ahoka ebh->ops->write_eb_hdr = nand_write_eb_hdr;
1649 1.1 ahoka ebh->ops->check_eb_hdr = nand_check_eb_hdr;
1650 1.1 ahoka ebh->ops->mark_eb_hdr_free = mark_eb_hdr_free;
1651 1.1 ahoka ebh->ops->mark_eb_hdr_dirty_flash = NULL;
1652 1.1 ahoka ebh->ops->invalidate_eb_hdr = NULL;
1653 1.1 ahoka
1654 1.1 ahoka ebh->ops->process_eb = nand_process_eb;
1655 1.1 ahoka
1656 1.1 ahoka ebh->ops->create_eb_hdr = nand_create_eb_hdr;
1657 1.1 ahoka ebh->ops->calc_data_offs = nand_calc_data_offs;
1658 1.1 ahoka
1659 1.1 ahoka ebh->max_serial = kmem_alloc(sizeof(uint64_t), KM_SLEEP);
1660 1.1 ahoka
1661 1.1 ahoka *ebh->max_serial = 0;
1662 1.1 ahoka break;
1663 1.1 ahoka default:
1664 1.1 ahoka return 1;
1665 1.1 ahoka }
1666 1.1 ahoka printf("opening ebh: eb_size: %zu\n", ebh->eb_size);
1667 1.1 ahoka err = scan_media(ebh);
1668 1.1 ahoka if (err) {
1669 1.1 ahoka dbg_ebh("Scan failed.");
1670 1.1 ahoka kmem_free(ebh->ops, sizeof(struct chfs_ebh_ops));
1671 1.1 ahoka kmem_free(ebh, sizeof(struct chfs_ebh));
1672 1.1 ahoka return err;
1673 1.1 ahoka }
1674 1.1 ahoka return 0;
1675 1.1 ahoka }
1676 1.1 ahoka
1677 1.1 ahoka /**
1678 1.1 ahoka * ebh_close - close ebh
1679 1.1 ahoka * @ebh: eraseblock handler
1680 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1681 1.1 ahoka */
1682 1.1 ahoka int
1683 1.1 ahoka ebh_close(struct chfs_ebh *ebh)
1684 1.1 ahoka {
1685 1.1 ahoka erase_thread_stop(ebh);
1686 1.1 ahoka
1687 1.1 ahoka EBH_TREE_DESTROY(peb_free_rbtree, &ebh->free, struct chfs_peb);
1688 1.1 ahoka EBH_TREE_DESTROY(peb_in_use_rbtree, &ebh->in_use, struct chfs_peb);
1689 1.1 ahoka
1690 1.1 ahoka EBH_QUEUE_DESTROY(&ebh->fully_erased, struct chfs_peb, u.queue);
1691 1.1 ahoka EBH_QUEUE_DESTROY(&ebh->to_erase, struct chfs_peb, u.queue);
1692 1.1 ahoka
1693 1.1 ahoka /* XXX HACK, see ebh.h */
1694 1.1 ahoka EBH_TREE_DESTROY_MUTEX(ltree_rbtree, &ebh->ltree,
1695 1.1 ahoka struct chfs_ltree_entry);
1696 1.1 ahoka
1697 1.1 ahoka KASSERT(!mutex_owned(&ebh->ltree_lock));
1698 1.1 ahoka KASSERT(!mutex_owned(&ebh->alc_mutex));
1699 1.1 ahoka KASSERT(!mutex_owned(&ebh->erase_lock));
1700 1.1 ahoka
1701 1.1 ahoka mutex_destroy(&ebh->ltree_lock);
1702 1.1 ahoka mutex_destroy(&ebh->alc_mutex);
1703 1.1 ahoka mutex_destroy(&ebh->erase_lock);
1704 1.1 ahoka
1705 1.1 ahoka kmem_free(ebh->ops, sizeof(struct chfs_ebh_ops));
1706 1.1 ahoka kmem_free(ebh, sizeof(struct chfs_ebh));
1707 1.1 ahoka
1708 1.1 ahoka return 0;
1709 1.1 ahoka }
1710 1.1 ahoka
1711 1.1 ahoka /**
1712 1.1 ahoka * ebh_read_leb - read data from leb
1713 1.1 ahoka * @ebh: eraseblock handler
1714 1.1 ahoka * @lnr: logical eraseblock number
1715 1.1 ahoka * @buf: buffer to read to
1716 1.1 ahoka * @offset: offset from where to read
1717 1.1 ahoka * @len: bytes number to read
1718 1.1 ahoka *
1719 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1720 1.1 ahoka */
1721 1.1 ahoka int
1722 1.1 ahoka ebh_read_leb(struct chfs_ebh *ebh, int lnr, char *buf, uint32_t offset,
1723 1.1 ahoka size_t len, size_t *retlen)
1724 1.1 ahoka {
1725 1.1 ahoka int err, pebnr;
1726 1.1 ahoka off_t data_offset;
1727 1.1 ahoka
1728 1.1 ahoka KASSERT(offset + len <= ebh->eb_size);
1729 1.1 ahoka
1730 1.1 ahoka err = leb_read_lock(ebh, lnr);
1731 1.1 ahoka if (err)
1732 1.1 ahoka return err;
1733 1.1 ahoka pebnr = ebh->lmap[lnr];
1734 1.1 ahoka /* If PEB is not mapped the buffer is filled with 0xFF */
1735 1.1 ahoka if (EBH_LEB_UNMAPPED == pebnr) {
1736 1.1 ahoka leb_read_unlock(ebh, lnr);
1737 1.1 ahoka memset(buf, 0xFF, len);
1738 1.1 ahoka return 0;
1739 1.1 ahoka }
1740 1.1 ahoka
1741 1.1 ahoka /* Read data */
1742 1.1 ahoka data_offset = ebh->ops->calc_data_offs(ebh, pebnr, offset);
1743 1.1 ahoka err = flash_read(ebh->flash_dev, data_offset, len, retlen,
1744 1.1 ahoka (unsigned char *) buf);
1745 1.1 ahoka if (err)
1746 1.1 ahoka goto out_free;
1747 1.1 ahoka
1748 1.1 ahoka KASSERT(len == *retlen);
1749 1.1 ahoka
1750 1.1 ahoka leb_read_unlock(ebh, lnr);
1751 1.1 ahoka return err;
1752 1.1 ahoka
1753 1.1 ahoka out_free:
1754 1.1 ahoka leb_read_unlock(ebh, lnr);
1755 1.1 ahoka return err;
1756 1.1 ahoka }
1757 1.1 ahoka
1758 1.1 ahoka /**
1759 1.1 ahoka * get_peb: get a free physical eraseblock
1760 1.1 ahoka * @ebh - chfs eraseblock handler
1761 1.1 ahoka *
1762 1.1 ahoka * This function gets a free eraseblock from the ebh->free RB-tree.
1763 1.1 ahoka * The fist entry will be returned and deleted from the tree.
1764 1.1 ahoka * The entries sorted by the erase counters, so the PEB with the smallest
1765 1.1 ahoka * erase counter will be added back.
1766 1.1 ahoka * If something goes bad a negative value will be returned.
1767 1.1 ahoka */
1768 1.1 ahoka int
1769 1.1 ahoka get_peb(struct chfs_ebh *ebh)
1770 1.1 ahoka {
1771 1.1 ahoka int err, pebnr;
1772 1.1 ahoka struct chfs_peb *peb;
1773 1.1 ahoka
1774 1.1 ahoka retry:
1775 1.1 ahoka mutex_enter(&ebh->erase_lock);
1776 1.1 ahoka //dbg_ebh("LOCK: ebh->erase_lock spin locked in get_peb()\n");
1777 1.1 ahoka if (RB_EMPTY(&ebh->free)) {
1778 1.1 ahoka /*There is no more free PEBs in the tree*/
1779 1.1 ahoka if (TAILQ_EMPTY(&ebh->to_erase) &&
1780 1.1 ahoka TAILQ_EMPTY(&ebh->fully_erased)) {
1781 1.1 ahoka mutex_exit(&ebh->erase_lock);
1782 1.1 ahoka //dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in get_peb()\n");
1783 1.1 ahoka return ENOSPC;
1784 1.1 ahoka }
1785 1.1 ahoka err = free_peb(ebh);
1786 1.1 ahoka
1787 1.1 ahoka mutex_exit(&ebh->erase_lock);
1788 1.1 ahoka //dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in get_peb()\n");
1789 1.1 ahoka
1790 1.1 ahoka if (err)
1791 1.1 ahoka return err;
1792 1.1 ahoka goto retry;
1793 1.1 ahoka }
1794 1.1 ahoka peb = RB_MIN(peb_free_rbtree, &ebh->free);
1795 1.1 ahoka pebnr = peb->pebnr;
1796 1.1 ahoka RB_REMOVE(peb_free_rbtree, &ebh->free, peb);
1797 1.1 ahoka err = add_peb_to_in_use(ebh, peb->pebnr, peb->erase_cnt);
1798 1.1 ahoka if (err)
1799 1.1 ahoka pebnr = err;
1800 1.1 ahoka
1801 1.1 ahoka kmem_free(peb, sizeof(struct chfs_peb));
1802 1.1 ahoka
1803 1.1 ahoka mutex_exit(&ebh->erase_lock);
1804 1.1 ahoka //dbg_ebh("UNLOCK: ebh->erase_lock spin unlocked in get_peb()\n");
1805 1.1 ahoka
1806 1.1 ahoka return pebnr;
1807 1.1 ahoka }
1808 1.1 ahoka
1809 1.1 ahoka /**
1810 1.1 ahoka * ebh_write_leb - write data to leb
1811 1.1 ahoka * @ebh: eraseblock handler
1812 1.1 ahoka * @lnr: logical eraseblock number
1813 1.1 ahoka * @buf: data to write
1814 1.1 ahoka * @offset: offset where to write
1815 1.1 ahoka * @len: bytes number to write
1816 1.1 ahoka *
1817 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1818 1.1 ahoka */
1819 1.1 ahoka int
1820 1.1 ahoka ebh_write_leb(struct chfs_ebh *ebh, int lnr, char *buf, uint32_t offset,
1821 1.1 ahoka size_t len, size_t *retlen)
1822 1.1 ahoka {
1823 1.1 ahoka int err, pebnr, retries = 0;
1824 1.1 ahoka off_t data_offset;
1825 1.1 ahoka struct chfs_eb_hdr *ebhdr;
1826 1.1 ahoka
1827 1.1 ahoka dbg("offset: %d | len: %zu | (offset+len): %zu "
1828 1.1 ahoka " | ebsize: %zu\n", offset, len, (offset+len), ebh->eb_size);
1829 1.1 ahoka
1830 1.1 ahoka KASSERT(offset + len <= ebh->eb_size);
1831 1.1 ahoka
1832 1.1 ahoka err = leb_write_lock(ebh, lnr);
1833 1.1 ahoka if (err)
1834 1.1 ahoka return err;
1835 1.1 ahoka
1836 1.1 ahoka pebnr = ebh->lmap[lnr];
1837 1.1 ahoka /* If the LEB is mapped write out data */
1838 1.1 ahoka if (pebnr != EBH_LEB_UNMAPPED) {
1839 1.1 ahoka data_offset = ebh->ops->calc_data_offs(ebh, pebnr, offset);
1840 1.1 ahoka err = flash_write(ebh->flash_dev, data_offset, len, retlen,
1841 1.1 ahoka (unsigned char *) buf);
1842 1.1 ahoka
1843 1.1 ahoka if (err) {
1844 1.1 ahoka chfs_err("error %d while writing %zu bytes to PEB "
1845 1.1 ahoka "%d:%ju, written %zu bytes\n",
1846 1.1 ahoka err, len, pebnr, (uintmax_t )offset, *retlen);
1847 1.1 ahoka } else {
1848 1.1 ahoka KASSERT(len == *retlen);
1849 1.1 ahoka }
1850 1.1 ahoka
1851 1.1 ahoka leb_write_unlock(ebh, lnr);
1852 1.1 ahoka return err;
1853 1.1 ahoka }
1854 1.1 ahoka
1855 1.1 ahoka /*
1856 1.1 ahoka * If the LEB is unmapped, get a free PEB and write the
1857 1.1 ahoka * eraseblock header first
1858 1.1 ahoka */
1859 1.1 ahoka ebhdr = kmem_alloc(sizeof(struct chfs_eb_hdr), KM_SLEEP);
1860 1.1 ahoka
1861 1.1 ahoka /* Setting up eraseblock header properties */
1862 1.1 ahoka ebh->ops->create_eb_hdr(ebhdr, lnr);
1863 1.1 ahoka
1864 1.1 ahoka retry:
1865 1.1 ahoka /* Getting a physical eraseblock from the wear leveling system */
1866 1.1 ahoka pebnr = get_peb(ebh);
1867 1.1 ahoka if (pebnr < 0) {
1868 1.1 ahoka leb_write_unlock(ebh, lnr);
1869 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
1870 1.1 ahoka return pebnr;
1871 1.1 ahoka }
1872 1.1 ahoka
1873 1.1 ahoka /* Write the eraseblock header to the media */
1874 1.1 ahoka err = ebh->ops->write_eb_hdr(ebh, pebnr, ebhdr);
1875 1.1 ahoka if (err) {
1876 1.1 ahoka chfs_warn(
1877 1.1 ahoka "error writing eraseblock header: LEB %d , PEB %d\n",
1878 1.1 ahoka lnr, pebnr);
1879 1.1 ahoka goto write_error;
1880 1.1 ahoka }
1881 1.1 ahoka
1882 1.1 ahoka /* Write out data */
1883 1.1 ahoka if (len) {
1884 1.1 ahoka data_offset = ebh->ops->calc_data_offs(ebh, pebnr, offset);
1885 1.1 ahoka err = flash_write(ebh->flash_dev,
1886 1.1 ahoka data_offset, len, retlen, (unsigned char *) buf);
1887 1.1 ahoka if (err) {
1888 1.1 ahoka chfs_err("error %d while writing %zu bytes to PEB "
1889 1.1 ahoka " %d:%ju, written %zu bytes\n",
1890 1.1 ahoka err, len, pebnr, (uintmax_t )offset, *retlen);
1891 1.1 ahoka goto write_error;
1892 1.1 ahoka }
1893 1.1 ahoka }
1894 1.1 ahoka
1895 1.1 ahoka ebh->lmap[lnr] = pebnr;
1896 1.1 ahoka leb_write_unlock(ebh, lnr);
1897 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
1898 1.1 ahoka
1899 1.1 ahoka return 0;
1900 1.1 ahoka
1901 1.1 ahoka write_error: err = release_peb(ebh, pebnr);
1902 1.1 ahoka // max retries (NOW: 2)
1903 1.1 ahoka if (err || CHFS_MAX_GET_PEB_RETRIES < ++retries) {
1904 1.1 ahoka leb_write_unlock(ebh, lnr);
1905 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
1906 1.1 ahoka return err;
1907 1.1 ahoka }
1908 1.1 ahoka goto retry;
1909 1.1 ahoka }
1910 1.1 ahoka
1911 1.1 ahoka /**
1912 1.1 ahoka * ebh_erase_leb - erase a leb
1913 1.1 ahoka * @ebh: eraseblock handler
1914 1.1 ahoka * @lnr: leb number
1915 1.1 ahoka *
1916 1.1 ahoka * Returns zero in case of success, error code in case of fail.
1917 1.1 ahoka */
1918 1.1 ahoka int
1919 1.1 ahoka ebh_erase_leb(struct chfs_ebh *ebh, int lnr)
1920 1.1 ahoka {
1921 1.1 ahoka int err, pebnr;
1922 1.1 ahoka
1923 1.1 ahoka leb_write_lock(ebh, lnr);
1924 1.1 ahoka
1925 1.1 ahoka pebnr = ebh->lmap[lnr];
1926 1.1 ahoka if (pebnr < 0) {
1927 1.1 ahoka leb_write_unlock(ebh, lnr);
1928 1.1 ahoka return EBH_LEB_UNMAPPED;
1929 1.1 ahoka }
1930 1.1 ahoka err = release_peb(ebh, pebnr);
1931 1.1 ahoka if (err)
1932 1.1 ahoka goto out_unlock;
1933 1.1 ahoka
1934 1.1 ahoka ebh->lmap[lnr] = EBH_LEB_UNMAPPED;
1935 1.1 ahoka cv_signal(&ebh->bg_erase.eth_wakeup);
1936 1.1 ahoka out_unlock:
1937 1.1 ahoka leb_write_unlock(ebh, lnr);
1938 1.1 ahoka return err;
1939 1.1 ahoka }
1940 1.1 ahoka
1941 1.1 ahoka /**
1942 1.1 ahoka * ebh_map_leb - maps a PEB to LEB
1943 1.1 ahoka * @ebh: eraseblock handler
1944 1.1 ahoka * @lnr: leb number
1945 1.1 ahoka *
1946 1.1 ahoka * Returns zero on success, error code in case of fail
1947 1.1 ahoka */
1948 1.1 ahoka int
1949 1.1 ahoka ebh_map_leb(struct chfs_ebh *ebh, int lnr)
1950 1.1 ahoka {
1951 1.1 ahoka int err, pebnr, retries = 0;
1952 1.1 ahoka struct chfs_eb_hdr *ebhdr;
1953 1.1 ahoka
1954 1.1 ahoka ebhdr = kmem_alloc(sizeof(struct chfs_eb_hdr), KM_SLEEP);
1955 1.1 ahoka
1956 1.1 ahoka err = leb_write_lock(ebh, lnr);
1957 1.1 ahoka if (err)
1958 1.1 ahoka return err;
1959 1.1 ahoka
1960 1.1 ahoka retry:
1961 1.1 ahoka pebnr = get_peb(ebh);
1962 1.1 ahoka if (pebnr < 0) {
1963 1.1 ahoka err = pebnr;
1964 1.1 ahoka goto out_unlock;
1965 1.1 ahoka }
1966 1.1 ahoka
1967 1.1 ahoka ebh->ops->create_eb_hdr(ebhdr, lnr);
1968 1.1 ahoka
1969 1.1 ahoka err = ebh->ops->write_eb_hdr(ebh, pebnr, ebhdr);
1970 1.1 ahoka if (err) {
1971 1.1 ahoka chfs_warn(
1972 1.1 ahoka "error writing eraseblock header: LEB %d , PEB %d\n",
1973 1.1 ahoka lnr, pebnr);
1974 1.1 ahoka goto write_error;
1975 1.1 ahoka }
1976 1.1 ahoka
1977 1.1 ahoka ebh->lmap[lnr] = pebnr;
1978 1.1 ahoka
1979 1.1 ahoka out_unlock:
1980 1.1 ahoka leb_write_unlock(ebh, lnr);
1981 1.1 ahoka return err;
1982 1.1 ahoka
1983 1.1 ahoka write_error:
1984 1.1 ahoka err = release_peb(ebh, pebnr);
1985 1.1 ahoka // max retries (NOW: 2)
1986 1.1 ahoka if (err || CHFS_MAX_GET_PEB_RETRIES < ++retries) {
1987 1.1 ahoka leb_write_unlock(ebh, lnr);
1988 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
1989 1.1 ahoka return err;
1990 1.1 ahoka }
1991 1.1 ahoka goto retry;
1992 1.1 ahoka }
1993 1.1 ahoka
1994 1.1 ahoka /**
1995 1.1 ahoka * ebh_unmap_leb -
1996 1.1 ahoka * @ebh: eraseblock handler
1997 1.1 ahoka * @lnr: leb number
1998 1.1 ahoka *
1999 1.1 ahoka * Retruns zero on success, error code in case of fail.
2000 1.1 ahoka */
2001 1.1 ahoka int
2002 1.1 ahoka ebh_unmap_leb(struct chfs_ebh *ebh, int lnr)
2003 1.1 ahoka {
2004 1.1 ahoka int err;
2005 1.1 ahoka
2006 1.1 ahoka if (ebh_is_mapped(ebh, lnr) < 0)
2007 1.1 ahoka /* If the eraseblock already unmapped */
2008 1.1 ahoka return 0;
2009 1.1 ahoka
2010 1.1 ahoka err = ebh_erase_leb(ebh, lnr);
2011 1.1 ahoka
2012 1.1 ahoka return err;
2013 1.1 ahoka }
2014 1.1 ahoka
2015 1.1 ahoka /**
2016 1.1 ahoka * ebh_is_mapped - check if a PEB is mapped to @lnr
2017 1.1 ahoka * @ebh: eraseblock handler
2018 1.1 ahoka * @lnr: leb number
2019 1.1 ahoka *
2020 1.1 ahoka * Retruns 0 if the logical eraseblock is mapped, negative error code otherwise.
2021 1.1 ahoka */
2022 1.1 ahoka int
2023 1.1 ahoka ebh_is_mapped(struct chfs_ebh *ebh, int lnr)
2024 1.1 ahoka {
2025 1.1 ahoka int err, result;
2026 1.1 ahoka err = leb_read_lock(ebh, lnr);
2027 1.1 ahoka if (err)
2028 1.1 ahoka return err;
2029 1.1 ahoka
2030 1.1 ahoka result = ebh->lmap[lnr];
2031 1.1 ahoka leb_read_unlock(ebh, lnr);
2032 1.1 ahoka
2033 1.1 ahoka return result;
2034 1.1 ahoka }
2035 1.1 ahoka
2036 1.1 ahoka /**
2037 1.1 ahoka * ebh_change_leb - write the LEB to another PEB
2038 1.1 ahoka * @ebh: eraseblock handler
2039 1.1 ahoka * @lnr: leb number
2040 1.1 ahoka * @buf: data to write
2041 1.1 ahoka * @len: length of data
2042 1.1 ahoka * Returns zero in case of success, error code in case of fail.
2043 1.1 ahoka */
2044 1.1 ahoka int
2045 1.1 ahoka ebh_change_leb(struct chfs_ebh *ebh, int lnr, char *buf, size_t len,
2046 1.1 ahoka size_t *retlen)
2047 1.1 ahoka {
2048 1.1 ahoka int err, pebnr, pebnr_old, retries = 0;
2049 1.1 ahoka off_t data_offset;
2050 1.1 ahoka
2051 1.1 ahoka struct chfs_peb *peb = NULL;
2052 1.1 ahoka struct chfs_eb_hdr *ebhdr;
2053 1.1 ahoka
2054 1.1 ahoka if (ebh_is_mapped(ebh, lnr) < 0)
2055 1.1 ahoka return EBH_LEB_UNMAPPED;
2056 1.1 ahoka
2057 1.1 ahoka if (len == 0) {
2058 1.1 ahoka err = ebh_unmap_leb(ebh, lnr);
2059 1.1 ahoka if (err)
2060 1.1 ahoka return err;
2061 1.1 ahoka return ebh_map_leb(ebh, lnr);
2062 1.1 ahoka }
2063 1.1 ahoka
2064 1.1 ahoka ebhdr = kmem_alloc(sizeof(struct chfs_eb_hdr), KM_SLEEP);
2065 1.1 ahoka
2066 1.1 ahoka pebnr_old = ebh->lmap[lnr];
2067 1.1 ahoka
2068 1.1 ahoka mutex_enter(&ebh->alc_mutex);
2069 1.1 ahoka err = leb_write_lock(ebh, lnr);
2070 1.1 ahoka if (err)
2071 1.1 ahoka goto out_mutex;
2072 1.1 ahoka
2073 1.1 ahoka if (ebh->ops->mark_eb_hdr_dirty_flash) {
2074 1.1 ahoka err = ebh->ops->mark_eb_hdr_dirty_flash(ebh, pebnr_old, lnr);
2075 1.1 ahoka if (err)
2076 1.1 ahoka goto out_unlock;
2077 1.1 ahoka }
2078 1.1 ahoka
2079 1.1 ahoka /* Setting up eraseblock header properties */
2080 1.1 ahoka ebh->ops->create_eb_hdr(ebhdr, lnr);
2081 1.1 ahoka
2082 1.1 ahoka retry:
2083 1.1 ahoka /* Getting a physical eraseblock from the wear leveling system */
2084 1.1 ahoka pebnr = get_peb(ebh);
2085 1.1 ahoka if (pebnr < 0) {
2086 1.1 ahoka leb_write_unlock(ebh, lnr);
2087 1.1 ahoka mutex_exit(&ebh->alc_mutex);
2088 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
2089 1.1 ahoka return pebnr;
2090 1.1 ahoka }
2091 1.1 ahoka
2092 1.1 ahoka err = ebh->ops->write_eb_hdr(ebh, pebnr, ebhdr);
2093 1.1 ahoka if (err) {
2094 1.1 ahoka chfs_warn(
2095 1.1 ahoka "error writing eraseblock header: LEB %d , PEB %d",
2096 1.1 ahoka lnr, pebnr);
2097 1.1 ahoka goto write_error;
2098 1.1 ahoka }
2099 1.1 ahoka
2100 1.1 ahoka /* Write out data */
2101 1.1 ahoka data_offset = ebh->ops->calc_data_offs(ebh, pebnr, 0);
2102 1.1 ahoka err = flash_write(ebh->flash_dev, data_offset, len, retlen,
2103 1.1 ahoka (unsigned char *) buf);
2104 1.1 ahoka if (err) {
2105 1.1 ahoka chfs_err("error %d while writing %zu bytes to PEB %d:%ju,"
2106 1.1 ahoka " written %zu bytes",
2107 1.1 ahoka err, len, pebnr, (uintmax_t)data_offset, *retlen);
2108 1.1 ahoka goto write_error;
2109 1.1 ahoka }
2110 1.1 ahoka
2111 1.1 ahoka ebh->lmap[lnr] = pebnr;
2112 1.1 ahoka
2113 1.1 ahoka if (ebh->ops->invalidate_eb_hdr) {
2114 1.1 ahoka err = ebh->ops->invalidate_eb_hdr(ebh, pebnr_old);
2115 1.1 ahoka if (err)
2116 1.1 ahoka goto out_unlock;
2117 1.1 ahoka }
2118 1.1 ahoka peb = find_peb_in_use(ebh, pebnr_old);
2119 1.1 ahoka err = release_peb(ebh, peb->pebnr);
2120 1.1 ahoka
2121 1.1 ahoka out_unlock:
2122 1.1 ahoka leb_write_unlock(ebh, lnr);
2123 1.1 ahoka
2124 1.1 ahoka out_mutex:
2125 1.1 ahoka mutex_exit(&ebh->alc_mutex);
2126 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
2127 1.1 ahoka kmem_free(peb, sizeof(struct chfs_peb));
2128 1.1 ahoka return err;
2129 1.1 ahoka
2130 1.1 ahoka write_error:
2131 1.1 ahoka err = release_peb(ebh, pebnr);
2132 1.1 ahoka //max retries (NOW: 2)
2133 1.1 ahoka if (err || CHFS_MAX_GET_PEB_RETRIES < ++retries) {
2134 1.1 ahoka leb_write_unlock(ebh, lnr);
2135 1.1 ahoka mutex_exit(&ebh->alc_mutex);
2136 1.1 ahoka kmem_free(ebhdr, sizeof(struct chfs_eb_hdr));
2137 1.1 ahoka return err;
2138 1.1 ahoka }
2139 1.1 ahoka goto retry;
2140 1.1 ahoka }
2141 1.1 ahoka
2142