Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.100.2.2
      1  1.100.2.2      matt /*	$NetBSD: ffs_alloc.c,v 1.100.2.2 2008/01/09 01:58:25 matt Exp $	*/
      2        1.2       cgd 
      3        1.1   mycroft /*
      4       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5       1.60      fvdl  * All rights reserved.
      6       1.60      fvdl  *
      7       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11       1.60      fvdl  * research program
     12       1.60      fvdl  *
     13        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15        1.1   mycroft  *
     16        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17        1.1   mycroft  * modification, are permitted provided that the following conditions
     18        1.1   mycroft  * are met:
     19        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26        1.1   mycroft  *    without specific prior written permission.
     27        1.1   mycroft  *
     28        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38        1.1   mycroft  * SUCH DAMAGE.
     39        1.1   mycroft  *
     40       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41        1.1   mycroft  */
     42       1.53     lukem 
     43       1.53     lukem #include <sys/cdefs.h>
     44  1.100.2.2      matt __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.100.2.2 2008/01/09 01:58:25 matt Exp $");
     45       1.17       mrg 
     46       1.43       mrg #if defined(_KERNEL_OPT)
     47       1.27   thorpej #include "opt_ffs.h"
     48       1.21    scottr #include "opt_quota.h"
     49       1.22    scottr #endif
     50        1.1   mycroft 
     51        1.1   mycroft #include <sys/param.h>
     52        1.1   mycroft #include <sys/systm.h>
     53        1.1   mycroft #include <sys/buf.h>
     54        1.1   mycroft #include <sys/proc.h>
     55        1.1   mycroft #include <sys/vnode.h>
     56        1.1   mycroft #include <sys/mount.h>
     57        1.1   mycroft #include <sys/kernel.h>
     58        1.1   mycroft #include <sys/syslog.h>
     59       1.91      elad #include <sys/kauth.h>
     60       1.29       mrg 
     61       1.76   hannken #include <miscfs/specfs/specdev.h>
     62        1.1   mycroft #include <ufs/ufs/quota.h>
     63       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64        1.1   mycroft #include <ufs/ufs/inode.h>
     65        1.9  christos #include <ufs/ufs/ufs_extern.h>
     66       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67        1.1   mycroft 
     68        1.1   mycroft #include <ufs/ffs/fs.h>
     69        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70        1.1   mycroft 
     71       1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72       1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73       1.55      matt #ifdef XXXUBC
     74       1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75       1.55      matt #endif
     76       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     77       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     79       1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80       1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     81       1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83       1.85   thorpej 				      daddr_t, int);
     84       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85       1.55      matt #ifdef XXXUBC
     86       1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     87       1.18      fvdl #endif
     88       1.55      matt #endif
     89       1.23  drochner 
     90       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91       1.34  jdolecek int ffs_log_changeopt = 0;
     92       1.34  jdolecek 
     93       1.23  drochner /* in ffs_tables.c */
     94       1.40  jdolecek extern const int inside[], around[];
     95       1.40  jdolecek extern const u_char * const fragtbl[];
     96        1.1   mycroft 
     97        1.1   mycroft /*
     98        1.1   mycroft  * Allocate a block in the file system.
     99       1.81     perry  *
    100        1.1   mycroft  * The size of the requested block is given, which must be some
    101        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103        1.1   mycroft  * the following hierarchy is used to allocate a block:
    104        1.1   mycroft  *   1) allocate the requested block.
    105        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108        1.1   mycroft  *      available block is located.
    109       1.47       wiz  * If no block preference is given the following hierarchy is used
    110        1.1   mycroft  * to allocate a block:
    111        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112        1.1   mycroft  *      inode for the file.
    113        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114        1.1   mycroft  *      available block is located.
    115        1.1   mycroft  */
    116        1.9  christos int
    117       1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    118       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    119        1.1   mycroft {
    120  1.100.2.1      matt 	struct ufsmount *ump;
    121       1.62      fvdl 	struct fs *fs;
    122       1.58      fvdl 	daddr_t bno;
    123        1.9  christos 	int cg;
    124        1.9  christos #ifdef QUOTA
    125        1.9  christos 	int error;
    126        1.9  christos #endif
    127       1.81     perry 
    128       1.62      fvdl 	fs = ip->i_fs;
    129  1.100.2.1      matt 	ump = ip->i_ump;
    130  1.100.2.1      matt 
    131  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
    132       1.62      fvdl 
    133       1.37       chs #ifdef UVM_PAGE_TRKOWN
    134       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    135       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    136       1.37       chs 		struct vm_page *pg;
    137       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    138       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    139       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    140       1.37       chs 
    141  1.100.2.2      matt 		mutex_enter(&uobj->vmobjlock);
    142       1.37       chs 		while (off < endoff) {
    143       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    144       1.37       chs 			KASSERT(pg != NULL);
    145       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    146       1.37       chs 			off += PAGE_SIZE;
    147       1.37       chs 		}
    148  1.100.2.2      matt 		mutex_exit(&uobj->vmobjlock);
    149       1.37       chs 	}
    150       1.37       chs #endif
    151       1.37       chs 
    152        1.1   mycroft 	*bnp = 0;
    153        1.1   mycroft #ifdef DIAGNOSTIC
    154        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    155       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    156        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    157        1.1   mycroft 		panic("ffs_alloc: bad size");
    158        1.1   mycroft 	}
    159        1.1   mycroft 	if (cred == NOCRED)
    160       1.56    provos 		panic("ffs_alloc: missing credential");
    161        1.1   mycroft #endif /* DIAGNOSTIC */
    162        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    163        1.1   mycroft 		goto nospace;
    164       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    165       1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    166        1.1   mycroft 		goto nospace;
    167        1.1   mycroft #ifdef QUOTA
    168  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    169       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    170        1.1   mycroft 		return (error);
    171  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    172        1.1   mycroft #endif
    173        1.1   mycroft 	if (bpref >= fs->fs_size)
    174        1.1   mycroft 		bpref = 0;
    175        1.1   mycroft 	if (bpref == 0)
    176        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    177        1.1   mycroft 	else
    178        1.1   mycroft 		cg = dtog(fs, bpref);
    179       1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    180        1.1   mycroft 	if (bno > 0) {
    181       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    182        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    183        1.1   mycroft 		*bnp = bno;
    184        1.1   mycroft 		return (0);
    185        1.1   mycroft 	}
    186        1.1   mycroft #ifdef QUOTA
    187        1.1   mycroft 	/*
    188        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    189        1.1   mycroft 	 */
    190       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    191        1.1   mycroft #endif
    192        1.1   mycroft nospace:
    193  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    194       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    195        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    196        1.1   mycroft 	return (ENOSPC);
    197        1.1   mycroft }
    198        1.1   mycroft 
    199        1.1   mycroft /*
    200        1.1   mycroft  * Reallocate a fragment to a bigger size
    201        1.1   mycroft  *
    202        1.1   mycroft  * The number and size of the old block is given, and a preference
    203        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    204        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    205        1.1   mycroft  * invoked to get an appropriate block.
    206        1.1   mycroft  */
    207        1.9  christos int
    208       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    209       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    210        1.1   mycroft {
    211  1.100.2.1      matt 	struct ufsmount *ump;
    212       1.62      fvdl 	struct fs *fs;
    213        1.1   mycroft 	struct buf *bp;
    214        1.1   mycroft 	int cg, request, error;
    215       1.58      fvdl 	daddr_t bprev, bno;
    216       1.25   thorpej 
    217       1.62      fvdl 	fs = ip->i_fs;
    218  1.100.2.1      matt 	ump = ip->i_ump;
    219  1.100.2.1      matt 
    220  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
    221  1.100.2.1      matt 
    222       1.37       chs #ifdef UVM_PAGE_TRKOWN
    223       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    224       1.37       chs 		struct vm_page *pg;
    225       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    226       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    227       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    228       1.37       chs 
    229  1.100.2.2      matt 		mutex_enter(&uobj->vmobjlock);
    230       1.37       chs 		while (off < endoff) {
    231       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    232       1.37       chs 			KASSERT(pg != NULL);
    233       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    234       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    235       1.37       chs 			off += PAGE_SIZE;
    236       1.37       chs 		}
    237  1.100.2.2      matt 		mutex_exit(&uobj->vmobjlock);
    238       1.37       chs 	}
    239       1.37       chs #endif
    240       1.37       chs 
    241        1.1   mycroft #ifdef DIAGNOSTIC
    242        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    243        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    244       1.13  christos 		printf(
    245        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    246        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    247        1.1   mycroft 		panic("ffs_realloccg: bad size");
    248        1.1   mycroft 	}
    249        1.1   mycroft 	if (cred == NOCRED)
    250       1.56    provos 		panic("ffs_realloccg: missing credential");
    251        1.1   mycroft #endif /* DIAGNOSTIC */
    252       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    253  1.100.2.1      matt 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    254  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
    255        1.1   mycroft 		goto nospace;
    256  1.100.2.1      matt 	}
    257       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    258       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    259       1.60      fvdl 	else
    260       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    261       1.60      fvdl 
    262       1.60      fvdl 	if (bprev == 0) {
    263       1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    264       1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    265        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    266        1.1   mycroft 	}
    267  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    268  1.100.2.1      matt 
    269        1.1   mycroft 	/*
    270        1.1   mycroft 	 * Allocate the extra space in the buffer.
    271        1.1   mycroft 	 */
    272       1.37       chs 	if (bpp != NULL &&
    273       1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    274  1.100.2.1      matt 		brelse(bp, 0);
    275        1.1   mycroft 		return (error);
    276        1.1   mycroft 	}
    277        1.1   mycroft #ifdef QUOTA
    278       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    279       1.44       chs 		if (bpp != NULL) {
    280  1.100.2.1      matt 			brelse(bp, 0);
    281       1.44       chs 		}
    282        1.1   mycroft 		return (error);
    283        1.1   mycroft 	}
    284        1.1   mycroft #endif
    285        1.1   mycroft 	/*
    286        1.1   mycroft 	 * Check for extension in the existing location.
    287        1.1   mycroft 	 */
    288        1.1   mycroft 	cg = dtog(fs, bprev);
    289  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    290       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    291       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    292        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    293       1.37       chs 
    294       1.37       chs 		if (bpp != NULL) {
    295       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    296       1.37       chs 				panic("bad blockno");
    297       1.72        pk 			allocbuf(bp, nsize, 1);
    298       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    299  1.100.2.2      matt 			mutex_enter(bp->b_objlock);
    300  1.100.2.2      matt 			bp->b_oflags |= BO_DONE;
    301  1.100.2.2      matt 			mutex_exit(bp->b_objlock);
    302       1.37       chs 			*bpp = bp;
    303       1.37       chs 		}
    304       1.37       chs 		if (blknop != NULL) {
    305       1.37       chs 			*blknop = bno;
    306       1.37       chs 		}
    307        1.1   mycroft 		return (0);
    308        1.1   mycroft 	}
    309        1.1   mycroft 	/*
    310        1.1   mycroft 	 * Allocate a new disk location.
    311        1.1   mycroft 	 */
    312        1.1   mycroft 	if (bpref >= fs->fs_size)
    313        1.1   mycroft 		bpref = 0;
    314        1.1   mycroft 	switch ((int)fs->fs_optim) {
    315        1.1   mycroft 	case FS_OPTSPACE:
    316        1.1   mycroft 		/*
    317       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    318       1.81     perry 		 * best use of space, we will waste time relocating it if
    319        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    320        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    321        1.1   mycroft 		 * to begin optimizing for time.
    322        1.1   mycroft 		 */
    323        1.1   mycroft 		request = nsize;
    324        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    325        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    326        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    327        1.1   mycroft 			break;
    328       1.34  jdolecek 
    329       1.34  jdolecek 		if (ffs_log_changeopt) {
    330       1.34  jdolecek 			log(LOG_NOTICE,
    331       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    332       1.34  jdolecek 				fs->fs_fsmnt);
    333       1.34  jdolecek 		}
    334       1.34  jdolecek 
    335        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    336        1.1   mycroft 		break;
    337        1.1   mycroft 	case FS_OPTTIME:
    338        1.1   mycroft 		/*
    339        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    340        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    341        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    342        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    343        1.1   mycroft 		 * above will be able to grow it in place without further
    344        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    345        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    346        1.1   mycroft 		 * optimizing for space.
    347        1.1   mycroft 		 */
    348        1.1   mycroft 		request = fs->fs_bsize;
    349        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    350        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    351        1.1   mycroft 			break;
    352       1.34  jdolecek 
    353       1.34  jdolecek 		if (ffs_log_changeopt) {
    354       1.34  jdolecek 			log(LOG_NOTICE,
    355       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    356       1.34  jdolecek 				fs->fs_fsmnt);
    357       1.34  jdolecek 		}
    358       1.34  jdolecek 
    359        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    360        1.1   mycroft 		break;
    361        1.1   mycroft 	default:
    362       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    363        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    364        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    365        1.1   mycroft 		/* NOTREACHED */
    366        1.1   mycroft 	}
    367       1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    368        1.1   mycroft 	if (bno > 0) {
    369       1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    370       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    371       1.76   hannken 			    ip->i_number);
    372        1.1   mycroft 		if (nsize < request)
    373       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    374       1.76   hannken 			    (long)(request - nsize), ip->i_number);
    375       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    376        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    377       1.37       chs 		if (bpp != NULL) {
    378       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    379       1.72        pk 			allocbuf(bp, nsize, 1);
    380       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    381  1.100.2.2      matt 			mutex_enter(bp->b_objlock);
    382  1.100.2.2      matt 			bp->b_oflags |= BO_DONE;
    383  1.100.2.2      matt 			mutex_exit(bp->b_objlock);
    384       1.37       chs 			*bpp = bp;
    385       1.37       chs 		}
    386       1.37       chs 		if (blknop != NULL) {
    387       1.37       chs 			*blknop = bno;
    388       1.37       chs 		}
    389        1.1   mycroft 		return (0);
    390        1.1   mycroft 	}
    391  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    392  1.100.2.1      matt 
    393        1.1   mycroft #ifdef QUOTA
    394        1.1   mycroft 	/*
    395        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    396        1.1   mycroft 	 */
    397       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    398        1.1   mycroft #endif
    399       1.37       chs 	if (bpp != NULL) {
    400  1.100.2.1      matt 		brelse(bp, 0);
    401       1.37       chs 	}
    402       1.37       chs 
    403        1.1   mycroft nospace:
    404        1.1   mycroft 	/*
    405        1.1   mycroft 	 * no space available
    406        1.1   mycroft 	 */
    407       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    408        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    409        1.1   mycroft 	return (ENOSPC);
    410        1.1   mycroft }
    411        1.1   mycroft 
    412       1.88      yamt #if 0
    413        1.1   mycroft /*
    414        1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    415        1.1   mycroft  *
    416        1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    417        1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    418       1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    419       1.60      fvdl  * from the end of the allocation for the logical block immediately
    420       1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    421       1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    422       1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    423       1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    424       1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    425       1.60      fvdl  * allocation will be used.
    426       1.60      fvdl 
    427        1.1   mycroft  */
    428       1.55      matt #ifdef XXXUBC
    429        1.3   mycroft #ifdef DEBUG
    430        1.1   mycroft #include <sys/sysctl.h>
    431        1.5   mycroft int prtrealloc = 0;
    432        1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    433        1.1   mycroft #endif
    434       1.55      matt #endif
    435        1.1   mycroft 
    436       1.60      fvdl /*
    437       1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    438       1.60      fvdl  */
    439       1.60      fvdl 
    440       1.18      fvdl int doasyncfree = 1;
    441       1.18      fvdl 
    442        1.1   mycroft int
    443       1.85   thorpej ffs_reallocblks(void *v)
    444        1.9  christos {
    445       1.55      matt #ifdef XXXUBC
    446        1.1   mycroft 	struct vop_reallocblks_args /* {
    447        1.1   mycroft 		struct vnode *a_vp;
    448        1.1   mycroft 		struct cluster_save *a_buflist;
    449        1.9  christos 	} */ *ap = v;
    450        1.1   mycroft 	struct fs *fs;
    451        1.1   mycroft 	struct inode *ip;
    452        1.1   mycroft 	struct vnode *vp;
    453        1.1   mycroft 	struct buf *sbp, *ebp;
    454       1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    455        1.1   mycroft 	struct cluster_save *buflist;
    456       1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    457        1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    458        1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    459  1.100.2.1      matt 	struct ufsmount *ump;
    460       1.55      matt #endif /* XXXUBC */
    461        1.1   mycroft 
    462       1.37       chs 	/* XXXUBC don't reallocblks for now */
    463       1.37       chs 	return ENOSPC;
    464       1.37       chs 
    465       1.55      matt #ifdef XXXUBC
    466        1.1   mycroft 	vp = ap->a_vp;
    467        1.1   mycroft 	ip = VTOI(vp);
    468        1.1   mycroft 	fs = ip->i_fs;
    469  1.100.2.1      matt 	ump = ip->i_ump;
    470        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    471        1.1   mycroft 		return (ENOSPC);
    472        1.1   mycroft 	buflist = ap->a_buflist;
    473        1.1   mycroft 	len = buflist->bs_nchildren;
    474        1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    475        1.1   mycroft 	end_lbn = start_lbn + len - 1;
    476        1.1   mycroft #ifdef DIAGNOSTIC
    477       1.18      fvdl 	for (i = 0; i < len; i++)
    478       1.18      fvdl 		if (!ffs_checkblk(ip,
    479       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    480       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    481        1.1   mycroft 	for (i = 1; i < len; i++)
    482        1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    483       1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    484       1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    485       1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    486       1.18      fvdl 	for (i = 1; i < len - 1; i++)
    487       1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    488       1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    489        1.1   mycroft #endif
    490        1.1   mycroft 	/*
    491        1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    492        1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    493        1.1   mycroft 	 * the previous cylinder group.
    494        1.1   mycroft 	 */
    495        1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    496        1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    497        1.1   mycroft 		return (ENOSPC);
    498        1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    499        1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    500        1.1   mycroft 		return (ENOSPC);
    501        1.1   mycroft 	/*
    502        1.1   mycroft 	 * Get the starting offset and block map for the first block.
    503        1.1   mycroft 	 */
    504        1.1   mycroft 	if (start_lvl == 0) {
    505       1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    506        1.1   mycroft 		soff = start_lbn;
    507        1.1   mycroft 	} else {
    508        1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    509        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    510  1.100.2.1      matt 			brelse(sbp, 0);
    511        1.1   mycroft 			return (ENOSPC);
    512        1.1   mycroft 		}
    513       1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    514        1.1   mycroft 		soff = idp->in_off;
    515        1.1   mycroft 	}
    516        1.1   mycroft 	/*
    517        1.1   mycroft 	 * Find the preferred location for the cluster.
    518        1.1   mycroft 	 */
    519  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    520        1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    521        1.1   mycroft 	/*
    522        1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    523        1.1   mycroft 	 */
    524        1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    525        1.1   mycroft 		ssize = len;
    526        1.1   mycroft 	} else {
    527        1.1   mycroft #ifdef DIAGNOSTIC
    528        1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    529        1.1   mycroft 			panic("ffs_reallocblk: start == end");
    530        1.1   mycroft #endif
    531        1.1   mycroft 		ssize = len - (idp->in_off + 1);
    532        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    533        1.1   mycroft 			goto fail;
    534       1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    535        1.1   mycroft 	}
    536        1.1   mycroft 	/*
    537        1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    538        1.1   mycroft 	 */
    539       1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    540  1.100.2.1      matt 	    len, ffs_clusteralloc)) == 0) {
    541  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
    542        1.1   mycroft 		goto fail;
    543  1.100.2.1      matt 	}
    544        1.1   mycroft 	/*
    545        1.1   mycroft 	 * We have found a new contiguous block.
    546        1.1   mycroft 	 *
    547        1.1   mycroft 	 * First we have to replace the old block pointers with the new
    548        1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    549        1.1   mycroft 	 * with the file.
    550        1.1   mycroft 	 */
    551        1.5   mycroft #ifdef DEBUG
    552        1.5   mycroft 	if (prtrealloc)
    553       1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    554        1.5   mycroft 		    start_lbn, end_lbn);
    555        1.5   mycroft #endif
    556        1.1   mycroft 	blkno = newblk;
    557        1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    558       1.58      fvdl 		daddr_t ba;
    559       1.30      fvdl 
    560       1.30      fvdl 		if (i == ssize) {
    561        1.1   mycroft 			bap = ebap;
    562       1.30      fvdl 			soff = -i;
    563       1.30      fvdl 		}
    564       1.58      fvdl 		/* XXX ondisk32 */
    565       1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    566        1.1   mycroft #ifdef DIAGNOSTIC
    567       1.18      fvdl 		if (!ffs_checkblk(ip,
    568       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    569       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    570       1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    571        1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    572        1.1   mycroft #endif
    573        1.5   mycroft #ifdef DEBUG
    574        1.5   mycroft 		if (prtrealloc)
    575       1.30      fvdl 			printf(" %d,", ba);
    576        1.5   mycroft #endif
    577       1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    578       1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    579       1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    580       1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    581       1.30      fvdl  				    buflist->bs_children[i]);
    582       1.30      fvdl  			else
    583       1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    584       1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    585       1.30      fvdl  				    ba, buflist->bs_children[i]);
    586       1.30      fvdl  		}
    587       1.58      fvdl 		/* XXX ondisk32 */
    588       1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    589        1.1   mycroft 	}
    590        1.1   mycroft 	/*
    591        1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    592        1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    593        1.1   mycroft 	 * the old block values may have been written to disk. In practise
    594       1.81     perry 	 * they are almost never written, but if we are concerned about
    595        1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    596        1.1   mycroft 	 *
    597        1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    598        1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    599        1.1   mycroft 	 * been written. The flag should be set when the cluster is
    600        1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    601        1.1   mycroft 	 * We can then check below to see if it is set, and do the
    602        1.1   mycroft 	 * synchronous write only when it has been cleared.
    603        1.1   mycroft 	 */
    604       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    605        1.1   mycroft 		if (doasyncfree)
    606        1.1   mycroft 			bdwrite(sbp);
    607        1.1   mycroft 		else
    608        1.1   mycroft 			bwrite(sbp);
    609        1.1   mycroft 	} else {
    610        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    611       1.28   mycroft 		if (!doasyncfree)
    612       1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    613        1.1   mycroft 	}
    614       1.25   thorpej 	if (ssize < len) {
    615        1.1   mycroft 		if (doasyncfree)
    616        1.1   mycroft 			bdwrite(ebp);
    617        1.1   mycroft 		else
    618        1.1   mycroft 			bwrite(ebp);
    619       1.25   thorpej 	}
    620        1.1   mycroft 	/*
    621        1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    622        1.1   mycroft 	 */
    623        1.5   mycroft #ifdef DEBUG
    624        1.5   mycroft 	if (prtrealloc)
    625       1.13  christos 		printf("\n\tnew:");
    626        1.5   mycroft #endif
    627        1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    628       1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    629       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    630       1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    631       1.76   hannken 			    fs->fs_bsize, ip->i_number);
    632        1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    633        1.5   mycroft #ifdef DEBUG
    634       1.18      fvdl 		if (!ffs_checkblk(ip,
    635       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    636       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    637        1.5   mycroft 		if (prtrealloc)
    638       1.13  christos 			printf(" %d,", blkno);
    639        1.5   mycroft #endif
    640        1.5   mycroft 	}
    641        1.5   mycroft #ifdef DEBUG
    642        1.5   mycroft 	if (prtrealloc) {
    643        1.5   mycroft 		prtrealloc--;
    644       1.13  christos 		printf("\n");
    645        1.1   mycroft 	}
    646        1.5   mycroft #endif
    647        1.1   mycroft 	return (0);
    648        1.1   mycroft 
    649        1.1   mycroft fail:
    650        1.1   mycroft 	if (ssize < len)
    651  1.100.2.1      matt 		brelse(ebp, 0);
    652       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    653  1.100.2.1      matt 		brelse(sbp, 0);
    654        1.1   mycroft 	return (ENOSPC);
    655       1.55      matt #endif /* XXXUBC */
    656        1.1   mycroft }
    657       1.88      yamt #endif /* 0 */
    658        1.1   mycroft 
    659        1.1   mycroft /*
    660        1.1   mycroft  * Allocate an inode in the file system.
    661       1.81     perry  *
    662        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    663        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    664        1.1   mycroft  *   1) allocate the preferred inode.
    665        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    666        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    667        1.1   mycroft  *      available inode is located.
    668       1.47       wiz  * If no inode preference is given the following hierarchy is used
    669        1.1   mycroft  * to allocate an inode:
    670        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    671        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    672        1.1   mycroft  *      available inode is located.
    673        1.1   mycroft  */
    674        1.9  christos int
    675       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    676       1.88      yamt     struct vnode **vpp)
    677        1.9  christos {
    678  1.100.2.1      matt 	struct ufsmount *ump;
    679       1.33  augustss 	struct inode *pip;
    680       1.33  augustss 	struct fs *fs;
    681       1.33  augustss 	struct inode *ip;
    682       1.60      fvdl 	struct timespec ts;
    683        1.1   mycroft 	ino_t ino, ipref;
    684        1.1   mycroft 	int cg, error;
    685       1.81     perry 
    686       1.88      yamt 	*vpp = NULL;
    687        1.1   mycroft 	pip = VTOI(pvp);
    688        1.1   mycroft 	fs = pip->i_fs;
    689  1.100.2.1      matt 	ump = pip->i_ump;
    690  1.100.2.1      matt 
    691  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    692        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    693        1.1   mycroft 		goto noinodes;
    694        1.1   mycroft 
    695        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    696       1.50     lukem 		ipref = ffs_dirpref(pip);
    697       1.50     lukem 	else
    698       1.50     lukem 		ipref = pip->i_number;
    699        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    700        1.1   mycroft 		ipref = 0;
    701        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    702       1.50     lukem 	/*
    703       1.50     lukem 	 * Track number of dirs created one after another
    704       1.50     lukem 	 * in a same cg without intervening by files.
    705       1.50     lukem 	 */
    706       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    707       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    708       1.50     lukem 			fs->fs_contigdirs[cg]++;
    709       1.50     lukem 	} else {
    710       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    711       1.50     lukem 			fs->fs_contigdirs[cg]--;
    712       1.50     lukem 	}
    713       1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    714        1.1   mycroft 	if (ino == 0)
    715        1.1   mycroft 		goto noinodes;
    716       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    717        1.1   mycroft 	if (error) {
    718       1.88      yamt 		ffs_vfree(pvp, ino, mode);
    719        1.1   mycroft 		return (error);
    720        1.1   mycroft 	}
    721       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    722       1.88      yamt 	ip = VTOI(*vpp);
    723       1.60      fvdl 	if (ip->i_mode) {
    724       1.60      fvdl #if 0
    725       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    726       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    727       1.60      fvdl #else
    728       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    729       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    730       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    731       1.60      fvdl 		printf("size %llx blocks %llx\n",
    732       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    733       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    734       1.86  christos 		    (unsigned long long)ipref);
    735       1.60      fvdl #if 0
    736       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    737       1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    738       1.60      fvdl #endif
    739       1.60      fvdl 
    740       1.60      fvdl #endif
    741        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    742        1.1   mycroft 	}
    743       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    744       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    745       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    746       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    747        1.1   mycroft 	}
    748       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    749       1.61      fvdl 	ip->i_flags = 0;
    750       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    751        1.1   mycroft 	/*
    752        1.1   mycroft 	 * Set up a new generation number for this inode.
    753        1.1   mycroft 	 */
    754       1.60      fvdl 	ip->i_gen++;
    755       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    756       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    757       1.93      yamt 		vfs_timestamp(&ts);
    758       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    759       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    760       1.60      fvdl 	}
    761        1.1   mycroft 	return (0);
    762        1.1   mycroft noinodes:
    763  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    764       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    765        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    766        1.1   mycroft 	return (ENOSPC);
    767        1.1   mycroft }
    768        1.1   mycroft 
    769        1.1   mycroft /*
    770       1.50     lukem  * Find a cylinder group in which to place a directory.
    771       1.42  sommerfe  *
    772       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    773       1.50     lukem  * directory inode in the same cylinder group as its parent
    774       1.50     lukem  * directory, but also to reserve space for its files inodes
    775       1.50     lukem  * and data. Restrict the number of directories which may be
    776       1.50     lukem  * allocated one after another in the same cylinder group
    777       1.50     lukem  * without intervening allocation of files.
    778       1.42  sommerfe  *
    779       1.50     lukem  * If we allocate a first level directory then force allocation
    780       1.50     lukem  * in another cylinder group.
    781        1.1   mycroft  */
    782        1.1   mycroft static ino_t
    783       1.85   thorpej ffs_dirpref(struct inode *pip)
    784        1.1   mycroft {
    785       1.50     lukem 	register struct fs *fs;
    786       1.74     soren 	int cg, prefcg;
    787       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    788       1.89       dsl 	int avgifree, avgbfree, avgndir;
    789       1.50     lukem 	int minifree, minbfree, maxndir;
    790       1.50     lukem 	int mincg, minndir;
    791       1.50     lukem 	int maxcontigdirs;
    792       1.50     lukem 
    793  1.100.2.1      matt 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    794  1.100.2.1      matt 
    795       1.50     lukem 	fs = pip->i_fs;
    796        1.1   mycroft 
    797        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    798       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    799       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    800       1.50     lukem 
    801       1.50     lukem 	/*
    802       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    803       1.50     lukem 	 */
    804  1.100.2.1      matt 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    805       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    806       1.50     lukem 		mincg = prefcg;
    807       1.50     lukem 		minndir = fs->fs_ipg;
    808       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    809       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    810       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    811       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    812       1.42  sommerfe 				mincg = cg;
    813       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    814       1.42  sommerfe 			}
    815       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    816       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    817       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    818       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    819       1.50     lukem 				mincg = cg;
    820       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    821       1.42  sommerfe 			}
    822       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    823       1.42  sommerfe 	}
    824       1.50     lukem 
    825       1.50     lukem 	/*
    826       1.50     lukem 	 * Count various limits which used for
    827       1.50     lukem 	 * optimal allocation of a directory inode.
    828       1.50     lukem 	 */
    829       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    830       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    831       1.50     lukem 	if (minifree < 0)
    832       1.50     lukem 		minifree = 0;
    833       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    834       1.50     lukem 	if (minbfree < 0)
    835       1.50     lukem 		minbfree = 0;
    836       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    837       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    838       1.89       dsl 	if (avgndir != 0) {
    839       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    840       1.89       dsl 		if (dirsize < curdsz)
    841       1.89       dsl 			dirsize = curdsz;
    842       1.89       dsl 	}
    843       1.89       dsl 	if (cgsize < dirsize * 255)
    844       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    845       1.89       dsl 	else
    846       1.89       dsl 		maxcontigdirs = 255;
    847       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    848       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    849       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    850       1.50     lukem 	if (maxcontigdirs == 0)
    851       1.50     lukem 		maxcontigdirs = 1;
    852       1.50     lukem 
    853       1.50     lukem 	/*
    854       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    855       1.50     lukem 	 * regular files, but only if we have no deficit in
    856       1.50     lukem 	 * inodes or space.
    857       1.50     lukem 	 */
    858       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    859       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    860       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    861       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    862       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    863       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    864       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    865       1.50     lukem 		}
    866       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    867       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    868       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    869       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    870       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    871       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    872       1.50     lukem 		}
    873       1.50     lukem 	/*
    874       1.50     lukem 	 * This is a backstop when we are deficient in space.
    875       1.50     lukem 	 */
    876       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    877       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    878       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    879       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    880       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    881       1.50     lukem 			break;
    882       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    883        1.1   mycroft }
    884        1.1   mycroft 
    885        1.1   mycroft /*
    886        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    887        1.1   mycroft  * logically divided into sections. The first section is composed of the
    888        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    889       1.81     perry  *
    890        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    891        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    892        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    893        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    894        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    895        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    896        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    897        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    898        1.1   mycroft  * continues until a cylinder group with greater than the average number
    899        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    900        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    901        1.1   mycroft  * here a best guess is made based upon the logical block number being
    902        1.1   mycroft  * allocated.
    903       1.81     perry  *
    904        1.1   mycroft  * If a section is already partially allocated, the policy is to
    905        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    906       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    907       1.60      fvdl  * contigously if possible.
    908        1.1   mycroft  */
    909       1.58      fvdl daddr_t
    910       1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    911       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    912        1.1   mycroft {
    913       1.33  augustss 	struct fs *fs;
    914       1.33  augustss 	int cg;
    915        1.1   mycroft 	int avgbfree, startcg;
    916        1.1   mycroft 
    917  1.100.2.1      matt 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    918  1.100.2.1      matt 
    919        1.1   mycroft 	fs = ip->i_fs;
    920        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    921       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    922        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    923        1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    924        1.1   mycroft 		}
    925        1.1   mycroft 		/*
    926        1.1   mycroft 		 * Find a cylinder with greater than average number of
    927        1.1   mycroft 		 * unused data blocks.
    928        1.1   mycroft 		 */
    929        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    930        1.1   mycroft 			startcg =
    931        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    932        1.1   mycroft 		else
    933       1.19    bouyer 			startcg = dtog(fs,
    934       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    935        1.1   mycroft 		startcg %= fs->fs_ncg;
    936        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    937        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    938        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    939        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    940        1.1   mycroft 			}
    941       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    942        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    943        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    944        1.1   mycroft 			}
    945       1.35   thorpej 		return (0);
    946        1.1   mycroft 	}
    947        1.1   mycroft 	/*
    948       1.60      fvdl 	 * We just always try to lay things out contiguously.
    949       1.60      fvdl 	 */
    950       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    951       1.60      fvdl }
    952       1.60      fvdl 
    953       1.60      fvdl daddr_t
    954       1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    955       1.60      fvdl {
    956       1.60      fvdl 	struct fs *fs;
    957       1.60      fvdl 	int cg;
    958       1.60      fvdl 	int avgbfree, startcg;
    959       1.60      fvdl 
    960  1.100.2.1      matt 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    961  1.100.2.1      matt 
    962       1.60      fvdl 	fs = ip->i_fs;
    963       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    964       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    965       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    966       1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    967       1.60      fvdl 		}
    968        1.1   mycroft 		/*
    969       1.60      fvdl 		 * Find a cylinder with greater than average number of
    970       1.60      fvdl 		 * unused data blocks.
    971        1.1   mycroft 		 */
    972       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    973       1.60      fvdl 			startcg =
    974       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    975       1.60      fvdl 		else
    976       1.60      fvdl 			startcg = dtog(fs,
    977       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    978       1.60      fvdl 		startcg %= fs->fs_ncg;
    979       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    980       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    981       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    982       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    983       1.60      fvdl 			}
    984       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    985       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    986       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    987       1.60      fvdl 			}
    988       1.60      fvdl 		return (0);
    989       1.60      fvdl 	}
    990       1.60      fvdl 	/*
    991       1.60      fvdl 	 * We just always try to lay things out contiguously.
    992       1.60      fvdl 	 */
    993       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    994        1.1   mycroft }
    995        1.1   mycroft 
    996       1.60      fvdl 
    997        1.1   mycroft /*
    998        1.1   mycroft  * Implement the cylinder overflow algorithm.
    999        1.1   mycroft  *
   1000        1.1   mycroft  * The policy implemented by this algorithm is:
   1001        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1002        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1003        1.1   mycroft  *   3) brute force search for a free block.
   1004        1.1   mycroft  */
   1005        1.1   mycroft /*VARARGS5*/
   1006       1.58      fvdl static daddr_t
   1007       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1008       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1009       1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1010        1.1   mycroft {
   1011       1.33  augustss 	struct fs *fs;
   1012       1.58      fvdl 	daddr_t result;
   1013        1.1   mycroft 	int i, icg = cg;
   1014        1.1   mycroft 
   1015        1.1   mycroft 	fs = ip->i_fs;
   1016        1.1   mycroft 	/*
   1017        1.1   mycroft 	 * 1: preferred cylinder group
   1018        1.1   mycroft 	 */
   1019        1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1020        1.1   mycroft 	if (result)
   1021        1.1   mycroft 		return (result);
   1022        1.1   mycroft 	/*
   1023        1.1   mycroft 	 * 2: quadratic rehash
   1024        1.1   mycroft 	 */
   1025        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1026        1.1   mycroft 		cg += i;
   1027        1.1   mycroft 		if (cg >= fs->fs_ncg)
   1028        1.1   mycroft 			cg -= fs->fs_ncg;
   1029        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1030        1.1   mycroft 		if (result)
   1031        1.1   mycroft 			return (result);
   1032        1.1   mycroft 	}
   1033        1.1   mycroft 	/*
   1034        1.1   mycroft 	 * 3: brute force search
   1035        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1036        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1037        1.1   mycroft 	 */
   1038        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1039        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1040        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1041        1.1   mycroft 		if (result)
   1042        1.1   mycroft 			return (result);
   1043        1.1   mycroft 		cg++;
   1044        1.1   mycroft 		if (cg == fs->fs_ncg)
   1045        1.1   mycroft 			cg = 0;
   1046        1.1   mycroft 	}
   1047       1.35   thorpej 	return (0);
   1048        1.1   mycroft }
   1049        1.1   mycroft 
   1050        1.1   mycroft /*
   1051        1.1   mycroft  * Determine whether a fragment can be extended.
   1052        1.1   mycroft  *
   1053       1.81     perry  * Check to see if the necessary fragments are available, and
   1054        1.1   mycroft  * if they are, allocate them.
   1055        1.1   mycroft  */
   1056       1.58      fvdl static daddr_t
   1057       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1058        1.1   mycroft {
   1059  1.100.2.1      matt 	struct ufsmount *ump;
   1060       1.33  augustss 	struct fs *fs;
   1061       1.33  augustss 	struct cg *cgp;
   1062        1.1   mycroft 	struct buf *bp;
   1063       1.58      fvdl 	daddr_t bno;
   1064        1.1   mycroft 	int frags, bbase;
   1065        1.1   mycroft 	int i, error;
   1066       1.62      fvdl 	u_int8_t *blksfree;
   1067        1.1   mycroft 
   1068        1.1   mycroft 	fs = ip->i_fs;
   1069  1.100.2.1      matt 	ump = ip->i_ump;
   1070  1.100.2.1      matt 
   1071  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1072  1.100.2.1      matt 
   1073        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1074       1.35   thorpej 		return (0);
   1075        1.1   mycroft 	frags = numfrags(fs, nsize);
   1076        1.1   mycroft 	bbase = fragnum(fs, bprev);
   1077        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1078        1.1   mycroft 		/* cannot extend across a block boundary */
   1079       1.35   thorpej 		return (0);
   1080        1.1   mycroft 	}
   1081  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1082        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1083        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1084  1.100.2.1      matt 	if (error)
   1085  1.100.2.1      matt 		goto fail;
   1086        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1087  1.100.2.1      matt 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1088  1.100.2.1      matt 		goto fail;
   1089       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1090       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1091       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1092       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1093        1.1   mycroft 	bno = dtogd(fs, bprev);
   1094       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1095        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1096  1.100.2.1      matt 		if (isclr(blksfree, bno + i))
   1097  1.100.2.1      matt 			goto fail;
   1098        1.1   mycroft 	/*
   1099        1.1   mycroft 	 * the current fragment can be extended
   1100        1.1   mycroft 	 * deduct the count on fragment being extended into
   1101        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1102        1.1   mycroft 	 * allocate the extended piece
   1103        1.1   mycroft 	 */
   1104        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1105       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1106        1.1   mycroft 			break;
   1107       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1108        1.1   mycroft 	if (i != frags)
   1109       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1110  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1111        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1112       1.62      fvdl 		clrbit(blksfree, bno + i);
   1113       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1114        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1115        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1116        1.1   mycroft 	}
   1117        1.1   mycroft 	fs->fs_fmod = 1;
   1118  1.100.2.1      matt 	ACTIVECG_CLR(fs, cg);
   1119  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1120       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1121       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1122        1.1   mycroft 	bdwrite(bp);
   1123        1.1   mycroft 	return (bprev);
   1124  1.100.2.1      matt 
   1125  1.100.2.1      matt  fail:
   1126  1.100.2.1      matt  	brelse(bp, 0);
   1127  1.100.2.1      matt  	mutex_enter(&ump->um_lock);
   1128  1.100.2.1      matt  	return (0);
   1129        1.1   mycroft }
   1130        1.1   mycroft 
   1131        1.1   mycroft /*
   1132        1.1   mycroft  * Determine whether a block can be allocated.
   1133        1.1   mycroft  *
   1134        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1135        1.1   mycroft  * and if it is, allocate it.
   1136        1.1   mycroft  */
   1137       1.58      fvdl static daddr_t
   1138       1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1139        1.1   mycroft {
   1140  1.100.2.1      matt 	struct ufsmount *ump;
   1141       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1142       1.30      fvdl 	struct cg *cgp;
   1143        1.1   mycroft 	struct buf *bp;
   1144       1.60      fvdl 	int32_t bno;
   1145       1.60      fvdl 	daddr_t blkno;
   1146       1.30      fvdl 	int error, frags, allocsiz, i;
   1147       1.62      fvdl 	u_int8_t *blksfree;
   1148       1.30      fvdl #ifdef FFS_EI
   1149       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1150       1.30      fvdl #endif
   1151        1.1   mycroft 
   1152  1.100.2.1      matt 	ump = ip->i_ump;
   1153  1.100.2.1      matt 
   1154  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1155  1.100.2.1      matt 
   1156        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1157       1.35   thorpej 		return (0);
   1158  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1159        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1160        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1161  1.100.2.1      matt 	if (error)
   1162  1.100.2.1      matt 		goto fail;
   1163        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1164       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1165  1.100.2.1      matt 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1166  1.100.2.1      matt 		goto fail;
   1167       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1168       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1169       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1170       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1171        1.1   mycroft 	if (size == fs->fs_bsize) {
   1172  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1173       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1174       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1175  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1176        1.1   mycroft 		bdwrite(bp);
   1177       1.60      fvdl 		return (blkno);
   1178        1.1   mycroft 	}
   1179        1.1   mycroft 	/*
   1180        1.1   mycroft 	 * check to see if any fragments are already available
   1181        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1182        1.1   mycroft 	 * it down to a smaller size if necessary
   1183        1.1   mycroft 	 */
   1184       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1185        1.1   mycroft 	frags = numfrags(fs, size);
   1186        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1187        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1188        1.1   mycroft 			break;
   1189        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1190        1.1   mycroft 		/*
   1191       1.81     perry 		 * no fragments were available, so a block will be
   1192        1.1   mycroft 		 * allocated, and hacked up
   1193        1.1   mycroft 		 */
   1194  1.100.2.1      matt 		if (cgp->cg_cs.cs_nbfree == 0)
   1195  1.100.2.1      matt 			goto fail;
   1196  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1197       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1198       1.60      fvdl 		bno = dtogd(fs, blkno);
   1199        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1200       1.62      fvdl 			setbit(blksfree, bno + i);
   1201        1.1   mycroft 		i = fs->fs_frag - frags;
   1202       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1203        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1204       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1205        1.1   mycroft 		fs->fs_fmod = 1;
   1206       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1207       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1208  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1209        1.1   mycroft 		bdwrite(bp);
   1210       1.60      fvdl 		return (blkno);
   1211        1.1   mycroft 	}
   1212       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1213       1.30      fvdl #if 0
   1214       1.30      fvdl 	/*
   1215       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1216       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1217       1.30      fvdl 	 */
   1218  1.100.2.1      matt 	if (bno < 0)
   1219  1.100.2.1      matt 		goto fail;
   1220       1.30      fvdl #endif
   1221        1.1   mycroft 	for (i = 0; i < frags; i++)
   1222       1.62      fvdl 		clrbit(blksfree, bno + i);
   1223  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1224       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1225        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1226        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1227        1.1   mycroft 	fs->fs_fmod = 1;
   1228       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1229        1.1   mycroft 	if (frags != allocsiz)
   1230       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1231       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1232  1.100.2.1      matt 	ACTIVECG_CLR(fs, cg);
   1233  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1234       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1235       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1236        1.1   mycroft 	bdwrite(bp);
   1237       1.30      fvdl 	return blkno;
   1238  1.100.2.1      matt 
   1239  1.100.2.1      matt  fail:
   1240  1.100.2.1      matt  	brelse(bp, 0);
   1241  1.100.2.1      matt  	mutex_enter(&ump->um_lock);
   1242  1.100.2.1      matt  	return (0);
   1243        1.1   mycroft }
   1244        1.1   mycroft 
   1245        1.1   mycroft /*
   1246        1.1   mycroft  * Allocate a block in a cylinder group.
   1247        1.1   mycroft  *
   1248        1.1   mycroft  * This algorithm implements the following policy:
   1249        1.1   mycroft  *   1) allocate the requested block.
   1250        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1251        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1252        1.1   mycroft  *      specified cylinder group.
   1253        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1254        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1255        1.1   mycroft  */
   1256       1.58      fvdl static daddr_t
   1257       1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1258        1.1   mycroft {
   1259  1.100.2.1      matt 	struct ufsmount *ump;
   1260       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1261       1.30      fvdl 	struct cg *cgp;
   1262       1.60      fvdl 	daddr_t blkno;
   1263       1.60      fvdl 	int32_t bno;
   1264       1.60      fvdl 	u_int8_t *blksfree;
   1265       1.30      fvdl #ifdef FFS_EI
   1266       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1267       1.30      fvdl #endif
   1268        1.1   mycroft 
   1269  1.100.2.1      matt 	ump = ip->i_ump;
   1270  1.100.2.1      matt 
   1271  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1272  1.100.2.1      matt 
   1273       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1274       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1275       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1276       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1277       1.60      fvdl 	} else {
   1278       1.60      fvdl 		bpref = blknum(fs, bpref);
   1279       1.60      fvdl 		bno = dtogd(fs, bpref);
   1280        1.1   mycroft 		/*
   1281       1.60      fvdl 		 * if the requested block is available, use it
   1282        1.1   mycroft 		 */
   1283       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1284       1.60      fvdl 			goto gotit;
   1285        1.1   mycroft 	}
   1286        1.1   mycroft 	/*
   1287       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1288        1.1   mycroft 	 */
   1289       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1290        1.1   mycroft 	if (bno < 0)
   1291       1.35   thorpej 		return (0);
   1292       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1293        1.1   mycroft gotit:
   1294        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1295       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1296       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1297       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1298        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1299       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1300       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1301       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1302       1.73       dbj 		int cylno;
   1303       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1304       1.75       dbj 		KASSERT(cylno >= 0);
   1305       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1306       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1307       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1308       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1309       1.73       dbj 		    needswap);
   1310       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1311       1.73       dbj 	}
   1312        1.1   mycroft 	fs->fs_fmod = 1;
   1313       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1314  1.100.2.1      matt 	if (DOINGSOFTDEP(ITOV(ip))) {
   1315  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1316       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1317  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1318  1.100.2.1      matt 	}
   1319       1.30      fvdl 	return (blkno);
   1320        1.1   mycroft }
   1321        1.1   mycroft 
   1322       1.55      matt #ifdef XXXUBC
   1323        1.1   mycroft /*
   1324        1.1   mycroft  * Determine whether a cluster can be allocated.
   1325        1.1   mycroft  *
   1326        1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1327        1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1328        1.1   mycroft  * take the first one that we find following bpref.
   1329        1.1   mycroft  */
   1330       1.60      fvdl 
   1331       1.60      fvdl /*
   1332       1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1333       1.60      fvdl  */
   1334       1.58      fvdl static daddr_t
   1335       1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1336        1.1   mycroft {
   1337  1.100.2.1      matt 	struct ufsmount *ump;
   1338       1.33  augustss 	struct fs *fs;
   1339       1.33  augustss 	struct cg *cgp;
   1340        1.1   mycroft 	struct buf *bp;
   1341       1.18      fvdl 	int i, got, run, bno, bit, map;
   1342        1.1   mycroft 	u_char *mapp;
   1343        1.5   mycroft 	int32_t *lp;
   1344        1.1   mycroft 
   1345        1.1   mycroft 	fs = ip->i_fs;
   1346  1.100.2.1      matt 	ump = ip->i_ump;
   1347  1.100.2.1      matt 
   1348  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1349        1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1350       1.35   thorpej 		return (0);
   1351  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1352        1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1353        1.1   mycroft 	    NOCRED, &bp))
   1354        1.1   mycroft 		goto fail;
   1355        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1356       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1357        1.1   mycroft 		goto fail;
   1358        1.1   mycroft 	/*
   1359        1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1360        1.1   mycroft 	 * available in this cylinder group.
   1361        1.1   mycroft 	 */
   1362       1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1363        1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1364       1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1365        1.1   mycroft 			break;
   1366        1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1367        1.5   mycroft 		/*
   1368        1.5   mycroft 		 * This is the first time looking for a cluster in this
   1369        1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1370        1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1371        1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1372        1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1373        1.5   mycroft 		 */
   1374       1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1375        1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1376       1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1377        1.5   mycroft 				break;
   1378  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1379        1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1380  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1381        1.1   mycroft 		goto fail;
   1382        1.5   mycroft 	}
   1383        1.1   mycroft 	/*
   1384        1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1385        1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1386        1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1387        1.1   mycroft 	 * block allocation. We do not search before the current
   1388        1.1   mycroft 	 * preference point as we do not want to allocate a block
   1389        1.1   mycroft 	 * that is allocated before the previous one (as we will
   1390        1.1   mycroft 	 * then have to wait for another pass of the elevator
   1391        1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1392        1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1393        1.1   mycroft 	 */
   1394        1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1395        1.1   mycroft 		bpref = 0;
   1396        1.1   mycroft 	else
   1397        1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1398       1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1399        1.1   mycroft 	map = *mapp++;
   1400        1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1401       1.19    bouyer 	for (run = 0, got = bpref;
   1402       1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1403        1.1   mycroft 		if ((map & bit) == 0) {
   1404        1.1   mycroft 			run = 0;
   1405        1.1   mycroft 		} else {
   1406        1.1   mycroft 			run++;
   1407        1.1   mycroft 			if (run == len)
   1408        1.1   mycroft 				break;
   1409        1.1   mycroft 		}
   1410       1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1411        1.1   mycroft 			bit <<= 1;
   1412        1.1   mycroft 		} else {
   1413        1.1   mycroft 			map = *mapp++;
   1414        1.1   mycroft 			bit = 1;
   1415        1.1   mycroft 		}
   1416        1.1   mycroft 	}
   1417       1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1418        1.1   mycroft 		goto fail;
   1419        1.1   mycroft 	/*
   1420        1.1   mycroft 	 * Allocate the cluster that we have found.
   1421        1.1   mycroft 	 */
   1422       1.30      fvdl #ifdef DIAGNOSTIC
   1423       1.18      fvdl 	for (i = 1; i <= len; i++)
   1424       1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1425       1.30      fvdl 		    got - run + i))
   1426       1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1427       1.30      fvdl #endif
   1428       1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1429       1.18      fvdl 	if (dtog(fs, bno) != cg)
   1430       1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1431        1.1   mycroft 	len = blkstofrags(fs, len);
   1432  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1433        1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1434       1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1435        1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1436       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1437  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1438        1.8       cgd 	bdwrite(bp);
   1439        1.1   mycroft 	return (bno);
   1440        1.1   mycroft 
   1441        1.1   mycroft fail:
   1442  1.100.2.1      matt 	brelse(bp, 0);
   1443  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1444        1.1   mycroft 	return (0);
   1445        1.1   mycroft }
   1446       1.55      matt #endif /* XXXUBC */
   1447        1.1   mycroft 
   1448        1.1   mycroft /*
   1449        1.1   mycroft  * Determine whether an inode can be allocated.
   1450        1.1   mycroft  *
   1451        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1452        1.1   mycroft  * allocate it using the following policy:
   1453        1.1   mycroft  *   1) allocate the requested inode.
   1454        1.1   mycroft  *   2) allocate the next available inode after the requested
   1455        1.1   mycroft  *      inode in the specified cylinder group.
   1456        1.1   mycroft  */
   1457       1.58      fvdl static daddr_t
   1458       1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1459        1.1   mycroft {
   1460  1.100.2.1      matt 	struct ufsmount *ump = ip->i_ump;
   1461       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1462       1.33  augustss 	struct cg *cgp;
   1463       1.60      fvdl 	struct buf *bp, *ibp;
   1464       1.60      fvdl 	u_int8_t *inosused;
   1465        1.1   mycroft 	int error, start, len, loc, map, i;
   1466       1.60      fvdl 	int32_t initediblk;
   1467       1.60      fvdl 	struct ufs2_dinode *dp2;
   1468       1.19    bouyer #ifdef FFS_EI
   1469       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1470       1.19    bouyer #endif
   1471        1.1   mycroft 
   1472  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1473  1.100.2.1      matt 
   1474        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1475       1.35   thorpej 		return (0);
   1476  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1477        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1478        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1479  1.100.2.1      matt 	if (error)
   1480  1.100.2.1      matt 		goto fail;
   1481        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1482  1.100.2.1      matt 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1483  1.100.2.1      matt 		goto fail;
   1484       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1485       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1486       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1487       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1488       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1489        1.1   mycroft 	if (ipref) {
   1490        1.1   mycroft 		ipref %= fs->fs_ipg;
   1491       1.60      fvdl 		if (isclr(inosused, ipref))
   1492        1.1   mycroft 			goto gotit;
   1493        1.1   mycroft 	}
   1494       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1495       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1496       1.19    bouyer 		NBBY);
   1497       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1498        1.1   mycroft 	if (loc == 0) {
   1499        1.1   mycroft 		len = start + 1;
   1500        1.1   mycroft 		start = 0;
   1501       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1502        1.1   mycroft 		if (loc == 0) {
   1503       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1504       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1505       1.19    bouyer 				fs->fs_fsmnt);
   1506        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1507        1.1   mycroft 			/* NOTREACHED */
   1508        1.1   mycroft 		}
   1509        1.1   mycroft 	}
   1510        1.1   mycroft 	i = start + len - loc;
   1511       1.60      fvdl 	map = inosused[i];
   1512        1.1   mycroft 	ipref = i * NBBY;
   1513        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1514        1.1   mycroft 		if ((map & i) == 0) {
   1515       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1516        1.1   mycroft 			goto gotit;
   1517        1.1   mycroft 		}
   1518        1.1   mycroft 	}
   1519       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1520        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1521        1.1   mycroft 	/* NOTREACHED */
   1522        1.1   mycroft gotit:
   1523       1.60      fvdl 	/*
   1524       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1525       1.60      fvdl 	 */
   1526       1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1527  1.100.2.1      matt 	ibp = NULL;
   1528       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1529       1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1530       1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1531       1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1532       1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1533       1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1534       1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1535       1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1536       1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1537       1.60      fvdl 			/*
   1538       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1539       1.60      fvdl 			 * random, after all.
   1540       1.60      fvdl 			 */
   1541       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1542       1.60      fvdl 			dp2++;
   1543       1.60      fvdl 		}
   1544       1.60      fvdl 		initediblk += INOPB(fs);
   1545       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1546       1.60      fvdl 	}
   1547       1.60      fvdl 
   1548  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1549       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1550  1.100.2.1      matt 	setbit(inosused, ipref);
   1551  1.100.2.1      matt 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1552  1.100.2.1      matt 	fs->fs_cstotal.cs_nifree--;
   1553  1.100.2.1      matt 	fs->fs_cs(fs, cg).cs_nifree--;
   1554  1.100.2.1      matt 	fs->fs_fmod = 1;
   1555  1.100.2.1      matt 	if ((mode & IFMT) == IFDIR) {
   1556  1.100.2.1      matt 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1557  1.100.2.1      matt 		fs->fs_cstotal.cs_ndir++;
   1558  1.100.2.1      matt 		fs->fs_cs(fs, cg).cs_ndir++;
   1559  1.100.2.1      matt 	}
   1560  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1561  1.100.2.1      matt 	if (DOINGSOFTDEP(ITOV(ip)))
   1562  1.100.2.1      matt 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1563        1.1   mycroft 	bdwrite(bp);
   1564  1.100.2.1      matt 	if (ibp != NULL)
   1565  1.100.2.1      matt 		bawrite(ibp);
   1566        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1567  1.100.2.1      matt  fail:
   1568  1.100.2.1      matt 	brelse(bp, 0);
   1569  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1570  1.100.2.1      matt 	return (0);
   1571        1.1   mycroft }
   1572        1.1   mycroft 
   1573        1.1   mycroft /*
   1574        1.1   mycroft  * Free a block or fragment.
   1575        1.1   mycroft  *
   1576        1.1   mycroft  * The specified block or fragment is placed back in the
   1577       1.81     perry  * free map. If a fragment is deallocated, a possible
   1578        1.1   mycroft  * block reassembly is checked.
   1579        1.1   mycroft  */
   1580        1.9  christos void
   1581       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1582       1.85   thorpej     ino_t inum)
   1583        1.1   mycroft {
   1584       1.33  augustss 	struct cg *cgp;
   1585        1.1   mycroft 	struct buf *bp;
   1586       1.76   hannken 	struct ufsmount *ump;
   1587       1.60      fvdl 	int32_t fragno, cgbno;
   1588       1.76   hannken 	daddr_t cgblkno;
   1589        1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1590       1.62      fvdl 	u_int8_t *blksfree;
   1591       1.76   hannken 	dev_t dev;
   1592       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1593        1.1   mycroft 
   1594       1.76   hannken 	cg = dtog(fs, bno);
   1595       1.77   hannken 	if (devvp->v_type != VBLK) {
   1596       1.77   hannken 		/* devvp is a snapshot */
   1597       1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1598  1.100.2.1      matt 		ump = VFSTOUFS(devvp->v_mount);
   1599       1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1600       1.76   hannken 	} else {
   1601       1.76   hannken 		dev = devvp->v_rdev;
   1602       1.76   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1603       1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1604      1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1605       1.76   hannken 			return;
   1606       1.76   hannken 	}
   1607       1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1608       1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1609       1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1610       1.58      fvdl 		       "size = %ld, fs = %s\n",
   1611       1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1612        1.1   mycroft 		panic("blkfree: bad size");
   1613        1.1   mycroft 	}
   1614       1.76   hannken 
   1615       1.60      fvdl 	if (bno >= fs->fs_size) {
   1616       1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1617       1.86  christos 		    (unsigned long long)inum);
   1618       1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1619        1.1   mycroft 		return;
   1620        1.1   mycroft 	}
   1621       1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1622        1.1   mycroft 	if (error) {
   1623  1.100.2.1      matt 		brelse(bp, 0);
   1624        1.1   mycroft 		return;
   1625        1.1   mycroft 	}
   1626        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1627       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1628  1.100.2.1      matt 		brelse(bp, 0);
   1629        1.1   mycroft 		return;
   1630        1.1   mycroft 	}
   1631       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1632       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1633       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1634       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1635       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1636       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1637  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1638        1.1   mycroft 	if (size == fs->fs_bsize) {
   1639       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1640       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1641       1.77   hannken 			if (devvp->v_type != VBLK) {
   1642       1.77   hannken 				/* devvp is a snapshot */
   1643  1.100.2.1      matt 				mutex_exit(&ump->um_lock);
   1644  1.100.2.1      matt 				brelse(bp, 0);
   1645       1.76   hannken 				return;
   1646       1.76   hannken 			}
   1647       1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1648       1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1649        1.1   mycroft 			panic("blkfree: freeing free block");
   1650        1.1   mycroft 		}
   1651       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1652       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1653       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1654        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1655        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1656       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1657       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1658       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1659       1.75       dbj 			KASSERT(i >= 0);
   1660       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1661       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1662       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1663       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1664       1.73       dbj 			    needswap);
   1665       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1666       1.73       dbj 		}
   1667        1.1   mycroft 	} else {
   1668       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1669        1.1   mycroft 		/*
   1670        1.1   mycroft 		 * decrement the counts associated with the old frags
   1671        1.1   mycroft 		 */
   1672       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1673       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1674        1.1   mycroft 		/*
   1675        1.1   mycroft 		 * deallocate the fragment
   1676        1.1   mycroft 		 */
   1677        1.1   mycroft 		frags = numfrags(fs, size);
   1678        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1679       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1680       1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1681       1.59   tsutsui 				       ", fs = %s\n",
   1682       1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1683        1.1   mycroft 				panic("blkfree: freeing free frag");
   1684        1.1   mycroft 			}
   1685       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1686        1.1   mycroft 		}
   1687       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1688        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1689       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1690        1.1   mycroft 		/*
   1691        1.1   mycroft 		 * add back in counts associated with the new frags
   1692        1.1   mycroft 		 */
   1693       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1694       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1695        1.1   mycroft 		/*
   1696        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1697        1.1   mycroft 		 */
   1698       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1699       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1700       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1701        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1702        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1703       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1704       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1705        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1706        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1707       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1708       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1709       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1710       1.75       dbj 				KASSERT(i >= 0);
   1711       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1712       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1713       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1714       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1715       1.73       dbj 				    bbase)], 1, needswap);
   1716       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1717       1.73       dbj 			}
   1718        1.1   mycroft 		}
   1719        1.1   mycroft 	}
   1720        1.1   mycroft 	fs->fs_fmod = 1;
   1721       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1722  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1723        1.1   mycroft 	bdwrite(bp);
   1724        1.1   mycroft }
   1725        1.1   mycroft 
   1726       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1727       1.55      matt #ifdef XXXUBC
   1728       1.18      fvdl /*
   1729       1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1730       1.18      fvdl  * fragment is allocated, false if it is free.
   1731       1.18      fvdl  */
   1732       1.18      fvdl static int
   1733       1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1734       1.18      fvdl {
   1735       1.18      fvdl 	struct fs *fs;
   1736       1.18      fvdl 	struct cg *cgp;
   1737       1.18      fvdl 	struct buf *bp;
   1738       1.18      fvdl 	int i, error, frags, free;
   1739       1.18      fvdl 
   1740       1.18      fvdl 	fs = ip->i_fs;
   1741       1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1742       1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1743       1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1744       1.18      fvdl 		panic("checkblk: bad size");
   1745       1.18      fvdl 	}
   1746       1.60      fvdl 	if (bno >= fs->fs_size)
   1747       1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1748       1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1749       1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1750       1.18      fvdl 	if (error) {
   1751  1.100.2.1      matt 		brelse(bp, 0);
   1752       1.18      fvdl 		return 0;
   1753       1.18      fvdl 	}
   1754       1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1755       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1756  1.100.2.1      matt 		brelse(bp, 0);
   1757       1.18      fvdl 		return 0;
   1758       1.18      fvdl 	}
   1759       1.18      fvdl 	bno = dtogd(fs, bno);
   1760       1.18      fvdl 	if (size == fs->fs_bsize) {
   1761       1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1762       1.19    bouyer 			fragstoblks(fs, bno));
   1763       1.18      fvdl 	} else {
   1764       1.18      fvdl 		frags = numfrags(fs, size);
   1765       1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1766       1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1767       1.18      fvdl 				free++;
   1768       1.18      fvdl 		if (free != 0 && free != frags)
   1769       1.18      fvdl 			panic("checkblk: partially free fragment");
   1770       1.18      fvdl 	}
   1771  1.100.2.1      matt 	brelse(bp, 0);
   1772       1.18      fvdl 	return (!free);
   1773       1.18      fvdl }
   1774       1.55      matt #endif /* XXXUBC */
   1775       1.18      fvdl #endif /* DIAGNOSTIC */
   1776       1.18      fvdl 
   1777        1.1   mycroft /*
   1778        1.1   mycroft  * Free an inode.
   1779       1.30      fvdl  */
   1780       1.30      fvdl int
   1781       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1782       1.30      fvdl {
   1783       1.30      fvdl 
   1784       1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1785       1.88      yamt 		softdep_freefile(vp, ino, mode);
   1786       1.30      fvdl 		return (0);
   1787       1.30      fvdl 	}
   1788       1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1789       1.30      fvdl }
   1790       1.30      fvdl 
   1791       1.30      fvdl /*
   1792       1.30      fvdl  * Do the actual free operation.
   1793        1.1   mycroft  * The specified inode is placed back in the free map.
   1794        1.1   mycroft  */
   1795        1.1   mycroft int
   1796       1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1797        1.9  christos {
   1798  1.100.2.1      matt 	struct ufsmount *ump;
   1799       1.33  augustss 	struct cg *cgp;
   1800        1.1   mycroft 	struct buf *bp;
   1801        1.1   mycroft 	int error, cg;
   1802       1.76   hannken 	daddr_t cgbno;
   1803       1.62      fvdl 	u_int8_t *inosused;
   1804       1.78   hannken 	dev_t dev;
   1805       1.19    bouyer #ifdef FFS_EI
   1806       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1807       1.19    bouyer #endif
   1808        1.1   mycroft 
   1809       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1810       1.78   hannken 	if (devvp->v_type != VBLK) {
   1811       1.78   hannken 		/* devvp is a snapshot */
   1812       1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1813  1.100.2.1      matt 		ump = VFSTOUFS(devvp->v_mount);
   1814       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1815       1.76   hannken 	} else {
   1816       1.78   hannken 		dev = devvp->v_rdev;
   1817  1.100.2.1      matt 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1818       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1819       1.76   hannken 	}
   1820        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1821       1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1822       1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1823       1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1824        1.1   mycroft 	if (error) {
   1825  1.100.2.1      matt 		brelse(bp, 0);
   1826       1.30      fvdl 		return (error);
   1827        1.1   mycroft 	}
   1828        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1829       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1830  1.100.2.1      matt 		brelse(bp, 0);
   1831        1.1   mycroft 		return (0);
   1832        1.1   mycroft 	}
   1833       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1834       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1835       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1836       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1837       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1838        1.1   mycroft 	ino %= fs->fs_ipg;
   1839       1.62      fvdl 	if (isclr(inosused, ino)) {
   1840       1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1841       1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1842       1.86  christos 		    fs->fs_fsmnt);
   1843        1.1   mycroft 		if (fs->fs_ronly == 0)
   1844        1.1   mycroft 			panic("ifree: freeing free inode");
   1845        1.1   mycroft 	}
   1846       1.62      fvdl 	clrbit(inosused, ino);
   1847       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1848       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1849       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1850  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1851        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1852        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1853       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1854       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1855        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1856        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1857        1.1   mycroft 	}
   1858        1.1   mycroft 	fs->fs_fmod = 1;
   1859       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1860  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1861        1.1   mycroft 	bdwrite(bp);
   1862        1.1   mycroft 	return (0);
   1863        1.1   mycroft }
   1864        1.1   mycroft 
   1865        1.1   mycroft /*
   1866       1.76   hannken  * Check to see if a file is free.
   1867       1.76   hannken  */
   1868       1.76   hannken int
   1869       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1870       1.76   hannken {
   1871       1.76   hannken 	struct cg *cgp;
   1872       1.76   hannken 	struct buf *bp;
   1873       1.76   hannken 	daddr_t cgbno;
   1874       1.76   hannken 	int ret, cg;
   1875       1.76   hannken 	u_int8_t *inosused;
   1876       1.76   hannken 
   1877       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1878       1.77   hannken 	if (devvp->v_type != VBLK) {
   1879       1.77   hannken 		/* devvp is a snapshot */
   1880       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1881       1.77   hannken 	} else
   1882       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1883       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1884       1.76   hannken 		return 1;
   1885       1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1886  1.100.2.1      matt 		brelse(bp, 0);
   1887       1.76   hannken 		return 1;
   1888       1.76   hannken 	}
   1889       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1890       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1891  1.100.2.1      matt 		brelse(bp, 0);
   1892       1.76   hannken 		return 1;
   1893       1.76   hannken 	}
   1894       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1895       1.76   hannken 	ino %= fs->fs_ipg;
   1896       1.76   hannken 	ret = isclr(inosused, ino);
   1897  1.100.2.1      matt 	brelse(bp, 0);
   1898       1.76   hannken 	return ret;
   1899       1.76   hannken }
   1900       1.76   hannken 
   1901       1.76   hannken /*
   1902        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1903        1.1   mycroft  *
   1904        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1905        1.1   mycroft  * available.
   1906        1.1   mycroft  */
   1907       1.60      fvdl static int32_t
   1908       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1909        1.1   mycroft {
   1910       1.60      fvdl 	int32_t bno;
   1911        1.1   mycroft 	int start, len, loc, i;
   1912        1.1   mycroft 	int blk, field, subfield, pos;
   1913       1.19    bouyer 	int ostart, olen;
   1914       1.62      fvdl 	u_int8_t *blksfree;
   1915       1.30      fvdl #ifdef FFS_EI
   1916       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1917       1.30      fvdl #endif
   1918        1.1   mycroft 
   1919  1.100.2.1      matt 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1920  1.100.2.1      matt 
   1921        1.1   mycroft 	/*
   1922        1.1   mycroft 	 * find the fragment by searching through the free block
   1923        1.1   mycroft 	 * map for an appropriate bit pattern
   1924        1.1   mycroft 	 */
   1925        1.1   mycroft 	if (bpref)
   1926        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1927        1.1   mycroft 	else
   1928       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1929       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1930        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1931       1.19    bouyer 	ostart = start;
   1932       1.19    bouyer 	olen = len;
   1933       1.45     lukem 	loc = scanc((u_int)len,
   1934       1.62      fvdl 		(const u_char *)&blksfree[start],
   1935       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1936       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1937        1.1   mycroft 	if (loc == 0) {
   1938        1.1   mycroft 		len = start + 1;
   1939        1.1   mycroft 		start = 0;
   1940       1.45     lukem 		loc = scanc((u_int)len,
   1941       1.62      fvdl 			(const u_char *)&blksfree[0],
   1942       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1943       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1944        1.1   mycroft 		if (loc == 0) {
   1945       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1946       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1947       1.20      ross 			printf("offset=%d %ld\n",
   1948       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1949       1.62      fvdl 				(long)blksfree - (long)cgp);
   1950       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1951        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1952        1.1   mycroft 			/* NOTREACHED */
   1953        1.1   mycroft 		}
   1954        1.1   mycroft 	}
   1955        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1956       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1957        1.1   mycroft 	/*
   1958        1.1   mycroft 	 * found the byte in the map
   1959        1.1   mycroft 	 * sift through the bits to find the selected frag
   1960        1.1   mycroft 	 */
   1961        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1962       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1963        1.1   mycroft 		blk <<= 1;
   1964        1.1   mycroft 		field = around[allocsiz];
   1965        1.1   mycroft 		subfield = inside[allocsiz];
   1966        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1967        1.1   mycroft 			if ((blk & field) == subfield)
   1968        1.1   mycroft 				return (bno + pos);
   1969        1.1   mycroft 			field <<= 1;
   1970        1.1   mycroft 			subfield <<= 1;
   1971        1.1   mycroft 		}
   1972        1.1   mycroft 	}
   1973       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1974        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1975       1.58      fvdl 	/* return (-1); */
   1976        1.1   mycroft }
   1977        1.1   mycroft 
   1978        1.1   mycroft /*
   1979        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1980        1.1   mycroft  *
   1981        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1982        1.1   mycroft  */
   1983        1.9  christos void
   1984       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1985        1.1   mycroft {
   1986        1.4       cgd 	int32_t *sump;
   1987        1.5   mycroft 	int32_t *lp;
   1988        1.1   mycroft 	u_char *freemapp, *mapp;
   1989        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1990       1.30      fvdl #ifdef FFS_EI
   1991       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1992       1.30      fvdl #endif
   1993        1.1   mycroft 
   1994  1.100.2.1      matt 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1995  1.100.2.1      matt 
   1996        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1997        1.1   mycroft 		return;
   1998       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1999       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2000        1.1   mycroft 	/*
   2001        1.1   mycroft 	 * Allocate or clear the actual block.
   2002        1.1   mycroft 	 */
   2003        1.1   mycroft 	if (cnt > 0)
   2004        1.1   mycroft 		setbit(freemapp, blkno);
   2005        1.1   mycroft 	else
   2006        1.1   mycroft 		clrbit(freemapp, blkno);
   2007        1.1   mycroft 	/*
   2008        1.1   mycroft 	 * Find the size of the cluster going forward.
   2009        1.1   mycroft 	 */
   2010        1.1   mycroft 	start = blkno + 1;
   2011        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2012       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2013       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2014        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2015        1.1   mycroft 	map = *mapp++;
   2016        1.1   mycroft 	bit = 1 << (start % NBBY);
   2017        1.1   mycroft 	for (i = start; i < end; i++) {
   2018        1.1   mycroft 		if ((map & bit) == 0)
   2019        1.1   mycroft 			break;
   2020        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2021        1.1   mycroft 			bit <<= 1;
   2022        1.1   mycroft 		} else {
   2023        1.1   mycroft 			map = *mapp++;
   2024        1.1   mycroft 			bit = 1;
   2025        1.1   mycroft 		}
   2026        1.1   mycroft 	}
   2027        1.1   mycroft 	forw = i - start;
   2028        1.1   mycroft 	/*
   2029        1.1   mycroft 	 * Find the size of the cluster going backward.
   2030        1.1   mycroft 	 */
   2031        1.1   mycroft 	start = blkno - 1;
   2032        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2033        1.1   mycroft 	if (end < 0)
   2034        1.1   mycroft 		end = -1;
   2035        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2036        1.1   mycroft 	map = *mapp--;
   2037        1.1   mycroft 	bit = 1 << (start % NBBY);
   2038        1.1   mycroft 	for (i = start; i > end; i--) {
   2039        1.1   mycroft 		if ((map & bit) == 0)
   2040        1.1   mycroft 			break;
   2041        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2042        1.1   mycroft 			bit >>= 1;
   2043        1.1   mycroft 		} else {
   2044        1.1   mycroft 			map = *mapp--;
   2045        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2046        1.1   mycroft 		}
   2047        1.1   mycroft 	}
   2048        1.1   mycroft 	back = start - i;
   2049        1.1   mycroft 	/*
   2050        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2051        1.1   mycroft 	 * back clusters.
   2052        1.1   mycroft 	 */
   2053        1.1   mycroft 	i = back + forw + 1;
   2054        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2055        1.1   mycroft 		i = fs->fs_contigsumsize;
   2056       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2057        1.1   mycroft 	if (back > 0)
   2058       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2059        1.1   mycroft 	if (forw > 0)
   2060       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2061       1.19    bouyer 
   2062        1.5   mycroft 	/*
   2063        1.5   mycroft 	 * Update cluster summary information.
   2064        1.5   mycroft 	 */
   2065        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2066        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2067       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2068        1.5   mycroft 			break;
   2069       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2070        1.1   mycroft }
   2071        1.1   mycroft 
   2072        1.1   mycroft /*
   2073        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2074       1.81     perry  *
   2075        1.1   mycroft  * The form of the error message is:
   2076        1.1   mycroft  *	fs: error message
   2077        1.1   mycroft  */
   2078        1.1   mycroft static void
   2079       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2080        1.1   mycroft {
   2081        1.1   mycroft 
   2082       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2083       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2084        1.1   mycroft }
   2085