Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.100.2.3
      1  1.100.2.3      matt /*	ffs_alloc.c,v 1.100.2.2 2008/01/09 01:58:25 matt Exp	*/
      2        1.2       cgd 
      3        1.1   mycroft /*
      4       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5       1.60      fvdl  * All rights reserved.
      6       1.60      fvdl  *
      7       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11       1.60      fvdl  * research program
     12       1.60      fvdl  *
     13        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15        1.1   mycroft  *
     16        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17        1.1   mycroft  * modification, are permitted provided that the following conditions
     18        1.1   mycroft  * are met:
     19        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26        1.1   mycroft  *    without specific prior written permission.
     27        1.1   mycroft  *
     28        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38        1.1   mycroft  * SUCH DAMAGE.
     39        1.1   mycroft  *
     40       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41        1.1   mycroft  */
     42       1.53     lukem 
     43       1.53     lukem #include <sys/cdefs.h>
     44  1.100.2.3      matt __KERNEL_RCSID(0, "ffs_alloc.c,v 1.100.2.2 2008/01/09 01:58:25 matt Exp");
     45       1.17       mrg 
     46       1.43       mrg #if defined(_KERNEL_OPT)
     47       1.27   thorpej #include "opt_ffs.h"
     48       1.21    scottr #include "opt_quota.h"
     49       1.22    scottr #endif
     50        1.1   mycroft 
     51        1.1   mycroft #include <sys/param.h>
     52        1.1   mycroft #include <sys/systm.h>
     53        1.1   mycroft #include <sys/buf.h>
     54        1.1   mycroft #include <sys/proc.h>
     55        1.1   mycroft #include <sys/vnode.h>
     56        1.1   mycroft #include <sys/mount.h>
     57        1.1   mycroft #include <sys/kernel.h>
     58        1.1   mycroft #include <sys/syslog.h>
     59       1.91      elad #include <sys/kauth.h>
     60       1.29       mrg 
     61       1.76   hannken #include <miscfs/specfs/specdev.h>
     62        1.1   mycroft #include <ufs/ufs/quota.h>
     63       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64        1.1   mycroft #include <ufs/ufs/inode.h>
     65        1.9  christos #include <ufs/ufs/ufs_extern.h>
     66       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67        1.1   mycroft 
     68        1.1   mycroft #include <ufs/ffs/fs.h>
     69        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70        1.1   mycroft 
     71       1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72       1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73       1.55      matt #ifdef XXXUBC
     74       1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75       1.55      matt #endif
     76       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     77       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     79       1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80       1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     81       1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83       1.85   thorpej 				      daddr_t, int);
     84       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85       1.55      matt #ifdef XXXUBC
     86       1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     87       1.18      fvdl #endif
     88       1.55      matt #endif
     89       1.23  drochner 
     90       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91       1.34  jdolecek int ffs_log_changeopt = 0;
     92       1.34  jdolecek 
     93       1.23  drochner /* in ffs_tables.c */
     94       1.40  jdolecek extern const int inside[], around[];
     95       1.40  jdolecek extern const u_char * const fragtbl[];
     96        1.1   mycroft 
     97        1.1   mycroft /*
     98        1.1   mycroft  * Allocate a block in the file system.
     99       1.81     perry  *
    100        1.1   mycroft  * The size of the requested block is given, which must be some
    101        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103        1.1   mycroft  * the following hierarchy is used to allocate a block:
    104        1.1   mycroft  *   1) allocate the requested block.
    105        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108        1.1   mycroft  *      available block is located.
    109       1.47       wiz  * If no block preference is given the following hierarchy is used
    110        1.1   mycroft  * to allocate a block:
    111        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112        1.1   mycroft  *      inode for the file.
    113        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114        1.1   mycroft  *      available block is located.
    115  1.100.2.3      matt  *
    116  1.100.2.3      matt  * => called with um_lock held
    117  1.100.2.3      matt  * => releases um_lock before returning
    118        1.1   mycroft  */
    119        1.9  christos int
    120       1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    121       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    122        1.1   mycroft {
    123  1.100.2.1      matt 	struct ufsmount *ump;
    124       1.62      fvdl 	struct fs *fs;
    125       1.58      fvdl 	daddr_t bno;
    126        1.9  christos 	int cg;
    127        1.9  christos #ifdef QUOTA
    128        1.9  christos 	int error;
    129        1.9  christos #endif
    130       1.81     perry 
    131       1.62      fvdl 	fs = ip->i_fs;
    132  1.100.2.1      matt 	ump = ip->i_ump;
    133  1.100.2.1      matt 
    134  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
    135       1.62      fvdl 
    136       1.37       chs #ifdef UVM_PAGE_TRKOWN
    137       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    138       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    139       1.37       chs 		struct vm_page *pg;
    140       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    141       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    142       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    143       1.37       chs 
    144  1.100.2.2      matt 		mutex_enter(&uobj->vmobjlock);
    145       1.37       chs 		while (off < endoff) {
    146       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    147       1.37       chs 			KASSERT(pg != NULL);
    148       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    149       1.37       chs 			off += PAGE_SIZE;
    150       1.37       chs 		}
    151  1.100.2.2      matt 		mutex_exit(&uobj->vmobjlock);
    152       1.37       chs 	}
    153       1.37       chs #endif
    154       1.37       chs 
    155        1.1   mycroft 	*bnp = 0;
    156        1.1   mycroft #ifdef DIAGNOSTIC
    157        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    158       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    159        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    160        1.1   mycroft 		panic("ffs_alloc: bad size");
    161        1.1   mycroft 	}
    162        1.1   mycroft 	if (cred == NOCRED)
    163       1.56    provos 		panic("ffs_alloc: missing credential");
    164        1.1   mycroft #endif /* DIAGNOSTIC */
    165        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    166        1.1   mycroft 		goto nospace;
    167       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    168       1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    169        1.1   mycroft 		goto nospace;
    170        1.1   mycroft #ifdef QUOTA
    171  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    172       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    173        1.1   mycroft 		return (error);
    174  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    175        1.1   mycroft #endif
    176        1.1   mycroft 	if (bpref >= fs->fs_size)
    177        1.1   mycroft 		bpref = 0;
    178        1.1   mycroft 	if (bpref == 0)
    179        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    180        1.1   mycroft 	else
    181        1.1   mycroft 		cg = dtog(fs, bpref);
    182       1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    183        1.1   mycroft 	if (bno > 0) {
    184       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    185        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    186        1.1   mycroft 		*bnp = bno;
    187        1.1   mycroft 		return (0);
    188        1.1   mycroft 	}
    189        1.1   mycroft #ifdef QUOTA
    190        1.1   mycroft 	/*
    191        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    192        1.1   mycroft 	 */
    193       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    194        1.1   mycroft #endif
    195        1.1   mycroft nospace:
    196  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    197       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    198        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    199        1.1   mycroft 	return (ENOSPC);
    200        1.1   mycroft }
    201        1.1   mycroft 
    202        1.1   mycroft /*
    203        1.1   mycroft  * Reallocate a fragment to a bigger size
    204        1.1   mycroft  *
    205        1.1   mycroft  * The number and size of the old block is given, and a preference
    206        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    207        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    208        1.1   mycroft  * invoked to get an appropriate block.
    209  1.100.2.3      matt  *
    210  1.100.2.3      matt  * => called with um_lock held
    211  1.100.2.3      matt  * => return with um_lock released
    212        1.1   mycroft  */
    213        1.9  christos int
    214       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    215       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    216        1.1   mycroft {
    217  1.100.2.1      matt 	struct ufsmount *ump;
    218       1.62      fvdl 	struct fs *fs;
    219        1.1   mycroft 	struct buf *bp;
    220        1.1   mycroft 	int cg, request, error;
    221       1.58      fvdl 	daddr_t bprev, bno;
    222       1.25   thorpej 
    223       1.62      fvdl 	fs = ip->i_fs;
    224  1.100.2.1      matt 	ump = ip->i_ump;
    225  1.100.2.1      matt 
    226  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
    227  1.100.2.1      matt 
    228       1.37       chs #ifdef UVM_PAGE_TRKOWN
    229       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    230       1.37       chs 		struct vm_page *pg;
    231       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    232       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    233       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    234       1.37       chs 
    235  1.100.2.2      matt 		mutex_enter(&uobj->vmobjlock);
    236       1.37       chs 		while (off < endoff) {
    237       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    238       1.37       chs 			KASSERT(pg != NULL);
    239       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    240       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    241       1.37       chs 			off += PAGE_SIZE;
    242       1.37       chs 		}
    243  1.100.2.2      matt 		mutex_exit(&uobj->vmobjlock);
    244       1.37       chs 	}
    245       1.37       chs #endif
    246       1.37       chs 
    247        1.1   mycroft #ifdef DIAGNOSTIC
    248        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    249        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    250       1.13  christos 		printf(
    251        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    252        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    253        1.1   mycroft 		panic("ffs_realloccg: bad size");
    254        1.1   mycroft 	}
    255        1.1   mycroft 	if (cred == NOCRED)
    256       1.56    provos 		panic("ffs_realloccg: missing credential");
    257        1.1   mycroft #endif /* DIAGNOSTIC */
    258       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    259  1.100.2.1      matt 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    260  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
    261        1.1   mycroft 		goto nospace;
    262  1.100.2.1      matt 	}
    263       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    264       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    265       1.60      fvdl 	else
    266       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    267       1.60      fvdl 
    268       1.60      fvdl 	if (bprev == 0) {
    269       1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    270       1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    271        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    272        1.1   mycroft 	}
    273  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    274  1.100.2.1      matt 
    275        1.1   mycroft 	/*
    276        1.1   mycroft 	 * Allocate the extra space in the buffer.
    277        1.1   mycroft 	 */
    278       1.37       chs 	if (bpp != NULL &&
    279       1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    280  1.100.2.1      matt 		brelse(bp, 0);
    281        1.1   mycroft 		return (error);
    282        1.1   mycroft 	}
    283        1.1   mycroft #ifdef QUOTA
    284       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    285       1.44       chs 		if (bpp != NULL) {
    286  1.100.2.1      matt 			brelse(bp, 0);
    287       1.44       chs 		}
    288        1.1   mycroft 		return (error);
    289        1.1   mycroft 	}
    290        1.1   mycroft #endif
    291        1.1   mycroft 	/*
    292        1.1   mycroft 	 * Check for extension in the existing location.
    293        1.1   mycroft 	 */
    294        1.1   mycroft 	cg = dtog(fs, bprev);
    295  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    296       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    297       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    298        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    299       1.37       chs 
    300       1.37       chs 		if (bpp != NULL) {
    301       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    302       1.37       chs 				panic("bad blockno");
    303       1.72        pk 			allocbuf(bp, nsize, 1);
    304       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    305  1.100.2.2      matt 			mutex_enter(bp->b_objlock);
    306  1.100.2.2      matt 			bp->b_oflags |= BO_DONE;
    307  1.100.2.2      matt 			mutex_exit(bp->b_objlock);
    308       1.37       chs 			*bpp = bp;
    309       1.37       chs 		}
    310       1.37       chs 		if (blknop != NULL) {
    311       1.37       chs 			*blknop = bno;
    312       1.37       chs 		}
    313        1.1   mycroft 		return (0);
    314        1.1   mycroft 	}
    315        1.1   mycroft 	/*
    316        1.1   mycroft 	 * Allocate a new disk location.
    317        1.1   mycroft 	 */
    318        1.1   mycroft 	if (bpref >= fs->fs_size)
    319        1.1   mycroft 		bpref = 0;
    320        1.1   mycroft 	switch ((int)fs->fs_optim) {
    321        1.1   mycroft 	case FS_OPTSPACE:
    322        1.1   mycroft 		/*
    323       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    324       1.81     perry 		 * best use of space, we will waste time relocating it if
    325        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    326        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    327        1.1   mycroft 		 * to begin optimizing for time.
    328        1.1   mycroft 		 */
    329        1.1   mycroft 		request = nsize;
    330        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    331        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    332        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    333        1.1   mycroft 			break;
    334       1.34  jdolecek 
    335       1.34  jdolecek 		if (ffs_log_changeopt) {
    336       1.34  jdolecek 			log(LOG_NOTICE,
    337       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    338       1.34  jdolecek 				fs->fs_fsmnt);
    339       1.34  jdolecek 		}
    340       1.34  jdolecek 
    341        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    342        1.1   mycroft 		break;
    343        1.1   mycroft 	case FS_OPTTIME:
    344        1.1   mycroft 		/*
    345        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    346        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    347        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    348        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    349        1.1   mycroft 		 * above will be able to grow it in place without further
    350        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    351        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    352        1.1   mycroft 		 * optimizing for space.
    353        1.1   mycroft 		 */
    354        1.1   mycroft 		request = fs->fs_bsize;
    355        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    356        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    357        1.1   mycroft 			break;
    358       1.34  jdolecek 
    359       1.34  jdolecek 		if (ffs_log_changeopt) {
    360       1.34  jdolecek 			log(LOG_NOTICE,
    361       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    362       1.34  jdolecek 				fs->fs_fsmnt);
    363       1.34  jdolecek 		}
    364       1.34  jdolecek 
    365        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    366        1.1   mycroft 		break;
    367        1.1   mycroft 	default:
    368       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    369        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    370        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    371        1.1   mycroft 		/* NOTREACHED */
    372        1.1   mycroft 	}
    373       1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    374        1.1   mycroft 	if (bno > 0) {
    375       1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    376       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    377       1.76   hannken 			    ip->i_number);
    378        1.1   mycroft 		if (nsize < request)
    379       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    380       1.76   hannken 			    (long)(request - nsize), ip->i_number);
    381       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    382        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    383       1.37       chs 		if (bpp != NULL) {
    384       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    385       1.72        pk 			allocbuf(bp, nsize, 1);
    386       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    387  1.100.2.2      matt 			mutex_enter(bp->b_objlock);
    388  1.100.2.2      matt 			bp->b_oflags |= BO_DONE;
    389  1.100.2.2      matt 			mutex_exit(bp->b_objlock);
    390       1.37       chs 			*bpp = bp;
    391       1.37       chs 		}
    392       1.37       chs 		if (blknop != NULL) {
    393       1.37       chs 			*blknop = bno;
    394       1.37       chs 		}
    395        1.1   mycroft 		return (0);
    396        1.1   mycroft 	}
    397  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    398  1.100.2.1      matt 
    399        1.1   mycroft #ifdef QUOTA
    400        1.1   mycroft 	/*
    401        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    402        1.1   mycroft 	 */
    403       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    404        1.1   mycroft #endif
    405       1.37       chs 	if (bpp != NULL) {
    406  1.100.2.1      matt 		brelse(bp, 0);
    407       1.37       chs 	}
    408       1.37       chs 
    409        1.1   mycroft nospace:
    410        1.1   mycroft 	/*
    411        1.1   mycroft 	 * no space available
    412        1.1   mycroft 	 */
    413       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    414        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    415        1.1   mycroft 	return (ENOSPC);
    416        1.1   mycroft }
    417        1.1   mycroft 
    418       1.88      yamt #if 0
    419        1.1   mycroft /*
    420        1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    421        1.1   mycroft  *
    422        1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    423        1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    424       1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    425       1.60      fvdl  * from the end of the allocation for the logical block immediately
    426       1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    427       1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    428       1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    429       1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    430       1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    431       1.60      fvdl  * allocation will be used.
    432       1.60      fvdl 
    433        1.1   mycroft  */
    434       1.55      matt #ifdef XXXUBC
    435        1.3   mycroft #ifdef DEBUG
    436        1.1   mycroft #include <sys/sysctl.h>
    437        1.5   mycroft int prtrealloc = 0;
    438        1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    439        1.1   mycroft #endif
    440       1.55      matt #endif
    441        1.1   mycroft 
    442       1.60      fvdl /*
    443       1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    444       1.60      fvdl  */
    445       1.60      fvdl 
    446       1.18      fvdl int doasyncfree = 1;
    447       1.18      fvdl 
    448        1.1   mycroft int
    449       1.85   thorpej ffs_reallocblks(void *v)
    450        1.9  christos {
    451       1.55      matt #ifdef XXXUBC
    452        1.1   mycroft 	struct vop_reallocblks_args /* {
    453        1.1   mycroft 		struct vnode *a_vp;
    454        1.1   mycroft 		struct cluster_save *a_buflist;
    455        1.9  christos 	} */ *ap = v;
    456        1.1   mycroft 	struct fs *fs;
    457        1.1   mycroft 	struct inode *ip;
    458        1.1   mycroft 	struct vnode *vp;
    459        1.1   mycroft 	struct buf *sbp, *ebp;
    460       1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    461        1.1   mycroft 	struct cluster_save *buflist;
    462       1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    463        1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    464        1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    465  1.100.2.1      matt 	struct ufsmount *ump;
    466       1.55      matt #endif /* XXXUBC */
    467        1.1   mycroft 
    468       1.37       chs 	/* XXXUBC don't reallocblks for now */
    469       1.37       chs 	return ENOSPC;
    470       1.37       chs 
    471       1.55      matt #ifdef XXXUBC
    472        1.1   mycroft 	vp = ap->a_vp;
    473        1.1   mycroft 	ip = VTOI(vp);
    474        1.1   mycroft 	fs = ip->i_fs;
    475  1.100.2.1      matt 	ump = ip->i_ump;
    476        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    477        1.1   mycroft 		return (ENOSPC);
    478        1.1   mycroft 	buflist = ap->a_buflist;
    479        1.1   mycroft 	len = buflist->bs_nchildren;
    480        1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    481        1.1   mycroft 	end_lbn = start_lbn + len - 1;
    482        1.1   mycroft #ifdef DIAGNOSTIC
    483       1.18      fvdl 	for (i = 0; i < len; i++)
    484       1.18      fvdl 		if (!ffs_checkblk(ip,
    485       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    486       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    487        1.1   mycroft 	for (i = 1; i < len; i++)
    488        1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    489       1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    490       1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    491       1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    492       1.18      fvdl 	for (i = 1; i < len - 1; i++)
    493       1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    494       1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    495        1.1   mycroft #endif
    496        1.1   mycroft 	/*
    497        1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    498        1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    499        1.1   mycroft 	 * the previous cylinder group.
    500        1.1   mycroft 	 */
    501        1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    502        1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    503        1.1   mycroft 		return (ENOSPC);
    504        1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    505        1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    506        1.1   mycroft 		return (ENOSPC);
    507        1.1   mycroft 	/*
    508        1.1   mycroft 	 * Get the starting offset and block map for the first block.
    509        1.1   mycroft 	 */
    510        1.1   mycroft 	if (start_lvl == 0) {
    511       1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    512        1.1   mycroft 		soff = start_lbn;
    513        1.1   mycroft 	} else {
    514        1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    515        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    516  1.100.2.1      matt 			brelse(sbp, 0);
    517        1.1   mycroft 			return (ENOSPC);
    518        1.1   mycroft 		}
    519       1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    520        1.1   mycroft 		soff = idp->in_off;
    521        1.1   mycroft 	}
    522        1.1   mycroft 	/*
    523        1.1   mycroft 	 * Find the preferred location for the cluster.
    524        1.1   mycroft 	 */
    525  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    526        1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    527        1.1   mycroft 	/*
    528        1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    529        1.1   mycroft 	 */
    530        1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    531        1.1   mycroft 		ssize = len;
    532        1.1   mycroft 	} else {
    533        1.1   mycroft #ifdef DIAGNOSTIC
    534        1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    535        1.1   mycroft 			panic("ffs_reallocblk: start == end");
    536        1.1   mycroft #endif
    537        1.1   mycroft 		ssize = len - (idp->in_off + 1);
    538        1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    539        1.1   mycroft 			goto fail;
    540       1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    541        1.1   mycroft 	}
    542        1.1   mycroft 	/*
    543        1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    544        1.1   mycroft 	 */
    545       1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    546  1.100.2.1      matt 	    len, ffs_clusteralloc)) == 0) {
    547  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
    548        1.1   mycroft 		goto fail;
    549  1.100.2.1      matt 	}
    550        1.1   mycroft 	/*
    551        1.1   mycroft 	 * We have found a new contiguous block.
    552        1.1   mycroft 	 *
    553        1.1   mycroft 	 * First we have to replace the old block pointers with the new
    554        1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    555        1.1   mycroft 	 * with the file.
    556        1.1   mycroft 	 */
    557        1.5   mycroft #ifdef DEBUG
    558        1.5   mycroft 	if (prtrealloc)
    559       1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    560        1.5   mycroft 		    start_lbn, end_lbn);
    561        1.5   mycroft #endif
    562        1.1   mycroft 	blkno = newblk;
    563        1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    564       1.58      fvdl 		daddr_t ba;
    565       1.30      fvdl 
    566       1.30      fvdl 		if (i == ssize) {
    567        1.1   mycroft 			bap = ebap;
    568       1.30      fvdl 			soff = -i;
    569       1.30      fvdl 		}
    570       1.58      fvdl 		/* XXX ondisk32 */
    571       1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    572        1.1   mycroft #ifdef DIAGNOSTIC
    573       1.18      fvdl 		if (!ffs_checkblk(ip,
    574       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    575       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    576       1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    577        1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    578        1.1   mycroft #endif
    579        1.5   mycroft #ifdef DEBUG
    580        1.5   mycroft 		if (prtrealloc)
    581       1.30      fvdl 			printf(" %d,", ba);
    582        1.5   mycroft #endif
    583       1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    584       1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    585       1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    586       1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    587       1.30      fvdl  				    buflist->bs_children[i]);
    588       1.30      fvdl  			else
    589       1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    590       1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    591       1.30      fvdl  				    ba, buflist->bs_children[i]);
    592       1.30      fvdl  		}
    593       1.58      fvdl 		/* XXX ondisk32 */
    594       1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    595        1.1   mycroft 	}
    596        1.1   mycroft 	/*
    597        1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    598        1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    599        1.1   mycroft 	 * the old block values may have been written to disk. In practise
    600       1.81     perry 	 * they are almost never written, but if we are concerned about
    601        1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    602        1.1   mycroft 	 *
    603        1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    604        1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    605        1.1   mycroft 	 * been written. The flag should be set when the cluster is
    606        1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    607        1.1   mycroft 	 * We can then check below to see if it is set, and do the
    608        1.1   mycroft 	 * synchronous write only when it has been cleared.
    609        1.1   mycroft 	 */
    610       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    611        1.1   mycroft 		if (doasyncfree)
    612        1.1   mycroft 			bdwrite(sbp);
    613        1.1   mycroft 		else
    614        1.1   mycroft 			bwrite(sbp);
    615        1.1   mycroft 	} else {
    616        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    617       1.28   mycroft 		if (!doasyncfree)
    618       1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    619        1.1   mycroft 	}
    620       1.25   thorpej 	if (ssize < len) {
    621        1.1   mycroft 		if (doasyncfree)
    622        1.1   mycroft 			bdwrite(ebp);
    623        1.1   mycroft 		else
    624        1.1   mycroft 			bwrite(ebp);
    625       1.25   thorpej 	}
    626        1.1   mycroft 	/*
    627        1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    628        1.1   mycroft 	 */
    629        1.5   mycroft #ifdef DEBUG
    630        1.5   mycroft 	if (prtrealloc)
    631       1.13  christos 		printf("\n\tnew:");
    632        1.5   mycroft #endif
    633        1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    634       1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    635       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    636       1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    637       1.76   hannken 			    fs->fs_bsize, ip->i_number);
    638        1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    639        1.5   mycroft #ifdef DEBUG
    640       1.18      fvdl 		if (!ffs_checkblk(ip,
    641       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    642       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    643        1.5   mycroft 		if (prtrealloc)
    644       1.13  christos 			printf(" %d,", blkno);
    645        1.5   mycroft #endif
    646        1.5   mycroft 	}
    647        1.5   mycroft #ifdef DEBUG
    648        1.5   mycroft 	if (prtrealloc) {
    649        1.5   mycroft 		prtrealloc--;
    650       1.13  christos 		printf("\n");
    651        1.1   mycroft 	}
    652        1.5   mycroft #endif
    653        1.1   mycroft 	return (0);
    654        1.1   mycroft 
    655        1.1   mycroft fail:
    656        1.1   mycroft 	if (ssize < len)
    657  1.100.2.1      matt 		brelse(ebp, 0);
    658       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    659  1.100.2.1      matt 		brelse(sbp, 0);
    660        1.1   mycroft 	return (ENOSPC);
    661       1.55      matt #endif /* XXXUBC */
    662        1.1   mycroft }
    663       1.88      yamt #endif /* 0 */
    664        1.1   mycroft 
    665        1.1   mycroft /*
    666        1.1   mycroft  * Allocate an inode in the file system.
    667       1.81     perry  *
    668        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    669        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    670        1.1   mycroft  *   1) allocate the preferred inode.
    671        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    672        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    673        1.1   mycroft  *      available inode is located.
    674       1.47       wiz  * If no inode preference is given the following hierarchy is used
    675        1.1   mycroft  * to allocate an inode:
    676        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    677        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    678        1.1   mycroft  *      available inode is located.
    679  1.100.2.3      matt  *
    680  1.100.2.3      matt  * => um_lock not held upon entry or return
    681        1.1   mycroft  */
    682        1.9  christos int
    683       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    684       1.88      yamt     struct vnode **vpp)
    685        1.9  christos {
    686  1.100.2.1      matt 	struct ufsmount *ump;
    687       1.33  augustss 	struct inode *pip;
    688       1.33  augustss 	struct fs *fs;
    689       1.33  augustss 	struct inode *ip;
    690       1.60      fvdl 	struct timespec ts;
    691        1.1   mycroft 	ino_t ino, ipref;
    692        1.1   mycroft 	int cg, error;
    693       1.81     perry 
    694       1.88      yamt 	*vpp = NULL;
    695        1.1   mycroft 	pip = VTOI(pvp);
    696        1.1   mycroft 	fs = pip->i_fs;
    697  1.100.2.1      matt 	ump = pip->i_ump;
    698  1.100.2.1      matt 
    699  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
    700        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    701        1.1   mycroft 		goto noinodes;
    702        1.1   mycroft 
    703        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    704       1.50     lukem 		ipref = ffs_dirpref(pip);
    705       1.50     lukem 	else
    706       1.50     lukem 		ipref = pip->i_number;
    707        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    708        1.1   mycroft 		ipref = 0;
    709        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    710       1.50     lukem 	/*
    711       1.50     lukem 	 * Track number of dirs created one after another
    712       1.50     lukem 	 * in a same cg without intervening by files.
    713       1.50     lukem 	 */
    714       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    715       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    716       1.50     lukem 			fs->fs_contigdirs[cg]++;
    717       1.50     lukem 	} else {
    718       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    719       1.50     lukem 			fs->fs_contigdirs[cg]--;
    720       1.50     lukem 	}
    721       1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    722        1.1   mycroft 	if (ino == 0)
    723        1.1   mycroft 		goto noinodes;
    724       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    725        1.1   mycroft 	if (error) {
    726       1.88      yamt 		ffs_vfree(pvp, ino, mode);
    727        1.1   mycroft 		return (error);
    728        1.1   mycroft 	}
    729       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    730       1.88      yamt 	ip = VTOI(*vpp);
    731       1.60      fvdl 	if (ip->i_mode) {
    732       1.60      fvdl #if 0
    733       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    734       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    735       1.60      fvdl #else
    736       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    737       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    738       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    739       1.60      fvdl 		printf("size %llx blocks %llx\n",
    740       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    741       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    742       1.86  christos 		    (unsigned long long)ipref);
    743       1.60      fvdl #if 0
    744       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    745       1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    746       1.60      fvdl #endif
    747       1.60      fvdl 
    748       1.60      fvdl #endif
    749        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    750        1.1   mycroft 	}
    751       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    752       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    753       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    754       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    755        1.1   mycroft 	}
    756       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    757       1.61      fvdl 	ip->i_flags = 0;
    758       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    759        1.1   mycroft 	/*
    760        1.1   mycroft 	 * Set up a new generation number for this inode.
    761        1.1   mycroft 	 */
    762       1.60      fvdl 	ip->i_gen++;
    763       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    764       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    765       1.93      yamt 		vfs_timestamp(&ts);
    766       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    767       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    768       1.60      fvdl 	}
    769        1.1   mycroft 	return (0);
    770        1.1   mycroft noinodes:
    771  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
    772       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    773        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    774        1.1   mycroft 	return (ENOSPC);
    775        1.1   mycroft }
    776        1.1   mycroft 
    777        1.1   mycroft /*
    778       1.50     lukem  * Find a cylinder group in which to place a directory.
    779       1.42  sommerfe  *
    780       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    781       1.50     lukem  * directory inode in the same cylinder group as its parent
    782       1.50     lukem  * directory, but also to reserve space for its files inodes
    783       1.50     lukem  * and data. Restrict the number of directories which may be
    784       1.50     lukem  * allocated one after another in the same cylinder group
    785       1.50     lukem  * without intervening allocation of files.
    786       1.42  sommerfe  *
    787       1.50     lukem  * If we allocate a first level directory then force allocation
    788       1.50     lukem  * in another cylinder group.
    789        1.1   mycroft  */
    790        1.1   mycroft static ino_t
    791       1.85   thorpej ffs_dirpref(struct inode *pip)
    792        1.1   mycroft {
    793       1.50     lukem 	register struct fs *fs;
    794       1.74     soren 	int cg, prefcg;
    795       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    796       1.89       dsl 	int avgifree, avgbfree, avgndir;
    797       1.50     lukem 	int minifree, minbfree, maxndir;
    798       1.50     lukem 	int mincg, minndir;
    799       1.50     lukem 	int maxcontigdirs;
    800       1.50     lukem 
    801  1.100.2.1      matt 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    802  1.100.2.1      matt 
    803       1.50     lukem 	fs = pip->i_fs;
    804        1.1   mycroft 
    805        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    806       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    807       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    808       1.50     lukem 
    809       1.50     lukem 	/*
    810       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    811       1.50     lukem 	 */
    812  1.100.2.1      matt 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    813       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    814       1.50     lukem 		mincg = prefcg;
    815       1.50     lukem 		minndir = fs->fs_ipg;
    816       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    817       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    818       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    819       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820       1.42  sommerfe 				mincg = cg;
    821       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    822       1.42  sommerfe 			}
    823       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    824       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    825       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    826       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    827       1.50     lukem 				mincg = cg;
    828       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    829       1.42  sommerfe 			}
    830       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    831       1.42  sommerfe 	}
    832       1.50     lukem 
    833       1.50     lukem 	/*
    834       1.50     lukem 	 * Count various limits which used for
    835       1.50     lukem 	 * optimal allocation of a directory inode.
    836       1.50     lukem 	 */
    837       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    838       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    839       1.50     lukem 	if (minifree < 0)
    840       1.50     lukem 		minifree = 0;
    841       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    842       1.50     lukem 	if (minbfree < 0)
    843       1.50     lukem 		minbfree = 0;
    844       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    845       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    846       1.89       dsl 	if (avgndir != 0) {
    847       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    848       1.89       dsl 		if (dirsize < curdsz)
    849       1.89       dsl 			dirsize = curdsz;
    850       1.89       dsl 	}
    851       1.89       dsl 	if (cgsize < dirsize * 255)
    852       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    853       1.89       dsl 	else
    854       1.89       dsl 		maxcontigdirs = 255;
    855       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    856       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    857       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    858       1.50     lukem 	if (maxcontigdirs == 0)
    859       1.50     lukem 		maxcontigdirs = 1;
    860       1.50     lukem 
    861       1.50     lukem 	/*
    862       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    863       1.50     lukem 	 * regular files, but only if we have no deficit in
    864       1.50     lukem 	 * inodes or space.
    865       1.50     lukem 	 */
    866       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    867       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    868       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    869       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    870       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    871       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    872       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    873       1.50     lukem 		}
    874       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    875       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    876       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    877       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    878       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    879       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    880       1.50     lukem 		}
    881       1.50     lukem 	/*
    882       1.50     lukem 	 * This is a backstop when we are deficient in space.
    883       1.50     lukem 	 */
    884       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    885       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    886       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    887       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    888       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    889       1.50     lukem 			break;
    890       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    891        1.1   mycroft }
    892        1.1   mycroft 
    893        1.1   mycroft /*
    894        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    895        1.1   mycroft  * logically divided into sections. The first section is composed of the
    896        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    897       1.81     perry  *
    898        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    899        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    900        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    901        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    902        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    903        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    904        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    905        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    906        1.1   mycroft  * continues until a cylinder group with greater than the average number
    907        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    908        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    909        1.1   mycroft  * here a best guess is made based upon the logical block number being
    910        1.1   mycroft  * allocated.
    911       1.81     perry  *
    912        1.1   mycroft  * If a section is already partially allocated, the policy is to
    913        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    914       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    915       1.60      fvdl  * contigously if possible.
    916  1.100.2.3      matt  *
    917  1.100.2.3      matt  * => um_lock held on entry and exit
    918        1.1   mycroft  */
    919       1.58      fvdl daddr_t
    920       1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    921       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    922        1.1   mycroft {
    923       1.33  augustss 	struct fs *fs;
    924       1.33  augustss 	int cg;
    925        1.1   mycroft 	int avgbfree, startcg;
    926        1.1   mycroft 
    927  1.100.2.1      matt 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    928  1.100.2.1      matt 
    929        1.1   mycroft 	fs = ip->i_fs;
    930        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    931       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    932        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    933        1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    934        1.1   mycroft 		}
    935        1.1   mycroft 		/*
    936        1.1   mycroft 		 * Find a cylinder with greater than average number of
    937        1.1   mycroft 		 * unused data blocks.
    938        1.1   mycroft 		 */
    939        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    940        1.1   mycroft 			startcg =
    941        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    942        1.1   mycroft 		else
    943       1.19    bouyer 			startcg = dtog(fs,
    944       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    945        1.1   mycroft 		startcg %= fs->fs_ncg;
    946        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    947        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    948        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    949        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    950        1.1   mycroft 			}
    951       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    952        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    953        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    954        1.1   mycroft 			}
    955       1.35   thorpej 		return (0);
    956        1.1   mycroft 	}
    957        1.1   mycroft 	/*
    958       1.60      fvdl 	 * We just always try to lay things out contiguously.
    959       1.60      fvdl 	 */
    960       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    961       1.60      fvdl }
    962       1.60      fvdl 
    963       1.60      fvdl daddr_t
    964       1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    965       1.60      fvdl {
    966       1.60      fvdl 	struct fs *fs;
    967       1.60      fvdl 	int cg;
    968       1.60      fvdl 	int avgbfree, startcg;
    969       1.60      fvdl 
    970  1.100.2.1      matt 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    971  1.100.2.1      matt 
    972       1.60      fvdl 	fs = ip->i_fs;
    973       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    974       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    975       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    976       1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    977       1.60      fvdl 		}
    978        1.1   mycroft 		/*
    979       1.60      fvdl 		 * Find a cylinder with greater than average number of
    980       1.60      fvdl 		 * unused data blocks.
    981        1.1   mycroft 		 */
    982       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    983       1.60      fvdl 			startcg =
    984       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    985       1.60      fvdl 		else
    986       1.60      fvdl 			startcg = dtog(fs,
    987       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    988       1.60      fvdl 		startcg %= fs->fs_ncg;
    989       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    990       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    991       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    992       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    993       1.60      fvdl 			}
    994       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    995       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    996       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    997       1.60      fvdl 			}
    998       1.60      fvdl 		return (0);
    999       1.60      fvdl 	}
   1000       1.60      fvdl 	/*
   1001       1.60      fvdl 	 * We just always try to lay things out contiguously.
   1002       1.60      fvdl 	 */
   1003       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1004        1.1   mycroft }
   1005        1.1   mycroft 
   1006       1.60      fvdl 
   1007        1.1   mycroft /*
   1008        1.1   mycroft  * Implement the cylinder overflow algorithm.
   1009        1.1   mycroft  *
   1010        1.1   mycroft  * The policy implemented by this algorithm is:
   1011        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1012        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1013        1.1   mycroft  *   3) brute force search for a free block.
   1014  1.100.2.3      matt  *
   1015  1.100.2.3      matt  * => called with um_lock held
   1016  1.100.2.3      matt  * => returns with um_lock released on success, held on failure
   1017  1.100.2.3      matt  *    (*allocator releases lock on success, retains lock on failure)
   1018        1.1   mycroft  */
   1019        1.1   mycroft /*VARARGS5*/
   1020       1.58      fvdl static daddr_t
   1021       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1022       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1023       1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1024        1.1   mycroft {
   1025       1.33  augustss 	struct fs *fs;
   1026       1.58      fvdl 	daddr_t result;
   1027        1.1   mycroft 	int i, icg = cg;
   1028        1.1   mycroft 
   1029        1.1   mycroft 	fs = ip->i_fs;
   1030        1.1   mycroft 	/*
   1031        1.1   mycroft 	 * 1: preferred cylinder group
   1032        1.1   mycroft 	 */
   1033        1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1034        1.1   mycroft 	if (result)
   1035        1.1   mycroft 		return (result);
   1036        1.1   mycroft 	/*
   1037        1.1   mycroft 	 * 2: quadratic rehash
   1038        1.1   mycroft 	 */
   1039        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1040        1.1   mycroft 		cg += i;
   1041        1.1   mycroft 		if (cg >= fs->fs_ncg)
   1042        1.1   mycroft 			cg -= fs->fs_ncg;
   1043        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1044        1.1   mycroft 		if (result)
   1045        1.1   mycroft 			return (result);
   1046        1.1   mycroft 	}
   1047        1.1   mycroft 	/*
   1048        1.1   mycroft 	 * 3: brute force search
   1049        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1050        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1051        1.1   mycroft 	 */
   1052        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1053        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1054        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1055        1.1   mycroft 		if (result)
   1056        1.1   mycroft 			return (result);
   1057        1.1   mycroft 		cg++;
   1058        1.1   mycroft 		if (cg == fs->fs_ncg)
   1059        1.1   mycroft 			cg = 0;
   1060        1.1   mycroft 	}
   1061       1.35   thorpej 	return (0);
   1062        1.1   mycroft }
   1063        1.1   mycroft 
   1064        1.1   mycroft /*
   1065        1.1   mycroft  * Determine whether a fragment can be extended.
   1066        1.1   mycroft  *
   1067       1.81     perry  * Check to see if the necessary fragments are available, and
   1068        1.1   mycroft  * if they are, allocate them.
   1069  1.100.2.3      matt  *
   1070  1.100.2.3      matt  * => called with um_lock held
   1071  1.100.2.3      matt  * => returns with um_lock released on success, held on failure
   1072        1.1   mycroft  */
   1073       1.58      fvdl static daddr_t
   1074       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1075        1.1   mycroft {
   1076  1.100.2.1      matt 	struct ufsmount *ump;
   1077       1.33  augustss 	struct fs *fs;
   1078       1.33  augustss 	struct cg *cgp;
   1079        1.1   mycroft 	struct buf *bp;
   1080       1.58      fvdl 	daddr_t bno;
   1081        1.1   mycroft 	int frags, bbase;
   1082        1.1   mycroft 	int i, error;
   1083       1.62      fvdl 	u_int8_t *blksfree;
   1084        1.1   mycroft 
   1085        1.1   mycroft 	fs = ip->i_fs;
   1086  1.100.2.1      matt 	ump = ip->i_ump;
   1087  1.100.2.1      matt 
   1088  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1089  1.100.2.1      matt 
   1090        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1091       1.35   thorpej 		return (0);
   1092        1.1   mycroft 	frags = numfrags(fs, nsize);
   1093        1.1   mycroft 	bbase = fragnum(fs, bprev);
   1094        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1095        1.1   mycroft 		/* cannot extend across a block boundary */
   1096       1.35   thorpej 		return (0);
   1097        1.1   mycroft 	}
   1098  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1099        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1100        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1101  1.100.2.1      matt 	if (error)
   1102  1.100.2.1      matt 		goto fail;
   1103        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1104  1.100.2.1      matt 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1105  1.100.2.1      matt 		goto fail;
   1106       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1107       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1108       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1109       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1110        1.1   mycroft 	bno = dtogd(fs, bprev);
   1111       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1112        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1113  1.100.2.1      matt 		if (isclr(blksfree, bno + i))
   1114  1.100.2.1      matt 			goto fail;
   1115        1.1   mycroft 	/*
   1116        1.1   mycroft 	 * the current fragment can be extended
   1117        1.1   mycroft 	 * deduct the count on fragment being extended into
   1118        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1119        1.1   mycroft 	 * allocate the extended piece
   1120        1.1   mycroft 	 */
   1121        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1122       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1123        1.1   mycroft 			break;
   1124       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1125        1.1   mycroft 	if (i != frags)
   1126       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1127  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1128        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1129       1.62      fvdl 		clrbit(blksfree, bno + i);
   1130       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1131        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1132        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1133        1.1   mycroft 	}
   1134        1.1   mycroft 	fs->fs_fmod = 1;
   1135  1.100.2.1      matt 	ACTIVECG_CLR(fs, cg);
   1136  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1137       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1138       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1139        1.1   mycroft 	bdwrite(bp);
   1140        1.1   mycroft 	return (bprev);
   1141  1.100.2.1      matt 
   1142  1.100.2.1      matt  fail:
   1143  1.100.2.1      matt  	brelse(bp, 0);
   1144  1.100.2.1      matt  	mutex_enter(&ump->um_lock);
   1145  1.100.2.1      matt  	return (0);
   1146        1.1   mycroft }
   1147        1.1   mycroft 
   1148        1.1   mycroft /*
   1149        1.1   mycroft  * Determine whether a block can be allocated.
   1150        1.1   mycroft  *
   1151        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1152        1.1   mycroft  * and if it is, allocate it.
   1153        1.1   mycroft  */
   1154       1.58      fvdl static daddr_t
   1155       1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1156        1.1   mycroft {
   1157  1.100.2.1      matt 	struct ufsmount *ump;
   1158       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1159       1.30      fvdl 	struct cg *cgp;
   1160        1.1   mycroft 	struct buf *bp;
   1161       1.60      fvdl 	int32_t bno;
   1162       1.60      fvdl 	daddr_t blkno;
   1163       1.30      fvdl 	int error, frags, allocsiz, i;
   1164       1.62      fvdl 	u_int8_t *blksfree;
   1165       1.30      fvdl #ifdef FFS_EI
   1166       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1167       1.30      fvdl #endif
   1168        1.1   mycroft 
   1169  1.100.2.1      matt 	ump = ip->i_ump;
   1170  1.100.2.1      matt 
   1171  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1172  1.100.2.1      matt 
   1173        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1174       1.35   thorpej 		return (0);
   1175  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1176        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1177        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1178  1.100.2.1      matt 	if (error)
   1179  1.100.2.1      matt 		goto fail;
   1180        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1181       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1182  1.100.2.1      matt 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1183  1.100.2.1      matt 		goto fail;
   1184       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1185       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1186       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1187       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1188        1.1   mycroft 	if (size == fs->fs_bsize) {
   1189  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1190       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1191       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1192  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1193        1.1   mycroft 		bdwrite(bp);
   1194       1.60      fvdl 		return (blkno);
   1195        1.1   mycroft 	}
   1196        1.1   mycroft 	/*
   1197        1.1   mycroft 	 * check to see if any fragments are already available
   1198        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1199        1.1   mycroft 	 * it down to a smaller size if necessary
   1200        1.1   mycroft 	 */
   1201       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1202        1.1   mycroft 	frags = numfrags(fs, size);
   1203        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1204        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1205        1.1   mycroft 			break;
   1206        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1207        1.1   mycroft 		/*
   1208       1.81     perry 		 * no fragments were available, so a block will be
   1209        1.1   mycroft 		 * allocated, and hacked up
   1210        1.1   mycroft 		 */
   1211  1.100.2.1      matt 		if (cgp->cg_cs.cs_nbfree == 0)
   1212  1.100.2.1      matt 			goto fail;
   1213  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1214       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1215       1.60      fvdl 		bno = dtogd(fs, blkno);
   1216        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1217       1.62      fvdl 			setbit(blksfree, bno + i);
   1218        1.1   mycroft 		i = fs->fs_frag - frags;
   1219       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1220        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1221       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1222        1.1   mycroft 		fs->fs_fmod = 1;
   1223       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1224       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1225  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1226        1.1   mycroft 		bdwrite(bp);
   1227       1.60      fvdl 		return (blkno);
   1228        1.1   mycroft 	}
   1229       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1230       1.30      fvdl #if 0
   1231       1.30      fvdl 	/*
   1232       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1233       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1234       1.30      fvdl 	 */
   1235  1.100.2.1      matt 	if (bno < 0)
   1236  1.100.2.1      matt 		goto fail;
   1237       1.30      fvdl #endif
   1238        1.1   mycroft 	for (i = 0; i < frags; i++)
   1239       1.62      fvdl 		clrbit(blksfree, bno + i);
   1240  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1241       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1242        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1243        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1244        1.1   mycroft 	fs->fs_fmod = 1;
   1245       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1246        1.1   mycroft 	if (frags != allocsiz)
   1247       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1248       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1249  1.100.2.1      matt 	ACTIVECG_CLR(fs, cg);
   1250  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1251       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1252       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1253        1.1   mycroft 	bdwrite(bp);
   1254       1.30      fvdl 	return blkno;
   1255  1.100.2.1      matt 
   1256  1.100.2.1      matt  fail:
   1257  1.100.2.1      matt  	brelse(bp, 0);
   1258  1.100.2.1      matt  	mutex_enter(&ump->um_lock);
   1259  1.100.2.1      matt  	return (0);
   1260        1.1   mycroft }
   1261        1.1   mycroft 
   1262        1.1   mycroft /*
   1263        1.1   mycroft  * Allocate a block in a cylinder group.
   1264        1.1   mycroft  *
   1265        1.1   mycroft  * This algorithm implements the following policy:
   1266        1.1   mycroft  *   1) allocate the requested block.
   1267        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1268        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1269        1.1   mycroft  *      specified cylinder group.
   1270        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1271        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1272        1.1   mycroft  */
   1273       1.58      fvdl static daddr_t
   1274       1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1275        1.1   mycroft {
   1276  1.100.2.1      matt 	struct ufsmount *ump;
   1277       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1278       1.30      fvdl 	struct cg *cgp;
   1279       1.60      fvdl 	daddr_t blkno;
   1280       1.60      fvdl 	int32_t bno;
   1281       1.60      fvdl 	u_int8_t *blksfree;
   1282       1.30      fvdl #ifdef FFS_EI
   1283       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1284       1.30      fvdl #endif
   1285        1.1   mycroft 
   1286  1.100.2.1      matt 	ump = ip->i_ump;
   1287  1.100.2.1      matt 
   1288  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1289  1.100.2.1      matt 
   1290       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1291       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1292       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1293       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1294       1.60      fvdl 	} else {
   1295       1.60      fvdl 		bpref = blknum(fs, bpref);
   1296       1.60      fvdl 		bno = dtogd(fs, bpref);
   1297        1.1   mycroft 		/*
   1298       1.60      fvdl 		 * if the requested block is available, use it
   1299        1.1   mycroft 		 */
   1300       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1301       1.60      fvdl 			goto gotit;
   1302        1.1   mycroft 	}
   1303        1.1   mycroft 	/*
   1304       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1305        1.1   mycroft 	 */
   1306       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1307        1.1   mycroft 	if (bno < 0)
   1308       1.35   thorpej 		return (0);
   1309       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1310        1.1   mycroft gotit:
   1311        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1312       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1313       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1314       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1315        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1316       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1317       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1318       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1319       1.73       dbj 		int cylno;
   1320       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1321       1.75       dbj 		KASSERT(cylno >= 0);
   1322       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1323       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1324       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1325       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1326       1.73       dbj 		    needswap);
   1327       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1328       1.73       dbj 	}
   1329        1.1   mycroft 	fs->fs_fmod = 1;
   1330       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1331  1.100.2.1      matt 	if (DOINGSOFTDEP(ITOV(ip))) {
   1332  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1333       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1334  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1335  1.100.2.1      matt 	}
   1336       1.30      fvdl 	return (blkno);
   1337        1.1   mycroft }
   1338        1.1   mycroft 
   1339       1.55      matt #ifdef XXXUBC
   1340        1.1   mycroft /*
   1341        1.1   mycroft  * Determine whether a cluster can be allocated.
   1342        1.1   mycroft  *
   1343        1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1344        1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1345        1.1   mycroft  * take the first one that we find following bpref.
   1346        1.1   mycroft  */
   1347       1.60      fvdl 
   1348       1.60      fvdl /*
   1349       1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1350       1.60      fvdl  */
   1351       1.58      fvdl static daddr_t
   1352       1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1353        1.1   mycroft {
   1354  1.100.2.1      matt 	struct ufsmount *ump;
   1355       1.33  augustss 	struct fs *fs;
   1356       1.33  augustss 	struct cg *cgp;
   1357        1.1   mycroft 	struct buf *bp;
   1358       1.18      fvdl 	int i, got, run, bno, bit, map;
   1359        1.1   mycroft 	u_char *mapp;
   1360        1.5   mycroft 	int32_t *lp;
   1361        1.1   mycroft 
   1362        1.1   mycroft 	fs = ip->i_fs;
   1363  1.100.2.1      matt 	ump = ip->i_ump;
   1364  1.100.2.1      matt 
   1365  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1366        1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1367       1.35   thorpej 		return (0);
   1368  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1369        1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1370        1.1   mycroft 	    NOCRED, &bp))
   1371        1.1   mycroft 		goto fail;
   1372        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1373       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1374        1.1   mycroft 		goto fail;
   1375        1.1   mycroft 	/*
   1376        1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1377        1.1   mycroft 	 * available in this cylinder group.
   1378        1.1   mycroft 	 */
   1379       1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1380        1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1381       1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1382        1.1   mycroft 			break;
   1383        1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1384        1.5   mycroft 		/*
   1385        1.5   mycroft 		 * This is the first time looking for a cluster in this
   1386        1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1387        1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1388        1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1389        1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1390        1.5   mycroft 		 */
   1391       1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1392        1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1393       1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1394        1.5   mycroft 				break;
   1395  1.100.2.1      matt 		mutex_enter(&ump->um_lock);
   1396        1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1397  1.100.2.1      matt 		mutex_exit(&ump->um_lock);
   1398        1.1   mycroft 		goto fail;
   1399        1.5   mycroft 	}
   1400        1.1   mycroft 	/*
   1401        1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1402        1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1403        1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1404        1.1   mycroft 	 * block allocation. We do not search before the current
   1405        1.1   mycroft 	 * preference point as we do not want to allocate a block
   1406        1.1   mycroft 	 * that is allocated before the previous one (as we will
   1407        1.1   mycroft 	 * then have to wait for another pass of the elevator
   1408        1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1409        1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1410        1.1   mycroft 	 */
   1411        1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1412        1.1   mycroft 		bpref = 0;
   1413        1.1   mycroft 	else
   1414        1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1415       1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1416        1.1   mycroft 	map = *mapp++;
   1417        1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1418       1.19    bouyer 	for (run = 0, got = bpref;
   1419       1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1420        1.1   mycroft 		if ((map & bit) == 0) {
   1421        1.1   mycroft 			run = 0;
   1422        1.1   mycroft 		} else {
   1423        1.1   mycroft 			run++;
   1424        1.1   mycroft 			if (run == len)
   1425        1.1   mycroft 				break;
   1426        1.1   mycroft 		}
   1427       1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1428        1.1   mycroft 			bit <<= 1;
   1429        1.1   mycroft 		} else {
   1430        1.1   mycroft 			map = *mapp++;
   1431        1.1   mycroft 			bit = 1;
   1432        1.1   mycroft 		}
   1433        1.1   mycroft 	}
   1434       1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1435        1.1   mycroft 		goto fail;
   1436        1.1   mycroft 	/*
   1437        1.1   mycroft 	 * Allocate the cluster that we have found.
   1438        1.1   mycroft 	 */
   1439       1.30      fvdl #ifdef DIAGNOSTIC
   1440       1.18      fvdl 	for (i = 1; i <= len; i++)
   1441       1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1442       1.30      fvdl 		    got - run + i))
   1443       1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1444       1.30      fvdl #endif
   1445       1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1446       1.18      fvdl 	if (dtog(fs, bno) != cg)
   1447       1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1448        1.1   mycroft 	len = blkstofrags(fs, len);
   1449  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1450        1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1451       1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1452        1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1453       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1454  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1455        1.8       cgd 	bdwrite(bp);
   1456        1.1   mycroft 	return (bno);
   1457        1.1   mycroft 
   1458        1.1   mycroft fail:
   1459  1.100.2.1      matt 	brelse(bp, 0);
   1460  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1461        1.1   mycroft 	return (0);
   1462        1.1   mycroft }
   1463       1.55      matt #endif /* XXXUBC */
   1464        1.1   mycroft 
   1465        1.1   mycroft /*
   1466        1.1   mycroft  * Determine whether an inode can be allocated.
   1467        1.1   mycroft  *
   1468        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1469        1.1   mycroft  * allocate it using the following policy:
   1470        1.1   mycroft  *   1) allocate the requested inode.
   1471        1.1   mycroft  *   2) allocate the next available inode after the requested
   1472        1.1   mycroft  *      inode in the specified cylinder group.
   1473        1.1   mycroft  */
   1474       1.58      fvdl static daddr_t
   1475       1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1476        1.1   mycroft {
   1477  1.100.2.1      matt 	struct ufsmount *ump = ip->i_ump;
   1478       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1479       1.33  augustss 	struct cg *cgp;
   1480       1.60      fvdl 	struct buf *bp, *ibp;
   1481       1.60      fvdl 	u_int8_t *inosused;
   1482        1.1   mycroft 	int error, start, len, loc, map, i;
   1483       1.60      fvdl 	int32_t initediblk;
   1484       1.60      fvdl 	struct ufs2_dinode *dp2;
   1485       1.19    bouyer #ifdef FFS_EI
   1486       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1487       1.19    bouyer #endif
   1488        1.1   mycroft 
   1489  1.100.2.1      matt 	KASSERT(mutex_owned(&ump->um_lock));
   1490  1.100.2.1      matt 
   1491        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1492       1.35   thorpej 		return (0);
   1493  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1494        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1495        1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1496  1.100.2.1      matt 	if (error)
   1497  1.100.2.1      matt 		goto fail;
   1498        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1499  1.100.2.1      matt 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1500  1.100.2.1      matt 		goto fail;
   1501       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1502       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1503       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1504       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1505       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1506        1.1   mycroft 	if (ipref) {
   1507        1.1   mycroft 		ipref %= fs->fs_ipg;
   1508       1.60      fvdl 		if (isclr(inosused, ipref))
   1509        1.1   mycroft 			goto gotit;
   1510        1.1   mycroft 	}
   1511       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1512       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1513       1.19    bouyer 		NBBY);
   1514       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1515        1.1   mycroft 	if (loc == 0) {
   1516        1.1   mycroft 		len = start + 1;
   1517        1.1   mycroft 		start = 0;
   1518       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1519        1.1   mycroft 		if (loc == 0) {
   1520       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1521       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1522       1.19    bouyer 				fs->fs_fsmnt);
   1523        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1524        1.1   mycroft 			/* NOTREACHED */
   1525        1.1   mycroft 		}
   1526        1.1   mycroft 	}
   1527        1.1   mycroft 	i = start + len - loc;
   1528       1.60      fvdl 	map = inosused[i];
   1529        1.1   mycroft 	ipref = i * NBBY;
   1530        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1531        1.1   mycroft 		if ((map & i) == 0) {
   1532       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1533        1.1   mycroft 			goto gotit;
   1534        1.1   mycroft 		}
   1535        1.1   mycroft 	}
   1536       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1537        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1538        1.1   mycroft 	/* NOTREACHED */
   1539        1.1   mycroft gotit:
   1540       1.60      fvdl 	/*
   1541       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1542       1.60      fvdl 	 */
   1543       1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1544  1.100.2.1      matt 	ibp = NULL;
   1545       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1546       1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1547       1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1548       1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1549       1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1550       1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1551       1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1552       1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1553       1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1554       1.60      fvdl 			/*
   1555       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1556       1.60      fvdl 			 * random, after all.
   1557       1.60      fvdl 			 */
   1558       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1559       1.60      fvdl 			dp2++;
   1560       1.60      fvdl 		}
   1561       1.60      fvdl 		initediblk += INOPB(fs);
   1562       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1563       1.60      fvdl 	}
   1564       1.60      fvdl 
   1565  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1566       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1567  1.100.2.1      matt 	setbit(inosused, ipref);
   1568  1.100.2.1      matt 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1569  1.100.2.1      matt 	fs->fs_cstotal.cs_nifree--;
   1570  1.100.2.1      matt 	fs->fs_cs(fs, cg).cs_nifree--;
   1571  1.100.2.1      matt 	fs->fs_fmod = 1;
   1572  1.100.2.1      matt 	if ((mode & IFMT) == IFDIR) {
   1573  1.100.2.1      matt 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1574  1.100.2.1      matt 		fs->fs_cstotal.cs_ndir++;
   1575  1.100.2.1      matt 		fs->fs_cs(fs, cg).cs_ndir++;
   1576  1.100.2.1      matt 	}
   1577  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1578  1.100.2.1      matt 	if (DOINGSOFTDEP(ITOV(ip)))
   1579  1.100.2.1      matt 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1580        1.1   mycroft 	bdwrite(bp);
   1581  1.100.2.1      matt 	if (ibp != NULL)
   1582  1.100.2.1      matt 		bawrite(ibp);
   1583        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1584  1.100.2.1      matt  fail:
   1585  1.100.2.1      matt 	brelse(bp, 0);
   1586  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1587  1.100.2.1      matt 	return (0);
   1588        1.1   mycroft }
   1589        1.1   mycroft 
   1590        1.1   mycroft /*
   1591        1.1   mycroft  * Free a block or fragment.
   1592        1.1   mycroft  *
   1593        1.1   mycroft  * The specified block or fragment is placed back in the
   1594       1.81     perry  * free map. If a fragment is deallocated, a possible
   1595        1.1   mycroft  * block reassembly is checked.
   1596  1.100.2.3      matt  *
   1597  1.100.2.3      matt  * => um_lock not held on entry or exit
   1598        1.1   mycroft  */
   1599        1.9  christos void
   1600       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1601       1.85   thorpej     ino_t inum)
   1602        1.1   mycroft {
   1603       1.33  augustss 	struct cg *cgp;
   1604        1.1   mycroft 	struct buf *bp;
   1605       1.76   hannken 	struct ufsmount *ump;
   1606       1.60      fvdl 	int32_t fragno, cgbno;
   1607       1.76   hannken 	daddr_t cgblkno;
   1608        1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1609       1.62      fvdl 	u_int8_t *blksfree;
   1610       1.76   hannken 	dev_t dev;
   1611       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1612        1.1   mycroft 
   1613       1.76   hannken 	cg = dtog(fs, bno);
   1614       1.77   hannken 	if (devvp->v_type != VBLK) {
   1615       1.77   hannken 		/* devvp is a snapshot */
   1616       1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1617  1.100.2.1      matt 		ump = VFSTOUFS(devvp->v_mount);
   1618       1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1619       1.76   hannken 	} else {
   1620       1.76   hannken 		dev = devvp->v_rdev;
   1621       1.76   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1622       1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1623      1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1624       1.76   hannken 			return;
   1625       1.76   hannken 	}
   1626       1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1627       1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1628       1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1629       1.58      fvdl 		       "size = %ld, fs = %s\n",
   1630       1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1631        1.1   mycroft 		panic("blkfree: bad size");
   1632        1.1   mycroft 	}
   1633       1.76   hannken 
   1634       1.60      fvdl 	if (bno >= fs->fs_size) {
   1635       1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1636       1.86  christos 		    (unsigned long long)inum);
   1637       1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1638        1.1   mycroft 		return;
   1639        1.1   mycroft 	}
   1640       1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1641        1.1   mycroft 	if (error) {
   1642  1.100.2.1      matt 		brelse(bp, 0);
   1643        1.1   mycroft 		return;
   1644        1.1   mycroft 	}
   1645        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1646       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1647  1.100.2.1      matt 		brelse(bp, 0);
   1648        1.1   mycroft 		return;
   1649        1.1   mycroft 	}
   1650       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1651       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1652       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1653       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1654       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1655       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1656  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1657        1.1   mycroft 	if (size == fs->fs_bsize) {
   1658       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1659       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1660       1.77   hannken 			if (devvp->v_type != VBLK) {
   1661       1.77   hannken 				/* devvp is a snapshot */
   1662  1.100.2.1      matt 				mutex_exit(&ump->um_lock);
   1663  1.100.2.1      matt 				brelse(bp, 0);
   1664       1.76   hannken 				return;
   1665       1.76   hannken 			}
   1666       1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1667       1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1668        1.1   mycroft 			panic("blkfree: freeing free block");
   1669        1.1   mycroft 		}
   1670       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1671       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1672       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1673        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1674        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1675       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1676       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1677       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1678       1.75       dbj 			KASSERT(i >= 0);
   1679       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1680       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1681       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1682       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1683       1.73       dbj 			    needswap);
   1684       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1685       1.73       dbj 		}
   1686        1.1   mycroft 	} else {
   1687       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1688        1.1   mycroft 		/*
   1689        1.1   mycroft 		 * decrement the counts associated with the old frags
   1690        1.1   mycroft 		 */
   1691       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1692       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1693        1.1   mycroft 		/*
   1694        1.1   mycroft 		 * deallocate the fragment
   1695        1.1   mycroft 		 */
   1696        1.1   mycroft 		frags = numfrags(fs, size);
   1697        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1698       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1699       1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1700       1.59   tsutsui 				       ", fs = %s\n",
   1701       1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1702        1.1   mycroft 				panic("blkfree: freeing free frag");
   1703        1.1   mycroft 			}
   1704       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1705        1.1   mycroft 		}
   1706       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1707        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1708       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1709        1.1   mycroft 		/*
   1710        1.1   mycroft 		 * add back in counts associated with the new frags
   1711        1.1   mycroft 		 */
   1712       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1713       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1714        1.1   mycroft 		/*
   1715        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1716        1.1   mycroft 		 */
   1717       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1718       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1719       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1720        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1721        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1722       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1723       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1724        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1725        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1726       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1727       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1728       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1729       1.75       dbj 				KASSERT(i >= 0);
   1730       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1731       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1732       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1733       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1734       1.73       dbj 				    bbase)], 1, needswap);
   1735       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1736       1.73       dbj 			}
   1737        1.1   mycroft 		}
   1738        1.1   mycroft 	}
   1739        1.1   mycroft 	fs->fs_fmod = 1;
   1740       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1741  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1742        1.1   mycroft 	bdwrite(bp);
   1743        1.1   mycroft }
   1744        1.1   mycroft 
   1745       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1746       1.55      matt #ifdef XXXUBC
   1747       1.18      fvdl /*
   1748       1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1749       1.18      fvdl  * fragment is allocated, false if it is free.
   1750       1.18      fvdl  */
   1751       1.18      fvdl static int
   1752       1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1753       1.18      fvdl {
   1754       1.18      fvdl 	struct fs *fs;
   1755       1.18      fvdl 	struct cg *cgp;
   1756       1.18      fvdl 	struct buf *bp;
   1757       1.18      fvdl 	int i, error, frags, free;
   1758       1.18      fvdl 
   1759       1.18      fvdl 	fs = ip->i_fs;
   1760       1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1761       1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1762       1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1763       1.18      fvdl 		panic("checkblk: bad size");
   1764       1.18      fvdl 	}
   1765       1.60      fvdl 	if (bno >= fs->fs_size)
   1766       1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1767       1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1768       1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1769       1.18      fvdl 	if (error) {
   1770  1.100.2.1      matt 		brelse(bp, 0);
   1771       1.18      fvdl 		return 0;
   1772       1.18      fvdl 	}
   1773       1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1774       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1775  1.100.2.1      matt 		brelse(bp, 0);
   1776       1.18      fvdl 		return 0;
   1777       1.18      fvdl 	}
   1778       1.18      fvdl 	bno = dtogd(fs, bno);
   1779       1.18      fvdl 	if (size == fs->fs_bsize) {
   1780       1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1781       1.19    bouyer 			fragstoblks(fs, bno));
   1782       1.18      fvdl 	} else {
   1783       1.18      fvdl 		frags = numfrags(fs, size);
   1784       1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1785       1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1786       1.18      fvdl 				free++;
   1787       1.18      fvdl 		if (free != 0 && free != frags)
   1788       1.18      fvdl 			panic("checkblk: partially free fragment");
   1789       1.18      fvdl 	}
   1790  1.100.2.1      matt 	brelse(bp, 0);
   1791       1.18      fvdl 	return (!free);
   1792       1.18      fvdl }
   1793       1.55      matt #endif /* XXXUBC */
   1794       1.18      fvdl #endif /* DIAGNOSTIC */
   1795       1.18      fvdl 
   1796        1.1   mycroft /*
   1797        1.1   mycroft  * Free an inode.
   1798       1.30      fvdl  */
   1799       1.30      fvdl int
   1800       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1801       1.30      fvdl {
   1802       1.30      fvdl 
   1803       1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1804       1.88      yamt 		softdep_freefile(vp, ino, mode);
   1805       1.30      fvdl 		return (0);
   1806       1.30      fvdl 	}
   1807       1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1808       1.30      fvdl }
   1809       1.30      fvdl 
   1810       1.30      fvdl /*
   1811       1.30      fvdl  * Do the actual free operation.
   1812        1.1   mycroft  * The specified inode is placed back in the free map.
   1813        1.1   mycroft  */
   1814        1.1   mycroft int
   1815       1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1816        1.9  christos {
   1817  1.100.2.1      matt 	struct ufsmount *ump;
   1818       1.33  augustss 	struct cg *cgp;
   1819        1.1   mycroft 	struct buf *bp;
   1820        1.1   mycroft 	int error, cg;
   1821       1.76   hannken 	daddr_t cgbno;
   1822       1.62      fvdl 	u_int8_t *inosused;
   1823       1.78   hannken 	dev_t dev;
   1824       1.19    bouyer #ifdef FFS_EI
   1825       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1826       1.19    bouyer #endif
   1827        1.1   mycroft 
   1828       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1829       1.78   hannken 	if (devvp->v_type != VBLK) {
   1830       1.78   hannken 		/* devvp is a snapshot */
   1831       1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1832  1.100.2.1      matt 		ump = VFSTOUFS(devvp->v_mount);
   1833       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1834       1.76   hannken 	} else {
   1835       1.78   hannken 		dev = devvp->v_rdev;
   1836  1.100.2.1      matt 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1837       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1838       1.76   hannken 	}
   1839        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1840       1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1841       1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1842       1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1843        1.1   mycroft 	if (error) {
   1844  1.100.2.1      matt 		brelse(bp, 0);
   1845       1.30      fvdl 		return (error);
   1846        1.1   mycroft 	}
   1847        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1848       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1849  1.100.2.1      matt 		brelse(bp, 0);
   1850        1.1   mycroft 		return (0);
   1851        1.1   mycroft 	}
   1852       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1853       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1854       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1855       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1856       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1857        1.1   mycroft 	ino %= fs->fs_ipg;
   1858       1.62      fvdl 	if (isclr(inosused, ino)) {
   1859       1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1860       1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1861       1.86  christos 		    fs->fs_fsmnt);
   1862        1.1   mycroft 		if (fs->fs_ronly == 0)
   1863        1.1   mycroft 			panic("ifree: freeing free inode");
   1864        1.1   mycroft 	}
   1865       1.62      fvdl 	clrbit(inosused, ino);
   1866       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1867       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1868       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1869  1.100.2.1      matt 	mutex_enter(&ump->um_lock);
   1870        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1871        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1872       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1873       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1874        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1875        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1876        1.1   mycroft 	}
   1877        1.1   mycroft 	fs->fs_fmod = 1;
   1878       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1879  1.100.2.1      matt 	mutex_exit(&ump->um_lock);
   1880        1.1   mycroft 	bdwrite(bp);
   1881        1.1   mycroft 	return (0);
   1882        1.1   mycroft }
   1883        1.1   mycroft 
   1884        1.1   mycroft /*
   1885       1.76   hannken  * Check to see if a file is free.
   1886       1.76   hannken  */
   1887       1.76   hannken int
   1888       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1889       1.76   hannken {
   1890       1.76   hannken 	struct cg *cgp;
   1891       1.76   hannken 	struct buf *bp;
   1892       1.76   hannken 	daddr_t cgbno;
   1893       1.76   hannken 	int ret, cg;
   1894       1.76   hannken 	u_int8_t *inosused;
   1895       1.76   hannken 
   1896       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1897       1.77   hannken 	if (devvp->v_type != VBLK) {
   1898       1.77   hannken 		/* devvp is a snapshot */
   1899       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1900       1.77   hannken 	} else
   1901       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1902       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1903       1.76   hannken 		return 1;
   1904       1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1905  1.100.2.1      matt 		brelse(bp, 0);
   1906       1.76   hannken 		return 1;
   1907       1.76   hannken 	}
   1908       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1909       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1910  1.100.2.1      matt 		brelse(bp, 0);
   1911       1.76   hannken 		return 1;
   1912       1.76   hannken 	}
   1913       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1914       1.76   hannken 	ino %= fs->fs_ipg;
   1915       1.76   hannken 	ret = isclr(inosused, ino);
   1916  1.100.2.1      matt 	brelse(bp, 0);
   1917       1.76   hannken 	return ret;
   1918       1.76   hannken }
   1919       1.76   hannken 
   1920       1.76   hannken /*
   1921        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1922        1.1   mycroft  *
   1923        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1924        1.1   mycroft  * available.
   1925        1.1   mycroft  */
   1926       1.60      fvdl static int32_t
   1927       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1928        1.1   mycroft {
   1929       1.60      fvdl 	int32_t bno;
   1930        1.1   mycroft 	int start, len, loc, i;
   1931        1.1   mycroft 	int blk, field, subfield, pos;
   1932       1.19    bouyer 	int ostart, olen;
   1933       1.62      fvdl 	u_int8_t *blksfree;
   1934       1.30      fvdl #ifdef FFS_EI
   1935       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1936       1.30      fvdl #endif
   1937        1.1   mycroft 
   1938  1.100.2.1      matt 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1939  1.100.2.1      matt 
   1940        1.1   mycroft 	/*
   1941        1.1   mycroft 	 * find the fragment by searching through the free block
   1942        1.1   mycroft 	 * map for an appropriate bit pattern
   1943        1.1   mycroft 	 */
   1944        1.1   mycroft 	if (bpref)
   1945        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1946        1.1   mycroft 	else
   1947       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1948       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1949        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1950       1.19    bouyer 	ostart = start;
   1951       1.19    bouyer 	olen = len;
   1952       1.45     lukem 	loc = scanc((u_int)len,
   1953       1.62      fvdl 		(const u_char *)&blksfree[start],
   1954       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1955       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1956        1.1   mycroft 	if (loc == 0) {
   1957        1.1   mycroft 		len = start + 1;
   1958        1.1   mycroft 		start = 0;
   1959       1.45     lukem 		loc = scanc((u_int)len,
   1960       1.62      fvdl 			(const u_char *)&blksfree[0],
   1961       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1962       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1963        1.1   mycroft 		if (loc == 0) {
   1964       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1965       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1966       1.20      ross 			printf("offset=%d %ld\n",
   1967       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1968       1.62      fvdl 				(long)blksfree - (long)cgp);
   1969       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1970        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1971        1.1   mycroft 			/* NOTREACHED */
   1972        1.1   mycroft 		}
   1973        1.1   mycroft 	}
   1974        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1975       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1976        1.1   mycroft 	/*
   1977        1.1   mycroft 	 * found the byte in the map
   1978        1.1   mycroft 	 * sift through the bits to find the selected frag
   1979        1.1   mycroft 	 */
   1980        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1981       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1982        1.1   mycroft 		blk <<= 1;
   1983        1.1   mycroft 		field = around[allocsiz];
   1984        1.1   mycroft 		subfield = inside[allocsiz];
   1985        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1986        1.1   mycroft 			if ((blk & field) == subfield)
   1987        1.1   mycroft 				return (bno + pos);
   1988        1.1   mycroft 			field <<= 1;
   1989        1.1   mycroft 			subfield <<= 1;
   1990        1.1   mycroft 		}
   1991        1.1   mycroft 	}
   1992       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1993        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1994       1.58      fvdl 	/* return (-1); */
   1995        1.1   mycroft }
   1996        1.1   mycroft 
   1997        1.1   mycroft /*
   1998        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1999        1.1   mycroft  *
   2000        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2001        1.1   mycroft  */
   2002        1.9  christos void
   2003       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2004        1.1   mycroft {
   2005        1.4       cgd 	int32_t *sump;
   2006        1.5   mycroft 	int32_t *lp;
   2007        1.1   mycroft 	u_char *freemapp, *mapp;
   2008        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2009       1.30      fvdl #ifdef FFS_EI
   2010       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2011       1.30      fvdl #endif
   2012        1.1   mycroft 
   2013  1.100.2.1      matt 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2014  1.100.2.1      matt 
   2015        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2016        1.1   mycroft 		return;
   2017       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2018       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2019        1.1   mycroft 	/*
   2020        1.1   mycroft 	 * Allocate or clear the actual block.
   2021        1.1   mycroft 	 */
   2022        1.1   mycroft 	if (cnt > 0)
   2023        1.1   mycroft 		setbit(freemapp, blkno);
   2024        1.1   mycroft 	else
   2025        1.1   mycroft 		clrbit(freemapp, blkno);
   2026        1.1   mycroft 	/*
   2027        1.1   mycroft 	 * Find the size of the cluster going forward.
   2028        1.1   mycroft 	 */
   2029        1.1   mycroft 	start = blkno + 1;
   2030        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2031       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2032       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2033        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2034        1.1   mycroft 	map = *mapp++;
   2035        1.1   mycroft 	bit = 1 << (start % NBBY);
   2036        1.1   mycroft 	for (i = start; i < end; i++) {
   2037        1.1   mycroft 		if ((map & bit) == 0)
   2038        1.1   mycroft 			break;
   2039        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2040        1.1   mycroft 			bit <<= 1;
   2041        1.1   mycroft 		} else {
   2042        1.1   mycroft 			map = *mapp++;
   2043        1.1   mycroft 			bit = 1;
   2044        1.1   mycroft 		}
   2045        1.1   mycroft 	}
   2046        1.1   mycroft 	forw = i - start;
   2047        1.1   mycroft 	/*
   2048        1.1   mycroft 	 * Find the size of the cluster going backward.
   2049        1.1   mycroft 	 */
   2050        1.1   mycroft 	start = blkno - 1;
   2051        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2052        1.1   mycroft 	if (end < 0)
   2053        1.1   mycroft 		end = -1;
   2054        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2055        1.1   mycroft 	map = *mapp--;
   2056        1.1   mycroft 	bit = 1 << (start % NBBY);
   2057        1.1   mycroft 	for (i = start; i > end; i--) {
   2058        1.1   mycroft 		if ((map & bit) == 0)
   2059        1.1   mycroft 			break;
   2060        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2061        1.1   mycroft 			bit >>= 1;
   2062        1.1   mycroft 		} else {
   2063        1.1   mycroft 			map = *mapp--;
   2064        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2065        1.1   mycroft 		}
   2066        1.1   mycroft 	}
   2067        1.1   mycroft 	back = start - i;
   2068        1.1   mycroft 	/*
   2069        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2070        1.1   mycroft 	 * back clusters.
   2071        1.1   mycroft 	 */
   2072        1.1   mycroft 	i = back + forw + 1;
   2073        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2074        1.1   mycroft 		i = fs->fs_contigsumsize;
   2075       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2076        1.1   mycroft 	if (back > 0)
   2077       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2078        1.1   mycroft 	if (forw > 0)
   2079       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2080       1.19    bouyer 
   2081        1.5   mycroft 	/*
   2082        1.5   mycroft 	 * Update cluster summary information.
   2083        1.5   mycroft 	 */
   2084        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2085        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2086       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2087        1.5   mycroft 			break;
   2088       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2089        1.1   mycroft }
   2090        1.1   mycroft 
   2091        1.1   mycroft /*
   2092        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2093       1.81     perry  *
   2094        1.1   mycroft  * The form of the error message is:
   2095        1.1   mycroft  *	fs: error message
   2096        1.1   mycroft  */
   2097        1.1   mycroft static void
   2098       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2099        1.1   mycroft {
   2100        1.1   mycroft 
   2101       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2102       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2103        1.1   mycroft }
   2104