Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.106
      1  1.106     pooka /*	$NetBSD: ffs_alloc.c,v 1.106 2008/01/21 23:36:26 pooka Exp $	*/
      2    1.2       cgd 
      3    1.1   mycroft /*
      4   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5   1.60      fvdl  * All rights reserved.
      6   1.60      fvdl  *
      7   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11   1.60      fvdl  * research program
     12   1.60      fvdl  *
     13    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15    1.1   mycroft  *
     16    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17    1.1   mycroft  * modification, are permitted provided that the following conditions
     18    1.1   mycroft  * are met:
     19    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26    1.1   mycroft  *    without specific prior written permission.
     27    1.1   mycroft  *
     28    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38    1.1   mycroft  * SUCH DAMAGE.
     39    1.1   mycroft  *
     40   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41    1.1   mycroft  */
     42   1.53     lukem 
     43   1.53     lukem #include <sys/cdefs.h>
     44  1.106     pooka __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.106 2008/01/21 23:36:26 pooka Exp $");
     45   1.17       mrg 
     46   1.43       mrg #if defined(_KERNEL_OPT)
     47   1.27   thorpej #include "opt_ffs.h"
     48   1.21    scottr #include "opt_quota.h"
     49   1.22    scottr #endif
     50    1.1   mycroft 
     51    1.1   mycroft #include <sys/param.h>
     52    1.1   mycroft #include <sys/systm.h>
     53    1.1   mycroft #include <sys/buf.h>
     54    1.1   mycroft #include <sys/proc.h>
     55    1.1   mycroft #include <sys/vnode.h>
     56    1.1   mycroft #include <sys/mount.h>
     57    1.1   mycroft #include <sys/kernel.h>
     58    1.1   mycroft #include <sys/syslog.h>
     59   1.91      elad #include <sys/kauth.h>
     60   1.29       mrg 
     61   1.76   hannken #include <miscfs/specfs/specdev.h>
     62    1.1   mycroft #include <ufs/ufs/quota.h>
     63   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     64    1.1   mycroft #include <ufs/ufs/inode.h>
     65    1.9  christos #include <ufs/ufs/ufs_extern.h>
     66   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     67    1.1   mycroft 
     68    1.1   mycroft #include <ufs/ffs/fs.h>
     69    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     70    1.1   mycroft 
     71   1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     72   1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     73   1.55      matt #ifdef XXXUBC
     74   1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     75   1.55      matt #endif
     76   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     77   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     78   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     79   1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     80   1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     81   1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     82   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     83   1.85   thorpej 				      daddr_t, int);
     84   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     85   1.55      matt #ifdef XXXUBC
     86   1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     87   1.18      fvdl #endif
     88   1.55      matt #endif
     89   1.23  drochner 
     90   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     91   1.34  jdolecek int ffs_log_changeopt = 0;
     92   1.34  jdolecek 
     93   1.23  drochner /* in ffs_tables.c */
     94   1.40  jdolecek extern const int inside[], around[];
     95   1.40  jdolecek extern const u_char * const fragtbl[];
     96    1.1   mycroft 
     97    1.1   mycroft /*
     98    1.1   mycroft  * Allocate a block in the file system.
     99   1.81     perry  *
    100    1.1   mycroft  * The size of the requested block is given, which must be some
    101    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    102    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    103    1.1   mycroft  * the following hierarchy is used to allocate a block:
    104    1.1   mycroft  *   1) allocate the requested block.
    105    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    106    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    107    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    108    1.1   mycroft  *      available block is located.
    109   1.47       wiz  * If no block preference is given the following hierarchy is used
    110    1.1   mycroft  * to allocate a block:
    111    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    112    1.1   mycroft  *      inode for the file.
    113    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    114    1.1   mycroft  *      available block is located.
    115  1.106     pooka  *
    116  1.106     pooka  * => called with um_lock held
    117  1.106     pooka  * => releases um_lock before returning
    118    1.1   mycroft  */
    119    1.9  christos int
    120   1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    121   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    122    1.1   mycroft {
    123  1.101        ad 	struct ufsmount *ump;
    124   1.62      fvdl 	struct fs *fs;
    125   1.58      fvdl 	daddr_t bno;
    126    1.9  christos 	int cg;
    127    1.9  christos #ifdef QUOTA
    128    1.9  christos 	int error;
    129    1.9  christos #endif
    130   1.81     perry 
    131   1.62      fvdl 	fs = ip->i_fs;
    132  1.101        ad 	ump = ip->i_ump;
    133  1.101        ad 
    134  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    135   1.62      fvdl 
    136   1.37       chs #ifdef UVM_PAGE_TRKOWN
    137   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    138   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    139   1.37       chs 		struct vm_page *pg;
    140   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    141   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    142   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    143   1.37       chs 
    144  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    145   1.37       chs 		while (off < endoff) {
    146   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    147   1.37       chs 			KASSERT(pg != NULL);
    148   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    149   1.37       chs 			off += PAGE_SIZE;
    150   1.37       chs 		}
    151  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    152   1.37       chs 	}
    153   1.37       chs #endif
    154   1.37       chs 
    155    1.1   mycroft 	*bnp = 0;
    156    1.1   mycroft #ifdef DIAGNOSTIC
    157    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    158   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    159    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    160    1.1   mycroft 		panic("ffs_alloc: bad size");
    161    1.1   mycroft 	}
    162    1.1   mycroft 	if (cred == NOCRED)
    163   1.56    provos 		panic("ffs_alloc: missing credential");
    164    1.1   mycroft #endif /* DIAGNOSTIC */
    165    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    166    1.1   mycroft 		goto nospace;
    167   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    168   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    169    1.1   mycroft 		goto nospace;
    170    1.1   mycroft #ifdef QUOTA
    171  1.101        ad 	mutex_exit(&ump->um_lock);
    172   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    173    1.1   mycroft 		return (error);
    174  1.101        ad 	mutex_enter(&ump->um_lock);
    175    1.1   mycroft #endif
    176    1.1   mycroft 	if (bpref >= fs->fs_size)
    177    1.1   mycroft 		bpref = 0;
    178    1.1   mycroft 	if (bpref == 0)
    179    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    180    1.1   mycroft 	else
    181    1.1   mycroft 		cg = dtog(fs, bpref);
    182   1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    183    1.1   mycroft 	if (bno > 0) {
    184   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    185    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    186    1.1   mycroft 		*bnp = bno;
    187    1.1   mycroft 		return (0);
    188    1.1   mycroft 	}
    189    1.1   mycroft #ifdef QUOTA
    190    1.1   mycroft 	/*
    191    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    192    1.1   mycroft 	 */
    193   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    194    1.1   mycroft #endif
    195    1.1   mycroft nospace:
    196  1.101        ad 	mutex_exit(&ump->um_lock);
    197   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    198    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    199    1.1   mycroft 	return (ENOSPC);
    200    1.1   mycroft }
    201    1.1   mycroft 
    202    1.1   mycroft /*
    203    1.1   mycroft  * Reallocate a fragment to a bigger size
    204    1.1   mycroft  *
    205    1.1   mycroft  * The number and size of the old block is given, and a preference
    206    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    207    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    208    1.1   mycroft  * invoked to get an appropriate block.
    209  1.106     pooka  *
    210  1.106     pooka  * => called with um_lock held
    211  1.106     pooka  * => return with um_lock released
    212    1.1   mycroft  */
    213    1.9  christos int
    214   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    215   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    216    1.1   mycroft {
    217  1.101        ad 	struct ufsmount *ump;
    218   1.62      fvdl 	struct fs *fs;
    219    1.1   mycroft 	struct buf *bp;
    220    1.1   mycroft 	int cg, request, error;
    221   1.58      fvdl 	daddr_t bprev, bno;
    222   1.25   thorpej 
    223   1.62      fvdl 	fs = ip->i_fs;
    224  1.101        ad 	ump = ip->i_ump;
    225  1.101        ad 
    226  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    227  1.101        ad 
    228   1.37       chs #ifdef UVM_PAGE_TRKOWN
    229   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    230   1.37       chs 		struct vm_page *pg;
    231   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    232   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    233   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    234   1.37       chs 
    235  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    236   1.37       chs 		while (off < endoff) {
    237   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    238   1.37       chs 			KASSERT(pg != NULL);
    239   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    240   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    241   1.37       chs 			off += PAGE_SIZE;
    242   1.37       chs 		}
    243  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    244   1.37       chs 	}
    245   1.37       chs #endif
    246   1.37       chs 
    247    1.1   mycroft #ifdef DIAGNOSTIC
    248    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    249    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    250   1.13  christos 		printf(
    251    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    252    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    253    1.1   mycroft 		panic("ffs_realloccg: bad size");
    254    1.1   mycroft 	}
    255    1.1   mycroft 	if (cred == NOCRED)
    256   1.56    provos 		panic("ffs_realloccg: missing credential");
    257    1.1   mycroft #endif /* DIAGNOSTIC */
    258   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    259  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    260  1.101        ad 		mutex_exit(&ump->um_lock);
    261    1.1   mycroft 		goto nospace;
    262  1.101        ad 	}
    263   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    264   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    265   1.60      fvdl 	else
    266   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    267   1.60      fvdl 
    268   1.60      fvdl 	if (bprev == 0) {
    269   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    270   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    271    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    272    1.1   mycroft 	}
    273  1.101        ad 	mutex_exit(&ump->um_lock);
    274  1.101        ad 
    275    1.1   mycroft 	/*
    276    1.1   mycroft 	 * Allocate the extra space in the buffer.
    277    1.1   mycroft 	 */
    278   1.37       chs 	if (bpp != NULL &&
    279   1.37       chs 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    280  1.101        ad 		brelse(bp, 0);
    281    1.1   mycroft 		return (error);
    282    1.1   mycroft 	}
    283    1.1   mycroft #ifdef QUOTA
    284   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    285   1.44       chs 		if (bpp != NULL) {
    286  1.101        ad 			brelse(bp, 0);
    287   1.44       chs 		}
    288    1.1   mycroft 		return (error);
    289    1.1   mycroft 	}
    290    1.1   mycroft #endif
    291    1.1   mycroft 	/*
    292    1.1   mycroft 	 * Check for extension in the existing location.
    293    1.1   mycroft 	 */
    294    1.1   mycroft 	cg = dtog(fs, bprev);
    295  1.101        ad 	mutex_enter(&ump->um_lock);
    296   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    297   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    298    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    299   1.37       chs 
    300   1.37       chs 		if (bpp != NULL) {
    301   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    302   1.37       chs 				panic("bad blockno");
    303   1.72        pk 			allocbuf(bp, nsize, 1);
    304   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    305  1.105        ad 			mutex_enter(bp->b_objlock);
    306  1.105        ad 			bp->b_oflags |= BO_DONE;
    307  1.105        ad 			mutex_exit(bp->b_objlock);
    308   1.37       chs 			*bpp = bp;
    309   1.37       chs 		}
    310   1.37       chs 		if (blknop != NULL) {
    311   1.37       chs 			*blknop = bno;
    312   1.37       chs 		}
    313    1.1   mycroft 		return (0);
    314    1.1   mycroft 	}
    315    1.1   mycroft 	/*
    316    1.1   mycroft 	 * Allocate a new disk location.
    317    1.1   mycroft 	 */
    318    1.1   mycroft 	if (bpref >= fs->fs_size)
    319    1.1   mycroft 		bpref = 0;
    320    1.1   mycroft 	switch ((int)fs->fs_optim) {
    321    1.1   mycroft 	case FS_OPTSPACE:
    322    1.1   mycroft 		/*
    323   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    324   1.81     perry 		 * best use of space, we will waste time relocating it if
    325    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    326    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    327    1.1   mycroft 		 * to begin optimizing for time.
    328    1.1   mycroft 		 */
    329    1.1   mycroft 		request = nsize;
    330    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    331    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    332    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    333    1.1   mycroft 			break;
    334   1.34  jdolecek 
    335   1.34  jdolecek 		if (ffs_log_changeopt) {
    336   1.34  jdolecek 			log(LOG_NOTICE,
    337   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    338   1.34  jdolecek 				fs->fs_fsmnt);
    339   1.34  jdolecek 		}
    340   1.34  jdolecek 
    341    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    342    1.1   mycroft 		break;
    343    1.1   mycroft 	case FS_OPTTIME:
    344    1.1   mycroft 		/*
    345    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    346    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    347    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    348    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    349    1.1   mycroft 		 * above will be able to grow it in place without further
    350    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    351    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    352    1.1   mycroft 		 * optimizing for space.
    353    1.1   mycroft 		 */
    354    1.1   mycroft 		request = fs->fs_bsize;
    355    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    356    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    357    1.1   mycroft 			break;
    358   1.34  jdolecek 
    359   1.34  jdolecek 		if (ffs_log_changeopt) {
    360   1.34  jdolecek 			log(LOG_NOTICE,
    361   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    362   1.34  jdolecek 				fs->fs_fsmnt);
    363   1.34  jdolecek 		}
    364   1.34  jdolecek 
    365    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    366    1.1   mycroft 		break;
    367    1.1   mycroft 	default:
    368   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    369    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    370    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    371    1.1   mycroft 		/* NOTREACHED */
    372    1.1   mycroft 	}
    373   1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    374    1.1   mycroft 	if (bno > 0) {
    375   1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    376   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    377   1.76   hannken 			    ip->i_number);
    378    1.1   mycroft 		if (nsize < request)
    379   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    380   1.76   hannken 			    (long)(request - nsize), ip->i_number);
    381   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    382    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    383   1.37       chs 		if (bpp != NULL) {
    384   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    385   1.72        pk 			allocbuf(bp, nsize, 1);
    386   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    387  1.105        ad 			mutex_enter(bp->b_objlock);
    388  1.105        ad 			bp->b_oflags |= BO_DONE;
    389  1.105        ad 			mutex_exit(bp->b_objlock);
    390   1.37       chs 			*bpp = bp;
    391   1.37       chs 		}
    392   1.37       chs 		if (blknop != NULL) {
    393   1.37       chs 			*blknop = bno;
    394   1.37       chs 		}
    395    1.1   mycroft 		return (0);
    396    1.1   mycroft 	}
    397  1.101        ad 	mutex_exit(&ump->um_lock);
    398  1.101        ad 
    399    1.1   mycroft #ifdef QUOTA
    400    1.1   mycroft 	/*
    401    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    402    1.1   mycroft 	 */
    403   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    404    1.1   mycroft #endif
    405   1.37       chs 	if (bpp != NULL) {
    406  1.101        ad 		brelse(bp, 0);
    407   1.37       chs 	}
    408   1.37       chs 
    409    1.1   mycroft nospace:
    410    1.1   mycroft 	/*
    411    1.1   mycroft 	 * no space available
    412    1.1   mycroft 	 */
    413   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    414    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    415    1.1   mycroft 	return (ENOSPC);
    416    1.1   mycroft }
    417    1.1   mycroft 
    418   1.88      yamt #if 0
    419    1.1   mycroft /*
    420    1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    421    1.1   mycroft  *
    422    1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    423    1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    424   1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    425   1.60      fvdl  * from the end of the allocation for the logical block immediately
    426   1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    427   1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    428   1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    429   1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    430   1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    431   1.60      fvdl  * allocation will be used.
    432   1.60      fvdl 
    433    1.1   mycroft  */
    434   1.55      matt #ifdef XXXUBC
    435    1.3   mycroft #ifdef DEBUG
    436    1.1   mycroft #include <sys/sysctl.h>
    437    1.5   mycroft int prtrealloc = 0;
    438    1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    439    1.1   mycroft #endif
    440   1.55      matt #endif
    441    1.1   mycroft 
    442   1.60      fvdl /*
    443   1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    444   1.60      fvdl  */
    445   1.60      fvdl 
    446   1.18      fvdl int doasyncfree = 1;
    447   1.18      fvdl 
    448    1.1   mycroft int
    449   1.85   thorpej ffs_reallocblks(void *v)
    450    1.9  christos {
    451   1.55      matt #ifdef XXXUBC
    452    1.1   mycroft 	struct vop_reallocblks_args /* {
    453    1.1   mycroft 		struct vnode *a_vp;
    454    1.1   mycroft 		struct cluster_save *a_buflist;
    455    1.9  christos 	} */ *ap = v;
    456    1.1   mycroft 	struct fs *fs;
    457    1.1   mycroft 	struct inode *ip;
    458    1.1   mycroft 	struct vnode *vp;
    459    1.1   mycroft 	struct buf *sbp, *ebp;
    460   1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    461    1.1   mycroft 	struct cluster_save *buflist;
    462   1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    463    1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    464    1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    465  1.101        ad 	struct ufsmount *ump;
    466   1.55      matt #endif /* XXXUBC */
    467    1.1   mycroft 
    468   1.37       chs 	/* XXXUBC don't reallocblks for now */
    469   1.37       chs 	return ENOSPC;
    470   1.37       chs 
    471   1.55      matt #ifdef XXXUBC
    472    1.1   mycroft 	vp = ap->a_vp;
    473    1.1   mycroft 	ip = VTOI(vp);
    474    1.1   mycroft 	fs = ip->i_fs;
    475  1.101        ad 	ump = ip->i_ump;
    476    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    477    1.1   mycroft 		return (ENOSPC);
    478    1.1   mycroft 	buflist = ap->a_buflist;
    479    1.1   mycroft 	len = buflist->bs_nchildren;
    480    1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    481    1.1   mycroft 	end_lbn = start_lbn + len - 1;
    482    1.1   mycroft #ifdef DIAGNOSTIC
    483   1.18      fvdl 	for (i = 0; i < len; i++)
    484   1.18      fvdl 		if (!ffs_checkblk(ip,
    485   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    486   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    487    1.1   mycroft 	for (i = 1; i < len; i++)
    488    1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    489   1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    490   1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    491   1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    492   1.18      fvdl 	for (i = 1; i < len - 1; i++)
    493   1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    494   1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    495    1.1   mycroft #endif
    496    1.1   mycroft 	/*
    497    1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    498    1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    499    1.1   mycroft 	 * the previous cylinder group.
    500    1.1   mycroft 	 */
    501    1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    502    1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    503    1.1   mycroft 		return (ENOSPC);
    504    1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    505    1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    506    1.1   mycroft 		return (ENOSPC);
    507    1.1   mycroft 	/*
    508    1.1   mycroft 	 * Get the starting offset and block map for the first block.
    509    1.1   mycroft 	 */
    510    1.1   mycroft 	if (start_lvl == 0) {
    511   1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    512    1.1   mycroft 		soff = start_lbn;
    513    1.1   mycroft 	} else {
    514    1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    515    1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    516  1.101        ad 			brelse(sbp, 0);
    517    1.1   mycroft 			return (ENOSPC);
    518    1.1   mycroft 		}
    519   1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    520    1.1   mycroft 		soff = idp->in_off;
    521    1.1   mycroft 	}
    522    1.1   mycroft 	/*
    523    1.1   mycroft 	 * Find the preferred location for the cluster.
    524    1.1   mycroft 	 */
    525  1.101        ad 	mutex_enter(&ump->um_lock);
    526    1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    527    1.1   mycroft 	/*
    528    1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    529    1.1   mycroft 	 */
    530    1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    531    1.1   mycroft 		ssize = len;
    532    1.1   mycroft 	} else {
    533    1.1   mycroft #ifdef DIAGNOSTIC
    534    1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    535    1.1   mycroft 			panic("ffs_reallocblk: start == end");
    536    1.1   mycroft #endif
    537    1.1   mycroft 		ssize = len - (idp->in_off + 1);
    538    1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    539    1.1   mycroft 			goto fail;
    540   1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    541    1.1   mycroft 	}
    542    1.1   mycroft 	/*
    543    1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    544    1.1   mycroft 	 */
    545   1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    546  1.101        ad 	    len, ffs_clusteralloc)) == 0) {
    547  1.101        ad 		mutex_exit(&ump->um_lock);
    548    1.1   mycroft 		goto fail;
    549  1.101        ad 	}
    550    1.1   mycroft 	/*
    551    1.1   mycroft 	 * We have found a new contiguous block.
    552    1.1   mycroft 	 *
    553    1.1   mycroft 	 * First we have to replace the old block pointers with the new
    554    1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    555    1.1   mycroft 	 * with the file.
    556    1.1   mycroft 	 */
    557    1.5   mycroft #ifdef DEBUG
    558    1.5   mycroft 	if (prtrealloc)
    559   1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    560    1.5   mycroft 		    start_lbn, end_lbn);
    561    1.5   mycroft #endif
    562    1.1   mycroft 	blkno = newblk;
    563    1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    564   1.58      fvdl 		daddr_t ba;
    565   1.30      fvdl 
    566   1.30      fvdl 		if (i == ssize) {
    567    1.1   mycroft 			bap = ebap;
    568   1.30      fvdl 			soff = -i;
    569   1.30      fvdl 		}
    570   1.58      fvdl 		/* XXX ondisk32 */
    571   1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    572    1.1   mycroft #ifdef DIAGNOSTIC
    573   1.18      fvdl 		if (!ffs_checkblk(ip,
    574   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    575   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    576   1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    577    1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    578    1.1   mycroft #endif
    579    1.5   mycroft #ifdef DEBUG
    580    1.5   mycroft 		if (prtrealloc)
    581   1.30      fvdl 			printf(" %d,", ba);
    582    1.5   mycroft #endif
    583   1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    584   1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    585   1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    586   1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    587   1.30      fvdl  				    buflist->bs_children[i]);
    588   1.30      fvdl  			else
    589   1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    590   1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    591   1.30      fvdl  				    ba, buflist->bs_children[i]);
    592   1.30      fvdl  		}
    593   1.58      fvdl 		/* XXX ondisk32 */
    594   1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    595    1.1   mycroft 	}
    596    1.1   mycroft 	/*
    597    1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    598    1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    599    1.1   mycroft 	 * the old block values may have been written to disk. In practise
    600   1.81     perry 	 * they are almost never written, but if we are concerned about
    601    1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    602    1.1   mycroft 	 *
    603    1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    604    1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    605    1.1   mycroft 	 * been written. The flag should be set when the cluster is
    606    1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    607    1.1   mycroft 	 * We can then check below to see if it is set, and do the
    608    1.1   mycroft 	 * synchronous write only when it has been cleared.
    609    1.1   mycroft 	 */
    610   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    611    1.1   mycroft 		if (doasyncfree)
    612    1.1   mycroft 			bdwrite(sbp);
    613    1.1   mycroft 		else
    614    1.1   mycroft 			bwrite(sbp);
    615    1.1   mycroft 	} else {
    616    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    617   1.28   mycroft 		if (!doasyncfree)
    618   1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    619    1.1   mycroft 	}
    620   1.25   thorpej 	if (ssize < len) {
    621    1.1   mycroft 		if (doasyncfree)
    622    1.1   mycroft 			bdwrite(ebp);
    623    1.1   mycroft 		else
    624    1.1   mycroft 			bwrite(ebp);
    625   1.25   thorpej 	}
    626    1.1   mycroft 	/*
    627    1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    628    1.1   mycroft 	 */
    629    1.5   mycroft #ifdef DEBUG
    630    1.5   mycroft 	if (prtrealloc)
    631   1.13  christos 		printf("\n\tnew:");
    632    1.5   mycroft #endif
    633    1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    634   1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    635   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    636   1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    637   1.76   hannken 			    fs->fs_bsize, ip->i_number);
    638    1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    639    1.5   mycroft #ifdef DEBUG
    640   1.18      fvdl 		if (!ffs_checkblk(ip,
    641   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    642   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    643    1.5   mycroft 		if (prtrealloc)
    644   1.13  christos 			printf(" %d,", blkno);
    645    1.5   mycroft #endif
    646    1.5   mycroft 	}
    647    1.5   mycroft #ifdef DEBUG
    648    1.5   mycroft 	if (prtrealloc) {
    649    1.5   mycroft 		prtrealloc--;
    650   1.13  christos 		printf("\n");
    651    1.1   mycroft 	}
    652    1.5   mycroft #endif
    653    1.1   mycroft 	return (0);
    654    1.1   mycroft 
    655    1.1   mycroft fail:
    656    1.1   mycroft 	if (ssize < len)
    657  1.101        ad 		brelse(ebp, 0);
    658   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    659  1.101        ad 		brelse(sbp, 0);
    660    1.1   mycroft 	return (ENOSPC);
    661   1.55      matt #endif /* XXXUBC */
    662    1.1   mycroft }
    663   1.88      yamt #endif /* 0 */
    664    1.1   mycroft 
    665    1.1   mycroft /*
    666    1.1   mycroft  * Allocate an inode in the file system.
    667   1.81     perry  *
    668    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    669    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    670    1.1   mycroft  *   1) allocate the preferred inode.
    671    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    672    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    673    1.1   mycroft  *      available inode is located.
    674   1.47       wiz  * If no inode preference is given the following hierarchy is used
    675    1.1   mycroft  * to allocate an inode:
    676    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    677    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    678    1.1   mycroft  *      available inode is located.
    679  1.106     pooka  *
    680  1.106     pooka  * => um_lock not held upon entry or return
    681    1.1   mycroft  */
    682    1.9  christos int
    683   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    684   1.88      yamt     struct vnode **vpp)
    685    1.9  christos {
    686  1.101        ad 	struct ufsmount *ump;
    687   1.33  augustss 	struct inode *pip;
    688   1.33  augustss 	struct fs *fs;
    689   1.33  augustss 	struct inode *ip;
    690   1.60      fvdl 	struct timespec ts;
    691    1.1   mycroft 	ino_t ino, ipref;
    692    1.1   mycroft 	int cg, error;
    693   1.81     perry 
    694   1.88      yamt 	*vpp = NULL;
    695    1.1   mycroft 	pip = VTOI(pvp);
    696    1.1   mycroft 	fs = pip->i_fs;
    697  1.101        ad 	ump = pip->i_ump;
    698  1.101        ad 
    699  1.101        ad 	mutex_enter(&ump->um_lock);
    700    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    701    1.1   mycroft 		goto noinodes;
    702    1.1   mycroft 
    703    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    704   1.50     lukem 		ipref = ffs_dirpref(pip);
    705   1.50     lukem 	else
    706   1.50     lukem 		ipref = pip->i_number;
    707    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    708    1.1   mycroft 		ipref = 0;
    709    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    710   1.50     lukem 	/*
    711   1.50     lukem 	 * Track number of dirs created one after another
    712   1.50     lukem 	 * in a same cg without intervening by files.
    713   1.50     lukem 	 */
    714   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    715   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    716   1.50     lukem 			fs->fs_contigdirs[cg]++;
    717   1.50     lukem 	} else {
    718   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    719   1.50     lukem 			fs->fs_contigdirs[cg]--;
    720   1.50     lukem 	}
    721   1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    722    1.1   mycroft 	if (ino == 0)
    723    1.1   mycroft 		goto noinodes;
    724   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    725    1.1   mycroft 	if (error) {
    726   1.88      yamt 		ffs_vfree(pvp, ino, mode);
    727    1.1   mycroft 		return (error);
    728    1.1   mycroft 	}
    729   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    730   1.88      yamt 	ip = VTOI(*vpp);
    731   1.60      fvdl 	if (ip->i_mode) {
    732   1.60      fvdl #if 0
    733   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    734   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    735   1.60      fvdl #else
    736   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    737   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    738   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    739   1.60      fvdl 		printf("size %llx blocks %llx\n",
    740   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    741   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    742   1.86  christos 		    (unsigned long long)ipref);
    743   1.60      fvdl #if 0
    744   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    745   1.60      fvdl 		    (int)fs->fs_bsize, NOCRED, &bp);
    746   1.60      fvdl #endif
    747   1.60      fvdl 
    748   1.60      fvdl #endif
    749    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    750    1.1   mycroft 	}
    751   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    752   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    753   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    754   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    755    1.1   mycroft 	}
    756   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    757   1.61      fvdl 	ip->i_flags = 0;
    758   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    759    1.1   mycroft 	/*
    760    1.1   mycroft 	 * Set up a new generation number for this inode.
    761    1.1   mycroft 	 */
    762   1.60      fvdl 	ip->i_gen++;
    763   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    764   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    765   1.93      yamt 		vfs_timestamp(&ts);
    766   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    767   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    768   1.60      fvdl 	}
    769    1.1   mycroft 	return (0);
    770    1.1   mycroft noinodes:
    771  1.101        ad 	mutex_exit(&ump->um_lock);
    772   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    773    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    774    1.1   mycroft 	return (ENOSPC);
    775    1.1   mycroft }
    776    1.1   mycroft 
    777    1.1   mycroft /*
    778   1.50     lukem  * Find a cylinder group in which to place a directory.
    779   1.42  sommerfe  *
    780   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    781   1.50     lukem  * directory inode in the same cylinder group as its parent
    782   1.50     lukem  * directory, but also to reserve space for its files inodes
    783   1.50     lukem  * and data. Restrict the number of directories which may be
    784   1.50     lukem  * allocated one after another in the same cylinder group
    785   1.50     lukem  * without intervening allocation of files.
    786   1.42  sommerfe  *
    787   1.50     lukem  * If we allocate a first level directory then force allocation
    788   1.50     lukem  * in another cylinder group.
    789    1.1   mycroft  */
    790    1.1   mycroft static ino_t
    791   1.85   thorpej ffs_dirpref(struct inode *pip)
    792    1.1   mycroft {
    793   1.50     lukem 	register struct fs *fs;
    794   1.74     soren 	int cg, prefcg;
    795   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    796   1.89       dsl 	int avgifree, avgbfree, avgndir;
    797   1.50     lukem 	int minifree, minbfree, maxndir;
    798   1.50     lukem 	int mincg, minndir;
    799   1.50     lukem 	int maxcontigdirs;
    800   1.50     lukem 
    801  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    802  1.101        ad 
    803   1.50     lukem 	fs = pip->i_fs;
    804    1.1   mycroft 
    805    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    806   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    807   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    808   1.50     lukem 
    809   1.50     lukem 	/*
    810   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    811   1.50     lukem 	 */
    812  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    813   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    814   1.50     lukem 		mincg = prefcg;
    815   1.50     lukem 		minndir = fs->fs_ipg;
    816   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    817   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    818   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    819   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820   1.42  sommerfe 				mincg = cg;
    821   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    822   1.42  sommerfe 			}
    823   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    824   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    825   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    826   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    827   1.50     lukem 				mincg = cg;
    828   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    829   1.42  sommerfe 			}
    830   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    831   1.42  sommerfe 	}
    832   1.50     lukem 
    833   1.50     lukem 	/*
    834   1.50     lukem 	 * Count various limits which used for
    835   1.50     lukem 	 * optimal allocation of a directory inode.
    836   1.50     lukem 	 */
    837   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    838   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    839   1.50     lukem 	if (minifree < 0)
    840   1.50     lukem 		minifree = 0;
    841   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    842   1.50     lukem 	if (minbfree < 0)
    843   1.50     lukem 		minbfree = 0;
    844   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    845   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    846   1.89       dsl 	if (avgndir != 0) {
    847   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    848   1.89       dsl 		if (dirsize < curdsz)
    849   1.89       dsl 			dirsize = curdsz;
    850   1.89       dsl 	}
    851   1.89       dsl 	if (cgsize < dirsize * 255)
    852   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    853   1.89       dsl 	else
    854   1.89       dsl 		maxcontigdirs = 255;
    855   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    856   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    857   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    858   1.50     lukem 	if (maxcontigdirs == 0)
    859   1.50     lukem 		maxcontigdirs = 1;
    860   1.50     lukem 
    861   1.50     lukem 	/*
    862   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    863   1.50     lukem 	 * regular files, but only if we have no deficit in
    864   1.50     lukem 	 * inodes or space.
    865   1.50     lukem 	 */
    866   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    867   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    868   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    869   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    870   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    871   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    872   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    873   1.50     lukem 		}
    874   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    875   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    876   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    877   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    878   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    879   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    880   1.50     lukem 		}
    881   1.50     lukem 	/*
    882   1.50     lukem 	 * This is a backstop when we are deficient in space.
    883   1.50     lukem 	 */
    884   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    885   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    886   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    887   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    888   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    889   1.50     lukem 			break;
    890   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    891    1.1   mycroft }
    892    1.1   mycroft 
    893    1.1   mycroft /*
    894    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    895    1.1   mycroft  * logically divided into sections. The first section is composed of the
    896    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    897   1.81     perry  *
    898    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    899    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    900    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    901    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    902    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    903    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    904    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    905    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    906    1.1   mycroft  * continues until a cylinder group with greater than the average number
    907    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    908    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    909    1.1   mycroft  * here a best guess is made based upon the logical block number being
    910    1.1   mycroft  * allocated.
    911   1.81     perry  *
    912    1.1   mycroft  * If a section is already partially allocated, the policy is to
    913    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    914   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    915   1.60      fvdl  * contigously if possible.
    916  1.106     pooka  *
    917  1.106     pooka  * => um_lock held on entry and exit
    918    1.1   mycroft  */
    919   1.58      fvdl daddr_t
    920   1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    921   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    922    1.1   mycroft {
    923   1.33  augustss 	struct fs *fs;
    924   1.33  augustss 	int cg;
    925    1.1   mycroft 	int avgbfree, startcg;
    926    1.1   mycroft 
    927  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    928  1.101        ad 
    929    1.1   mycroft 	fs = ip->i_fs;
    930    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    931   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    932    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    933    1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    934    1.1   mycroft 		}
    935    1.1   mycroft 		/*
    936    1.1   mycroft 		 * Find a cylinder with greater than average number of
    937    1.1   mycroft 		 * unused data blocks.
    938    1.1   mycroft 		 */
    939    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    940    1.1   mycroft 			startcg =
    941    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    942    1.1   mycroft 		else
    943   1.19    bouyer 			startcg = dtog(fs,
    944   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    945    1.1   mycroft 		startcg %= fs->fs_ncg;
    946    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    947    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    948    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    949    1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    950    1.1   mycroft 			}
    951   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    952    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    953    1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    954    1.1   mycroft 			}
    955   1.35   thorpej 		return (0);
    956    1.1   mycroft 	}
    957    1.1   mycroft 	/*
    958   1.60      fvdl 	 * We just always try to lay things out contiguously.
    959   1.60      fvdl 	 */
    960   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    961   1.60      fvdl }
    962   1.60      fvdl 
    963   1.60      fvdl daddr_t
    964   1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    965   1.60      fvdl {
    966   1.60      fvdl 	struct fs *fs;
    967   1.60      fvdl 	int cg;
    968   1.60      fvdl 	int avgbfree, startcg;
    969   1.60      fvdl 
    970  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    971  1.101        ad 
    972   1.60      fvdl 	fs = ip->i_fs;
    973   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    974   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    975   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    976   1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    977   1.60      fvdl 		}
    978    1.1   mycroft 		/*
    979   1.60      fvdl 		 * Find a cylinder with greater than average number of
    980   1.60      fvdl 		 * unused data blocks.
    981    1.1   mycroft 		 */
    982   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    983   1.60      fvdl 			startcg =
    984   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    985   1.60      fvdl 		else
    986   1.60      fvdl 			startcg = dtog(fs,
    987   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    988   1.60      fvdl 		startcg %= fs->fs_ncg;
    989   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    990   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    991   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    992   1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    993   1.60      fvdl 			}
    994   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    995   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    996   1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    997   1.60      fvdl 			}
    998   1.60      fvdl 		return (0);
    999   1.60      fvdl 	}
   1000   1.60      fvdl 	/*
   1001   1.60      fvdl 	 * We just always try to lay things out contiguously.
   1002   1.60      fvdl 	 */
   1003   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1004    1.1   mycroft }
   1005    1.1   mycroft 
   1006   1.60      fvdl 
   1007    1.1   mycroft /*
   1008    1.1   mycroft  * Implement the cylinder overflow algorithm.
   1009    1.1   mycroft  *
   1010    1.1   mycroft  * The policy implemented by this algorithm is:
   1011    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1012    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1013    1.1   mycroft  *   3) brute force search for a free block.
   1014  1.106     pooka  *
   1015  1.106     pooka  * => called with um_lock held
   1016  1.106     pooka  * => returns with um_lock released on success, held on failure
   1017  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
   1018    1.1   mycroft  */
   1019    1.1   mycroft /*VARARGS5*/
   1020   1.58      fvdl static daddr_t
   1021   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1022   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1023   1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1024    1.1   mycroft {
   1025   1.33  augustss 	struct fs *fs;
   1026   1.58      fvdl 	daddr_t result;
   1027    1.1   mycroft 	int i, icg = cg;
   1028    1.1   mycroft 
   1029    1.1   mycroft 	fs = ip->i_fs;
   1030    1.1   mycroft 	/*
   1031    1.1   mycroft 	 * 1: preferred cylinder group
   1032    1.1   mycroft 	 */
   1033    1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1034    1.1   mycroft 	if (result)
   1035    1.1   mycroft 		return (result);
   1036    1.1   mycroft 	/*
   1037    1.1   mycroft 	 * 2: quadratic rehash
   1038    1.1   mycroft 	 */
   1039    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1040    1.1   mycroft 		cg += i;
   1041    1.1   mycroft 		if (cg >= fs->fs_ncg)
   1042    1.1   mycroft 			cg -= fs->fs_ncg;
   1043    1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1044    1.1   mycroft 		if (result)
   1045    1.1   mycroft 			return (result);
   1046    1.1   mycroft 	}
   1047    1.1   mycroft 	/*
   1048    1.1   mycroft 	 * 3: brute force search
   1049    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1050    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1051    1.1   mycroft 	 */
   1052    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1053    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1054    1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1055    1.1   mycroft 		if (result)
   1056    1.1   mycroft 			return (result);
   1057    1.1   mycroft 		cg++;
   1058    1.1   mycroft 		if (cg == fs->fs_ncg)
   1059    1.1   mycroft 			cg = 0;
   1060    1.1   mycroft 	}
   1061   1.35   thorpej 	return (0);
   1062    1.1   mycroft }
   1063    1.1   mycroft 
   1064    1.1   mycroft /*
   1065    1.1   mycroft  * Determine whether a fragment can be extended.
   1066    1.1   mycroft  *
   1067   1.81     perry  * Check to see if the necessary fragments are available, and
   1068    1.1   mycroft  * if they are, allocate them.
   1069  1.106     pooka  *
   1070  1.106     pooka  * => called with um_lock held
   1071  1.106     pooka  * => returns with um_lock released on success, held on failure
   1072    1.1   mycroft  */
   1073   1.58      fvdl static daddr_t
   1074   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1075    1.1   mycroft {
   1076  1.101        ad 	struct ufsmount *ump;
   1077   1.33  augustss 	struct fs *fs;
   1078   1.33  augustss 	struct cg *cgp;
   1079    1.1   mycroft 	struct buf *bp;
   1080   1.58      fvdl 	daddr_t bno;
   1081    1.1   mycroft 	int frags, bbase;
   1082    1.1   mycroft 	int i, error;
   1083   1.62      fvdl 	u_int8_t *blksfree;
   1084    1.1   mycroft 
   1085    1.1   mycroft 	fs = ip->i_fs;
   1086  1.101        ad 	ump = ip->i_ump;
   1087  1.101        ad 
   1088  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1089  1.101        ad 
   1090    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1091   1.35   thorpej 		return (0);
   1092    1.1   mycroft 	frags = numfrags(fs, nsize);
   1093    1.1   mycroft 	bbase = fragnum(fs, bprev);
   1094    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1095    1.1   mycroft 		/* cannot extend across a block boundary */
   1096   1.35   thorpej 		return (0);
   1097    1.1   mycroft 	}
   1098  1.101        ad 	mutex_exit(&ump->um_lock);
   1099    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1100    1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1101  1.101        ad 	if (error)
   1102  1.101        ad 		goto fail;
   1103    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1104  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1105  1.101        ad 		goto fail;
   1106   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1107   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1108   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1109   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1110    1.1   mycroft 	bno = dtogd(fs, bprev);
   1111   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1112    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1113  1.101        ad 		if (isclr(blksfree, bno + i))
   1114  1.101        ad 			goto fail;
   1115    1.1   mycroft 	/*
   1116    1.1   mycroft 	 * the current fragment can be extended
   1117    1.1   mycroft 	 * deduct the count on fragment being extended into
   1118    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1119    1.1   mycroft 	 * allocate the extended piece
   1120    1.1   mycroft 	 */
   1121    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1122   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1123    1.1   mycroft 			break;
   1124   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1125    1.1   mycroft 	if (i != frags)
   1126   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1127  1.101        ad 	mutex_enter(&ump->um_lock);
   1128    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1129   1.62      fvdl 		clrbit(blksfree, bno + i);
   1130   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1131    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1132    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1133    1.1   mycroft 	}
   1134    1.1   mycroft 	fs->fs_fmod = 1;
   1135  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1136  1.101        ad 	mutex_exit(&ump->um_lock);
   1137   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1138   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1139    1.1   mycroft 	bdwrite(bp);
   1140    1.1   mycroft 	return (bprev);
   1141  1.101        ad 
   1142  1.101        ad  fail:
   1143  1.101        ad  	brelse(bp, 0);
   1144  1.101        ad  	mutex_enter(&ump->um_lock);
   1145  1.101        ad  	return (0);
   1146    1.1   mycroft }
   1147    1.1   mycroft 
   1148    1.1   mycroft /*
   1149    1.1   mycroft  * Determine whether a block can be allocated.
   1150    1.1   mycroft  *
   1151    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1152    1.1   mycroft  * and if it is, allocate it.
   1153    1.1   mycroft  */
   1154   1.58      fvdl static daddr_t
   1155   1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1156    1.1   mycroft {
   1157  1.101        ad 	struct ufsmount *ump;
   1158   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1159   1.30      fvdl 	struct cg *cgp;
   1160    1.1   mycroft 	struct buf *bp;
   1161   1.60      fvdl 	int32_t bno;
   1162   1.60      fvdl 	daddr_t blkno;
   1163   1.30      fvdl 	int error, frags, allocsiz, i;
   1164   1.62      fvdl 	u_int8_t *blksfree;
   1165   1.30      fvdl #ifdef FFS_EI
   1166   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1167   1.30      fvdl #endif
   1168    1.1   mycroft 
   1169  1.101        ad 	ump = ip->i_ump;
   1170  1.101        ad 
   1171  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1172  1.101        ad 
   1173    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1174   1.35   thorpej 		return (0);
   1175  1.101        ad 	mutex_exit(&ump->um_lock);
   1176    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1177    1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1178  1.101        ad 	if (error)
   1179  1.101        ad 		goto fail;
   1180    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1181   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1182  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1183  1.101        ad 		goto fail;
   1184   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1185   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1186   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1187   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1188    1.1   mycroft 	if (size == fs->fs_bsize) {
   1189  1.101        ad 		mutex_enter(&ump->um_lock);
   1190   1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1191   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1192  1.101        ad 		mutex_exit(&ump->um_lock);
   1193    1.1   mycroft 		bdwrite(bp);
   1194   1.60      fvdl 		return (blkno);
   1195    1.1   mycroft 	}
   1196    1.1   mycroft 	/*
   1197    1.1   mycroft 	 * check to see if any fragments are already available
   1198    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1199    1.1   mycroft 	 * it down to a smaller size if necessary
   1200    1.1   mycroft 	 */
   1201   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1202    1.1   mycroft 	frags = numfrags(fs, size);
   1203    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1204    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1205    1.1   mycroft 			break;
   1206    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1207    1.1   mycroft 		/*
   1208   1.81     perry 		 * no fragments were available, so a block will be
   1209    1.1   mycroft 		 * allocated, and hacked up
   1210    1.1   mycroft 		 */
   1211  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1212  1.101        ad 			goto fail;
   1213  1.101        ad 		mutex_enter(&ump->um_lock);
   1214   1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1215   1.60      fvdl 		bno = dtogd(fs, blkno);
   1216    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1217   1.62      fvdl 			setbit(blksfree, bno + i);
   1218    1.1   mycroft 		i = fs->fs_frag - frags;
   1219   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1220    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1221   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1222    1.1   mycroft 		fs->fs_fmod = 1;
   1223   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1224   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1225  1.101        ad 		mutex_exit(&ump->um_lock);
   1226    1.1   mycroft 		bdwrite(bp);
   1227   1.60      fvdl 		return (blkno);
   1228    1.1   mycroft 	}
   1229   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1230   1.30      fvdl #if 0
   1231   1.30      fvdl 	/*
   1232   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1233   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1234   1.30      fvdl 	 */
   1235  1.101        ad 	if (bno < 0)
   1236  1.101        ad 		goto fail;
   1237   1.30      fvdl #endif
   1238    1.1   mycroft 	for (i = 0; i < frags; i++)
   1239   1.62      fvdl 		clrbit(blksfree, bno + i);
   1240  1.101        ad 	mutex_enter(&ump->um_lock);
   1241   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1242    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1243    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1244    1.1   mycroft 	fs->fs_fmod = 1;
   1245   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1246    1.1   mycroft 	if (frags != allocsiz)
   1247   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1248   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1249  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1250  1.101        ad 	mutex_exit(&ump->um_lock);
   1251   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1252   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1253    1.1   mycroft 	bdwrite(bp);
   1254   1.30      fvdl 	return blkno;
   1255  1.101        ad 
   1256  1.101        ad  fail:
   1257  1.101        ad  	brelse(bp, 0);
   1258  1.101        ad  	mutex_enter(&ump->um_lock);
   1259  1.101        ad  	return (0);
   1260    1.1   mycroft }
   1261    1.1   mycroft 
   1262    1.1   mycroft /*
   1263    1.1   mycroft  * Allocate a block in a cylinder group.
   1264    1.1   mycroft  *
   1265    1.1   mycroft  * This algorithm implements the following policy:
   1266    1.1   mycroft  *   1) allocate the requested block.
   1267    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1268    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1269    1.1   mycroft  *      specified cylinder group.
   1270    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1271    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1272    1.1   mycroft  */
   1273   1.58      fvdl static daddr_t
   1274   1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1275    1.1   mycroft {
   1276  1.101        ad 	struct ufsmount *ump;
   1277   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1278   1.30      fvdl 	struct cg *cgp;
   1279   1.60      fvdl 	daddr_t blkno;
   1280   1.60      fvdl 	int32_t bno;
   1281   1.60      fvdl 	u_int8_t *blksfree;
   1282   1.30      fvdl #ifdef FFS_EI
   1283   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1284   1.30      fvdl #endif
   1285    1.1   mycroft 
   1286  1.101        ad 	ump = ip->i_ump;
   1287  1.101        ad 
   1288  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1289  1.101        ad 
   1290   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1291   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1292   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1293   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1294   1.60      fvdl 	} else {
   1295   1.60      fvdl 		bpref = blknum(fs, bpref);
   1296   1.60      fvdl 		bno = dtogd(fs, bpref);
   1297    1.1   mycroft 		/*
   1298   1.60      fvdl 		 * if the requested block is available, use it
   1299    1.1   mycroft 		 */
   1300   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1301   1.60      fvdl 			goto gotit;
   1302    1.1   mycroft 	}
   1303    1.1   mycroft 	/*
   1304   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1305    1.1   mycroft 	 */
   1306   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1307    1.1   mycroft 	if (bno < 0)
   1308   1.35   thorpej 		return (0);
   1309   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1310    1.1   mycroft gotit:
   1311    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1312   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1313   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1314   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1315    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1316   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1317   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1318   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1319   1.73       dbj 		int cylno;
   1320   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1321   1.75       dbj 		KASSERT(cylno >= 0);
   1322   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1323   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1324   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1325   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1326   1.73       dbj 		    needswap);
   1327   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1328   1.73       dbj 	}
   1329    1.1   mycroft 	fs->fs_fmod = 1;
   1330   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1331  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1332  1.101        ad 		mutex_exit(&ump->um_lock);
   1333   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1334  1.101        ad 		mutex_enter(&ump->um_lock);
   1335  1.101        ad 	}
   1336   1.30      fvdl 	return (blkno);
   1337    1.1   mycroft }
   1338    1.1   mycroft 
   1339   1.55      matt #ifdef XXXUBC
   1340    1.1   mycroft /*
   1341    1.1   mycroft  * Determine whether a cluster can be allocated.
   1342    1.1   mycroft  *
   1343    1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1344    1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1345    1.1   mycroft  * take the first one that we find following bpref.
   1346    1.1   mycroft  */
   1347   1.60      fvdl 
   1348   1.60      fvdl /*
   1349   1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1350   1.60      fvdl  */
   1351   1.58      fvdl static daddr_t
   1352   1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1353    1.1   mycroft {
   1354  1.101        ad 	struct ufsmount *ump;
   1355   1.33  augustss 	struct fs *fs;
   1356   1.33  augustss 	struct cg *cgp;
   1357    1.1   mycroft 	struct buf *bp;
   1358   1.18      fvdl 	int i, got, run, bno, bit, map;
   1359    1.1   mycroft 	u_char *mapp;
   1360    1.5   mycroft 	int32_t *lp;
   1361    1.1   mycroft 
   1362    1.1   mycroft 	fs = ip->i_fs;
   1363  1.101        ad 	ump = ip->i_ump;
   1364  1.101        ad 
   1365  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1366    1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1367   1.35   thorpej 		return (0);
   1368  1.101        ad 	mutex_exit(&ump->um_lock);
   1369    1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1370    1.1   mycroft 	    NOCRED, &bp))
   1371    1.1   mycroft 		goto fail;
   1372    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1373   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1374    1.1   mycroft 		goto fail;
   1375    1.1   mycroft 	/*
   1376    1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1377    1.1   mycroft 	 * available in this cylinder group.
   1378    1.1   mycroft 	 */
   1379   1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1380    1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1381   1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1382    1.1   mycroft 			break;
   1383    1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1384    1.5   mycroft 		/*
   1385    1.5   mycroft 		 * This is the first time looking for a cluster in this
   1386    1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1387    1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1388    1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1389    1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1390    1.5   mycroft 		 */
   1391   1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1392    1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1393   1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1394    1.5   mycroft 				break;
   1395  1.101        ad 		mutex_enter(&ump->um_lock);
   1396    1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1397  1.101        ad 		mutex_exit(&ump->um_lock);
   1398    1.1   mycroft 		goto fail;
   1399    1.5   mycroft 	}
   1400    1.1   mycroft 	/*
   1401    1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1402    1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1403    1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1404    1.1   mycroft 	 * block allocation. We do not search before the current
   1405    1.1   mycroft 	 * preference point as we do not want to allocate a block
   1406    1.1   mycroft 	 * that is allocated before the previous one (as we will
   1407    1.1   mycroft 	 * then have to wait for another pass of the elevator
   1408    1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1409    1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1410    1.1   mycroft 	 */
   1411    1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1412    1.1   mycroft 		bpref = 0;
   1413    1.1   mycroft 	else
   1414    1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1415   1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1416    1.1   mycroft 	map = *mapp++;
   1417    1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1418   1.19    bouyer 	for (run = 0, got = bpref;
   1419   1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1420    1.1   mycroft 		if ((map & bit) == 0) {
   1421    1.1   mycroft 			run = 0;
   1422    1.1   mycroft 		} else {
   1423    1.1   mycroft 			run++;
   1424    1.1   mycroft 			if (run == len)
   1425    1.1   mycroft 				break;
   1426    1.1   mycroft 		}
   1427   1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1428    1.1   mycroft 			bit <<= 1;
   1429    1.1   mycroft 		} else {
   1430    1.1   mycroft 			map = *mapp++;
   1431    1.1   mycroft 			bit = 1;
   1432    1.1   mycroft 		}
   1433    1.1   mycroft 	}
   1434   1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1435    1.1   mycroft 		goto fail;
   1436    1.1   mycroft 	/*
   1437    1.1   mycroft 	 * Allocate the cluster that we have found.
   1438    1.1   mycroft 	 */
   1439   1.30      fvdl #ifdef DIAGNOSTIC
   1440   1.18      fvdl 	for (i = 1; i <= len; i++)
   1441   1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1442   1.30      fvdl 		    got - run + i))
   1443   1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1444   1.30      fvdl #endif
   1445   1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1446   1.18      fvdl 	if (dtog(fs, bno) != cg)
   1447   1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1448    1.1   mycroft 	len = blkstofrags(fs, len);
   1449  1.101        ad 	mutex_enter(&ump->um_lock);
   1450    1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1451   1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1452    1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1453   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1454  1.101        ad 	mutex_exit(&ump->um_lock);
   1455    1.8       cgd 	bdwrite(bp);
   1456    1.1   mycroft 	return (bno);
   1457    1.1   mycroft 
   1458    1.1   mycroft fail:
   1459  1.101        ad 	brelse(bp, 0);
   1460  1.101        ad 	mutex_enter(&ump->um_lock);
   1461    1.1   mycroft 	return (0);
   1462    1.1   mycroft }
   1463   1.55      matt #endif /* XXXUBC */
   1464    1.1   mycroft 
   1465    1.1   mycroft /*
   1466    1.1   mycroft  * Determine whether an inode can be allocated.
   1467    1.1   mycroft  *
   1468    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1469    1.1   mycroft  * allocate it using the following policy:
   1470    1.1   mycroft  *   1) allocate the requested inode.
   1471    1.1   mycroft  *   2) allocate the next available inode after the requested
   1472    1.1   mycroft  *      inode in the specified cylinder group.
   1473    1.1   mycroft  */
   1474   1.58      fvdl static daddr_t
   1475   1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1476    1.1   mycroft {
   1477  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1478   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1479   1.33  augustss 	struct cg *cgp;
   1480   1.60      fvdl 	struct buf *bp, *ibp;
   1481   1.60      fvdl 	u_int8_t *inosused;
   1482    1.1   mycroft 	int error, start, len, loc, map, i;
   1483   1.60      fvdl 	int32_t initediblk;
   1484   1.60      fvdl 	struct ufs2_dinode *dp2;
   1485   1.19    bouyer #ifdef FFS_EI
   1486   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1487   1.19    bouyer #endif
   1488    1.1   mycroft 
   1489  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1490  1.101        ad 
   1491    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1492   1.35   thorpej 		return (0);
   1493  1.101        ad 	mutex_exit(&ump->um_lock);
   1494    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1495    1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1496  1.101        ad 	if (error)
   1497  1.101        ad 		goto fail;
   1498    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1499  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1500  1.101        ad 		goto fail;
   1501   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1502   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1503   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1504   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1505   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1506    1.1   mycroft 	if (ipref) {
   1507    1.1   mycroft 		ipref %= fs->fs_ipg;
   1508   1.60      fvdl 		if (isclr(inosused, ipref))
   1509    1.1   mycroft 			goto gotit;
   1510    1.1   mycroft 	}
   1511   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1512   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1513   1.19    bouyer 		NBBY);
   1514   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1515    1.1   mycroft 	if (loc == 0) {
   1516    1.1   mycroft 		len = start + 1;
   1517    1.1   mycroft 		start = 0;
   1518   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1519    1.1   mycroft 		if (loc == 0) {
   1520   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1521   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1522   1.19    bouyer 				fs->fs_fsmnt);
   1523    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1524    1.1   mycroft 			/* NOTREACHED */
   1525    1.1   mycroft 		}
   1526    1.1   mycroft 	}
   1527    1.1   mycroft 	i = start + len - loc;
   1528   1.60      fvdl 	map = inosused[i];
   1529    1.1   mycroft 	ipref = i * NBBY;
   1530    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1531    1.1   mycroft 		if ((map & i) == 0) {
   1532   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1533    1.1   mycroft 			goto gotit;
   1534    1.1   mycroft 		}
   1535    1.1   mycroft 	}
   1536   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1537    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1538    1.1   mycroft 	/* NOTREACHED */
   1539    1.1   mycroft gotit:
   1540   1.60      fvdl 	/*
   1541   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1542   1.60      fvdl 	 */
   1543   1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1544  1.104   hannken 	ibp = NULL;
   1545   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1546   1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1547   1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1548   1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1549   1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1550   1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1551   1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1552   1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1553   1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1554   1.60      fvdl 			/*
   1555   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1556   1.60      fvdl 			 * random, after all.
   1557   1.60      fvdl 			 */
   1558   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1559   1.60      fvdl 			dp2++;
   1560   1.60      fvdl 		}
   1561   1.60      fvdl 		initediblk += INOPB(fs);
   1562   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1563   1.60      fvdl 	}
   1564   1.60      fvdl 
   1565  1.101        ad 	mutex_enter(&ump->um_lock);
   1566   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1567  1.101        ad 	setbit(inosused, ipref);
   1568  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1569  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1570  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1571  1.101        ad 	fs->fs_fmod = 1;
   1572  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1573  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1574  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1575  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1576  1.101        ad 	}
   1577  1.101        ad 	mutex_exit(&ump->um_lock);
   1578  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1579  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1580    1.1   mycroft 	bdwrite(bp);
   1581  1.104   hannken 	if (ibp != NULL)
   1582  1.104   hannken 		bawrite(ibp);
   1583    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1584  1.101        ad  fail:
   1585  1.101        ad 	brelse(bp, 0);
   1586  1.101        ad 	mutex_enter(&ump->um_lock);
   1587  1.101        ad 	return (0);
   1588    1.1   mycroft }
   1589    1.1   mycroft 
   1590    1.1   mycroft /*
   1591    1.1   mycroft  * Free a block or fragment.
   1592    1.1   mycroft  *
   1593    1.1   mycroft  * The specified block or fragment is placed back in the
   1594   1.81     perry  * free map. If a fragment is deallocated, a possible
   1595    1.1   mycroft  * block reassembly is checked.
   1596  1.106     pooka  *
   1597  1.106     pooka  * => um_lock not held on entry or exit
   1598    1.1   mycroft  */
   1599    1.9  christos void
   1600   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1601   1.85   thorpej     ino_t inum)
   1602    1.1   mycroft {
   1603   1.33  augustss 	struct cg *cgp;
   1604    1.1   mycroft 	struct buf *bp;
   1605   1.76   hannken 	struct ufsmount *ump;
   1606   1.60      fvdl 	int32_t fragno, cgbno;
   1607   1.76   hannken 	daddr_t cgblkno;
   1608    1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1609   1.62      fvdl 	u_int8_t *blksfree;
   1610   1.76   hannken 	dev_t dev;
   1611   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1612    1.1   mycroft 
   1613   1.76   hannken 	cg = dtog(fs, bno);
   1614   1.77   hannken 	if (devvp->v_type != VBLK) {
   1615   1.77   hannken 		/* devvp is a snapshot */
   1616   1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1617  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1618   1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1619   1.76   hannken 	} else {
   1620   1.76   hannken 		dev = devvp->v_rdev;
   1621  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1622   1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1623  1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1624   1.76   hannken 			return;
   1625   1.76   hannken 	}
   1626   1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1627   1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1628   1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1629   1.58      fvdl 		       "size = %ld, fs = %s\n",
   1630   1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1631    1.1   mycroft 		panic("blkfree: bad size");
   1632    1.1   mycroft 	}
   1633   1.76   hannken 
   1634   1.60      fvdl 	if (bno >= fs->fs_size) {
   1635   1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1636   1.86  christos 		    (unsigned long long)inum);
   1637   1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1638    1.1   mycroft 		return;
   1639    1.1   mycroft 	}
   1640   1.76   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp);
   1641    1.1   mycroft 	if (error) {
   1642  1.101        ad 		brelse(bp, 0);
   1643    1.1   mycroft 		return;
   1644    1.1   mycroft 	}
   1645    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1646   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1647  1.101        ad 		brelse(bp, 0);
   1648    1.1   mycroft 		return;
   1649    1.1   mycroft 	}
   1650   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1651   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1652   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1653   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1654   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1655   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1656  1.101        ad 	mutex_enter(&ump->um_lock);
   1657    1.1   mycroft 	if (size == fs->fs_bsize) {
   1658   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1659   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1660   1.77   hannken 			if (devvp->v_type != VBLK) {
   1661   1.77   hannken 				/* devvp is a snapshot */
   1662  1.101        ad 				mutex_exit(&ump->um_lock);
   1663  1.101        ad 				brelse(bp, 0);
   1664   1.76   hannken 				return;
   1665   1.76   hannken 			}
   1666   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1667   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1668    1.1   mycroft 			panic("blkfree: freeing free block");
   1669    1.1   mycroft 		}
   1670   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1671   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1672   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1673    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1674    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1675   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1676   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1677   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1678   1.75       dbj 			KASSERT(i >= 0);
   1679   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1680   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1681   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1682   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1683   1.73       dbj 			    needswap);
   1684   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1685   1.73       dbj 		}
   1686    1.1   mycroft 	} else {
   1687   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1688    1.1   mycroft 		/*
   1689    1.1   mycroft 		 * decrement the counts associated with the old frags
   1690    1.1   mycroft 		 */
   1691   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1692   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1693    1.1   mycroft 		/*
   1694    1.1   mycroft 		 * deallocate the fragment
   1695    1.1   mycroft 		 */
   1696    1.1   mycroft 		frags = numfrags(fs, size);
   1697    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1698   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1699   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1700   1.59   tsutsui 				       ", fs = %s\n",
   1701   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1702    1.1   mycroft 				panic("blkfree: freeing free frag");
   1703    1.1   mycroft 			}
   1704   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1705    1.1   mycroft 		}
   1706   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1707    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1708   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1709    1.1   mycroft 		/*
   1710    1.1   mycroft 		 * add back in counts associated with the new frags
   1711    1.1   mycroft 		 */
   1712   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1713   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1714    1.1   mycroft 		/*
   1715    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1716    1.1   mycroft 		 */
   1717   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1718   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1719   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1720    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1721    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1722   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1723   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1724    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1725    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1726   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1727   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1728   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1729   1.75       dbj 				KASSERT(i >= 0);
   1730   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1731   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1732   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1733   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1734   1.73       dbj 				    bbase)], 1, needswap);
   1735   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1736   1.73       dbj 			}
   1737    1.1   mycroft 		}
   1738    1.1   mycroft 	}
   1739    1.1   mycroft 	fs->fs_fmod = 1;
   1740   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1741  1.101        ad 	mutex_exit(&ump->um_lock);
   1742    1.1   mycroft 	bdwrite(bp);
   1743    1.1   mycroft }
   1744    1.1   mycroft 
   1745   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1746   1.55      matt #ifdef XXXUBC
   1747   1.18      fvdl /*
   1748   1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1749   1.18      fvdl  * fragment is allocated, false if it is free.
   1750   1.18      fvdl  */
   1751   1.18      fvdl static int
   1752   1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1753   1.18      fvdl {
   1754   1.18      fvdl 	struct fs *fs;
   1755   1.18      fvdl 	struct cg *cgp;
   1756   1.18      fvdl 	struct buf *bp;
   1757   1.18      fvdl 	int i, error, frags, free;
   1758   1.18      fvdl 
   1759   1.18      fvdl 	fs = ip->i_fs;
   1760   1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1761   1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1762   1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1763   1.18      fvdl 		panic("checkblk: bad size");
   1764   1.18      fvdl 	}
   1765   1.60      fvdl 	if (bno >= fs->fs_size)
   1766   1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1767   1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1768   1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1769   1.18      fvdl 	if (error) {
   1770  1.101        ad 		brelse(bp, 0);
   1771   1.18      fvdl 		return 0;
   1772   1.18      fvdl 	}
   1773   1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1774   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1775  1.101        ad 		brelse(bp, 0);
   1776   1.18      fvdl 		return 0;
   1777   1.18      fvdl 	}
   1778   1.18      fvdl 	bno = dtogd(fs, bno);
   1779   1.18      fvdl 	if (size == fs->fs_bsize) {
   1780   1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1781   1.19    bouyer 			fragstoblks(fs, bno));
   1782   1.18      fvdl 	} else {
   1783   1.18      fvdl 		frags = numfrags(fs, size);
   1784   1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1785   1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1786   1.18      fvdl 				free++;
   1787   1.18      fvdl 		if (free != 0 && free != frags)
   1788   1.18      fvdl 			panic("checkblk: partially free fragment");
   1789   1.18      fvdl 	}
   1790  1.101        ad 	brelse(bp, 0);
   1791   1.18      fvdl 	return (!free);
   1792   1.18      fvdl }
   1793   1.55      matt #endif /* XXXUBC */
   1794   1.18      fvdl #endif /* DIAGNOSTIC */
   1795   1.18      fvdl 
   1796    1.1   mycroft /*
   1797    1.1   mycroft  * Free an inode.
   1798   1.30      fvdl  */
   1799   1.30      fvdl int
   1800   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1801   1.30      fvdl {
   1802   1.30      fvdl 
   1803   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1804   1.88      yamt 		softdep_freefile(vp, ino, mode);
   1805   1.30      fvdl 		return (0);
   1806   1.30      fvdl 	}
   1807   1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1808   1.30      fvdl }
   1809   1.30      fvdl 
   1810   1.30      fvdl /*
   1811   1.30      fvdl  * Do the actual free operation.
   1812    1.1   mycroft  * The specified inode is placed back in the free map.
   1813    1.1   mycroft  */
   1814    1.1   mycroft int
   1815   1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1816    1.9  christos {
   1817  1.101        ad 	struct ufsmount *ump;
   1818   1.33  augustss 	struct cg *cgp;
   1819    1.1   mycroft 	struct buf *bp;
   1820    1.1   mycroft 	int error, cg;
   1821   1.76   hannken 	daddr_t cgbno;
   1822   1.62      fvdl 	u_int8_t *inosused;
   1823   1.78   hannken 	dev_t dev;
   1824   1.19    bouyer #ifdef FFS_EI
   1825   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1826   1.19    bouyer #endif
   1827    1.1   mycroft 
   1828   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1829   1.78   hannken 	if (devvp->v_type != VBLK) {
   1830   1.78   hannken 		/* devvp is a snapshot */
   1831   1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1832  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1833   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1834   1.76   hannken 	} else {
   1835   1.78   hannken 		dev = devvp->v_rdev;
   1836  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1837   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1838   1.76   hannken 	}
   1839    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1840   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1841   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1842   1.78   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp);
   1843    1.1   mycroft 	if (error) {
   1844  1.101        ad 		brelse(bp, 0);
   1845   1.30      fvdl 		return (error);
   1846    1.1   mycroft 	}
   1847    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1848   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1849  1.101        ad 		brelse(bp, 0);
   1850    1.1   mycroft 		return (0);
   1851    1.1   mycroft 	}
   1852   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1853   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1854   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1855   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1856   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1857    1.1   mycroft 	ino %= fs->fs_ipg;
   1858   1.62      fvdl 	if (isclr(inosused, ino)) {
   1859   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1860   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1861   1.86  christos 		    fs->fs_fsmnt);
   1862    1.1   mycroft 		if (fs->fs_ronly == 0)
   1863    1.1   mycroft 			panic("ifree: freeing free inode");
   1864    1.1   mycroft 	}
   1865   1.62      fvdl 	clrbit(inosused, ino);
   1866   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1867   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1868   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1869  1.101        ad 	mutex_enter(&ump->um_lock);
   1870    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1871    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1872   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1873   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1874    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1875    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1876    1.1   mycroft 	}
   1877    1.1   mycroft 	fs->fs_fmod = 1;
   1878   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1879  1.101        ad 	mutex_exit(&ump->um_lock);
   1880    1.1   mycroft 	bdwrite(bp);
   1881    1.1   mycroft 	return (0);
   1882    1.1   mycroft }
   1883    1.1   mycroft 
   1884    1.1   mycroft /*
   1885   1.76   hannken  * Check to see if a file is free.
   1886   1.76   hannken  */
   1887   1.76   hannken int
   1888   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1889   1.76   hannken {
   1890   1.76   hannken 	struct cg *cgp;
   1891   1.76   hannken 	struct buf *bp;
   1892   1.76   hannken 	daddr_t cgbno;
   1893   1.76   hannken 	int ret, cg;
   1894   1.76   hannken 	u_int8_t *inosused;
   1895   1.76   hannken 
   1896   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1897   1.77   hannken 	if (devvp->v_type != VBLK) {
   1898   1.77   hannken 		/* devvp is a snapshot */
   1899   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1900   1.77   hannken 	} else
   1901   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1902   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1903   1.76   hannken 		return 1;
   1904   1.76   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
   1905  1.101        ad 		brelse(bp, 0);
   1906   1.76   hannken 		return 1;
   1907   1.76   hannken 	}
   1908   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1909   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1910  1.101        ad 		brelse(bp, 0);
   1911   1.76   hannken 		return 1;
   1912   1.76   hannken 	}
   1913   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1914   1.76   hannken 	ino %= fs->fs_ipg;
   1915   1.76   hannken 	ret = isclr(inosused, ino);
   1916  1.101        ad 	brelse(bp, 0);
   1917   1.76   hannken 	return ret;
   1918   1.76   hannken }
   1919   1.76   hannken 
   1920   1.76   hannken /*
   1921    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1922    1.1   mycroft  *
   1923    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1924    1.1   mycroft  * available.
   1925    1.1   mycroft  */
   1926   1.60      fvdl static int32_t
   1927   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1928    1.1   mycroft {
   1929   1.60      fvdl 	int32_t bno;
   1930    1.1   mycroft 	int start, len, loc, i;
   1931    1.1   mycroft 	int blk, field, subfield, pos;
   1932   1.19    bouyer 	int ostart, olen;
   1933   1.62      fvdl 	u_int8_t *blksfree;
   1934   1.30      fvdl #ifdef FFS_EI
   1935   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1936   1.30      fvdl #endif
   1937    1.1   mycroft 
   1938  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1939  1.101        ad 
   1940    1.1   mycroft 	/*
   1941    1.1   mycroft 	 * find the fragment by searching through the free block
   1942    1.1   mycroft 	 * map for an appropriate bit pattern
   1943    1.1   mycroft 	 */
   1944    1.1   mycroft 	if (bpref)
   1945    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1946    1.1   mycroft 	else
   1947   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1948   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1949    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1950   1.19    bouyer 	ostart = start;
   1951   1.19    bouyer 	olen = len;
   1952   1.45     lukem 	loc = scanc((u_int)len,
   1953   1.62      fvdl 		(const u_char *)&blksfree[start],
   1954   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1955   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1956    1.1   mycroft 	if (loc == 0) {
   1957    1.1   mycroft 		len = start + 1;
   1958    1.1   mycroft 		start = 0;
   1959   1.45     lukem 		loc = scanc((u_int)len,
   1960   1.62      fvdl 			(const u_char *)&blksfree[0],
   1961   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1962   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1963    1.1   mycroft 		if (loc == 0) {
   1964   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1965   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1966   1.20      ross 			printf("offset=%d %ld\n",
   1967   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1968   1.62      fvdl 				(long)blksfree - (long)cgp);
   1969   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1970    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1971    1.1   mycroft 			/* NOTREACHED */
   1972    1.1   mycroft 		}
   1973    1.1   mycroft 	}
   1974    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1975   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1976    1.1   mycroft 	/*
   1977    1.1   mycroft 	 * found the byte in the map
   1978    1.1   mycroft 	 * sift through the bits to find the selected frag
   1979    1.1   mycroft 	 */
   1980    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1981   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1982    1.1   mycroft 		blk <<= 1;
   1983    1.1   mycroft 		field = around[allocsiz];
   1984    1.1   mycroft 		subfield = inside[allocsiz];
   1985    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1986    1.1   mycroft 			if ((blk & field) == subfield)
   1987    1.1   mycroft 				return (bno + pos);
   1988    1.1   mycroft 			field <<= 1;
   1989    1.1   mycroft 			subfield <<= 1;
   1990    1.1   mycroft 		}
   1991    1.1   mycroft 	}
   1992   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1993    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1994   1.58      fvdl 	/* return (-1); */
   1995    1.1   mycroft }
   1996    1.1   mycroft 
   1997    1.1   mycroft /*
   1998    1.1   mycroft  * Update the cluster map because of an allocation or free.
   1999    1.1   mycroft  *
   2000    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2001    1.1   mycroft  */
   2002    1.9  christos void
   2003   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2004    1.1   mycroft {
   2005    1.4       cgd 	int32_t *sump;
   2006    1.5   mycroft 	int32_t *lp;
   2007    1.1   mycroft 	u_char *freemapp, *mapp;
   2008    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2009   1.30      fvdl #ifdef FFS_EI
   2010   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2011   1.30      fvdl #endif
   2012    1.1   mycroft 
   2013  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2014  1.101        ad 
   2015    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2016    1.1   mycroft 		return;
   2017   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2018   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2019    1.1   mycroft 	/*
   2020    1.1   mycroft 	 * Allocate or clear the actual block.
   2021    1.1   mycroft 	 */
   2022    1.1   mycroft 	if (cnt > 0)
   2023    1.1   mycroft 		setbit(freemapp, blkno);
   2024    1.1   mycroft 	else
   2025    1.1   mycroft 		clrbit(freemapp, blkno);
   2026    1.1   mycroft 	/*
   2027    1.1   mycroft 	 * Find the size of the cluster going forward.
   2028    1.1   mycroft 	 */
   2029    1.1   mycroft 	start = blkno + 1;
   2030    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2031   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2032   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2033    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2034    1.1   mycroft 	map = *mapp++;
   2035    1.1   mycroft 	bit = 1 << (start % NBBY);
   2036    1.1   mycroft 	for (i = start; i < end; i++) {
   2037    1.1   mycroft 		if ((map & bit) == 0)
   2038    1.1   mycroft 			break;
   2039    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2040    1.1   mycroft 			bit <<= 1;
   2041    1.1   mycroft 		} else {
   2042    1.1   mycroft 			map = *mapp++;
   2043    1.1   mycroft 			bit = 1;
   2044    1.1   mycroft 		}
   2045    1.1   mycroft 	}
   2046    1.1   mycroft 	forw = i - start;
   2047    1.1   mycroft 	/*
   2048    1.1   mycroft 	 * Find the size of the cluster going backward.
   2049    1.1   mycroft 	 */
   2050    1.1   mycroft 	start = blkno - 1;
   2051    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2052    1.1   mycroft 	if (end < 0)
   2053    1.1   mycroft 		end = -1;
   2054    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2055    1.1   mycroft 	map = *mapp--;
   2056    1.1   mycroft 	bit = 1 << (start % NBBY);
   2057    1.1   mycroft 	for (i = start; i > end; i--) {
   2058    1.1   mycroft 		if ((map & bit) == 0)
   2059    1.1   mycroft 			break;
   2060    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2061    1.1   mycroft 			bit >>= 1;
   2062    1.1   mycroft 		} else {
   2063    1.1   mycroft 			map = *mapp--;
   2064    1.1   mycroft 			bit = 1 << (NBBY - 1);
   2065    1.1   mycroft 		}
   2066    1.1   mycroft 	}
   2067    1.1   mycroft 	back = start - i;
   2068    1.1   mycroft 	/*
   2069    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2070    1.1   mycroft 	 * back clusters.
   2071    1.1   mycroft 	 */
   2072    1.1   mycroft 	i = back + forw + 1;
   2073    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2074    1.1   mycroft 		i = fs->fs_contigsumsize;
   2075   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2076    1.1   mycroft 	if (back > 0)
   2077   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2078    1.1   mycroft 	if (forw > 0)
   2079   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2080   1.19    bouyer 
   2081    1.5   mycroft 	/*
   2082    1.5   mycroft 	 * Update cluster summary information.
   2083    1.5   mycroft 	 */
   2084    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2085    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2086   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2087    1.5   mycroft 			break;
   2088   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2089    1.1   mycroft }
   2090    1.1   mycroft 
   2091    1.1   mycroft /*
   2092    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2093   1.81     perry  *
   2094    1.1   mycroft  * The form of the error message is:
   2095    1.1   mycroft  *	fs: error message
   2096    1.1   mycroft  */
   2097    1.1   mycroft static void
   2098   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2099    1.1   mycroft {
   2100    1.1   mycroft 
   2101   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2102   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2103    1.1   mycroft }
   2104