Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.101
      1  1.101        ad /*	$NetBSD: ffs_alloc.c,v 1.101 2007/10/08 18:01:28 ad Exp $	*/
      2    1.2       cgd 
      3    1.1   mycroft /*
      4   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5   1.60      fvdl  * All rights reserved.
      6   1.60      fvdl  *
      7   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11   1.60      fvdl  * research program
     12   1.60      fvdl  *
     13    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15    1.1   mycroft  *
     16    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17    1.1   mycroft  * modification, are permitted provided that the following conditions
     18    1.1   mycroft  * are met:
     19    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26    1.1   mycroft  *    without specific prior written permission.
     27    1.1   mycroft  *
     28    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38    1.1   mycroft  * SUCH DAMAGE.
     39    1.1   mycroft  *
     40   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41    1.1   mycroft  */
     42   1.53     lukem 
     43   1.53     lukem #include <sys/cdefs.h>
     44  1.101        ad __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.101 2007/10/08 18:01:28 ad Exp $");
     45   1.17       mrg 
     46   1.43       mrg #if defined(_KERNEL_OPT)
     47   1.27   thorpej #include "opt_ffs.h"
     48   1.21    scottr #include "opt_quota.h"
     49   1.22    scottr #endif
     50    1.1   mycroft 
     51    1.1   mycroft #include <sys/param.h>
     52    1.1   mycroft #include <sys/systm.h>
     53    1.1   mycroft #include <sys/buf.h>
     54    1.1   mycroft #include <sys/proc.h>
     55    1.1   mycroft #include <sys/vnode.h>
     56    1.1   mycroft #include <sys/mount.h>
     57    1.1   mycroft #include <sys/kernel.h>
     58    1.1   mycroft #include <sys/syslog.h>
     59   1.91      elad #include <sys/kauth.h>
     60   1.29       mrg 
     61   1.76   hannken #include <miscfs/specfs/specdev.h>
     62    1.1   mycroft #include <ufs/ufs/quota.h>
     63   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64    1.1   mycroft #include <ufs/ufs/inode.h>
     65    1.9  christos #include <ufs/ufs/ufs_extern.h>
     66   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67    1.1   mycroft 
     68    1.1   mycroft #include <ufs/ffs/fs.h>
     69    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70    1.1   mycroft 
     71   1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72   1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73   1.55      matt #ifdef XXXUBC
     74   1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75   1.55      matt #endif
     76   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     77   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     79   1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80   1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     81   1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83   1.85   thorpej 				      daddr_t, int);
     84   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85   1.55      matt #ifdef XXXUBC
     86   1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     87   1.18      fvdl #endif
     88   1.55      matt #endif
     89   1.23  drochner 
     90   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91   1.34  jdolecek int ffs_log_changeopt = 0;
     92   1.34  jdolecek 
     93   1.23  drochner /* in ffs_tables.c */
     94   1.40  jdolecek extern const int inside[], around[];
     95   1.40  jdolecek extern const u_char * const fragtbl[];
     96    1.1   mycroft 
     97    1.1   mycroft /*
     98    1.1   mycroft  * Allocate a block in the file system.
     99   1.81     perry  *
    100    1.1   mycroft  * The size of the requested block is given, which must be some
    101    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103    1.1   mycroft  * the following hierarchy is used to allocate a block:
    104    1.1   mycroft  *   1) allocate the requested block.
    105    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108    1.1   mycroft  *      available block is located.
    109   1.47       wiz  * If no block preference is given the following hierarchy is used
    110    1.1   mycroft  * to allocate a block:
    111    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112    1.1   mycroft  *      inode for the file.
    113    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114    1.1   mycroft  *      available block is located.
    115    1.1   mycroft  */
    116    1.9  christos int
    117   1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    118   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    119    1.1   mycroft {
    120  1.101        ad 	struct ufsmount *ump;
    121   1.62      fvdl 	struct fs *fs;
    122   1.58      fvdl 	daddr_t bno;
    123    1.9  christos 	int cg;
    124    1.9  christos #ifdef QUOTA
    125    1.9  christos 	int error;
    126    1.9  christos #endif
    127   1.81     perry 
    128   1.62      fvdl 	fs = ip->i_fs;
    129  1.101        ad 	ump = ip->i_ump;
    130  1.101        ad 
    131  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    132   1.62      fvdl 
    133   1.37       chs #ifdef UVM_PAGE_TRKOWN
    134   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    135   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    136   1.37       chs 		struct vm_page *pg;
    137   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    138   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    139   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    140   1.37       chs 
    141   1.37       chs 		simple_lock(&uobj->vmobjlock);
    142   1.37       chs 		while (off < endoff) {
    143   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    144   1.37       chs 			KASSERT(pg != NULL);
    145   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    146   1.37       chs 			off += PAGE_SIZE;
    147   1.37       chs 		}
    148   1.37       chs 		simple_unlock(&uobj->vmobjlock);
    149   1.37       chs 	}
    150   1.37       chs #endif
    151   1.37       chs 
    152    1.1   mycroft 	*bnp = 0;
    153    1.1   mycroft #ifdef DIAGNOSTIC
    154    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    155   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    156    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    157    1.1   mycroft 		panic("ffs_alloc: bad size");
    158    1.1   mycroft 	}
    159    1.1   mycroft 	if (cred == NOCRED)
    160   1.56    provos 		panic("ffs_alloc: missing credential");
    161    1.1   mycroft #endif /* DIAGNOSTIC */
    162    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    163    1.1   mycroft 		goto nospace;
    164   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    165   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    166    1.1   mycroft 		goto nospace;
    167    1.1   mycroft #ifdef QUOTA
    168  1.101        ad 	mutex_exit(&ump->um_lock);
    169   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    170    1.1   mycroft 		return (error);
    171  1.101        ad 	mutex_enter(&ump->um_lock);
    172    1.1   mycroft #endif
    173    1.1   mycroft 	if (bpref >= fs->fs_size)
    174    1.1   mycroft 		bpref = 0;
    175    1.1   mycroft 	if (bpref == 0)
    176    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    177    1.1   mycroft 	else
    178    1.1   mycroft 		cg = dtog(fs, bpref);
    179   1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    180    1.1   mycroft 	if (bno > 0) {
    181   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    182    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    183    1.1   mycroft 		*bnp = bno;
    184    1.1   mycroft 		return (0);
    185    1.1   mycroft 	}
    186    1.1   mycroft #ifdef QUOTA
    187    1.1   mycroft 	/*
    188    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    189    1.1   mycroft 	 */
    190   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    191    1.1   mycroft #endif
    192    1.1   mycroft nospace:
    193  1.101        ad 	mutex_exit(&ump->um_lock);
    194   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    195    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    196    1.1   mycroft 	return (ENOSPC);
    197    1.1   mycroft }
    198    1.1   mycroft 
    199    1.1   mycroft /*
    200    1.1   mycroft  * Reallocate a fragment to a bigger size
    201    1.1   mycroft  *
    202    1.1   mycroft  * The number and size of the old block is given, and a preference
    203    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    204    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    205    1.1   mycroft  * invoked to get an appropriate block.
    206    1.1   mycroft  */
    207    1.9  christos int
    208   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    209   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    210    1.1   mycroft {
    211  1.101        ad 	struct ufsmount *ump;
    212   1.62      fvdl 	struct fs *fs;
    213    1.1   mycroft 	struct buf *bp;
    214    1.1   mycroft 	int cg, request, error;
    215   1.58      fvdl 	daddr_t bprev, bno;
    216   1.25   thorpej 
    217   1.62      fvdl 	fs = ip->i_fs;
    218  1.101        ad 	ump = ip->i_ump;
    219  1.101        ad 
    220  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    221  1.101        ad 
    222   1.37       chs #ifdef UVM_PAGE_TRKOWN
    223   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    224   1.37       chs 		struct vm_page *pg;
    225   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    226   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    227   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    228   1.37       chs 
    229   1.37       chs 		simple_lock(&uobj->vmobjlock);
    230   1.37       chs 		while (off < endoff) {
    231   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    232   1.37       chs 			KASSERT(pg != NULL);
    233   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    234   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    235   1.37       chs 			off += PAGE_SIZE;
    236   1.37       chs 		}
    237   1.37       chs 		simple_unlock(&uobj->vmobjlock);
    238   1.37       chs 	}
    239   1.37       chs #endif
    240   1.37       chs 
    241    1.1   mycroft #ifdef DIAGNOSTIC
    242    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    243    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    244   1.13  christos 		printf(
    245    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    246    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    247    1.1   mycroft 		panic("ffs_realloccg: bad size");
    248    1.1   mycroft 	}
    249    1.1   mycroft 	if (cred == NOCRED)
    250   1.56    provos 		panic("ffs_realloccg: missing credential");
    251    1.1   mycroft #endif /* DIAGNOSTIC */
    252   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    253  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    254  1.101        ad 		mutex_exit(&ump->um_lock);
    255    1.1   mycroft 		goto nospace;
    256  1.101        ad 	}
    257   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    258   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    259   1.60      fvdl 	else
    260   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    261   1.60      fvdl 
    262   1.60      fvdl 	if (bprev == 0) {
    263   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    264   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    265    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    266    1.1   mycroft 	}
    267  1.101        ad 	mutex_exit(&ump->um_lock);
    268  1.101        ad 
    269    1.1   mycroft 	/*
    270    1.1   mycroft 	 * Allocate the extra space in the buffer.
    271    1.1   mycroft 	 */
    272   1.37       chs 	if (bpp != NULL &&
    273   1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    274  1.101        ad 		brelse(bp, 0);
    275    1.1   mycroft 		return (error);
    276    1.1   mycroft 	}
    277    1.1   mycroft #ifdef QUOTA
    278   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    279   1.44       chs 		if (bpp != NULL) {
    280  1.101        ad 			brelse(bp, 0);
    281   1.44       chs 		}
    282    1.1   mycroft 		return (error);
    283    1.1   mycroft 	}
    284    1.1   mycroft #endif
    285    1.1   mycroft 	/*
    286    1.1   mycroft 	 * Check for extension in the existing location.
    287    1.1   mycroft 	 */
    288    1.1   mycroft 	cg = dtog(fs, bprev);
    289  1.101        ad 	mutex_enter(&ump->um_lock);
    290   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    291   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    292    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    293   1.37       chs 
    294   1.37       chs 		if (bpp != NULL) {
    295   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    296   1.37       chs 				panic("bad blockno");
    297   1.72        pk 			allocbuf(bp, nsize, 1);
    298   1.37       chs 			bp->b_flags |= B_DONE;
    299   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    300   1.37       chs 			*bpp = bp;
    301   1.37       chs 		}
    302   1.37       chs 		if (blknop != NULL) {
    303   1.37       chs 			*blknop = bno;
    304   1.37       chs 		}
    305    1.1   mycroft 		return (0);
    306    1.1   mycroft 	}
    307    1.1   mycroft 	/*
    308    1.1   mycroft 	 * Allocate a new disk location.
    309    1.1   mycroft 	 */
    310    1.1   mycroft 	if (bpref >= fs->fs_size)
    311    1.1   mycroft 		bpref = 0;
    312    1.1   mycroft 	switch ((int)fs->fs_optim) {
    313    1.1   mycroft 	case FS_OPTSPACE:
    314    1.1   mycroft 		/*
    315   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    316   1.81     perry 		 * best use of space, we will waste time relocating it if
    317    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    318    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    319    1.1   mycroft 		 * to begin optimizing for time.
    320    1.1   mycroft 		 */
    321    1.1   mycroft 		request = nsize;
    322    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    323    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    324    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    325    1.1   mycroft 			break;
    326   1.34  jdolecek 
    327   1.34  jdolecek 		if (ffs_log_changeopt) {
    328   1.34  jdolecek 			log(LOG_NOTICE,
    329   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    330   1.34  jdolecek 				fs->fs_fsmnt);
    331   1.34  jdolecek 		}
    332   1.34  jdolecek 
    333    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    334    1.1   mycroft 		break;
    335    1.1   mycroft 	case FS_OPTTIME:
    336    1.1   mycroft 		/*
    337    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    338    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    339    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    340    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    341    1.1   mycroft 		 * above will be able to grow it in place without further
    342    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    343    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    344    1.1   mycroft 		 * optimizing for space.
    345    1.1   mycroft 		 */
    346    1.1   mycroft 		request = fs->fs_bsize;
    347    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    348    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    349    1.1   mycroft 			break;
    350   1.34  jdolecek 
    351   1.34  jdolecek 		if (ffs_log_changeopt) {
    352   1.34  jdolecek 			log(LOG_NOTICE,
    353   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    354   1.34  jdolecek 				fs->fs_fsmnt);
    355   1.34  jdolecek 		}
    356   1.34  jdolecek 
    357    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    358    1.1   mycroft 		break;
    359    1.1   mycroft 	default:
    360   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    361    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    362    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    363    1.1   mycroft 		/* NOTREACHED */
    364    1.1   mycroft 	}
    365   1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    366    1.1   mycroft 	if (bno > 0) {
    367   1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    368   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    369   1.76   hannken 			    ip->i_number);
    370    1.1   mycroft 		if (nsize < request)
    371   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    372   1.76   hannken 			    (long)(request - nsize), ip->i_number);
    373   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    374    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    375   1.37       chs 		if (bpp != NULL) {
    376   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    377   1.72        pk 			allocbuf(bp, nsize, 1);
    378   1.37       chs 			bp->b_flags |= B_DONE;
    379   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    380   1.37       chs 			*bpp = bp;
    381   1.37       chs 		}
    382   1.37       chs 		if (blknop != NULL) {
    383   1.37       chs 			*blknop = bno;
    384   1.37       chs 		}
    385    1.1   mycroft 		return (0);
    386    1.1   mycroft 	}
    387  1.101        ad 	mutex_exit(&ump->um_lock);
    388  1.101        ad 
    389    1.1   mycroft #ifdef QUOTA
    390    1.1   mycroft 	/*
    391    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    392    1.1   mycroft 	 */
    393   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    394    1.1   mycroft #endif
    395   1.37       chs 	if (bpp != NULL) {
    396  1.101        ad 		brelse(bp, 0);
    397   1.37       chs 	}
    398   1.37       chs 
    399    1.1   mycroft nospace:
    400    1.1   mycroft 	/*
    401    1.1   mycroft 	 * no space available
    402    1.1   mycroft 	 */
    403   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    404    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    405    1.1   mycroft 	return (ENOSPC);
    406    1.1   mycroft }
    407    1.1   mycroft 
    408   1.88      yamt #if 0
    409    1.1   mycroft /*
    410    1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    411    1.1   mycroft  *
    412    1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    413    1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    414   1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    415   1.60      fvdl  * from the end of the allocation for the logical block immediately
    416   1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    417   1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    418   1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    419   1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    420   1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    421   1.60      fvdl  * allocation will be used.
    422   1.60      fvdl 
    423    1.1   mycroft  */
    424   1.55      matt #ifdef XXXUBC
    425    1.3   mycroft #ifdef DEBUG
    426    1.1   mycroft #include <sys/sysctl.h>
    427    1.5   mycroft int prtrealloc = 0;
    428    1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    429    1.1   mycroft #endif
    430   1.55      matt #endif
    431    1.1   mycroft 
    432   1.60      fvdl /*
    433   1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    434   1.60      fvdl  */
    435   1.60      fvdl 
    436   1.18      fvdl int doasyncfree = 1;
    437   1.18      fvdl 
    438    1.1   mycroft int
    439   1.85   thorpej ffs_reallocblks(void *v)
    440    1.9  christos {
    441   1.55      matt #ifdef XXXUBC
    442    1.1   mycroft 	struct vop_reallocblks_args /* {
    443    1.1   mycroft 		struct vnode *a_vp;
    444    1.1   mycroft 		struct cluster_save *a_buflist;
    445    1.9  christos 	} */ *ap = v;
    446    1.1   mycroft 	struct fs *fs;
    447    1.1   mycroft 	struct inode *ip;
    448    1.1   mycroft 	struct vnode *vp;
    449    1.1   mycroft 	struct buf *sbp, *ebp;
    450   1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    451    1.1   mycroft 	struct cluster_save *buflist;
    452   1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    453    1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    454    1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    455  1.101        ad 	struct ufsmount *ump;
    456   1.55      matt #endif /* XXXUBC */
    457    1.1   mycroft 
    458   1.37       chs 	/* XXXUBC don't reallocblks for now */
    459   1.37       chs 	return ENOSPC;
    460   1.37       chs 
    461   1.55      matt #ifdef XXXUBC
    462    1.1   mycroft 	vp = ap->a_vp;
    463    1.1   mycroft 	ip = VTOI(vp);
    464    1.1   mycroft 	fs = ip->i_fs;
    465  1.101        ad 	ump = ip->i_ump;
    466    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    467    1.1   mycroft 		return (ENOSPC);
    468    1.1   mycroft 	buflist = ap->a_buflist;
    469    1.1   mycroft 	len = buflist->bs_nchildren;
    470    1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    471    1.1   mycroft 	end_lbn = start_lbn + len - 1;
    472    1.1   mycroft #ifdef DIAGNOSTIC
    473   1.18      fvdl 	for (i = 0; i < len; i++)
    474   1.18      fvdl 		if (!ffs_checkblk(ip,
    475   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    476   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    477    1.1   mycroft 	for (i = 1; i < len; i++)
    478    1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    479   1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    480   1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    481   1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    482   1.18      fvdl 	for (i = 1; i < len - 1; i++)
    483   1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    484   1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    485    1.1   mycroft #endif
    486    1.1   mycroft 	/*
    487    1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    488    1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    489    1.1   mycroft 	 * the previous cylinder group.
    490    1.1   mycroft 	 */
    491    1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    492    1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    493    1.1   mycroft 		return (ENOSPC);
    494    1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    495    1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    496    1.1   mycroft 		return (ENOSPC);
    497    1.1   mycroft 	/*
    498    1.1   mycroft 	 * Get the starting offset and block map for the first block.
    499    1.1   mycroft 	 */
    500    1.1   mycroft 	if (start_lvl == 0) {
    501   1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    502    1.1   mycroft 		soff = start_lbn;
    503    1.1   mycroft 	} else {
    504    1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    505    1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    506  1.101        ad 			brelse(sbp, 0);
    507    1.1   mycroft 			return (ENOSPC);
    508    1.1   mycroft 		}
    509   1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    510    1.1   mycroft 		soff = idp->in_off;
    511    1.1   mycroft 	}
    512    1.1   mycroft 	/*
    513    1.1   mycroft 	 * Find the preferred location for the cluster.
    514    1.1   mycroft 	 */
    515  1.101        ad 	mutex_enter(&ump->um_lock);
    516    1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    517    1.1   mycroft 	/*
    518    1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    519    1.1   mycroft 	 */
    520    1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    521    1.1   mycroft 		ssize = len;
    522    1.1   mycroft 	} else {
    523    1.1   mycroft #ifdef DIAGNOSTIC
    524    1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    525    1.1   mycroft 			panic("ffs_reallocblk: start == end");
    526    1.1   mycroft #endif
    527    1.1   mycroft 		ssize = len - (idp->in_off + 1);
    528    1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    529    1.1   mycroft 			goto fail;
    530   1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    531    1.1   mycroft 	}
    532    1.1   mycroft 	/*
    533    1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    534    1.1   mycroft 	 */
    535   1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    536  1.101        ad 	    len, ffs_clusteralloc)) == 0) {
    537  1.101        ad 		mutex_exit(&ump->um_lock);
    538    1.1   mycroft 		goto fail;
    539  1.101        ad 	}
    540    1.1   mycroft 	/*
    541    1.1   mycroft 	 * We have found a new contiguous block.
    542    1.1   mycroft 	 *
    543    1.1   mycroft 	 * First we have to replace the old block pointers with the new
    544    1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    545    1.1   mycroft 	 * with the file.
    546    1.1   mycroft 	 */
    547    1.5   mycroft #ifdef DEBUG
    548    1.5   mycroft 	if (prtrealloc)
    549   1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    550    1.5   mycroft 		    start_lbn, end_lbn);
    551    1.5   mycroft #endif
    552    1.1   mycroft 	blkno = newblk;
    553    1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    554   1.58      fvdl 		daddr_t ba;
    555   1.30      fvdl 
    556   1.30      fvdl 		if (i == ssize) {
    557    1.1   mycroft 			bap = ebap;
    558   1.30      fvdl 			soff = -i;
    559   1.30      fvdl 		}
    560   1.58      fvdl 		/* XXX ondisk32 */
    561   1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    562    1.1   mycroft #ifdef DIAGNOSTIC
    563   1.18      fvdl 		if (!ffs_checkblk(ip,
    564   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    565   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    566   1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    567    1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    568    1.1   mycroft #endif
    569    1.5   mycroft #ifdef DEBUG
    570    1.5   mycroft 		if (prtrealloc)
    571   1.30      fvdl 			printf(" %d,", ba);
    572    1.5   mycroft #endif
    573   1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    574   1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    575   1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    576   1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    577   1.30      fvdl  				    buflist->bs_children[i]);
    578   1.30      fvdl  			else
    579   1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    580   1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    581   1.30      fvdl  				    ba, buflist->bs_children[i]);
    582   1.30      fvdl  		}
    583   1.58      fvdl 		/* XXX ondisk32 */
    584   1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    585    1.1   mycroft 	}
    586    1.1   mycroft 	/*
    587    1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    588    1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    589    1.1   mycroft 	 * the old block values may have been written to disk. In practise
    590   1.81     perry 	 * they are almost never written, but if we are concerned about
    591    1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    592    1.1   mycroft 	 *
    593    1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    594    1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    595    1.1   mycroft 	 * been written. The flag should be set when the cluster is
    596    1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    597    1.1   mycroft 	 * We can then check below to see if it is set, and do the
    598    1.1   mycroft 	 * synchronous write only when it has been cleared.
    599    1.1   mycroft 	 */
    600   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    601    1.1   mycroft 		if (doasyncfree)
    602    1.1   mycroft 			bdwrite(sbp);
    603    1.1   mycroft 		else
    604    1.1   mycroft 			bwrite(sbp);
    605    1.1   mycroft 	} else {
    606    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    607   1.28   mycroft 		if (!doasyncfree)
    608   1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    609    1.1   mycroft 	}
    610   1.25   thorpej 	if (ssize < len) {
    611    1.1   mycroft 		if (doasyncfree)
    612    1.1   mycroft 			bdwrite(ebp);
    613    1.1   mycroft 		else
    614    1.1   mycroft 			bwrite(ebp);
    615   1.25   thorpej 	}
    616    1.1   mycroft 	/*
    617    1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    618    1.1   mycroft 	 */
    619    1.5   mycroft #ifdef DEBUG
    620    1.5   mycroft 	if (prtrealloc)
    621   1.13  christos 		printf("\n\tnew:");
    622    1.5   mycroft #endif
    623    1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    624   1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    625   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    626   1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    627   1.76   hannken 			    fs->fs_bsize, ip->i_number);
    628    1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    629    1.5   mycroft #ifdef DEBUG
    630   1.18      fvdl 		if (!ffs_checkblk(ip,
    631   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    632   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    633    1.5   mycroft 		if (prtrealloc)
    634   1.13  christos 			printf(" %d,", blkno);
    635    1.5   mycroft #endif
    636    1.5   mycroft 	}
    637    1.5   mycroft #ifdef DEBUG
    638    1.5   mycroft 	if (prtrealloc) {
    639    1.5   mycroft 		prtrealloc--;
    640   1.13  christos 		printf("\n");
    641    1.1   mycroft 	}
    642    1.5   mycroft #endif
    643    1.1   mycroft 	return (0);
    644    1.1   mycroft 
    645    1.1   mycroft fail:
    646    1.1   mycroft 	if (ssize < len)
    647  1.101        ad 		brelse(ebp, 0);
    648   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    649  1.101        ad 		brelse(sbp, 0);
    650    1.1   mycroft 	return (ENOSPC);
    651   1.55      matt #endif /* XXXUBC */
    652    1.1   mycroft }
    653   1.88      yamt #endif /* 0 */
    654    1.1   mycroft 
    655    1.1   mycroft /*
    656    1.1   mycroft  * Allocate an inode in the file system.
    657   1.81     perry  *
    658    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    659    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    660    1.1   mycroft  *   1) allocate the preferred inode.
    661    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    662    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    663    1.1   mycroft  *      available inode is located.
    664   1.47       wiz  * If no inode preference is given the following hierarchy is used
    665    1.1   mycroft  * to allocate an inode:
    666    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    667    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    668    1.1   mycroft  *      available inode is located.
    669    1.1   mycroft  */
    670    1.9  christos int
    671   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    672   1.88      yamt     struct vnode **vpp)
    673    1.9  christos {
    674  1.101        ad 	struct ufsmount *ump;
    675   1.33  augustss 	struct inode *pip;
    676   1.33  augustss 	struct fs *fs;
    677   1.33  augustss 	struct inode *ip;
    678   1.60      fvdl 	struct timespec ts;
    679    1.1   mycroft 	ino_t ino, ipref;
    680    1.1   mycroft 	int cg, error;
    681   1.81     perry 
    682   1.88      yamt 	*vpp = NULL;
    683    1.1   mycroft 	pip = VTOI(pvp);
    684    1.1   mycroft 	fs = pip->i_fs;
    685  1.101        ad 	ump = pip->i_ump;
    686  1.101        ad 
    687  1.101        ad 	mutex_enter(&ump->um_lock);
    688    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    689    1.1   mycroft 		goto noinodes;
    690    1.1   mycroft 
    691    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    692   1.50     lukem 		ipref = ffs_dirpref(pip);
    693   1.50     lukem 	else
    694   1.50     lukem 		ipref = pip->i_number;
    695    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    696    1.1   mycroft 		ipref = 0;
    697    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    698   1.50     lukem 	/*
    699   1.50     lukem 	 * Track number of dirs created one after another
    700   1.50     lukem 	 * in a same cg without intervening by files.
    701   1.50     lukem 	 */
    702   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    703   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    704   1.50     lukem 			fs->fs_contigdirs[cg]++;
    705   1.50     lukem 	} else {
    706   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    707   1.50     lukem 			fs->fs_contigdirs[cg]--;
    708   1.50     lukem 	}
    709   1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    710    1.1   mycroft 	if (ino == 0)
    711    1.1   mycroft 		goto noinodes;
    712   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    713    1.1   mycroft 	if (error) {
    714   1.88      yamt 		ffs_vfree(pvp, ino, mode);
    715    1.1   mycroft 		return (error);
    716    1.1   mycroft 	}
    717   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    718   1.88      yamt 	ip = VTOI(*vpp);
    719   1.60      fvdl 	if (ip->i_mode) {
    720   1.60      fvdl #if 0
    721   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    722   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    723   1.60      fvdl #else
    724   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    725   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    726   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    727   1.60      fvdl 		printf("size %llx blocks %llx\n",
    728   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    729   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    730   1.86  christos 		    (unsigned long long)ipref);
    731   1.60      fvdl #if 0
    732   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    733   1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    734   1.60      fvdl #endif
    735   1.60      fvdl 
    736   1.60      fvdl #endif
    737    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    738    1.1   mycroft 	}
    739   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    740   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    741   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    742   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    743    1.1   mycroft 	}
    744   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    745   1.61      fvdl 	ip->i_flags = 0;
    746   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    747    1.1   mycroft 	/*
    748    1.1   mycroft 	 * Set up a new generation number for this inode.
    749    1.1   mycroft 	 */
    750   1.60      fvdl 	ip->i_gen++;
    751   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    752   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    753   1.93      yamt 		vfs_timestamp(&ts);
    754   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    755   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    756   1.60      fvdl 	}
    757    1.1   mycroft 	return (0);
    758    1.1   mycroft noinodes:
    759  1.101        ad 	mutex_exit(&ump->um_lock);
    760   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    761    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    762    1.1   mycroft 	return (ENOSPC);
    763    1.1   mycroft }
    764    1.1   mycroft 
    765    1.1   mycroft /*
    766   1.50     lukem  * Find a cylinder group in which to place a directory.
    767   1.42  sommerfe  *
    768   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    769   1.50     lukem  * directory inode in the same cylinder group as its parent
    770   1.50     lukem  * directory, but also to reserve space for its files inodes
    771   1.50     lukem  * and data. Restrict the number of directories which may be
    772   1.50     lukem  * allocated one after another in the same cylinder group
    773   1.50     lukem  * without intervening allocation of files.
    774   1.42  sommerfe  *
    775   1.50     lukem  * If we allocate a first level directory then force allocation
    776   1.50     lukem  * in another cylinder group.
    777    1.1   mycroft  */
    778    1.1   mycroft static ino_t
    779   1.85   thorpej ffs_dirpref(struct inode *pip)
    780    1.1   mycroft {
    781   1.50     lukem 	register struct fs *fs;
    782   1.74     soren 	int cg, prefcg;
    783   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    784   1.89       dsl 	int avgifree, avgbfree, avgndir;
    785   1.50     lukem 	int minifree, minbfree, maxndir;
    786   1.50     lukem 	int mincg, minndir;
    787   1.50     lukem 	int maxcontigdirs;
    788   1.50     lukem 
    789  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    790  1.101        ad 
    791   1.50     lukem 	fs = pip->i_fs;
    792    1.1   mycroft 
    793    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    794   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    795   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    796   1.50     lukem 
    797   1.50     lukem 	/*
    798   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    799   1.50     lukem 	 */
    800   1.50     lukem 	if (ITOV(pip)->v_flag & VROOT) {
    801   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    802   1.50     lukem 		mincg = prefcg;
    803   1.50     lukem 		minndir = fs->fs_ipg;
    804   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    805   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    806   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    807   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    808   1.42  sommerfe 				mincg = cg;
    809   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    810   1.42  sommerfe 			}
    811   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    812   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    813   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    814   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    815   1.50     lukem 				mincg = cg;
    816   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    817   1.42  sommerfe 			}
    818   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    819   1.42  sommerfe 	}
    820   1.50     lukem 
    821   1.50     lukem 	/*
    822   1.50     lukem 	 * Count various limits which used for
    823   1.50     lukem 	 * optimal allocation of a directory inode.
    824   1.50     lukem 	 */
    825   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    826   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    827   1.50     lukem 	if (minifree < 0)
    828   1.50     lukem 		minifree = 0;
    829   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    830   1.50     lukem 	if (minbfree < 0)
    831   1.50     lukem 		minbfree = 0;
    832   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    833   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    834   1.89       dsl 	if (avgndir != 0) {
    835   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    836   1.89       dsl 		if (dirsize < curdsz)
    837   1.89       dsl 			dirsize = curdsz;
    838   1.89       dsl 	}
    839   1.89       dsl 	if (cgsize < dirsize * 255)
    840   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    841   1.89       dsl 	else
    842   1.89       dsl 		maxcontigdirs = 255;
    843   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    844   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    845   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    846   1.50     lukem 	if (maxcontigdirs == 0)
    847   1.50     lukem 		maxcontigdirs = 1;
    848   1.50     lukem 
    849   1.50     lukem 	/*
    850   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    851   1.50     lukem 	 * regular files, but only if we have no deficit in
    852   1.50     lukem 	 * inodes or space.
    853   1.50     lukem 	 */
    854   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    855   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    856   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    857   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    858   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    859   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    860   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    861   1.50     lukem 		}
    862   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    863   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    864   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    865   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    866   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    867   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    868   1.50     lukem 		}
    869   1.50     lukem 	/*
    870   1.50     lukem 	 * This is a backstop when we are deficient in space.
    871   1.50     lukem 	 */
    872   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    873   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    874   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    875   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    876   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    877   1.50     lukem 			break;
    878   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    879    1.1   mycroft }
    880    1.1   mycroft 
    881    1.1   mycroft /*
    882    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    883    1.1   mycroft  * logically divided into sections. The first section is composed of the
    884    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    885   1.81     perry  *
    886    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    887    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    888    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    889    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    890    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    891    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    892    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    893    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    894    1.1   mycroft  * continues until a cylinder group with greater than the average number
    895    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    896    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    897    1.1   mycroft  * here a best guess is made based upon the logical block number being
    898    1.1   mycroft  * allocated.
    899   1.81     perry  *
    900    1.1   mycroft  * If a section is already partially allocated, the policy is to
    901    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    902   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    903   1.60      fvdl  * contigously if possible.
    904    1.1   mycroft  */
    905   1.58      fvdl daddr_t
    906   1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    907   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    908    1.1   mycroft {
    909   1.33  augustss 	struct fs *fs;
    910   1.33  augustss 	int cg;
    911    1.1   mycroft 	int avgbfree, startcg;
    912    1.1   mycroft 
    913  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    914  1.101        ad 
    915    1.1   mycroft 	fs = ip->i_fs;
    916    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    917   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    918    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    919    1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    920    1.1   mycroft 		}
    921    1.1   mycroft 		/*
    922    1.1   mycroft 		 * Find a cylinder with greater than average number of
    923    1.1   mycroft 		 * unused data blocks.
    924    1.1   mycroft 		 */
    925    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    926    1.1   mycroft 			startcg =
    927    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    928    1.1   mycroft 		else
    929   1.19    bouyer 			startcg = dtog(fs,
    930   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    931    1.1   mycroft 		startcg %= fs->fs_ncg;
    932    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    933    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    934    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    935    1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    936    1.1   mycroft 			}
    937   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    938    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    939    1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    940    1.1   mycroft 			}
    941   1.35   thorpej 		return (0);
    942    1.1   mycroft 	}
    943    1.1   mycroft 	/*
    944   1.60      fvdl 	 * We just always try to lay things out contiguously.
    945   1.60      fvdl 	 */
    946   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    947   1.60      fvdl }
    948   1.60      fvdl 
    949   1.60      fvdl daddr_t
    950   1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    951   1.60      fvdl {
    952   1.60      fvdl 	struct fs *fs;
    953   1.60      fvdl 	int cg;
    954   1.60      fvdl 	int avgbfree, startcg;
    955   1.60      fvdl 
    956  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    957  1.101        ad 
    958   1.60      fvdl 	fs = ip->i_fs;
    959   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    960   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    961   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    962   1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    963   1.60      fvdl 		}
    964    1.1   mycroft 		/*
    965   1.60      fvdl 		 * Find a cylinder with greater than average number of
    966   1.60      fvdl 		 * unused data blocks.
    967    1.1   mycroft 		 */
    968   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    969   1.60      fvdl 			startcg =
    970   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    971   1.60      fvdl 		else
    972   1.60      fvdl 			startcg = dtog(fs,
    973   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    974   1.60      fvdl 		startcg %= fs->fs_ncg;
    975   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    976   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    977   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    978   1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    979   1.60      fvdl 			}
    980   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    981   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    982   1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    983   1.60      fvdl 			}
    984   1.60      fvdl 		return (0);
    985   1.60      fvdl 	}
    986   1.60      fvdl 	/*
    987   1.60      fvdl 	 * We just always try to lay things out contiguously.
    988   1.60      fvdl 	 */
    989   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    990    1.1   mycroft }
    991    1.1   mycroft 
    992   1.60      fvdl 
    993    1.1   mycroft /*
    994    1.1   mycroft  * Implement the cylinder overflow algorithm.
    995    1.1   mycroft  *
    996    1.1   mycroft  * The policy implemented by this algorithm is:
    997    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    998    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    999    1.1   mycroft  *   3) brute force search for a free block.
   1000    1.1   mycroft  */
   1001    1.1   mycroft /*VARARGS5*/
   1002   1.58      fvdl static daddr_t
   1003   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1004   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1005   1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1006    1.1   mycroft {
   1007   1.33  augustss 	struct fs *fs;
   1008   1.58      fvdl 	daddr_t result;
   1009    1.1   mycroft 	int i, icg = cg;
   1010    1.1   mycroft 
   1011    1.1   mycroft 	fs = ip->i_fs;
   1012    1.1   mycroft 	/*
   1013    1.1   mycroft 	 * 1: preferred cylinder group
   1014    1.1   mycroft 	 */
   1015    1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1016    1.1   mycroft 	if (result)
   1017    1.1   mycroft 		return (result);
   1018    1.1   mycroft 	/*
   1019    1.1   mycroft 	 * 2: quadratic rehash
   1020    1.1   mycroft 	 */
   1021    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1022    1.1   mycroft 		cg += i;
   1023    1.1   mycroft 		if (cg >= fs->fs_ncg)
   1024    1.1   mycroft 			cg -= fs->fs_ncg;
   1025    1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1026    1.1   mycroft 		if (result)
   1027    1.1   mycroft 			return (result);
   1028    1.1   mycroft 	}
   1029    1.1   mycroft 	/*
   1030    1.1   mycroft 	 * 3: brute force search
   1031    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1032    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1033    1.1   mycroft 	 */
   1034    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1035    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1036    1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1037    1.1   mycroft 		if (result)
   1038    1.1   mycroft 			return (result);
   1039    1.1   mycroft 		cg++;
   1040    1.1   mycroft 		if (cg == fs->fs_ncg)
   1041    1.1   mycroft 			cg = 0;
   1042    1.1   mycroft 	}
   1043   1.35   thorpej 	return (0);
   1044    1.1   mycroft }
   1045    1.1   mycroft 
   1046    1.1   mycroft /*
   1047    1.1   mycroft  * Determine whether a fragment can be extended.
   1048    1.1   mycroft  *
   1049   1.81     perry  * Check to see if the necessary fragments are available, and
   1050    1.1   mycroft  * if they are, allocate them.
   1051    1.1   mycroft  */
   1052   1.58      fvdl static daddr_t
   1053   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1054    1.1   mycroft {
   1055  1.101        ad 	struct ufsmount *ump;
   1056   1.33  augustss 	struct fs *fs;
   1057   1.33  augustss 	struct cg *cgp;
   1058    1.1   mycroft 	struct buf *bp;
   1059   1.58      fvdl 	daddr_t bno;
   1060    1.1   mycroft 	int frags, bbase;
   1061    1.1   mycroft 	int i, error;
   1062   1.62      fvdl 	u_int8_t *blksfree;
   1063    1.1   mycroft 
   1064    1.1   mycroft 	fs = ip->i_fs;
   1065  1.101        ad 	ump = ip->i_ump;
   1066  1.101        ad 
   1067  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1068  1.101        ad 
   1069    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1070   1.35   thorpej 		return (0);
   1071    1.1   mycroft 	frags = numfrags(fs, nsize);
   1072    1.1   mycroft 	bbase = fragnum(fs, bprev);
   1073    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1074    1.1   mycroft 		/* cannot extend across a block boundary */
   1075   1.35   thorpej 		return (0);
   1076    1.1   mycroft 	}
   1077  1.101        ad 	mutex_exit(&ump->um_lock);
   1078    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1079    1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1080  1.101        ad 	if (error)
   1081  1.101        ad 		goto fail;
   1082    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1083  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1084  1.101        ad 		goto fail;
   1085   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1086   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1087   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1088   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1089    1.1   mycroft 	bno = dtogd(fs, bprev);
   1090   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1091    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1092  1.101        ad 		if (isclr(blksfree, bno + i))
   1093  1.101        ad 			goto fail;
   1094    1.1   mycroft 	/*
   1095    1.1   mycroft 	 * the current fragment can be extended
   1096    1.1   mycroft 	 * deduct the count on fragment being extended into
   1097    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1098    1.1   mycroft 	 * allocate the extended piece
   1099    1.1   mycroft 	 */
   1100    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1101   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1102    1.1   mycroft 			break;
   1103   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1104    1.1   mycroft 	if (i != frags)
   1105   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1106  1.101        ad 	mutex_enter(&ump->um_lock);
   1107    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1108   1.62      fvdl 		clrbit(blksfree, bno + i);
   1109   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1110    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1111    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1112    1.1   mycroft 	}
   1113    1.1   mycroft 	fs->fs_fmod = 1;
   1114  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1115  1.101        ad 	mutex_exit(&ump->um_lock);
   1116   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1117   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1118    1.1   mycroft 	bdwrite(bp);
   1119    1.1   mycroft 	return (bprev);
   1120  1.101        ad 
   1121  1.101        ad  fail:
   1122  1.101        ad  	brelse(bp, 0);
   1123  1.101        ad  	mutex_enter(&ump->um_lock);
   1124  1.101        ad  	return (0);
   1125    1.1   mycroft }
   1126    1.1   mycroft 
   1127    1.1   mycroft /*
   1128    1.1   mycroft  * Determine whether a block can be allocated.
   1129    1.1   mycroft  *
   1130    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1131    1.1   mycroft  * and if it is, allocate it.
   1132    1.1   mycroft  */
   1133   1.58      fvdl static daddr_t
   1134   1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1135    1.1   mycroft {
   1136  1.101        ad 	struct ufsmount *ump;
   1137   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1138   1.30      fvdl 	struct cg *cgp;
   1139    1.1   mycroft 	struct buf *bp;
   1140   1.60      fvdl 	int32_t bno;
   1141   1.60      fvdl 	daddr_t blkno;
   1142   1.30      fvdl 	int error, frags, allocsiz, i;
   1143   1.62      fvdl 	u_int8_t *blksfree;
   1144   1.30      fvdl #ifdef FFS_EI
   1145   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1146   1.30      fvdl #endif
   1147    1.1   mycroft 
   1148  1.101        ad 	ump = ip->i_ump;
   1149  1.101        ad 
   1150  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1151  1.101        ad 
   1152    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1153   1.35   thorpej 		return (0);
   1154  1.101        ad 	mutex_exit(&ump->um_lock);
   1155    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1156    1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1157  1.101        ad 	if (error)
   1158  1.101        ad 		goto fail;
   1159    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1160   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1161  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1162  1.101        ad 		goto fail;
   1163   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1164   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1165   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1166   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1167    1.1   mycroft 	if (size == fs->fs_bsize) {
   1168  1.101        ad 		mutex_enter(&ump->um_lock);
   1169   1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1170   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1171  1.101        ad 		mutex_exit(&ump->um_lock);
   1172    1.1   mycroft 		bdwrite(bp);
   1173   1.60      fvdl 		return (blkno);
   1174    1.1   mycroft 	}
   1175    1.1   mycroft 	/*
   1176    1.1   mycroft 	 * check to see if any fragments are already available
   1177    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1178    1.1   mycroft 	 * it down to a smaller size if necessary
   1179    1.1   mycroft 	 */
   1180   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1181    1.1   mycroft 	frags = numfrags(fs, size);
   1182    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1183    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1184    1.1   mycroft 			break;
   1185    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1186    1.1   mycroft 		/*
   1187   1.81     perry 		 * no fragments were available, so a block will be
   1188    1.1   mycroft 		 * allocated, and hacked up
   1189    1.1   mycroft 		 */
   1190  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1191  1.101        ad 			goto fail;
   1192  1.101        ad 		mutex_enter(&ump->um_lock);
   1193   1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1194   1.60      fvdl 		bno = dtogd(fs, blkno);
   1195    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1196   1.62      fvdl 			setbit(blksfree, bno + i);
   1197    1.1   mycroft 		i = fs->fs_frag - frags;
   1198   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1199    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1200   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1201    1.1   mycroft 		fs->fs_fmod = 1;
   1202   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1203   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1204  1.101        ad 		mutex_exit(&ump->um_lock);
   1205    1.1   mycroft 		bdwrite(bp);
   1206   1.60      fvdl 		return (blkno);
   1207    1.1   mycroft 	}
   1208   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1209   1.30      fvdl #if 0
   1210   1.30      fvdl 	/*
   1211   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1212   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1213   1.30      fvdl 	 */
   1214  1.101        ad 	if (bno < 0)
   1215  1.101        ad 		goto fail;
   1216   1.30      fvdl #endif
   1217    1.1   mycroft 	for (i = 0; i < frags; i++)
   1218   1.62      fvdl 		clrbit(blksfree, bno + i);
   1219  1.101        ad 	mutex_enter(&ump->um_lock);
   1220   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1221    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1222    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1223    1.1   mycroft 	fs->fs_fmod = 1;
   1224   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1225    1.1   mycroft 	if (frags != allocsiz)
   1226   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1227   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1228  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1229  1.101        ad 	mutex_exit(&ump->um_lock);
   1230   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1231   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1232    1.1   mycroft 	bdwrite(bp);
   1233   1.30      fvdl 	return blkno;
   1234  1.101        ad 
   1235  1.101        ad  fail:
   1236  1.101        ad  	brelse(bp, 0);
   1237  1.101        ad  	mutex_enter(&ump->um_lock);
   1238  1.101        ad  	return (0);
   1239    1.1   mycroft }
   1240    1.1   mycroft 
   1241    1.1   mycroft /*
   1242    1.1   mycroft  * Allocate a block in a cylinder group.
   1243    1.1   mycroft  *
   1244    1.1   mycroft  * This algorithm implements the following policy:
   1245    1.1   mycroft  *   1) allocate the requested block.
   1246    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1247    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1248    1.1   mycroft  *      specified cylinder group.
   1249    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1250    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1251    1.1   mycroft  */
   1252   1.58      fvdl static daddr_t
   1253   1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1254    1.1   mycroft {
   1255  1.101        ad 	struct ufsmount *ump;
   1256   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1257   1.30      fvdl 	struct cg *cgp;
   1258   1.60      fvdl 	daddr_t blkno;
   1259   1.60      fvdl 	int32_t bno;
   1260   1.60      fvdl 	u_int8_t *blksfree;
   1261   1.30      fvdl #ifdef FFS_EI
   1262   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1263   1.30      fvdl #endif
   1264    1.1   mycroft 
   1265  1.101        ad 	ump = ip->i_ump;
   1266  1.101        ad 
   1267  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1268  1.101        ad 
   1269   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1270   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1271   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1272   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1273   1.60      fvdl 	} else {
   1274   1.60      fvdl 		bpref = blknum(fs, bpref);
   1275   1.60      fvdl 		bno = dtogd(fs, bpref);
   1276    1.1   mycroft 		/*
   1277   1.60      fvdl 		 * if the requested block is available, use it
   1278    1.1   mycroft 		 */
   1279   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1280   1.60      fvdl 			goto gotit;
   1281    1.1   mycroft 	}
   1282    1.1   mycroft 	/*
   1283   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1284    1.1   mycroft 	 */
   1285   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1286    1.1   mycroft 	if (bno < 0)
   1287   1.35   thorpej 		return (0);
   1288   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1289    1.1   mycroft gotit:
   1290    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1291   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1292   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1293   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1294    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1295   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1296   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1297   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1298   1.73       dbj 		int cylno;
   1299   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1300   1.75       dbj 		KASSERT(cylno >= 0);
   1301   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1302   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1303   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1304   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1305   1.73       dbj 		    needswap);
   1306   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1307   1.73       dbj 	}
   1308    1.1   mycroft 	fs->fs_fmod = 1;
   1309   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1310  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1311  1.101        ad 		mutex_exit(&ump->um_lock);
   1312   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1313  1.101        ad 		mutex_enter(&ump->um_lock);
   1314  1.101        ad 	}
   1315   1.30      fvdl 	return (blkno);
   1316    1.1   mycroft }
   1317    1.1   mycroft 
   1318   1.55      matt #ifdef XXXUBC
   1319    1.1   mycroft /*
   1320    1.1   mycroft  * Determine whether a cluster can be allocated.
   1321    1.1   mycroft  *
   1322    1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1323    1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1324    1.1   mycroft  * take the first one that we find following bpref.
   1325    1.1   mycroft  */
   1326   1.60      fvdl 
   1327   1.60      fvdl /*
   1328   1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1329   1.60      fvdl  */
   1330   1.58      fvdl static daddr_t
   1331   1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1332    1.1   mycroft {
   1333  1.101        ad 	struct ufsmount *ump;
   1334   1.33  augustss 	struct fs *fs;
   1335   1.33  augustss 	struct cg *cgp;
   1336    1.1   mycroft 	struct buf *bp;
   1337   1.18      fvdl 	int i, got, run, bno, bit, map;
   1338    1.1   mycroft 	u_char *mapp;
   1339    1.5   mycroft 	int32_t *lp;
   1340    1.1   mycroft 
   1341    1.1   mycroft 	fs = ip->i_fs;
   1342  1.101        ad 	ump = ip->i_ump;
   1343  1.101        ad 
   1344  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1345    1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1346   1.35   thorpej 		return (0);
   1347  1.101        ad 	mutex_exit(&ump->um_lock);
   1348    1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1349    1.1   mycroft 	    NOCRED, &bp))
   1350    1.1   mycroft 		goto fail;
   1351    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1352   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1353    1.1   mycroft 		goto fail;
   1354    1.1   mycroft 	/*
   1355    1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1356    1.1   mycroft 	 * available in this cylinder group.
   1357    1.1   mycroft 	 */
   1358   1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1359    1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1360   1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1361    1.1   mycroft 			break;
   1362    1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1363    1.5   mycroft 		/*
   1364    1.5   mycroft 		 * This is the first time looking for a cluster in this
   1365    1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1366    1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1367    1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1368    1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1369    1.5   mycroft 		 */
   1370   1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1371    1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1372   1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1373    1.5   mycroft 				break;
   1374  1.101        ad 		mutex_enter(&ump->um_lock);
   1375    1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1376  1.101        ad 		mutex_exit(&ump->um_lock);
   1377    1.1   mycroft 		goto fail;
   1378    1.5   mycroft 	}
   1379    1.1   mycroft 	/*
   1380    1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1381    1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1382    1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1383    1.1   mycroft 	 * block allocation. We do not search before the current
   1384    1.1   mycroft 	 * preference point as we do not want to allocate a block
   1385    1.1   mycroft 	 * that is allocated before the previous one (as we will
   1386    1.1   mycroft 	 * then have to wait for another pass of the elevator
   1387    1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1388    1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1389    1.1   mycroft 	 */
   1390    1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1391    1.1   mycroft 		bpref = 0;
   1392    1.1   mycroft 	else
   1393    1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1394   1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1395    1.1   mycroft 	map = *mapp++;
   1396    1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1397   1.19    bouyer 	for (run = 0, got = bpref;
   1398   1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1399    1.1   mycroft 		if ((map & bit) == 0) {
   1400    1.1   mycroft 			run = 0;
   1401    1.1   mycroft 		} else {
   1402    1.1   mycroft 			run++;
   1403    1.1   mycroft 			if (run == len)
   1404    1.1   mycroft 				break;
   1405    1.1   mycroft 		}
   1406   1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1407    1.1   mycroft 			bit <<= 1;
   1408    1.1   mycroft 		} else {
   1409    1.1   mycroft 			map = *mapp++;
   1410    1.1   mycroft 			bit = 1;
   1411    1.1   mycroft 		}
   1412    1.1   mycroft 	}
   1413   1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1414    1.1   mycroft 		goto fail;
   1415    1.1   mycroft 	/*
   1416    1.1   mycroft 	 * Allocate the cluster that we have found.
   1417    1.1   mycroft 	 */
   1418   1.30      fvdl #ifdef DIAGNOSTIC
   1419   1.18      fvdl 	for (i = 1; i <= len; i++)
   1420   1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1421   1.30      fvdl 		    got - run + i))
   1422   1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1423   1.30      fvdl #endif
   1424   1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1425   1.18      fvdl 	if (dtog(fs, bno) != cg)
   1426   1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1427    1.1   mycroft 	len = blkstofrags(fs, len);
   1428  1.101        ad 	mutex_enter(&ump->um_lock);
   1429    1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1430   1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1431    1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1432   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1433  1.101        ad 	mutex_exit(&ump->um_lock);
   1434    1.8       cgd 	bdwrite(bp);
   1435    1.1   mycroft 	return (bno);
   1436    1.1   mycroft 
   1437    1.1   mycroft fail:
   1438  1.101        ad 	brelse(bp, 0);
   1439  1.101        ad 	mutex_enter(&ump->um_lock);
   1440    1.1   mycroft 	return (0);
   1441    1.1   mycroft }
   1442   1.55      matt #endif /* XXXUBC */
   1443    1.1   mycroft 
   1444    1.1   mycroft /*
   1445    1.1   mycroft  * Determine whether an inode can be allocated.
   1446    1.1   mycroft  *
   1447    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1448    1.1   mycroft  * allocate it using the following policy:
   1449    1.1   mycroft  *   1) allocate the requested inode.
   1450    1.1   mycroft  *   2) allocate the next available inode after the requested
   1451    1.1   mycroft  *      inode in the specified cylinder group.
   1452    1.1   mycroft  */
   1453   1.58      fvdl static daddr_t
   1454   1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1455    1.1   mycroft {
   1456  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1457   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1458   1.33  augustss 	struct cg *cgp;
   1459   1.60      fvdl 	struct buf *bp, *ibp;
   1460   1.60      fvdl 	u_int8_t *inosused;
   1461    1.1   mycroft 	int error, start, len, loc, map, i;
   1462   1.60      fvdl 	int32_t initediblk;
   1463   1.60      fvdl 	struct ufs2_dinode *dp2;
   1464   1.19    bouyer #ifdef FFS_EI
   1465   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1466   1.19    bouyer #endif
   1467    1.1   mycroft 
   1468  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1469  1.101        ad 
   1470    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1471   1.35   thorpej 		return (0);
   1472  1.101        ad 	mutex_exit(&ump->um_lock);
   1473    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1474    1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1475  1.101        ad 	if (error)
   1476  1.101        ad 		goto fail;
   1477    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1478  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1479  1.101        ad 		goto fail;
   1480   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1481   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1482   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1483   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1484   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1485    1.1   mycroft 	if (ipref) {
   1486    1.1   mycroft 		ipref %= fs->fs_ipg;
   1487   1.60      fvdl 		if (isclr(inosused, ipref))
   1488    1.1   mycroft 			goto gotit;
   1489    1.1   mycroft 	}
   1490   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1491   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1492   1.19    bouyer 		NBBY);
   1493   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1494    1.1   mycroft 	if (loc == 0) {
   1495    1.1   mycroft 		len = start + 1;
   1496    1.1   mycroft 		start = 0;
   1497   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1498    1.1   mycroft 		if (loc == 0) {
   1499   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1500   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1501   1.19    bouyer 				fs->fs_fsmnt);
   1502    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1503    1.1   mycroft 			/* NOTREACHED */
   1504    1.1   mycroft 		}
   1505    1.1   mycroft 	}
   1506    1.1   mycroft 	i = start + len - loc;
   1507   1.60      fvdl 	map = inosused[i];
   1508    1.1   mycroft 	ipref = i * NBBY;
   1509    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1510    1.1   mycroft 		if ((map & i) == 0) {
   1511   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1512    1.1   mycroft 			goto gotit;
   1513    1.1   mycroft 		}
   1514    1.1   mycroft 	}
   1515   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1516    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1517    1.1   mycroft 	/* NOTREACHED */
   1518    1.1   mycroft gotit:
   1519   1.60      fvdl 	/*
   1520   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1521   1.60      fvdl 	 */
   1522   1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1523   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1524   1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1525   1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1526   1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1527   1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1528   1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1529   1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1530   1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1531   1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1532   1.60      fvdl 			/*
   1533   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1534   1.60      fvdl 			 * random, after all.
   1535   1.60      fvdl 			 */
   1536   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1537   1.60      fvdl 			dp2++;
   1538   1.60      fvdl 		}
   1539   1.60      fvdl 		bawrite(ibp);
   1540   1.60      fvdl 		initediblk += INOPB(fs);
   1541   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1542   1.60      fvdl 	}
   1543   1.60      fvdl 
   1544  1.101        ad 	mutex_enter(&ump->um_lock);
   1545   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1546  1.101        ad 	setbit(inosused, ipref);
   1547  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1548  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1549  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1550  1.101        ad 	fs->fs_fmod = 1;
   1551  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1552  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1553  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1554  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1555  1.101        ad 	}
   1556  1.101        ad 	mutex_exit(&ump->um_lock);
   1557  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1558  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1559    1.1   mycroft 	bdwrite(bp);
   1560    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1561  1.101        ad  fail:
   1562  1.101        ad 	brelse(bp, 0);
   1563  1.101        ad 	mutex_enter(&ump->um_lock);
   1564  1.101        ad 	return (0);
   1565    1.1   mycroft }
   1566    1.1   mycroft 
   1567    1.1   mycroft /*
   1568    1.1   mycroft  * Free a block or fragment.
   1569    1.1   mycroft  *
   1570    1.1   mycroft  * The specified block or fragment is placed back in the
   1571   1.81     perry  * free map. If a fragment is deallocated, a possible
   1572    1.1   mycroft  * block reassembly is checked.
   1573    1.1   mycroft  */
   1574    1.9  christos void
   1575   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1576   1.85   thorpej     ino_t inum)
   1577    1.1   mycroft {
   1578   1.33  augustss 	struct cg *cgp;
   1579    1.1   mycroft 	struct buf *bp;
   1580   1.76   hannken 	struct ufsmount *ump;
   1581   1.60      fvdl 	int32_t fragno, cgbno;
   1582   1.76   hannken 	daddr_t cgblkno;
   1583    1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1584   1.62      fvdl 	u_int8_t *blksfree;
   1585   1.76   hannken 	dev_t dev;
   1586   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1587    1.1   mycroft 
   1588  1.101        ad 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1589   1.76   hannken 	cg = dtog(fs, bno);
   1590   1.77   hannken 	if (devvp->v_type != VBLK) {
   1591   1.77   hannken 		/* devvp is a snapshot */
   1592   1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1593   1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1594   1.76   hannken 	} else {
   1595   1.76   hannken 		dev = devvp->v_rdev;
   1596   1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1597  1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1598   1.76   hannken 			return;
   1599   1.76   hannken 	}
   1600   1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1601   1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1602   1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1603   1.58      fvdl 		       "size = %ld, fs = %s\n",
   1604   1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1605    1.1   mycroft 		panic("blkfree: bad size");
   1606    1.1   mycroft 	}
   1607   1.76   hannken 
   1608   1.60      fvdl 	if (bno >= fs->fs_size) {
   1609   1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1610   1.86  christos 		    (unsigned long long)inum);
   1611   1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1612    1.1   mycroft 		return;
   1613    1.1   mycroft 	}
   1614   1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1615    1.1   mycroft 	if (error) {
   1616  1.101        ad 		brelse(bp, 0);
   1617    1.1   mycroft 		return;
   1618    1.1   mycroft 	}
   1619    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1620   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1621  1.101        ad 		brelse(bp, 0);
   1622    1.1   mycroft 		return;
   1623    1.1   mycroft 	}
   1624   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1625   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1626   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1627   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1628   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1629   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1630  1.101        ad 	mutex_enter(&ump->um_lock);
   1631    1.1   mycroft 	if (size == fs->fs_bsize) {
   1632   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1633   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1634   1.77   hannken 			if (devvp->v_type != VBLK) {
   1635   1.77   hannken 				/* devvp is a snapshot */
   1636  1.101        ad 				mutex_exit(&ump->um_lock);
   1637  1.101        ad 				brelse(bp, 0);
   1638   1.76   hannken 				return;
   1639   1.76   hannken 			}
   1640   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1641   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1642    1.1   mycroft 			panic("blkfree: freeing free block");
   1643    1.1   mycroft 		}
   1644   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1645   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1646   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1647    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1648    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1649   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1650   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1651   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1652   1.75       dbj 			KASSERT(i >= 0);
   1653   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1654   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1655   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1656   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1657   1.73       dbj 			    needswap);
   1658   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1659   1.73       dbj 		}
   1660    1.1   mycroft 	} else {
   1661   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1662    1.1   mycroft 		/*
   1663    1.1   mycroft 		 * decrement the counts associated with the old frags
   1664    1.1   mycroft 		 */
   1665   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1666   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1667    1.1   mycroft 		/*
   1668    1.1   mycroft 		 * deallocate the fragment
   1669    1.1   mycroft 		 */
   1670    1.1   mycroft 		frags = numfrags(fs, size);
   1671    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1672   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1673   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1674   1.59   tsutsui 				       ", fs = %s\n",
   1675   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1676    1.1   mycroft 				panic("blkfree: freeing free frag");
   1677    1.1   mycroft 			}
   1678   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1679    1.1   mycroft 		}
   1680   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1681    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1682   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1683    1.1   mycroft 		/*
   1684    1.1   mycroft 		 * add back in counts associated with the new frags
   1685    1.1   mycroft 		 */
   1686   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1687   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1688    1.1   mycroft 		/*
   1689    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1690    1.1   mycroft 		 */
   1691   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1692   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1693   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1694    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1695    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1696   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1697   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1698    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1699    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1700   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1701   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1702   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1703   1.75       dbj 				KASSERT(i >= 0);
   1704   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1705   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1706   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1707   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1708   1.73       dbj 				    bbase)], 1, needswap);
   1709   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1710   1.73       dbj 			}
   1711    1.1   mycroft 		}
   1712    1.1   mycroft 	}
   1713    1.1   mycroft 	fs->fs_fmod = 1;
   1714   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1715  1.101        ad 	mutex_exit(&ump->um_lock);
   1716    1.1   mycroft 	bdwrite(bp);
   1717    1.1   mycroft }
   1718    1.1   mycroft 
   1719   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1720   1.55      matt #ifdef XXXUBC
   1721   1.18      fvdl /*
   1722   1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1723   1.18      fvdl  * fragment is allocated, false if it is free.
   1724   1.18      fvdl  */
   1725   1.18      fvdl static int
   1726   1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1727   1.18      fvdl {
   1728   1.18      fvdl 	struct fs *fs;
   1729   1.18      fvdl 	struct cg *cgp;
   1730   1.18      fvdl 	struct buf *bp;
   1731   1.18      fvdl 	int i, error, frags, free;
   1732   1.18      fvdl 
   1733   1.18      fvdl 	fs = ip->i_fs;
   1734   1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1735   1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1736   1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1737   1.18      fvdl 		panic("checkblk: bad size");
   1738   1.18      fvdl 	}
   1739   1.60      fvdl 	if (bno >= fs->fs_size)
   1740   1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1741   1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1742   1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1743   1.18      fvdl 	if (error) {
   1744  1.101        ad 		brelse(bp, 0);
   1745   1.18      fvdl 		return 0;
   1746   1.18      fvdl 	}
   1747   1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1748   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1749  1.101        ad 		brelse(bp, 0);
   1750   1.18      fvdl 		return 0;
   1751   1.18      fvdl 	}
   1752   1.18      fvdl 	bno = dtogd(fs, bno);
   1753   1.18      fvdl 	if (size == fs->fs_bsize) {
   1754   1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1755   1.19    bouyer 			fragstoblks(fs, bno));
   1756   1.18      fvdl 	} else {
   1757   1.18      fvdl 		frags = numfrags(fs, size);
   1758   1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1759   1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1760   1.18      fvdl 				free++;
   1761   1.18      fvdl 		if (free != 0 && free != frags)
   1762   1.18      fvdl 			panic("checkblk: partially free fragment");
   1763   1.18      fvdl 	}
   1764  1.101        ad 	brelse(bp, 0);
   1765   1.18      fvdl 	return (!free);
   1766   1.18      fvdl }
   1767   1.55      matt #endif /* XXXUBC */
   1768   1.18      fvdl #endif /* DIAGNOSTIC */
   1769   1.18      fvdl 
   1770    1.1   mycroft /*
   1771    1.1   mycroft  * Free an inode.
   1772   1.30      fvdl  */
   1773   1.30      fvdl int
   1774   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1775   1.30      fvdl {
   1776   1.30      fvdl 
   1777   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1778   1.88      yamt 		softdep_freefile(vp, ino, mode);
   1779   1.30      fvdl 		return (0);
   1780   1.30      fvdl 	}
   1781   1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1782   1.30      fvdl }
   1783   1.30      fvdl 
   1784   1.30      fvdl /*
   1785   1.30      fvdl  * Do the actual free operation.
   1786    1.1   mycroft  * The specified inode is placed back in the free map.
   1787    1.1   mycroft  */
   1788    1.1   mycroft int
   1789   1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1790    1.9  christos {
   1791  1.101        ad 	struct ufsmount *ump;
   1792   1.33  augustss 	struct cg *cgp;
   1793    1.1   mycroft 	struct buf *bp;
   1794    1.1   mycroft 	int error, cg;
   1795   1.76   hannken 	daddr_t cgbno;
   1796   1.62      fvdl 	u_int8_t *inosused;
   1797   1.78   hannken 	dev_t dev;
   1798   1.19    bouyer #ifdef FFS_EI
   1799   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1800   1.19    bouyer #endif
   1801    1.1   mycroft 
   1802   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1803  1.101        ad 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1804   1.78   hannken 	if (devvp->v_type != VBLK) {
   1805   1.78   hannken 		/* devvp is a snapshot */
   1806   1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1807   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1808   1.76   hannken 	} else {
   1809   1.78   hannken 		dev = devvp->v_rdev;
   1810   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1811   1.76   hannken 	}
   1812    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1813   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1814   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1815   1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1816    1.1   mycroft 	if (error) {
   1817  1.101        ad 		brelse(bp, 0);
   1818   1.30      fvdl 		return (error);
   1819    1.1   mycroft 	}
   1820    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1821   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1822  1.101        ad 		brelse(bp, 0);
   1823    1.1   mycroft 		return (0);
   1824    1.1   mycroft 	}
   1825   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1826   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1827   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1828   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1829   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1830    1.1   mycroft 	ino %= fs->fs_ipg;
   1831   1.62      fvdl 	if (isclr(inosused, ino)) {
   1832   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1833   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1834   1.86  christos 		    fs->fs_fsmnt);
   1835    1.1   mycroft 		if (fs->fs_ronly == 0)
   1836    1.1   mycroft 			panic("ifree: freeing free inode");
   1837    1.1   mycroft 	}
   1838   1.62      fvdl 	clrbit(inosused, ino);
   1839   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1840   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1841   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1842  1.101        ad 	mutex_enter(&ump->um_lock);
   1843    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1844    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1845   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1846   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1847    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1848    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1849    1.1   mycroft 	}
   1850    1.1   mycroft 	fs->fs_fmod = 1;
   1851   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1852  1.101        ad 	mutex_exit(&ump->um_lock);
   1853    1.1   mycroft 	bdwrite(bp);
   1854    1.1   mycroft 	return (0);
   1855    1.1   mycroft }
   1856    1.1   mycroft 
   1857    1.1   mycroft /*
   1858   1.76   hannken  * Check to see if a file is free.
   1859   1.76   hannken  */
   1860   1.76   hannken int
   1861   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1862   1.76   hannken {
   1863   1.76   hannken 	struct cg *cgp;
   1864   1.76   hannken 	struct buf *bp;
   1865   1.76   hannken 	daddr_t cgbno;
   1866   1.76   hannken 	int ret, cg;
   1867   1.76   hannken 	u_int8_t *inosused;
   1868   1.76   hannken 
   1869   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1870   1.77   hannken 	if (devvp->v_type != VBLK) {
   1871   1.77   hannken 		/* devvp is a snapshot */
   1872   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1873   1.77   hannken 	} else
   1874   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1875   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1876   1.76   hannken 		return 1;
   1877   1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1878  1.101        ad 		brelse(bp, 0);
   1879   1.76   hannken 		return 1;
   1880   1.76   hannken 	}
   1881   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1882   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1883  1.101        ad 		brelse(bp, 0);
   1884   1.76   hannken 		return 1;
   1885   1.76   hannken 	}
   1886   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1887   1.76   hannken 	ino %= fs->fs_ipg;
   1888   1.76   hannken 	ret = isclr(inosused, ino);
   1889  1.101        ad 	brelse(bp, 0);
   1890   1.76   hannken 	return ret;
   1891   1.76   hannken }
   1892   1.76   hannken 
   1893   1.76   hannken /*
   1894    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1895    1.1   mycroft  *
   1896    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1897    1.1   mycroft  * available.
   1898    1.1   mycroft  */
   1899   1.60      fvdl static int32_t
   1900   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1901    1.1   mycroft {
   1902   1.60      fvdl 	int32_t bno;
   1903    1.1   mycroft 	int start, len, loc, i;
   1904    1.1   mycroft 	int blk, field, subfield, pos;
   1905   1.19    bouyer 	int ostart, olen;
   1906   1.62      fvdl 	u_int8_t *blksfree;
   1907   1.30      fvdl #ifdef FFS_EI
   1908   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1909   1.30      fvdl #endif
   1910    1.1   mycroft 
   1911  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1912  1.101        ad 
   1913    1.1   mycroft 	/*
   1914    1.1   mycroft 	 * find the fragment by searching through the free block
   1915    1.1   mycroft 	 * map for an appropriate bit pattern
   1916    1.1   mycroft 	 */
   1917    1.1   mycroft 	if (bpref)
   1918    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1919    1.1   mycroft 	else
   1920   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1921   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1922    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1923   1.19    bouyer 	ostart = start;
   1924   1.19    bouyer 	olen = len;
   1925   1.45     lukem 	loc = scanc((u_int)len,
   1926   1.62      fvdl 		(const u_char *)&blksfree[start],
   1927   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1928   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1929    1.1   mycroft 	if (loc == 0) {
   1930    1.1   mycroft 		len = start + 1;
   1931    1.1   mycroft 		start = 0;
   1932   1.45     lukem 		loc = scanc((u_int)len,
   1933   1.62      fvdl 			(const u_char *)&blksfree[0],
   1934   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1935   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1936    1.1   mycroft 		if (loc == 0) {
   1937   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1938   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1939   1.20      ross 			printf("offset=%d %ld\n",
   1940   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1941   1.62      fvdl 				(long)blksfree - (long)cgp);
   1942   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1943    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1944    1.1   mycroft 			/* NOTREACHED */
   1945    1.1   mycroft 		}
   1946    1.1   mycroft 	}
   1947    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1948   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1949    1.1   mycroft 	/*
   1950    1.1   mycroft 	 * found the byte in the map
   1951    1.1   mycroft 	 * sift through the bits to find the selected frag
   1952    1.1   mycroft 	 */
   1953    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1954   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1955    1.1   mycroft 		blk <<= 1;
   1956    1.1   mycroft 		field = around[allocsiz];
   1957    1.1   mycroft 		subfield = inside[allocsiz];
   1958    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1959    1.1   mycroft 			if ((blk & field) == subfield)
   1960    1.1   mycroft 				return (bno + pos);
   1961    1.1   mycroft 			field <<= 1;
   1962    1.1   mycroft 			subfield <<= 1;
   1963    1.1   mycroft 		}
   1964    1.1   mycroft 	}
   1965   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1966    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1967   1.58      fvdl 	/* return (-1); */
   1968    1.1   mycroft }
   1969    1.1   mycroft 
   1970    1.1   mycroft /*
   1971    1.1   mycroft  * Update the cluster map because of an allocation or free.
   1972    1.1   mycroft  *
   1973    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1974    1.1   mycroft  */
   1975    1.9  christos void
   1976   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1977    1.1   mycroft {
   1978    1.4       cgd 	int32_t *sump;
   1979    1.5   mycroft 	int32_t *lp;
   1980    1.1   mycroft 	u_char *freemapp, *mapp;
   1981    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1982   1.30      fvdl #ifdef FFS_EI
   1983   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1984   1.30      fvdl #endif
   1985    1.1   mycroft 
   1986  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1987  1.101        ad 
   1988    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1989    1.1   mycroft 		return;
   1990   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1991   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1992    1.1   mycroft 	/*
   1993    1.1   mycroft 	 * Allocate or clear the actual block.
   1994    1.1   mycroft 	 */
   1995    1.1   mycroft 	if (cnt > 0)
   1996    1.1   mycroft 		setbit(freemapp, blkno);
   1997    1.1   mycroft 	else
   1998    1.1   mycroft 		clrbit(freemapp, blkno);
   1999    1.1   mycroft 	/*
   2000    1.1   mycroft 	 * Find the size of the cluster going forward.
   2001    1.1   mycroft 	 */
   2002    1.1   mycroft 	start = blkno + 1;
   2003    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2004   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2005   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2006    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2007    1.1   mycroft 	map = *mapp++;
   2008    1.1   mycroft 	bit = 1 << (start % NBBY);
   2009    1.1   mycroft 	for (i = start; i < end; i++) {
   2010    1.1   mycroft 		if ((map & bit) == 0)
   2011    1.1   mycroft 			break;
   2012    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2013    1.1   mycroft 			bit <<= 1;
   2014    1.1   mycroft 		} else {
   2015    1.1   mycroft 			map = *mapp++;
   2016    1.1   mycroft 			bit = 1;
   2017    1.1   mycroft 		}
   2018    1.1   mycroft 	}
   2019    1.1   mycroft 	forw = i - start;
   2020    1.1   mycroft 	/*
   2021    1.1   mycroft 	 * Find the size of the cluster going backward.
   2022    1.1   mycroft 	 */
   2023    1.1   mycroft 	start = blkno - 1;
   2024    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2025    1.1   mycroft 	if (end < 0)
   2026    1.1   mycroft 		end = -1;
   2027    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2028    1.1   mycroft 	map = *mapp--;
   2029    1.1   mycroft 	bit = 1 << (start % NBBY);
   2030    1.1   mycroft 	for (i = start; i > end; i--) {
   2031    1.1   mycroft 		if ((map & bit) == 0)
   2032    1.1   mycroft 			break;
   2033    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2034    1.1   mycroft 			bit >>= 1;
   2035    1.1   mycroft 		} else {
   2036    1.1   mycroft 			map = *mapp--;
   2037    1.1   mycroft 			bit = 1 << (NBBY - 1);
   2038    1.1   mycroft 		}
   2039    1.1   mycroft 	}
   2040    1.1   mycroft 	back = start - i;
   2041    1.1   mycroft 	/*
   2042    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2043    1.1   mycroft 	 * back clusters.
   2044    1.1   mycroft 	 */
   2045    1.1   mycroft 	i = back + forw + 1;
   2046    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2047    1.1   mycroft 		i = fs->fs_contigsumsize;
   2048   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2049    1.1   mycroft 	if (back > 0)
   2050   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2051    1.1   mycroft 	if (forw > 0)
   2052   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2053   1.19    bouyer 
   2054    1.5   mycroft 	/*
   2055    1.5   mycroft 	 * Update cluster summary information.
   2056    1.5   mycroft 	 */
   2057    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2058    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2059   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2060    1.5   mycroft 			break;
   2061   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2062    1.1   mycroft }
   2063    1.1   mycroft 
   2064    1.1   mycroft /*
   2065    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2066   1.81     perry  *
   2067    1.1   mycroft  * The form of the error message is:
   2068    1.1   mycroft  *	fs: error message
   2069    1.1   mycroft  */
   2070    1.1   mycroft static void
   2071   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2072    1.1   mycroft {
   2073    1.1   mycroft 
   2074   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2075   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2076    1.1   mycroft }
   2077