Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.107
      1  1.107   hannken /*	$NetBSD: ffs_alloc.c,v 1.107 2008/05/16 09:22:00 hannken Exp $	*/
      2    1.2       cgd 
      3    1.1   mycroft /*
      4   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
      5   1.60      fvdl  * All rights reserved.
      6   1.60      fvdl  *
      7   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
      8   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
      9   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     10   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     11   1.60      fvdl  * research program
     12   1.60      fvdl  *
     13    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     14    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     15    1.1   mycroft  *
     16    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     17    1.1   mycroft  * modification, are permitted provided that the following conditions
     18    1.1   mycroft  * are met:
     19    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     20    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     21    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     22    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     23    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     24   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     25    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     26    1.1   mycroft  *    without specific prior written permission.
     27    1.1   mycroft  *
     28    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38    1.1   mycroft  * SUCH DAMAGE.
     39    1.1   mycroft  *
     40   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     41    1.1   mycroft  */
     42   1.53     lukem 
     43   1.53     lukem #include <sys/cdefs.h>
     44  1.107   hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.107 2008/05/16 09:22:00 hannken Exp $");
     45   1.17       mrg 
     46   1.43       mrg #if defined(_KERNEL_OPT)
     47   1.27   thorpej #include "opt_ffs.h"
     48   1.21    scottr #include "opt_quota.h"
     49   1.22    scottr #endif
     50    1.1   mycroft 
     51    1.1   mycroft #include <sys/param.h>
     52    1.1   mycroft #include <sys/systm.h>
     53    1.1   mycroft #include <sys/buf.h>
     54    1.1   mycroft #include <sys/proc.h>
     55    1.1   mycroft #include <sys/vnode.h>
     56    1.1   mycroft #include <sys/mount.h>
     57    1.1   mycroft #include <sys/kernel.h>
     58    1.1   mycroft #include <sys/syslog.h>
     59   1.91      elad #include <sys/kauth.h>
     60  1.107   hannken #include <sys/fstrans.h>
     61   1.29       mrg 
     62   1.76   hannken #include <miscfs/specfs/specdev.h>
     63    1.1   mycroft #include <ufs/ufs/quota.h>
     64   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     65    1.1   mycroft #include <ufs/ufs/inode.h>
     66    1.9  christos #include <ufs/ufs/ufs_extern.h>
     67   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     68    1.1   mycroft 
     69    1.1   mycroft #include <ufs/ffs/fs.h>
     70    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     71    1.1   mycroft 
     72   1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
     73   1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
     74   1.55      matt #ifdef XXXUBC
     75   1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
     76   1.55      matt #endif
     77   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
     78   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
     79   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
     80   1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
     81   1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
     82   1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
     83   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
     84   1.85   thorpej 				      daddr_t, int);
     85   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     86   1.55      matt #ifdef XXXUBC
     87   1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
     88   1.18      fvdl #endif
     89   1.55      matt #endif
     90   1.23  drochner 
     91   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
     92   1.34  jdolecek int ffs_log_changeopt = 0;
     93   1.34  jdolecek 
     94   1.23  drochner /* in ffs_tables.c */
     95   1.40  jdolecek extern const int inside[], around[];
     96   1.40  jdolecek extern const u_char * const fragtbl[];
     97    1.1   mycroft 
     98    1.1   mycroft /*
     99    1.1   mycroft  * Allocate a block in the file system.
    100   1.81     perry  *
    101    1.1   mycroft  * The size of the requested block is given, which must be some
    102    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    103    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    104    1.1   mycroft  * the following hierarchy is used to allocate a block:
    105    1.1   mycroft  *   1) allocate the requested block.
    106    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    107    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    108    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    109    1.1   mycroft  *      available block is located.
    110   1.47       wiz  * If no block preference is given the following hierarchy is used
    111    1.1   mycroft  * to allocate a block:
    112    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    113    1.1   mycroft  *      inode for the file.
    114    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    115    1.1   mycroft  *      available block is located.
    116  1.106     pooka  *
    117  1.106     pooka  * => called with um_lock held
    118  1.106     pooka  * => releases um_lock before returning
    119    1.1   mycroft  */
    120    1.9  christos int
    121   1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    122   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    123    1.1   mycroft {
    124  1.101        ad 	struct ufsmount *ump;
    125   1.62      fvdl 	struct fs *fs;
    126   1.58      fvdl 	daddr_t bno;
    127    1.9  christos 	int cg;
    128    1.9  christos #ifdef QUOTA
    129    1.9  christos 	int error;
    130    1.9  christos #endif
    131   1.81     perry 
    132   1.62      fvdl 	fs = ip->i_fs;
    133  1.101        ad 	ump = ip->i_ump;
    134  1.101        ad 
    135  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    136   1.62      fvdl 
    137   1.37       chs #ifdef UVM_PAGE_TRKOWN
    138   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    139   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    140   1.37       chs 		struct vm_page *pg;
    141   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    142   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    143   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    144   1.37       chs 
    145  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    146   1.37       chs 		while (off < endoff) {
    147   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    148   1.37       chs 			KASSERT(pg != NULL);
    149   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    150   1.37       chs 			off += PAGE_SIZE;
    151   1.37       chs 		}
    152  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    153   1.37       chs 	}
    154   1.37       chs #endif
    155   1.37       chs 
    156    1.1   mycroft 	*bnp = 0;
    157    1.1   mycroft #ifdef DIAGNOSTIC
    158    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    159   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    160    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    161    1.1   mycroft 		panic("ffs_alloc: bad size");
    162    1.1   mycroft 	}
    163    1.1   mycroft 	if (cred == NOCRED)
    164   1.56    provos 		panic("ffs_alloc: missing credential");
    165    1.1   mycroft #endif /* DIAGNOSTIC */
    166    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    167    1.1   mycroft 		goto nospace;
    168   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    169   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    170    1.1   mycroft 		goto nospace;
    171    1.1   mycroft #ifdef QUOTA
    172  1.101        ad 	mutex_exit(&ump->um_lock);
    173   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    174    1.1   mycroft 		return (error);
    175  1.101        ad 	mutex_enter(&ump->um_lock);
    176    1.1   mycroft #endif
    177    1.1   mycroft 	if (bpref >= fs->fs_size)
    178    1.1   mycroft 		bpref = 0;
    179    1.1   mycroft 	if (bpref == 0)
    180    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    181    1.1   mycroft 	else
    182    1.1   mycroft 		cg = dtog(fs, bpref);
    183   1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    184    1.1   mycroft 	if (bno > 0) {
    185   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    186    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    187    1.1   mycroft 		*bnp = bno;
    188    1.1   mycroft 		return (0);
    189    1.1   mycroft 	}
    190    1.1   mycroft #ifdef QUOTA
    191    1.1   mycroft 	/*
    192    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    193    1.1   mycroft 	 */
    194   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    195    1.1   mycroft #endif
    196    1.1   mycroft nospace:
    197  1.101        ad 	mutex_exit(&ump->um_lock);
    198   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    199    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    200    1.1   mycroft 	return (ENOSPC);
    201    1.1   mycroft }
    202    1.1   mycroft 
    203    1.1   mycroft /*
    204    1.1   mycroft  * Reallocate a fragment to a bigger size
    205    1.1   mycroft  *
    206    1.1   mycroft  * The number and size of the old block is given, and a preference
    207    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    208    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    209    1.1   mycroft  * invoked to get an appropriate block.
    210  1.106     pooka  *
    211  1.106     pooka  * => called with um_lock held
    212  1.106     pooka  * => return with um_lock released
    213    1.1   mycroft  */
    214    1.9  christos int
    215   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    216   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    217    1.1   mycroft {
    218  1.101        ad 	struct ufsmount *ump;
    219   1.62      fvdl 	struct fs *fs;
    220    1.1   mycroft 	struct buf *bp;
    221    1.1   mycroft 	int cg, request, error;
    222   1.58      fvdl 	daddr_t bprev, bno;
    223   1.25   thorpej 
    224   1.62      fvdl 	fs = ip->i_fs;
    225  1.101        ad 	ump = ip->i_ump;
    226  1.101        ad 
    227  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    228  1.101        ad 
    229   1.37       chs #ifdef UVM_PAGE_TRKOWN
    230   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    231   1.37       chs 		struct vm_page *pg;
    232   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    233   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    234   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    235   1.37       chs 
    236  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    237   1.37       chs 		while (off < endoff) {
    238   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    239   1.37       chs 			KASSERT(pg != NULL);
    240   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    241   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    242   1.37       chs 			off += PAGE_SIZE;
    243   1.37       chs 		}
    244  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    245   1.37       chs 	}
    246   1.37       chs #endif
    247   1.37       chs 
    248    1.1   mycroft #ifdef DIAGNOSTIC
    249    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    250    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    251   1.13  christos 		printf(
    252    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    253    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    254    1.1   mycroft 		panic("ffs_realloccg: bad size");
    255    1.1   mycroft 	}
    256    1.1   mycroft 	if (cred == NOCRED)
    257   1.56    provos 		panic("ffs_realloccg: missing credential");
    258    1.1   mycroft #endif /* DIAGNOSTIC */
    259   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    260  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    261  1.101        ad 		mutex_exit(&ump->um_lock);
    262    1.1   mycroft 		goto nospace;
    263  1.101        ad 	}
    264   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    265   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    266   1.60      fvdl 	else
    267   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    268   1.60      fvdl 
    269   1.60      fvdl 	if (bprev == 0) {
    270   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    271   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    272    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    273    1.1   mycroft 	}
    274  1.101        ad 	mutex_exit(&ump->um_lock);
    275  1.101        ad 
    276    1.1   mycroft 	/*
    277    1.1   mycroft 	 * Allocate the extra space in the buffer.
    278    1.1   mycroft 	 */
    279   1.37       chs 	if (bpp != NULL &&
    280  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    281  1.101        ad 		brelse(bp, 0);
    282    1.1   mycroft 		return (error);
    283    1.1   mycroft 	}
    284    1.1   mycroft #ifdef QUOTA
    285   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    286   1.44       chs 		if (bpp != NULL) {
    287  1.101        ad 			brelse(bp, 0);
    288   1.44       chs 		}
    289    1.1   mycroft 		return (error);
    290    1.1   mycroft 	}
    291    1.1   mycroft #endif
    292    1.1   mycroft 	/*
    293    1.1   mycroft 	 * Check for extension in the existing location.
    294    1.1   mycroft 	 */
    295    1.1   mycroft 	cg = dtog(fs, bprev);
    296  1.101        ad 	mutex_enter(&ump->um_lock);
    297   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    298   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    299    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    300   1.37       chs 
    301   1.37       chs 		if (bpp != NULL) {
    302   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    303   1.37       chs 				panic("bad blockno");
    304   1.72        pk 			allocbuf(bp, nsize, 1);
    305   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    306  1.105        ad 			mutex_enter(bp->b_objlock);
    307  1.105        ad 			bp->b_oflags |= BO_DONE;
    308  1.105        ad 			mutex_exit(bp->b_objlock);
    309   1.37       chs 			*bpp = bp;
    310   1.37       chs 		}
    311   1.37       chs 		if (blknop != NULL) {
    312   1.37       chs 			*blknop = bno;
    313   1.37       chs 		}
    314    1.1   mycroft 		return (0);
    315    1.1   mycroft 	}
    316    1.1   mycroft 	/*
    317    1.1   mycroft 	 * Allocate a new disk location.
    318    1.1   mycroft 	 */
    319    1.1   mycroft 	if (bpref >= fs->fs_size)
    320    1.1   mycroft 		bpref = 0;
    321    1.1   mycroft 	switch ((int)fs->fs_optim) {
    322    1.1   mycroft 	case FS_OPTSPACE:
    323    1.1   mycroft 		/*
    324   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    325   1.81     perry 		 * best use of space, we will waste time relocating it if
    326    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    327    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    328    1.1   mycroft 		 * to begin optimizing for time.
    329    1.1   mycroft 		 */
    330    1.1   mycroft 		request = nsize;
    331    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    332    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    333    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    334    1.1   mycroft 			break;
    335   1.34  jdolecek 
    336   1.34  jdolecek 		if (ffs_log_changeopt) {
    337   1.34  jdolecek 			log(LOG_NOTICE,
    338   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    339   1.34  jdolecek 				fs->fs_fsmnt);
    340   1.34  jdolecek 		}
    341   1.34  jdolecek 
    342    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    343    1.1   mycroft 		break;
    344    1.1   mycroft 	case FS_OPTTIME:
    345    1.1   mycroft 		/*
    346    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    347    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    348    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    349    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    350    1.1   mycroft 		 * above will be able to grow it in place without further
    351    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    352    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    353    1.1   mycroft 		 * optimizing for space.
    354    1.1   mycroft 		 */
    355    1.1   mycroft 		request = fs->fs_bsize;
    356    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    357    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    358    1.1   mycroft 			break;
    359   1.34  jdolecek 
    360   1.34  jdolecek 		if (ffs_log_changeopt) {
    361   1.34  jdolecek 			log(LOG_NOTICE,
    362   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    363   1.34  jdolecek 				fs->fs_fsmnt);
    364   1.34  jdolecek 		}
    365   1.34  jdolecek 
    366    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    367    1.1   mycroft 		break;
    368    1.1   mycroft 	default:
    369   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    370    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    371    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    372    1.1   mycroft 		/* NOTREACHED */
    373    1.1   mycroft 	}
    374   1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    375    1.1   mycroft 	if (bno > 0) {
    376   1.30      fvdl 		if (!DOINGSOFTDEP(ITOV(ip)))
    377   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    378   1.76   hannken 			    ip->i_number);
    379    1.1   mycroft 		if (nsize < request)
    380   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp, bno + numfrags(fs, nsize),
    381   1.76   hannken 			    (long)(request - nsize), ip->i_number);
    382   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    383    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    384   1.37       chs 		if (bpp != NULL) {
    385   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    386   1.72        pk 			allocbuf(bp, nsize, 1);
    387   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    388  1.105        ad 			mutex_enter(bp->b_objlock);
    389  1.105        ad 			bp->b_oflags |= BO_DONE;
    390  1.105        ad 			mutex_exit(bp->b_objlock);
    391   1.37       chs 			*bpp = bp;
    392   1.37       chs 		}
    393   1.37       chs 		if (blknop != NULL) {
    394   1.37       chs 			*blknop = bno;
    395   1.37       chs 		}
    396    1.1   mycroft 		return (0);
    397    1.1   mycroft 	}
    398  1.101        ad 	mutex_exit(&ump->um_lock);
    399  1.101        ad 
    400    1.1   mycroft #ifdef QUOTA
    401    1.1   mycroft 	/*
    402    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    403    1.1   mycroft 	 */
    404   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    405    1.1   mycroft #endif
    406   1.37       chs 	if (bpp != NULL) {
    407  1.101        ad 		brelse(bp, 0);
    408   1.37       chs 	}
    409   1.37       chs 
    410    1.1   mycroft nospace:
    411    1.1   mycroft 	/*
    412    1.1   mycroft 	 * no space available
    413    1.1   mycroft 	 */
    414   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    415    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    416    1.1   mycroft 	return (ENOSPC);
    417    1.1   mycroft }
    418    1.1   mycroft 
    419   1.88      yamt #if 0
    420    1.1   mycroft /*
    421    1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    422    1.1   mycroft  *
    423    1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    424    1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    425   1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    426   1.60      fvdl  * from the end of the allocation for the logical block immediately
    427   1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    428   1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    429   1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    430   1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    431   1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    432   1.60      fvdl  * allocation will be used.
    433   1.60      fvdl 
    434    1.1   mycroft  */
    435   1.55      matt #ifdef XXXUBC
    436    1.3   mycroft #ifdef DEBUG
    437    1.1   mycroft #include <sys/sysctl.h>
    438    1.5   mycroft int prtrealloc = 0;
    439    1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    440    1.1   mycroft #endif
    441   1.55      matt #endif
    442    1.1   mycroft 
    443   1.60      fvdl /*
    444   1.60      fvdl  * NOTE: when re-enabling this, it must be updated for UFS2.
    445   1.60      fvdl  */
    446   1.60      fvdl 
    447   1.18      fvdl int doasyncfree = 1;
    448   1.18      fvdl 
    449    1.1   mycroft int
    450   1.85   thorpej ffs_reallocblks(void *v)
    451    1.9  christos {
    452   1.55      matt #ifdef XXXUBC
    453    1.1   mycroft 	struct vop_reallocblks_args /* {
    454    1.1   mycroft 		struct vnode *a_vp;
    455    1.1   mycroft 		struct cluster_save *a_buflist;
    456    1.9  christos 	} */ *ap = v;
    457    1.1   mycroft 	struct fs *fs;
    458    1.1   mycroft 	struct inode *ip;
    459    1.1   mycroft 	struct vnode *vp;
    460    1.1   mycroft 	struct buf *sbp, *ebp;
    461   1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    462    1.1   mycroft 	struct cluster_save *buflist;
    463   1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    464    1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    465    1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    466  1.101        ad 	struct ufsmount *ump;
    467   1.55      matt #endif /* XXXUBC */
    468    1.1   mycroft 
    469   1.37       chs 	/* XXXUBC don't reallocblks for now */
    470   1.37       chs 	return ENOSPC;
    471   1.37       chs 
    472   1.55      matt #ifdef XXXUBC
    473    1.1   mycroft 	vp = ap->a_vp;
    474    1.1   mycroft 	ip = VTOI(vp);
    475    1.1   mycroft 	fs = ip->i_fs;
    476  1.101        ad 	ump = ip->i_ump;
    477    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    478    1.1   mycroft 		return (ENOSPC);
    479    1.1   mycroft 	buflist = ap->a_buflist;
    480    1.1   mycroft 	len = buflist->bs_nchildren;
    481    1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    482    1.1   mycroft 	end_lbn = start_lbn + len - 1;
    483    1.1   mycroft #ifdef DIAGNOSTIC
    484   1.18      fvdl 	for (i = 0; i < len; i++)
    485   1.18      fvdl 		if (!ffs_checkblk(ip,
    486   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    487   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    488    1.1   mycroft 	for (i = 1; i < len; i++)
    489    1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    490   1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    491   1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    492   1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    493   1.18      fvdl 	for (i = 1; i < len - 1; i++)
    494   1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    495   1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    496    1.1   mycroft #endif
    497    1.1   mycroft 	/*
    498    1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    499    1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    500    1.1   mycroft 	 * the previous cylinder group.
    501    1.1   mycroft 	 */
    502    1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    503    1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    504    1.1   mycroft 		return (ENOSPC);
    505    1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    506    1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    507    1.1   mycroft 		return (ENOSPC);
    508    1.1   mycroft 	/*
    509    1.1   mycroft 	 * Get the starting offset and block map for the first block.
    510    1.1   mycroft 	 */
    511    1.1   mycroft 	if (start_lvl == 0) {
    512   1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    513    1.1   mycroft 		soff = start_lbn;
    514    1.1   mycroft 	} else {
    515    1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    516  1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    517  1.107   hannken 		    NOCRED, B_MODIFY, &sbp)) {
    518  1.101        ad 			brelse(sbp, 0);
    519    1.1   mycroft 			return (ENOSPC);
    520    1.1   mycroft 		}
    521   1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    522    1.1   mycroft 		soff = idp->in_off;
    523    1.1   mycroft 	}
    524    1.1   mycroft 	/*
    525    1.1   mycroft 	 * Find the preferred location for the cluster.
    526    1.1   mycroft 	 */
    527  1.101        ad 	mutex_enter(&ump->um_lock);
    528    1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    529    1.1   mycroft 	/*
    530    1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    531    1.1   mycroft 	 */
    532    1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    533    1.1   mycroft 		ssize = len;
    534    1.1   mycroft 	} else {
    535    1.1   mycroft #ifdef DIAGNOSTIC
    536    1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    537    1.1   mycroft 			panic("ffs_reallocblk: start == end");
    538    1.1   mycroft #endif
    539    1.1   mycroft 		ssize = len - (idp->in_off + 1);
    540  1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    541  1.107   hannken 		    NOCRED, B_MODIFY, &ebp))
    542    1.1   mycroft 			goto fail;
    543   1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    544    1.1   mycroft 	}
    545    1.1   mycroft 	/*
    546    1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    547    1.1   mycroft 	 */
    548   1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    549  1.101        ad 	    len, ffs_clusteralloc)) == 0) {
    550  1.101        ad 		mutex_exit(&ump->um_lock);
    551    1.1   mycroft 		goto fail;
    552  1.101        ad 	}
    553    1.1   mycroft 	/*
    554    1.1   mycroft 	 * We have found a new contiguous block.
    555    1.1   mycroft 	 *
    556    1.1   mycroft 	 * First we have to replace the old block pointers with the new
    557    1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    558    1.1   mycroft 	 * with the file.
    559    1.1   mycroft 	 */
    560    1.5   mycroft #ifdef DEBUG
    561    1.5   mycroft 	if (prtrealloc)
    562   1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    563    1.5   mycroft 		    start_lbn, end_lbn);
    564    1.5   mycroft #endif
    565    1.1   mycroft 	blkno = newblk;
    566    1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    567   1.58      fvdl 		daddr_t ba;
    568   1.30      fvdl 
    569   1.30      fvdl 		if (i == ssize) {
    570    1.1   mycroft 			bap = ebap;
    571   1.30      fvdl 			soff = -i;
    572   1.30      fvdl 		}
    573   1.58      fvdl 		/* XXX ondisk32 */
    574   1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    575    1.1   mycroft #ifdef DIAGNOSTIC
    576   1.18      fvdl 		if (!ffs_checkblk(ip,
    577   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    578   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    579   1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    580    1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    581    1.1   mycroft #endif
    582    1.5   mycroft #ifdef DEBUG
    583    1.5   mycroft 		if (prtrealloc)
    584   1.30      fvdl 			printf(" %d,", ba);
    585    1.5   mycroft #endif
    586   1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    587   1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    588   1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    589   1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    590   1.30      fvdl  				    buflist->bs_children[i]);
    591   1.30      fvdl  			else
    592   1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    593   1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    594   1.30      fvdl  				    ba, buflist->bs_children[i]);
    595   1.30      fvdl  		}
    596   1.58      fvdl 		/* XXX ondisk32 */
    597   1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    598    1.1   mycroft 	}
    599    1.1   mycroft 	/*
    600    1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    601    1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    602    1.1   mycroft 	 * the old block values may have been written to disk. In practise
    603   1.81     perry 	 * they are almost never written, but if we are concerned about
    604    1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    605    1.1   mycroft 	 *
    606    1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    607    1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    608    1.1   mycroft 	 * been written. The flag should be set when the cluster is
    609    1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    610    1.1   mycroft 	 * We can then check below to see if it is set, and do the
    611    1.1   mycroft 	 * synchronous write only when it has been cleared.
    612    1.1   mycroft 	 */
    613   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    614    1.1   mycroft 		if (doasyncfree)
    615    1.1   mycroft 			bdwrite(sbp);
    616    1.1   mycroft 		else
    617    1.1   mycroft 			bwrite(sbp);
    618    1.1   mycroft 	} else {
    619    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    620   1.28   mycroft 		if (!doasyncfree)
    621   1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    622    1.1   mycroft 	}
    623   1.25   thorpej 	if (ssize < len) {
    624    1.1   mycroft 		if (doasyncfree)
    625    1.1   mycroft 			bdwrite(ebp);
    626    1.1   mycroft 		else
    627    1.1   mycroft 			bwrite(ebp);
    628   1.25   thorpej 	}
    629    1.1   mycroft 	/*
    630    1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    631    1.1   mycroft 	 */
    632    1.5   mycroft #ifdef DEBUG
    633    1.5   mycroft 	if (prtrealloc)
    634   1.13  christos 		printf("\n\tnew:");
    635    1.5   mycroft #endif
    636    1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    637   1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    638   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    639   1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    640   1.76   hannken 			    fs->fs_bsize, ip->i_number);
    641    1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    642    1.5   mycroft #ifdef DEBUG
    643   1.18      fvdl 		if (!ffs_checkblk(ip,
    644   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    645   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    646    1.5   mycroft 		if (prtrealloc)
    647   1.13  christos 			printf(" %d,", blkno);
    648    1.5   mycroft #endif
    649    1.5   mycroft 	}
    650    1.5   mycroft #ifdef DEBUG
    651    1.5   mycroft 	if (prtrealloc) {
    652    1.5   mycroft 		prtrealloc--;
    653   1.13  christos 		printf("\n");
    654    1.1   mycroft 	}
    655    1.5   mycroft #endif
    656    1.1   mycroft 	return (0);
    657    1.1   mycroft 
    658    1.1   mycroft fail:
    659    1.1   mycroft 	if (ssize < len)
    660  1.101        ad 		brelse(ebp, 0);
    661   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    662  1.101        ad 		brelse(sbp, 0);
    663    1.1   mycroft 	return (ENOSPC);
    664   1.55      matt #endif /* XXXUBC */
    665    1.1   mycroft }
    666   1.88      yamt #endif /* 0 */
    667    1.1   mycroft 
    668    1.1   mycroft /*
    669    1.1   mycroft  * Allocate an inode in the file system.
    670   1.81     perry  *
    671    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    672    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    673    1.1   mycroft  *   1) allocate the preferred inode.
    674    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    675    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    676    1.1   mycroft  *      available inode is located.
    677   1.47       wiz  * If no inode preference is given the following hierarchy is used
    678    1.1   mycroft  * to allocate an inode:
    679    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    680    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    681    1.1   mycroft  *      available inode is located.
    682  1.106     pooka  *
    683  1.106     pooka  * => um_lock not held upon entry or return
    684    1.1   mycroft  */
    685    1.9  christos int
    686   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    687   1.88      yamt     struct vnode **vpp)
    688    1.9  christos {
    689  1.101        ad 	struct ufsmount *ump;
    690   1.33  augustss 	struct inode *pip;
    691   1.33  augustss 	struct fs *fs;
    692   1.33  augustss 	struct inode *ip;
    693   1.60      fvdl 	struct timespec ts;
    694    1.1   mycroft 	ino_t ino, ipref;
    695    1.1   mycroft 	int cg, error;
    696   1.81     perry 
    697   1.88      yamt 	*vpp = NULL;
    698    1.1   mycroft 	pip = VTOI(pvp);
    699    1.1   mycroft 	fs = pip->i_fs;
    700  1.101        ad 	ump = pip->i_ump;
    701  1.101        ad 
    702  1.101        ad 	mutex_enter(&ump->um_lock);
    703    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    704    1.1   mycroft 		goto noinodes;
    705    1.1   mycroft 
    706    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    707   1.50     lukem 		ipref = ffs_dirpref(pip);
    708   1.50     lukem 	else
    709   1.50     lukem 		ipref = pip->i_number;
    710    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    711    1.1   mycroft 		ipref = 0;
    712    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    713   1.50     lukem 	/*
    714   1.50     lukem 	 * Track number of dirs created one after another
    715   1.50     lukem 	 * in a same cg without intervening by files.
    716   1.50     lukem 	 */
    717   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    718   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    719   1.50     lukem 			fs->fs_contigdirs[cg]++;
    720   1.50     lukem 	} else {
    721   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    722   1.50     lukem 			fs->fs_contigdirs[cg]--;
    723   1.50     lukem 	}
    724   1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    725    1.1   mycroft 	if (ino == 0)
    726    1.1   mycroft 		goto noinodes;
    727   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    728    1.1   mycroft 	if (error) {
    729   1.88      yamt 		ffs_vfree(pvp, ino, mode);
    730    1.1   mycroft 		return (error);
    731    1.1   mycroft 	}
    732   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    733   1.88      yamt 	ip = VTOI(*vpp);
    734   1.60      fvdl 	if (ip->i_mode) {
    735   1.60      fvdl #if 0
    736   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    737   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    738   1.60      fvdl #else
    739   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    740   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    741   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    742   1.60      fvdl 		printf("size %llx blocks %llx\n",
    743   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    744   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    745   1.86  christos 		    (unsigned long long)ipref);
    746   1.60      fvdl #if 0
    747   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    748  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    749   1.60      fvdl #endif
    750   1.60      fvdl 
    751   1.60      fvdl #endif
    752    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    753    1.1   mycroft 	}
    754   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    755   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    756   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    757   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    758    1.1   mycroft 	}
    759   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    760   1.61      fvdl 	ip->i_flags = 0;
    761   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    762    1.1   mycroft 	/*
    763    1.1   mycroft 	 * Set up a new generation number for this inode.
    764    1.1   mycroft 	 */
    765   1.60      fvdl 	ip->i_gen++;
    766   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    767   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    768   1.93      yamt 		vfs_timestamp(&ts);
    769   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    770   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    771   1.60      fvdl 	}
    772    1.1   mycroft 	return (0);
    773    1.1   mycroft noinodes:
    774  1.101        ad 	mutex_exit(&ump->um_lock);
    775   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    776    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    777    1.1   mycroft 	return (ENOSPC);
    778    1.1   mycroft }
    779    1.1   mycroft 
    780    1.1   mycroft /*
    781   1.50     lukem  * Find a cylinder group in which to place a directory.
    782   1.42  sommerfe  *
    783   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    784   1.50     lukem  * directory inode in the same cylinder group as its parent
    785   1.50     lukem  * directory, but also to reserve space for its files inodes
    786   1.50     lukem  * and data. Restrict the number of directories which may be
    787   1.50     lukem  * allocated one after another in the same cylinder group
    788   1.50     lukem  * without intervening allocation of files.
    789   1.42  sommerfe  *
    790   1.50     lukem  * If we allocate a first level directory then force allocation
    791   1.50     lukem  * in another cylinder group.
    792    1.1   mycroft  */
    793    1.1   mycroft static ino_t
    794   1.85   thorpej ffs_dirpref(struct inode *pip)
    795    1.1   mycroft {
    796   1.50     lukem 	register struct fs *fs;
    797   1.74     soren 	int cg, prefcg;
    798   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    799   1.89       dsl 	int avgifree, avgbfree, avgndir;
    800   1.50     lukem 	int minifree, minbfree, maxndir;
    801   1.50     lukem 	int mincg, minndir;
    802   1.50     lukem 	int maxcontigdirs;
    803   1.50     lukem 
    804  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    805  1.101        ad 
    806   1.50     lukem 	fs = pip->i_fs;
    807    1.1   mycroft 
    808    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    809   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    810   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    811   1.50     lukem 
    812   1.50     lukem 	/*
    813   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    814   1.50     lukem 	 */
    815  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    816   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    817   1.50     lukem 		mincg = prefcg;
    818   1.50     lukem 		minndir = fs->fs_ipg;
    819   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    820   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    821   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    822   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    823   1.42  sommerfe 				mincg = cg;
    824   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    825   1.42  sommerfe 			}
    826   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    827   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    828   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    829   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    830   1.50     lukem 				mincg = cg;
    831   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    832   1.42  sommerfe 			}
    833   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    834   1.42  sommerfe 	}
    835   1.50     lukem 
    836   1.50     lukem 	/*
    837   1.50     lukem 	 * Count various limits which used for
    838   1.50     lukem 	 * optimal allocation of a directory inode.
    839   1.50     lukem 	 */
    840   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    841   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    842   1.50     lukem 	if (minifree < 0)
    843   1.50     lukem 		minifree = 0;
    844   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    845   1.50     lukem 	if (minbfree < 0)
    846   1.50     lukem 		minbfree = 0;
    847   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    848   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    849   1.89       dsl 	if (avgndir != 0) {
    850   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    851   1.89       dsl 		if (dirsize < curdsz)
    852   1.89       dsl 			dirsize = curdsz;
    853   1.89       dsl 	}
    854   1.89       dsl 	if (cgsize < dirsize * 255)
    855   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    856   1.89       dsl 	else
    857   1.89       dsl 		maxcontigdirs = 255;
    858   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    859   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    860   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    861   1.50     lukem 	if (maxcontigdirs == 0)
    862   1.50     lukem 		maxcontigdirs = 1;
    863   1.50     lukem 
    864   1.50     lukem 	/*
    865   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    866   1.50     lukem 	 * regular files, but only if we have no deficit in
    867   1.50     lukem 	 * inodes or space.
    868   1.50     lukem 	 */
    869   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    870   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    871   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    872   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    873   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    874   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    875   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    876   1.50     lukem 		}
    877   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    878   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    879   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    880   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    881   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    882   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    883   1.50     lukem 		}
    884   1.50     lukem 	/*
    885   1.50     lukem 	 * This is a backstop when we are deficient in space.
    886   1.50     lukem 	 */
    887   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    888   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    889   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    890   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    891   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    892   1.50     lukem 			break;
    893   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    894    1.1   mycroft }
    895    1.1   mycroft 
    896    1.1   mycroft /*
    897    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    898    1.1   mycroft  * logically divided into sections. The first section is composed of the
    899    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    900   1.81     perry  *
    901    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    902    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    903    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    904    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    905    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    906    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    907    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    908    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    909    1.1   mycroft  * continues until a cylinder group with greater than the average number
    910    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    911    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    912    1.1   mycroft  * here a best guess is made based upon the logical block number being
    913    1.1   mycroft  * allocated.
    914   1.81     perry  *
    915    1.1   mycroft  * If a section is already partially allocated, the policy is to
    916    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    917   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    918   1.60      fvdl  * contigously if possible.
    919  1.106     pooka  *
    920  1.106     pooka  * => um_lock held on entry and exit
    921    1.1   mycroft  */
    922   1.58      fvdl daddr_t
    923   1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    924   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    925    1.1   mycroft {
    926   1.33  augustss 	struct fs *fs;
    927   1.33  augustss 	int cg;
    928    1.1   mycroft 	int avgbfree, startcg;
    929    1.1   mycroft 
    930  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    931  1.101        ad 
    932    1.1   mycroft 	fs = ip->i_fs;
    933    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    934   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    935    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    936    1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    937    1.1   mycroft 		}
    938    1.1   mycroft 		/*
    939    1.1   mycroft 		 * Find a cylinder with greater than average number of
    940    1.1   mycroft 		 * unused data blocks.
    941    1.1   mycroft 		 */
    942    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    943    1.1   mycroft 			startcg =
    944    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    945    1.1   mycroft 		else
    946   1.19    bouyer 			startcg = dtog(fs,
    947   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    948    1.1   mycroft 		startcg %= fs->fs_ncg;
    949    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    950    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    951    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    952    1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    953    1.1   mycroft 			}
    954   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    955    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    956    1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    957    1.1   mycroft 			}
    958   1.35   thorpej 		return (0);
    959    1.1   mycroft 	}
    960    1.1   mycroft 	/*
    961   1.60      fvdl 	 * We just always try to lay things out contiguously.
    962   1.60      fvdl 	 */
    963   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    964   1.60      fvdl }
    965   1.60      fvdl 
    966   1.60      fvdl daddr_t
    967   1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
    968   1.60      fvdl {
    969   1.60      fvdl 	struct fs *fs;
    970   1.60      fvdl 	int cg;
    971   1.60      fvdl 	int avgbfree, startcg;
    972   1.60      fvdl 
    973  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    974  1.101        ad 
    975   1.60      fvdl 	fs = ip->i_fs;
    976   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    977   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    978   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    979   1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
    980   1.60      fvdl 		}
    981    1.1   mycroft 		/*
    982   1.60      fvdl 		 * Find a cylinder with greater than average number of
    983   1.60      fvdl 		 * unused data blocks.
    984    1.1   mycroft 		 */
    985   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    986   1.60      fvdl 			startcg =
    987   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    988   1.60      fvdl 		else
    989   1.60      fvdl 			startcg = dtog(fs,
    990   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    991   1.60      fvdl 		startcg %= fs->fs_ncg;
    992   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    993   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    994   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    995   1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
    996   1.60      fvdl 			}
    997   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    998   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    999   1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
   1000   1.60      fvdl 			}
   1001   1.60      fvdl 		return (0);
   1002   1.60      fvdl 	}
   1003   1.60      fvdl 	/*
   1004   1.60      fvdl 	 * We just always try to lay things out contiguously.
   1005   1.60      fvdl 	 */
   1006   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1007    1.1   mycroft }
   1008    1.1   mycroft 
   1009   1.60      fvdl 
   1010    1.1   mycroft /*
   1011    1.1   mycroft  * Implement the cylinder overflow algorithm.
   1012    1.1   mycroft  *
   1013    1.1   mycroft  * The policy implemented by this algorithm is:
   1014    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1015    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1016    1.1   mycroft  *   3) brute force search for a free block.
   1017  1.106     pooka  *
   1018  1.106     pooka  * => called with um_lock held
   1019  1.106     pooka  * => returns with um_lock released on success, held on failure
   1020  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
   1021    1.1   mycroft  */
   1022    1.1   mycroft /*VARARGS5*/
   1023   1.58      fvdl static daddr_t
   1024   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1025   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1026   1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1027    1.1   mycroft {
   1028   1.33  augustss 	struct fs *fs;
   1029   1.58      fvdl 	daddr_t result;
   1030    1.1   mycroft 	int i, icg = cg;
   1031    1.1   mycroft 
   1032    1.1   mycroft 	fs = ip->i_fs;
   1033    1.1   mycroft 	/*
   1034    1.1   mycroft 	 * 1: preferred cylinder group
   1035    1.1   mycroft 	 */
   1036    1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1037    1.1   mycroft 	if (result)
   1038    1.1   mycroft 		return (result);
   1039    1.1   mycroft 	/*
   1040    1.1   mycroft 	 * 2: quadratic rehash
   1041    1.1   mycroft 	 */
   1042    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1043    1.1   mycroft 		cg += i;
   1044    1.1   mycroft 		if (cg >= fs->fs_ncg)
   1045    1.1   mycroft 			cg -= fs->fs_ncg;
   1046    1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1047    1.1   mycroft 		if (result)
   1048    1.1   mycroft 			return (result);
   1049    1.1   mycroft 	}
   1050    1.1   mycroft 	/*
   1051    1.1   mycroft 	 * 3: brute force search
   1052    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1053    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1054    1.1   mycroft 	 */
   1055    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1056    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1057    1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1058    1.1   mycroft 		if (result)
   1059    1.1   mycroft 			return (result);
   1060    1.1   mycroft 		cg++;
   1061    1.1   mycroft 		if (cg == fs->fs_ncg)
   1062    1.1   mycroft 			cg = 0;
   1063    1.1   mycroft 	}
   1064   1.35   thorpej 	return (0);
   1065    1.1   mycroft }
   1066    1.1   mycroft 
   1067    1.1   mycroft /*
   1068    1.1   mycroft  * Determine whether a fragment can be extended.
   1069    1.1   mycroft  *
   1070   1.81     perry  * Check to see if the necessary fragments are available, and
   1071    1.1   mycroft  * if they are, allocate them.
   1072  1.106     pooka  *
   1073  1.106     pooka  * => called with um_lock held
   1074  1.106     pooka  * => returns with um_lock released on success, held on failure
   1075    1.1   mycroft  */
   1076   1.58      fvdl static daddr_t
   1077   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1078    1.1   mycroft {
   1079  1.101        ad 	struct ufsmount *ump;
   1080   1.33  augustss 	struct fs *fs;
   1081   1.33  augustss 	struct cg *cgp;
   1082    1.1   mycroft 	struct buf *bp;
   1083   1.58      fvdl 	daddr_t bno;
   1084    1.1   mycroft 	int frags, bbase;
   1085    1.1   mycroft 	int i, error;
   1086   1.62      fvdl 	u_int8_t *blksfree;
   1087    1.1   mycroft 
   1088    1.1   mycroft 	fs = ip->i_fs;
   1089  1.101        ad 	ump = ip->i_ump;
   1090  1.101        ad 
   1091  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1092  1.101        ad 
   1093    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1094   1.35   thorpej 		return (0);
   1095    1.1   mycroft 	frags = numfrags(fs, nsize);
   1096    1.1   mycroft 	bbase = fragnum(fs, bprev);
   1097    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1098    1.1   mycroft 		/* cannot extend across a block boundary */
   1099   1.35   thorpej 		return (0);
   1100    1.1   mycroft 	}
   1101  1.101        ad 	mutex_exit(&ump->um_lock);
   1102    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1103  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1104  1.101        ad 	if (error)
   1105  1.101        ad 		goto fail;
   1106    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1107  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1108  1.101        ad 		goto fail;
   1109   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1110   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1111   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1112   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1113    1.1   mycroft 	bno = dtogd(fs, bprev);
   1114   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1115    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1116  1.101        ad 		if (isclr(blksfree, bno + i))
   1117  1.101        ad 			goto fail;
   1118    1.1   mycroft 	/*
   1119    1.1   mycroft 	 * the current fragment can be extended
   1120    1.1   mycroft 	 * deduct the count on fragment being extended into
   1121    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1122    1.1   mycroft 	 * allocate the extended piece
   1123    1.1   mycroft 	 */
   1124    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1125   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1126    1.1   mycroft 			break;
   1127   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1128    1.1   mycroft 	if (i != frags)
   1129   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1130  1.101        ad 	mutex_enter(&ump->um_lock);
   1131    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1132   1.62      fvdl 		clrbit(blksfree, bno + i);
   1133   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1134    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1135    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1136    1.1   mycroft 	}
   1137    1.1   mycroft 	fs->fs_fmod = 1;
   1138  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1139  1.101        ad 	mutex_exit(&ump->um_lock);
   1140   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1141   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1142    1.1   mycroft 	bdwrite(bp);
   1143    1.1   mycroft 	return (bprev);
   1144  1.101        ad 
   1145  1.101        ad  fail:
   1146  1.101        ad  	brelse(bp, 0);
   1147  1.101        ad  	mutex_enter(&ump->um_lock);
   1148  1.101        ad  	return (0);
   1149    1.1   mycroft }
   1150    1.1   mycroft 
   1151    1.1   mycroft /*
   1152    1.1   mycroft  * Determine whether a block can be allocated.
   1153    1.1   mycroft  *
   1154    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1155    1.1   mycroft  * and if it is, allocate it.
   1156    1.1   mycroft  */
   1157   1.58      fvdl static daddr_t
   1158   1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1159    1.1   mycroft {
   1160  1.101        ad 	struct ufsmount *ump;
   1161   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1162   1.30      fvdl 	struct cg *cgp;
   1163    1.1   mycroft 	struct buf *bp;
   1164   1.60      fvdl 	int32_t bno;
   1165   1.60      fvdl 	daddr_t blkno;
   1166   1.30      fvdl 	int error, frags, allocsiz, i;
   1167   1.62      fvdl 	u_int8_t *blksfree;
   1168   1.30      fvdl #ifdef FFS_EI
   1169   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1170   1.30      fvdl #endif
   1171    1.1   mycroft 
   1172  1.101        ad 	ump = ip->i_ump;
   1173  1.101        ad 
   1174  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1175  1.101        ad 
   1176    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1177   1.35   thorpej 		return (0);
   1178  1.101        ad 	mutex_exit(&ump->um_lock);
   1179    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1180  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1181  1.101        ad 	if (error)
   1182  1.101        ad 		goto fail;
   1183    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1184   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1185  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1186  1.101        ad 		goto fail;
   1187   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1188   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1189   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1190   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1191    1.1   mycroft 	if (size == fs->fs_bsize) {
   1192  1.101        ad 		mutex_enter(&ump->um_lock);
   1193   1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1194   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1195  1.101        ad 		mutex_exit(&ump->um_lock);
   1196    1.1   mycroft 		bdwrite(bp);
   1197   1.60      fvdl 		return (blkno);
   1198    1.1   mycroft 	}
   1199    1.1   mycroft 	/*
   1200    1.1   mycroft 	 * check to see if any fragments are already available
   1201    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1202    1.1   mycroft 	 * it down to a smaller size if necessary
   1203    1.1   mycroft 	 */
   1204   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1205    1.1   mycroft 	frags = numfrags(fs, size);
   1206    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1207    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1208    1.1   mycroft 			break;
   1209    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1210    1.1   mycroft 		/*
   1211   1.81     perry 		 * no fragments were available, so a block will be
   1212    1.1   mycroft 		 * allocated, and hacked up
   1213    1.1   mycroft 		 */
   1214  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1215  1.101        ad 			goto fail;
   1216  1.101        ad 		mutex_enter(&ump->um_lock);
   1217   1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1218   1.60      fvdl 		bno = dtogd(fs, blkno);
   1219    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1220   1.62      fvdl 			setbit(blksfree, bno + i);
   1221    1.1   mycroft 		i = fs->fs_frag - frags;
   1222   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1223    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1224   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1225    1.1   mycroft 		fs->fs_fmod = 1;
   1226   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1227   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1228  1.101        ad 		mutex_exit(&ump->um_lock);
   1229    1.1   mycroft 		bdwrite(bp);
   1230   1.60      fvdl 		return (blkno);
   1231    1.1   mycroft 	}
   1232   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1233   1.30      fvdl #if 0
   1234   1.30      fvdl 	/*
   1235   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1236   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1237   1.30      fvdl 	 */
   1238  1.101        ad 	if (bno < 0)
   1239  1.101        ad 		goto fail;
   1240   1.30      fvdl #endif
   1241    1.1   mycroft 	for (i = 0; i < frags; i++)
   1242   1.62      fvdl 		clrbit(blksfree, bno + i);
   1243  1.101        ad 	mutex_enter(&ump->um_lock);
   1244   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1245    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1246    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1247    1.1   mycroft 	fs->fs_fmod = 1;
   1248   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1249    1.1   mycroft 	if (frags != allocsiz)
   1250   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1251   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1252  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1253  1.101        ad 	mutex_exit(&ump->um_lock);
   1254   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1255   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1256    1.1   mycroft 	bdwrite(bp);
   1257   1.30      fvdl 	return blkno;
   1258  1.101        ad 
   1259  1.101        ad  fail:
   1260  1.101        ad  	brelse(bp, 0);
   1261  1.101        ad  	mutex_enter(&ump->um_lock);
   1262  1.101        ad  	return (0);
   1263    1.1   mycroft }
   1264    1.1   mycroft 
   1265    1.1   mycroft /*
   1266    1.1   mycroft  * Allocate a block in a cylinder group.
   1267    1.1   mycroft  *
   1268    1.1   mycroft  * This algorithm implements the following policy:
   1269    1.1   mycroft  *   1) allocate the requested block.
   1270    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1271    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1272    1.1   mycroft  *      specified cylinder group.
   1273    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1274    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1275    1.1   mycroft  */
   1276   1.58      fvdl static daddr_t
   1277   1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1278    1.1   mycroft {
   1279  1.101        ad 	struct ufsmount *ump;
   1280   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1281   1.30      fvdl 	struct cg *cgp;
   1282   1.60      fvdl 	daddr_t blkno;
   1283   1.60      fvdl 	int32_t bno;
   1284   1.60      fvdl 	u_int8_t *blksfree;
   1285   1.30      fvdl #ifdef FFS_EI
   1286   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1287   1.30      fvdl #endif
   1288    1.1   mycroft 
   1289  1.101        ad 	ump = ip->i_ump;
   1290  1.101        ad 
   1291  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1292  1.101        ad 
   1293   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1294   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1295   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1296   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1297   1.60      fvdl 	} else {
   1298   1.60      fvdl 		bpref = blknum(fs, bpref);
   1299   1.60      fvdl 		bno = dtogd(fs, bpref);
   1300    1.1   mycroft 		/*
   1301   1.60      fvdl 		 * if the requested block is available, use it
   1302    1.1   mycroft 		 */
   1303   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1304   1.60      fvdl 			goto gotit;
   1305    1.1   mycroft 	}
   1306    1.1   mycroft 	/*
   1307   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1308    1.1   mycroft 	 */
   1309   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1310    1.1   mycroft 	if (bno < 0)
   1311   1.35   thorpej 		return (0);
   1312   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1313    1.1   mycroft gotit:
   1314    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1315   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1316   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1317   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1318    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1319   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1320   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1321   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1322   1.73       dbj 		int cylno;
   1323   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1324   1.75       dbj 		KASSERT(cylno >= 0);
   1325   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1326   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1327   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1328   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1329   1.73       dbj 		    needswap);
   1330   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1331   1.73       dbj 	}
   1332    1.1   mycroft 	fs->fs_fmod = 1;
   1333   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1334  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1335  1.101        ad 		mutex_exit(&ump->um_lock);
   1336   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1337  1.101        ad 		mutex_enter(&ump->um_lock);
   1338  1.101        ad 	}
   1339   1.30      fvdl 	return (blkno);
   1340    1.1   mycroft }
   1341    1.1   mycroft 
   1342   1.55      matt #ifdef XXXUBC
   1343    1.1   mycroft /*
   1344    1.1   mycroft  * Determine whether a cluster can be allocated.
   1345    1.1   mycroft  *
   1346    1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1347    1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1348    1.1   mycroft  * take the first one that we find following bpref.
   1349    1.1   mycroft  */
   1350   1.60      fvdl 
   1351   1.60      fvdl /*
   1352   1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1353   1.60      fvdl  */
   1354   1.58      fvdl static daddr_t
   1355   1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1356    1.1   mycroft {
   1357  1.101        ad 	struct ufsmount *ump;
   1358   1.33  augustss 	struct fs *fs;
   1359   1.33  augustss 	struct cg *cgp;
   1360    1.1   mycroft 	struct buf *bp;
   1361   1.18      fvdl 	int i, got, run, bno, bit, map;
   1362    1.1   mycroft 	u_char *mapp;
   1363    1.5   mycroft 	int32_t *lp;
   1364    1.1   mycroft 
   1365    1.1   mycroft 	fs = ip->i_fs;
   1366  1.101        ad 	ump = ip->i_ump;
   1367  1.101        ad 
   1368  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1369    1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1370   1.35   thorpej 		return (0);
   1371  1.101        ad 	mutex_exit(&ump->um_lock);
   1372    1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1373  1.107   hannken 	    NOCRED, 0, &bp))
   1374    1.1   mycroft 		goto fail;
   1375    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1376   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1377    1.1   mycroft 		goto fail;
   1378    1.1   mycroft 	/*
   1379    1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1380    1.1   mycroft 	 * available in this cylinder group.
   1381    1.1   mycroft 	 */
   1382   1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1383    1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1384   1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1385    1.1   mycroft 			break;
   1386    1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1387    1.5   mycroft 		/*
   1388    1.5   mycroft 		 * This is the first time looking for a cluster in this
   1389    1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1390    1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1391    1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1392    1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1393    1.5   mycroft 		 */
   1394   1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1395    1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1396   1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1397    1.5   mycroft 				break;
   1398  1.101        ad 		mutex_enter(&ump->um_lock);
   1399    1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1400  1.101        ad 		mutex_exit(&ump->um_lock);
   1401    1.1   mycroft 		goto fail;
   1402    1.5   mycroft 	}
   1403    1.1   mycroft 	/*
   1404    1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1405    1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1406    1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1407    1.1   mycroft 	 * block allocation. We do not search before the current
   1408    1.1   mycroft 	 * preference point as we do not want to allocate a block
   1409    1.1   mycroft 	 * that is allocated before the previous one (as we will
   1410    1.1   mycroft 	 * then have to wait for another pass of the elevator
   1411    1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1412    1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1413    1.1   mycroft 	 */
   1414    1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1415    1.1   mycroft 		bpref = 0;
   1416    1.1   mycroft 	else
   1417    1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1418   1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1419    1.1   mycroft 	map = *mapp++;
   1420    1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1421   1.19    bouyer 	for (run = 0, got = bpref;
   1422   1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1423    1.1   mycroft 		if ((map & bit) == 0) {
   1424    1.1   mycroft 			run = 0;
   1425    1.1   mycroft 		} else {
   1426    1.1   mycroft 			run++;
   1427    1.1   mycroft 			if (run == len)
   1428    1.1   mycroft 				break;
   1429    1.1   mycroft 		}
   1430   1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1431    1.1   mycroft 			bit <<= 1;
   1432    1.1   mycroft 		} else {
   1433    1.1   mycroft 			map = *mapp++;
   1434    1.1   mycroft 			bit = 1;
   1435    1.1   mycroft 		}
   1436    1.1   mycroft 	}
   1437   1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1438    1.1   mycroft 		goto fail;
   1439    1.1   mycroft 	/*
   1440    1.1   mycroft 	 * Allocate the cluster that we have found.
   1441    1.1   mycroft 	 */
   1442   1.30      fvdl #ifdef DIAGNOSTIC
   1443   1.18      fvdl 	for (i = 1; i <= len; i++)
   1444   1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1445   1.30      fvdl 		    got - run + i))
   1446   1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1447   1.30      fvdl #endif
   1448   1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1449   1.18      fvdl 	if (dtog(fs, bno) != cg)
   1450   1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1451    1.1   mycroft 	len = blkstofrags(fs, len);
   1452  1.101        ad 	mutex_enter(&ump->um_lock);
   1453    1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1454   1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1455    1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1456   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1457  1.101        ad 	mutex_exit(&ump->um_lock);
   1458    1.8       cgd 	bdwrite(bp);
   1459    1.1   mycroft 	return (bno);
   1460    1.1   mycroft 
   1461    1.1   mycroft fail:
   1462  1.101        ad 	brelse(bp, 0);
   1463  1.101        ad 	mutex_enter(&ump->um_lock);
   1464    1.1   mycroft 	return (0);
   1465    1.1   mycroft }
   1466   1.55      matt #endif /* XXXUBC */
   1467    1.1   mycroft 
   1468    1.1   mycroft /*
   1469    1.1   mycroft  * Determine whether an inode can be allocated.
   1470    1.1   mycroft  *
   1471    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1472    1.1   mycroft  * allocate it using the following policy:
   1473    1.1   mycroft  *   1) allocate the requested inode.
   1474    1.1   mycroft  *   2) allocate the next available inode after the requested
   1475    1.1   mycroft  *      inode in the specified cylinder group.
   1476    1.1   mycroft  */
   1477   1.58      fvdl static daddr_t
   1478   1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1479    1.1   mycroft {
   1480  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1481   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1482   1.33  augustss 	struct cg *cgp;
   1483   1.60      fvdl 	struct buf *bp, *ibp;
   1484   1.60      fvdl 	u_int8_t *inosused;
   1485    1.1   mycroft 	int error, start, len, loc, map, i;
   1486   1.60      fvdl 	int32_t initediblk;
   1487   1.60      fvdl 	struct ufs2_dinode *dp2;
   1488   1.19    bouyer #ifdef FFS_EI
   1489   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1490   1.19    bouyer #endif
   1491    1.1   mycroft 
   1492  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1493  1.101        ad 
   1494    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1495   1.35   thorpej 		return (0);
   1496  1.101        ad 	mutex_exit(&ump->um_lock);
   1497    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1498  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1499  1.101        ad 	if (error)
   1500  1.101        ad 		goto fail;
   1501    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1502  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1503  1.101        ad 		goto fail;
   1504   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1505   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1506   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1507   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1508   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1509    1.1   mycroft 	if (ipref) {
   1510    1.1   mycroft 		ipref %= fs->fs_ipg;
   1511   1.60      fvdl 		if (isclr(inosused, ipref))
   1512    1.1   mycroft 			goto gotit;
   1513    1.1   mycroft 	}
   1514   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1515   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1516   1.19    bouyer 		NBBY);
   1517   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1518    1.1   mycroft 	if (loc == 0) {
   1519    1.1   mycroft 		len = start + 1;
   1520    1.1   mycroft 		start = 0;
   1521   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1522    1.1   mycroft 		if (loc == 0) {
   1523   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1524   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1525   1.19    bouyer 				fs->fs_fsmnt);
   1526    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1527    1.1   mycroft 			/* NOTREACHED */
   1528    1.1   mycroft 		}
   1529    1.1   mycroft 	}
   1530    1.1   mycroft 	i = start + len - loc;
   1531   1.60      fvdl 	map = inosused[i];
   1532    1.1   mycroft 	ipref = i * NBBY;
   1533    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1534    1.1   mycroft 		if ((map & i) == 0) {
   1535   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1536    1.1   mycroft 			goto gotit;
   1537    1.1   mycroft 		}
   1538    1.1   mycroft 	}
   1539   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1540    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1541    1.1   mycroft 	/* NOTREACHED */
   1542    1.1   mycroft gotit:
   1543   1.60      fvdl 	/*
   1544   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1545   1.60      fvdl 	 */
   1546   1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1547  1.104   hannken 	ibp = NULL;
   1548   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1549   1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1550   1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1551   1.60      fvdl 		ibp = getblk(ip->i_devvp, fsbtodb(fs,
   1552   1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1553   1.60      fvdl 		    (int)fs->fs_bsize, 0, 0);
   1554   1.60      fvdl 		    memset(ibp->b_data, 0, fs->fs_bsize);
   1555   1.60      fvdl 		    dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1556   1.60      fvdl 		    for (i = 0; i < INOPB(fs); i++) {
   1557   1.60      fvdl 			/*
   1558   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1559   1.60      fvdl 			 * random, after all.
   1560   1.60      fvdl 			 */
   1561   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1562   1.60      fvdl 			dp2++;
   1563   1.60      fvdl 		}
   1564   1.60      fvdl 		initediblk += INOPB(fs);
   1565   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1566   1.60      fvdl 	}
   1567   1.60      fvdl 
   1568  1.101        ad 	mutex_enter(&ump->um_lock);
   1569   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1570  1.101        ad 	setbit(inosused, ipref);
   1571  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1572  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1573  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1574  1.101        ad 	fs->fs_fmod = 1;
   1575  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1576  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1577  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1578  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1579  1.101        ad 	}
   1580  1.101        ad 	mutex_exit(&ump->um_lock);
   1581  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1582  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1583    1.1   mycroft 	bdwrite(bp);
   1584  1.104   hannken 	if (ibp != NULL)
   1585  1.104   hannken 		bawrite(ibp);
   1586    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1587  1.101        ad  fail:
   1588  1.101        ad 	brelse(bp, 0);
   1589  1.101        ad 	mutex_enter(&ump->um_lock);
   1590  1.101        ad 	return (0);
   1591    1.1   mycroft }
   1592    1.1   mycroft 
   1593    1.1   mycroft /*
   1594    1.1   mycroft  * Free a block or fragment.
   1595    1.1   mycroft  *
   1596    1.1   mycroft  * The specified block or fragment is placed back in the
   1597   1.81     perry  * free map. If a fragment is deallocated, a possible
   1598    1.1   mycroft  * block reassembly is checked.
   1599  1.106     pooka  *
   1600  1.106     pooka  * => um_lock not held on entry or exit
   1601    1.1   mycroft  */
   1602    1.9  christos void
   1603   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1604   1.85   thorpej     ino_t inum)
   1605    1.1   mycroft {
   1606   1.33  augustss 	struct cg *cgp;
   1607    1.1   mycroft 	struct buf *bp;
   1608   1.76   hannken 	struct ufsmount *ump;
   1609   1.60      fvdl 	int32_t fragno, cgbno;
   1610   1.76   hannken 	daddr_t cgblkno;
   1611    1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1612   1.62      fvdl 	u_int8_t *blksfree;
   1613   1.76   hannken 	dev_t dev;
   1614   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1615    1.1   mycroft 
   1616   1.76   hannken 	cg = dtog(fs, bno);
   1617   1.77   hannken 	if (devvp->v_type != VBLK) {
   1618   1.77   hannken 		/* devvp is a snapshot */
   1619   1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1620  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1621   1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1622   1.76   hannken 	} else {
   1623   1.76   hannken 		dev = devvp->v_rdev;
   1624  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1625   1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1626  1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1627   1.76   hannken 			return;
   1628   1.76   hannken 	}
   1629   1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1630   1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1631   1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1632   1.58      fvdl 		       "size = %ld, fs = %s\n",
   1633   1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1634    1.1   mycroft 		panic("blkfree: bad size");
   1635    1.1   mycroft 	}
   1636   1.76   hannken 
   1637   1.60      fvdl 	if (bno >= fs->fs_size) {
   1638   1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1639   1.86  christos 		    (unsigned long long)inum);
   1640   1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1641    1.1   mycroft 		return;
   1642    1.1   mycroft 	}
   1643  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1644  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1645    1.1   mycroft 	if (error) {
   1646  1.101        ad 		brelse(bp, 0);
   1647    1.1   mycroft 		return;
   1648    1.1   mycroft 	}
   1649    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1650   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1651  1.101        ad 		brelse(bp, 0);
   1652    1.1   mycroft 		return;
   1653    1.1   mycroft 	}
   1654   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1655   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1656   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1657   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1658   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1659   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1660  1.101        ad 	mutex_enter(&ump->um_lock);
   1661    1.1   mycroft 	if (size == fs->fs_bsize) {
   1662   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1663   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1664   1.77   hannken 			if (devvp->v_type != VBLK) {
   1665   1.77   hannken 				/* devvp is a snapshot */
   1666  1.101        ad 				mutex_exit(&ump->um_lock);
   1667  1.101        ad 				brelse(bp, 0);
   1668   1.76   hannken 				return;
   1669   1.76   hannken 			}
   1670   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1671   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1672    1.1   mycroft 			panic("blkfree: freeing free block");
   1673    1.1   mycroft 		}
   1674   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1675   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1676   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1677    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1678    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1679   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1680   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1681   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1682   1.75       dbj 			KASSERT(i >= 0);
   1683   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1684   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1685   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1686   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1687   1.73       dbj 			    needswap);
   1688   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1689   1.73       dbj 		}
   1690    1.1   mycroft 	} else {
   1691   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1692    1.1   mycroft 		/*
   1693    1.1   mycroft 		 * decrement the counts associated with the old frags
   1694    1.1   mycroft 		 */
   1695   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1696   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1697    1.1   mycroft 		/*
   1698    1.1   mycroft 		 * deallocate the fragment
   1699    1.1   mycroft 		 */
   1700    1.1   mycroft 		frags = numfrags(fs, size);
   1701    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1702   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1703   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1704   1.59   tsutsui 				       ", fs = %s\n",
   1705   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1706    1.1   mycroft 				panic("blkfree: freeing free frag");
   1707    1.1   mycroft 			}
   1708   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1709    1.1   mycroft 		}
   1710   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1711    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1712   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1713    1.1   mycroft 		/*
   1714    1.1   mycroft 		 * add back in counts associated with the new frags
   1715    1.1   mycroft 		 */
   1716   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1717   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1718    1.1   mycroft 		/*
   1719    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1720    1.1   mycroft 		 */
   1721   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1722   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1723   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1724    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1725    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1726   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1727   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1728    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1729    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1730   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1731   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1732   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1733   1.75       dbj 				KASSERT(i >= 0);
   1734   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1735   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1736   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1737   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1738   1.73       dbj 				    bbase)], 1, needswap);
   1739   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1740   1.73       dbj 			}
   1741    1.1   mycroft 		}
   1742    1.1   mycroft 	}
   1743    1.1   mycroft 	fs->fs_fmod = 1;
   1744   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1745  1.101        ad 	mutex_exit(&ump->um_lock);
   1746    1.1   mycroft 	bdwrite(bp);
   1747    1.1   mycroft }
   1748    1.1   mycroft 
   1749   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1750   1.55      matt #ifdef XXXUBC
   1751   1.18      fvdl /*
   1752   1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1753   1.18      fvdl  * fragment is allocated, false if it is free.
   1754   1.18      fvdl  */
   1755   1.18      fvdl static int
   1756   1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1757   1.18      fvdl {
   1758   1.18      fvdl 	struct fs *fs;
   1759   1.18      fvdl 	struct cg *cgp;
   1760   1.18      fvdl 	struct buf *bp;
   1761   1.18      fvdl 	int i, error, frags, free;
   1762   1.18      fvdl 
   1763   1.18      fvdl 	fs = ip->i_fs;
   1764   1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1765   1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1766   1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1767   1.18      fvdl 		panic("checkblk: bad size");
   1768   1.18      fvdl 	}
   1769   1.60      fvdl 	if (bno >= fs->fs_size)
   1770   1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1771   1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1772  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   1773   1.18      fvdl 	if (error) {
   1774  1.101        ad 		brelse(bp, 0);
   1775   1.18      fvdl 		return 0;
   1776   1.18      fvdl 	}
   1777   1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1778   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1779  1.101        ad 		brelse(bp, 0);
   1780   1.18      fvdl 		return 0;
   1781   1.18      fvdl 	}
   1782   1.18      fvdl 	bno = dtogd(fs, bno);
   1783   1.18      fvdl 	if (size == fs->fs_bsize) {
   1784   1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1785   1.19    bouyer 			fragstoblks(fs, bno));
   1786   1.18      fvdl 	} else {
   1787   1.18      fvdl 		frags = numfrags(fs, size);
   1788   1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1789   1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1790   1.18      fvdl 				free++;
   1791   1.18      fvdl 		if (free != 0 && free != frags)
   1792   1.18      fvdl 			panic("checkblk: partially free fragment");
   1793   1.18      fvdl 	}
   1794  1.101        ad 	brelse(bp, 0);
   1795   1.18      fvdl 	return (!free);
   1796   1.18      fvdl }
   1797   1.55      matt #endif /* XXXUBC */
   1798   1.18      fvdl #endif /* DIAGNOSTIC */
   1799   1.18      fvdl 
   1800    1.1   mycroft /*
   1801    1.1   mycroft  * Free an inode.
   1802   1.30      fvdl  */
   1803   1.30      fvdl int
   1804   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1805   1.30      fvdl {
   1806   1.30      fvdl 
   1807   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1808   1.88      yamt 		softdep_freefile(vp, ino, mode);
   1809   1.30      fvdl 		return (0);
   1810   1.30      fvdl 	}
   1811   1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1812   1.30      fvdl }
   1813   1.30      fvdl 
   1814   1.30      fvdl /*
   1815   1.30      fvdl  * Do the actual free operation.
   1816    1.1   mycroft  * The specified inode is placed back in the free map.
   1817    1.1   mycroft  */
   1818    1.1   mycroft int
   1819   1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1820    1.9  christos {
   1821  1.101        ad 	struct ufsmount *ump;
   1822   1.33  augustss 	struct cg *cgp;
   1823    1.1   mycroft 	struct buf *bp;
   1824    1.1   mycroft 	int error, cg;
   1825   1.76   hannken 	daddr_t cgbno;
   1826   1.62      fvdl 	u_int8_t *inosused;
   1827   1.78   hannken 	dev_t dev;
   1828   1.19    bouyer #ifdef FFS_EI
   1829   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1830   1.19    bouyer #endif
   1831    1.1   mycroft 
   1832   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1833   1.78   hannken 	if (devvp->v_type != VBLK) {
   1834   1.78   hannken 		/* devvp is a snapshot */
   1835   1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1836  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1837   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1838   1.76   hannken 	} else {
   1839   1.78   hannken 		dev = devvp->v_rdev;
   1840  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1841   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1842   1.76   hannken 	}
   1843    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1844   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1845   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1846  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1847  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1848    1.1   mycroft 	if (error) {
   1849  1.101        ad 		brelse(bp, 0);
   1850   1.30      fvdl 		return (error);
   1851    1.1   mycroft 	}
   1852    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1853   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1854  1.101        ad 		brelse(bp, 0);
   1855    1.1   mycroft 		return (0);
   1856    1.1   mycroft 	}
   1857   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1858   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1859   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1860   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1861   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1862    1.1   mycroft 	ino %= fs->fs_ipg;
   1863   1.62      fvdl 	if (isclr(inosused, ino)) {
   1864   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1865   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1866   1.86  christos 		    fs->fs_fsmnt);
   1867    1.1   mycroft 		if (fs->fs_ronly == 0)
   1868    1.1   mycroft 			panic("ifree: freeing free inode");
   1869    1.1   mycroft 	}
   1870   1.62      fvdl 	clrbit(inosused, ino);
   1871   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1872   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1873   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1874  1.101        ad 	mutex_enter(&ump->um_lock);
   1875    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1876    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1877   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1878   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1879    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1880    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1881    1.1   mycroft 	}
   1882    1.1   mycroft 	fs->fs_fmod = 1;
   1883   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1884  1.101        ad 	mutex_exit(&ump->um_lock);
   1885    1.1   mycroft 	bdwrite(bp);
   1886    1.1   mycroft 	return (0);
   1887    1.1   mycroft }
   1888    1.1   mycroft 
   1889    1.1   mycroft /*
   1890   1.76   hannken  * Check to see if a file is free.
   1891   1.76   hannken  */
   1892   1.76   hannken int
   1893   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1894   1.76   hannken {
   1895   1.76   hannken 	struct cg *cgp;
   1896   1.76   hannken 	struct buf *bp;
   1897   1.76   hannken 	daddr_t cgbno;
   1898   1.76   hannken 	int ret, cg;
   1899   1.76   hannken 	u_int8_t *inosused;
   1900   1.76   hannken 
   1901   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1902   1.77   hannken 	if (devvp->v_type != VBLK) {
   1903   1.77   hannken 		/* devvp is a snapshot */
   1904   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1905   1.77   hannken 	} else
   1906   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1907   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1908   1.76   hannken 		return 1;
   1909  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1910  1.101        ad 		brelse(bp, 0);
   1911   1.76   hannken 		return 1;
   1912   1.76   hannken 	}
   1913   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1914   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1915  1.101        ad 		brelse(bp, 0);
   1916   1.76   hannken 		return 1;
   1917   1.76   hannken 	}
   1918   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1919   1.76   hannken 	ino %= fs->fs_ipg;
   1920   1.76   hannken 	ret = isclr(inosused, ino);
   1921  1.101        ad 	brelse(bp, 0);
   1922   1.76   hannken 	return ret;
   1923   1.76   hannken }
   1924   1.76   hannken 
   1925   1.76   hannken /*
   1926    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1927    1.1   mycroft  *
   1928    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1929    1.1   mycroft  * available.
   1930    1.1   mycroft  */
   1931   1.60      fvdl static int32_t
   1932   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1933    1.1   mycroft {
   1934   1.60      fvdl 	int32_t bno;
   1935    1.1   mycroft 	int start, len, loc, i;
   1936    1.1   mycroft 	int blk, field, subfield, pos;
   1937   1.19    bouyer 	int ostart, olen;
   1938   1.62      fvdl 	u_int8_t *blksfree;
   1939   1.30      fvdl #ifdef FFS_EI
   1940   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1941   1.30      fvdl #endif
   1942    1.1   mycroft 
   1943  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1944  1.101        ad 
   1945    1.1   mycroft 	/*
   1946    1.1   mycroft 	 * find the fragment by searching through the free block
   1947    1.1   mycroft 	 * map for an appropriate bit pattern
   1948    1.1   mycroft 	 */
   1949    1.1   mycroft 	if (bpref)
   1950    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1951    1.1   mycroft 	else
   1952   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1953   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1954    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1955   1.19    bouyer 	ostart = start;
   1956   1.19    bouyer 	olen = len;
   1957   1.45     lukem 	loc = scanc((u_int)len,
   1958   1.62      fvdl 		(const u_char *)&blksfree[start],
   1959   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1960   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1961    1.1   mycroft 	if (loc == 0) {
   1962    1.1   mycroft 		len = start + 1;
   1963    1.1   mycroft 		start = 0;
   1964   1.45     lukem 		loc = scanc((u_int)len,
   1965   1.62      fvdl 			(const u_char *)&blksfree[0],
   1966   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1967   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1968    1.1   mycroft 		if (loc == 0) {
   1969   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1970   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1971   1.20      ross 			printf("offset=%d %ld\n",
   1972   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1973   1.62      fvdl 				(long)blksfree - (long)cgp);
   1974   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1975    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1976    1.1   mycroft 			/* NOTREACHED */
   1977    1.1   mycroft 		}
   1978    1.1   mycroft 	}
   1979    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1980   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1981    1.1   mycroft 	/*
   1982    1.1   mycroft 	 * found the byte in the map
   1983    1.1   mycroft 	 * sift through the bits to find the selected frag
   1984    1.1   mycroft 	 */
   1985    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1986   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1987    1.1   mycroft 		blk <<= 1;
   1988    1.1   mycroft 		field = around[allocsiz];
   1989    1.1   mycroft 		subfield = inside[allocsiz];
   1990    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1991    1.1   mycroft 			if ((blk & field) == subfield)
   1992    1.1   mycroft 				return (bno + pos);
   1993    1.1   mycroft 			field <<= 1;
   1994    1.1   mycroft 			subfield <<= 1;
   1995    1.1   mycroft 		}
   1996    1.1   mycroft 	}
   1997   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1998    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1999   1.58      fvdl 	/* return (-1); */
   2000    1.1   mycroft }
   2001    1.1   mycroft 
   2002    1.1   mycroft /*
   2003    1.1   mycroft  * Update the cluster map because of an allocation or free.
   2004    1.1   mycroft  *
   2005    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2006    1.1   mycroft  */
   2007    1.9  christos void
   2008   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2009    1.1   mycroft {
   2010    1.4       cgd 	int32_t *sump;
   2011    1.5   mycroft 	int32_t *lp;
   2012    1.1   mycroft 	u_char *freemapp, *mapp;
   2013    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2014   1.30      fvdl #ifdef FFS_EI
   2015   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2016   1.30      fvdl #endif
   2017    1.1   mycroft 
   2018  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2019  1.101        ad 
   2020    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2021    1.1   mycroft 		return;
   2022   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2023   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2024    1.1   mycroft 	/*
   2025    1.1   mycroft 	 * Allocate or clear the actual block.
   2026    1.1   mycroft 	 */
   2027    1.1   mycroft 	if (cnt > 0)
   2028    1.1   mycroft 		setbit(freemapp, blkno);
   2029    1.1   mycroft 	else
   2030    1.1   mycroft 		clrbit(freemapp, blkno);
   2031    1.1   mycroft 	/*
   2032    1.1   mycroft 	 * Find the size of the cluster going forward.
   2033    1.1   mycroft 	 */
   2034    1.1   mycroft 	start = blkno + 1;
   2035    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2036   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2037   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2038    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2039    1.1   mycroft 	map = *mapp++;
   2040    1.1   mycroft 	bit = 1 << (start % NBBY);
   2041    1.1   mycroft 	for (i = start; i < end; i++) {
   2042    1.1   mycroft 		if ((map & bit) == 0)
   2043    1.1   mycroft 			break;
   2044    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2045    1.1   mycroft 			bit <<= 1;
   2046    1.1   mycroft 		} else {
   2047    1.1   mycroft 			map = *mapp++;
   2048    1.1   mycroft 			bit = 1;
   2049    1.1   mycroft 		}
   2050    1.1   mycroft 	}
   2051    1.1   mycroft 	forw = i - start;
   2052    1.1   mycroft 	/*
   2053    1.1   mycroft 	 * Find the size of the cluster going backward.
   2054    1.1   mycroft 	 */
   2055    1.1   mycroft 	start = blkno - 1;
   2056    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2057    1.1   mycroft 	if (end < 0)
   2058    1.1   mycroft 		end = -1;
   2059    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2060    1.1   mycroft 	map = *mapp--;
   2061    1.1   mycroft 	bit = 1 << (start % NBBY);
   2062    1.1   mycroft 	for (i = start; i > end; i--) {
   2063    1.1   mycroft 		if ((map & bit) == 0)
   2064    1.1   mycroft 			break;
   2065    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2066    1.1   mycroft 			bit >>= 1;
   2067    1.1   mycroft 		} else {
   2068    1.1   mycroft 			map = *mapp--;
   2069    1.1   mycroft 			bit = 1 << (NBBY - 1);
   2070    1.1   mycroft 		}
   2071    1.1   mycroft 	}
   2072    1.1   mycroft 	back = start - i;
   2073    1.1   mycroft 	/*
   2074    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2075    1.1   mycroft 	 * back clusters.
   2076    1.1   mycroft 	 */
   2077    1.1   mycroft 	i = back + forw + 1;
   2078    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2079    1.1   mycroft 		i = fs->fs_contigsumsize;
   2080   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2081    1.1   mycroft 	if (back > 0)
   2082   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2083    1.1   mycroft 	if (forw > 0)
   2084   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2085   1.19    bouyer 
   2086    1.5   mycroft 	/*
   2087    1.5   mycroft 	 * Update cluster summary information.
   2088    1.5   mycroft 	 */
   2089    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2090    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2091   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2092    1.5   mycroft 			break;
   2093   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2094    1.1   mycroft }
   2095    1.1   mycroft 
   2096    1.1   mycroft /*
   2097    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2098   1.81     perry  *
   2099    1.1   mycroft  * The form of the error message is:
   2100    1.1   mycroft  *	fs: error message
   2101    1.1   mycroft  */
   2102    1.1   mycroft static void
   2103   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2104    1.1   mycroft {
   2105    1.1   mycroft 
   2106   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2107   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2108    1.1   mycroft }
   2109