Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.1.1.2
      1      1.1  mycroft /*
      2      1.1  mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      3      1.1  mycroft  *	The Regents of the University of California.  All rights reserved.
      4      1.1  mycroft  *
      5      1.1  mycroft  * Redistribution and use in source and binary forms, with or without
      6      1.1  mycroft  * modification, are permitted provided that the following conditions
      7      1.1  mycroft  * are met:
      8      1.1  mycroft  * 1. Redistributions of source code must retain the above copyright
      9      1.1  mycroft  *    notice, this list of conditions and the following disclaimer.
     10      1.1  mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     11      1.1  mycroft  *    notice, this list of conditions and the following disclaimer in the
     12      1.1  mycroft  *    documentation and/or other materials provided with the distribution.
     13      1.1  mycroft  * 3. All advertising materials mentioning features or use of this software
     14      1.1  mycroft  *    must display the following acknowledgement:
     15      1.1  mycroft  *	This product includes software developed by the University of
     16      1.1  mycroft  *	California, Berkeley and its contributors.
     17      1.1  mycroft  * 4. Neither the name of the University nor the names of its contributors
     18      1.1  mycroft  *    may be used to endorse or promote products derived from this software
     19      1.1  mycroft  *    without specific prior written permission.
     20      1.1  mycroft  *
     21      1.1  mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22      1.1  mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23      1.1  mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24      1.1  mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25      1.1  mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26      1.1  mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27      1.1  mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28      1.1  mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29      1.1  mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30      1.1  mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31      1.1  mycroft  * SUCH DAMAGE.
     32      1.1  mycroft  *
     33  1.1.1.2     fvdl  *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
     34      1.1  mycroft  */
     35      1.1  mycroft 
     36      1.1  mycroft #include <sys/param.h>
     37      1.1  mycroft #include <sys/systm.h>
     38      1.1  mycroft #include <sys/buf.h>
     39      1.1  mycroft #include <sys/proc.h>
     40      1.1  mycroft #include <sys/vnode.h>
     41      1.1  mycroft #include <sys/mount.h>
     42      1.1  mycroft #include <sys/kernel.h>
     43      1.1  mycroft #include <sys/syslog.h>
     44      1.1  mycroft 
     45      1.1  mycroft #include <vm/vm.h>
     46      1.1  mycroft 
     47      1.1  mycroft #include <ufs/ufs/quota.h>
     48      1.1  mycroft #include <ufs/ufs/inode.h>
     49      1.1  mycroft 
     50      1.1  mycroft #include <ufs/ffs/fs.h>
     51      1.1  mycroft #include <ufs/ffs/ffs_extern.h>
     52      1.1  mycroft 
     53      1.1  mycroft extern u_long nextgennumber;
     54      1.1  mycroft 
     55  1.1.1.2     fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     56  1.1.1.2     fvdl static ufs_daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, ufs_daddr_t));
     57  1.1.1.2     fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
     58  1.1.1.2     fvdl 	    int));
     59      1.1  mycroft static ino_t	ffs_dirpref __P((struct fs *));
     60  1.1.1.2     fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
     61      1.1  mycroft static void	ffs_fserr __P((struct fs *, u_int, char *));
     62      1.1  mycroft static u_long	ffs_hashalloc
     63  1.1.1.2     fvdl 		    __P((struct inode *, int, long, int, u_int32_t (*)()));
     64  1.1.1.2     fvdl static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     65  1.1.1.2     fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
     66  1.1.1.2     fvdl 	    int));
     67      1.1  mycroft 
     68      1.1  mycroft /*
     69      1.1  mycroft  * Allocate a block in the file system.
     70      1.1  mycroft  *
     71      1.1  mycroft  * The size of the requested block is given, which must be some
     72      1.1  mycroft  * multiple of fs_fsize and <= fs_bsize.
     73      1.1  mycroft  * A preference may be optionally specified. If a preference is given
     74      1.1  mycroft  * the following hierarchy is used to allocate a block:
     75      1.1  mycroft  *   1) allocate the requested block.
     76      1.1  mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     77      1.1  mycroft  *   3) allocate a block in the same cylinder group.
     78      1.1  mycroft  *   4) quadradically rehash into other cylinder groups, until an
     79      1.1  mycroft  *      available block is located.
     80      1.1  mycroft  * If no block preference is given the following heirarchy is used
     81      1.1  mycroft  * to allocate a block:
     82      1.1  mycroft  *   1) allocate a block in the cylinder group that contains the
     83      1.1  mycroft  *      inode for the file.
     84      1.1  mycroft  *   2) quadradically rehash into other cylinder groups, until an
     85      1.1  mycroft  *      available block is located.
     86      1.1  mycroft  */
     87      1.1  mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     88      1.1  mycroft 	register struct inode *ip;
     89  1.1.1.2     fvdl 	ufs_daddr_t lbn, bpref;
     90      1.1  mycroft 	int size;
     91      1.1  mycroft 	struct ucred *cred;
     92  1.1.1.2     fvdl 	ufs_daddr_t *bnp;
     93      1.1  mycroft {
     94      1.1  mycroft 	register struct fs *fs;
     95  1.1.1.2     fvdl 	ufs_daddr_t bno;
     96      1.1  mycroft 	int cg, error;
     97      1.1  mycroft 
     98      1.1  mycroft 	*bnp = 0;
     99      1.1  mycroft 	fs = ip->i_fs;
    100      1.1  mycroft #ifdef DIAGNOSTIC
    101      1.1  mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    102      1.1  mycroft 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    103      1.1  mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    104      1.1  mycroft 		panic("ffs_alloc: bad size");
    105      1.1  mycroft 	}
    106      1.1  mycroft 	if (cred == NOCRED)
    107      1.1  mycroft 		panic("ffs_alloc: missing credential\n");
    108      1.1  mycroft #endif /* DIAGNOSTIC */
    109      1.1  mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    110      1.1  mycroft 		goto nospace;
    111      1.1  mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    112      1.1  mycroft 		goto nospace;
    113      1.1  mycroft #ifdef QUOTA
    114      1.1  mycroft 	if (error = chkdq(ip, (long)btodb(size), cred, 0))
    115      1.1  mycroft 		return (error);
    116      1.1  mycroft #endif
    117      1.1  mycroft 	if (bpref >= fs->fs_size)
    118      1.1  mycroft 		bpref = 0;
    119      1.1  mycroft 	if (bpref == 0)
    120      1.1  mycroft 		cg = ino_to_cg(fs, ip->i_number);
    121      1.1  mycroft 	else
    122      1.1  mycroft 		cg = dtog(fs, bpref);
    123  1.1.1.2     fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    124  1.1.1.2     fvdl 	    (u_int32_t (*)())ffs_alloccg);
    125      1.1  mycroft 	if (bno > 0) {
    126      1.1  mycroft 		ip->i_blocks += btodb(size);
    127      1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    128      1.1  mycroft 		*bnp = bno;
    129      1.1  mycroft 		return (0);
    130      1.1  mycroft 	}
    131      1.1  mycroft #ifdef QUOTA
    132      1.1  mycroft 	/*
    133      1.1  mycroft 	 * Restore user's disk quota because allocation failed.
    134      1.1  mycroft 	 */
    135      1.1  mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    136      1.1  mycroft #endif
    137      1.1  mycroft nospace:
    138      1.1  mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    139      1.1  mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    140      1.1  mycroft 	return (ENOSPC);
    141      1.1  mycroft }
    142      1.1  mycroft 
    143      1.1  mycroft /*
    144      1.1  mycroft  * Reallocate a fragment to a bigger size
    145      1.1  mycroft  *
    146      1.1  mycroft  * The number and size of the old block is given, and a preference
    147      1.1  mycroft  * and new size is also specified. The allocator attempts to extend
    148      1.1  mycroft  * the original block. Failing that, the regular block allocator is
    149      1.1  mycroft  * invoked to get an appropriate block.
    150      1.1  mycroft  */
    151      1.1  mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    152      1.1  mycroft 	register struct inode *ip;
    153  1.1.1.2     fvdl 	ufs_daddr_t lbprev;
    154  1.1.1.2     fvdl 	ufs_daddr_t bpref;
    155      1.1  mycroft 	int osize, nsize;
    156      1.1  mycroft 	struct ucred *cred;
    157      1.1  mycroft 	struct buf **bpp;
    158      1.1  mycroft {
    159      1.1  mycroft 	register struct fs *fs;
    160      1.1  mycroft 	struct buf *bp;
    161      1.1  mycroft 	int cg, request, error;
    162  1.1.1.2     fvdl 	ufs_daddr_t bprev, bno;
    163      1.1  mycroft 
    164      1.1  mycroft 	*bpp = 0;
    165      1.1  mycroft 	fs = ip->i_fs;
    166      1.1  mycroft #ifdef DIAGNOSTIC
    167      1.1  mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    168      1.1  mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    169      1.1  mycroft 		printf(
    170      1.1  mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    171      1.1  mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    172      1.1  mycroft 		panic("ffs_realloccg: bad size");
    173      1.1  mycroft 	}
    174      1.1  mycroft 	if (cred == NOCRED)
    175      1.1  mycroft 		panic("ffs_realloccg: missing credential\n");
    176      1.1  mycroft #endif /* DIAGNOSTIC */
    177      1.1  mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    178      1.1  mycroft 		goto nospace;
    179      1.1  mycroft 	if ((bprev = ip->i_db[lbprev]) == 0) {
    180      1.1  mycroft 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    181      1.1  mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    182      1.1  mycroft 		panic("ffs_realloccg: bad bprev");
    183      1.1  mycroft 	}
    184      1.1  mycroft 	/*
    185      1.1  mycroft 	 * Allocate the extra space in the buffer.
    186      1.1  mycroft 	 */
    187      1.1  mycroft 	if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
    188      1.1  mycroft 		brelse(bp);
    189      1.1  mycroft 		return (error);
    190      1.1  mycroft 	}
    191      1.1  mycroft #ifdef QUOTA
    192      1.1  mycroft 	if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
    193      1.1  mycroft 		brelse(bp);
    194      1.1  mycroft 		return (error);
    195      1.1  mycroft 	}
    196      1.1  mycroft #endif
    197      1.1  mycroft 	/*
    198      1.1  mycroft 	 * Check for extension in the existing location.
    199      1.1  mycroft 	 */
    200      1.1  mycroft 	cg = dtog(fs, bprev);
    201      1.1  mycroft 	if (bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) {
    202      1.1  mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    203      1.1  mycroft 			panic("bad blockno");
    204      1.1  mycroft 		ip->i_blocks += btodb(nsize - osize);
    205      1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    206      1.1  mycroft 		allocbuf(bp, nsize);
    207      1.1  mycroft 		bp->b_flags |= B_DONE;
    208      1.1  mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    209      1.1  mycroft 		*bpp = bp;
    210      1.1  mycroft 		return (0);
    211      1.1  mycroft 	}
    212      1.1  mycroft 	/*
    213      1.1  mycroft 	 * Allocate a new disk location.
    214      1.1  mycroft 	 */
    215      1.1  mycroft 	if (bpref >= fs->fs_size)
    216      1.1  mycroft 		bpref = 0;
    217      1.1  mycroft 	switch ((int)fs->fs_optim) {
    218      1.1  mycroft 	case FS_OPTSPACE:
    219      1.1  mycroft 		/*
    220      1.1  mycroft 		 * Allocate an exact sized fragment. Although this makes
    221      1.1  mycroft 		 * best use of space, we will waste time relocating it if
    222      1.1  mycroft 		 * the file continues to grow. If the fragmentation is
    223      1.1  mycroft 		 * less than half of the minimum free reserve, we choose
    224      1.1  mycroft 		 * to begin optimizing for time.
    225      1.1  mycroft 		 */
    226      1.1  mycroft 		request = nsize;
    227      1.1  mycroft 		if (fs->fs_minfree < 5 ||
    228      1.1  mycroft 		    fs->fs_cstotal.cs_nffree >
    229      1.1  mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    230      1.1  mycroft 			break;
    231      1.1  mycroft 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    232      1.1  mycroft 			fs->fs_fsmnt);
    233      1.1  mycroft 		fs->fs_optim = FS_OPTTIME;
    234      1.1  mycroft 		break;
    235      1.1  mycroft 	case FS_OPTTIME:
    236      1.1  mycroft 		/*
    237      1.1  mycroft 		 * At this point we have discovered a file that is trying to
    238      1.1  mycroft 		 * grow a small fragment to a larger fragment. To save time,
    239      1.1  mycroft 		 * we allocate a full sized block, then free the unused portion.
    240      1.1  mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    241      1.1  mycroft 		 * above will be able to grow it in place without further
    242      1.1  mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    243      1.1  mycroft 		 * grow within 2% of the free reserve, we choose to begin
    244      1.1  mycroft 		 * optimizing for space.
    245      1.1  mycroft 		 */
    246      1.1  mycroft 		request = fs->fs_bsize;
    247      1.1  mycroft 		if (fs->fs_cstotal.cs_nffree <
    248      1.1  mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    249      1.1  mycroft 			break;
    250      1.1  mycroft 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    251      1.1  mycroft 			fs->fs_fsmnt);
    252      1.1  mycroft 		fs->fs_optim = FS_OPTSPACE;
    253      1.1  mycroft 		break;
    254      1.1  mycroft 	default:
    255      1.1  mycroft 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    256      1.1  mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    257      1.1  mycroft 		panic("ffs_realloccg: bad optim");
    258      1.1  mycroft 		/* NOTREACHED */
    259      1.1  mycroft 	}
    260  1.1.1.2     fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    261  1.1.1.2     fvdl 	    (u_int32_t (*)())ffs_alloccg);
    262      1.1  mycroft 	if (bno > 0) {
    263      1.1  mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    264      1.1  mycroft 		(void) vnode_pager_uncache(ITOV(ip));
    265      1.1  mycroft 		ffs_blkfree(ip, bprev, (long)osize);
    266      1.1  mycroft 		if (nsize < request)
    267      1.1  mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    268      1.1  mycroft 			    (long)(request - nsize));
    269      1.1  mycroft 		ip->i_blocks += btodb(nsize - osize);
    270      1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    271      1.1  mycroft 		allocbuf(bp, nsize);
    272      1.1  mycroft 		bp->b_flags |= B_DONE;
    273      1.1  mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    274      1.1  mycroft 		*bpp = bp;
    275      1.1  mycroft 		return (0);
    276      1.1  mycroft 	}
    277      1.1  mycroft #ifdef QUOTA
    278      1.1  mycroft 	/*
    279      1.1  mycroft 	 * Restore user's disk quota because allocation failed.
    280      1.1  mycroft 	 */
    281      1.1  mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    282      1.1  mycroft #endif
    283      1.1  mycroft 	brelse(bp);
    284      1.1  mycroft nospace:
    285      1.1  mycroft 	/*
    286      1.1  mycroft 	 * no space available
    287      1.1  mycroft 	 */
    288      1.1  mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    289      1.1  mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    290      1.1  mycroft 	return (ENOSPC);
    291      1.1  mycroft }
    292      1.1  mycroft 
    293      1.1  mycroft /*
    294      1.1  mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    295      1.1  mycroft  *
    296      1.1  mycroft  * The vnode and an array of buffer pointers for a range of sequential
    297      1.1  mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    298      1.1  mycroft  * to find a range of sequential blocks starting as close as possible to
    299      1.1  mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    300      1.1  mycroft  * block immediately preceeding the current range. If successful, the
    301      1.1  mycroft  * physical block numbers in the buffer pointers and in the inode are
    302      1.1  mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    303      1.1  mycroft  * is left unchanged. The success in doing the reallocation is returned.
    304      1.1  mycroft  * Note that the error return is not reflected back to the user. Rather
    305      1.1  mycroft  * the previous block allocation will be used.
    306      1.1  mycroft  */
    307      1.1  mycroft int doasyncfree = 1;
    308  1.1.1.2     fvdl int doreallocblks = 1;
    309  1.1.1.2     fvdl int prtrealloc = 0;
    310  1.1.1.2     fvdl 
    311      1.1  mycroft int
    312      1.1  mycroft ffs_reallocblks(ap)
    313      1.1  mycroft 	struct vop_reallocblks_args /* {
    314      1.1  mycroft 		struct vnode *a_vp;
    315      1.1  mycroft 		struct cluster_save *a_buflist;
    316      1.1  mycroft 	} */ *ap;
    317      1.1  mycroft {
    318      1.1  mycroft 	struct fs *fs;
    319      1.1  mycroft 	struct inode *ip;
    320      1.1  mycroft 	struct vnode *vp;
    321      1.1  mycroft 	struct buf *sbp, *ebp;
    322  1.1.1.2     fvdl 	ufs_daddr_t *bap, *sbap, *ebap;
    323      1.1  mycroft 	struct cluster_save *buflist;
    324  1.1.1.2     fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
    325      1.1  mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    326      1.1  mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    327      1.1  mycroft 
    328  1.1.1.2     fvdl 	if (doreallocblks == 0)
    329  1.1.1.2     fvdl 		return (ENOSPC);
    330      1.1  mycroft 	vp = ap->a_vp;
    331      1.1  mycroft 	ip = VTOI(vp);
    332      1.1  mycroft 	fs = ip->i_fs;
    333      1.1  mycroft 	if (fs->fs_contigsumsize <= 0)
    334      1.1  mycroft 		return (ENOSPC);
    335      1.1  mycroft 	buflist = ap->a_buflist;
    336      1.1  mycroft 	len = buflist->bs_nchildren;
    337      1.1  mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    338      1.1  mycroft 	end_lbn = start_lbn + len - 1;
    339      1.1  mycroft #ifdef DIAGNOSTIC
    340  1.1.1.2     fvdl 	for (i = 0; i < len; i++)
    341  1.1.1.2     fvdl 		if (!ffs_checkblk(ip,
    342  1.1.1.2     fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    343  1.1.1.2     fvdl 			panic("ffs_reallocblks: unallocated block 1");
    344      1.1  mycroft 	for (i = 1; i < len; i++)
    345      1.1  mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    346  1.1.1.2     fvdl 			panic("ffs_reallocblks: non-logical cluster");
    347  1.1.1.2     fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    348  1.1.1.2     fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    349  1.1.1.2     fvdl 	for (i = 1; i < len - 1; i++)
    350  1.1.1.2     fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    351  1.1.1.2     fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    352      1.1  mycroft #endif
    353      1.1  mycroft 	/*
    354      1.1  mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    355      1.1  mycroft 	 * the filesystem has decided to move and do not force it back to
    356      1.1  mycroft 	 * the previous cylinder group.
    357      1.1  mycroft 	 */
    358      1.1  mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    359      1.1  mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    360      1.1  mycroft 		return (ENOSPC);
    361      1.1  mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    362      1.1  mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    363      1.1  mycroft 		return (ENOSPC);
    364      1.1  mycroft 	/*
    365      1.1  mycroft 	 * Get the starting offset and block map for the first block.
    366      1.1  mycroft 	 */
    367      1.1  mycroft 	if (start_lvl == 0) {
    368      1.1  mycroft 		sbap = &ip->i_db[0];
    369      1.1  mycroft 		soff = start_lbn;
    370      1.1  mycroft 	} else {
    371      1.1  mycroft 		idp = &start_ap[start_lvl - 1];
    372      1.1  mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    373      1.1  mycroft 			brelse(sbp);
    374      1.1  mycroft 			return (ENOSPC);
    375      1.1  mycroft 		}
    376  1.1.1.2     fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    377      1.1  mycroft 		soff = idp->in_off;
    378      1.1  mycroft 	}
    379      1.1  mycroft 	/*
    380      1.1  mycroft 	 * Find the preferred location for the cluster.
    381      1.1  mycroft 	 */
    382      1.1  mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    383      1.1  mycroft 	/*
    384      1.1  mycroft 	 * If the block range spans two block maps, get the second map.
    385      1.1  mycroft 	 */
    386      1.1  mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    387      1.1  mycroft 		ssize = len;
    388      1.1  mycroft 	} else {
    389      1.1  mycroft #ifdef DIAGNOSTIC
    390      1.1  mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    391      1.1  mycroft 			panic("ffs_reallocblk: start == end");
    392      1.1  mycroft #endif
    393      1.1  mycroft 		ssize = len - (idp->in_off + 1);
    394      1.1  mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    395      1.1  mycroft 			goto fail;
    396  1.1.1.2     fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    397      1.1  mycroft 	}
    398      1.1  mycroft 	/*
    399      1.1  mycroft 	 * Search the block map looking for an allocation of the desired size.
    400      1.1  mycroft 	 */
    401  1.1.1.2     fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    402  1.1.1.2     fvdl 	    len, (u_int32_t (*)())ffs_clusteralloc)) == 0)
    403      1.1  mycroft 		goto fail;
    404      1.1  mycroft 	/*
    405      1.1  mycroft 	 * We have found a new contiguous block.
    406      1.1  mycroft 	 *
    407      1.1  mycroft 	 * First we have to replace the old block pointers with the new
    408      1.1  mycroft 	 * block pointers in the inode and indirect blocks associated
    409      1.1  mycroft 	 * with the file.
    410      1.1  mycroft 	 */
    411  1.1.1.2     fvdl #ifdef DEBUG
    412  1.1.1.2     fvdl 	if (prtrealloc)
    413  1.1.1.2     fvdl 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    414  1.1.1.2     fvdl 		    start_lbn, end_lbn);
    415  1.1.1.2     fvdl #endif
    416      1.1  mycroft 	blkno = newblk;
    417      1.1  mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    418      1.1  mycroft 		if (i == ssize)
    419      1.1  mycroft 			bap = ebap;
    420      1.1  mycroft #ifdef DIAGNOSTIC
    421  1.1.1.2     fvdl 		if (!ffs_checkblk(ip,
    422  1.1.1.2     fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    423  1.1.1.2     fvdl 			panic("ffs_reallocblks: unallocated block 2");
    424  1.1.1.2     fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    425      1.1  mycroft 			panic("ffs_reallocblks: alloc mismatch");
    426      1.1  mycroft #endif
    427  1.1.1.2     fvdl #ifdef DEBUG
    428  1.1.1.2     fvdl 		if (prtrealloc)
    429  1.1.1.2     fvdl 			printf(" %d,", *bap);
    430  1.1.1.2     fvdl #endif
    431      1.1  mycroft 		*bap++ = blkno;
    432      1.1  mycroft 	}
    433      1.1  mycroft 	/*
    434      1.1  mycroft 	 * Next we must write out the modified inode and indirect blocks.
    435      1.1  mycroft 	 * For strict correctness, the writes should be synchronous since
    436      1.1  mycroft 	 * the old block values may have been written to disk. In practise
    437      1.1  mycroft 	 * they are almost never written, but if we are concerned about
    438      1.1  mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    439      1.1  mycroft 	 *
    440      1.1  mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    441      1.1  mycroft 	 * that shows whether the associated buffers and inodes have
    442      1.1  mycroft 	 * been written. The flag should be set when the cluster is
    443      1.1  mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    444      1.1  mycroft 	 * We can then check below to see if it is set, and do the
    445      1.1  mycroft 	 * synchronous write only when it has been cleared.
    446      1.1  mycroft 	 */
    447      1.1  mycroft 	if (sbap != &ip->i_db[0]) {
    448      1.1  mycroft 		if (doasyncfree)
    449      1.1  mycroft 			bdwrite(sbp);
    450      1.1  mycroft 		else
    451      1.1  mycroft 			bwrite(sbp);
    452      1.1  mycroft 	} else {
    453      1.1  mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    454      1.1  mycroft 		if (!doasyncfree)
    455      1.1  mycroft 			VOP_UPDATE(vp, &time, &time, MNT_WAIT);
    456      1.1  mycroft 	}
    457      1.1  mycroft 	if (ssize < len)
    458      1.1  mycroft 		if (doasyncfree)
    459      1.1  mycroft 			bdwrite(ebp);
    460      1.1  mycroft 		else
    461      1.1  mycroft 			bwrite(ebp);
    462      1.1  mycroft 	/*
    463      1.1  mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    464      1.1  mycroft 	 */
    465  1.1.1.2     fvdl #ifdef DEBUG
    466  1.1.1.2     fvdl 	if (prtrealloc)
    467  1.1.1.2     fvdl 		printf("\n\tnew:");
    468  1.1.1.2     fvdl #endif
    469      1.1  mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    470      1.1  mycroft 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    471      1.1  mycroft 		    fs->fs_bsize);
    472      1.1  mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    473  1.1.1.2     fvdl #ifdef DEBUG
    474  1.1.1.2     fvdl 		if (!ffs_checkblk(ip,
    475  1.1.1.2     fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    476  1.1.1.2     fvdl 			panic("ffs_reallocblks: unallocated block 3");
    477  1.1.1.2     fvdl 		if (prtrealloc)
    478  1.1.1.2     fvdl 			printf(" %d,", blkno);
    479  1.1.1.2     fvdl #endif
    480      1.1  mycroft 	}
    481  1.1.1.2     fvdl #ifdef DEBUG
    482  1.1.1.2     fvdl 	if (prtrealloc) {
    483  1.1.1.2     fvdl 		prtrealloc--;
    484  1.1.1.2     fvdl 		printf("\n");
    485  1.1.1.2     fvdl 	}
    486  1.1.1.2     fvdl #endif
    487      1.1  mycroft 	return (0);
    488      1.1  mycroft 
    489      1.1  mycroft fail:
    490      1.1  mycroft 	if (ssize < len)
    491      1.1  mycroft 		brelse(ebp);
    492      1.1  mycroft 	if (sbap != &ip->i_db[0])
    493      1.1  mycroft 		brelse(sbp);
    494      1.1  mycroft 	return (ENOSPC);
    495      1.1  mycroft }
    496      1.1  mycroft 
    497      1.1  mycroft /*
    498      1.1  mycroft  * Allocate an inode in the file system.
    499      1.1  mycroft  *
    500      1.1  mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    501      1.1  mycroft  * If allocating in a directory, the following hierarchy is followed:
    502      1.1  mycroft  *   1) allocate the preferred inode.
    503      1.1  mycroft  *   2) allocate an inode in the same cylinder group.
    504      1.1  mycroft  *   3) quadradically rehash into other cylinder groups, until an
    505      1.1  mycroft  *      available inode is located.
    506      1.1  mycroft  * If no inode preference is given the following heirarchy is used
    507      1.1  mycroft  * to allocate an inode:
    508      1.1  mycroft  *   1) allocate an inode in cylinder group 0.
    509      1.1  mycroft  *   2) quadradically rehash into other cylinder groups, until an
    510      1.1  mycroft  *      available inode is located.
    511      1.1  mycroft  */
    512      1.1  mycroft ffs_valloc(ap)
    513      1.1  mycroft 	struct vop_valloc_args /* {
    514      1.1  mycroft 		struct vnode *a_pvp;
    515      1.1  mycroft 		int a_mode;
    516      1.1  mycroft 		struct ucred *a_cred;
    517      1.1  mycroft 		struct vnode **a_vpp;
    518      1.1  mycroft 	} */ *ap;
    519      1.1  mycroft {
    520      1.1  mycroft 	register struct vnode *pvp = ap->a_pvp;
    521      1.1  mycroft 	register struct inode *pip;
    522      1.1  mycroft 	register struct fs *fs;
    523      1.1  mycroft 	register struct inode *ip;
    524      1.1  mycroft 	mode_t mode = ap->a_mode;
    525      1.1  mycroft 	ino_t ino, ipref;
    526      1.1  mycroft 	int cg, error;
    527      1.1  mycroft 
    528      1.1  mycroft 	*ap->a_vpp = NULL;
    529      1.1  mycroft 	pip = VTOI(pvp);
    530      1.1  mycroft 	fs = pip->i_fs;
    531      1.1  mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    532      1.1  mycroft 		goto noinodes;
    533      1.1  mycroft 
    534      1.1  mycroft 	if ((mode & IFMT) == IFDIR)
    535      1.1  mycroft 		ipref = ffs_dirpref(fs);
    536      1.1  mycroft 	else
    537      1.1  mycroft 		ipref = pip->i_number;
    538      1.1  mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    539      1.1  mycroft 		ipref = 0;
    540      1.1  mycroft 	cg = ino_to_cg(fs, ipref);
    541      1.1  mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    542      1.1  mycroft 	if (ino == 0)
    543      1.1  mycroft 		goto noinodes;
    544      1.1  mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    545      1.1  mycroft 	if (error) {
    546      1.1  mycroft 		VOP_VFREE(pvp, ino, mode);
    547      1.1  mycroft 		return (error);
    548      1.1  mycroft 	}
    549      1.1  mycroft 	ip = VTOI(*ap->a_vpp);
    550      1.1  mycroft 	if (ip->i_mode) {
    551      1.1  mycroft 		printf("mode = 0%o, inum = %d, fs = %s\n",
    552      1.1  mycroft 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    553      1.1  mycroft 		panic("ffs_valloc: dup alloc");
    554      1.1  mycroft 	}
    555      1.1  mycroft 	if (ip->i_blocks) {				/* XXX */
    556      1.1  mycroft 		printf("free inode %s/%d had %d blocks\n",
    557      1.1  mycroft 		    fs->fs_fsmnt, ino, ip->i_blocks);
    558      1.1  mycroft 		ip->i_blocks = 0;
    559      1.1  mycroft 	}
    560      1.1  mycroft 	ip->i_flags = 0;
    561      1.1  mycroft 	/*
    562      1.1  mycroft 	 * Set up a new generation number for this inode.
    563      1.1  mycroft 	 */
    564      1.1  mycroft 	if (++nextgennumber < (u_long)time.tv_sec)
    565      1.1  mycroft 		nextgennumber = time.tv_sec;
    566      1.1  mycroft 	ip->i_gen = nextgennumber;
    567      1.1  mycroft 	return (0);
    568      1.1  mycroft noinodes:
    569      1.1  mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    570      1.1  mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    571      1.1  mycroft 	return (ENOSPC);
    572      1.1  mycroft }
    573      1.1  mycroft 
    574      1.1  mycroft /*
    575      1.1  mycroft  * Find a cylinder to place a directory.
    576      1.1  mycroft  *
    577      1.1  mycroft  * The policy implemented by this algorithm is to select from
    578      1.1  mycroft  * among those cylinder groups with above the average number of
    579      1.1  mycroft  * free inodes, the one with the smallest number of directories.
    580      1.1  mycroft  */
    581      1.1  mycroft static ino_t
    582      1.1  mycroft ffs_dirpref(fs)
    583      1.1  mycroft 	register struct fs *fs;
    584      1.1  mycroft {
    585      1.1  mycroft 	int cg, minndir, mincg, avgifree;
    586      1.1  mycroft 
    587      1.1  mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    588      1.1  mycroft 	minndir = fs->fs_ipg;
    589      1.1  mycroft 	mincg = 0;
    590      1.1  mycroft 	for (cg = 0; cg < fs->fs_ncg; cg++)
    591      1.1  mycroft 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    592      1.1  mycroft 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    593      1.1  mycroft 			mincg = cg;
    594      1.1  mycroft 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    595      1.1  mycroft 		}
    596      1.1  mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    597      1.1  mycroft }
    598      1.1  mycroft 
    599      1.1  mycroft /*
    600      1.1  mycroft  * Select the desired position for the next block in a file.  The file is
    601      1.1  mycroft  * logically divided into sections. The first section is composed of the
    602      1.1  mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    603      1.1  mycroft  *
    604      1.1  mycroft  * If no blocks have been allocated in the first section, the policy is to
    605      1.1  mycroft  * request a block in the same cylinder group as the inode that describes
    606      1.1  mycroft  * the file. If no blocks have been allocated in any other section, the
    607      1.1  mycroft  * policy is to place the section in a cylinder group with a greater than
    608      1.1  mycroft  * average number of free blocks.  An appropriate cylinder group is found
    609      1.1  mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    610      1.1  mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    611      1.1  mycroft  * cylinder group from which the previous allocation was made. The sweep
    612      1.1  mycroft  * continues until a cylinder group with greater than the average number
    613      1.1  mycroft  * of free blocks is found. If the allocation is for the first block in an
    614      1.1  mycroft  * indirect block, the information on the previous allocation is unavailable;
    615      1.1  mycroft  * here a best guess is made based upon the logical block number being
    616      1.1  mycroft  * allocated.
    617      1.1  mycroft  *
    618      1.1  mycroft  * If a section is already partially allocated, the policy is to
    619      1.1  mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    620      1.1  mycroft  * contiguous blocks and the beginning of the next is physically separated
    621      1.1  mycroft  * so that the disk head will be in transit between them for at least
    622      1.1  mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    623      1.1  mycroft  * schedule another I/O transfer.
    624      1.1  mycroft  */
    625  1.1.1.2     fvdl ufs_daddr_t
    626      1.1  mycroft ffs_blkpref(ip, lbn, indx, bap)
    627      1.1  mycroft 	struct inode *ip;
    628  1.1.1.2     fvdl 	ufs_daddr_t lbn;
    629      1.1  mycroft 	int indx;
    630  1.1.1.2     fvdl 	ufs_daddr_t *bap;
    631      1.1  mycroft {
    632      1.1  mycroft 	register struct fs *fs;
    633      1.1  mycroft 	register int cg;
    634      1.1  mycroft 	int avgbfree, startcg;
    635  1.1.1.2     fvdl 	ufs_daddr_t nextblk;
    636      1.1  mycroft 
    637      1.1  mycroft 	fs = ip->i_fs;
    638      1.1  mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    639      1.1  mycroft 		if (lbn < NDADDR) {
    640      1.1  mycroft 			cg = ino_to_cg(fs, ip->i_number);
    641      1.1  mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    642      1.1  mycroft 		}
    643      1.1  mycroft 		/*
    644      1.1  mycroft 		 * Find a cylinder with greater than average number of
    645      1.1  mycroft 		 * unused data blocks.
    646      1.1  mycroft 		 */
    647      1.1  mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    648      1.1  mycroft 			startcg =
    649      1.1  mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    650      1.1  mycroft 		else
    651      1.1  mycroft 			startcg = dtog(fs, bap[indx - 1]) + 1;
    652      1.1  mycroft 		startcg %= fs->fs_ncg;
    653      1.1  mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    654      1.1  mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    655      1.1  mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    656      1.1  mycroft 				fs->fs_cgrotor = cg;
    657      1.1  mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    658      1.1  mycroft 			}
    659      1.1  mycroft 		for (cg = 0; cg <= startcg; cg++)
    660      1.1  mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    661      1.1  mycroft 				fs->fs_cgrotor = cg;
    662      1.1  mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    663      1.1  mycroft 			}
    664      1.1  mycroft 		return (NULL);
    665      1.1  mycroft 	}
    666      1.1  mycroft 	/*
    667      1.1  mycroft 	 * One or more previous blocks have been laid out. If less
    668      1.1  mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    669      1.1  mycroft 	 * next block is requested contiguously, otherwise it is
    670      1.1  mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    671      1.1  mycroft 	 */
    672      1.1  mycroft 	nextblk = bap[indx - 1] + fs->fs_frag;
    673      1.1  mycroft 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    674      1.1  mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    675      1.1  mycroft 		return (nextblk);
    676      1.1  mycroft 	if (fs->fs_rotdelay != 0)
    677      1.1  mycroft 		/*
    678      1.1  mycroft 		 * Here we convert ms of delay to frags as:
    679      1.1  mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    680      1.1  mycroft 		 *	((sect/frag) * (ms/sec))
    681      1.1  mycroft 		 * then round up to the next block.
    682      1.1  mycroft 		 */
    683      1.1  mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    684      1.1  mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    685      1.1  mycroft 	return (nextblk);
    686      1.1  mycroft }
    687      1.1  mycroft 
    688      1.1  mycroft /*
    689      1.1  mycroft  * Implement the cylinder overflow algorithm.
    690      1.1  mycroft  *
    691      1.1  mycroft  * The policy implemented by this algorithm is:
    692      1.1  mycroft  *   1) allocate the block in its requested cylinder group.
    693      1.1  mycroft  *   2) quadradically rehash on the cylinder group number.
    694      1.1  mycroft  *   3) brute force search for a free block.
    695      1.1  mycroft  */
    696      1.1  mycroft /*VARARGS5*/
    697      1.1  mycroft static u_long
    698      1.1  mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    699      1.1  mycroft 	struct inode *ip;
    700      1.1  mycroft 	int cg;
    701      1.1  mycroft 	long pref;
    702      1.1  mycroft 	int size;	/* size for data blocks, mode for inodes */
    703  1.1.1.2     fvdl 	u_int32_t (*allocator)();
    704      1.1  mycroft {
    705      1.1  mycroft 	register struct fs *fs;
    706      1.1  mycroft 	long result;
    707      1.1  mycroft 	int i, icg = cg;
    708      1.1  mycroft 
    709      1.1  mycroft 	fs = ip->i_fs;
    710      1.1  mycroft 	/*
    711      1.1  mycroft 	 * 1: preferred cylinder group
    712      1.1  mycroft 	 */
    713      1.1  mycroft 	result = (*allocator)(ip, cg, pref, size);
    714      1.1  mycroft 	if (result)
    715      1.1  mycroft 		return (result);
    716      1.1  mycroft 	/*
    717      1.1  mycroft 	 * 2: quadratic rehash
    718      1.1  mycroft 	 */
    719      1.1  mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    720      1.1  mycroft 		cg += i;
    721      1.1  mycroft 		if (cg >= fs->fs_ncg)
    722      1.1  mycroft 			cg -= fs->fs_ncg;
    723      1.1  mycroft 		result = (*allocator)(ip, cg, 0, size);
    724      1.1  mycroft 		if (result)
    725      1.1  mycroft 			return (result);
    726      1.1  mycroft 	}
    727      1.1  mycroft 	/*
    728      1.1  mycroft 	 * 3: brute force search
    729      1.1  mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    730      1.1  mycroft 	 * and 1 is always checked in the quadratic rehash.
    731      1.1  mycroft 	 */
    732      1.1  mycroft 	cg = (icg + 2) % fs->fs_ncg;
    733      1.1  mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    734      1.1  mycroft 		result = (*allocator)(ip, cg, 0, size);
    735      1.1  mycroft 		if (result)
    736      1.1  mycroft 			return (result);
    737      1.1  mycroft 		cg++;
    738      1.1  mycroft 		if (cg == fs->fs_ncg)
    739      1.1  mycroft 			cg = 0;
    740      1.1  mycroft 	}
    741      1.1  mycroft 	return (NULL);
    742      1.1  mycroft }
    743      1.1  mycroft 
    744      1.1  mycroft /*
    745      1.1  mycroft  * Determine whether a fragment can be extended.
    746      1.1  mycroft  *
    747      1.1  mycroft  * Check to see if the necessary fragments are available, and
    748      1.1  mycroft  * if they are, allocate them.
    749      1.1  mycroft  */
    750  1.1.1.2     fvdl static ufs_daddr_t
    751      1.1  mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    752      1.1  mycroft 	struct inode *ip;
    753      1.1  mycroft 	int cg;
    754      1.1  mycroft 	long bprev;
    755      1.1  mycroft 	int osize, nsize;
    756      1.1  mycroft {
    757      1.1  mycroft 	register struct fs *fs;
    758      1.1  mycroft 	register struct cg *cgp;
    759      1.1  mycroft 	struct buf *bp;
    760      1.1  mycroft 	long bno;
    761      1.1  mycroft 	int frags, bbase;
    762      1.1  mycroft 	int i, error;
    763      1.1  mycroft 
    764      1.1  mycroft 	fs = ip->i_fs;
    765      1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    766      1.1  mycroft 		return (NULL);
    767      1.1  mycroft 	frags = numfrags(fs, nsize);
    768      1.1  mycroft 	bbase = fragnum(fs, bprev);
    769      1.1  mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    770      1.1  mycroft 		/* cannot extend across a block boundary */
    771      1.1  mycroft 		return (NULL);
    772      1.1  mycroft 	}
    773      1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    774      1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    775      1.1  mycroft 	if (error) {
    776      1.1  mycroft 		brelse(bp);
    777      1.1  mycroft 		return (NULL);
    778      1.1  mycroft 	}
    779      1.1  mycroft 	cgp = (struct cg *)bp->b_data;
    780      1.1  mycroft 	if (!cg_chkmagic(cgp)) {
    781      1.1  mycroft 		brelse(bp);
    782      1.1  mycroft 		return (NULL);
    783      1.1  mycroft 	}
    784      1.1  mycroft 	cgp->cg_time = time.tv_sec;
    785      1.1  mycroft 	bno = dtogd(fs, bprev);
    786      1.1  mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    787      1.1  mycroft 		if (isclr(cg_blksfree(cgp), bno + i)) {
    788      1.1  mycroft 			brelse(bp);
    789      1.1  mycroft 			return (NULL);
    790      1.1  mycroft 		}
    791      1.1  mycroft 	/*
    792      1.1  mycroft 	 * the current fragment can be extended
    793      1.1  mycroft 	 * deduct the count on fragment being extended into
    794      1.1  mycroft 	 * increase the count on the remaining fragment (if any)
    795      1.1  mycroft 	 * allocate the extended piece
    796      1.1  mycroft 	 */
    797      1.1  mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    798      1.1  mycroft 		if (isclr(cg_blksfree(cgp), bno + i))
    799      1.1  mycroft 			break;
    800      1.1  mycroft 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    801      1.1  mycroft 	if (i != frags)
    802      1.1  mycroft 		cgp->cg_frsum[i - frags]++;
    803      1.1  mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    804      1.1  mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    805      1.1  mycroft 		cgp->cg_cs.cs_nffree--;
    806      1.1  mycroft 		fs->fs_cstotal.cs_nffree--;
    807      1.1  mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    808      1.1  mycroft 	}
    809      1.1  mycroft 	fs->fs_fmod = 1;
    810      1.1  mycroft 	bdwrite(bp);
    811      1.1  mycroft 	return (bprev);
    812      1.1  mycroft }
    813      1.1  mycroft 
    814      1.1  mycroft /*
    815      1.1  mycroft  * Determine whether a block can be allocated.
    816      1.1  mycroft  *
    817      1.1  mycroft  * Check to see if a block of the appropriate size is available,
    818      1.1  mycroft  * and if it is, allocate it.
    819      1.1  mycroft  */
    820  1.1.1.2     fvdl static ufs_daddr_t
    821      1.1  mycroft ffs_alloccg(ip, cg, bpref, size)
    822      1.1  mycroft 	struct inode *ip;
    823      1.1  mycroft 	int cg;
    824  1.1.1.2     fvdl 	ufs_daddr_t bpref;
    825      1.1  mycroft 	int size;
    826      1.1  mycroft {
    827      1.1  mycroft 	register struct fs *fs;
    828      1.1  mycroft 	register struct cg *cgp;
    829      1.1  mycroft 	struct buf *bp;
    830      1.1  mycroft 	register int i;
    831      1.1  mycroft 	int error, bno, frags, allocsiz;
    832      1.1  mycroft 
    833      1.1  mycroft 	fs = ip->i_fs;
    834      1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    835      1.1  mycroft 		return (NULL);
    836      1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    837      1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    838      1.1  mycroft 	if (error) {
    839      1.1  mycroft 		brelse(bp);
    840      1.1  mycroft 		return (NULL);
    841      1.1  mycroft 	}
    842      1.1  mycroft 	cgp = (struct cg *)bp->b_data;
    843      1.1  mycroft 	if (!cg_chkmagic(cgp) ||
    844      1.1  mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    845      1.1  mycroft 		brelse(bp);
    846      1.1  mycroft 		return (NULL);
    847      1.1  mycroft 	}
    848      1.1  mycroft 	cgp->cg_time = time.tv_sec;
    849      1.1  mycroft 	if (size == fs->fs_bsize) {
    850      1.1  mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    851      1.1  mycroft 		bdwrite(bp);
    852      1.1  mycroft 		return (bno);
    853      1.1  mycroft 	}
    854      1.1  mycroft 	/*
    855      1.1  mycroft 	 * check to see if any fragments are already available
    856      1.1  mycroft 	 * allocsiz is the size which will be allocated, hacking
    857      1.1  mycroft 	 * it down to a smaller size if necessary
    858      1.1  mycroft 	 */
    859      1.1  mycroft 	frags = numfrags(fs, size);
    860      1.1  mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    861      1.1  mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
    862      1.1  mycroft 			break;
    863      1.1  mycroft 	if (allocsiz == fs->fs_frag) {
    864      1.1  mycroft 		/*
    865      1.1  mycroft 		 * no fragments were available, so a block will be
    866      1.1  mycroft 		 * allocated, and hacked up
    867      1.1  mycroft 		 */
    868      1.1  mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
    869      1.1  mycroft 			brelse(bp);
    870      1.1  mycroft 			return (NULL);
    871      1.1  mycroft 		}
    872      1.1  mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    873      1.1  mycroft 		bpref = dtogd(fs, bno);
    874      1.1  mycroft 		for (i = frags; i < fs->fs_frag; i++)
    875      1.1  mycroft 			setbit(cg_blksfree(cgp), bpref + i);
    876      1.1  mycroft 		i = fs->fs_frag - frags;
    877      1.1  mycroft 		cgp->cg_cs.cs_nffree += i;
    878      1.1  mycroft 		fs->fs_cstotal.cs_nffree += i;
    879      1.1  mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
    880      1.1  mycroft 		fs->fs_fmod = 1;
    881      1.1  mycroft 		cgp->cg_frsum[i]++;
    882      1.1  mycroft 		bdwrite(bp);
    883      1.1  mycroft 		return (bno);
    884      1.1  mycroft 	}
    885      1.1  mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    886      1.1  mycroft 	if (bno < 0) {
    887      1.1  mycroft 		brelse(bp);
    888      1.1  mycroft 		return (NULL);
    889      1.1  mycroft 	}
    890      1.1  mycroft 	for (i = 0; i < frags; i++)
    891      1.1  mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    892      1.1  mycroft 	cgp->cg_cs.cs_nffree -= frags;
    893      1.1  mycroft 	fs->fs_cstotal.cs_nffree -= frags;
    894      1.1  mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    895      1.1  mycroft 	fs->fs_fmod = 1;
    896      1.1  mycroft 	cgp->cg_frsum[allocsiz]--;
    897      1.1  mycroft 	if (frags != allocsiz)
    898      1.1  mycroft 		cgp->cg_frsum[allocsiz - frags]++;
    899      1.1  mycroft 	bdwrite(bp);
    900      1.1  mycroft 	return (cg * fs->fs_fpg + bno);
    901      1.1  mycroft }
    902      1.1  mycroft 
    903      1.1  mycroft /*
    904      1.1  mycroft  * Allocate a block in a cylinder group.
    905      1.1  mycroft  *
    906      1.1  mycroft  * This algorithm implements the following policy:
    907      1.1  mycroft  *   1) allocate the requested block.
    908      1.1  mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    909      1.1  mycroft  *   3) allocate the next available block on the block rotor for the
    910      1.1  mycroft  *      specified cylinder group.
    911      1.1  mycroft  * Note that this routine only allocates fs_bsize blocks; these
    912      1.1  mycroft  * blocks may be fragmented by the routine that allocates them.
    913      1.1  mycroft  */
    914  1.1.1.2     fvdl static ufs_daddr_t
    915      1.1  mycroft ffs_alloccgblk(fs, cgp, bpref)
    916      1.1  mycroft 	register struct fs *fs;
    917      1.1  mycroft 	register struct cg *cgp;
    918  1.1.1.2     fvdl 	ufs_daddr_t bpref;
    919      1.1  mycroft {
    920  1.1.1.2     fvdl 	ufs_daddr_t bno, blkno;
    921      1.1  mycroft 	int cylno, pos, delta;
    922      1.1  mycroft 	short *cylbp;
    923      1.1  mycroft 	register int i;
    924      1.1  mycroft 
    925      1.1  mycroft 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    926      1.1  mycroft 		bpref = cgp->cg_rotor;
    927      1.1  mycroft 		goto norot;
    928      1.1  mycroft 	}
    929      1.1  mycroft 	bpref = blknum(fs, bpref);
    930      1.1  mycroft 	bpref = dtogd(fs, bpref);
    931      1.1  mycroft 	/*
    932      1.1  mycroft 	 * if the requested block is available, use it
    933      1.1  mycroft 	 */
    934      1.1  mycroft 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    935      1.1  mycroft 		bno = bpref;
    936      1.1  mycroft 		goto gotit;
    937      1.1  mycroft 	}
    938  1.1.1.2     fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    939      1.1  mycroft 		/*
    940      1.1  mycroft 		 * Block layout information is not available.
    941      1.1  mycroft 		 * Leaving bpref unchanged means we take the
    942      1.1  mycroft 		 * next available free block following the one
    943      1.1  mycroft 		 * we just allocated. Hopefully this will at
    944      1.1  mycroft 		 * least hit a track cache on drives of unknown
    945      1.1  mycroft 		 * geometry (e.g. SCSI).
    946      1.1  mycroft 		 */
    947      1.1  mycroft 		goto norot;
    948      1.1  mycroft 	}
    949      1.1  mycroft 	/*
    950  1.1.1.2     fvdl 	 * check for a block available on the same cylinder
    951  1.1.1.2     fvdl 	 */
    952  1.1.1.2     fvdl 	cylno = cbtocylno(fs, bpref);
    953  1.1.1.2     fvdl 	if (cg_blktot(cgp)[cylno] == 0)
    954  1.1.1.2     fvdl 		goto norot;
    955  1.1.1.2     fvdl 	/*
    956      1.1  mycroft 	 * check the summary information to see if a block is
    957      1.1  mycroft 	 * available in the requested cylinder starting at the
    958      1.1  mycroft 	 * requested rotational position and proceeding around.
    959      1.1  mycroft 	 */
    960      1.1  mycroft 	cylbp = cg_blks(fs, cgp, cylno);
    961      1.1  mycroft 	pos = cbtorpos(fs, bpref);
    962      1.1  mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
    963      1.1  mycroft 		if (cylbp[i] > 0)
    964      1.1  mycroft 			break;
    965      1.1  mycroft 	if (i == fs->fs_nrpos)
    966      1.1  mycroft 		for (i = 0; i < pos; i++)
    967      1.1  mycroft 			if (cylbp[i] > 0)
    968      1.1  mycroft 				break;
    969      1.1  mycroft 	if (cylbp[i] > 0) {
    970      1.1  mycroft 		/*
    971      1.1  mycroft 		 * found a rotational position, now find the actual
    972      1.1  mycroft 		 * block. A panic if none is actually there.
    973      1.1  mycroft 		 */
    974      1.1  mycroft 		pos = cylno % fs->fs_cpc;
    975      1.1  mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    976      1.1  mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
    977      1.1  mycroft 			printf("pos = %d, i = %d, fs = %s\n",
    978      1.1  mycroft 			    pos, i, fs->fs_fsmnt);
    979      1.1  mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
    980      1.1  mycroft 		}
    981      1.1  mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
    982      1.1  mycroft 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    983      1.1  mycroft 				bno = blkstofrags(fs, (bno + i));
    984      1.1  mycroft 				goto gotit;
    985      1.1  mycroft 			}
    986      1.1  mycroft 			delta = fs_rotbl(fs)[i];
    987      1.1  mycroft 			if (delta <= 0 ||
    988      1.1  mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    989      1.1  mycroft 				break;
    990      1.1  mycroft 			i += delta;
    991      1.1  mycroft 		}
    992      1.1  mycroft 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    993      1.1  mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
    994      1.1  mycroft 	}
    995      1.1  mycroft norot:
    996      1.1  mycroft 	/*
    997      1.1  mycroft 	 * no blocks in the requested cylinder, so take next
    998      1.1  mycroft 	 * available one in this cylinder group.
    999      1.1  mycroft 	 */
   1000      1.1  mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1001      1.1  mycroft 	if (bno < 0)
   1002      1.1  mycroft 		return (NULL);
   1003      1.1  mycroft 	cgp->cg_rotor = bno;
   1004      1.1  mycroft gotit:
   1005      1.1  mycroft 	blkno = fragstoblks(fs, bno);
   1006      1.1  mycroft 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
   1007      1.1  mycroft 	ffs_clusteracct(fs, cgp, blkno, -1);
   1008      1.1  mycroft 	cgp->cg_cs.cs_nbfree--;
   1009      1.1  mycroft 	fs->fs_cstotal.cs_nbfree--;
   1010      1.1  mycroft 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1011      1.1  mycroft 	cylno = cbtocylno(fs, bno);
   1012      1.1  mycroft 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1013      1.1  mycroft 	cg_blktot(cgp)[cylno]--;
   1014      1.1  mycroft 	fs->fs_fmod = 1;
   1015      1.1  mycroft 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1016      1.1  mycroft }
   1017      1.1  mycroft 
   1018      1.1  mycroft /*
   1019      1.1  mycroft  * Determine whether a cluster can be allocated.
   1020      1.1  mycroft  *
   1021      1.1  mycroft  * We do not currently check for optimal rotational layout if there
   1022      1.1  mycroft  * are multiple choices in the same cylinder group. Instead we just
   1023      1.1  mycroft  * take the first one that we find following bpref.
   1024      1.1  mycroft  */
   1025  1.1.1.2     fvdl static ufs_daddr_t
   1026      1.1  mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1027      1.1  mycroft 	struct inode *ip;
   1028      1.1  mycroft 	int cg;
   1029  1.1.1.2     fvdl 	ufs_daddr_t bpref;
   1030      1.1  mycroft 	int len;
   1031      1.1  mycroft {
   1032      1.1  mycroft 	register struct fs *fs;
   1033      1.1  mycroft 	register struct cg *cgp;
   1034      1.1  mycroft 	struct buf *bp;
   1035  1.1.1.2     fvdl 	int i, got, run, bno, bit, map;
   1036      1.1  mycroft 	u_char *mapp;
   1037  1.1.1.2     fvdl 	int32_t *lp;
   1038      1.1  mycroft 
   1039      1.1  mycroft 	fs = ip->i_fs;
   1040  1.1.1.2     fvdl 	if (fs->fs_maxcluster[cg] < len)
   1041      1.1  mycroft 		return (NULL);
   1042      1.1  mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1043      1.1  mycroft 	    NOCRED, &bp))
   1044      1.1  mycroft 		goto fail;
   1045      1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1046      1.1  mycroft 	if (!cg_chkmagic(cgp))
   1047      1.1  mycroft 		goto fail;
   1048      1.1  mycroft 	/*
   1049      1.1  mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1050      1.1  mycroft 	 * available in this cylinder group.
   1051      1.1  mycroft 	 */
   1052  1.1.1.2     fvdl 	lp = &cg_clustersum(cgp)[len];
   1053      1.1  mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1054  1.1.1.2     fvdl 		if (*lp++ > 0)
   1055      1.1  mycroft 			break;
   1056  1.1.1.2     fvdl 	if (i > fs->fs_contigsumsize) {
   1057  1.1.1.2     fvdl 		/*
   1058  1.1.1.2     fvdl 		 * This is the first time looking for a cluster in this
   1059  1.1.1.2     fvdl 		 * cylinder group. Update the cluster summary information
   1060  1.1.1.2     fvdl 		 * to reflect the true maximum sized cluster so that
   1061  1.1.1.2     fvdl 		 * future cluster allocation requests can avoid reading
   1062  1.1.1.2     fvdl 		 * the cylinder group map only to find no clusters.
   1063  1.1.1.2     fvdl 		 */
   1064  1.1.1.2     fvdl 		lp = &cg_clustersum(cgp)[len - 1];
   1065  1.1.1.2     fvdl 		for (i = len - 1; i > 0; i--)
   1066  1.1.1.2     fvdl 			if (*lp-- > 0)
   1067  1.1.1.2     fvdl 				break;
   1068  1.1.1.2     fvdl 		fs->fs_maxcluster[cg] = i;
   1069      1.1  mycroft 		goto fail;
   1070  1.1.1.2     fvdl 	}
   1071      1.1  mycroft 	/*
   1072      1.1  mycroft 	 * Search the cluster map to find a big enough cluster.
   1073      1.1  mycroft 	 * We take the first one that we find, even if it is larger
   1074      1.1  mycroft 	 * than we need as we prefer to get one close to the previous
   1075      1.1  mycroft 	 * block allocation. We do not search before the current
   1076      1.1  mycroft 	 * preference point as we do not want to allocate a block
   1077      1.1  mycroft 	 * that is allocated before the previous one (as we will
   1078      1.1  mycroft 	 * then have to wait for another pass of the elevator
   1079      1.1  mycroft 	 * algorithm before it will be read). We prefer to fail and
   1080      1.1  mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1081      1.1  mycroft 	 */
   1082      1.1  mycroft 	if (dtog(fs, bpref) != cg)
   1083      1.1  mycroft 		bpref = 0;
   1084      1.1  mycroft 	else
   1085      1.1  mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1086      1.1  mycroft 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1087      1.1  mycroft 	map = *mapp++;
   1088      1.1  mycroft 	bit = 1 << (bpref % NBBY);
   1089  1.1.1.2     fvdl 	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
   1090      1.1  mycroft 		if ((map & bit) == 0) {
   1091      1.1  mycroft 			run = 0;
   1092      1.1  mycroft 		} else {
   1093      1.1  mycroft 			run++;
   1094      1.1  mycroft 			if (run == len)
   1095      1.1  mycroft 				break;
   1096      1.1  mycroft 		}
   1097  1.1.1.2     fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1098      1.1  mycroft 			bit <<= 1;
   1099      1.1  mycroft 		} else {
   1100      1.1  mycroft 			map = *mapp++;
   1101      1.1  mycroft 			bit = 1;
   1102      1.1  mycroft 		}
   1103      1.1  mycroft 	}
   1104  1.1.1.2     fvdl 	if (got == cgp->cg_nclusterblks)
   1105      1.1  mycroft 		goto fail;
   1106      1.1  mycroft 	/*
   1107      1.1  mycroft 	 * Allocate the cluster that we have found.
   1108      1.1  mycroft 	 */
   1109  1.1.1.2     fvdl 	for (i = 1; i <= len; i++)
   1110  1.1.1.2     fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
   1111  1.1.1.2     fvdl 			panic("ffs_clusteralloc: map mismatch");
   1112  1.1.1.2     fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1113  1.1.1.2     fvdl 	if (dtog(fs, bno) != cg)
   1114  1.1.1.2     fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1115      1.1  mycroft 	len = blkstofrags(fs, len);
   1116      1.1  mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1117  1.1.1.2     fvdl 		if ((got = ffs_alloccgblk(fs, cgp, bno + i)) != bno + i)
   1118      1.1  mycroft 			panic("ffs_clusteralloc: lost block");
   1119      1.1  mycroft 	brelse(bp);
   1120      1.1  mycroft 	return (bno);
   1121      1.1  mycroft 
   1122      1.1  mycroft fail:
   1123      1.1  mycroft 	brelse(bp);
   1124      1.1  mycroft 	return (0);
   1125      1.1  mycroft }
   1126      1.1  mycroft 
   1127      1.1  mycroft /*
   1128      1.1  mycroft  * Determine whether an inode can be allocated.
   1129      1.1  mycroft  *
   1130      1.1  mycroft  * Check to see if an inode is available, and if it is,
   1131      1.1  mycroft  * allocate it using the following policy:
   1132      1.1  mycroft  *   1) allocate the requested inode.
   1133      1.1  mycroft  *   2) allocate the next available inode after the requested
   1134      1.1  mycroft  *      inode in the specified cylinder group.
   1135      1.1  mycroft  */
   1136      1.1  mycroft static ino_t
   1137      1.1  mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1138      1.1  mycroft 	struct inode *ip;
   1139      1.1  mycroft 	int cg;
   1140  1.1.1.2     fvdl 	ufs_daddr_t ipref;
   1141      1.1  mycroft 	int mode;
   1142      1.1  mycroft {
   1143      1.1  mycroft 	register struct fs *fs;
   1144      1.1  mycroft 	register struct cg *cgp;
   1145      1.1  mycroft 	struct buf *bp;
   1146      1.1  mycroft 	int error, start, len, loc, map, i;
   1147      1.1  mycroft 
   1148      1.1  mycroft 	fs = ip->i_fs;
   1149      1.1  mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1150      1.1  mycroft 		return (NULL);
   1151      1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1152      1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1153      1.1  mycroft 	if (error) {
   1154      1.1  mycroft 		brelse(bp);
   1155      1.1  mycroft 		return (NULL);
   1156      1.1  mycroft 	}
   1157      1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1158      1.1  mycroft 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1159      1.1  mycroft 		brelse(bp);
   1160      1.1  mycroft 		return (NULL);
   1161      1.1  mycroft 	}
   1162      1.1  mycroft 	cgp->cg_time = time.tv_sec;
   1163      1.1  mycroft 	if (ipref) {
   1164      1.1  mycroft 		ipref %= fs->fs_ipg;
   1165      1.1  mycroft 		if (isclr(cg_inosused(cgp), ipref))
   1166      1.1  mycroft 			goto gotit;
   1167      1.1  mycroft 	}
   1168      1.1  mycroft 	start = cgp->cg_irotor / NBBY;
   1169      1.1  mycroft 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1170      1.1  mycroft 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1171      1.1  mycroft 	if (loc == 0) {
   1172      1.1  mycroft 		len = start + 1;
   1173      1.1  mycroft 		start = 0;
   1174      1.1  mycroft 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1175      1.1  mycroft 		if (loc == 0) {
   1176      1.1  mycroft 			printf("cg = %d, irotor = %d, fs = %s\n",
   1177      1.1  mycroft 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1178      1.1  mycroft 			panic("ffs_nodealloccg: map corrupted");
   1179      1.1  mycroft 			/* NOTREACHED */
   1180      1.1  mycroft 		}
   1181      1.1  mycroft 	}
   1182      1.1  mycroft 	i = start + len - loc;
   1183      1.1  mycroft 	map = cg_inosused(cgp)[i];
   1184      1.1  mycroft 	ipref = i * NBBY;
   1185      1.1  mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1186      1.1  mycroft 		if ((map & i) == 0) {
   1187      1.1  mycroft 			cgp->cg_irotor = ipref;
   1188      1.1  mycroft 			goto gotit;
   1189      1.1  mycroft 		}
   1190      1.1  mycroft 	}
   1191      1.1  mycroft 	printf("fs = %s\n", fs->fs_fsmnt);
   1192      1.1  mycroft 	panic("ffs_nodealloccg: block not in map");
   1193      1.1  mycroft 	/* NOTREACHED */
   1194      1.1  mycroft gotit:
   1195      1.1  mycroft 	setbit(cg_inosused(cgp), ipref);
   1196      1.1  mycroft 	cgp->cg_cs.cs_nifree--;
   1197      1.1  mycroft 	fs->fs_cstotal.cs_nifree--;
   1198      1.1  mycroft 	fs->fs_cs(fs, cg).cs_nifree--;
   1199      1.1  mycroft 	fs->fs_fmod = 1;
   1200      1.1  mycroft 	if ((mode & IFMT) == IFDIR) {
   1201      1.1  mycroft 		cgp->cg_cs.cs_ndir++;
   1202      1.1  mycroft 		fs->fs_cstotal.cs_ndir++;
   1203      1.1  mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1204      1.1  mycroft 	}
   1205      1.1  mycroft 	bdwrite(bp);
   1206      1.1  mycroft 	return (cg * fs->fs_ipg + ipref);
   1207      1.1  mycroft }
   1208      1.1  mycroft 
   1209      1.1  mycroft /*
   1210      1.1  mycroft  * Free a block or fragment.
   1211      1.1  mycroft  *
   1212      1.1  mycroft  * The specified block or fragment is placed back in the
   1213      1.1  mycroft  * free map. If a fragment is deallocated, a possible
   1214      1.1  mycroft  * block reassembly is checked.
   1215      1.1  mycroft  */
   1216      1.1  mycroft ffs_blkfree(ip, bno, size)
   1217      1.1  mycroft 	register struct inode *ip;
   1218  1.1.1.2     fvdl 	ufs_daddr_t bno;
   1219      1.1  mycroft 	long size;
   1220      1.1  mycroft {
   1221      1.1  mycroft 	register struct fs *fs;
   1222      1.1  mycroft 	register struct cg *cgp;
   1223      1.1  mycroft 	struct buf *bp;
   1224  1.1.1.2     fvdl 	ufs_daddr_t blkno;
   1225      1.1  mycroft 	int i, error, cg, blk, frags, bbase;
   1226      1.1  mycroft 
   1227      1.1  mycroft 	fs = ip->i_fs;
   1228      1.1  mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1229      1.1  mycroft 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
   1230      1.1  mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1231      1.1  mycroft 		panic("blkfree: bad size");
   1232      1.1  mycroft 	}
   1233      1.1  mycroft 	cg = dtog(fs, bno);
   1234      1.1  mycroft 	if ((u_int)bno >= fs->fs_size) {
   1235      1.1  mycroft 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1236      1.1  mycroft 		ffs_fserr(fs, ip->i_uid, "bad block");
   1237      1.1  mycroft 		return;
   1238      1.1  mycroft 	}
   1239      1.1  mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1240      1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1241      1.1  mycroft 	if (error) {
   1242      1.1  mycroft 		brelse(bp);
   1243      1.1  mycroft 		return;
   1244      1.1  mycroft 	}
   1245      1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1246      1.1  mycroft 	if (!cg_chkmagic(cgp)) {
   1247      1.1  mycroft 		brelse(bp);
   1248      1.1  mycroft 		return;
   1249      1.1  mycroft 	}
   1250      1.1  mycroft 	cgp->cg_time = time.tv_sec;
   1251      1.1  mycroft 	bno = dtogd(fs, bno);
   1252      1.1  mycroft 	if (size == fs->fs_bsize) {
   1253      1.1  mycroft 		blkno = fragstoblks(fs, bno);
   1254      1.1  mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1255      1.1  mycroft 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1256      1.1  mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1257      1.1  mycroft 			panic("blkfree: freeing free block");
   1258      1.1  mycroft 		}
   1259      1.1  mycroft 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1260      1.1  mycroft 		ffs_clusteracct(fs, cgp, blkno, 1);
   1261      1.1  mycroft 		cgp->cg_cs.cs_nbfree++;
   1262      1.1  mycroft 		fs->fs_cstotal.cs_nbfree++;
   1263      1.1  mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1264      1.1  mycroft 		i = cbtocylno(fs, bno);
   1265      1.1  mycroft 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1266      1.1  mycroft 		cg_blktot(cgp)[i]++;
   1267      1.1  mycroft 	} else {
   1268      1.1  mycroft 		bbase = bno - fragnum(fs, bno);
   1269      1.1  mycroft 		/*
   1270      1.1  mycroft 		 * decrement the counts associated with the old frags
   1271      1.1  mycroft 		 */
   1272      1.1  mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1273      1.1  mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1274      1.1  mycroft 		/*
   1275      1.1  mycroft 		 * deallocate the fragment
   1276      1.1  mycroft 		 */
   1277      1.1  mycroft 		frags = numfrags(fs, size);
   1278      1.1  mycroft 		for (i = 0; i < frags; i++) {
   1279      1.1  mycroft 			if (isset(cg_blksfree(cgp), bno + i)) {
   1280      1.1  mycroft 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1281      1.1  mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1282      1.1  mycroft 				panic("blkfree: freeing free frag");
   1283      1.1  mycroft 			}
   1284      1.1  mycroft 			setbit(cg_blksfree(cgp), bno + i);
   1285      1.1  mycroft 		}
   1286      1.1  mycroft 		cgp->cg_cs.cs_nffree += i;
   1287      1.1  mycroft 		fs->fs_cstotal.cs_nffree += i;
   1288      1.1  mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
   1289      1.1  mycroft 		/*
   1290      1.1  mycroft 		 * add back in counts associated with the new frags
   1291      1.1  mycroft 		 */
   1292      1.1  mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1293      1.1  mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1294      1.1  mycroft 		/*
   1295      1.1  mycroft 		 * if a complete block has been reassembled, account for it
   1296      1.1  mycroft 		 */
   1297      1.1  mycroft 		blkno = fragstoblks(fs, bbase);
   1298      1.1  mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1299      1.1  mycroft 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1300      1.1  mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1301      1.1  mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1302      1.1  mycroft 			ffs_clusteracct(fs, cgp, blkno, 1);
   1303      1.1  mycroft 			cgp->cg_cs.cs_nbfree++;
   1304      1.1  mycroft 			fs->fs_cstotal.cs_nbfree++;
   1305      1.1  mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1306      1.1  mycroft 			i = cbtocylno(fs, bbase);
   1307      1.1  mycroft 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1308      1.1  mycroft 			cg_blktot(cgp)[i]++;
   1309      1.1  mycroft 		}
   1310      1.1  mycroft 	}
   1311      1.1  mycroft 	fs->fs_fmod = 1;
   1312      1.1  mycroft 	bdwrite(bp);
   1313      1.1  mycroft }
   1314      1.1  mycroft 
   1315  1.1.1.2     fvdl #ifdef DIAGNOSTIC
   1316  1.1.1.2     fvdl /*
   1317  1.1.1.2     fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1318  1.1.1.2     fvdl  * fragment is allocated, false if it is free.
   1319  1.1.1.2     fvdl  */
   1320  1.1.1.2     fvdl ffs_checkblk(ip, bno, size)
   1321  1.1.1.2     fvdl 	struct inode *ip;
   1322  1.1.1.2     fvdl 	ufs_daddr_t bno;
   1323  1.1.1.2     fvdl 	long size;
   1324  1.1.1.2     fvdl {
   1325  1.1.1.2     fvdl 	struct fs *fs;
   1326  1.1.1.2     fvdl 	struct cg *cgp;
   1327  1.1.1.2     fvdl 	struct buf *bp;
   1328  1.1.1.2     fvdl 	int i, error, frags, free;
   1329  1.1.1.2     fvdl 
   1330  1.1.1.2     fvdl 	fs = ip->i_fs;
   1331  1.1.1.2     fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1332  1.1.1.2     fvdl 		printf("bsize = %d, size = %d, fs = %s\n",
   1333  1.1.1.2     fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1334  1.1.1.2     fvdl 		panic("checkblk: bad size");
   1335  1.1.1.2     fvdl 	}
   1336  1.1.1.2     fvdl 	if ((u_int)bno >= fs->fs_size)
   1337  1.1.1.2     fvdl 		panic("checkblk: bad block %d", bno);
   1338  1.1.1.2     fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1339  1.1.1.2     fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1340  1.1.1.2     fvdl 	if (error) {
   1341  1.1.1.2     fvdl 		brelse(bp);
   1342  1.1.1.2     fvdl 		return;
   1343  1.1.1.2     fvdl 	}
   1344  1.1.1.2     fvdl 	cgp = (struct cg *)bp->b_data;
   1345  1.1.1.2     fvdl 	if (!cg_chkmagic(cgp)) {
   1346  1.1.1.2     fvdl 		brelse(bp);
   1347  1.1.1.2     fvdl 		return;
   1348  1.1.1.2     fvdl 	}
   1349  1.1.1.2     fvdl 	bno = dtogd(fs, bno);
   1350  1.1.1.2     fvdl 	if (size == fs->fs_bsize) {
   1351  1.1.1.2     fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
   1352  1.1.1.2     fvdl 	} else {
   1353  1.1.1.2     fvdl 		frags = numfrags(fs, size);
   1354  1.1.1.2     fvdl 		for (free = 0, i = 0; i < frags; i++)
   1355  1.1.1.2     fvdl 			if (isset(cg_blksfree(cgp), bno + i))
   1356  1.1.1.2     fvdl 				free++;
   1357  1.1.1.2     fvdl 		if (free != 0 && free != frags)
   1358  1.1.1.2     fvdl 			panic("checkblk: partially free fragment");
   1359  1.1.1.2     fvdl 	}
   1360  1.1.1.2     fvdl 	brelse(bp);
   1361  1.1.1.2     fvdl 	return (!free);
   1362  1.1.1.2     fvdl }
   1363  1.1.1.2     fvdl #endif /* DIAGNOSTIC */
   1364  1.1.1.2     fvdl 
   1365      1.1  mycroft /*
   1366      1.1  mycroft  * Free an inode.
   1367      1.1  mycroft  *
   1368      1.1  mycroft  * The specified inode is placed back in the free map.
   1369      1.1  mycroft  */
   1370      1.1  mycroft int
   1371      1.1  mycroft ffs_vfree(ap)
   1372      1.1  mycroft 	struct vop_vfree_args /* {
   1373      1.1  mycroft 		struct vnode *a_pvp;
   1374      1.1  mycroft 		ino_t a_ino;
   1375      1.1  mycroft 		int a_mode;
   1376      1.1  mycroft 	} */ *ap;
   1377      1.1  mycroft {
   1378      1.1  mycroft 	register struct fs *fs;
   1379      1.1  mycroft 	register struct cg *cgp;
   1380      1.1  mycroft 	register struct inode *pip;
   1381      1.1  mycroft 	ino_t ino = ap->a_ino;
   1382      1.1  mycroft 	struct buf *bp;
   1383      1.1  mycroft 	int error, cg;
   1384      1.1  mycroft 
   1385      1.1  mycroft 	pip = VTOI(ap->a_pvp);
   1386      1.1  mycroft 	fs = pip->i_fs;
   1387      1.1  mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1388      1.1  mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1389      1.1  mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1390      1.1  mycroft 	cg = ino_to_cg(fs, ino);
   1391      1.1  mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1392      1.1  mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1393      1.1  mycroft 	if (error) {
   1394      1.1  mycroft 		brelse(bp);
   1395      1.1  mycroft 		return (0);
   1396      1.1  mycroft 	}
   1397      1.1  mycroft 	cgp = (struct cg *)bp->b_data;
   1398      1.1  mycroft 	if (!cg_chkmagic(cgp)) {
   1399      1.1  mycroft 		brelse(bp);
   1400      1.1  mycroft 		return (0);
   1401      1.1  mycroft 	}
   1402      1.1  mycroft 	cgp->cg_time = time.tv_sec;
   1403      1.1  mycroft 	ino %= fs->fs_ipg;
   1404      1.1  mycroft 	if (isclr(cg_inosused(cgp), ino)) {
   1405      1.1  mycroft 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1406      1.1  mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1407      1.1  mycroft 		if (fs->fs_ronly == 0)
   1408      1.1  mycroft 			panic("ifree: freeing free inode");
   1409      1.1  mycroft 	}
   1410      1.1  mycroft 	clrbit(cg_inosused(cgp), ino);
   1411      1.1  mycroft 	if (ino < cgp->cg_irotor)
   1412      1.1  mycroft 		cgp->cg_irotor = ino;
   1413      1.1  mycroft 	cgp->cg_cs.cs_nifree++;
   1414      1.1  mycroft 	fs->fs_cstotal.cs_nifree++;
   1415      1.1  mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1416      1.1  mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1417      1.1  mycroft 		cgp->cg_cs.cs_ndir--;
   1418      1.1  mycroft 		fs->fs_cstotal.cs_ndir--;
   1419      1.1  mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1420      1.1  mycroft 	}
   1421      1.1  mycroft 	fs->fs_fmod = 1;
   1422      1.1  mycroft 	bdwrite(bp);
   1423      1.1  mycroft 	return (0);
   1424      1.1  mycroft }
   1425      1.1  mycroft 
   1426      1.1  mycroft /*
   1427      1.1  mycroft  * Find a block of the specified size in the specified cylinder group.
   1428      1.1  mycroft  *
   1429      1.1  mycroft  * It is a panic if a request is made to find a block if none are
   1430      1.1  mycroft  * available.
   1431      1.1  mycroft  */
   1432  1.1.1.2     fvdl static ufs_daddr_t
   1433      1.1  mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1434      1.1  mycroft 	register struct fs *fs;
   1435      1.1  mycroft 	register struct cg *cgp;
   1436  1.1.1.2     fvdl 	ufs_daddr_t bpref;
   1437      1.1  mycroft 	int allocsiz;
   1438      1.1  mycroft {
   1439  1.1.1.2     fvdl 	ufs_daddr_t bno;
   1440      1.1  mycroft 	int start, len, loc, i;
   1441      1.1  mycroft 	int blk, field, subfield, pos;
   1442      1.1  mycroft 
   1443      1.1  mycroft 	/*
   1444      1.1  mycroft 	 * find the fragment by searching through the free block
   1445      1.1  mycroft 	 * map for an appropriate bit pattern
   1446      1.1  mycroft 	 */
   1447      1.1  mycroft 	if (bpref)
   1448      1.1  mycroft 		start = dtogd(fs, bpref) / NBBY;
   1449      1.1  mycroft 	else
   1450      1.1  mycroft 		start = cgp->cg_frotor / NBBY;
   1451      1.1  mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1452      1.1  mycroft 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1453      1.1  mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1454      1.1  mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1455      1.1  mycroft 	if (loc == 0) {
   1456      1.1  mycroft 		len = start + 1;
   1457      1.1  mycroft 		start = 0;
   1458      1.1  mycroft 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1459      1.1  mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1460      1.1  mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1461      1.1  mycroft 		if (loc == 0) {
   1462      1.1  mycroft 			printf("start = %d, len = %d, fs = %s\n",
   1463      1.1  mycroft 			    start, len, fs->fs_fsmnt);
   1464      1.1  mycroft 			panic("ffs_alloccg: map corrupted");
   1465      1.1  mycroft 			/* NOTREACHED */
   1466      1.1  mycroft 		}
   1467      1.1  mycroft 	}
   1468      1.1  mycroft 	bno = (start + len - loc) * NBBY;
   1469      1.1  mycroft 	cgp->cg_frotor = bno;
   1470      1.1  mycroft 	/*
   1471      1.1  mycroft 	 * found the byte in the map
   1472      1.1  mycroft 	 * sift through the bits to find the selected frag
   1473      1.1  mycroft 	 */
   1474      1.1  mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1475      1.1  mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1476      1.1  mycroft 		blk <<= 1;
   1477      1.1  mycroft 		field = around[allocsiz];
   1478      1.1  mycroft 		subfield = inside[allocsiz];
   1479      1.1  mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1480      1.1  mycroft 			if ((blk & field) == subfield)
   1481      1.1  mycroft 				return (bno + pos);
   1482      1.1  mycroft 			field <<= 1;
   1483      1.1  mycroft 			subfield <<= 1;
   1484      1.1  mycroft 		}
   1485      1.1  mycroft 	}
   1486      1.1  mycroft 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1487      1.1  mycroft 	panic("ffs_alloccg: block not in map");
   1488      1.1  mycroft 	return (-1);
   1489      1.1  mycroft }
   1490      1.1  mycroft 
   1491      1.1  mycroft /*
   1492      1.1  mycroft  * Update the cluster map because of an allocation or free.
   1493      1.1  mycroft  *
   1494      1.1  mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1495      1.1  mycroft  */
   1496      1.1  mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
   1497      1.1  mycroft 	struct fs *fs;
   1498      1.1  mycroft 	struct cg *cgp;
   1499  1.1.1.2     fvdl 	ufs_daddr_t blkno;
   1500      1.1  mycroft 	int cnt;
   1501      1.1  mycroft {
   1502  1.1.1.2     fvdl 	int32_t *sump;
   1503  1.1.1.2     fvdl 	int32_t *lp;
   1504      1.1  mycroft 	u_char *freemapp, *mapp;
   1505      1.1  mycroft 	int i, start, end, forw, back, map, bit;
   1506      1.1  mycroft 
   1507      1.1  mycroft 	if (fs->fs_contigsumsize <= 0)
   1508      1.1  mycroft 		return;
   1509      1.1  mycroft 	freemapp = cg_clustersfree(cgp);
   1510      1.1  mycroft 	sump = cg_clustersum(cgp);
   1511      1.1  mycroft 	/*
   1512      1.1  mycroft 	 * Allocate or clear the actual block.
   1513      1.1  mycroft 	 */
   1514      1.1  mycroft 	if (cnt > 0)
   1515      1.1  mycroft 		setbit(freemapp, blkno);
   1516      1.1  mycroft 	else
   1517      1.1  mycroft 		clrbit(freemapp, blkno);
   1518      1.1  mycroft 	/*
   1519      1.1  mycroft 	 * Find the size of the cluster going forward.
   1520      1.1  mycroft 	 */
   1521      1.1  mycroft 	start = blkno + 1;
   1522      1.1  mycroft 	end = start + fs->fs_contigsumsize;
   1523      1.1  mycroft 	if (end >= cgp->cg_nclusterblks)
   1524      1.1  mycroft 		end = cgp->cg_nclusterblks;
   1525      1.1  mycroft 	mapp = &freemapp[start / NBBY];
   1526      1.1  mycroft 	map = *mapp++;
   1527      1.1  mycroft 	bit = 1 << (start % NBBY);
   1528      1.1  mycroft 	for (i = start; i < end; i++) {
   1529      1.1  mycroft 		if ((map & bit) == 0)
   1530      1.1  mycroft 			break;
   1531      1.1  mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1532      1.1  mycroft 			bit <<= 1;
   1533      1.1  mycroft 		} else {
   1534      1.1  mycroft 			map = *mapp++;
   1535      1.1  mycroft 			bit = 1;
   1536      1.1  mycroft 		}
   1537      1.1  mycroft 	}
   1538      1.1  mycroft 	forw = i - start;
   1539      1.1  mycroft 	/*
   1540      1.1  mycroft 	 * Find the size of the cluster going backward.
   1541      1.1  mycroft 	 */
   1542      1.1  mycroft 	start = blkno - 1;
   1543      1.1  mycroft 	end = start - fs->fs_contigsumsize;
   1544      1.1  mycroft 	if (end < 0)
   1545      1.1  mycroft 		end = -1;
   1546      1.1  mycroft 	mapp = &freemapp[start / NBBY];
   1547      1.1  mycroft 	map = *mapp--;
   1548      1.1  mycroft 	bit = 1 << (start % NBBY);
   1549      1.1  mycroft 	for (i = start; i > end; i--) {
   1550      1.1  mycroft 		if ((map & bit) == 0)
   1551      1.1  mycroft 			break;
   1552      1.1  mycroft 		if ((i & (NBBY - 1)) != 0) {
   1553      1.1  mycroft 			bit >>= 1;
   1554      1.1  mycroft 		} else {
   1555      1.1  mycroft 			map = *mapp--;
   1556      1.1  mycroft 			bit = 1 << (NBBY - 1);
   1557      1.1  mycroft 		}
   1558      1.1  mycroft 	}
   1559      1.1  mycroft 	back = start - i;
   1560      1.1  mycroft 	/*
   1561      1.1  mycroft 	 * Account for old cluster and the possibly new forward and
   1562      1.1  mycroft 	 * back clusters.
   1563      1.1  mycroft 	 */
   1564      1.1  mycroft 	i = back + forw + 1;
   1565      1.1  mycroft 	if (i > fs->fs_contigsumsize)
   1566      1.1  mycroft 		i = fs->fs_contigsumsize;
   1567      1.1  mycroft 	sump[i] += cnt;
   1568      1.1  mycroft 	if (back > 0)
   1569      1.1  mycroft 		sump[back] -= cnt;
   1570      1.1  mycroft 	if (forw > 0)
   1571      1.1  mycroft 		sump[forw] -= cnt;
   1572  1.1.1.2     fvdl 	/*
   1573  1.1.1.2     fvdl 	 * Update cluster summary information.
   1574  1.1.1.2     fvdl 	 */
   1575  1.1.1.2     fvdl 	lp = &sump[fs->fs_contigsumsize];
   1576  1.1.1.2     fvdl 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1577  1.1.1.2     fvdl 		if (*lp-- > 0)
   1578  1.1.1.2     fvdl 			break;
   1579  1.1.1.2     fvdl 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1580      1.1  mycroft }
   1581      1.1  mycroft 
   1582      1.1  mycroft /*
   1583      1.1  mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1584      1.1  mycroft  *
   1585      1.1  mycroft  * The form of the error message is:
   1586      1.1  mycroft  *	fs: error message
   1587      1.1  mycroft  */
   1588      1.1  mycroft static void
   1589      1.1  mycroft ffs_fserr(fs, uid, cp)
   1590      1.1  mycroft 	struct fs *fs;
   1591      1.1  mycroft 	u_int uid;
   1592      1.1  mycroft 	char *cp;
   1593      1.1  mycroft {
   1594      1.1  mycroft 
   1595      1.1  mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1596      1.1  mycroft }
   1597