ffs_alloc.c revision 1.107 1 1.107 hannken /* $NetBSD: ffs_alloc.c,v 1.107 2008/05/16 09:22:00 hannken Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
5 1.60 fvdl * All rights reserved.
6 1.60 fvdl *
7 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
8 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
9 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 1.60 fvdl * research program
12 1.60 fvdl *
13 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
14 1.1 mycroft * The Regents of the University of California. All rights reserved.
15 1.1 mycroft *
16 1.1 mycroft * Redistribution and use in source and binary forms, with or without
17 1.1 mycroft * modification, are permitted provided that the following conditions
18 1.1 mycroft * are met:
19 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
20 1.1 mycroft * notice, this list of conditions and the following disclaimer.
21 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
23 1.1 mycroft * documentation and/or other materials provided with the distribution.
24 1.69 agc * 3. Neither the name of the University nor the names of its contributors
25 1.1 mycroft * may be used to endorse or promote products derived from this software
26 1.1 mycroft * without specific prior written permission.
27 1.1 mycroft *
28 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 1.1 mycroft * SUCH DAMAGE.
39 1.1 mycroft *
40 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
41 1.1 mycroft */
42 1.53 lukem
43 1.53 lukem #include <sys/cdefs.h>
44 1.107 hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.107 2008/05/16 09:22:00 hannken Exp $");
45 1.17 mrg
46 1.43 mrg #if defined(_KERNEL_OPT)
47 1.27 thorpej #include "opt_ffs.h"
48 1.21 scottr #include "opt_quota.h"
49 1.22 scottr #endif
50 1.1 mycroft
51 1.1 mycroft #include <sys/param.h>
52 1.1 mycroft #include <sys/systm.h>
53 1.1 mycroft #include <sys/buf.h>
54 1.1 mycroft #include <sys/proc.h>
55 1.1 mycroft #include <sys/vnode.h>
56 1.1 mycroft #include <sys/mount.h>
57 1.1 mycroft #include <sys/kernel.h>
58 1.1 mycroft #include <sys/syslog.h>
59 1.91 elad #include <sys/kauth.h>
60 1.107 hannken #include <sys/fstrans.h>
61 1.29 mrg
62 1.76 hannken #include <miscfs/specfs/specdev.h>
63 1.1 mycroft #include <ufs/ufs/quota.h>
64 1.19 bouyer #include <ufs/ufs/ufsmount.h>
65 1.1 mycroft #include <ufs/ufs/inode.h>
66 1.9 christos #include <ufs/ufs/ufs_extern.h>
67 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
68 1.1 mycroft
69 1.1 mycroft #include <ufs/ffs/fs.h>
70 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
71 1.1 mycroft
72 1.85 thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
73 1.85 thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
74 1.55 matt #ifdef XXXUBC
75 1.85 thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
76 1.55 matt #endif
77 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
78 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
79 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
80 1.85 thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
81 1.85 thorpej daddr_t (*)(struct inode *, int, daddr_t, int));
82 1.85 thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
83 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
84 1.85 thorpej daddr_t, int);
85 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
86 1.55 matt #ifdef XXXUBC
87 1.85 thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
88 1.18 fvdl #endif
89 1.55 matt #endif
90 1.23 drochner
91 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
92 1.34 jdolecek int ffs_log_changeopt = 0;
93 1.34 jdolecek
94 1.23 drochner /* in ffs_tables.c */
95 1.40 jdolecek extern const int inside[], around[];
96 1.40 jdolecek extern const u_char * const fragtbl[];
97 1.1 mycroft
98 1.1 mycroft /*
99 1.1 mycroft * Allocate a block in the file system.
100 1.81 perry *
101 1.1 mycroft * The size of the requested block is given, which must be some
102 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
103 1.1 mycroft * A preference may be optionally specified. If a preference is given
104 1.1 mycroft * the following hierarchy is used to allocate a block:
105 1.1 mycroft * 1) allocate the requested block.
106 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
107 1.1 mycroft * 3) allocate a block in the same cylinder group.
108 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
109 1.1 mycroft * available block is located.
110 1.47 wiz * If no block preference is given the following hierarchy is used
111 1.1 mycroft * to allocate a block:
112 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
113 1.1 mycroft * inode for the file.
114 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
115 1.1 mycroft * available block is located.
116 1.106 pooka *
117 1.106 pooka * => called with um_lock held
118 1.106 pooka * => releases um_lock before returning
119 1.1 mycroft */
120 1.9 christos int
121 1.96 christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
122 1.91 elad kauth_cred_t cred, daddr_t *bnp)
123 1.1 mycroft {
124 1.101 ad struct ufsmount *ump;
125 1.62 fvdl struct fs *fs;
126 1.58 fvdl daddr_t bno;
127 1.9 christos int cg;
128 1.9 christos #ifdef QUOTA
129 1.9 christos int error;
130 1.9 christos #endif
131 1.81 perry
132 1.62 fvdl fs = ip->i_fs;
133 1.101 ad ump = ip->i_ump;
134 1.101 ad
135 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
136 1.62 fvdl
137 1.37 chs #ifdef UVM_PAGE_TRKOWN
138 1.51 chs if (ITOV(ip)->v_type == VREG &&
139 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
140 1.37 chs struct vm_page *pg;
141 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
142 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
143 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
144 1.37 chs
145 1.105 ad mutex_enter(&uobj->vmobjlock);
146 1.37 chs while (off < endoff) {
147 1.37 chs pg = uvm_pagelookup(uobj, off);
148 1.37 chs KASSERT(pg != NULL);
149 1.37 chs KASSERT(pg->owner == curproc->p_pid);
150 1.37 chs off += PAGE_SIZE;
151 1.37 chs }
152 1.105 ad mutex_exit(&uobj->vmobjlock);
153 1.37 chs }
154 1.37 chs #endif
155 1.37 chs
156 1.1 mycroft *bnp = 0;
157 1.1 mycroft #ifdef DIAGNOSTIC
158 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
159 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
160 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
161 1.1 mycroft panic("ffs_alloc: bad size");
162 1.1 mycroft }
163 1.1 mycroft if (cred == NOCRED)
164 1.56 provos panic("ffs_alloc: missing credential");
165 1.1 mycroft #endif /* DIAGNOSTIC */
166 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
167 1.1 mycroft goto nospace;
168 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
169 1.99 pooka kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
170 1.1 mycroft goto nospace;
171 1.1 mycroft #ifdef QUOTA
172 1.101 ad mutex_exit(&ump->um_lock);
173 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
174 1.1 mycroft return (error);
175 1.101 ad mutex_enter(&ump->um_lock);
176 1.1 mycroft #endif
177 1.1 mycroft if (bpref >= fs->fs_size)
178 1.1 mycroft bpref = 0;
179 1.1 mycroft if (bpref == 0)
180 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
181 1.1 mycroft else
182 1.1 mycroft cg = dtog(fs, bpref);
183 1.84 dbj bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
184 1.1 mycroft if (bno > 0) {
185 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
186 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
187 1.1 mycroft *bnp = bno;
188 1.1 mycroft return (0);
189 1.1 mycroft }
190 1.1 mycroft #ifdef QUOTA
191 1.1 mycroft /*
192 1.1 mycroft * Restore user's disk quota because allocation failed.
193 1.1 mycroft */
194 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
195 1.1 mycroft #endif
196 1.1 mycroft nospace:
197 1.101 ad mutex_exit(&ump->um_lock);
198 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
199 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
200 1.1 mycroft return (ENOSPC);
201 1.1 mycroft }
202 1.1 mycroft
203 1.1 mycroft /*
204 1.1 mycroft * Reallocate a fragment to a bigger size
205 1.1 mycroft *
206 1.1 mycroft * The number and size of the old block is given, and a preference
207 1.1 mycroft * and new size is also specified. The allocator attempts to extend
208 1.1 mycroft * the original block. Failing that, the regular block allocator is
209 1.1 mycroft * invoked to get an appropriate block.
210 1.106 pooka *
211 1.106 pooka * => called with um_lock held
212 1.106 pooka * => return with um_lock released
213 1.1 mycroft */
214 1.9 christos int
215 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
216 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
217 1.1 mycroft {
218 1.101 ad struct ufsmount *ump;
219 1.62 fvdl struct fs *fs;
220 1.1 mycroft struct buf *bp;
221 1.1 mycroft int cg, request, error;
222 1.58 fvdl daddr_t bprev, bno;
223 1.25 thorpej
224 1.62 fvdl fs = ip->i_fs;
225 1.101 ad ump = ip->i_ump;
226 1.101 ad
227 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
228 1.101 ad
229 1.37 chs #ifdef UVM_PAGE_TRKOWN
230 1.37 chs if (ITOV(ip)->v_type == VREG) {
231 1.37 chs struct vm_page *pg;
232 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
233 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
234 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
235 1.37 chs
236 1.105 ad mutex_enter(&uobj->vmobjlock);
237 1.37 chs while (off < endoff) {
238 1.37 chs pg = uvm_pagelookup(uobj, off);
239 1.37 chs KASSERT(pg != NULL);
240 1.37 chs KASSERT(pg->owner == curproc->p_pid);
241 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
242 1.37 chs off += PAGE_SIZE;
243 1.37 chs }
244 1.105 ad mutex_exit(&uobj->vmobjlock);
245 1.37 chs }
246 1.37 chs #endif
247 1.37 chs
248 1.1 mycroft #ifdef DIAGNOSTIC
249 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
250 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
251 1.13 christos printf(
252 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
253 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
254 1.1 mycroft panic("ffs_realloccg: bad size");
255 1.1 mycroft }
256 1.1 mycroft if (cred == NOCRED)
257 1.56 provos panic("ffs_realloccg: missing credential");
258 1.1 mycroft #endif /* DIAGNOSTIC */
259 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
260 1.101 ad kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
261 1.101 ad mutex_exit(&ump->um_lock);
262 1.1 mycroft goto nospace;
263 1.101 ad }
264 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
265 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
266 1.60 fvdl else
267 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
268 1.60 fvdl
269 1.60 fvdl if (bprev == 0) {
270 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
271 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
272 1.1 mycroft panic("ffs_realloccg: bad bprev");
273 1.1 mycroft }
274 1.101 ad mutex_exit(&ump->um_lock);
275 1.101 ad
276 1.1 mycroft /*
277 1.1 mycroft * Allocate the extra space in the buffer.
278 1.1 mycroft */
279 1.37 chs if (bpp != NULL &&
280 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
281 1.101 ad brelse(bp, 0);
282 1.1 mycroft return (error);
283 1.1 mycroft }
284 1.1 mycroft #ifdef QUOTA
285 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
286 1.44 chs if (bpp != NULL) {
287 1.101 ad brelse(bp, 0);
288 1.44 chs }
289 1.1 mycroft return (error);
290 1.1 mycroft }
291 1.1 mycroft #endif
292 1.1 mycroft /*
293 1.1 mycroft * Check for extension in the existing location.
294 1.1 mycroft */
295 1.1 mycroft cg = dtog(fs, bprev);
296 1.101 ad mutex_enter(&ump->um_lock);
297 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
298 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
299 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
300 1.37 chs
301 1.37 chs if (bpp != NULL) {
302 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
303 1.37 chs panic("bad blockno");
304 1.72 pk allocbuf(bp, nsize, 1);
305 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
306 1.105 ad mutex_enter(bp->b_objlock);
307 1.105 ad bp->b_oflags |= BO_DONE;
308 1.105 ad mutex_exit(bp->b_objlock);
309 1.37 chs *bpp = bp;
310 1.37 chs }
311 1.37 chs if (blknop != NULL) {
312 1.37 chs *blknop = bno;
313 1.37 chs }
314 1.1 mycroft return (0);
315 1.1 mycroft }
316 1.1 mycroft /*
317 1.1 mycroft * Allocate a new disk location.
318 1.1 mycroft */
319 1.1 mycroft if (bpref >= fs->fs_size)
320 1.1 mycroft bpref = 0;
321 1.1 mycroft switch ((int)fs->fs_optim) {
322 1.1 mycroft case FS_OPTSPACE:
323 1.1 mycroft /*
324 1.81 perry * Allocate an exact sized fragment. Although this makes
325 1.81 perry * best use of space, we will waste time relocating it if
326 1.1 mycroft * the file continues to grow. If the fragmentation is
327 1.1 mycroft * less than half of the minimum free reserve, we choose
328 1.1 mycroft * to begin optimizing for time.
329 1.1 mycroft */
330 1.1 mycroft request = nsize;
331 1.1 mycroft if (fs->fs_minfree < 5 ||
332 1.1 mycroft fs->fs_cstotal.cs_nffree >
333 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
334 1.1 mycroft break;
335 1.34 jdolecek
336 1.34 jdolecek if (ffs_log_changeopt) {
337 1.34 jdolecek log(LOG_NOTICE,
338 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
339 1.34 jdolecek fs->fs_fsmnt);
340 1.34 jdolecek }
341 1.34 jdolecek
342 1.1 mycroft fs->fs_optim = FS_OPTTIME;
343 1.1 mycroft break;
344 1.1 mycroft case FS_OPTTIME:
345 1.1 mycroft /*
346 1.1 mycroft * At this point we have discovered a file that is trying to
347 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
348 1.1 mycroft * we allocate a full sized block, then free the unused portion.
349 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
350 1.1 mycroft * above will be able to grow it in place without further
351 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
352 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
353 1.1 mycroft * optimizing for space.
354 1.1 mycroft */
355 1.1 mycroft request = fs->fs_bsize;
356 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
357 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
358 1.1 mycroft break;
359 1.34 jdolecek
360 1.34 jdolecek if (ffs_log_changeopt) {
361 1.34 jdolecek log(LOG_NOTICE,
362 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
363 1.34 jdolecek fs->fs_fsmnt);
364 1.34 jdolecek }
365 1.34 jdolecek
366 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
367 1.1 mycroft break;
368 1.1 mycroft default:
369 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
370 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
371 1.1 mycroft panic("ffs_realloccg: bad optim");
372 1.1 mycroft /* NOTREACHED */
373 1.1 mycroft }
374 1.58 fvdl bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
375 1.1 mycroft if (bno > 0) {
376 1.30 fvdl if (!DOINGSOFTDEP(ITOV(ip)))
377 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
378 1.76 hannken ip->i_number);
379 1.1 mycroft if (nsize < request)
380 1.76 hannken ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
381 1.76 hannken (long)(request - nsize), ip->i_number);
382 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
383 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
384 1.37 chs if (bpp != NULL) {
385 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
386 1.72 pk allocbuf(bp, nsize, 1);
387 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
388 1.105 ad mutex_enter(bp->b_objlock);
389 1.105 ad bp->b_oflags |= BO_DONE;
390 1.105 ad mutex_exit(bp->b_objlock);
391 1.37 chs *bpp = bp;
392 1.37 chs }
393 1.37 chs if (blknop != NULL) {
394 1.37 chs *blknop = bno;
395 1.37 chs }
396 1.1 mycroft return (0);
397 1.1 mycroft }
398 1.101 ad mutex_exit(&ump->um_lock);
399 1.101 ad
400 1.1 mycroft #ifdef QUOTA
401 1.1 mycroft /*
402 1.1 mycroft * Restore user's disk quota because allocation failed.
403 1.1 mycroft */
404 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
405 1.1 mycroft #endif
406 1.37 chs if (bpp != NULL) {
407 1.101 ad brelse(bp, 0);
408 1.37 chs }
409 1.37 chs
410 1.1 mycroft nospace:
411 1.1 mycroft /*
412 1.1 mycroft * no space available
413 1.1 mycroft */
414 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
415 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
416 1.1 mycroft return (ENOSPC);
417 1.1 mycroft }
418 1.1 mycroft
419 1.88 yamt #if 0
420 1.1 mycroft /*
421 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
422 1.1 mycroft *
423 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
424 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
425 1.60 fvdl * to find a range of sequential blocks starting as close as possible
426 1.60 fvdl * from the end of the allocation for the logical block immediately
427 1.60 fvdl * preceding the current range. If successful, the physical block numbers
428 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
429 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
430 1.60 fvdl * success in doing the reallocation is returned. Note that the error
431 1.60 fvdl * return is not reflected back to the user. Rather the previous block
432 1.60 fvdl * allocation will be used.
433 1.60 fvdl
434 1.1 mycroft */
435 1.55 matt #ifdef XXXUBC
436 1.3 mycroft #ifdef DEBUG
437 1.1 mycroft #include <sys/sysctl.h>
438 1.5 mycroft int prtrealloc = 0;
439 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
440 1.1 mycroft #endif
441 1.55 matt #endif
442 1.1 mycroft
443 1.60 fvdl /*
444 1.60 fvdl * NOTE: when re-enabling this, it must be updated for UFS2.
445 1.60 fvdl */
446 1.60 fvdl
447 1.18 fvdl int doasyncfree = 1;
448 1.18 fvdl
449 1.1 mycroft int
450 1.85 thorpej ffs_reallocblks(void *v)
451 1.9 christos {
452 1.55 matt #ifdef XXXUBC
453 1.1 mycroft struct vop_reallocblks_args /* {
454 1.1 mycroft struct vnode *a_vp;
455 1.1 mycroft struct cluster_save *a_buflist;
456 1.9 christos } */ *ap = v;
457 1.1 mycroft struct fs *fs;
458 1.1 mycroft struct inode *ip;
459 1.1 mycroft struct vnode *vp;
460 1.1 mycroft struct buf *sbp, *ebp;
461 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
462 1.1 mycroft struct cluster_save *buflist;
463 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
464 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
465 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
466 1.101 ad struct ufsmount *ump;
467 1.55 matt #endif /* XXXUBC */
468 1.1 mycroft
469 1.37 chs /* XXXUBC don't reallocblks for now */
470 1.37 chs return ENOSPC;
471 1.37 chs
472 1.55 matt #ifdef XXXUBC
473 1.1 mycroft vp = ap->a_vp;
474 1.1 mycroft ip = VTOI(vp);
475 1.1 mycroft fs = ip->i_fs;
476 1.101 ad ump = ip->i_ump;
477 1.1 mycroft if (fs->fs_contigsumsize <= 0)
478 1.1 mycroft return (ENOSPC);
479 1.1 mycroft buflist = ap->a_buflist;
480 1.1 mycroft len = buflist->bs_nchildren;
481 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
482 1.1 mycroft end_lbn = start_lbn + len - 1;
483 1.1 mycroft #ifdef DIAGNOSTIC
484 1.18 fvdl for (i = 0; i < len; i++)
485 1.18 fvdl if (!ffs_checkblk(ip,
486 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
487 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
488 1.1 mycroft for (i = 1; i < len; i++)
489 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
490 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
491 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
492 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
493 1.18 fvdl for (i = 1; i < len - 1; i++)
494 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
495 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
496 1.1 mycroft #endif
497 1.1 mycroft /*
498 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
499 1.1 mycroft * the filesystem has decided to move and do not force it back to
500 1.1 mycroft * the previous cylinder group.
501 1.1 mycroft */
502 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
503 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
504 1.1 mycroft return (ENOSPC);
505 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
506 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
507 1.1 mycroft return (ENOSPC);
508 1.1 mycroft /*
509 1.1 mycroft * Get the starting offset and block map for the first block.
510 1.1 mycroft */
511 1.1 mycroft if (start_lvl == 0) {
512 1.60 fvdl sbap = &ip->i_ffs1_db[0];
513 1.1 mycroft soff = start_lbn;
514 1.1 mycroft } else {
515 1.1 mycroft idp = &start_ap[start_lvl - 1];
516 1.107 hannken if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
517 1.107 hannken NOCRED, B_MODIFY, &sbp)) {
518 1.101 ad brelse(sbp, 0);
519 1.1 mycroft return (ENOSPC);
520 1.1 mycroft }
521 1.60 fvdl sbap = (int32_t *)sbp->b_data;
522 1.1 mycroft soff = idp->in_off;
523 1.1 mycroft }
524 1.1 mycroft /*
525 1.1 mycroft * Find the preferred location for the cluster.
526 1.1 mycroft */
527 1.101 ad mutex_enter(&ump->um_lock);
528 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
529 1.1 mycroft /*
530 1.1 mycroft * If the block range spans two block maps, get the second map.
531 1.1 mycroft */
532 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
533 1.1 mycroft ssize = len;
534 1.1 mycroft } else {
535 1.1 mycroft #ifdef DIAGNOSTIC
536 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
537 1.1 mycroft panic("ffs_reallocblk: start == end");
538 1.1 mycroft #endif
539 1.1 mycroft ssize = len - (idp->in_off + 1);
540 1.107 hannken if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
541 1.107 hannken NOCRED, B_MODIFY, &ebp))
542 1.1 mycroft goto fail;
543 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
544 1.1 mycroft }
545 1.1 mycroft /*
546 1.1 mycroft * Search the block map looking for an allocation of the desired size.
547 1.1 mycroft */
548 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
549 1.101 ad len, ffs_clusteralloc)) == 0) {
550 1.101 ad mutex_exit(&ump->um_lock);
551 1.1 mycroft goto fail;
552 1.101 ad }
553 1.1 mycroft /*
554 1.1 mycroft * We have found a new contiguous block.
555 1.1 mycroft *
556 1.1 mycroft * First we have to replace the old block pointers with the new
557 1.1 mycroft * block pointers in the inode and indirect blocks associated
558 1.1 mycroft * with the file.
559 1.1 mycroft */
560 1.5 mycroft #ifdef DEBUG
561 1.5 mycroft if (prtrealloc)
562 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
563 1.5 mycroft start_lbn, end_lbn);
564 1.5 mycroft #endif
565 1.1 mycroft blkno = newblk;
566 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
567 1.58 fvdl daddr_t ba;
568 1.30 fvdl
569 1.30 fvdl if (i == ssize) {
570 1.1 mycroft bap = ebap;
571 1.30 fvdl soff = -i;
572 1.30 fvdl }
573 1.58 fvdl /* XXX ondisk32 */
574 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
575 1.1 mycroft #ifdef DIAGNOSTIC
576 1.18 fvdl if (!ffs_checkblk(ip,
577 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
578 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
579 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
580 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
581 1.1 mycroft #endif
582 1.5 mycroft #ifdef DEBUG
583 1.5 mycroft if (prtrealloc)
584 1.30 fvdl printf(" %d,", ba);
585 1.5 mycroft #endif
586 1.30 fvdl if (DOINGSOFTDEP(vp)) {
587 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
588 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
589 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
590 1.30 fvdl buflist->bs_children[i]);
591 1.30 fvdl else
592 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
593 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
594 1.30 fvdl ba, buflist->bs_children[i]);
595 1.30 fvdl }
596 1.58 fvdl /* XXX ondisk32 */
597 1.80 mycroft *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
598 1.1 mycroft }
599 1.1 mycroft /*
600 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
601 1.1 mycroft * For strict correctness, the writes should be synchronous since
602 1.1 mycroft * the old block values may have been written to disk. In practise
603 1.81 perry * they are almost never written, but if we are concerned about
604 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
605 1.1 mycroft *
606 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
607 1.1 mycroft * that shows whether the associated buffers and inodes have
608 1.1 mycroft * been written. The flag should be set when the cluster is
609 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
610 1.1 mycroft * We can then check below to see if it is set, and do the
611 1.1 mycroft * synchronous write only when it has been cleared.
612 1.1 mycroft */
613 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
614 1.1 mycroft if (doasyncfree)
615 1.1 mycroft bdwrite(sbp);
616 1.1 mycroft else
617 1.1 mycroft bwrite(sbp);
618 1.1 mycroft } else {
619 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
620 1.28 mycroft if (!doasyncfree)
621 1.88 yamt ffs_update(vp, NULL, NULL, 1);
622 1.1 mycroft }
623 1.25 thorpej if (ssize < len) {
624 1.1 mycroft if (doasyncfree)
625 1.1 mycroft bdwrite(ebp);
626 1.1 mycroft else
627 1.1 mycroft bwrite(ebp);
628 1.25 thorpej }
629 1.1 mycroft /*
630 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
631 1.1 mycroft */
632 1.5 mycroft #ifdef DEBUG
633 1.5 mycroft if (prtrealloc)
634 1.13 christos printf("\n\tnew:");
635 1.5 mycroft #endif
636 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
637 1.30 fvdl if (!DOINGSOFTDEP(vp))
638 1.76 hannken ffs_blkfree(fs, ip->i_devvp,
639 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
640 1.76 hannken fs->fs_bsize, ip->i_number);
641 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
642 1.5 mycroft #ifdef DEBUG
643 1.18 fvdl if (!ffs_checkblk(ip,
644 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
645 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
646 1.5 mycroft if (prtrealloc)
647 1.13 christos printf(" %d,", blkno);
648 1.5 mycroft #endif
649 1.5 mycroft }
650 1.5 mycroft #ifdef DEBUG
651 1.5 mycroft if (prtrealloc) {
652 1.5 mycroft prtrealloc--;
653 1.13 christos printf("\n");
654 1.1 mycroft }
655 1.5 mycroft #endif
656 1.1 mycroft return (0);
657 1.1 mycroft
658 1.1 mycroft fail:
659 1.1 mycroft if (ssize < len)
660 1.101 ad brelse(ebp, 0);
661 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
662 1.101 ad brelse(sbp, 0);
663 1.1 mycroft return (ENOSPC);
664 1.55 matt #endif /* XXXUBC */
665 1.1 mycroft }
666 1.88 yamt #endif /* 0 */
667 1.1 mycroft
668 1.1 mycroft /*
669 1.1 mycroft * Allocate an inode in the file system.
670 1.81 perry *
671 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
672 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
673 1.1 mycroft * 1) allocate the preferred inode.
674 1.1 mycroft * 2) allocate an inode in the same cylinder group.
675 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
676 1.1 mycroft * available inode is located.
677 1.47 wiz * If no inode preference is given the following hierarchy is used
678 1.1 mycroft * to allocate an inode:
679 1.1 mycroft * 1) allocate an inode in cylinder group 0.
680 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
681 1.1 mycroft * available inode is located.
682 1.106 pooka *
683 1.106 pooka * => um_lock not held upon entry or return
684 1.1 mycroft */
685 1.9 christos int
686 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
687 1.88 yamt struct vnode **vpp)
688 1.9 christos {
689 1.101 ad struct ufsmount *ump;
690 1.33 augustss struct inode *pip;
691 1.33 augustss struct fs *fs;
692 1.33 augustss struct inode *ip;
693 1.60 fvdl struct timespec ts;
694 1.1 mycroft ino_t ino, ipref;
695 1.1 mycroft int cg, error;
696 1.81 perry
697 1.88 yamt *vpp = NULL;
698 1.1 mycroft pip = VTOI(pvp);
699 1.1 mycroft fs = pip->i_fs;
700 1.101 ad ump = pip->i_ump;
701 1.101 ad
702 1.101 ad mutex_enter(&ump->um_lock);
703 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
704 1.1 mycroft goto noinodes;
705 1.1 mycroft
706 1.1 mycroft if ((mode & IFMT) == IFDIR)
707 1.50 lukem ipref = ffs_dirpref(pip);
708 1.50 lukem else
709 1.50 lukem ipref = pip->i_number;
710 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
711 1.1 mycroft ipref = 0;
712 1.1 mycroft cg = ino_to_cg(fs, ipref);
713 1.50 lukem /*
714 1.50 lukem * Track number of dirs created one after another
715 1.50 lukem * in a same cg without intervening by files.
716 1.50 lukem */
717 1.50 lukem if ((mode & IFMT) == IFDIR) {
718 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
719 1.50 lukem fs->fs_contigdirs[cg]++;
720 1.50 lukem } else {
721 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
722 1.50 lukem fs->fs_contigdirs[cg]--;
723 1.50 lukem }
724 1.60 fvdl ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
725 1.1 mycroft if (ino == 0)
726 1.1 mycroft goto noinodes;
727 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
728 1.1 mycroft if (error) {
729 1.88 yamt ffs_vfree(pvp, ino, mode);
730 1.1 mycroft return (error);
731 1.1 mycroft }
732 1.90 yamt KASSERT((*vpp)->v_type == VNON);
733 1.88 yamt ip = VTOI(*vpp);
734 1.60 fvdl if (ip->i_mode) {
735 1.60 fvdl #if 0
736 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
737 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
738 1.60 fvdl #else
739 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
740 1.60 fvdl DIP(ip, mode), ip->i_mode,
741 1.60 fvdl DIP(ip, gen), ip->i_gen);
742 1.60 fvdl printf("size %llx blocks %llx\n",
743 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
744 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
745 1.86 christos (unsigned long long)ipref);
746 1.60 fvdl #if 0
747 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
748 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
749 1.60 fvdl #endif
750 1.60 fvdl
751 1.60 fvdl #endif
752 1.1 mycroft panic("ffs_valloc: dup alloc");
753 1.1 mycroft }
754 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
755 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
756 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
757 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
758 1.1 mycroft }
759 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
760 1.61 fvdl ip->i_flags = 0;
761 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
762 1.1 mycroft /*
763 1.1 mycroft * Set up a new generation number for this inode.
764 1.1 mycroft */
765 1.60 fvdl ip->i_gen++;
766 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
767 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
768 1.93 yamt vfs_timestamp(&ts);
769 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
770 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
771 1.60 fvdl }
772 1.1 mycroft return (0);
773 1.1 mycroft noinodes:
774 1.101 ad mutex_exit(&ump->um_lock);
775 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
776 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
777 1.1 mycroft return (ENOSPC);
778 1.1 mycroft }
779 1.1 mycroft
780 1.1 mycroft /*
781 1.50 lukem * Find a cylinder group in which to place a directory.
782 1.42 sommerfe *
783 1.50 lukem * The policy implemented by this algorithm is to allocate a
784 1.50 lukem * directory inode in the same cylinder group as its parent
785 1.50 lukem * directory, but also to reserve space for its files inodes
786 1.50 lukem * and data. Restrict the number of directories which may be
787 1.50 lukem * allocated one after another in the same cylinder group
788 1.50 lukem * without intervening allocation of files.
789 1.42 sommerfe *
790 1.50 lukem * If we allocate a first level directory then force allocation
791 1.50 lukem * in another cylinder group.
792 1.1 mycroft */
793 1.1 mycroft static ino_t
794 1.85 thorpej ffs_dirpref(struct inode *pip)
795 1.1 mycroft {
796 1.50 lukem register struct fs *fs;
797 1.74 soren int cg, prefcg;
798 1.89 dsl int64_t dirsize, cgsize, curdsz;
799 1.89 dsl int avgifree, avgbfree, avgndir;
800 1.50 lukem int minifree, minbfree, maxndir;
801 1.50 lukem int mincg, minndir;
802 1.50 lukem int maxcontigdirs;
803 1.50 lukem
804 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
805 1.101 ad
806 1.50 lukem fs = pip->i_fs;
807 1.1 mycroft
808 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
809 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
810 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
811 1.50 lukem
812 1.50 lukem /*
813 1.50 lukem * Force allocation in another cg if creating a first level dir.
814 1.50 lukem */
815 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
816 1.71 mycroft prefcg = random() % fs->fs_ncg;
817 1.50 lukem mincg = prefcg;
818 1.50 lukem minndir = fs->fs_ipg;
819 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
820 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
821 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
822 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
823 1.42 sommerfe mincg = cg;
824 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
825 1.42 sommerfe }
826 1.50 lukem for (cg = 0; cg < prefcg; cg++)
827 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
828 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
829 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
830 1.50 lukem mincg = cg;
831 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
832 1.42 sommerfe }
833 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
834 1.42 sommerfe }
835 1.50 lukem
836 1.50 lukem /*
837 1.50 lukem * Count various limits which used for
838 1.50 lukem * optimal allocation of a directory inode.
839 1.50 lukem */
840 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
841 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
842 1.50 lukem if (minifree < 0)
843 1.50 lukem minifree = 0;
844 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
845 1.50 lukem if (minbfree < 0)
846 1.50 lukem minbfree = 0;
847 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
848 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
849 1.89 dsl if (avgndir != 0) {
850 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
851 1.89 dsl if (dirsize < curdsz)
852 1.89 dsl dirsize = curdsz;
853 1.89 dsl }
854 1.89 dsl if (cgsize < dirsize * 255)
855 1.89 dsl maxcontigdirs = cgsize / dirsize;
856 1.89 dsl else
857 1.89 dsl maxcontigdirs = 255;
858 1.50 lukem if (fs->fs_avgfpdir > 0)
859 1.50 lukem maxcontigdirs = min(maxcontigdirs,
860 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
861 1.50 lukem if (maxcontigdirs == 0)
862 1.50 lukem maxcontigdirs = 1;
863 1.50 lukem
864 1.50 lukem /*
865 1.81 perry * Limit number of dirs in one cg and reserve space for
866 1.50 lukem * regular files, but only if we have no deficit in
867 1.50 lukem * inodes or space.
868 1.50 lukem */
869 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
870 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
871 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
872 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
873 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
874 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
875 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
876 1.50 lukem }
877 1.50 lukem for (cg = 0; cg < prefcg; cg++)
878 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
879 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
880 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
881 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
882 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
883 1.50 lukem }
884 1.50 lukem /*
885 1.50 lukem * This is a backstop when we are deficient in space.
886 1.50 lukem */
887 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
888 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
889 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
890 1.50 lukem for (cg = 0; cg < prefcg; cg++)
891 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
892 1.50 lukem break;
893 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
894 1.1 mycroft }
895 1.1 mycroft
896 1.1 mycroft /*
897 1.1 mycroft * Select the desired position for the next block in a file. The file is
898 1.1 mycroft * logically divided into sections. The first section is composed of the
899 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
900 1.81 perry *
901 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
902 1.1 mycroft * request a block in the same cylinder group as the inode that describes
903 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
904 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
905 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
906 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
907 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
908 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
909 1.1 mycroft * continues until a cylinder group with greater than the average number
910 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
911 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
912 1.1 mycroft * here a best guess is made based upon the logical block number being
913 1.1 mycroft * allocated.
914 1.81 perry *
915 1.1 mycroft * If a section is already partially allocated, the policy is to
916 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
917 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
918 1.60 fvdl * contigously if possible.
919 1.106 pooka *
920 1.106 pooka * => um_lock held on entry and exit
921 1.1 mycroft */
922 1.58 fvdl daddr_t
923 1.85 thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
924 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
925 1.1 mycroft {
926 1.33 augustss struct fs *fs;
927 1.33 augustss int cg;
928 1.1 mycroft int avgbfree, startcg;
929 1.1 mycroft
930 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
931 1.101 ad
932 1.1 mycroft fs = ip->i_fs;
933 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
934 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
935 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
936 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
937 1.1 mycroft }
938 1.1 mycroft /*
939 1.1 mycroft * Find a cylinder with greater than average number of
940 1.1 mycroft * unused data blocks.
941 1.1 mycroft */
942 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
943 1.1 mycroft startcg =
944 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
945 1.1 mycroft else
946 1.19 bouyer startcg = dtog(fs,
947 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
948 1.1 mycroft startcg %= fs->fs_ncg;
949 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
950 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
951 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
952 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
953 1.1 mycroft }
954 1.52 lukem for (cg = 0; cg < startcg; cg++)
955 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
956 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
957 1.1 mycroft }
958 1.35 thorpej return (0);
959 1.1 mycroft }
960 1.1 mycroft /*
961 1.60 fvdl * We just always try to lay things out contiguously.
962 1.60 fvdl */
963 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
964 1.60 fvdl }
965 1.60 fvdl
966 1.60 fvdl daddr_t
967 1.85 thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
968 1.60 fvdl {
969 1.60 fvdl struct fs *fs;
970 1.60 fvdl int cg;
971 1.60 fvdl int avgbfree, startcg;
972 1.60 fvdl
973 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
974 1.101 ad
975 1.60 fvdl fs = ip->i_fs;
976 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
977 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
978 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
979 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
980 1.60 fvdl }
981 1.1 mycroft /*
982 1.60 fvdl * Find a cylinder with greater than average number of
983 1.60 fvdl * unused data blocks.
984 1.1 mycroft */
985 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
986 1.60 fvdl startcg =
987 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
988 1.60 fvdl else
989 1.60 fvdl startcg = dtog(fs,
990 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
991 1.60 fvdl startcg %= fs->fs_ncg;
992 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
993 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
994 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
995 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
996 1.60 fvdl }
997 1.60 fvdl for (cg = 0; cg < startcg; cg++)
998 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
999 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
1000 1.60 fvdl }
1001 1.60 fvdl return (0);
1002 1.60 fvdl }
1003 1.60 fvdl /*
1004 1.60 fvdl * We just always try to lay things out contiguously.
1005 1.60 fvdl */
1006 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1007 1.1 mycroft }
1008 1.1 mycroft
1009 1.60 fvdl
1010 1.1 mycroft /*
1011 1.1 mycroft * Implement the cylinder overflow algorithm.
1012 1.1 mycroft *
1013 1.1 mycroft * The policy implemented by this algorithm is:
1014 1.1 mycroft * 1) allocate the block in its requested cylinder group.
1015 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
1016 1.1 mycroft * 3) brute force search for a free block.
1017 1.106 pooka *
1018 1.106 pooka * => called with um_lock held
1019 1.106 pooka * => returns with um_lock released on success, held on failure
1020 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
1021 1.1 mycroft */
1022 1.1 mycroft /*VARARGS5*/
1023 1.58 fvdl static daddr_t
1024 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1025 1.85 thorpej int size /* size for data blocks, mode for inodes */,
1026 1.85 thorpej daddr_t (*allocator)(struct inode *, int, daddr_t, int))
1027 1.1 mycroft {
1028 1.33 augustss struct fs *fs;
1029 1.58 fvdl daddr_t result;
1030 1.1 mycroft int i, icg = cg;
1031 1.1 mycroft
1032 1.1 mycroft fs = ip->i_fs;
1033 1.1 mycroft /*
1034 1.1 mycroft * 1: preferred cylinder group
1035 1.1 mycroft */
1036 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
1037 1.1 mycroft if (result)
1038 1.1 mycroft return (result);
1039 1.1 mycroft /*
1040 1.1 mycroft * 2: quadratic rehash
1041 1.1 mycroft */
1042 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
1043 1.1 mycroft cg += i;
1044 1.1 mycroft if (cg >= fs->fs_ncg)
1045 1.1 mycroft cg -= fs->fs_ncg;
1046 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1047 1.1 mycroft if (result)
1048 1.1 mycroft return (result);
1049 1.1 mycroft }
1050 1.1 mycroft /*
1051 1.1 mycroft * 3: brute force search
1052 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
1053 1.1 mycroft * and 1 is always checked in the quadratic rehash.
1054 1.1 mycroft */
1055 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
1056 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
1057 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1058 1.1 mycroft if (result)
1059 1.1 mycroft return (result);
1060 1.1 mycroft cg++;
1061 1.1 mycroft if (cg == fs->fs_ncg)
1062 1.1 mycroft cg = 0;
1063 1.1 mycroft }
1064 1.35 thorpej return (0);
1065 1.1 mycroft }
1066 1.1 mycroft
1067 1.1 mycroft /*
1068 1.1 mycroft * Determine whether a fragment can be extended.
1069 1.1 mycroft *
1070 1.81 perry * Check to see if the necessary fragments are available, and
1071 1.1 mycroft * if they are, allocate them.
1072 1.106 pooka *
1073 1.106 pooka * => called with um_lock held
1074 1.106 pooka * => returns with um_lock released on success, held on failure
1075 1.1 mycroft */
1076 1.58 fvdl static daddr_t
1077 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1078 1.1 mycroft {
1079 1.101 ad struct ufsmount *ump;
1080 1.33 augustss struct fs *fs;
1081 1.33 augustss struct cg *cgp;
1082 1.1 mycroft struct buf *bp;
1083 1.58 fvdl daddr_t bno;
1084 1.1 mycroft int frags, bbase;
1085 1.1 mycroft int i, error;
1086 1.62 fvdl u_int8_t *blksfree;
1087 1.1 mycroft
1088 1.1 mycroft fs = ip->i_fs;
1089 1.101 ad ump = ip->i_ump;
1090 1.101 ad
1091 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1092 1.101 ad
1093 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1094 1.35 thorpej return (0);
1095 1.1 mycroft frags = numfrags(fs, nsize);
1096 1.1 mycroft bbase = fragnum(fs, bprev);
1097 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1098 1.1 mycroft /* cannot extend across a block boundary */
1099 1.35 thorpej return (0);
1100 1.1 mycroft }
1101 1.101 ad mutex_exit(&ump->um_lock);
1102 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1103 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1104 1.101 ad if (error)
1105 1.101 ad goto fail;
1106 1.1 mycroft cgp = (struct cg *)bp->b_data;
1107 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1108 1.101 ad goto fail;
1109 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1110 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1111 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1112 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1113 1.1 mycroft bno = dtogd(fs, bprev);
1114 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1115 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1116 1.101 ad if (isclr(blksfree, bno + i))
1117 1.101 ad goto fail;
1118 1.1 mycroft /*
1119 1.1 mycroft * the current fragment can be extended
1120 1.1 mycroft * deduct the count on fragment being extended into
1121 1.1 mycroft * increase the count on the remaining fragment (if any)
1122 1.1 mycroft * allocate the extended piece
1123 1.1 mycroft */
1124 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1125 1.62 fvdl if (isclr(blksfree, bno + i))
1126 1.1 mycroft break;
1127 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1128 1.1 mycroft if (i != frags)
1129 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1130 1.101 ad mutex_enter(&ump->um_lock);
1131 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1132 1.62 fvdl clrbit(blksfree, bno + i);
1133 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1134 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1135 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1136 1.1 mycroft }
1137 1.1 mycroft fs->fs_fmod = 1;
1138 1.101 ad ACTIVECG_CLR(fs, cg);
1139 1.101 ad mutex_exit(&ump->um_lock);
1140 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1141 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1142 1.1 mycroft bdwrite(bp);
1143 1.1 mycroft return (bprev);
1144 1.101 ad
1145 1.101 ad fail:
1146 1.101 ad brelse(bp, 0);
1147 1.101 ad mutex_enter(&ump->um_lock);
1148 1.101 ad return (0);
1149 1.1 mycroft }
1150 1.1 mycroft
1151 1.1 mycroft /*
1152 1.1 mycroft * Determine whether a block can be allocated.
1153 1.1 mycroft *
1154 1.1 mycroft * Check to see if a block of the appropriate size is available,
1155 1.1 mycroft * and if it is, allocate it.
1156 1.1 mycroft */
1157 1.58 fvdl static daddr_t
1158 1.85 thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1159 1.1 mycroft {
1160 1.101 ad struct ufsmount *ump;
1161 1.62 fvdl struct fs *fs = ip->i_fs;
1162 1.30 fvdl struct cg *cgp;
1163 1.1 mycroft struct buf *bp;
1164 1.60 fvdl int32_t bno;
1165 1.60 fvdl daddr_t blkno;
1166 1.30 fvdl int error, frags, allocsiz, i;
1167 1.62 fvdl u_int8_t *blksfree;
1168 1.30 fvdl #ifdef FFS_EI
1169 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1170 1.30 fvdl #endif
1171 1.1 mycroft
1172 1.101 ad ump = ip->i_ump;
1173 1.101 ad
1174 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1175 1.101 ad
1176 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1177 1.35 thorpej return (0);
1178 1.101 ad mutex_exit(&ump->um_lock);
1179 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1180 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1181 1.101 ad if (error)
1182 1.101 ad goto fail;
1183 1.1 mycroft cgp = (struct cg *)bp->b_data;
1184 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1185 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1186 1.101 ad goto fail;
1187 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1188 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1189 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1190 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1191 1.1 mycroft if (size == fs->fs_bsize) {
1192 1.101 ad mutex_enter(&ump->um_lock);
1193 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1194 1.76 hannken ACTIVECG_CLR(fs, cg);
1195 1.101 ad mutex_exit(&ump->um_lock);
1196 1.1 mycroft bdwrite(bp);
1197 1.60 fvdl return (blkno);
1198 1.1 mycroft }
1199 1.1 mycroft /*
1200 1.1 mycroft * check to see if any fragments are already available
1201 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1202 1.1 mycroft * it down to a smaller size if necessary
1203 1.1 mycroft */
1204 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1205 1.1 mycroft frags = numfrags(fs, size);
1206 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1207 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1208 1.1 mycroft break;
1209 1.1 mycroft if (allocsiz == fs->fs_frag) {
1210 1.1 mycroft /*
1211 1.81 perry * no fragments were available, so a block will be
1212 1.1 mycroft * allocated, and hacked up
1213 1.1 mycroft */
1214 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1215 1.101 ad goto fail;
1216 1.101 ad mutex_enter(&ump->um_lock);
1217 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1218 1.60 fvdl bno = dtogd(fs, blkno);
1219 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1220 1.62 fvdl setbit(blksfree, bno + i);
1221 1.1 mycroft i = fs->fs_frag - frags;
1222 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1223 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1224 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1225 1.1 mycroft fs->fs_fmod = 1;
1226 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1227 1.76 hannken ACTIVECG_CLR(fs, cg);
1228 1.101 ad mutex_exit(&ump->um_lock);
1229 1.1 mycroft bdwrite(bp);
1230 1.60 fvdl return (blkno);
1231 1.1 mycroft }
1232 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1233 1.30 fvdl #if 0
1234 1.30 fvdl /*
1235 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1236 1.58 fvdl * also: returning NULL as daddr_t ?
1237 1.30 fvdl */
1238 1.101 ad if (bno < 0)
1239 1.101 ad goto fail;
1240 1.30 fvdl #endif
1241 1.1 mycroft for (i = 0; i < frags; i++)
1242 1.62 fvdl clrbit(blksfree, bno + i);
1243 1.101 ad mutex_enter(&ump->um_lock);
1244 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1245 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1246 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1247 1.1 mycroft fs->fs_fmod = 1;
1248 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1249 1.1 mycroft if (frags != allocsiz)
1250 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1251 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1252 1.101 ad ACTIVECG_CLR(fs, cg);
1253 1.101 ad mutex_exit(&ump->um_lock);
1254 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1255 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1256 1.1 mycroft bdwrite(bp);
1257 1.30 fvdl return blkno;
1258 1.101 ad
1259 1.101 ad fail:
1260 1.101 ad brelse(bp, 0);
1261 1.101 ad mutex_enter(&ump->um_lock);
1262 1.101 ad return (0);
1263 1.1 mycroft }
1264 1.1 mycroft
1265 1.1 mycroft /*
1266 1.1 mycroft * Allocate a block in a cylinder group.
1267 1.1 mycroft *
1268 1.1 mycroft * This algorithm implements the following policy:
1269 1.1 mycroft * 1) allocate the requested block.
1270 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1271 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1272 1.1 mycroft * specified cylinder group.
1273 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1274 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1275 1.1 mycroft */
1276 1.58 fvdl static daddr_t
1277 1.85 thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1278 1.1 mycroft {
1279 1.101 ad struct ufsmount *ump;
1280 1.62 fvdl struct fs *fs = ip->i_fs;
1281 1.30 fvdl struct cg *cgp;
1282 1.60 fvdl daddr_t blkno;
1283 1.60 fvdl int32_t bno;
1284 1.60 fvdl u_int8_t *blksfree;
1285 1.30 fvdl #ifdef FFS_EI
1286 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1287 1.30 fvdl #endif
1288 1.1 mycroft
1289 1.101 ad ump = ip->i_ump;
1290 1.101 ad
1291 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1292 1.101 ad
1293 1.30 fvdl cgp = (struct cg *)bp->b_data;
1294 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1295 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1296 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1297 1.60 fvdl } else {
1298 1.60 fvdl bpref = blknum(fs, bpref);
1299 1.60 fvdl bno = dtogd(fs, bpref);
1300 1.1 mycroft /*
1301 1.60 fvdl * if the requested block is available, use it
1302 1.1 mycroft */
1303 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1304 1.60 fvdl goto gotit;
1305 1.1 mycroft }
1306 1.1 mycroft /*
1307 1.60 fvdl * Take the next available block in this cylinder group.
1308 1.1 mycroft */
1309 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1310 1.1 mycroft if (bno < 0)
1311 1.35 thorpej return (0);
1312 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1313 1.1 mycroft gotit:
1314 1.1 mycroft blkno = fragstoblks(fs, bno);
1315 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1316 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1317 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1318 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1319 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1320 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1321 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1322 1.73 dbj int cylno;
1323 1.73 dbj cylno = old_cbtocylno(fs, bno);
1324 1.75 dbj KASSERT(cylno >= 0);
1325 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1326 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1327 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1328 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1329 1.73 dbj needswap);
1330 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1331 1.73 dbj }
1332 1.1 mycroft fs->fs_fmod = 1;
1333 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1334 1.101 ad if (DOINGSOFTDEP(ITOV(ip))) {
1335 1.101 ad mutex_exit(&ump->um_lock);
1336 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1337 1.101 ad mutex_enter(&ump->um_lock);
1338 1.101 ad }
1339 1.30 fvdl return (blkno);
1340 1.1 mycroft }
1341 1.1 mycroft
1342 1.55 matt #ifdef XXXUBC
1343 1.1 mycroft /*
1344 1.1 mycroft * Determine whether a cluster can be allocated.
1345 1.1 mycroft *
1346 1.1 mycroft * We do not currently check for optimal rotational layout if there
1347 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1348 1.1 mycroft * take the first one that we find following bpref.
1349 1.1 mycroft */
1350 1.60 fvdl
1351 1.60 fvdl /*
1352 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1353 1.60 fvdl */
1354 1.58 fvdl static daddr_t
1355 1.85 thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1356 1.1 mycroft {
1357 1.101 ad struct ufsmount *ump;
1358 1.33 augustss struct fs *fs;
1359 1.33 augustss struct cg *cgp;
1360 1.1 mycroft struct buf *bp;
1361 1.18 fvdl int i, got, run, bno, bit, map;
1362 1.1 mycroft u_char *mapp;
1363 1.5 mycroft int32_t *lp;
1364 1.1 mycroft
1365 1.1 mycroft fs = ip->i_fs;
1366 1.101 ad ump = ip->i_ump;
1367 1.101 ad
1368 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1369 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1370 1.35 thorpej return (0);
1371 1.101 ad mutex_exit(&ump->um_lock);
1372 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1373 1.107 hannken NOCRED, 0, &bp))
1374 1.1 mycroft goto fail;
1375 1.1 mycroft cgp = (struct cg *)bp->b_data;
1376 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1377 1.1 mycroft goto fail;
1378 1.1 mycroft /*
1379 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1380 1.1 mycroft * available in this cylinder group.
1381 1.1 mycroft */
1382 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1383 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1384 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1385 1.1 mycroft break;
1386 1.5 mycroft if (i > fs->fs_contigsumsize) {
1387 1.5 mycroft /*
1388 1.5 mycroft * This is the first time looking for a cluster in this
1389 1.5 mycroft * cylinder group. Update the cluster summary information
1390 1.5 mycroft * to reflect the true maximum sized cluster so that
1391 1.5 mycroft * future cluster allocation requests can avoid reading
1392 1.5 mycroft * the cylinder group map only to find no clusters.
1393 1.5 mycroft */
1394 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1395 1.5 mycroft for (i = len - 1; i > 0; i--)
1396 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1397 1.5 mycroft break;
1398 1.101 ad mutex_enter(&ump->um_lock);
1399 1.5 mycroft fs->fs_maxcluster[cg] = i;
1400 1.101 ad mutex_exit(&ump->um_lock);
1401 1.1 mycroft goto fail;
1402 1.5 mycroft }
1403 1.1 mycroft /*
1404 1.1 mycroft * Search the cluster map to find a big enough cluster.
1405 1.1 mycroft * We take the first one that we find, even if it is larger
1406 1.1 mycroft * than we need as we prefer to get one close to the previous
1407 1.1 mycroft * block allocation. We do not search before the current
1408 1.1 mycroft * preference point as we do not want to allocate a block
1409 1.1 mycroft * that is allocated before the previous one (as we will
1410 1.1 mycroft * then have to wait for another pass of the elevator
1411 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1412 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1413 1.1 mycroft */
1414 1.1 mycroft if (dtog(fs, bpref) != cg)
1415 1.1 mycroft bpref = 0;
1416 1.1 mycroft else
1417 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1418 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1419 1.1 mycroft map = *mapp++;
1420 1.1 mycroft bit = 1 << (bpref % NBBY);
1421 1.19 bouyer for (run = 0, got = bpref;
1422 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1423 1.1 mycroft if ((map & bit) == 0) {
1424 1.1 mycroft run = 0;
1425 1.1 mycroft } else {
1426 1.1 mycroft run++;
1427 1.1 mycroft if (run == len)
1428 1.1 mycroft break;
1429 1.1 mycroft }
1430 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1431 1.1 mycroft bit <<= 1;
1432 1.1 mycroft } else {
1433 1.1 mycroft map = *mapp++;
1434 1.1 mycroft bit = 1;
1435 1.1 mycroft }
1436 1.1 mycroft }
1437 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1438 1.1 mycroft goto fail;
1439 1.1 mycroft /*
1440 1.1 mycroft * Allocate the cluster that we have found.
1441 1.1 mycroft */
1442 1.30 fvdl #ifdef DIAGNOSTIC
1443 1.18 fvdl for (i = 1; i <= len; i++)
1444 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1445 1.30 fvdl got - run + i))
1446 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1447 1.30 fvdl #endif
1448 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1449 1.18 fvdl if (dtog(fs, bno) != cg)
1450 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1451 1.1 mycroft len = blkstofrags(fs, len);
1452 1.101 ad mutex_enter(&ump->um_lock);
1453 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1454 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1455 1.1 mycroft panic("ffs_clusteralloc: lost block");
1456 1.76 hannken ACTIVECG_CLR(fs, cg);
1457 1.101 ad mutex_exit(&ump->um_lock);
1458 1.8 cgd bdwrite(bp);
1459 1.1 mycroft return (bno);
1460 1.1 mycroft
1461 1.1 mycroft fail:
1462 1.101 ad brelse(bp, 0);
1463 1.101 ad mutex_enter(&ump->um_lock);
1464 1.1 mycroft return (0);
1465 1.1 mycroft }
1466 1.55 matt #endif /* XXXUBC */
1467 1.1 mycroft
1468 1.1 mycroft /*
1469 1.1 mycroft * Determine whether an inode can be allocated.
1470 1.1 mycroft *
1471 1.1 mycroft * Check to see if an inode is available, and if it is,
1472 1.1 mycroft * allocate it using the following policy:
1473 1.1 mycroft * 1) allocate the requested inode.
1474 1.1 mycroft * 2) allocate the next available inode after the requested
1475 1.1 mycroft * inode in the specified cylinder group.
1476 1.1 mycroft */
1477 1.58 fvdl static daddr_t
1478 1.85 thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1479 1.1 mycroft {
1480 1.101 ad struct ufsmount *ump = ip->i_ump;
1481 1.62 fvdl struct fs *fs = ip->i_fs;
1482 1.33 augustss struct cg *cgp;
1483 1.60 fvdl struct buf *bp, *ibp;
1484 1.60 fvdl u_int8_t *inosused;
1485 1.1 mycroft int error, start, len, loc, map, i;
1486 1.60 fvdl int32_t initediblk;
1487 1.60 fvdl struct ufs2_dinode *dp2;
1488 1.19 bouyer #ifdef FFS_EI
1489 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1490 1.19 bouyer #endif
1491 1.1 mycroft
1492 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1493 1.101 ad
1494 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1495 1.35 thorpej return (0);
1496 1.101 ad mutex_exit(&ump->um_lock);
1497 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1498 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1499 1.101 ad if (error)
1500 1.101 ad goto fail;
1501 1.1 mycroft cgp = (struct cg *)bp->b_data;
1502 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1503 1.101 ad goto fail;
1504 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1505 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1506 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1507 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1508 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1509 1.1 mycroft if (ipref) {
1510 1.1 mycroft ipref %= fs->fs_ipg;
1511 1.60 fvdl if (isclr(inosused, ipref))
1512 1.1 mycroft goto gotit;
1513 1.1 mycroft }
1514 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1515 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1516 1.19 bouyer NBBY);
1517 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1518 1.1 mycroft if (loc == 0) {
1519 1.1 mycroft len = start + 1;
1520 1.1 mycroft start = 0;
1521 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1522 1.1 mycroft if (loc == 0) {
1523 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1524 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1525 1.19 bouyer fs->fs_fsmnt);
1526 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1527 1.1 mycroft /* NOTREACHED */
1528 1.1 mycroft }
1529 1.1 mycroft }
1530 1.1 mycroft i = start + len - loc;
1531 1.60 fvdl map = inosused[i];
1532 1.1 mycroft ipref = i * NBBY;
1533 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1534 1.1 mycroft if ((map & i) == 0) {
1535 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1536 1.1 mycroft goto gotit;
1537 1.1 mycroft }
1538 1.1 mycroft }
1539 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1540 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1541 1.1 mycroft /* NOTREACHED */
1542 1.1 mycroft gotit:
1543 1.60 fvdl /*
1544 1.60 fvdl * Check to see if we need to initialize more inodes.
1545 1.60 fvdl */
1546 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1547 1.104 hannken ibp = NULL;
1548 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1549 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1550 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1551 1.60 fvdl ibp = getblk(ip->i_devvp, fsbtodb(fs,
1552 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1553 1.60 fvdl (int)fs->fs_bsize, 0, 0);
1554 1.60 fvdl memset(ibp->b_data, 0, fs->fs_bsize);
1555 1.60 fvdl dp2 = (struct ufs2_dinode *)(ibp->b_data);
1556 1.60 fvdl for (i = 0; i < INOPB(fs); i++) {
1557 1.60 fvdl /*
1558 1.60 fvdl * Don't bother to swap, it's supposed to be
1559 1.60 fvdl * random, after all.
1560 1.60 fvdl */
1561 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1562 1.60 fvdl dp2++;
1563 1.60 fvdl }
1564 1.60 fvdl initediblk += INOPB(fs);
1565 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1566 1.60 fvdl }
1567 1.60 fvdl
1568 1.101 ad mutex_enter(&ump->um_lock);
1569 1.76 hannken ACTIVECG_CLR(fs, cg);
1570 1.101 ad setbit(inosused, ipref);
1571 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1572 1.101 ad fs->fs_cstotal.cs_nifree--;
1573 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1574 1.101 ad fs->fs_fmod = 1;
1575 1.101 ad if ((mode & IFMT) == IFDIR) {
1576 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1577 1.101 ad fs->fs_cstotal.cs_ndir++;
1578 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1579 1.101 ad }
1580 1.101 ad mutex_exit(&ump->um_lock);
1581 1.101 ad if (DOINGSOFTDEP(ITOV(ip)))
1582 1.101 ad softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1583 1.1 mycroft bdwrite(bp);
1584 1.104 hannken if (ibp != NULL)
1585 1.104 hannken bawrite(ibp);
1586 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1587 1.101 ad fail:
1588 1.101 ad brelse(bp, 0);
1589 1.101 ad mutex_enter(&ump->um_lock);
1590 1.101 ad return (0);
1591 1.1 mycroft }
1592 1.1 mycroft
1593 1.1 mycroft /*
1594 1.1 mycroft * Free a block or fragment.
1595 1.1 mycroft *
1596 1.1 mycroft * The specified block or fragment is placed back in the
1597 1.81 perry * free map. If a fragment is deallocated, a possible
1598 1.1 mycroft * block reassembly is checked.
1599 1.106 pooka *
1600 1.106 pooka * => um_lock not held on entry or exit
1601 1.1 mycroft */
1602 1.9 christos void
1603 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1604 1.85 thorpej ino_t inum)
1605 1.1 mycroft {
1606 1.33 augustss struct cg *cgp;
1607 1.1 mycroft struct buf *bp;
1608 1.76 hannken struct ufsmount *ump;
1609 1.60 fvdl int32_t fragno, cgbno;
1610 1.76 hannken daddr_t cgblkno;
1611 1.1 mycroft int i, error, cg, blk, frags, bbase;
1612 1.62 fvdl u_int8_t *blksfree;
1613 1.76 hannken dev_t dev;
1614 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1615 1.1 mycroft
1616 1.76 hannken cg = dtog(fs, bno);
1617 1.77 hannken if (devvp->v_type != VBLK) {
1618 1.77 hannken /* devvp is a snapshot */
1619 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1620 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1621 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1622 1.76 hannken } else {
1623 1.76 hannken dev = devvp->v_rdev;
1624 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1625 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1626 1.100 hannken if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1627 1.76 hannken return;
1628 1.76 hannken }
1629 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1630 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1631 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1632 1.58 fvdl "size = %ld, fs = %s\n",
1633 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1634 1.1 mycroft panic("blkfree: bad size");
1635 1.1 mycroft }
1636 1.76 hannken
1637 1.60 fvdl if (bno >= fs->fs_size) {
1638 1.86 christos printf("bad block %" PRId64 ", ino %llu\n", bno,
1639 1.86 christos (unsigned long long)inum);
1640 1.76 hannken ffs_fserr(fs, inum, "bad block");
1641 1.1 mycroft return;
1642 1.1 mycroft }
1643 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1644 1.107 hannken NOCRED, B_MODIFY, &bp);
1645 1.1 mycroft if (error) {
1646 1.101 ad brelse(bp, 0);
1647 1.1 mycroft return;
1648 1.1 mycroft }
1649 1.1 mycroft cgp = (struct cg *)bp->b_data;
1650 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1651 1.101 ad brelse(bp, 0);
1652 1.1 mycroft return;
1653 1.1 mycroft }
1654 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1655 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1656 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1657 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1658 1.60 fvdl cgbno = dtogd(fs, bno);
1659 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1660 1.101 ad mutex_enter(&ump->um_lock);
1661 1.1 mycroft if (size == fs->fs_bsize) {
1662 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1663 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1664 1.77 hannken if (devvp->v_type != VBLK) {
1665 1.77 hannken /* devvp is a snapshot */
1666 1.101 ad mutex_exit(&ump->um_lock);
1667 1.101 ad brelse(bp, 0);
1668 1.76 hannken return;
1669 1.76 hannken }
1670 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1671 1.76 hannken dev, bno, fs->fs_fsmnt);
1672 1.1 mycroft panic("blkfree: freeing free block");
1673 1.1 mycroft }
1674 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1675 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1676 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1677 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1678 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1679 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1680 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1681 1.73 dbj i = old_cbtocylno(fs, cgbno);
1682 1.75 dbj KASSERT(i >= 0);
1683 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1684 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1685 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1686 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1687 1.73 dbj needswap);
1688 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1689 1.73 dbj }
1690 1.1 mycroft } else {
1691 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1692 1.1 mycroft /*
1693 1.1 mycroft * decrement the counts associated with the old frags
1694 1.1 mycroft */
1695 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1696 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1697 1.1 mycroft /*
1698 1.1 mycroft * deallocate the fragment
1699 1.1 mycroft */
1700 1.1 mycroft frags = numfrags(fs, size);
1701 1.1 mycroft for (i = 0; i < frags; i++) {
1702 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1703 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1704 1.59 tsutsui ", fs = %s\n",
1705 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1706 1.1 mycroft panic("blkfree: freeing free frag");
1707 1.1 mycroft }
1708 1.62 fvdl setbit(blksfree, cgbno + i);
1709 1.1 mycroft }
1710 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1711 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1712 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1713 1.1 mycroft /*
1714 1.1 mycroft * add back in counts associated with the new frags
1715 1.1 mycroft */
1716 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1717 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1718 1.1 mycroft /*
1719 1.1 mycroft * if a complete block has been reassembled, account for it
1720 1.1 mycroft */
1721 1.60 fvdl fragno = fragstoblks(fs, bbase);
1722 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1723 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1724 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1725 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1726 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1727 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1728 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1729 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1730 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1731 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1732 1.73 dbj i = old_cbtocylno(fs, bbase);
1733 1.75 dbj KASSERT(i >= 0);
1734 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1735 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1736 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1737 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1738 1.73 dbj bbase)], 1, needswap);
1739 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1740 1.73 dbj }
1741 1.1 mycroft }
1742 1.1 mycroft }
1743 1.1 mycroft fs->fs_fmod = 1;
1744 1.76 hannken ACTIVECG_CLR(fs, cg);
1745 1.101 ad mutex_exit(&ump->um_lock);
1746 1.1 mycroft bdwrite(bp);
1747 1.1 mycroft }
1748 1.1 mycroft
1749 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1750 1.55 matt #ifdef XXXUBC
1751 1.18 fvdl /*
1752 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1753 1.18 fvdl * fragment is allocated, false if it is free.
1754 1.18 fvdl */
1755 1.18 fvdl static int
1756 1.85 thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1757 1.18 fvdl {
1758 1.18 fvdl struct fs *fs;
1759 1.18 fvdl struct cg *cgp;
1760 1.18 fvdl struct buf *bp;
1761 1.18 fvdl int i, error, frags, free;
1762 1.18 fvdl
1763 1.18 fvdl fs = ip->i_fs;
1764 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1765 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1766 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1767 1.18 fvdl panic("checkblk: bad size");
1768 1.18 fvdl }
1769 1.60 fvdl if (bno >= fs->fs_size)
1770 1.18 fvdl panic("checkblk: bad block %d", bno);
1771 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1772 1.107 hannken (int)fs->fs_cgsize, NOCRED, 0, &bp);
1773 1.18 fvdl if (error) {
1774 1.101 ad brelse(bp, 0);
1775 1.18 fvdl return 0;
1776 1.18 fvdl }
1777 1.18 fvdl cgp = (struct cg *)bp->b_data;
1778 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1779 1.101 ad brelse(bp, 0);
1780 1.18 fvdl return 0;
1781 1.18 fvdl }
1782 1.18 fvdl bno = dtogd(fs, bno);
1783 1.18 fvdl if (size == fs->fs_bsize) {
1784 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1785 1.19 bouyer fragstoblks(fs, bno));
1786 1.18 fvdl } else {
1787 1.18 fvdl frags = numfrags(fs, size);
1788 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1789 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1790 1.18 fvdl free++;
1791 1.18 fvdl if (free != 0 && free != frags)
1792 1.18 fvdl panic("checkblk: partially free fragment");
1793 1.18 fvdl }
1794 1.101 ad brelse(bp, 0);
1795 1.18 fvdl return (!free);
1796 1.18 fvdl }
1797 1.55 matt #endif /* XXXUBC */
1798 1.18 fvdl #endif /* DIAGNOSTIC */
1799 1.18 fvdl
1800 1.1 mycroft /*
1801 1.1 mycroft * Free an inode.
1802 1.30 fvdl */
1803 1.30 fvdl int
1804 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1805 1.30 fvdl {
1806 1.30 fvdl
1807 1.88 yamt if (DOINGSOFTDEP(vp)) {
1808 1.88 yamt softdep_freefile(vp, ino, mode);
1809 1.30 fvdl return (0);
1810 1.30 fvdl }
1811 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1812 1.30 fvdl }
1813 1.30 fvdl
1814 1.30 fvdl /*
1815 1.30 fvdl * Do the actual free operation.
1816 1.1 mycroft * The specified inode is placed back in the free map.
1817 1.1 mycroft */
1818 1.1 mycroft int
1819 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1820 1.9 christos {
1821 1.101 ad struct ufsmount *ump;
1822 1.33 augustss struct cg *cgp;
1823 1.1 mycroft struct buf *bp;
1824 1.1 mycroft int error, cg;
1825 1.76 hannken daddr_t cgbno;
1826 1.62 fvdl u_int8_t *inosused;
1827 1.78 hannken dev_t dev;
1828 1.19 bouyer #ifdef FFS_EI
1829 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1830 1.19 bouyer #endif
1831 1.1 mycroft
1832 1.76 hannken cg = ino_to_cg(fs, ino);
1833 1.78 hannken if (devvp->v_type != VBLK) {
1834 1.78 hannken /* devvp is a snapshot */
1835 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1836 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1837 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1838 1.76 hannken } else {
1839 1.78 hannken dev = devvp->v_rdev;
1840 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1841 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1842 1.76 hannken }
1843 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1844 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1845 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
1846 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1847 1.107 hannken NOCRED, B_MODIFY, &bp);
1848 1.1 mycroft if (error) {
1849 1.101 ad brelse(bp, 0);
1850 1.30 fvdl return (error);
1851 1.1 mycroft }
1852 1.1 mycroft cgp = (struct cg *)bp->b_data;
1853 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1854 1.101 ad brelse(bp, 0);
1855 1.1 mycroft return (0);
1856 1.1 mycroft }
1857 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1858 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1859 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1860 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1861 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1862 1.1 mycroft ino %= fs->fs_ipg;
1863 1.62 fvdl if (isclr(inosused, ino)) {
1864 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1865 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
1866 1.86 christos fs->fs_fsmnt);
1867 1.1 mycroft if (fs->fs_ronly == 0)
1868 1.1 mycroft panic("ifree: freeing free inode");
1869 1.1 mycroft }
1870 1.62 fvdl clrbit(inosused, ino);
1871 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1872 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1873 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1874 1.101 ad mutex_enter(&ump->um_lock);
1875 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1876 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1877 1.78 hannken if ((mode & IFMT) == IFDIR) {
1878 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1879 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1880 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1881 1.1 mycroft }
1882 1.1 mycroft fs->fs_fmod = 1;
1883 1.82 hannken ACTIVECG_CLR(fs, cg);
1884 1.101 ad mutex_exit(&ump->um_lock);
1885 1.1 mycroft bdwrite(bp);
1886 1.1 mycroft return (0);
1887 1.1 mycroft }
1888 1.1 mycroft
1889 1.1 mycroft /*
1890 1.76 hannken * Check to see if a file is free.
1891 1.76 hannken */
1892 1.76 hannken int
1893 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1894 1.76 hannken {
1895 1.76 hannken struct cg *cgp;
1896 1.76 hannken struct buf *bp;
1897 1.76 hannken daddr_t cgbno;
1898 1.76 hannken int ret, cg;
1899 1.76 hannken u_int8_t *inosused;
1900 1.76 hannken
1901 1.76 hannken cg = ino_to_cg(fs, ino);
1902 1.77 hannken if (devvp->v_type != VBLK) {
1903 1.77 hannken /* devvp is a snapshot */
1904 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1905 1.77 hannken } else
1906 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1907 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1908 1.76 hannken return 1;
1909 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1910 1.101 ad brelse(bp, 0);
1911 1.76 hannken return 1;
1912 1.76 hannken }
1913 1.76 hannken cgp = (struct cg *)bp->b_data;
1914 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1915 1.101 ad brelse(bp, 0);
1916 1.76 hannken return 1;
1917 1.76 hannken }
1918 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1919 1.76 hannken ino %= fs->fs_ipg;
1920 1.76 hannken ret = isclr(inosused, ino);
1921 1.101 ad brelse(bp, 0);
1922 1.76 hannken return ret;
1923 1.76 hannken }
1924 1.76 hannken
1925 1.76 hannken /*
1926 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1927 1.1 mycroft *
1928 1.1 mycroft * It is a panic if a request is made to find a block if none are
1929 1.1 mycroft * available.
1930 1.1 mycroft */
1931 1.60 fvdl static int32_t
1932 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1933 1.1 mycroft {
1934 1.60 fvdl int32_t bno;
1935 1.1 mycroft int start, len, loc, i;
1936 1.1 mycroft int blk, field, subfield, pos;
1937 1.19 bouyer int ostart, olen;
1938 1.62 fvdl u_int8_t *blksfree;
1939 1.30 fvdl #ifdef FFS_EI
1940 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1941 1.30 fvdl #endif
1942 1.1 mycroft
1943 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1944 1.101 ad
1945 1.1 mycroft /*
1946 1.1 mycroft * find the fragment by searching through the free block
1947 1.1 mycroft * map for an appropriate bit pattern
1948 1.1 mycroft */
1949 1.1 mycroft if (bpref)
1950 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1951 1.1 mycroft else
1952 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1953 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1954 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1955 1.19 bouyer ostart = start;
1956 1.19 bouyer olen = len;
1957 1.45 lukem loc = scanc((u_int)len,
1958 1.62 fvdl (const u_char *)&blksfree[start],
1959 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1960 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1961 1.1 mycroft if (loc == 0) {
1962 1.1 mycroft len = start + 1;
1963 1.1 mycroft start = 0;
1964 1.45 lukem loc = scanc((u_int)len,
1965 1.62 fvdl (const u_char *)&blksfree[0],
1966 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1967 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1968 1.1 mycroft if (loc == 0) {
1969 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1970 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1971 1.20 ross printf("offset=%d %ld\n",
1972 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1973 1.62 fvdl (long)blksfree - (long)cgp);
1974 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1975 1.1 mycroft panic("ffs_alloccg: map corrupted");
1976 1.1 mycroft /* NOTREACHED */
1977 1.1 mycroft }
1978 1.1 mycroft }
1979 1.1 mycroft bno = (start + len - loc) * NBBY;
1980 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1981 1.1 mycroft /*
1982 1.1 mycroft * found the byte in the map
1983 1.1 mycroft * sift through the bits to find the selected frag
1984 1.1 mycroft */
1985 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1986 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1987 1.1 mycroft blk <<= 1;
1988 1.1 mycroft field = around[allocsiz];
1989 1.1 mycroft subfield = inside[allocsiz];
1990 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1991 1.1 mycroft if ((blk & field) == subfield)
1992 1.1 mycroft return (bno + pos);
1993 1.1 mycroft field <<= 1;
1994 1.1 mycroft subfield <<= 1;
1995 1.1 mycroft }
1996 1.1 mycroft }
1997 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1998 1.1 mycroft panic("ffs_alloccg: block not in map");
1999 1.58 fvdl /* return (-1); */
2000 1.1 mycroft }
2001 1.1 mycroft
2002 1.1 mycroft /*
2003 1.1 mycroft * Update the cluster map because of an allocation or free.
2004 1.1 mycroft *
2005 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
2006 1.1 mycroft */
2007 1.9 christos void
2008 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2009 1.1 mycroft {
2010 1.4 cgd int32_t *sump;
2011 1.5 mycroft int32_t *lp;
2012 1.1 mycroft u_char *freemapp, *mapp;
2013 1.1 mycroft int i, start, end, forw, back, map, bit;
2014 1.30 fvdl #ifdef FFS_EI
2015 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2016 1.30 fvdl #endif
2017 1.1 mycroft
2018 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2019 1.101 ad
2020 1.1 mycroft if (fs->fs_contigsumsize <= 0)
2021 1.1 mycroft return;
2022 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
2023 1.19 bouyer sump = cg_clustersum(cgp, needswap);
2024 1.1 mycroft /*
2025 1.1 mycroft * Allocate or clear the actual block.
2026 1.1 mycroft */
2027 1.1 mycroft if (cnt > 0)
2028 1.1 mycroft setbit(freemapp, blkno);
2029 1.1 mycroft else
2030 1.1 mycroft clrbit(freemapp, blkno);
2031 1.1 mycroft /*
2032 1.1 mycroft * Find the size of the cluster going forward.
2033 1.1 mycroft */
2034 1.1 mycroft start = blkno + 1;
2035 1.1 mycroft end = start + fs->fs_contigsumsize;
2036 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2037 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2038 1.1 mycroft mapp = &freemapp[start / NBBY];
2039 1.1 mycroft map = *mapp++;
2040 1.1 mycroft bit = 1 << (start % NBBY);
2041 1.1 mycroft for (i = start; i < end; i++) {
2042 1.1 mycroft if ((map & bit) == 0)
2043 1.1 mycroft break;
2044 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
2045 1.1 mycroft bit <<= 1;
2046 1.1 mycroft } else {
2047 1.1 mycroft map = *mapp++;
2048 1.1 mycroft bit = 1;
2049 1.1 mycroft }
2050 1.1 mycroft }
2051 1.1 mycroft forw = i - start;
2052 1.1 mycroft /*
2053 1.1 mycroft * Find the size of the cluster going backward.
2054 1.1 mycroft */
2055 1.1 mycroft start = blkno - 1;
2056 1.1 mycroft end = start - fs->fs_contigsumsize;
2057 1.1 mycroft if (end < 0)
2058 1.1 mycroft end = -1;
2059 1.1 mycroft mapp = &freemapp[start / NBBY];
2060 1.1 mycroft map = *mapp--;
2061 1.1 mycroft bit = 1 << (start % NBBY);
2062 1.1 mycroft for (i = start; i > end; i--) {
2063 1.1 mycroft if ((map & bit) == 0)
2064 1.1 mycroft break;
2065 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
2066 1.1 mycroft bit >>= 1;
2067 1.1 mycroft } else {
2068 1.1 mycroft map = *mapp--;
2069 1.1 mycroft bit = 1 << (NBBY - 1);
2070 1.1 mycroft }
2071 1.1 mycroft }
2072 1.1 mycroft back = start - i;
2073 1.1 mycroft /*
2074 1.1 mycroft * Account for old cluster and the possibly new forward and
2075 1.1 mycroft * back clusters.
2076 1.1 mycroft */
2077 1.1 mycroft i = back + forw + 1;
2078 1.1 mycroft if (i > fs->fs_contigsumsize)
2079 1.1 mycroft i = fs->fs_contigsumsize;
2080 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
2081 1.1 mycroft if (back > 0)
2082 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
2083 1.1 mycroft if (forw > 0)
2084 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
2085 1.19 bouyer
2086 1.5 mycroft /*
2087 1.5 mycroft * Update cluster summary information.
2088 1.5 mycroft */
2089 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
2090 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
2091 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
2092 1.5 mycroft break;
2093 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2094 1.1 mycroft }
2095 1.1 mycroft
2096 1.1 mycroft /*
2097 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2098 1.81 perry *
2099 1.1 mycroft * The form of the error message is:
2100 1.1 mycroft * fs: error message
2101 1.1 mycroft */
2102 1.1 mycroft static void
2103 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2104 1.1 mycroft {
2105 1.1 mycroft
2106 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2107 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2108 1.1 mycroft }
2109