ffs_alloc.c revision 1.105 1 1.105 ad /* $NetBSD: ffs_alloc.c,v 1.105 2008/01/02 11:49:08 ad Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
5 1.60 fvdl * All rights reserved.
6 1.60 fvdl *
7 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
8 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
9 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 1.60 fvdl * research program
12 1.60 fvdl *
13 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
14 1.1 mycroft * The Regents of the University of California. All rights reserved.
15 1.1 mycroft *
16 1.1 mycroft * Redistribution and use in source and binary forms, with or without
17 1.1 mycroft * modification, are permitted provided that the following conditions
18 1.1 mycroft * are met:
19 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
20 1.1 mycroft * notice, this list of conditions and the following disclaimer.
21 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
23 1.1 mycroft * documentation and/or other materials provided with the distribution.
24 1.69 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 mycroft * may be used to endorse or promote products derived from this software
26 1.1 mycroft * without specific prior written permission.
27 1.1 mycroft *
28 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 mycroft * SUCH DAMAGE.
39 1.1 mycroft *
40 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 1.1 mycroft */
42 1.53 lukem
43 1.53 lukem #include <sys/cdefs.h>
44 1.105 ad __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.105 2008/01/02 11:49:08 ad Exp $");
45 1.17 mrg
46 1.43 mrg #if defined(_KERNEL_OPT)
47 1.27 thorpej #include "opt_ffs.h"
48 1.21 scottr #include "opt_quota.h"
49 1.22 scottr #endif
50 1.1 mycroft
51 1.1 mycroft #include <sys/param.h>
52 1.1 mycroft #include <sys/systm.h>
53 1.1 mycroft #include <sys/buf.h>
54 1.1 mycroft #include <sys/proc.h>
55 1.1 mycroft #include <sys/vnode.h>
56 1.1 mycroft #include <sys/mount.h>
57 1.1 mycroft #include <sys/kernel.h>
58 1.1 mycroft #include <sys/syslog.h>
59 1.91 elad #include <sys/kauth.h>
60 1.29 mrg
61 1.76 hannken #include <miscfs/specfs/specdev.h>
62 1.1 mycroft #include <ufs/ufs/quota.h>
63 1.19 bouyer #include <ufs/ufs/ufsmount.h>
64 1.1 mycroft #include <ufs/ufs/inode.h>
65 1.9 christos #include <ufs/ufs/ufs_extern.h>
66 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
67 1.1 mycroft
68 1.1 mycroft #include <ufs/ffs/fs.h>
69 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
70 1.1 mycroft
71 1.85 thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
72 1.85 thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
73 1.55 matt #ifdef XXXUBC
74 1.85 thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
75 1.55 matt #endif
76 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
77 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
78 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
79 1.85 thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
80 1.85 thorpej daddr_t (*)(struct inode *, int, daddr_t, int));
81 1.85 thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
82 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
83 1.85 thorpej daddr_t, int);
84 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
85 1.55 matt #ifdef XXXUBC
86 1.85 thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
87 1.18 fvdl #endif
88 1.55 matt #endif
89 1.23 drochner
90 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
91 1.34 jdolecek int ffs_log_changeopt = 0;
92 1.34 jdolecek
93 1.23 drochner /* in ffs_tables.c */
94 1.40 jdolecek extern const int inside[], around[];
95 1.40 jdolecek extern const u_char * const fragtbl[];
96 1.1 mycroft
97 1.1 mycroft /*
98 1.1 mycroft * Allocate a block in the file system.
99 1.81 perry *
100 1.1 mycroft * The size of the requested block is given, which must be some
101 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
102 1.1 mycroft * A preference may be optionally specified. If a preference is given
103 1.1 mycroft * the following hierarchy is used to allocate a block:
104 1.1 mycroft * 1) allocate the requested block.
105 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
106 1.1 mycroft * 3) allocate a block in the same cylinder group.
107 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
108 1.1 mycroft * available block is located.
109 1.47 wiz * If no block preference is given the following hierarchy is used
110 1.1 mycroft * to allocate a block:
111 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
112 1.1 mycroft * inode for the file.
113 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
114 1.1 mycroft * available block is located.
115 1.1 mycroft */
116 1.9 christos int
117 1.96 christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
118 1.91 elad kauth_cred_t cred, daddr_t *bnp)
119 1.1 mycroft {
120 1.101 ad struct ufsmount *ump;
121 1.62 fvdl struct fs *fs;
122 1.58 fvdl daddr_t bno;
123 1.9 christos int cg;
124 1.9 christos #ifdef QUOTA
125 1.9 christos int error;
126 1.9 christos #endif
127 1.81 perry
128 1.62 fvdl fs = ip->i_fs;
129 1.101 ad ump = ip->i_ump;
130 1.101 ad
131 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
132 1.62 fvdl
133 1.37 chs #ifdef UVM_PAGE_TRKOWN
134 1.51 chs if (ITOV(ip)->v_type == VREG &&
135 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
136 1.37 chs struct vm_page *pg;
137 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
138 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
139 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
140 1.37 chs
141 1.105 ad mutex_enter(&uobj->vmobjlock);
142 1.37 chs while (off < endoff) {
143 1.37 chs pg = uvm_pagelookup(uobj, off);
144 1.37 chs KASSERT(pg != NULL);
145 1.37 chs KASSERT(pg->owner == curproc->p_pid);
146 1.37 chs off += PAGE_SIZE;
147 1.37 chs }
148 1.105 ad mutex_exit(&uobj->vmobjlock);
149 1.37 chs }
150 1.37 chs #endif
151 1.37 chs
152 1.1 mycroft *bnp = 0;
153 1.1 mycroft #ifdef DIAGNOSTIC
154 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
155 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
156 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
157 1.1 mycroft panic("ffs_alloc: bad size");
158 1.1 mycroft }
159 1.1 mycroft if (cred == NOCRED)
160 1.56 provos panic("ffs_alloc: missing credential");
161 1.1 mycroft #endif /* DIAGNOSTIC */
162 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
163 1.1 mycroft goto nospace;
164 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
165 1.99 pooka kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
166 1.1 mycroft goto nospace;
167 1.1 mycroft #ifdef QUOTA
168 1.101 ad mutex_exit(&ump->um_lock);
169 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
170 1.1 mycroft return (error);
171 1.101 ad mutex_enter(&ump->um_lock);
172 1.1 mycroft #endif
173 1.1 mycroft if (bpref >= fs->fs_size)
174 1.1 mycroft bpref = 0;
175 1.1 mycroft if (bpref == 0)
176 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
177 1.1 mycroft else
178 1.1 mycroft cg = dtog(fs, bpref);
179 1.84 dbj bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
180 1.1 mycroft if (bno > 0) {
181 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
182 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
183 1.1 mycroft *bnp = bno;
184 1.1 mycroft return (0);
185 1.1 mycroft }
186 1.1 mycroft #ifdef QUOTA
187 1.1 mycroft /*
188 1.1 mycroft * Restore user's disk quota because allocation failed.
189 1.1 mycroft */
190 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
191 1.1 mycroft #endif
192 1.1 mycroft nospace:
193 1.101 ad mutex_exit(&ump->um_lock);
194 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
195 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
196 1.1 mycroft return (ENOSPC);
197 1.1 mycroft }
198 1.1 mycroft
199 1.1 mycroft /*
200 1.1 mycroft * Reallocate a fragment to a bigger size
201 1.1 mycroft *
202 1.1 mycroft * The number and size of the old block is given, and a preference
203 1.1 mycroft * and new size is also specified. The allocator attempts to extend
204 1.1 mycroft * the original block. Failing that, the regular block allocator is
205 1.1 mycroft * invoked to get an appropriate block.
206 1.1 mycroft */
207 1.9 christos int
208 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
209 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
210 1.1 mycroft {
211 1.101 ad struct ufsmount *ump;
212 1.62 fvdl struct fs *fs;
213 1.1 mycroft struct buf *bp;
214 1.1 mycroft int cg, request, error;
215 1.58 fvdl daddr_t bprev, bno;
216 1.25 thorpej
217 1.62 fvdl fs = ip->i_fs;
218 1.101 ad ump = ip->i_ump;
219 1.101 ad
220 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
221 1.101 ad
222 1.37 chs #ifdef UVM_PAGE_TRKOWN
223 1.37 chs if (ITOV(ip)->v_type == VREG) {
224 1.37 chs struct vm_page *pg;
225 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
226 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
227 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
228 1.37 chs
229 1.105 ad mutex_enter(&uobj->vmobjlock);
230 1.37 chs while (off < endoff) {
231 1.37 chs pg = uvm_pagelookup(uobj, off);
232 1.37 chs KASSERT(pg != NULL);
233 1.37 chs KASSERT(pg->owner == curproc->p_pid);
234 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
235 1.37 chs off += PAGE_SIZE;
236 1.37 chs }
237 1.105 ad mutex_exit(&uobj->vmobjlock);
238 1.37 chs }
239 1.37 chs #endif
240 1.37 chs
241 1.1 mycroft #ifdef DIAGNOSTIC
242 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
243 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
244 1.13 christos printf(
245 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
246 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
247 1.1 mycroft panic("ffs_realloccg: bad size");
248 1.1 mycroft }
249 1.1 mycroft if (cred == NOCRED)
250 1.56 provos panic("ffs_realloccg: missing credential");
251 1.1 mycroft #endif /* DIAGNOSTIC */
252 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
253 1.101 ad kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
254 1.101 ad mutex_exit(&ump->um_lock);
255 1.1 mycroft goto nospace;
256 1.101 ad }
257 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
258 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
259 1.60 fvdl else
260 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
261 1.60 fvdl
262 1.60 fvdl if (bprev == 0) {
263 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
264 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
265 1.1 mycroft panic("ffs_realloccg: bad bprev");
266 1.1 mycroft }
267 1.101 ad mutex_exit(&ump->um_lock);
268 1.101 ad
269 1.1 mycroft /*
270 1.1 mycroft * Allocate the extra space in the buffer.
271 1.1 mycroft */
272 1.37 chs if (bpp != NULL &&
273 1.37 chs (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
274 1.101 ad brelse(bp, 0);
275 1.1 mycroft return (error);
276 1.1 mycroft }
277 1.1 mycroft #ifdef QUOTA
278 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
279 1.44 chs if (bpp != NULL) {
280 1.101 ad brelse(bp, 0);
281 1.44 chs }
282 1.1 mycroft return (error);
283 1.1 mycroft }
284 1.1 mycroft #endif
285 1.1 mycroft /*
286 1.1 mycroft * Check for extension in the existing location.
287 1.1 mycroft */
288 1.1 mycroft cg = dtog(fs, bprev);
289 1.101 ad mutex_enter(&ump->um_lock);
290 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
291 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
292 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
293 1.37 chs
294 1.37 chs if (bpp != NULL) {
295 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
296 1.37 chs panic("bad blockno");
297 1.72 pk allocbuf(bp, nsize, 1);
298 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
299 1.105 ad mutex_enter(bp->b_objlock);
300 1.105 ad bp->b_oflags |= BO_DONE;
301 1.105 ad mutex_exit(bp->b_objlock);
302 1.37 chs *bpp = bp;
303 1.37 chs }
304 1.37 chs if (blknop != NULL) {
305 1.37 chs *blknop = bno;
306 1.37 chs }
307 1.1 mycroft return (0);
308 1.1 mycroft }
309 1.1 mycroft /*
310 1.1 mycroft * Allocate a new disk location.
311 1.1 mycroft */
312 1.1 mycroft if (bpref >= fs->fs_size)
313 1.1 mycroft bpref = 0;
314 1.1 mycroft switch ((int)fs->fs_optim) {
315 1.1 mycroft case FS_OPTSPACE:
316 1.1 mycroft /*
317 1.81 perry * Allocate an exact sized fragment. Although this makes
318 1.81 perry * best use of space, we will waste time relocating it if
319 1.1 mycroft * the file continues to grow. If the fragmentation is
320 1.1 mycroft * less than half of the minimum free reserve, we choose
321 1.1 mycroft * to begin optimizing for time.
322 1.1 mycroft */
323 1.1 mycroft request = nsize;
324 1.1 mycroft if (fs->fs_minfree < 5 ||
325 1.1 mycroft fs->fs_cstotal.cs_nffree >
326 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
327 1.1 mycroft break;
328 1.34 jdolecek
329 1.34 jdolecek if (ffs_log_changeopt) {
330 1.34 jdolecek log(LOG_NOTICE,
331 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
332 1.34 jdolecek fs->fs_fsmnt);
333 1.34 jdolecek }
334 1.34 jdolecek
335 1.1 mycroft fs->fs_optim = FS_OPTTIME;
336 1.1 mycroft break;
337 1.1 mycroft case FS_OPTTIME:
338 1.1 mycroft /*
339 1.1 mycroft * At this point we have discovered a file that is trying to
340 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
341 1.1 mycroft * we allocate a full sized block, then free the unused portion.
342 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
343 1.1 mycroft * above will be able to grow it in place without further
344 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
345 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
346 1.1 mycroft * optimizing for space.
347 1.1 mycroft */
348 1.1 mycroft request = fs->fs_bsize;
349 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
350 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
351 1.1 mycroft break;
352 1.34 jdolecek
353 1.34 jdolecek if (ffs_log_changeopt) {
354 1.34 jdolecek log(LOG_NOTICE,
355 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
356 1.34 jdolecek fs->fs_fsmnt);
357 1.34 jdolecek }
358 1.34 jdolecek
359 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
360 1.1 mycroft break;
361 1.1 mycroft default:
362 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
363 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
364 1.1 mycroft panic("ffs_realloccg: bad optim");
365 1.1 mycroft /* NOTREACHED */
366 1.1 mycroft }
367 1.58 fvdl bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
368 1.1 mycroft if (bno > 0) {
369 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
370 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
371 1.76 hannken ip->i_number);
372 1.1 mycroft if (nsize < request)
373 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
374 1.76 hannken (long)(request - nsize), ip->i_number);
375 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
376 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
377 1.37 chs if (bpp != NULL) {
378 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
379 1.72 pk allocbuf(bp, nsize, 1);
380 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
381 1.105 ad mutex_enter(bp->b_objlock);
382 1.105 ad bp->b_oflags |= BO_DONE;
383 1.105 ad mutex_exit(bp->b_objlock);
384 1.37 chs *bpp = bp;
385 1.37 chs }
386 1.37 chs if (blknop != NULL) {
387 1.37 chs *blknop = bno;
388 1.37 chs }
389 1.1 mycroft return (0);
390 1.1 mycroft }
391 1.101 ad mutex_exit(&ump->um_lock);
392 1.101 ad
393 1.1 mycroft #ifdef QUOTA
394 1.1 mycroft /*
395 1.1 mycroft * Restore user's disk quota because allocation failed.
396 1.1 mycroft */
397 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
398 1.1 mycroft #endif
399 1.37 chs if (bpp != NULL) {
400 1.101 ad brelse(bp, 0);
401 1.37 chs }
402 1.37 chs
403 1.1 mycroft nospace:
404 1.1 mycroft /*
405 1.1 mycroft * no space available
406 1.1 mycroft */
407 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
408 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
409 1.1 mycroft return (ENOSPC);
410 1.1 mycroft }
411 1.1 mycroft
412 1.88 yamt #if 0
413 1.1 mycroft /*
414 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
415 1.1 mycroft *
416 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
417 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
418 1.60 fvdl * to find a range of sequential blocks starting as close as possible
419 1.60 fvdl * from the end of the allocation for the logical block immediately
420 1.60 fvdl * preceding the current range. If successful, the physical block numbers
421 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
422 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
423 1.60 fvdl * success in doing the reallocation is returned. Note that the error
424 1.60 fvdl * return is not reflected back to the user. Rather the previous block
425 1.60 fvdl * allocation will be used.
426 1.60 fvdl
427 1.1 mycroft */
428 1.55 matt #ifdef XXXUBC
429 1.3 mycroft #ifdef DEBUG
430 1.1 mycroft #include <sys/sysctl.h>
431 1.5 mycroft int prtrealloc = 0;
432 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
433 1.1 mycroft #endif
434 1.55 matt #endif
435 1.1 mycroft
436 1.60 fvdl /*
437 1.60 fvdl * NOTE: when re-enabling this, it must be updated for UFS2.
438 1.60 fvdl */
439 1.60 fvdl
440 1.18 fvdl int doasyncfree = 1;
441 1.18 fvdl
442 1.1 mycroft int
443 1.85 thorpej ffs_reallocblks(void *v)
444 1.9 christos {
445 1.55 matt #ifdef XXXUBC
446 1.1 mycroft struct vop_reallocblks_args /* {
447 1.1 mycroft struct vnode *a_vp;
448 1.1 mycroft struct cluster_save *a_buflist;
449 1.9 christos } */ *ap = v;
450 1.1 mycroft struct fs *fs;
451 1.1 mycroft struct inode *ip;
452 1.1 mycroft struct vnode *vp;
453 1.1 mycroft struct buf *sbp, *ebp;
454 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
455 1.1 mycroft struct cluster_save *buflist;
456 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
457 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
458 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
459 1.101 ad struct ufsmount *ump;
460 1.55 matt #endif /* XXXUBC */
461 1.1 mycroft
462 1.37 chs /* XXXUBC don't reallocblks for now */
463 1.37 chs return ENOSPC;
464 1.37 chs
465 1.55 matt #ifdef XXXUBC
466 1.1 mycroft vp = ap->a_vp;
467 1.1 mycroft ip = VTOI(vp);
468 1.1 mycroft fs = ip->i_fs;
469 1.101 ad ump = ip->i_ump;
470 1.1 mycroft if (fs->fs_contigsumsize <= 0)
471 1.1 mycroft return (ENOSPC);
472 1.1 mycroft buflist = ap->a_buflist;
473 1.1 mycroft len = buflist->bs_nchildren;
474 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
475 1.1 mycroft end_lbn = start_lbn + len - 1;
476 1.1 mycroft #ifdef DIAGNOSTIC
477 1.18 fvdl for (i = 0; i < len; i++)
478 1.18 fvdl if (!ffs_checkblk(ip,
479 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
480 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
481 1.1 mycroft for (i = 1; i < len; i++)
482 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
483 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
484 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
485 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
486 1.18 fvdl for (i = 1; i < len - 1; i++)
487 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
488 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
489 1.1 mycroft #endif
490 1.1 mycroft /*
491 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
492 1.1 mycroft * the filesystem has decided to move and do not force it back to
493 1.1 mycroft * the previous cylinder group.
494 1.1 mycroft */
495 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
496 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
497 1.1 mycroft return (ENOSPC);
498 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
499 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
500 1.1 mycroft return (ENOSPC);
501 1.1 mycroft /*
502 1.1 mycroft * Get the starting offset and block map for the first block.
503 1.1 mycroft */
504 1.1 mycroft if (start_lvl == 0) {
505 1.60 fvdl sbap = &ip->i_ffs1_db[0];
506 1.1 mycroft soff = start_lbn;
507 1.1 mycroft } else {
508 1.1 mycroft idp = &start_ap[start_lvl - 1];
509 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
510 1.101 ad brelse(sbp, 0);
511 1.1 mycroft return (ENOSPC);
512 1.1 mycroft }
513 1.60 fvdl sbap = (int32_t *)sbp->b_data;
514 1.1 mycroft soff = idp->in_off;
515 1.1 mycroft }
516 1.1 mycroft /*
517 1.1 mycroft * Find the preferred location for the cluster.
518 1.1 mycroft */
519 1.101 ad mutex_enter(&ump->um_lock);
520 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
521 1.1 mycroft /*
522 1.1 mycroft * If the block range spans two block maps, get the second map.
523 1.1 mycroft */
524 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
525 1.1 mycroft ssize = len;
526 1.1 mycroft } else {
527 1.1 mycroft #ifdef DIAGNOSTIC
528 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
529 1.1 mycroft panic("ffs_reallocblk: start == end");
530 1.1 mycroft #endif
531 1.1 mycroft ssize = len - (idp->in_off + 1);
532 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
533 1.1 mycroft goto fail;
534 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
535 1.1 mycroft }
536 1.1 mycroft /*
537 1.1 mycroft * Search the block map looking for an allocation of the desired size.
538 1.1 mycroft */
539 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
540 1.101 ad len, ffs_clusteralloc)) == 0) {
541 1.101 ad mutex_exit(&ump->um_lock);
542 1.1 mycroft goto fail;
543 1.101 ad }
544 1.1 mycroft /*
545 1.1 mycroft * We have found a new contiguous block.
546 1.1 mycroft *
547 1.1 mycroft * First we have to replace the old block pointers with the new
548 1.1 mycroft * block pointers in the inode and indirect blocks associated
549 1.1 mycroft * with the file.
550 1.1 mycroft */
551 1.5 mycroft #ifdef DEBUG
552 1.5 mycroft if (prtrealloc)
553 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
554 1.5 mycroft start_lbn, end_lbn);
555 1.5 mycroft #endif
556 1.1 mycroft blkno = newblk;
557 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
558 1.58 fvdl daddr_t ba;
559 1.30 fvdl
560 1.30 fvdl if (i == ssize) {
561 1.1 mycroft bap = ebap;
562 1.30 fvdl soff = -i;
563 1.30 fvdl }
564 1.58 fvdl /* XXX ondisk32 */
565 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
566 1.1 mycroft #ifdef DIAGNOSTIC
567 1.18 fvdl if (!ffs_checkblk(ip,
568 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
569 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
570 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
571 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
572 1.1 mycroft #endif
573 1.5 mycroft #ifdef DEBUG
574 1.5 mycroft if (prtrealloc)
575 1.30 fvdl printf(" %d,", ba);
576 1.5 mycroft #endif
577 1.30 fvdl if (DOINGSOFTDEP(vp)) {
578 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
579 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
580 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
581 1.30 fvdl buflist->bs_children[i]);
582 1.30 fvdl else
583 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
584 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
585 1.30 fvdl ba, buflist->bs_children[i]);
586 1.30 fvdl }
587 1.58 fvdl /* XXX ondisk32 */
588 1.80 mycroft *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
589 1.1 mycroft }
590 1.1 mycroft /*
591 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
592 1.1 mycroft * For strict correctness, the writes should be synchronous since
593 1.1 mycroft * the old block values may have been written to disk. In practise
594 1.81 perry * they are almost never written, but if we are concerned about
595 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
596 1.1 mycroft *
597 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
598 1.1 mycroft * that shows whether the associated buffers and inodes have
599 1.1 mycroft * been written. The flag should be set when the cluster is
600 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
601 1.1 mycroft * We can then check below to see if it is set, and do the
602 1.1 mycroft * synchronous write only when it has been cleared.
603 1.1 mycroft */
604 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
605 1.1 mycroft if (doasyncfree)
606 1.1 mycroft bdwrite(sbp);
607 1.1 mycroft else
608 1.1 mycroft bwrite(sbp);
609 1.1 mycroft } else {
610 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
611 1.28 mycroft if (!doasyncfree)
612 1.88 yamt ffs_update(vp, NULL, NULL, 1);
613 1.1 mycroft }
614 1.25 thorpej if (ssize < len) {
615 1.1 mycroft if (doasyncfree)
616 1.1 mycroft bdwrite(ebp);
617 1.1 mycroft else
618 1.1 mycroft bwrite(ebp);
619 1.25 thorpej }
620 1.1 mycroft /*
621 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
622 1.1 mycroft */
623 1.5 mycroft #ifdef DEBUG
624 1.5 mycroft if (prtrealloc)
625 1.13 christos printf("\n\tnew:");
626 1.5 mycroft #endif
627 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
628 1.30 fvdl if (!DOINGSOFTDEP(vp))
629 1.76 hannken ffs_blkfree(fs, ip->i_devvp,
630 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
631 1.76 hannken fs->fs_bsize, ip->i_number);
632 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
633 1.5 mycroft #ifdef DEBUG
634 1.18 fvdl if (!ffs_checkblk(ip,
635 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
636 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
637 1.5 mycroft if (prtrealloc)
638 1.13 christos printf(" %d,", blkno);
639 1.5 mycroft #endif
640 1.5 mycroft }
641 1.5 mycroft #ifdef DEBUG
642 1.5 mycroft if (prtrealloc) {
643 1.5 mycroft prtrealloc--;
644 1.13 christos printf("\n");
645 1.1 mycroft }
646 1.5 mycroft #endif
647 1.1 mycroft return (0);
648 1.1 mycroft
649 1.1 mycroft fail:
650 1.1 mycroft if (ssize < len)
651 1.101 ad brelse(ebp, 0);
652 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
653 1.101 ad brelse(sbp, 0);
654 1.1 mycroft return (ENOSPC);
655 1.55 matt #endif /* XXXUBC */
656 1.1 mycroft }
657 1.88 yamt #endif /* 0 */
658 1.1 mycroft
659 1.1 mycroft /*
660 1.1 mycroft * Allocate an inode in the file system.
661 1.81 perry *
662 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
663 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
664 1.1 mycroft * 1) allocate the preferred inode.
665 1.1 mycroft * 2) allocate an inode in the same cylinder group.
666 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
667 1.1 mycroft * available inode is located.
668 1.47 wiz * If no inode preference is given the following hierarchy is used
669 1.1 mycroft * to allocate an inode:
670 1.1 mycroft * 1) allocate an inode in cylinder group 0.
671 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
672 1.1 mycroft * available inode is located.
673 1.1 mycroft */
674 1.9 christos int
675 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
676 1.88 yamt struct vnode **vpp)
677 1.9 christos {
678 1.101 ad struct ufsmount *ump;
679 1.33 augustss struct inode *pip;
680 1.33 augustss struct fs *fs;
681 1.33 augustss struct inode *ip;
682 1.60 fvdl struct timespec ts;
683 1.1 mycroft ino_t ino, ipref;
684 1.1 mycroft int cg, error;
685 1.81 perry
686 1.88 yamt *vpp = NULL;
687 1.1 mycroft pip = VTOI(pvp);
688 1.1 mycroft fs = pip->i_fs;
689 1.101 ad ump = pip->i_ump;
690 1.101 ad
691 1.101 ad mutex_enter(&ump->um_lock);
692 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
693 1.1 mycroft goto noinodes;
694 1.1 mycroft
695 1.1 mycroft if ((mode & IFMT) == IFDIR)
696 1.50 lukem ipref = ffs_dirpref(pip);
697 1.50 lukem else
698 1.50 lukem ipref = pip->i_number;
699 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
700 1.1 mycroft ipref = 0;
701 1.1 mycroft cg = ino_to_cg(fs, ipref);
702 1.50 lukem /*
703 1.50 lukem * Track number of dirs created one after another
704 1.50 lukem * in a same cg without intervening by files.
705 1.50 lukem */
706 1.50 lukem if ((mode & IFMT) == IFDIR) {
707 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
708 1.50 lukem fs->fs_contigdirs[cg]++;
709 1.50 lukem } else {
710 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
711 1.50 lukem fs->fs_contigdirs[cg]--;
712 1.50 lukem }
713 1.60 fvdl ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
714 1.1 mycroft if (ino == 0)
715 1.1 mycroft goto noinodes;
716 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
717 1.1 mycroft if (error) {
718 1.88 yamt ffs_vfree(pvp, ino, mode);
719 1.1 mycroft return (error);
720 1.1 mycroft }
721 1.90 yamt KASSERT((*vpp)->v_type == VNON);
722 1.88 yamt ip = VTOI(*vpp);
723 1.60 fvdl if (ip->i_mode) {
724 1.60 fvdl #if 0
725 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
726 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
727 1.60 fvdl #else
728 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
729 1.60 fvdl DIP(ip, mode), ip->i_mode,
730 1.60 fvdl DIP(ip, gen), ip->i_gen);
731 1.60 fvdl printf("size %llx blocks %llx\n",
732 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
733 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
734 1.86 christos (unsigned long long)ipref);
735 1.60 fvdl #if 0
736 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
737 1.60 fvdl (int)fs->fs_bsize, NOCRED, &bp);
738 1.60 fvdl #endif
739 1.60 fvdl
740 1.60 fvdl #endif
741 1.1 mycroft panic("ffs_valloc: dup alloc");
742 1.1 mycroft }
743 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
744 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
745 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
746 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
747 1.1 mycroft }
748 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
749 1.61 fvdl ip->i_flags = 0;
750 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
751 1.1 mycroft /*
752 1.1 mycroft * Set up a new generation number for this inode.
753 1.1 mycroft */
754 1.60 fvdl ip->i_gen++;
755 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
756 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
757 1.93 yamt vfs_timestamp(&ts);
758 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
759 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
760 1.60 fvdl }
761 1.1 mycroft return (0);
762 1.1 mycroft noinodes:
763 1.101 ad mutex_exit(&ump->um_lock);
764 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
765 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
766 1.1 mycroft return (ENOSPC);
767 1.1 mycroft }
768 1.1 mycroft
769 1.1 mycroft /*
770 1.50 lukem * Find a cylinder group in which to place a directory.
771 1.42 sommerfe *
772 1.50 lukem * The policy implemented by this algorithm is to allocate a
773 1.50 lukem * directory inode in the same cylinder group as its parent
774 1.50 lukem * directory, but also to reserve space for its files inodes
775 1.50 lukem * and data. Restrict the number of directories which may be
776 1.50 lukem * allocated one after another in the same cylinder group
777 1.50 lukem * without intervening allocation of files.
778 1.42 sommerfe *
779 1.50 lukem * If we allocate a first level directory then force allocation
780 1.50 lukem * in another cylinder group.
781 1.1 mycroft */
782 1.1 mycroft static ino_t
783 1.85 thorpej ffs_dirpref(struct inode *pip)
784 1.1 mycroft {
785 1.50 lukem register struct fs *fs;
786 1.74 soren int cg, prefcg;
787 1.89 dsl int64_t dirsize, cgsize, curdsz;
788 1.89 dsl int avgifree, avgbfree, avgndir;
789 1.50 lukem int minifree, minbfree, maxndir;
790 1.50 lukem int mincg, minndir;
791 1.50 lukem int maxcontigdirs;
792 1.50 lukem
793 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
794 1.101 ad
795 1.50 lukem fs = pip->i_fs;
796 1.1 mycroft
797 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
798 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
799 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
800 1.50 lukem
801 1.50 lukem /*
802 1.50 lukem * Force allocation in another cg if creating a first level dir.
803 1.50 lukem */
804 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
805 1.71 mycroft prefcg = random() % fs->fs_ncg;
806 1.50 lukem mincg = prefcg;
807 1.50 lukem minndir = fs->fs_ipg;
808 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
809 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
810 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
811 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
812 1.42 sommerfe mincg = cg;
813 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
814 1.42 sommerfe }
815 1.50 lukem for (cg = 0; cg < prefcg; cg++)
816 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
817 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
818 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
819 1.50 lukem mincg = cg;
820 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
821 1.42 sommerfe }
822 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
823 1.42 sommerfe }
824 1.50 lukem
825 1.50 lukem /*
826 1.50 lukem * Count various limits which used for
827 1.50 lukem * optimal allocation of a directory inode.
828 1.50 lukem */
829 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
830 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
831 1.50 lukem if (minifree < 0)
832 1.50 lukem minifree = 0;
833 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
834 1.50 lukem if (minbfree < 0)
835 1.50 lukem minbfree = 0;
836 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
837 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
838 1.89 dsl if (avgndir != 0) {
839 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
840 1.89 dsl if (dirsize < curdsz)
841 1.89 dsl dirsize = curdsz;
842 1.89 dsl }
843 1.89 dsl if (cgsize < dirsize * 255)
844 1.89 dsl maxcontigdirs = cgsize / dirsize;
845 1.89 dsl else
846 1.89 dsl maxcontigdirs = 255;
847 1.50 lukem if (fs->fs_avgfpdir > 0)
848 1.50 lukem maxcontigdirs = min(maxcontigdirs,
849 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
850 1.50 lukem if (maxcontigdirs == 0)
851 1.50 lukem maxcontigdirs = 1;
852 1.50 lukem
853 1.50 lukem /*
854 1.81 perry * Limit number of dirs in one cg and reserve space for
855 1.50 lukem * regular files, but only if we have no deficit in
856 1.50 lukem * inodes or space.
857 1.50 lukem */
858 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
859 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
860 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
861 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
862 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
863 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
864 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
865 1.50 lukem }
866 1.50 lukem for (cg = 0; cg < prefcg; cg++)
867 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
868 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
869 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
870 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
871 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
872 1.50 lukem }
873 1.50 lukem /*
874 1.50 lukem * This is a backstop when we are deficient in space.
875 1.50 lukem */
876 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
877 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
878 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
879 1.50 lukem for (cg = 0; cg < prefcg; cg++)
880 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
881 1.50 lukem break;
882 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
883 1.1 mycroft }
884 1.1 mycroft
885 1.1 mycroft /*
886 1.1 mycroft * Select the desired position for the next block in a file. The file is
887 1.1 mycroft * logically divided into sections. The first section is composed of the
888 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
889 1.81 perry *
890 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
891 1.1 mycroft * request a block in the same cylinder group as the inode that describes
892 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
893 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
894 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
895 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
896 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
897 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
898 1.1 mycroft * continues until a cylinder group with greater than the average number
899 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
900 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
901 1.1 mycroft * here a best guess is made based upon the logical block number being
902 1.1 mycroft * allocated.
903 1.81 perry *
904 1.1 mycroft * If a section is already partially allocated, the policy is to
905 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
906 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
907 1.60 fvdl * contigously if possible.
908 1.1 mycroft */
909 1.58 fvdl daddr_t
910 1.85 thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
911 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
912 1.1 mycroft {
913 1.33 augustss struct fs *fs;
914 1.33 augustss int cg;
915 1.1 mycroft int avgbfree, startcg;
916 1.1 mycroft
917 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
918 1.101 ad
919 1.1 mycroft fs = ip->i_fs;
920 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
921 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
922 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
923 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
924 1.1 mycroft }
925 1.1 mycroft /*
926 1.1 mycroft * Find a cylinder with greater than average number of
927 1.1 mycroft * unused data blocks.
928 1.1 mycroft */
929 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
930 1.1 mycroft startcg =
931 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
932 1.1 mycroft else
933 1.19 bouyer startcg = dtog(fs,
934 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
935 1.1 mycroft startcg %= fs->fs_ncg;
936 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
937 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
938 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
939 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
940 1.1 mycroft }
941 1.52 lukem for (cg = 0; cg < startcg; cg++)
942 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
943 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
944 1.1 mycroft }
945 1.35 thorpej return (0);
946 1.1 mycroft }
947 1.1 mycroft /*
948 1.60 fvdl * We just always try to lay things out contiguously.
949 1.60 fvdl */
950 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
951 1.60 fvdl }
952 1.60 fvdl
953 1.60 fvdl daddr_t
954 1.85 thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
955 1.60 fvdl {
956 1.60 fvdl struct fs *fs;
957 1.60 fvdl int cg;
958 1.60 fvdl int avgbfree, startcg;
959 1.60 fvdl
960 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
961 1.101 ad
962 1.60 fvdl fs = ip->i_fs;
963 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
964 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
965 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
966 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
967 1.60 fvdl }
968 1.1 mycroft /*
969 1.60 fvdl * Find a cylinder with greater than average number of
970 1.60 fvdl * unused data blocks.
971 1.1 mycroft */
972 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
973 1.60 fvdl startcg =
974 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
975 1.60 fvdl else
976 1.60 fvdl startcg = dtog(fs,
977 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
978 1.60 fvdl startcg %= fs->fs_ncg;
979 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
980 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
981 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
982 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
983 1.60 fvdl }
984 1.60 fvdl for (cg = 0; cg < startcg; cg++)
985 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
986 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
987 1.60 fvdl }
988 1.60 fvdl return (0);
989 1.60 fvdl }
990 1.60 fvdl /*
991 1.60 fvdl * We just always try to lay things out contiguously.
992 1.60 fvdl */
993 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
994 1.1 mycroft }
995 1.1 mycroft
996 1.60 fvdl
997 1.1 mycroft /*
998 1.1 mycroft * Implement the cylinder overflow algorithm.
999 1.1 mycroft *
1000 1.1 mycroft * The policy implemented by this algorithm is:
1001 1.1 mycroft * 1) allocate the block in its requested cylinder group.
1002 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
1003 1.1 mycroft * 3) brute force search for a free block.
1004 1.1 mycroft */
1005 1.1 mycroft /*VARARGS5*/
1006 1.58 fvdl static daddr_t
1007 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1008 1.85 thorpej int size /* size for data blocks, mode for inodes */,
1009 1.85 thorpej daddr_t (*allocator)(struct inode *, int, daddr_t, int))
1010 1.1 mycroft {
1011 1.33 augustss struct fs *fs;
1012 1.58 fvdl daddr_t result;
1013 1.1 mycroft int i, icg = cg;
1014 1.1 mycroft
1015 1.1 mycroft fs = ip->i_fs;
1016 1.1 mycroft /*
1017 1.1 mycroft * 1: preferred cylinder group
1018 1.1 mycroft */
1019 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
1020 1.1 mycroft if (result)
1021 1.1 mycroft return (result);
1022 1.1 mycroft /*
1023 1.1 mycroft * 2: quadratic rehash
1024 1.1 mycroft */
1025 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
1026 1.1 mycroft cg += i;
1027 1.1 mycroft if (cg >= fs->fs_ncg)
1028 1.1 mycroft cg -= fs->fs_ncg;
1029 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1030 1.1 mycroft if (result)
1031 1.1 mycroft return (result);
1032 1.1 mycroft }
1033 1.1 mycroft /*
1034 1.1 mycroft * 3: brute force search
1035 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
1036 1.1 mycroft * and 1 is always checked in the quadratic rehash.
1037 1.1 mycroft */
1038 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
1039 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
1040 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1041 1.1 mycroft if (result)
1042 1.1 mycroft return (result);
1043 1.1 mycroft cg++;
1044 1.1 mycroft if (cg == fs->fs_ncg)
1045 1.1 mycroft cg = 0;
1046 1.1 mycroft }
1047 1.35 thorpej return (0);
1048 1.1 mycroft }
1049 1.1 mycroft
1050 1.1 mycroft /*
1051 1.1 mycroft * Determine whether a fragment can be extended.
1052 1.1 mycroft *
1053 1.81 perry * Check to see if the necessary fragments are available, and
1054 1.1 mycroft * if they are, allocate them.
1055 1.1 mycroft */
1056 1.58 fvdl static daddr_t
1057 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1058 1.1 mycroft {
1059 1.101 ad struct ufsmount *ump;
1060 1.33 augustss struct fs *fs;
1061 1.33 augustss struct cg *cgp;
1062 1.1 mycroft struct buf *bp;
1063 1.58 fvdl daddr_t bno;
1064 1.1 mycroft int frags, bbase;
1065 1.1 mycroft int i, error;
1066 1.62 fvdl u_int8_t *blksfree;
1067 1.1 mycroft
1068 1.1 mycroft fs = ip->i_fs;
1069 1.101 ad ump = ip->i_ump;
1070 1.101 ad
1071 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1072 1.101 ad
1073 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1074 1.35 thorpej return (0);
1075 1.1 mycroft frags = numfrags(fs, nsize);
1076 1.1 mycroft bbase = fragnum(fs, bprev);
1077 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1078 1.1 mycroft /* cannot extend across a block boundary */
1079 1.35 thorpej return (0);
1080 1.1 mycroft }
1081 1.101 ad mutex_exit(&ump->um_lock);
1082 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1083 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1084 1.101 ad if (error)
1085 1.101 ad goto fail;
1086 1.1 mycroft cgp = (struct cg *)bp->b_data;
1087 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1088 1.101 ad goto fail;
1089 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1090 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1091 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1092 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1093 1.1 mycroft bno = dtogd(fs, bprev);
1094 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1095 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1096 1.101 ad if (isclr(blksfree, bno + i))
1097 1.101 ad goto fail;
1098 1.1 mycroft /*
1099 1.1 mycroft * the current fragment can be extended
1100 1.1 mycroft * deduct the count on fragment being extended into
1101 1.1 mycroft * increase the count on the remaining fragment (if any)
1102 1.1 mycroft * allocate the extended piece
1103 1.1 mycroft */
1104 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1105 1.62 fvdl if (isclr(blksfree, bno + i))
1106 1.1 mycroft break;
1107 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1108 1.1 mycroft if (i != frags)
1109 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1110 1.101 ad mutex_enter(&ump->um_lock);
1111 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1112 1.62 fvdl clrbit(blksfree, bno + i);
1113 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1114 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1115 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1116 1.1 mycroft }
1117 1.1 mycroft fs->fs_fmod = 1;
1118 1.101 ad ACTIVECG_CLR(fs, cg);
1119 1.101 ad mutex_exit(&ump->um_lock);
1120 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1121 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1122 1.1 mycroft bdwrite(bp);
1123 1.1 mycroft return (bprev);
1124 1.101 ad
1125 1.101 ad fail:
1126 1.101 ad brelse(bp, 0);
1127 1.101 ad mutex_enter(&ump->um_lock);
1128 1.101 ad return (0);
1129 1.1 mycroft }
1130 1.1 mycroft
1131 1.1 mycroft /*
1132 1.1 mycroft * Determine whether a block can be allocated.
1133 1.1 mycroft *
1134 1.1 mycroft * Check to see if a block of the appropriate size is available,
1135 1.1 mycroft * and if it is, allocate it.
1136 1.1 mycroft */
1137 1.58 fvdl static daddr_t
1138 1.85 thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1139 1.1 mycroft {
1140 1.101 ad struct ufsmount *ump;
1141 1.62 fvdl struct fs *fs = ip->i_fs;
1142 1.30 fvdl struct cg *cgp;
1143 1.1 mycroft struct buf *bp;
1144 1.60 fvdl int32_t bno;
1145 1.60 fvdl daddr_t blkno;
1146 1.30 fvdl int error, frags, allocsiz, i;
1147 1.62 fvdl u_int8_t *blksfree;
1148 1.30 fvdl #ifdef FFS_EI
1149 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1150 1.30 fvdl #endif
1151 1.1 mycroft
1152 1.101 ad ump = ip->i_ump;
1153 1.101 ad
1154 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1155 1.101 ad
1156 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1157 1.35 thorpej return (0);
1158 1.101 ad mutex_exit(&ump->um_lock);
1159 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1160 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1161 1.101 ad if (error)
1162 1.101 ad goto fail;
1163 1.1 mycroft cgp = (struct cg *)bp->b_data;
1164 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1165 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1166 1.101 ad goto fail;
1167 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1168 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1169 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1170 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1171 1.1 mycroft if (size == fs->fs_bsize) {
1172 1.101 ad mutex_enter(&ump->um_lock);
1173 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1174 1.76 hannken ACTIVECG_CLR(fs, cg);
1175 1.101 ad mutex_exit(&ump->um_lock);
1176 1.1 mycroft bdwrite(bp);
1177 1.60 fvdl return (blkno);
1178 1.1 mycroft }
1179 1.1 mycroft /*
1180 1.1 mycroft * check to see if any fragments are already available
1181 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1182 1.1 mycroft * it down to a smaller size if necessary
1183 1.1 mycroft */
1184 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1185 1.1 mycroft frags = numfrags(fs, size);
1186 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1187 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1188 1.1 mycroft break;
1189 1.1 mycroft if (allocsiz == fs->fs_frag) {
1190 1.1 mycroft /*
1191 1.81 perry * no fragments were available, so a block will be
1192 1.1 mycroft * allocated, and hacked up
1193 1.1 mycroft */
1194 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1195 1.101 ad goto fail;
1196 1.101 ad mutex_enter(&ump->um_lock);
1197 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1198 1.60 fvdl bno = dtogd(fs, blkno);
1199 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1200 1.62 fvdl setbit(blksfree, bno + i);
1201 1.1 mycroft i = fs->fs_frag - frags;
1202 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1203 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1204 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1205 1.1 mycroft fs->fs_fmod = 1;
1206 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1207 1.76 hannken ACTIVECG_CLR(fs, cg);
1208 1.101 ad mutex_exit(&ump->um_lock);
1209 1.1 mycroft bdwrite(bp);
1210 1.60 fvdl return (blkno);
1211 1.1 mycroft }
1212 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1213 1.30 fvdl #if 0
1214 1.30 fvdl /*
1215 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1216 1.58 fvdl * also: returning NULL as daddr_t ?
1217 1.30 fvdl */
1218 1.101 ad if (bno < 0)
1219 1.101 ad goto fail;
1220 1.30 fvdl #endif
1221 1.1 mycroft for (i = 0; i < frags; i++)
1222 1.62 fvdl clrbit(blksfree, bno + i);
1223 1.101 ad mutex_enter(&ump->um_lock);
1224 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1225 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1226 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1227 1.1 mycroft fs->fs_fmod = 1;
1228 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1229 1.1 mycroft if (frags != allocsiz)
1230 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1231 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1232 1.101 ad ACTIVECG_CLR(fs, cg);
1233 1.101 ad mutex_exit(&ump->um_lock);
1234 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1235 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1236 1.1 mycroft bdwrite(bp);
1237 1.30 fvdl return blkno;
1238 1.101 ad
1239 1.101 ad fail:
1240 1.101 ad brelse(bp, 0);
1241 1.101 ad mutex_enter(&ump->um_lock);
1242 1.101 ad return (0);
1243 1.1 mycroft }
1244 1.1 mycroft
1245 1.1 mycroft /*
1246 1.1 mycroft * Allocate a block in a cylinder group.
1247 1.1 mycroft *
1248 1.1 mycroft * This algorithm implements the following policy:
1249 1.1 mycroft * 1) allocate the requested block.
1250 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1251 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1252 1.1 mycroft * specified cylinder group.
1253 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1254 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1255 1.1 mycroft */
1256 1.58 fvdl static daddr_t
1257 1.85 thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1258 1.1 mycroft {
1259 1.101 ad struct ufsmount *ump;
1260 1.62 fvdl struct fs *fs = ip->i_fs;
1261 1.30 fvdl struct cg *cgp;
1262 1.60 fvdl daddr_t blkno;
1263 1.60 fvdl int32_t bno;
1264 1.60 fvdl u_int8_t *blksfree;
1265 1.30 fvdl #ifdef FFS_EI
1266 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1267 1.30 fvdl #endif
1268 1.1 mycroft
1269 1.101 ad ump = ip->i_ump;
1270 1.101 ad
1271 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1272 1.101 ad
1273 1.30 fvdl cgp = (struct cg *)bp->b_data;
1274 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1275 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1276 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1277 1.60 fvdl } else {
1278 1.60 fvdl bpref = blknum(fs, bpref);
1279 1.60 fvdl bno = dtogd(fs, bpref);
1280 1.1 mycroft /*
1281 1.60 fvdl * if the requested block is available, use it
1282 1.1 mycroft */
1283 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1284 1.60 fvdl goto gotit;
1285 1.1 mycroft }
1286 1.1 mycroft /*
1287 1.60 fvdl * Take the next available block in this cylinder group.
1288 1.1 mycroft */
1289 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1290 1.1 mycroft if (bno < 0)
1291 1.35 thorpej return (0);
1292 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1293 1.1 mycroft gotit:
1294 1.1 mycroft blkno = fragstoblks(fs, bno);
1295 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1296 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1297 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1298 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1299 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1300 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1301 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1302 1.73 dbj int cylno;
1303 1.73 dbj cylno = old_cbtocylno(fs, bno);
1304 1.75 dbj KASSERT(cylno >= 0);
1305 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1306 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1307 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1308 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1309 1.73 dbj needswap);
1310 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1311 1.73 dbj }
1312 1.1 mycroft fs->fs_fmod = 1;
1313 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1314 1.101 ad if (DOINGSOFTDEP(ITOV(ip))) {
1315 1.101 ad mutex_exit(&ump->um_lock);
1316 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1317 1.101 ad mutex_enter(&ump->um_lock);
1318 1.101 ad }
1319 1.30 fvdl return (blkno);
1320 1.1 mycroft }
1321 1.1 mycroft
1322 1.55 matt #ifdef XXXUBC
1323 1.1 mycroft /*
1324 1.1 mycroft * Determine whether a cluster can be allocated.
1325 1.1 mycroft *
1326 1.1 mycroft * We do not currently check for optimal rotational layout if there
1327 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1328 1.1 mycroft * take the first one that we find following bpref.
1329 1.1 mycroft */
1330 1.60 fvdl
1331 1.60 fvdl /*
1332 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1333 1.60 fvdl */
1334 1.58 fvdl static daddr_t
1335 1.85 thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1336 1.1 mycroft {
1337 1.101 ad struct ufsmount *ump;
1338 1.33 augustss struct fs *fs;
1339 1.33 augustss struct cg *cgp;
1340 1.1 mycroft struct buf *bp;
1341 1.18 fvdl int i, got, run, bno, bit, map;
1342 1.1 mycroft u_char *mapp;
1343 1.5 mycroft int32_t *lp;
1344 1.1 mycroft
1345 1.1 mycroft fs = ip->i_fs;
1346 1.101 ad ump = ip->i_ump;
1347 1.101 ad
1348 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1349 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1350 1.35 thorpej return (0);
1351 1.101 ad mutex_exit(&ump->um_lock);
1352 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1353 1.1 mycroft NOCRED, &bp))
1354 1.1 mycroft goto fail;
1355 1.1 mycroft cgp = (struct cg *)bp->b_data;
1356 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1357 1.1 mycroft goto fail;
1358 1.1 mycroft /*
1359 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1360 1.1 mycroft * available in this cylinder group.
1361 1.1 mycroft */
1362 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1363 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1364 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1365 1.1 mycroft break;
1366 1.5 mycroft if (i > fs->fs_contigsumsize) {
1367 1.5 mycroft /*
1368 1.5 mycroft * This is the first time looking for a cluster in this
1369 1.5 mycroft * cylinder group. Update the cluster summary information
1370 1.5 mycroft * to reflect the true maximum sized cluster so that
1371 1.5 mycroft * future cluster allocation requests can avoid reading
1372 1.5 mycroft * the cylinder group map only to find no clusters.
1373 1.5 mycroft */
1374 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1375 1.5 mycroft for (i = len - 1; i > 0; i--)
1376 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1377 1.5 mycroft break;
1378 1.101 ad mutex_enter(&ump->um_lock);
1379 1.5 mycroft fs->fs_maxcluster[cg] = i;
1380 1.101 ad mutex_exit(&ump->um_lock);
1381 1.1 mycroft goto fail;
1382 1.5 mycroft }
1383 1.1 mycroft /*
1384 1.1 mycroft * Search the cluster map to find a big enough cluster.
1385 1.1 mycroft * We take the first one that we find, even if it is larger
1386 1.1 mycroft * than we need as we prefer to get one close to the previous
1387 1.1 mycroft * block allocation. We do not search before the current
1388 1.1 mycroft * preference point as we do not want to allocate a block
1389 1.1 mycroft * that is allocated before the previous one (as we will
1390 1.1 mycroft * then have to wait for another pass of the elevator
1391 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1392 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1393 1.1 mycroft */
1394 1.1 mycroft if (dtog(fs, bpref) != cg)
1395 1.1 mycroft bpref = 0;
1396 1.1 mycroft else
1397 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1398 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1399 1.1 mycroft map = *mapp++;
1400 1.1 mycroft bit = 1 << (bpref % NBBY);
1401 1.19 bouyer for (run = 0, got = bpref;
1402 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1403 1.1 mycroft if ((map & bit) == 0) {
1404 1.1 mycroft run = 0;
1405 1.1 mycroft } else {
1406 1.1 mycroft run++;
1407 1.1 mycroft if (run == len)
1408 1.1 mycroft break;
1409 1.1 mycroft }
1410 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1411 1.1 mycroft bit <<= 1;
1412 1.1 mycroft } else {
1413 1.1 mycroft map = *mapp++;
1414 1.1 mycroft bit = 1;
1415 1.1 mycroft }
1416 1.1 mycroft }
1417 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1418 1.1 mycroft goto fail;
1419 1.1 mycroft /*
1420 1.1 mycroft * Allocate the cluster that we have found.
1421 1.1 mycroft */
1422 1.30 fvdl #ifdef DIAGNOSTIC
1423 1.18 fvdl for (i = 1; i <= len; i++)
1424 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1425 1.30 fvdl got - run + i))
1426 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1427 1.30 fvdl #endif
1428 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1429 1.18 fvdl if (dtog(fs, bno) != cg)
1430 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1431 1.1 mycroft len = blkstofrags(fs, len);
1432 1.101 ad mutex_enter(&ump->um_lock);
1433 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1434 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1435 1.1 mycroft panic("ffs_clusteralloc: lost block");
1436 1.76 hannken ACTIVECG_CLR(fs, cg);
1437 1.101 ad mutex_exit(&ump->um_lock);
1438 1.8 cgd bdwrite(bp);
1439 1.1 mycroft return (bno);
1440 1.1 mycroft
1441 1.1 mycroft fail:
1442 1.101 ad brelse(bp, 0);
1443 1.101 ad mutex_enter(&ump->um_lock);
1444 1.1 mycroft return (0);
1445 1.1 mycroft }
1446 1.55 matt #endif /* XXXUBC */
1447 1.1 mycroft
1448 1.1 mycroft /*
1449 1.1 mycroft * Determine whether an inode can be allocated.
1450 1.1 mycroft *
1451 1.1 mycroft * Check to see if an inode is available, and if it is,
1452 1.1 mycroft * allocate it using the following policy:
1453 1.1 mycroft * 1) allocate the requested inode.
1454 1.1 mycroft * 2) allocate the next available inode after the requested
1455 1.1 mycroft * inode in the specified cylinder group.
1456 1.1 mycroft */
1457 1.58 fvdl static daddr_t
1458 1.85 thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1459 1.1 mycroft {
1460 1.101 ad struct ufsmount *ump = ip->i_ump;
1461 1.62 fvdl struct fs *fs = ip->i_fs;
1462 1.33 augustss struct cg *cgp;
1463 1.60 fvdl struct buf *bp, *ibp;
1464 1.60 fvdl u_int8_t *inosused;
1465 1.1 mycroft int error, start, len, loc, map, i;
1466 1.60 fvdl int32_t initediblk;
1467 1.60 fvdl struct ufs2_dinode *dp2;
1468 1.19 bouyer #ifdef FFS_EI
1469 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1470 1.19 bouyer #endif
1471 1.1 mycroft
1472 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1473 1.101 ad
1474 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1475 1.35 thorpej return (0);
1476 1.101 ad mutex_exit(&ump->um_lock);
1477 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1478 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1479 1.101 ad if (error)
1480 1.101 ad goto fail;
1481 1.1 mycroft cgp = (struct cg *)bp->b_data;
1482 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1483 1.101 ad goto fail;
1484 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1485 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1486 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1487 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1488 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1489 1.1 mycroft if (ipref) {
1490 1.1 mycroft ipref %= fs->fs_ipg;
1491 1.60 fvdl if (isclr(inosused, ipref))
1492 1.1 mycroft goto gotit;
1493 1.1 mycroft }
1494 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1495 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1496 1.19 bouyer NBBY);
1497 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1498 1.1 mycroft if (loc == 0) {
1499 1.1 mycroft len = start + 1;
1500 1.1 mycroft start = 0;
1501 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1502 1.1 mycroft if (loc == 0) {
1503 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1504 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1505 1.19 bouyer fs->fs_fsmnt);
1506 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1507 1.1 mycroft /* NOTREACHED */
1508 1.1 mycroft }
1509 1.1 mycroft }
1510 1.1 mycroft i = start + len - loc;
1511 1.60 fvdl map = inosused[i];
1512 1.1 mycroft ipref = i * NBBY;
1513 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1514 1.1 mycroft if ((map & i) == 0) {
1515 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1516 1.1 mycroft goto gotit;
1517 1.1 mycroft }
1518 1.1 mycroft }
1519 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1520 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1521 1.1 mycroft /* NOTREACHED */
1522 1.1 mycroft gotit:
1523 1.60 fvdl /*
1524 1.60 fvdl * Check to see if we need to initialize more inodes.
1525 1.60 fvdl */
1526 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1527 1.104 hannken ibp = NULL;
1528 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1529 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1530 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1531 1.60 fvdl ibp = getblk(ip->i_devvp, fsbtodb(fs,
1532 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1533 1.60 fvdl (int)fs->fs_bsize, 0, 0);
1534 1.60 fvdl memset(ibp->b_data, 0, fs->fs_bsize);
1535 1.60 fvdl dp2 = (struct ufs2_dinode *)(ibp->b_data);
1536 1.60 fvdl for (i = 0; i < INOPB(fs); i++) {
1537 1.60 fvdl /*
1538 1.60 fvdl * Don't bother to swap, it's supposed to be
1539 1.60 fvdl * random, after all.
1540 1.60 fvdl */
1541 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1542 1.60 fvdl dp2++;
1543 1.60 fvdl }
1544 1.60 fvdl initediblk += INOPB(fs);
1545 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1546 1.60 fvdl }
1547 1.60 fvdl
1548 1.101 ad mutex_enter(&ump->um_lock);
1549 1.76 hannken ACTIVECG_CLR(fs, cg);
1550 1.101 ad setbit(inosused, ipref);
1551 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1552 1.101 ad fs->fs_cstotal.cs_nifree--;
1553 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1554 1.101 ad fs->fs_fmod = 1;
1555 1.101 ad if ((mode & IFMT) == IFDIR) {
1556 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1557 1.101 ad fs->fs_cstotal.cs_ndir++;
1558 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1559 1.101 ad }
1560 1.101 ad mutex_exit(&ump->um_lock);
1561 1.101 ad if (DOINGSOFTDEP(ITOV(ip)))
1562 1.101 ad softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1563 1.1 mycroft bdwrite(bp);
1564 1.104 hannken if (ibp != NULL)
1565 1.104 hannken bawrite(ibp);
1566 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1567 1.101 ad fail:
1568 1.101 ad brelse(bp, 0);
1569 1.101 ad mutex_enter(&ump->um_lock);
1570 1.101 ad return (0);
1571 1.1 mycroft }
1572 1.1 mycroft
1573 1.1 mycroft /*
1574 1.1 mycroft * Free a block or fragment.
1575 1.1 mycroft *
1576 1.1 mycroft * The specified block or fragment is placed back in the
1577 1.81 perry * free map. If a fragment is deallocated, a possible
1578 1.1 mycroft * block reassembly is checked.
1579 1.1 mycroft */
1580 1.9 christos void
1581 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1582 1.85 thorpej ino_t inum)
1583 1.1 mycroft {
1584 1.33 augustss struct cg *cgp;
1585 1.1 mycroft struct buf *bp;
1586 1.76 hannken struct ufsmount *ump;
1587 1.60 fvdl int32_t fragno, cgbno;
1588 1.76 hannken daddr_t cgblkno;
1589 1.1 mycroft int i, error, cg, blk, frags, bbase;
1590 1.62 fvdl u_int8_t *blksfree;
1591 1.76 hannken dev_t dev;
1592 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1593 1.1 mycroft
1594 1.76 hannken cg = dtog(fs, bno);
1595 1.77 hannken if (devvp->v_type != VBLK) {
1596 1.77 hannken /* devvp is a snapshot */
1597 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1598 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1599 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1600 1.76 hannken } else {
1601 1.76 hannken dev = devvp->v_rdev;
1602 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1603 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1604 1.100 hannken if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1605 1.76 hannken return;
1606 1.76 hannken }
1607 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1608 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1609 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1610 1.58 fvdl "size = %ld, fs = %s\n",
1611 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1612 1.1 mycroft panic("blkfree: bad size");
1613 1.1 mycroft }
1614 1.76 hannken
1615 1.60 fvdl if (bno >= fs->fs_size) {
1616 1.86 christos printf("bad block %" PRId64 ", ino %llu\n", bno,
1617 1.86 christos (unsigned long long)inum);
1618 1.76 hannken ffs_fserr(fs, inum, "bad block");
1619 1.1 mycroft return;
1620 1.1 mycroft }
1621 1.76 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
1622 1.1 mycroft if (error) {
1623 1.101 ad brelse(bp, 0);
1624 1.1 mycroft return;
1625 1.1 mycroft }
1626 1.1 mycroft cgp = (struct cg *)bp->b_data;
1627 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1628 1.101 ad brelse(bp, 0);
1629 1.1 mycroft return;
1630 1.1 mycroft }
1631 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1632 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1633 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1634 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1635 1.60 fvdl cgbno = dtogd(fs, bno);
1636 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1637 1.101 ad mutex_enter(&ump->um_lock);
1638 1.1 mycroft if (size == fs->fs_bsize) {
1639 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1640 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1641 1.77 hannken if (devvp->v_type != VBLK) {
1642 1.77 hannken /* devvp is a snapshot */
1643 1.101 ad mutex_exit(&ump->um_lock);
1644 1.101 ad brelse(bp, 0);
1645 1.76 hannken return;
1646 1.76 hannken }
1647 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1648 1.76 hannken dev, bno, fs->fs_fsmnt);
1649 1.1 mycroft panic("blkfree: freeing free block");
1650 1.1 mycroft }
1651 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1652 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1653 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1654 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1655 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1656 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1657 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1658 1.73 dbj i = old_cbtocylno(fs, cgbno);
1659 1.75 dbj KASSERT(i >= 0);
1660 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1661 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1662 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1663 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1664 1.73 dbj needswap);
1665 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1666 1.73 dbj }
1667 1.1 mycroft } else {
1668 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1669 1.1 mycroft /*
1670 1.1 mycroft * decrement the counts associated with the old frags
1671 1.1 mycroft */
1672 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1673 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1674 1.1 mycroft /*
1675 1.1 mycroft * deallocate the fragment
1676 1.1 mycroft */
1677 1.1 mycroft frags = numfrags(fs, size);
1678 1.1 mycroft for (i = 0; i < frags; i++) {
1679 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1680 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1681 1.59 tsutsui ", fs = %s\n",
1682 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1683 1.1 mycroft panic("blkfree: freeing free frag");
1684 1.1 mycroft }
1685 1.62 fvdl setbit(blksfree, cgbno + i);
1686 1.1 mycroft }
1687 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1688 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1689 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1690 1.1 mycroft /*
1691 1.1 mycroft * add back in counts associated with the new frags
1692 1.1 mycroft */
1693 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1694 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1695 1.1 mycroft /*
1696 1.1 mycroft * if a complete block has been reassembled, account for it
1697 1.1 mycroft */
1698 1.60 fvdl fragno = fragstoblks(fs, bbase);
1699 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1700 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1701 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1702 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1703 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1704 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1705 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1706 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1707 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1708 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1709 1.73 dbj i = old_cbtocylno(fs, bbase);
1710 1.75 dbj KASSERT(i >= 0);
1711 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1712 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1713 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1714 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1715 1.73 dbj bbase)], 1, needswap);
1716 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1717 1.73 dbj }
1718 1.1 mycroft }
1719 1.1 mycroft }
1720 1.1 mycroft fs->fs_fmod = 1;
1721 1.76 hannken ACTIVECG_CLR(fs, cg);
1722 1.101 ad mutex_exit(&ump->um_lock);
1723 1.1 mycroft bdwrite(bp);
1724 1.1 mycroft }
1725 1.1 mycroft
1726 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1727 1.55 matt #ifdef XXXUBC
1728 1.18 fvdl /*
1729 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1730 1.18 fvdl * fragment is allocated, false if it is free.
1731 1.18 fvdl */
1732 1.18 fvdl static int
1733 1.85 thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1734 1.18 fvdl {
1735 1.18 fvdl struct fs *fs;
1736 1.18 fvdl struct cg *cgp;
1737 1.18 fvdl struct buf *bp;
1738 1.18 fvdl int i, error, frags, free;
1739 1.18 fvdl
1740 1.18 fvdl fs = ip->i_fs;
1741 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1742 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1743 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1744 1.18 fvdl panic("checkblk: bad size");
1745 1.18 fvdl }
1746 1.60 fvdl if (bno >= fs->fs_size)
1747 1.18 fvdl panic("checkblk: bad block %d", bno);
1748 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1749 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1750 1.18 fvdl if (error) {
1751 1.101 ad brelse(bp, 0);
1752 1.18 fvdl return 0;
1753 1.18 fvdl }
1754 1.18 fvdl cgp = (struct cg *)bp->b_data;
1755 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1756 1.101 ad brelse(bp, 0);
1757 1.18 fvdl return 0;
1758 1.18 fvdl }
1759 1.18 fvdl bno = dtogd(fs, bno);
1760 1.18 fvdl if (size == fs->fs_bsize) {
1761 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1762 1.19 bouyer fragstoblks(fs, bno));
1763 1.18 fvdl } else {
1764 1.18 fvdl frags = numfrags(fs, size);
1765 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1766 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1767 1.18 fvdl free++;
1768 1.18 fvdl if (free != 0 && free != frags)
1769 1.18 fvdl panic("checkblk: partially free fragment");
1770 1.18 fvdl }
1771 1.101 ad brelse(bp, 0);
1772 1.18 fvdl return (!free);
1773 1.18 fvdl }
1774 1.55 matt #endif /* XXXUBC */
1775 1.18 fvdl #endif /* DIAGNOSTIC */
1776 1.18 fvdl
1777 1.1 mycroft /*
1778 1.1 mycroft * Free an inode.
1779 1.30 fvdl */
1780 1.30 fvdl int
1781 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1782 1.30 fvdl {
1783 1.30 fvdl
1784 1.88 yamt if (DOINGSOFTDEP(vp)) {
1785 1.88 yamt softdep_freefile(vp, ino, mode);
1786 1.30 fvdl return (0);
1787 1.30 fvdl }
1788 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1789 1.30 fvdl }
1790 1.30 fvdl
1791 1.30 fvdl /*
1792 1.30 fvdl * Do the actual free operation.
1793 1.1 mycroft * The specified inode is placed back in the free map.
1794 1.1 mycroft */
1795 1.1 mycroft int
1796 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1797 1.9 christos {
1798 1.101 ad struct ufsmount *ump;
1799 1.33 augustss struct cg *cgp;
1800 1.1 mycroft struct buf *bp;
1801 1.1 mycroft int error, cg;
1802 1.76 hannken daddr_t cgbno;
1803 1.62 fvdl u_int8_t *inosused;
1804 1.78 hannken dev_t dev;
1805 1.19 bouyer #ifdef FFS_EI
1806 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1807 1.19 bouyer #endif
1808 1.1 mycroft
1809 1.76 hannken cg = ino_to_cg(fs, ino);
1810 1.78 hannken if (devvp->v_type != VBLK) {
1811 1.78 hannken /* devvp is a snapshot */
1812 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1813 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1814 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1815 1.76 hannken } else {
1816 1.78 hannken dev = devvp->v_rdev;
1817 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1818 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1819 1.76 hannken }
1820 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1821 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1822 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
1823 1.78 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
1824 1.1 mycroft if (error) {
1825 1.101 ad brelse(bp, 0);
1826 1.30 fvdl return (error);
1827 1.1 mycroft }
1828 1.1 mycroft cgp = (struct cg *)bp->b_data;
1829 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1830 1.101 ad brelse(bp, 0);
1831 1.1 mycroft return (0);
1832 1.1 mycroft }
1833 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1834 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1835 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1836 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1837 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1838 1.1 mycroft ino %= fs->fs_ipg;
1839 1.62 fvdl if (isclr(inosused, ino)) {
1840 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1841 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
1842 1.86 christos fs->fs_fsmnt);
1843 1.1 mycroft if (fs->fs_ronly == 0)
1844 1.1 mycroft panic("ifree: freeing free inode");
1845 1.1 mycroft }
1846 1.62 fvdl clrbit(inosused, ino);
1847 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1848 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1849 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1850 1.101 ad mutex_enter(&ump->um_lock);
1851 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1852 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1853 1.78 hannken if ((mode & IFMT) == IFDIR) {
1854 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1855 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1856 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1857 1.1 mycroft }
1858 1.1 mycroft fs->fs_fmod = 1;
1859 1.82 hannken ACTIVECG_CLR(fs, cg);
1860 1.101 ad mutex_exit(&ump->um_lock);
1861 1.1 mycroft bdwrite(bp);
1862 1.1 mycroft return (0);
1863 1.1 mycroft }
1864 1.1 mycroft
1865 1.1 mycroft /*
1866 1.76 hannken * Check to see if a file is free.
1867 1.76 hannken */
1868 1.76 hannken int
1869 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1870 1.76 hannken {
1871 1.76 hannken struct cg *cgp;
1872 1.76 hannken struct buf *bp;
1873 1.76 hannken daddr_t cgbno;
1874 1.76 hannken int ret, cg;
1875 1.76 hannken u_int8_t *inosused;
1876 1.76 hannken
1877 1.76 hannken cg = ino_to_cg(fs, ino);
1878 1.77 hannken if (devvp->v_type != VBLK) {
1879 1.77 hannken /* devvp is a snapshot */
1880 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1881 1.77 hannken } else
1882 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1883 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1884 1.76 hannken return 1;
1885 1.76 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1886 1.101 ad brelse(bp, 0);
1887 1.76 hannken return 1;
1888 1.76 hannken }
1889 1.76 hannken cgp = (struct cg *)bp->b_data;
1890 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1891 1.101 ad brelse(bp, 0);
1892 1.76 hannken return 1;
1893 1.76 hannken }
1894 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1895 1.76 hannken ino %= fs->fs_ipg;
1896 1.76 hannken ret = isclr(inosused, ino);
1897 1.101 ad brelse(bp, 0);
1898 1.76 hannken return ret;
1899 1.76 hannken }
1900 1.76 hannken
1901 1.76 hannken /*
1902 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1903 1.1 mycroft *
1904 1.1 mycroft * It is a panic if a request is made to find a block if none are
1905 1.1 mycroft * available.
1906 1.1 mycroft */
1907 1.60 fvdl static int32_t
1908 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1909 1.1 mycroft {
1910 1.60 fvdl int32_t bno;
1911 1.1 mycroft int start, len, loc, i;
1912 1.1 mycroft int blk, field, subfield, pos;
1913 1.19 bouyer int ostart, olen;
1914 1.62 fvdl u_int8_t *blksfree;
1915 1.30 fvdl #ifdef FFS_EI
1916 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1917 1.30 fvdl #endif
1918 1.1 mycroft
1919 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1920 1.101 ad
1921 1.1 mycroft /*
1922 1.1 mycroft * find the fragment by searching through the free block
1923 1.1 mycroft * map for an appropriate bit pattern
1924 1.1 mycroft */
1925 1.1 mycroft if (bpref)
1926 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1927 1.1 mycroft else
1928 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1929 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1930 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1931 1.19 bouyer ostart = start;
1932 1.19 bouyer olen = len;
1933 1.45 lukem loc = scanc((u_int)len,
1934 1.62 fvdl (const u_char *)&blksfree[start],
1935 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1936 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1937 1.1 mycroft if (loc == 0) {
1938 1.1 mycroft len = start + 1;
1939 1.1 mycroft start = 0;
1940 1.45 lukem loc = scanc((u_int)len,
1941 1.62 fvdl (const u_char *)&blksfree[0],
1942 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1943 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1944 1.1 mycroft if (loc == 0) {
1945 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1946 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1947 1.20 ross printf("offset=%d %ld\n",
1948 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1949 1.62 fvdl (long)blksfree - (long)cgp);
1950 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1951 1.1 mycroft panic("ffs_alloccg: map corrupted");
1952 1.1 mycroft /* NOTREACHED */
1953 1.1 mycroft }
1954 1.1 mycroft }
1955 1.1 mycroft bno = (start + len - loc) * NBBY;
1956 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1957 1.1 mycroft /*
1958 1.1 mycroft * found the byte in the map
1959 1.1 mycroft * sift through the bits to find the selected frag
1960 1.1 mycroft */
1961 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1962 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1963 1.1 mycroft blk <<= 1;
1964 1.1 mycroft field = around[allocsiz];
1965 1.1 mycroft subfield = inside[allocsiz];
1966 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1967 1.1 mycroft if ((blk & field) == subfield)
1968 1.1 mycroft return (bno + pos);
1969 1.1 mycroft field <<= 1;
1970 1.1 mycroft subfield <<= 1;
1971 1.1 mycroft }
1972 1.1 mycroft }
1973 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1974 1.1 mycroft panic("ffs_alloccg: block not in map");
1975 1.58 fvdl /* return (-1); */
1976 1.1 mycroft }
1977 1.1 mycroft
1978 1.1 mycroft /*
1979 1.1 mycroft * Update the cluster map because of an allocation or free.
1980 1.1 mycroft *
1981 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1982 1.1 mycroft */
1983 1.9 christos void
1984 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1985 1.1 mycroft {
1986 1.4 cgd int32_t *sump;
1987 1.5 mycroft int32_t *lp;
1988 1.1 mycroft u_char *freemapp, *mapp;
1989 1.1 mycroft int i, start, end, forw, back, map, bit;
1990 1.30 fvdl #ifdef FFS_EI
1991 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1992 1.30 fvdl #endif
1993 1.1 mycroft
1994 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1995 1.101 ad
1996 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1997 1.1 mycroft return;
1998 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1999 1.19 bouyer sump = cg_clustersum(cgp, needswap);
2000 1.1 mycroft /*
2001 1.1 mycroft * Allocate or clear the actual block.
2002 1.1 mycroft */
2003 1.1 mycroft if (cnt > 0)
2004 1.1 mycroft setbit(freemapp, blkno);
2005 1.1 mycroft else
2006 1.1 mycroft clrbit(freemapp, blkno);
2007 1.1 mycroft /*
2008 1.1 mycroft * Find the size of the cluster going forward.
2009 1.1 mycroft */
2010 1.1 mycroft start = blkno + 1;
2011 1.1 mycroft end = start + fs->fs_contigsumsize;
2012 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2013 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2014 1.1 mycroft mapp = &freemapp[start / NBBY];
2015 1.1 mycroft map = *mapp++;
2016 1.1 mycroft bit = 1 << (start % NBBY);
2017 1.1 mycroft for (i = start; i < end; i++) {
2018 1.1 mycroft if ((map & bit) == 0)
2019 1.1 mycroft break;
2020 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
2021 1.1 mycroft bit <<= 1;
2022 1.1 mycroft } else {
2023 1.1 mycroft map = *mapp++;
2024 1.1 mycroft bit = 1;
2025 1.1 mycroft }
2026 1.1 mycroft }
2027 1.1 mycroft forw = i - start;
2028 1.1 mycroft /*
2029 1.1 mycroft * Find the size of the cluster going backward.
2030 1.1 mycroft */
2031 1.1 mycroft start = blkno - 1;
2032 1.1 mycroft end = start - fs->fs_contigsumsize;
2033 1.1 mycroft if (end < 0)
2034 1.1 mycroft end = -1;
2035 1.1 mycroft mapp = &freemapp[start / NBBY];
2036 1.1 mycroft map = *mapp--;
2037 1.1 mycroft bit = 1 << (start % NBBY);
2038 1.1 mycroft for (i = start; i > end; i--) {
2039 1.1 mycroft if ((map & bit) == 0)
2040 1.1 mycroft break;
2041 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
2042 1.1 mycroft bit >>= 1;
2043 1.1 mycroft } else {
2044 1.1 mycroft map = *mapp--;
2045 1.1 mycroft bit = 1 << (NBBY - 1);
2046 1.1 mycroft }
2047 1.1 mycroft }
2048 1.1 mycroft back = start - i;
2049 1.1 mycroft /*
2050 1.1 mycroft * Account for old cluster and the possibly new forward and
2051 1.1 mycroft * back clusters.
2052 1.1 mycroft */
2053 1.1 mycroft i = back + forw + 1;
2054 1.1 mycroft if (i > fs->fs_contigsumsize)
2055 1.1 mycroft i = fs->fs_contigsumsize;
2056 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
2057 1.1 mycroft if (back > 0)
2058 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
2059 1.1 mycroft if (forw > 0)
2060 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
2061 1.19 bouyer
2062 1.5 mycroft /*
2063 1.5 mycroft * Update cluster summary information.
2064 1.5 mycroft */
2065 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
2066 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
2067 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
2068 1.5 mycroft break;
2069 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2070 1.1 mycroft }
2071 1.1 mycroft
2072 1.1 mycroft /*
2073 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2074 1.81 perry *
2075 1.1 mycroft * The form of the error message is:
2076 1.1 mycroft * fs: error message
2077 1.1 mycroft */
2078 1.1 mycroft static void
2079 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2080 1.1 mycroft {
2081 1.1 mycroft
2082 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2083 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2084 1.1 mycroft }
2085