ffs_alloc.c revision 1.1 1 1.1 mycroft /*
2 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
3 1.1 mycroft * The Regents of the University of California. All rights reserved.
4 1.1 mycroft *
5 1.1 mycroft * Redistribution and use in source and binary forms, with or without
6 1.1 mycroft * modification, are permitted provided that the following conditions
7 1.1 mycroft * are met:
8 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
9 1.1 mycroft * notice, this list of conditions and the following disclaimer.
10 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
12 1.1 mycroft * documentation and/or other materials provided with the distribution.
13 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
14 1.1 mycroft * must display the following acknowledgement:
15 1.1 mycroft * This product includes software developed by the University of
16 1.1 mycroft * California, Berkeley and its contributors.
17 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
18 1.1 mycroft * may be used to endorse or promote products derived from this software
19 1.1 mycroft * without specific prior written permission.
20 1.1 mycroft *
21 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 mycroft * SUCH DAMAGE.
32 1.1 mycroft *
33 1.1 mycroft * from: @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
34 1.1 mycroft * $Id: ffs_alloc.c,v 1.1 1994/06/08 11:41:58 mycroft Exp $
35 1.1 mycroft */
36 1.1 mycroft
37 1.1 mycroft #include <sys/param.h>
38 1.1 mycroft #include <sys/systm.h>
39 1.1 mycroft #include <sys/buf.h>
40 1.1 mycroft #include <sys/proc.h>
41 1.1 mycroft #include <sys/vnode.h>
42 1.1 mycroft #include <sys/mount.h>
43 1.1 mycroft #include <sys/kernel.h>
44 1.1 mycroft #include <sys/syslog.h>
45 1.1 mycroft
46 1.1 mycroft #include <vm/vm.h>
47 1.1 mycroft
48 1.1 mycroft #include <ufs/ufs/quota.h>
49 1.1 mycroft #include <ufs/ufs/inode.h>
50 1.1 mycroft
51 1.1 mycroft #include <ufs/ffs/fs.h>
52 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
53 1.1 mycroft
54 1.1 mycroft extern u_long nextgennumber;
55 1.1 mycroft
56 1.1 mycroft static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
57 1.1 mycroft static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
58 1.1 mycroft static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
59 1.1 mycroft static ino_t ffs_dirpref __P((struct fs *));
60 1.1 mycroft static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
61 1.1 mycroft static void ffs_fserr __P((struct fs *, u_int, char *));
62 1.1 mycroft static u_long ffs_hashalloc
63 1.1 mycroft __P((struct inode *, int, long, int, u_long (*)()));
64 1.1 mycroft static ino_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
65 1.1 mycroft static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
66 1.1 mycroft
67 1.1 mycroft /*
68 1.1 mycroft * Allocate a block in the file system.
69 1.1 mycroft *
70 1.1 mycroft * The size of the requested block is given, which must be some
71 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
72 1.1 mycroft * A preference may be optionally specified. If a preference is given
73 1.1 mycroft * the following hierarchy is used to allocate a block:
74 1.1 mycroft * 1) allocate the requested block.
75 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
76 1.1 mycroft * 3) allocate a block in the same cylinder group.
77 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
78 1.1 mycroft * available block is located.
79 1.1 mycroft * If no block preference is given the following heirarchy is used
80 1.1 mycroft * to allocate a block:
81 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
82 1.1 mycroft * inode for the file.
83 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
84 1.1 mycroft * available block is located.
85 1.1 mycroft */
86 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
87 1.1 mycroft register struct inode *ip;
88 1.1 mycroft daddr_t lbn, bpref;
89 1.1 mycroft int size;
90 1.1 mycroft struct ucred *cred;
91 1.1 mycroft daddr_t *bnp;
92 1.1 mycroft {
93 1.1 mycroft register struct fs *fs;
94 1.1 mycroft daddr_t bno;
95 1.1 mycroft int cg, error;
96 1.1 mycroft
97 1.1 mycroft *bnp = 0;
98 1.1 mycroft fs = ip->i_fs;
99 1.1 mycroft #ifdef DIAGNOSTIC
100 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
101 1.1 mycroft printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
102 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
103 1.1 mycroft panic("ffs_alloc: bad size");
104 1.1 mycroft }
105 1.1 mycroft if (cred == NOCRED)
106 1.1 mycroft panic("ffs_alloc: missing credential\n");
107 1.1 mycroft #endif /* DIAGNOSTIC */
108 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
109 1.1 mycroft goto nospace;
110 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
111 1.1 mycroft goto nospace;
112 1.1 mycroft #ifdef QUOTA
113 1.1 mycroft if (error = chkdq(ip, (long)btodb(size), cred, 0))
114 1.1 mycroft return (error);
115 1.1 mycroft #endif
116 1.1 mycroft if (bpref >= fs->fs_size)
117 1.1 mycroft bpref = 0;
118 1.1 mycroft if (bpref == 0)
119 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
120 1.1 mycroft else
121 1.1 mycroft cg = dtog(fs, bpref);
122 1.1 mycroft bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
123 1.1 mycroft (u_long (*)())ffs_alloccg);
124 1.1 mycroft if (bno > 0) {
125 1.1 mycroft ip->i_blocks += btodb(size);
126 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
127 1.1 mycroft *bnp = bno;
128 1.1 mycroft return (0);
129 1.1 mycroft }
130 1.1 mycroft #ifdef QUOTA
131 1.1 mycroft /*
132 1.1 mycroft * Restore user's disk quota because allocation failed.
133 1.1 mycroft */
134 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
135 1.1 mycroft #endif
136 1.1 mycroft nospace:
137 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
138 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
139 1.1 mycroft return (ENOSPC);
140 1.1 mycroft }
141 1.1 mycroft
142 1.1 mycroft /*
143 1.1 mycroft * Reallocate a fragment to a bigger size
144 1.1 mycroft *
145 1.1 mycroft * The number and size of the old block is given, and a preference
146 1.1 mycroft * and new size is also specified. The allocator attempts to extend
147 1.1 mycroft * the original block. Failing that, the regular block allocator is
148 1.1 mycroft * invoked to get an appropriate block.
149 1.1 mycroft */
150 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
151 1.1 mycroft register struct inode *ip;
152 1.1 mycroft daddr_t lbprev;
153 1.1 mycroft daddr_t bpref;
154 1.1 mycroft int osize, nsize;
155 1.1 mycroft struct ucred *cred;
156 1.1 mycroft struct buf **bpp;
157 1.1 mycroft {
158 1.1 mycroft register struct fs *fs;
159 1.1 mycroft struct buf *bp;
160 1.1 mycroft int cg, request, error;
161 1.1 mycroft daddr_t bprev, bno;
162 1.1 mycroft
163 1.1 mycroft *bpp = 0;
164 1.1 mycroft fs = ip->i_fs;
165 1.1 mycroft #ifdef DIAGNOSTIC
166 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
167 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
168 1.1 mycroft printf(
169 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
170 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
171 1.1 mycroft panic("ffs_realloccg: bad size");
172 1.1 mycroft }
173 1.1 mycroft if (cred == NOCRED)
174 1.1 mycroft panic("ffs_realloccg: missing credential\n");
175 1.1 mycroft #endif /* DIAGNOSTIC */
176 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
177 1.1 mycroft goto nospace;
178 1.1 mycroft if ((bprev = ip->i_db[lbprev]) == 0) {
179 1.1 mycroft printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
180 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
181 1.1 mycroft panic("ffs_realloccg: bad bprev");
182 1.1 mycroft }
183 1.1 mycroft /*
184 1.1 mycroft * Allocate the extra space in the buffer.
185 1.1 mycroft */
186 1.1 mycroft if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
187 1.1 mycroft brelse(bp);
188 1.1 mycroft return (error);
189 1.1 mycroft }
190 1.1 mycroft #ifdef QUOTA
191 1.1 mycroft if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
192 1.1 mycroft brelse(bp);
193 1.1 mycroft return (error);
194 1.1 mycroft }
195 1.1 mycroft #endif
196 1.1 mycroft /*
197 1.1 mycroft * Check for extension in the existing location.
198 1.1 mycroft */
199 1.1 mycroft cg = dtog(fs, bprev);
200 1.1 mycroft if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
201 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
202 1.1 mycroft panic("bad blockno");
203 1.1 mycroft ip->i_blocks += btodb(nsize - osize);
204 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
205 1.1 mycroft allocbuf(bp, nsize);
206 1.1 mycroft bp->b_flags |= B_DONE;
207 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
208 1.1 mycroft *bpp = bp;
209 1.1 mycroft return (0);
210 1.1 mycroft }
211 1.1 mycroft /*
212 1.1 mycroft * Allocate a new disk location.
213 1.1 mycroft */
214 1.1 mycroft if (bpref >= fs->fs_size)
215 1.1 mycroft bpref = 0;
216 1.1 mycroft switch ((int)fs->fs_optim) {
217 1.1 mycroft case FS_OPTSPACE:
218 1.1 mycroft /*
219 1.1 mycroft * Allocate an exact sized fragment. Although this makes
220 1.1 mycroft * best use of space, we will waste time relocating it if
221 1.1 mycroft * the file continues to grow. If the fragmentation is
222 1.1 mycroft * less than half of the minimum free reserve, we choose
223 1.1 mycroft * to begin optimizing for time.
224 1.1 mycroft */
225 1.1 mycroft request = nsize;
226 1.1 mycroft if (fs->fs_minfree < 5 ||
227 1.1 mycroft fs->fs_cstotal.cs_nffree >
228 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
229 1.1 mycroft break;
230 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
231 1.1 mycroft fs->fs_fsmnt);
232 1.1 mycroft fs->fs_optim = FS_OPTTIME;
233 1.1 mycroft break;
234 1.1 mycroft case FS_OPTTIME:
235 1.1 mycroft /*
236 1.1 mycroft * At this point we have discovered a file that is trying to
237 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
238 1.1 mycroft * we allocate a full sized block, then free the unused portion.
239 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
240 1.1 mycroft * above will be able to grow it in place without further
241 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
242 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
243 1.1 mycroft * optimizing for space.
244 1.1 mycroft */
245 1.1 mycroft request = fs->fs_bsize;
246 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
247 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
248 1.1 mycroft break;
249 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
250 1.1 mycroft fs->fs_fsmnt);
251 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
252 1.1 mycroft break;
253 1.1 mycroft default:
254 1.1 mycroft printf("dev = 0x%x, optim = %d, fs = %s\n",
255 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
256 1.1 mycroft panic("ffs_realloccg: bad optim");
257 1.1 mycroft /* NOTREACHED */
258 1.1 mycroft }
259 1.1 mycroft bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
260 1.1 mycroft (u_long (*)())ffs_alloccg);
261 1.1 mycroft if (bno > 0) {
262 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
263 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
264 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
265 1.1 mycroft if (nsize < request)
266 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
267 1.1 mycroft (long)(request - nsize));
268 1.1 mycroft ip->i_blocks += btodb(nsize - osize);
269 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
270 1.1 mycroft allocbuf(bp, nsize);
271 1.1 mycroft bp->b_flags |= B_DONE;
272 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
273 1.1 mycroft *bpp = bp;
274 1.1 mycroft return (0);
275 1.1 mycroft }
276 1.1 mycroft #ifdef QUOTA
277 1.1 mycroft /*
278 1.1 mycroft * Restore user's disk quota because allocation failed.
279 1.1 mycroft */
280 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
281 1.1 mycroft #endif
282 1.1 mycroft brelse(bp);
283 1.1 mycroft nospace:
284 1.1 mycroft /*
285 1.1 mycroft * no space available
286 1.1 mycroft */
287 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
288 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
289 1.1 mycroft return (ENOSPC);
290 1.1 mycroft }
291 1.1 mycroft
292 1.1 mycroft /*
293 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
294 1.1 mycroft *
295 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
296 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
297 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
298 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
299 1.1 mycroft * block immediately preceeding the current range. If successful, the
300 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
301 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
302 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
303 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
304 1.1 mycroft * the previous block allocation will be used.
305 1.1 mycroft */
306 1.1 mycroft #include <sys/sysctl.h>
307 1.1 mycroft int doasyncfree = 1;
308 1.1 mycroft
309 1.1 mycroft #ifdef DEBUG
310 1.1 mycroft struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
311 1.1 mycroft #endif
312 1.1 mycroft
313 1.1 mycroft int
314 1.1 mycroft ffs_reallocblks(ap)
315 1.1 mycroft struct vop_reallocblks_args /* {
316 1.1 mycroft struct vnode *a_vp;
317 1.1 mycroft struct cluster_save *a_buflist;
318 1.1 mycroft } */ *ap;
319 1.1 mycroft {
320 1.1 mycroft struct fs *fs;
321 1.1 mycroft struct inode *ip;
322 1.1 mycroft struct vnode *vp;
323 1.1 mycroft struct buf *sbp, *ebp;
324 1.1 mycroft daddr_t *bap, *sbap, *ebap;
325 1.1 mycroft struct cluster_save *buflist;
326 1.1 mycroft daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
327 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
328 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
329 1.1 mycroft
330 1.1 mycroft vp = ap->a_vp;
331 1.1 mycroft ip = VTOI(vp);
332 1.1 mycroft fs = ip->i_fs;
333 1.1 mycroft if (fs->fs_contigsumsize <= 0)
334 1.1 mycroft return (ENOSPC);
335 1.1 mycroft buflist = ap->a_buflist;
336 1.1 mycroft len = buflist->bs_nchildren;
337 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
338 1.1 mycroft end_lbn = start_lbn + len - 1;
339 1.1 mycroft #ifdef DIAGNOSTIC
340 1.1 mycroft for (i = 1; i < len; i++)
341 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
342 1.1 mycroft panic("ffs_reallocblks: non-cluster");
343 1.1 mycroft #endif
344 1.1 mycroft /*
345 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
346 1.1 mycroft * the filesystem has decided to move and do not force it back to
347 1.1 mycroft * the previous cylinder group.
348 1.1 mycroft */
349 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
350 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
351 1.1 mycroft return (ENOSPC);
352 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
353 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
354 1.1 mycroft return (ENOSPC);
355 1.1 mycroft /*
356 1.1 mycroft * Get the starting offset and block map for the first block.
357 1.1 mycroft */
358 1.1 mycroft if (start_lvl == 0) {
359 1.1 mycroft sbap = &ip->i_db[0];
360 1.1 mycroft soff = start_lbn;
361 1.1 mycroft } else {
362 1.1 mycroft idp = &start_ap[start_lvl - 1];
363 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
364 1.1 mycroft brelse(sbp);
365 1.1 mycroft return (ENOSPC);
366 1.1 mycroft }
367 1.1 mycroft sbap = (daddr_t *)sbp->b_data;
368 1.1 mycroft soff = idp->in_off;
369 1.1 mycroft }
370 1.1 mycroft /*
371 1.1 mycroft * Find the preferred location for the cluster.
372 1.1 mycroft */
373 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
374 1.1 mycroft /*
375 1.1 mycroft * If the block range spans two block maps, get the second map.
376 1.1 mycroft */
377 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
378 1.1 mycroft ssize = len;
379 1.1 mycroft } else {
380 1.1 mycroft #ifdef DIAGNOSTIC
381 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
382 1.1 mycroft panic("ffs_reallocblk: start == end");
383 1.1 mycroft #endif
384 1.1 mycroft ssize = len - (idp->in_off + 1);
385 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
386 1.1 mycroft goto fail;
387 1.1 mycroft ebap = (daddr_t *)ebp->b_data;
388 1.1 mycroft }
389 1.1 mycroft /*
390 1.1 mycroft * Search the block map looking for an allocation of the desired size.
391 1.1 mycroft */
392 1.1 mycroft if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
393 1.1 mycroft len, (u_long (*)())ffs_clusteralloc)) == 0)
394 1.1 mycroft goto fail;
395 1.1 mycroft /*
396 1.1 mycroft * We have found a new contiguous block.
397 1.1 mycroft *
398 1.1 mycroft * First we have to replace the old block pointers with the new
399 1.1 mycroft * block pointers in the inode and indirect blocks associated
400 1.1 mycroft * with the file.
401 1.1 mycroft */
402 1.1 mycroft blkno = newblk;
403 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
404 1.1 mycroft if (i == ssize)
405 1.1 mycroft bap = ebap;
406 1.1 mycroft #ifdef DIAGNOSTIC
407 1.1 mycroft if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
408 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
409 1.1 mycroft #endif
410 1.1 mycroft *bap++ = blkno;
411 1.1 mycroft }
412 1.1 mycroft /*
413 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
414 1.1 mycroft * For strict correctness, the writes should be synchronous since
415 1.1 mycroft * the old block values may have been written to disk. In practise
416 1.1 mycroft * they are almost never written, but if we are concerned about
417 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
418 1.1 mycroft *
419 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
420 1.1 mycroft * that shows whether the associated buffers and inodes have
421 1.1 mycroft * been written. The flag should be set when the cluster is
422 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
423 1.1 mycroft * We can then check below to see if it is set, and do the
424 1.1 mycroft * synchronous write only when it has been cleared.
425 1.1 mycroft */
426 1.1 mycroft if (sbap != &ip->i_db[0]) {
427 1.1 mycroft if (doasyncfree)
428 1.1 mycroft bdwrite(sbp);
429 1.1 mycroft else
430 1.1 mycroft bwrite(sbp);
431 1.1 mycroft } else {
432 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
433 1.1 mycroft if (!doasyncfree)
434 1.1 mycroft VOP_UPDATE(vp, &time, &time, MNT_WAIT);
435 1.1 mycroft }
436 1.1 mycroft if (ssize < len)
437 1.1 mycroft if (doasyncfree)
438 1.1 mycroft bdwrite(ebp);
439 1.1 mycroft else
440 1.1 mycroft bwrite(ebp);
441 1.1 mycroft /*
442 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
443 1.1 mycroft */
444 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
445 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
446 1.1 mycroft fs->fs_bsize);
447 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
448 1.1 mycroft }
449 1.1 mycroft return (0);
450 1.1 mycroft
451 1.1 mycroft fail:
452 1.1 mycroft if (ssize < len)
453 1.1 mycroft brelse(ebp);
454 1.1 mycroft if (sbap != &ip->i_db[0])
455 1.1 mycroft brelse(sbp);
456 1.1 mycroft return (ENOSPC);
457 1.1 mycroft }
458 1.1 mycroft
459 1.1 mycroft /*
460 1.1 mycroft * Allocate an inode in the file system.
461 1.1 mycroft *
462 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
463 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
464 1.1 mycroft * 1) allocate the preferred inode.
465 1.1 mycroft * 2) allocate an inode in the same cylinder group.
466 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
467 1.1 mycroft * available inode is located.
468 1.1 mycroft * If no inode preference is given the following heirarchy is used
469 1.1 mycroft * to allocate an inode:
470 1.1 mycroft * 1) allocate an inode in cylinder group 0.
471 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
472 1.1 mycroft * available inode is located.
473 1.1 mycroft */
474 1.1 mycroft ffs_valloc(ap)
475 1.1 mycroft struct vop_valloc_args /* {
476 1.1 mycroft struct vnode *a_pvp;
477 1.1 mycroft int a_mode;
478 1.1 mycroft struct ucred *a_cred;
479 1.1 mycroft struct vnode **a_vpp;
480 1.1 mycroft } */ *ap;
481 1.1 mycroft {
482 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
483 1.1 mycroft register struct inode *pip;
484 1.1 mycroft register struct fs *fs;
485 1.1 mycroft register struct inode *ip;
486 1.1 mycroft mode_t mode = ap->a_mode;
487 1.1 mycroft ino_t ino, ipref;
488 1.1 mycroft int cg, error;
489 1.1 mycroft
490 1.1 mycroft *ap->a_vpp = NULL;
491 1.1 mycroft pip = VTOI(pvp);
492 1.1 mycroft fs = pip->i_fs;
493 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
494 1.1 mycroft goto noinodes;
495 1.1 mycroft
496 1.1 mycroft if ((mode & IFMT) == IFDIR)
497 1.1 mycroft ipref = ffs_dirpref(fs);
498 1.1 mycroft else
499 1.1 mycroft ipref = pip->i_number;
500 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
501 1.1 mycroft ipref = 0;
502 1.1 mycroft cg = ino_to_cg(fs, ipref);
503 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
504 1.1 mycroft if (ino == 0)
505 1.1 mycroft goto noinodes;
506 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
507 1.1 mycroft if (error) {
508 1.1 mycroft VOP_VFREE(pvp, ino, mode);
509 1.1 mycroft return (error);
510 1.1 mycroft }
511 1.1 mycroft ip = VTOI(*ap->a_vpp);
512 1.1 mycroft if (ip->i_mode) {
513 1.1 mycroft printf("mode = 0%o, inum = %d, fs = %s\n",
514 1.1 mycroft ip->i_mode, ip->i_number, fs->fs_fsmnt);
515 1.1 mycroft panic("ffs_valloc: dup alloc");
516 1.1 mycroft }
517 1.1 mycroft if (ip->i_blocks) { /* XXX */
518 1.1 mycroft printf("free inode %s/%d had %d blocks\n",
519 1.1 mycroft fs->fs_fsmnt, ino, ip->i_blocks);
520 1.1 mycroft ip->i_blocks = 0;
521 1.1 mycroft }
522 1.1 mycroft ip->i_flags = 0;
523 1.1 mycroft /*
524 1.1 mycroft * Set up a new generation number for this inode.
525 1.1 mycroft */
526 1.1 mycroft if (++nextgennumber < (u_long)time.tv_sec)
527 1.1 mycroft nextgennumber = time.tv_sec;
528 1.1 mycroft ip->i_gen = nextgennumber;
529 1.1 mycroft return (0);
530 1.1 mycroft noinodes:
531 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
532 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
533 1.1 mycroft return (ENOSPC);
534 1.1 mycroft }
535 1.1 mycroft
536 1.1 mycroft /*
537 1.1 mycroft * Find a cylinder to place a directory.
538 1.1 mycroft *
539 1.1 mycroft * The policy implemented by this algorithm is to select from
540 1.1 mycroft * among those cylinder groups with above the average number of
541 1.1 mycroft * free inodes, the one with the smallest number of directories.
542 1.1 mycroft */
543 1.1 mycroft static ino_t
544 1.1 mycroft ffs_dirpref(fs)
545 1.1 mycroft register struct fs *fs;
546 1.1 mycroft {
547 1.1 mycroft int cg, minndir, mincg, avgifree;
548 1.1 mycroft
549 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
550 1.1 mycroft minndir = fs->fs_ipg;
551 1.1 mycroft mincg = 0;
552 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
553 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
554 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
555 1.1 mycroft mincg = cg;
556 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
557 1.1 mycroft }
558 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
559 1.1 mycroft }
560 1.1 mycroft
561 1.1 mycroft /*
562 1.1 mycroft * Select the desired position for the next block in a file. The file is
563 1.1 mycroft * logically divided into sections. The first section is composed of the
564 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
565 1.1 mycroft *
566 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
567 1.1 mycroft * request a block in the same cylinder group as the inode that describes
568 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
569 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
570 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
571 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
572 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
573 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
574 1.1 mycroft * continues until a cylinder group with greater than the average number
575 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
576 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
577 1.1 mycroft * here a best guess is made based upon the logical block number being
578 1.1 mycroft * allocated.
579 1.1 mycroft *
580 1.1 mycroft * If a section is already partially allocated, the policy is to
581 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
582 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
583 1.1 mycroft * so that the disk head will be in transit between them for at least
584 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
585 1.1 mycroft * schedule another I/O transfer.
586 1.1 mycroft */
587 1.1 mycroft daddr_t
588 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
589 1.1 mycroft struct inode *ip;
590 1.1 mycroft daddr_t lbn;
591 1.1 mycroft int indx;
592 1.1 mycroft daddr_t *bap;
593 1.1 mycroft {
594 1.1 mycroft register struct fs *fs;
595 1.1 mycroft register int cg;
596 1.1 mycroft int avgbfree, startcg;
597 1.1 mycroft daddr_t nextblk;
598 1.1 mycroft
599 1.1 mycroft fs = ip->i_fs;
600 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
601 1.1 mycroft if (lbn < NDADDR) {
602 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
603 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
604 1.1 mycroft }
605 1.1 mycroft /*
606 1.1 mycroft * Find a cylinder with greater than average number of
607 1.1 mycroft * unused data blocks.
608 1.1 mycroft */
609 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
610 1.1 mycroft startcg =
611 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
612 1.1 mycroft else
613 1.1 mycroft startcg = dtog(fs, bap[indx - 1]) + 1;
614 1.1 mycroft startcg %= fs->fs_ncg;
615 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
616 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
617 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
618 1.1 mycroft fs->fs_cgrotor = cg;
619 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
620 1.1 mycroft }
621 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
622 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
623 1.1 mycroft fs->fs_cgrotor = cg;
624 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
625 1.1 mycroft }
626 1.1 mycroft return (NULL);
627 1.1 mycroft }
628 1.1 mycroft /*
629 1.1 mycroft * One or more previous blocks have been laid out. If less
630 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
631 1.1 mycroft * next block is requested contiguously, otherwise it is
632 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
633 1.1 mycroft */
634 1.1 mycroft nextblk = bap[indx - 1] + fs->fs_frag;
635 1.1 mycroft if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
636 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
637 1.1 mycroft return (nextblk);
638 1.1 mycroft if (fs->fs_rotdelay != 0)
639 1.1 mycroft /*
640 1.1 mycroft * Here we convert ms of delay to frags as:
641 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
642 1.1 mycroft * ((sect/frag) * (ms/sec))
643 1.1 mycroft * then round up to the next block.
644 1.1 mycroft */
645 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
646 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
647 1.1 mycroft return (nextblk);
648 1.1 mycroft }
649 1.1 mycroft
650 1.1 mycroft /*
651 1.1 mycroft * Implement the cylinder overflow algorithm.
652 1.1 mycroft *
653 1.1 mycroft * The policy implemented by this algorithm is:
654 1.1 mycroft * 1) allocate the block in its requested cylinder group.
655 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
656 1.1 mycroft * 3) brute force search for a free block.
657 1.1 mycroft */
658 1.1 mycroft /*VARARGS5*/
659 1.1 mycroft static u_long
660 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
661 1.1 mycroft struct inode *ip;
662 1.1 mycroft int cg;
663 1.1 mycroft long pref;
664 1.1 mycroft int size; /* size for data blocks, mode for inodes */
665 1.1 mycroft u_long (*allocator)();
666 1.1 mycroft {
667 1.1 mycroft register struct fs *fs;
668 1.1 mycroft long result;
669 1.1 mycroft int i, icg = cg;
670 1.1 mycroft
671 1.1 mycroft fs = ip->i_fs;
672 1.1 mycroft /*
673 1.1 mycroft * 1: preferred cylinder group
674 1.1 mycroft */
675 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
676 1.1 mycroft if (result)
677 1.1 mycroft return (result);
678 1.1 mycroft /*
679 1.1 mycroft * 2: quadratic rehash
680 1.1 mycroft */
681 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
682 1.1 mycroft cg += i;
683 1.1 mycroft if (cg >= fs->fs_ncg)
684 1.1 mycroft cg -= fs->fs_ncg;
685 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
686 1.1 mycroft if (result)
687 1.1 mycroft return (result);
688 1.1 mycroft }
689 1.1 mycroft /*
690 1.1 mycroft * 3: brute force search
691 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
692 1.1 mycroft * and 1 is always checked in the quadratic rehash.
693 1.1 mycroft */
694 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
695 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
696 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
697 1.1 mycroft if (result)
698 1.1 mycroft return (result);
699 1.1 mycroft cg++;
700 1.1 mycroft if (cg == fs->fs_ncg)
701 1.1 mycroft cg = 0;
702 1.1 mycroft }
703 1.1 mycroft return (NULL);
704 1.1 mycroft }
705 1.1 mycroft
706 1.1 mycroft /*
707 1.1 mycroft * Determine whether a fragment can be extended.
708 1.1 mycroft *
709 1.1 mycroft * Check to see if the necessary fragments are available, and
710 1.1 mycroft * if they are, allocate them.
711 1.1 mycroft */
712 1.1 mycroft static daddr_t
713 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
714 1.1 mycroft struct inode *ip;
715 1.1 mycroft int cg;
716 1.1 mycroft long bprev;
717 1.1 mycroft int osize, nsize;
718 1.1 mycroft {
719 1.1 mycroft register struct fs *fs;
720 1.1 mycroft register struct cg *cgp;
721 1.1 mycroft struct buf *bp;
722 1.1 mycroft long bno;
723 1.1 mycroft int frags, bbase;
724 1.1 mycroft int i, error;
725 1.1 mycroft
726 1.1 mycroft fs = ip->i_fs;
727 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
728 1.1 mycroft return (NULL);
729 1.1 mycroft frags = numfrags(fs, nsize);
730 1.1 mycroft bbase = fragnum(fs, bprev);
731 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
732 1.1 mycroft /* cannot extend across a block boundary */
733 1.1 mycroft return (NULL);
734 1.1 mycroft }
735 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
736 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
737 1.1 mycroft if (error) {
738 1.1 mycroft brelse(bp);
739 1.1 mycroft return (NULL);
740 1.1 mycroft }
741 1.1 mycroft cgp = (struct cg *)bp->b_data;
742 1.1 mycroft if (!cg_chkmagic(cgp)) {
743 1.1 mycroft brelse(bp);
744 1.1 mycroft return (NULL);
745 1.1 mycroft }
746 1.1 mycroft cgp->cg_time = time.tv_sec;
747 1.1 mycroft bno = dtogd(fs, bprev);
748 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
749 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i)) {
750 1.1 mycroft brelse(bp);
751 1.1 mycroft return (NULL);
752 1.1 mycroft }
753 1.1 mycroft /*
754 1.1 mycroft * the current fragment can be extended
755 1.1 mycroft * deduct the count on fragment being extended into
756 1.1 mycroft * increase the count on the remaining fragment (if any)
757 1.1 mycroft * allocate the extended piece
758 1.1 mycroft */
759 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
760 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i))
761 1.1 mycroft break;
762 1.1 mycroft cgp->cg_frsum[i - numfrags(fs, osize)]--;
763 1.1 mycroft if (i != frags)
764 1.1 mycroft cgp->cg_frsum[i - frags]++;
765 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
766 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
767 1.1 mycroft cgp->cg_cs.cs_nffree--;
768 1.1 mycroft fs->fs_cstotal.cs_nffree--;
769 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
770 1.1 mycroft }
771 1.1 mycroft fs->fs_fmod = 1;
772 1.1 mycroft bdwrite(bp);
773 1.1 mycroft return (bprev);
774 1.1 mycroft }
775 1.1 mycroft
776 1.1 mycroft /*
777 1.1 mycroft * Determine whether a block can be allocated.
778 1.1 mycroft *
779 1.1 mycroft * Check to see if a block of the appropriate size is available,
780 1.1 mycroft * and if it is, allocate it.
781 1.1 mycroft */
782 1.1 mycroft static daddr_t
783 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
784 1.1 mycroft struct inode *ip;
785 1.1 mycroft int cg;
786 1.1 mycroft daddr_t bpref;
787 1.1 mycroft int size;
788 1.1 mycroft {
789 1.1 mycroft register struct fs *fs;
790 1.1 mycroft register struct cg *cgp;
791 1.1 mycroft struct buf *bp;
792 1.1 mycroft register int i;
793 1.1 mycroft int error, bno, frags, allocsiz;
794 1.1 mycroft
795 1.1 mycroft fs = ip->i_fs;
796 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
797 1.1 mycroft return (NULL);
798 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
799 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
800 1.1 mycroft if (error) {
801 1.1 mycroft brelse(bp);
802 1.1 mycroft return (NULL);
803 1.1 mycroft }
804 1.1 mycroft cgp = (struct cg *)bp->b_data;
805 1.1 mycroft if (!cg_chkmagic(cgp) ||
806 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
807 1.1 mycroft brelse(bp);
808 1.1 mycroft return (NULL);
809 1.1 mycroft }
810 1.1 mycroft cgp->cg_time = time.tv_sec;
811 1.1 mycroft if (size == fs->fs_bsize) {
812 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
813 1.1 mycroft bdwrite(bp);
814 1.1 mycroft return (bno);
815 1.1 mycroft }
816 1.1 mycroft /*
817 1.1 mycroft * check to see if any fragments are already available
818 1.1 mycroft * allocsiz is the size which will be allocated, hacking
819 1.1 mycroft * it down to a smaller size if necessary
820 1.1 mycroft */
821 1.1 mycroft frags = numfrags(fs, size);
822 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
823 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
824 1.1 mycroft break;
825 1.1 mycroft if (allocsiz == fs->fs_frag) {
826 1.1 mycroft /*
827 1.1 mycroft * no fragments were available, so a block will be
828 1.1 mycroft * allocated, and hacked up
829 1.1 mycroft */
830 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
831 1.1 mycroft brelse(bp);
832 1.1 mycroft return (NULL);
833 1.1 mycroft }
834 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
835 1.1 mycroft bpref = dtogd(fs, bno);
836 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
837 1.1 mycroft setbit(cg_blksfree(cgp), bpref + i);
838 1.1 mycroft i = fs->fs_frag - frags;
839 1.1 mycroft cgp->cg_cs.cs_nffree += i;
840 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
841 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
842 1.1 mycroft fs->fs_fmod = 1;
843 1.1 mycroft cgp->cg_frsum[i]++;
844 1.1 mycroft bdwrite(bp);
845 1.1 mycroft return (bno);
846 1.1 mycroft }
847 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
848 1.1 mycroft if (bno < 0) {
849 1.1 mycroft brelse(bp);
850 1.1 mycroft return (NULL);
851 1.1 mycroft }
852 1.1 mycroft for (i = 0; i < frags; i++)
853 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
854 1.1 mycroft cgp->cg_cs.cs_nffree -= frags;
855 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
856 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
857 1.1 mycroft fs->fs_fmod = 1;
858 1.1 mycroft cgp->cg_frsum[allocsiz]--;
859 1.1 mycroft if (frags != allocsiz)
860 1.1 mycroft cgp->cg_frsum[allocsiz - frags]++;
861 1.1 mycroft bdwrite(bp);
862 1.1 mycroft return (cg * fs->fs_fpg + bno);
863 1.1 mycroft }
864 1.1 mycroft
865 1.1 mycroft /*
866 1.1 mycroft * Allocate a block in a cylinder group.
867 1.1 mycroft *
868 1.1 mycroft * This algorithm implements the following policy:
869 1.1 mycroft * 1) allocate the requested block.
870 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
871 1.1 mycroft * 3) allocate the next available block on the block rotor for the
872 1.1 mycroft * specified cylinder group.
873 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
874 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
875 1.1 mycroft */
876 1.1 mycroft static daddr_t
877 1.1 mycroft ffs_alloccgblk(fs, cgp, bpref)
878 1.1 mycroft register struct fs *fs;
879 1.1 mycroft register struct cg *cgp;
880 1.1 mycroft daddr_t bpref;
881 1.1 mycroft {
882 1.1 mycroft daddr_t bno, blkno;
883 1.1 mycroft int cylno, pos, delta;
884 1.1 mycroft short *cylbp;
885 1.1 mycroft register int i;
886 1.1 mycroft
887 1.1 mycroft if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
888 1.1 mycroft bpref = cgp->cg_rotor;
889 1.1 mycroft goto norot;
890 1.1 mycroft }
891 1.1 mycroft bpref = blknum(fs, bpref);
892 1.1 mycroft bpref = dtogd(fs, bpref);
893 1.1 mycroft /*
894 1.1 mycroft * if the requested block is available, use it
895 1.1 mycroft */
896 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
897 1.1 mycroft bno = bpref;
898 1.1 mycroft goto gotit;
899 1.1 mycroft }
900 1.1 mycroft /*
901 1.1 mycroft * check for a block available on the same cylinder
902 1.1 mycroft */
903 1.1 mycroft cylno = cbtocylno(fs, bpref);
904 1.1 mycroft if (cg_blktot(cgp)[cylno] == 0)
905 1.1 mycroft goto norot;
906 1.1 mycroft if (fs->fs_cpc == 0) {
907 1.1 mycroft /*
908 1.1 mycroft * Block layout information is not available.
909 1.1 mycroft * Leaving bpref unchanged means we take the
910 1.1 mycroft * next available free block following the one
911 1.1 mycroft * we just allocated. Hopefully this will at
912 1.1 mycroft * least hit a track cache on drives of unknown
913 1.1 mycroft * geometry (e.g. SCSI).
914 1.1 mycroft */
915 1.1 mycroft goto norot;
916 1.1 mycroft }
917 1.1 mycroft /*
918 1.1 mycroft * check the summary information to see if a block is
919 1.1 mycroft * available in the requested cylinder starting at the
920 1.1 mycroft * requested rotational position and proceeding around.
921 1.1 mycroft */
922 1.1 mycroft cylbp = cg_blks(fs, cgp, cylno);
923 1.1 mycroft pos = cbtorpos(fs, bpref);
924 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
925 1.1 mycroft if (cylbp[i] > 0)
926 1.1 mycroft break;
927 1.1 mycroft if (i == fs->fs_nrpos)
928 1.1 mycroft for (i = 0; i < pos; i++)
929 1.1 mycroft if (cylbp[i] > 0)
930 1.1 mycroft break;
931 1.1 mycroft if (cylbp[i] > 0) {
932 1.1 mycroft /*
933 1.1 mycroft * found a rotational position, now find the actual
934 1.1 mycroft * block. A panic if none is actually there.
935 1.1 mycroft */
936 1.1 mycroft pos = cylno % fs->fs_cpc;
937 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
938 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
939 1.1 mycroft printf("pos = %d, i = %d, fs = %s\n",
940 1.1 mycroft pos, i, fs->fs_fsmnt);
941 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
942 1.1 mycroft }
943 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
944 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
945 1.1 mycroft bno = blkstofrags(fs, (bno + i));
946 1.1 mycroft goto gotit;
947 1.1 mycroft }
948 1.1 mycroft delta = fs_rotbl(fs)[i];
949 1.1 mycroft if (delta <= 0 ||
950 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
951 1.1 mycroft break;
952 1.1 mycroft i += delta;
953 1.1 mycroft }
954 1.1 mycroft printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
955 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
956 1.1 mycroft }
957 1.1 mycroft norot:
958 1.1 mycroft /*
959 1.1 mycroft * no blocks in the requested cylinder, so take next
960 1.1 mycroft * available one in this cylinder group.
961 1.1 mycroft */
962 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
963 1.1 mycroft if (bno < 0)
964 1.1 mycroft return (NULL);
965 1.1 mycroft cgp->cg_rotor = bno;
966 1.1 mycroft gotit:
967 1.1 mycroft blkno = fragstoblks(fs, bno);
968 1.1 mycroft ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
969 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, -1);
970 1.1 mycroft cgp->cg_cs.cs_nbfree--;
971 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
972 1.1 mycroft fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
973 1.1 mycroft cylno = cbtocylno(fs, bno);
974 1.1 mycroft cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
975 1.1 mycroft cg_blktot(cgp)[cylno]--;
976 1.1 mycroft fs->fs_fmod = 1;
977 1.1 mycroft return (cgp->cg_cgx * fs->fs_fpg + bno);
978 1.1 mycroft }
979 1.1 mycroft
980 1.1 mycroft /*
981 1.1 mycroft * Determine whether a cluster can be allocated.
982 1.1 mycroft *
983 1.1 mycroft * We do not currently check for optimal rotational layout if there
984 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
985 1.1 mycroft * take the first one that we find following bpref.
986 1.1 mycroft */
987 1.1 mycroft static daddr_t
988 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
989 1.1 mycroft struct inode *ip;
990 1.1 mycroft int cg;
991 1.1 mycroft daddr_t bpref;
992 1.1 mycroft int len;
993 1.1 mycroft {
994 1.1 mycroft register struct fs *fs;
995 1.1 mycroft register struct cg *cgp;
996 1.1 mycroft struct buf *bp;
997 1.1 mycroft int i, run, bno, bit, map;
998 1.1 mycroft u_char *mapp;
999 1.1 mycroft
1000 1.1 mycroft fs = ip->i_fs;
1001 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree < len)
1002 1.1 mycroft return (NULL);
1003 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1004 1.1 mycroft NOCRED, &bp))
1005 1.1 mycroft goto fail;
1006 1.1 mycroft cgp = (struct cg *)bp->b_data;
1007 1.1 mycroft if (!cg_chkmagic(cgp))
1008 1.1 mycroft goto fail;
1009 1.1 mycroft /*
1010 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1011 1.1 mycroft * available in this cylinder group.
1012 1.1 mycroft */
1013 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1014 1.1 mycroft if (cg_clustersum(cgp)[i] > 0)
1015 1.1 mycroft break;
1016 1.1 mycroft if (i > fs->fs_contigsumsize)
1017 1.1 mycroft goto fail;
1018 1.1 mycroft /*
1019 1.1 mycroft * Search the cluster map to find a big enough cluster.
1020 1.1 mycroft * We take the first one that we find, even if it is larger
1021 1.1 mycroft * than we need as we prefer to get one close to the previous
1022 1.1 mycroft * block allocation. We do not search before the current
1023 1.1 mycroft * preference point as we do not want to allocate a block
1024 1.1 mycroft * that is allocated before the previous one (as we will
1025 1.1 mycroft * then have to wait for another pass of the elevator
1026 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1027 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1028 1.1 mycroft */
1029 1.1 mycroft if (dtog(fs, bpref) != cg)
1030 1.1 mycroft bpref = 0;
1031 1.1 mycroft else
1032 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1033 1.1 mycroft mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1034 1.1 mycroft map = *mapp++;
1035 1.1 mycroft bit = 1 << (bpref % NBBY);
1036 1.1 mycroft for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1037 1.1 mycroft if ((map & bit) == 0) {
1038 1.1 mycroft run = 0;
1039 1.1 mycroft } else {
1040 1.1 mycroft run++;
1041 1.1 mycroft if (run == len)
1042 1.1 mycroft break;
1043 1.1 mycroft }
1044 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1045 1.1 mycroft bit <<= 1;
1046 1.1 mycroft } else {
1047 1.1 mycroft map = *mapp++;
1048 1.1 mycroft bit = 1;
1049 1.1 mycroft }
1050 1.1 mycroft }
1051 1.1 mycroft if (i == cgp->cg_nclusterblks)
1052 1.1 mycroft goto fail;
1053 1.1 mycroft /*
1054 1.1 mycroft * Allocate the cluster that we have found.
1055 1.1 mycroft */
1056 1.1 mycroft bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1057 1.1 mycroft len = blkstofrags(fs, len);
1058 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1059 1.1 mycroft if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1060 1.1 mycroft panic("ffs_clusteralloc: lost block");
1061 1.1 mycroft brelse(bp);
1062 1.1 mycroft return (bno);
1063 1.1 mycroft
1064 1.1 mycroft fail:
1065 1.1 mycroft brelse(bp);
1066 1.1 mycroft return (0);
1067 1.1 mycroft }
1068 1.1 mycroft
1069 1.1 mycroft /*
1070 1.1 mycroft * Determine whether an inode can be allocated.
1071 1.1 mycroft *
1072 1.1 mycroft * Check to see if an inode is available, and if it is,
1073 1.1 mycroft * allocate it using the following policy:
1074 1.1 mycroft * 1) allocate the requested inode.
1075 1.1 mycroft * 2) allocate the next available inode after the requested
1076 1.1 mycroft * inode in the specified cylinder group.
1077 1.1 mycroft */
1078 1.1 mycroft static ino_t
1079 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1080 1.1 mycroft struct inode *ip;
1081 1.1 mycroft int cg;
1082 1.1 mycroft daddr_t ipref;
1083 1.1 mycroft int mode;
1084 1.1 mycroft {
1085 1.1 mycroft register struct fs *fs;
1086 1.1 mycroft register struct cg *cgp;
1087 1.1 mycroft struct buf *bp;
1088 1.1 mycroft int error, start, len, loc, map, i;
1089 1.1 mycroft
1090 1.1 mycroft fs = ip->i_fs;
1091 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1092 1.1 mycroft return (NULL);
1093 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1094 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1095 1.1 mycroft if (error) {
1096 1.1 mycroft brelse(bp);
1097 1.1 mycroft return (NULL);
1098 1.1 mycroft }
1099 1.1 mycroft cgp = (struct cg *)bp->b_data;
1100 1.1 mycroft if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1101 1.1 mycroft brelse(bp);
1102 1.1 mycroft return (NULL);
1103 1.1 mycroft }
1104 1.1 mycroft cgp->cg_time = time.tv_sec;
1105 1.1 mycroft if (ipref) {
1106 1.1 mycroft ipref %= fs->fs_ipg;
1107 1.1 mycroft if (isclr(cg_inosused(cgp), ipref))
1108 1.1 mycroft goto gotit;
1109 1.1 mycroft }
1110 1.1 mycroft start = cgp->cg_irotor / NBBY;
1111 1.1 mycroft len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1112 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1113 1.1 mycroft if (loc == 0) {
1114 1.1 mycroft len = start + 1;
1115 1.1 mycroft start = 0;
1116 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1117 1.1 mycroft if (loc == 0) {
1118 1.1 mycroft printf("cg = %d, irotor = %d, fs = %s\n",
1119 1.1 mycroft cg, cgp->cg_irotor, fs->fs_fsmnt);
1120 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1121 1.1 mycroft /* NOTREACHED */
1122 1.1 mycroft }
1123 1.1 mycroft }
1124 1.1 mycroft i = start + len - loc;
1125 1.1 mycroft map = cg_inosused(cgp)[i];
1126 1.1 mycroft ipref = i * NBBY;
1127 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1128 1.1 mycroft if ((map & i) == 0) {
1129 1.1 mycroft cgp->cg_irotor = ipref;
1130 1.1 mycroft goto gotit;
1131 1.1 mycroft }
1132 1.1 mycroft }
1133 1.1 mycroft printf("fs = %s\n", fs->fs_fsmnt);
1134 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1135 1.1 mycroft /* NOTREACHED */
1136 1.1 mycroft gotit:
1137 1.1 mycroft setbit(cg_inosused(cgp), ipref);
1138 1.1 mycroft cgp->cg_cs.cs_nifree--;
1139 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1140 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree--;
1141 1.1 mycroft fs->fs_fmod = 1;
1142 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1143 1.1 mycroft cgp->cg_cs.cs_ndir++;
1144 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1145 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1146 1.1 mycroft }
1147 1.1 mycroft bdwrite(bp);
1148 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1149 1.1 mycroft }
1150 1.1 mycroft
1151 1.1 mycroft /*
1152 1.1 mycroft * Free a block or fragment.
1153 1.1 mycroft *
1154 1.1 mycroft * The specified block or fragment is placed back in the
1155 1.1 mycroft * free map. If a fragment is deallocated, a possible
1156 1.1 mycroft * block reassembly is checked.
1157 1.1 mycroft */
1158 1.1 mycroft ffs_blkfree(ip, bno, size)
1159 1.1 mycroft register struct inode *ip;
1160 1.1 mycroft daddr_t bno;
1161 1.1 mycroft long size;
1162 1.1 mycroft {
1163 1.1 mycroft register struct fs *fs;
1164 1.1 mycroft register struct cg *cgp;
1165 1.1 mycroft struct buf *bp;
1166 1.1 mycroft daddr_t blkno;
1167 1.1 mycroft int i, error, cg, blk, frags, bbase;
1168 1.1 mycroft
1169 1.1 mycroft fs = ip->i_fs;
1170 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1171 1.1 mycroft printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
1172 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1173 1.1 mycroft panic("blkfree: bad size");
1174 1.1 mycroft }
1175 1.1 mycroft cg = dtog(fs, bno);
1176 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1177 1.1 mycroft printf("bad block %d, ino %d\n", bno, ip->i_number);
1178 1.1 mycroft ffs_fserr(fs, ip->i_uid, "bad block");
1179 1.1 mycroft return;
1180 1.1 mycroft }
1181 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1182 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1183 1.1 mycroft if (error) {
1184 1.1 mycroft brelse(bp);
1185 1.1 mycroft return;
1186 1.1 mycroft }
1187 1.1 mycroft cgp = (struct cg *)bp->b_data;
1188 1.1 mycroft if (!cg_chkmagic(cgp)) {
1189 1.1 mycroft brelse(bp);
1190 1.1 mycroft return;
1191 1.1 mycroft }
1192 1.1 mycroft cgp->cg_time = time.tv_sec;
1193 1.1 mycroft bno = dtogd(fs, bno);
1194 1.1 mycroft if (size == fs->fs_bsize) {
1195 1.1 mycroft blkno = fragstoblks(fs, bno);
1196 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1197 1.1 mycroft printf("dev = 0x%x, block = %d, fs = %s\n",
1198 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1199 1.1 mycroft panic("blkfree: freeing free block");
1200 1.1 mycroft }
1201 1.1 mycroft ffs_setblock(fs, cg_blksfree(cgp), blkno);
1202 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1203 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1204 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1205 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1206 1.1 mycroft i = cbtocylno(fs, bno);
1207 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1208 1.1 mycroft cg_blktot(cgp)[i]++;
1209 1.1 mycroft } else {
1210 1.1 mycroft bbase = bno - fragnum(fs, bno);
1211 1.1 mycroft /*
1212 1.1 mycroft * decrement the counts associated with the old frags
1213 1.1 mycroft */
1214 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1215 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1216 1.1 mycroft /*
1217 1.1 mycroft * deallocate the fragment
1218 1.1 mycroft */
1219 1.1 mycroft frags = numfrags(fs, size);
1220 1.1 mycroft for (i = 0; i < frags; i++) {
1221 1.1 mycroft if (isset(cg_blksfree(cgp), bno + i)) {
1222 1.1 mycroft printf("dev = 0x%x, block = %d, fs = %s\n",
1223 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1224 1.1 mycroft panic("blkfree: freeing free frag");
1225 1.1 mycroft }
1226 1.1 mycroft setbit(cg_blksfree(cgp), bno + i);
1227 1.1 mycroft }
1228 1.1 mycroft cgp->cg_cs.cs_nffree += i;
1229 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1230 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
1231 1.1 mycroft /*
1232 1.1 mycroft * add back in counts associated with the new frags
1233 1.1 mycroft */
1234 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1235 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1236 1.1 mycroft /*
1237 1.1 mycroft * if a complete block has been reassembled, account for it
1238 1.1 mycroft */
1239 1.1 mycroft blkno = fragstoblks(fs, bbase);
1240 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1241 1.1 mycroft cgp->cg_cs.cs_nffree -= fs->fs_frag;
1242 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1243 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1244 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1245 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1246 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1247 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1248 1.1 mycroft i = cbtocylno(fs, bbase);
1249 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1250 1.1 mycroft cg_blktot(cgp)[i]++;
1251 1.1 mycroft }
1252 1.1 mycroft }
1253 1.1 mycroft fs->fs_fmod = 1;
1254 1.1 mycroft bdwrite(bp);
1255 1.1 mycroft }
1256 1.1 mycroft
1257 1.1 mycroft /*
1258 1.1 mycroft * Free an inode.
1259 1.1 mycroft *
1260 1.1 mycroft * The specified inode is placed back in the free map.
1261 1.1 mycroft */
1262 1.1 mycroft int
1263 1.1 mycroft ffs_vfree(ap)
1264 1.1 mycroft struct vop_vfree_args /* {
1265 1.1 mycroft struct vnode *a_pvp;
1266 1.1 mycroft ino_t a_ino;
1267 1.1 mycroft int a_mode;
1268 1.1 mycroft } */ *ap;
1269 1.1 mycroft {
1270 1.1 mycroft register struct fs *fs;
1271 1.1 mycroft register struct cg *cgp;
1272 1.1 mycroft register struct inode *pip;
1273 1.1 mycroft ino_t ino = ap->a_ino;
1274 1.1 mycroft struct buf *bp;
1275 1.1 mycroft int error, cg;
1276 1.1 mycroft
1277 1.1 mycroft pip = VTOI(ap->a_pvp);
1278 1.1 mycroft fs = pip->i_fs;
1279 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1280 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1281 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1282 1.1 mycroft cg = ino_to_cg(fs, ino);
1283 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1284 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1285 1.1 mycroft if (error) {
1286 1.1 mycroft brelse(bp);
1287 1.1 mycroft return (0);
1288 1.1 mycroft }
1289 1.1 mycroft cgp = (struct cg *)bp->b_data;
1290 1.1 mycroft if (!cg_chkmagic(cgp)) {
1291 1.1 mycroft brelse(bp);
1292 1.1 mycroft return (0);
1293 1.1 mycroft }
1294 1.1 mycroft cgp->cg_time = time.tv_sec;
1295 1.1 mycroft ino %= fs->fs_ipg;
1296 1.1 mycroft if (isclr(cg_inosused(cgp), ino)) {
1297 1.1 mycroft printf("dev = 0x%x, ino = %d, fs = %s\n",
1298 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1299 1.1 mycroft if (fs->fs_ronly == 0)
1300 1.1 mycroft panic("ifree: freeing free inode");
1301 1.1 mycroft }
1302 1.1 mycroft clrbit(cg_inosused(cgp), ino);
1303 1.1 mycroft if (ino < cgp->cg_irotor)
1304 1.1 mycroft cgp->cg_irotor = ino;
1305 1.1 mycroft cgp->cg_cs.cs_nifree++;
1306 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1307 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1308 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1309 1.1 mycroft cgp->cg_cs.cs_ndir--;
1310 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1311 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1312 1.1 mycroft }
1313 1.1 mycroft fs->fs_fmod = 1;
1314 1.1 mycroft bdwrite(bp);
1315 1.1 mycroft return (0);
1316 1.1 mycroft }
1317 1.1 mycroft
1318 1.1 mycroft /*
1319 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1320 1.1 mycroft *
1321 1.1 mycroft * It is a panic if a request is made to find a block if none are
1322 1.1 mycroft * available.
1323 1.1 mycroft */
1324 1.1 mycroft static daddr_t
1325 1.1 mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
1326 1.1 mycroft register struct fs *fs;
1327 1.1 mycroft register struct cg *cgp;
1328 1.1 mycroft daddr_t bpref;
1329 1.1 mycroft int allocsiz;
1330 1.1 mycroft {
1331 1.1 mycroft daddr_t bno;
1332 1.1 mycroft int start, len, loc, i;
1333 1.1 mycroft int blk, field, subfield, pos;
1334 1.1 mycroft
1335 1.1 mycroft /*
1336 1.1 mycroft * find the fragment by searching through the free block
1337 1.1 mycroft * map for an appropriate bit pattern
1338 1.1 mycroft */
1339 1.1 mycroft if (bpref)
1340 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1341 1.1 mycroft else
1342 1.1 mycroft start = cgp->cg_frotor / NBBY;
1343 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1344 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1345 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1346 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1347 1.1 mycroft if (loc == 0) {
1348 1.1 mycroft len = start + 1;
1349 1.1 mycroft start = 0;
1350 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1351 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1352 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1353 1.1 mycroft if (loc == 0) {
1354 1.1 mycroft printf("start = %d, len = %d, fs = %s\n",
1355 1.1 mycroft start, len, fs->fs_fsmnt);
1356 1.1 mycroft panic("ffs_alloccg: map corrupted");
1357 1.1 mycroft /* NOTREACHED */
1358 1.1 mycroft }
1359 1.1 mycroft }
1360 1.1 mycroft bno = (start + len - loc) * NBBY;
1361 1.1 mycroft cgp->cg_frotor = bno;
1362 1.1 mycroft /*
1363 1.1 mycroft * found the byte in the map
1364 1.1 mycroft * sift through the bits to find the selected frag
1365 1.1 mycroft */
1366 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1367 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bno);
1368 1.1 mycroft blk <<= 1;
1369 1.1 mycroft field = around[allocsiz];
1370 1.1 mycroft subfield = inside[allocsiz];
1371 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1372 1.1 mycroft if ((blk & field) == subfield)
1373 1.1 mycroft return (bno + pos);
1374 1.1 mycroft field <<= 1;
1375 1.1 mycroft subfield <<= 1;
1376 1.1 mycroft }
1377 1.1 mycroft }
1378 1.1 mycroft printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1379 1.1 mycroft panic("ffs_alloccg: block not in map");
1380 1.1 mycroft return (-1);
1381 1.1 mycroft }
1382 1.1 mycroft
1383 1.1 mycroft /*
1384 1.1 mycroft * Update the cluster map because of an allocation or free.
1385 1.1 mycroft *
1386 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1387 1.1 mycroft */
1388 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
1389 1.1 mycroft struct fs *fs;
1390 1.1 mycroft struct cg *cgp;
1391 1.1 mycroft daddr_t blkno;
1392 1.1 mycroft int cnt;
1393 1.1 mycroft {
1394 1.1 mycroft long *sump;
1395 1.1 mycroft u_char *freemapp, *mapp;
1396 1.1 mycroft int i, start, end, forw, back, map, bit;
1397 1.1 mycroft
1398 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1399 1.1 mycroft return;
1400 1.1 mycroft freemapp = cg_clustersfree(cgp);
1401 1.1 mycroft sump = cg_clustersum(cgp);
1402 1.1 mycroft /*
1403 1.1 mycroft * Allocate or clear the actual block.
1404 1.1 mycroft */
1405 1.1 mycroft if (cnt > 0)
1406 1.1 mycroft setbit(freemapp, blkno);
1407 1.1 mycroft else
1408 1.1 mycroft clrbit(freemapp, blkno);
1409 1.1 mycroft /*
1410 1.1 mycroft * Find the size of the cluster going forward.
1411 1.1 mycroft */
1412 1.1 mycroft start = blkno + 1;
1413 1.1 mycroft end = start + fs->fs_contigsumsize;
1414 1.1 mycroft if (end >= cgp->cg_nclusterblks)
1415 1.1 mycroft end = cgp->cg_nclusterblks;
1416 1.1 mycroft mapp = &freemapp[start / NBBY];
1417 1.1 mycroft map = *mapp++;
1418 1.1 mycroft bit = 1 << (start % NBBY);
1419 1.1 mycroft for (i = start; i < end; i++) {
1420 1.1 mycroft if ((map & bit) == 0)
1421 1.1 mycroft break;
1422 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1423 1.1 mycroft bit <<= 1;
1424 1.1 mycroft } else {
1425 1.1 mycroft map = *mapp++;
1426 1.1 mycroft bit = 1;
1427 1.1 mycroft }
1428 1.1 mycroft }
1429 1.1 mycroft forw = i - start;
1430 1.1 mycroft /*
1431 1.1 mycroft * Find the size of the cluster going backward.
1432 1.1 mycroft */
1433 1.1 mycroft start = blkno - 1;
1434 1.1 mycroft end = start - fs->fs_contigsumsize;
1435 1.1 mycroft if (end < 0)
1436 1.1 mycroft end = -1;
1437 1.1 mycroft mapp = &freemapp[start / NBBY];
1438 1.1 mycroft map = *mapp--;
1439 1.1 mycroft bit = 1 << (start % NBBY);
1440 1.1 mycroft for (i = start; i > end; i--) {
1441 1.1 mycroft if ((map & bit) == 0)
1442 1.1 mycroft break;
1443 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1444 1.1 mycroft bit >>= 1;
1445 1.1 mycroft } else {
1446 1.1 mycroft map = *mapp--;
1447 1.1 mycroft bit = 1 << (NBBY - 1);
1448 1.1 mycroft }
1449 1.1 mycroft }
1450 1.1 mycroft back = start - i;
1451 1.1 mycroft /*
1452 1.1 mycroft * Account for old cluster and the possibly new forward and
1453 1.1 mycroft * back clusters.
1454 1.1 mycroft */
1455 1.1 mycroft i = back + forw + 1;
1456 1.1 mycroft if (i > fs->fs_contigsumsize)
1457 1.1 mycroft i = fs->fs_contigsumsize;
1458 1.1 mycroft sump[i] += cnt;
1459 1.1 mycroft if (back > 0)
1460 1.1 mycroft sump[back] -= cnt;
1461 1.1 mycroft if (forw > 0)
1462 1.1 mycroft sump[forw] -= cnt;
1463 1.1 mycroft }
1464 1.1 mycroft
1465 1.1 mycroft /*
1466 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1467 1.1 mycroft *
1468 1.1 mycroft * The form of the error message is:
1469 1.1 mycroft * fs: error message
1470 1.1 mycroft */
1471 1.1 mycroft static void
1472 1.1 mycroft ffs_fserr(fs, uid, cp)
1473 1.1 mycroft struct fs *fs;
1474 1.1 mycroft u_int uid;
1475 1.1 mycroft char *cp;
1476 1.1 mycroft {
1477 1.1 mycroft
1478 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1479 1.1 mycroft }
1480