ffs_alloc.c revision 1.109.2.1 1 1.109.2.1 simonb /* $NetBSD: ffs_alloc.c,v 1.109.2.1 2008/06/10 14:51:23 simonb Exp $ */
2 1.109.2.1 simonb
3 1.109.2.1 simonb /*-
4 1.109.2.1 simonb * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.109.2.1 simonb * All rights reserved.
6 1.109.2.1 simonb *
7 1.109.2.1 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.109.2.1 simonb * by Wasabi Systems, Inc.
9 1.109.2.1 simonb *
10 1.109.2.1 simonb * Redistribution and use in source and binary forms, with or without
11 1.109.2.1 simonb * modification, are permitted provided that the following conditions
12 1.109.2.1 simonb * are met:
13 1.109.2.1 simonb * 1. Redistributions of source code must retain the above copyright
14 1.109.2.1 simonb * notice, this list of conditions and the following disclaimer.
15 1.109.2.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.109.2.1 simonb * notice, this list of conditions and the following disclaimer in the
17 1.109.2.1 simonb * documentation and/or other materials provided with the distribution.
18 1.109.2.1 simonb * 3. All advertising materials mentioning features or use of this software
19 1.109.2.1 simonb * must display the following acknowledgement:
20 1.109.2.1 simonb * This product includes software developed by the NetBSD
21 1.109.2.1 simonb * Foundation, Inc. and its contributors.
22 1.109.2.1 simonb * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.109.2.1 simonb * contributors may be used to endorse or promote products derived
24 1.109.2.1 simonb * from this software without specific prior written permission.
25 1.109.2.1 simonb *
26 1.109.2.1 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.109.2.1 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.109.2.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.109.2.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.109.2.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.109.2.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.109.2.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.109.2.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.109.2.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.109.2.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.109.2.1 simonb * POSSIBILITY OF SUCH DAMAGE.
37 1.109.2.1 simonb */
38 1.2 cgd
39 1.1 mycroft /*
40 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
41 1.60 fvdl * All rights reserved.
42 1.60 fvdl *
43 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
44 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
45 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
46 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
47 1.60 fvdl * research program
48 1.60 fvdl *
49 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
50 1.1 mycroft * The Regents of the University of California. All rights reserved.
51 1.1 mycroft *
52 1.1 mycroft * Redistribution and use in source and binary forms, with or without
53 1.1 mycroft * modification, are permitted provided that the following conditions
54 1.1 mycroft * are met:
55 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
56 1.1 mycroft * notice, this list of conditions and the following disclaimer.
57 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
58 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
59 1.1 mycroft * documentation and/or other materials provided with the distribution.
60 1.69 agc * 3. Neither the name of the University nor the names of its contributors
61 1.1 mycroft * may be used to endorse or promote products derived from this software
62 1.1 mycroft * without specific prior written permission.
63 1.1 mycroft *
64 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
65 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
68 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 1.1 mycroft * SUCH DAMAGE.
75 1.1 mycroft *
76 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
77 1.1 mycroft */
78 1.53 lukem
79 1.53 lukem #include <sys/cdefs.h>
80 1.109.2.1 simonb __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.109.2.1 2008/06/10 14:51:23 simonb Exp $");
81 1.17 mrg
82 1.43 mrg #if defined(_KERNEL_OPT)
83 1.27 thorpej #include "opt_ffs.h"
84 1.21 scottr #include "opt_quota.h"
85 1.22 scottr #endif
86 1.1 mycroft
87 1.1 mycroft #include <sys/param.h>
88 1.1 mycroft #include <sys/systm.h>
89 1.1 mycroft #include <sys/buf.h>
90 1.109.2.1 simonb #include <sys/fstrans.h>
91 1.109.2.1 simonb #include <sys/kauth.h>
92 1.1 mycroft #include <sys/kernel.h>
93 1.109.2.1 simonb #include <sys/mount.h>
94 1.109.2.1 simonb #include <sys/proc.h>
95 1.1 mycroft #include <sys/syslog.h>
96 1.109.2.1 simonb #include <sys/vnode.h>
97 1.109.2.1 simonb #include <sys/wapbl.h>
98 1.29 mrg
99 1.76 hannken #include <miscfs/specfs/specdev.h>
100 1.1 mycroft #include <ufs/ufs/quota.h>
101 1.19 bouyer #include <ufs/ufs/ufsmount.h>
102 1.1 mycroft #include <ufs/ufs/inode.h>
103 1.9 christos #include <ufs/ufs/ufs_extern.h>
104 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
105 1.109.2.1 simonb #include <ufs/ufs/ufs_wapbl.h>
106 1.1 mycroft
107 1.1 mycroft #include <ufs/ffs/fs.h>
108 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
109 1.1 mycroft
110 1.85 thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
111 1.85 thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
112 1.55 matt #ifdef XXXUBC
113 1.85 thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
114 1.55 matt #endif
115 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
116 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
117 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
118 1.85 thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
119 1.85 thorpej daddr_t (*)(struct inode *, int, daddr_t, int));
120 1.85 thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
121 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
122 1.85 thorpej daddr_t, int);
123 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
124 1.55 matt #ifdef XXXUBC
125 1.85 thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
126 1.18 fvdl #endif
127 1.55 matt #endif
128 1.23 drochner
129 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
130 1.34 jdolecek int ffs_log_changeopt = 0;
131 1.34 jdolecek
132 1.23 drochner /* in ffs_tables.c */
133 1.40 jdolecek extern const int inside[], around[];
134 1.40 jdolecek extern const u_char * const fragtbl[];
135 1.1 mycroft
136 1.1 mycroft /*
137 1.1 mycroft * Allocate a block in the file system.
138 1.81 perry *
139 1.1 mycroft * The size of the requested block is given, which must be some
140 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
141 1.1 mycroft * A preference may be optionally specified. If a preference is given
142 1.1 mycroft * the following hierarchy is used to allocate a block:
143 1.1 mycroft * 1) allocate the requested block.
144 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
145 1.1 mycroft * 3) allocate a block in the same cylinder group.
146 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
147 1.1 mycroft * available block is located.
148 1.47 wiz * If no block preference is given the following hierarchy is used
149 1.1 mycroft * to allocate a block:
150 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
151 1.1 mycroft * inode for the file.
152 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
153 1.1 mycroft * available block is located.
154 1.106 pooka *
155 1.106 pooka * => called with um_lock held
156 1.106 pooka * => releases um_lock before returning
157 1.1 mycroft */
158 1.9 christos int
159 1.96 christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
160 1.91 elad kauth_cred_t cred, daddr_t *bnp)
161 1.1 mycroft {
162 1.101 ad struct ufsmount *ump;
163 1.62 fvdl struct fs *fs;
164 1.58 fvdl daddr_t bno;
165 1.9 christos int cg;
166 1.9 christos #ifdef QUOTA
167 1.9 christos int error;
168 1.9 christos #endif
169 1.81 perry
170 1.62 fvdl fs = ip->i_fs;
171 1.101 ad ump = ip->i_ump;
172 1.101 ad
173 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
174 1.62 fvdl
175 1.37 chs #ifdef UVM_PAGE_TRKOWN
176 1.51 chs if (ITOV(ip)->v_type == VREG &&
177 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
178 1.37 chs struct vm_page *pg;
179 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
180 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
181 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
182 1.37 chs
183 1.105 ad mutex_enter(&uobj->vmobjlock);
184 1.37 chs while (off < endoff) {
185 1.37 chs pg = uvm_pagelookup(uobj, off);
186 1.37 chs KASSERT(pg != NULL);
187 1.37 chs KASSERT(pg->owner == curproc->p_pid);
188 1.37 chs off += PAGE_SIZE;
189 1.37 chs }
190 1.105 ad mutex_exit(&uobj->vmobjlock);
191 1.37 chs }
192 1.37 chs #endif
193 1.37 chs
194 1.1 mycroft *bnp = 0;
195 1.1 mycroft #ifdef DIAGNOSTIC
196 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
197 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
198 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
199 1.1 mycroft panic("ffs_alloc: bad size");
200 1.1 mycroft }
201 1.1 mycroft if (cred == NOCRED)
202 1.56 provos panic("ffs_alloc: missing credential");
203 1.1 mycroft #endif /* DIAGNOSTIC */
204 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
205 1.1 mycroft goto nospace;
206 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
207 1.99 pooka kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
208 1.1 mycroft goto nospace;
209 1.1 mycroft #ifdef QUOTA
210 1.101 ad mutex_exit(&ump->um_lock);
211 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
212 1.1 mycroft return (error);
213 1.101 ad mutex_enter(&ump->um_lock);
214 1.1 mycroft #endif
215 1.1 mycroft if (bpref >= fs->fs_size)
216 1.1 mycroft bpref = 0;
217 1.1 mycroft if (bpref == 0)
218 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
219 1.1 mycroft else
220 1.1 mycroft cg = dtog(fs, bpref);
221 1.84 dbj bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
222 1.1 mycroft if (bno > 0) {
223 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
224 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
225 1.1 mycroft *bnp = bno;
226 1.1 mycroft return (0);
227 1.1 mycroft }
228 1.1 mycroft #ifdef QUOTA
229 1.1 mycroft /*
230 1.1 mycroft * Restore user's disk quota because allocation failed.
231 1.1 mycroft */
232 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
233 1.1 mycroft #endif
234 1.1 mycroft nospace:
235 1.101 ad mutex_exit(&ump->um_lock);
236 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
237 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
238 1.1 mycroft return (ENOSPC);
239 1.1 mycroft }
240 1.1 mycroft
241 1.1 mycroft /*
242 1.1 mycroft * Reallocate a fragment to a bigger size
243 1.1 mycroft *
244 1.1 mycroft * The number and size of the old block is given, and a preference
245 1.1 mycroft * and new size is also specified. The allocator attempts to extend
246 1.1 mycroft * the original block. Failing that, the regular block allocator is
247 1.1 mycroft * invoked to get an appropriate block.
248 1.106 pooka *
249 1.106 pooka * => called with um_lock held
250 1.106 pooka * => return with um_lock released
251 1.1 mycroft */
252 1.9 christos int
253 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
254 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
255 1.1 mycroft {
256 1.101 ad struct ufsmount *ump;
257 1.62 fvdl struct fs *fs;
258 1.1 mycroft struct buf *bp;
259 1.1 mycroft int cg, request, error;
260 1.58 fvdl daddr_t bprev, bno;
261 1.25 thorpej
262 1.62 fvdl fs = ip->i_fs;
263 1.101 ad ump = ip->i_ump;
264 1.101 ad
265 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
266 1.101 ad
267 1.37 chs #ifdef UVM_PAGE_TRKOWN
268 1.37 chs if (ITOV(ip)->v_type == VREG) {
269 1.37 chs struct vm_page *pg;
270 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
271 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
272 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
273 1.37 chs
274 1.105 ad mutex_enter(&uobj->vmobjlock);
275 1.37 chs while (off < endoff) {
276 1.37 chs pg = uvm_pagelookup(uobj, off);
277 1.37 chs KASSERT(pg != NULL);
278 1.37 chs KASSERT(pg->owner == curproc->p_pid);
279 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
280 1.37 chs off += PAGE_SIZE;
281 1.37 chs }
282 1.105 ad mutex_exit(&uobj->vmobjlock);
283 1.37 chs }
284 1.37 chs #endif
285 1.37 chs
286 1.1 mycroft #ifdef DIAGNOSTIC
287 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
288 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
289 1.13 christos printf(
290 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
291 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
292 1.1 mycroft panic("ffs_realloccg: bad size");
293 1.1 mycroft }
294 1.1 mycroft if (cred == NOCRED)
295 1.56 provos panic("ffs_realloccg: missing credential");
296 1.1 mycroft #endif /* DIAGNOSTIC */
297 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
298 1.101 ad kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
299 1.101 ad mutex_exit(&ump->um_lock);
300 1.1 mycroft goto nospace;
301 1.101 ad }
302 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
303 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
304 1.60 fvdl else
305 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
306 1.60 fvdl
307 1.60 fvdl if (bprev == 0) {
308 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
309 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
310 1.1 mycroft panic("ffs_realloccg: bad bprev");
311 1.1 mycroft }
312 1.101 ad mutex_exit(&ump->um_lock);
313 1.101 ad
314 1.1 mycroft /*
315 1.1 mycroft * Allocate the extra space in the buffer.
316 1.1 mycroft */
317 1.37 chs if (bpp != NULL &&
318 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
319 1.101 ad brelse(bp, 0);
320 1.1 mycroft return (error);
321 1.1 mycroft }
322 1.1 mycroft #ifdef QUOTA
323 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
324 1.44 chs if (bpp != NULL) {
325 1.101 ad brelse(bp, 0);
326 1.44 chs }
327 1.1 mycroft return (error);
328 1.1 mycroft }
329 1.1 mycroft #endif
330 1.1 mycroft /*
331 1.1 mycroft * Check for extension in the existing location.
332 1.1 mycroft */
333 1.1 mycroft cg = dtog(fs, bprev);
334 1.101 ad mutex_enter(&ump->um_lock);
335 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
336 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
337 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
338 1.37 chs
339 1.37 chs if (bpp != NULL) {
340 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
341 1.37 chs panic("bad blockno");
342 1.72 pk allocbuf(bp, nsize, 1);
343 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
344 1.105 ad mutex_enter(bp->b_objlock);
345 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
346 1.105 ad bp->b_oflags |= BO_DONE;
347 1.105 ad mutex_exit(bp->b_objlock);
348 1.37 chs *bpp = bp;
349 1.37 chs }
350 1.37 chs if (blknop != NULL) {
351 1.37 chs *blknop = bno;
352 1.37 chs }
353 1.1 mycroft return (0);
354 1.1 mycroft }
355 1.1 mycroft /*
356 1.1 mycroft * Allocate a new disk location.
357 1.1 mycroft */
358 1.1 mycroft if (bpref >= fs->fs_size)
359 1.1 mycroft bpref = 0;
360 1.1 mycroft switch ((int)fs->fs_optim) {
361 1.1 mycroft case FS_OPTSPACE:
362 1.1 mycroft /*
363 1.81 perry * Allocate an exact sized fragment. Although this makes
364 1.81 perry * best use of space, we will waste time relocating it if
365 1.1 mycroft * the file continues to grow. If the fragmentation is
366 1.1 mycroft * less than half of the minimum free reserve, we choose
367 1.1 mycroft * to begin optimizing for time.
368 1.1 mycroft */
369 1.1 mycroft request = nsize;
370 1.1 mycroft if (fs->fs_minfree < 5 ||
371 1.1 mycroft fs->fs_cstotal.cs_nffree >
372 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
373 1.1 mycroft break;
374 1.34 jdolecek
375 1.34 jdolecek if (ffs_log_changeopt) {
376 1.34 jdolecek log(LOG_NOTICE,
377 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
378 1.34 jdolecek fs->fs_fsmnt);
379 1.34 jdolecek }
380 1.34 jdolecek
381 1.1 mycroft fs->fs_optim = FS_OPTTIME;
382 1.1 mycroft break;
383 1.1 mycroft case FS_OPTTIME:
384 1.1 mycroft /*
385 1.1 mycroft * At this point we have discovered a file that is trying to
386 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
387 1.1 mycroft * we allocate a full sized block, then free the unused portion.
388 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
389 1.1 mycroft * above will be able to grow it in place without further
390 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
391 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
392 1.1 mycroft * optimizing for space.
393 1.1 mycroft */
394 1.1 mycroft request = fs->fs_bsize;
395 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
396 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
397 1.1 mycroft break;
398 1.34 jdolecek
399 1.34 jdolecek if (ffs_log_changeopt) {
400 1.34 jdolecek log(LOG_NOTICE,
401 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
402 1.34 jdolecek fs->fs_fsmnt);
403 1.34 jdolecek }
404 1.34 jdolecek
405 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
406 1.1 mycroft break;
407 1.1 mycroft default:
408 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
409 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
410 1.1 mycroft panic("ffs_realloccg: bad optim");
411 1.1 mycroft /* NOTREACHED */
412 1.1 mycroft }
413 1.58 fvdl bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
414 1.1 mycroft if (bno > 0) {
415 1.109.2.1 simonb if (!DOINGSOFTDEP(ITOV(ip))) {
416 1.109.2.1 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
417 1.109.2.1 simonb (ITOV(ip)->v_type != VREG)) {
418 1.109.2.1 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
419 1.109.2.1 simonb ip->i_ump->um_mountp, fsbtodb(fs, bprev),
420 1.109.2.1 simonb osize);
421 1.109.2.1 simonb } else
422 1.109.2.1 simonb ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
423 1.109.2.1 simonb ip->i_number);
424 1.109.2.1 simonb }
425 1.109.2.1 simonb if (nsize < request) {
426 1.109.2.1 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
427 1.109.2.1 simonb (ITOV(ip)->v_type != VREG)) {
428 1.109.2.1 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
429 1.109.2.1 simonb ip->i_ump->um_mountp,
430 1.109.2.1 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
431 1.109.2.1 simonb request - nsize);
432 1.109.2.1 simonb } else
433 1.109.2.1 simonb ffs_blkfree(fs, ip->i_devvp,
434 1.109.2.1 simonb bno + numfrags(fs, nsize),
435 1.109.2.1 simonb (long)(request - nsize), ip->i_number);
436 1.109.2.1 simonb }
437 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
438 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
439 1.37 chs if (bpp != NULL) {
440 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
441 1.72 pk allocbuf(bp, nsize, 1);
442 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
443 1.105 ad mutex_enter(bp->b_objlock);
444 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
445 1.105 ad bp->b_oflags |= BO_DONE;
446 1.105 ad mutex_exit(bp->b_objlock);
447 1.37 chs *bpp = bp;
448 1.37 chs }
449 1.37 chs if (blknop != NULL) {
450 1.37 chs *blknop = bno;
451 1.37 chs }
452 1.1 mycroft return (0);
453 1.1 mycroft }
454 1.101 ad mutex_exit(&ump->um_lock);
455 1.101 ad
456 1.1 mycroft #ifdef QUOTA
457 1.1 mycroft /*
458 1.1 mycroft * Restore user's disk quota because allocation failed.
459 1.1 mycroft */
460 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
461 1.1 mycroft #endif
462 1.37 chs if (bpp != NULL) {
463 1.101 ad brelse(bp, 0);
464 1.37 chs }
465 1.37 chs
466 1.1 mycroft nospace:
467 1.1 mycroft /*
468 1.1 mycroft * no space available
469 1.1 mycroft */
470 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
471 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
472 1.1 mycroft return (ENOSPC);
473 1.1 mycroft }
474 1.1 mycroft
475 1.88 yamt #if 0
476 1.1 mycroft /*
477 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
478 1.1 mycroft *
479 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
480 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
481 1.60 fvdl * to find a range of sequential blocks starting as close as possible
482 1.60 fvdl * from the end of the allocation for the logical block immediately
483 1.60 fvdl * preceding the current range. If successful, the physical block numbers
484 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
485 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
486 1.60 fvdl * success in doing the reallocation is returned. Note that the error
487 1.60 fvdl * return is not reflected back to the user. Rather the previous block
488 1.60 fvdl * allocation will be used.
489 1.60 fvdl
490 1.1 mycroft */
491 1.55 matt #ifdef XXXUBC
492 1.3 mycroft #ifdef DEBUG
493 1.1 mycroft #include <sys/sysctl.h>
494 1.5 mycroft int prtrealloc = 0;
495 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
496 1.1 mycroft #endif
497 1.55 matt #endif
498 1.1 mycroft
499 1.60 fvdl /*
500 1.109.2.1 simonb * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
501 1.60 fvdl */
502 1.60 fvdl
503 1.18 fvdl int doasyncfree = 1;
504 1.18 fvdl
505 1.1 mycroft int
506 1.85 thorpej ffs_reallocblks(void *v)
507 1.9 christos {
508 1.55 matt #ifdef XXXUBC
509 1.1 mycroft struct vop_reallocblks_args /* {
510 1.1 mycroft struct vnode *a_vp;
511 1.1 mycroft struct cluster_save *a_buflist;
512 1.9 christos } */ *ap = v;
513 1.1 mycroft struct fs *fs;
514 1.1 mycroft struct inode *ip;
515 1.1 mycroft struct vnode *vp;
516 1.1 mycroft struct buf *sbp, *ebp;
517 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
518 1.1 mycroft struct cluster_save *buflist;
519 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
520 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
521 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
522 1.101 ad struct ufsmount *ump;
523 1.55 matt #endif /* XXXUBC */
524 1.1 mycroft
525 1.37 chs /* XXXUBC don't reallocblks for now */
526 1.37 chs return ENOSPC;
527 1.37 chs
528 1.55 matt #ifdef XXXUBC
529 1.1 mycroft vp = ap->a_vp;
530 1.1 mycroft ip = VTOI(vp);
531 1.1 mycroft fs = ip->i_fs;
532 1.101 ad ump = ip->i_ump;
533 1.1 mycroft if (fs->fs_contigsumsize <= 0)
534 1.1 mycroft return (ENOSPC);
535 1.1 mycroft buflist = ap->a_buflist;
536 1.1 mycroft len = buflist->bs_nchildren;
537 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
538 1.1 mycroft end_lbn = start_lbn + len - 1;
539 1.1 mycroft #ifdef DIAGNOSTIC
540 1.18 fvdl for (i = 0; i < len; i++)
541 1.18 fvdl if (!ffs_checkblk(ip,
542 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
543 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
544 1.1 mycroft for (i = 1; i < len; i++)
545 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
546 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
547 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
548 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
549 1.18 fvdl for (i = 1; i < len - 1; i++)
550 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
551 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
552 1.1 mycroft #endif
553 1.1 mycroft /*
554 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
555 1.1 mycroft * the filesystem has decided to move and do not force it back to
556 1.1 mycroft * the previous cylinder group.
557 1.1 mycroft */
558 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
559 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
560 1.1 mycroft return (ENOSPC);
561 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
562 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
563 1.1 mycroft return (ENOSPC);
564 1.1 mycroft /*
565 1.1 mycroft * Get the starting offset and block map for the first block.
566 1.1 mycroft */
567 1.1 mycroft if (start_lvl == 0) {
568 1.60 fvdl sbap = &ip->i_ffs1_db[0];
569 1.1 mycroft soff = start_lbn;
570 1.1 mycroft } else {
571 1.1 mycroft idp = &start_ap[start_lvl - 1];
572 1.107 hannken if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
573 1.107 hannken NOCRED, B_MODIFY, &sbp)) {
574 1.101 ad brelse(sbp, 0);
575 1.1 mycroft return (ENOSPC);
576 1.1 mycroft }
577 1.60 fvdl sbap = (int32_t *)sbp->b_data;
578 1.1 mycroft soff = idp->in_off;
579 1.1 mycroft }
580 1.1 mycroft /*
581 1.1 mycroft * Find the preferred location for the cluster.
582 1.1 mycroft */
583 1.101 ad mutex_enter(&ump->um_lock);
584 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
585 1.1 mycroft /*
586 1.1 mycroft * If the block range spans two block maps, get the second map.
587 1.1 mycroft */
588 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
589 1.1 mycroft ssize = len;
590 1.1 mycroft } else {
591 1.1 mycroft #ifdef DIAGNOSTIC
592 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
593 1.1 mycroft panic("ffs_reallocblk: start == end");
594 1.1 mycroft #endif
595 1.1 mycroft ssize = len - (idp->in_off + 1);
596 1.107 hannken if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
597 1.107 hannken NOCRED, B_MODIFY, &ebp))
598 1.1 mycroft goto fail;
599 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
600 1.1 mycroft }
601 1.1 mycroft /*
602 1.1 mycroft * Search the block map looking for an allocation of the desired size.
603 1.1 mycroft */
604 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
605 1.101 ad len, ffs_clusteralloc)) == 0) {
606 1.101 ad mutex_exit(&ump->um_lock);
607 1.1 mycroft goto fail;
608 1.101 ad }
609 1.1 mycroft /*
610 1.1 mycroft * We have found a new contiguous block.
611 1.1 mycroft *
612 1.1 mycroft * First we have to replace the old block pointers with the new
613 1.1 mycroft * block pointers in the inode and indirect blocks associated
614 1.1 mycroft * with the file.
615 1.1 mycroft */
616 1.5 mycroft #ifdef DEBUG
617 1.5 mycroft if (prtrealloc)
618 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
619 1.5 mycroft start_lbn, end_lbn);
620 1.5 mycroft #endif
621 1.1 mycroft blkno = newblk;
622 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
623 1.58 fvdl daddr_t ba;
624 1.30 fvdl
625 1.30 fvdl if (i == ssize) {
626 1.1 mycroft bap = ebap;
627 1.30 fvdl soff = -i;
628 1.30 fvdl }
629 1.58 fvdl /* XXX ondisk32 */
630 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
631 1.1 mycroft #ifdef DIAGNOSTIC
632 1.18 fvdl if (!ffs_checkblk(ip,
633 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
634 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
635 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
636 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
637 1.1 mycroft #endif
638 1.5 mycroft #ifdef DEBUG
639 1.5 mycroft if (prtrealloc)
640 1.30 fvdl printf(" %d,", ba);
641 1.5 mycroft #endif
642 1.30 fvdl if (DOINGSOFTDEP(vp)) {
643 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
644 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
645 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
646 1.30 fvdl buflist->bs_children[i]);
647 1.30 fvdl else
648 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
649 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
650 1.30 fvdl ba, buflist->bs_children[i]);
651 1.30 fvdl }
652 1.58 fvdl /* XXX ondisk32 */
653 1.80 mycroft *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
654 1.1 mycroft }
655 1.1 mycroft /*
656 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
657 1.1 mycroft * For strict correctness, the writes should be synchronous since
658 1.1 mycroft * the old block values may have been written to disk. In practise
659 1.81 perry * they are almost never written, but if we are concerned about
660 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
661 1.1 mycroft *
662 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
663 1.1 mycroft * that shows whether the associated buffers and inodes have
664 1.1 mycroft * been written. The flag should be set when the cluster is
665 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
666 1.1 mycroft * We can then check below to see if it is set, and do the
667 1.1 mycroft * synchronous write only when it has been cleared.
668 1.1 mycroft */
669 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
670 1.1 mycroft if (doasyncfree)
671 1.1 mycroft bdwrite(sbp);
672 1.1 mycroft else
673 1.1 mycroft bwrite(sbp);
674 1.1 mycroft } else {
675 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
676 1.28 mycroft if (!doasyncfree)
677 1.88 yamt ffs_update(vp, NULL, NULL, 1);
678 1.1 mycroft }
679 1.25 thorpej if (ssize < len) {
680 1.1 mycroft if (doasyncfree)
681 1.1 mycroft bdwrite(ebp);
682 1.1 mycroft else
683 1.1 mycroft bwrite(ebp);
684 1.25 thorpej }
685 1.1 mycroft /*
686 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
687 1.1 mycroft */
688 1.5 mycroft #ifdef DEBUG
689 1.5 mycroft if (prtrealloc)
690 1.13 christos printf("\n\tnew:");
691 1.5 mycroft #endif
692 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
693 1.30 fvdl if (!DOINGSOFTDEP(vp))
694 1.76 hannken ffs_blkfree(fs, ip->i_devvp,
695 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
696 1.76 hannken fs->fs_bsize, ip->i_number);
697 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
698 1.5 mycroft #ifdef DEBUG
699 1.18 fvdl if (!ffs_checkblk(ip,
700 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
701 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
702 1.5 mycroft if (prtrealloc)
703 1.13 christos printf(" %d,", blkno);
704 1.5 mycroft #endif
705 1.5 mycroft }
706 1.5 mycroft #ifdef DEBUG
707 1.5 mycroft if (prtrealloc) {
708 1.5 mycroft prtrealloc--;
709 1.13 christos printf("\n");
710 1.1 mycroft }
711 1.5 mycroft #endif
712 1.1 mycroft return (0);
713 1.1 mycroft
714 1.1 mycroft fail:
715 1.1 mycroft if (ssize < len)
716 1.101 ad brelse(ebp, 0);
717 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
718 1.101 ad brelse(sbp, 0);
719 1.1 mycroft return (ENOSPC);
720 1.55 matt #endif /* XXXUBC */
721 1.1 mycroft }
722 1.88 yamt #endif /* 0 */
723 1.1 mycroft
724 1.1 mycroft /*
725 1.1 mycroft * Allocate an inode in the file system.
726 1.81 perry *
727 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
728 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
729 1.1 mycroft * 1) allocate the preferred inode.
730 1.1 mycroft * 2) allocate an inode in the same cylinder group.
731 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
732 1.1 mycroft * available inode is located.
733 1.47 wiz * If no inode preference is given the following hierarchy is used
734 1.1 mycroft * to allocate an inode:
735 1.1 mycroft * 1) allocate an inode in cylinder group 0.
736 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
737 1.1 mycroft * available inode is located.
738 1.106 pooka *
739 1.106 pooka * => um_lock not held upon entry or return
740 1.1 mycroft */
741 1.9 christos int
742 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
743 1.88 yamt struct vnode **vpp)
744 1.9 christos {
745 1.101 ad struct ufsmount *ump;
746 1.33 augustss struct inode *pip;
747 1.33 augustss struct fs *fs;
748 1.33 augustss struct inode *ip;
749 1.60 fvdl struct timespec ts;
750 1.1 mycroft ino_t ino, ipref;
751 1.1 mycroft int cg, error;
752 1.81 perry
753 1.109.2.1 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
754 1.109.2.1 simonb
755 1.88 yamt *vpp = NULL;
756 1.1 mycroft pip = VTOI(pvp);
757 1.1 mycroft fs = pip->i_fs;
758 1.101 ad ump = pip->i_ump;
759 1.101 ad
760 1.109.2.1 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
761 1.109.2.1 simonb if (error) {
762 1.109.2.1 simonb return error;
763 1.109.2.1 simonb }
764 1.101 ad mutex_enter(&ump->um_lock);
765 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
766 1.1 mycroft goto noinodes;
767 1.1 mycroft
768 1.1 mycroft if ((mode & IFMT) == IFDIR)
769 1.50 lukem ipref = ffs_dirpref(pip);
770 1.50 lukem else
771 1.50 lukem ipref = pip->i_number;
772 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
773 1.1 mycroft ipref = 0;
774 1.1 mycroft cg = ino_to_cg(fs, ipref);
775 1.50 lukem /*
776 1.50 lukem * Track number of dirs created one after another
777 1.50 lukem * in a same cg without intervening by files.
778 1.50 lukem */
779 1.50 lukem if ((mode & IFMT) == IFDIR) {
780 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
781 1.50 lukem fs->fs_contigdirs[cg]++;
782 1.50 lukem } else {
783 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
784 1.50 lukem fs->fs_contigdirs[cg]--;
785 1.50 lukem }
786 1.60 fvdl ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
787 1.1 mycroft if (ino == 0)
788 1.1 mycroft goto noinodes;
789 1.109.2.1 simonb UFS_WAPBL_END(pvp->v_mount);
790 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
791 1.1 mycroft if (error) {
792 1.109.2.1 simonb int err;
793 1.109.2.1 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
794 1.109.2.1 simonb if (err == 0)
795 1.109.2.1 simonb ffs_vfree(pvp, ino, mode);
796 1.109.2.1 simonb if (err == 0)
797 1.109.2.1 simonb UFS_WAPBL_END(pvp->v_mount);
798 1.1 mycroft return (error);
799 1.1 mycroft }
800 1.90 yamt KASSERT((*vpp)->v_type == VNON);
801 1.88 yamt ip = VTOI(*vpp);
802 1.60 fvdl if (ip->i_mode) {
803 1.60 fvdl #if 0
804 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
805 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
806 1.60 fvdl #else
807 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
808 1.60 fvdl DIP(ip, mode), ip->i_mode,
809 1.60 fvdl DIP(ip, gen), ip->i_gen);
810 1.60 fvdl printf("size %llx blocks %llx\n",
811 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
812 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
813 1.86 christos (unsigned long long)ipref);
814 1.60 fvdl #if 0
815 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
816 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
817 1.60 fvdl #endif
818 1.60 fvdl
819 1.60 fvdl #endif
820 1.1 mycroft panic("ffs_valloc: dup alloc");
821 1.1 mycroft }
822 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
823 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
824 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
825 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
826 1.1 mycroft }
827 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
828 1.61 fvdl ip->i_flags = 0;
829 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
830 1.1 mycroft /*
831 1.1 mycroft * Set up a new generation number for this inode.
832 1.1 mycroft */
833 1.60 fvdl ip->i_gen++;
834 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
835 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
836 1.93 yamt vfs_timestamp(&ts);
837 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
838 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
839 1.60 fvdl }
840 1.1 mycroft return (0);
841 1.1 mycroft noinodes:
842 1.101 ad mutex_exit(&ump->um_lock);
843 1.109.2.1 simonb UFS_WAPBL_END(pvp->v_mount);
844 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
845 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
846 1.1 mycroft return (ENOSPC);
847 1.1 mycroft }
848 1.1 mycroft
849 1.1 mycroft /*
850 1.50 lukem * Find a cylinder group in which to place a directory.
851 1.42 sommerfe *
852 1.50 lukem * The policy implemented by this algorithm is to allocate a
853 1.50 lukem * directory inode in the same cylinder group as its parent
854 1.50 lukem * directory, but also to reserve space for its files inodes
855 1.50 lukem * and data. Restrict the number of directories which may be
856 1.50 lukem * allocated one after another in the same cylinder group
857 1.50 lukem * without intervening allocation of files.
858 1.42 sommerfe *
859 1.50 lukem * If we allocate a first level directory then force allocation
860 1.50 lukem * in another cylinder group.
861 1.1 mycroft */
862 1.1 mycroft static ino_t
863 1.85 thorpej ffs_dirpref(struct inode *pip)
864 1.1 mycroft {
865 1.50 lukem register struct fs *fs;
866 1.74 soren int cg, prefcg;
867 1.89 dsl int64_t dirsize, cgsize, curdsz;
868 1.89 dsl int avgifree, avgbfree, avgndir;
869 1.50 lukem int minifree, minbfree, maxndir;
870 1.50 lukem int mincg, minndir;
871 1.50 lukem int maxcontigdirs;
872 1.50 lukem
873 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
874 1.101 ad
875 1.50 lukem fs = pip->i_fs;
876 1.1 mycroft
877 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
878 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
879 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
880 1.50 lukem
881 1.50 lukem /*
882 1.50 lukem * Force allocation in another cg if creating a first level dir.
883 1.50 lukem */
884 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
885 1.71 mycroft prefcg = random() % fs->fs_ncg;
886 1.50 lukem mincg = prefcg;
887 1.50 lukem minndir = fs->fs_ipg;
888 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
889 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
890 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
891 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
892 1.42 sommerfe mincg = cg;
893 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
894 1.42 sommerfe }
895 1.50 lukem for (cg = 0; cg < prefcg; cg++)
896 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
897 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
898 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
899 1.50 lukem mincg = cg;
900 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
901 1.42 sommerfe }
902 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
903 1.42 sommerfe }
904 1.50 lukem
905 1.50 lukem /*
906 1.50 lukem * Count various limits which used for
907 1.50 lukem * optimal allocation of a directory inode.
908 1.50 lukem */
909 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
910 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
911 1.50 lukem if (minifree < 0)
912 1.50 lukem minifree = 0;
913 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
914 1.50 lukem if (minbfree < 0)
915 1.50 lukem minbfree = 0;
916 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
917 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
918 1.89 dsl if (avgndir != 0) {
919 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
920 1.89 dsl if (dirsize < curdsz)
921 1.89 dsl dirsize = curdsz;
922 1.89 dsl }
923 1.89 dsl if (cgsize < dirsize * 255)
924 1.89 dsl maxcontigdirs = cgsize / dirsize;
925 1.89 dsl else
926 1.89 dsl maxcontigdirs = 255;
927 1.50 lukem if (fs->fs_avgfpdir > 0)
928 1.50 lukem maxcontigdirs = min(maxcontigdirs,
929 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
930 1.50 lukem if (maxcontigdirs == 0)
931 1.50 lukem maxcontigdirs = 1;
932 1.50 lukem
933 1.50 lukem /*
934 1.81 perry * Limit number of dirs in one cg and reserve space for
935 1.50 lukem * regular files, but only if we have no deficit in
936 1.50 lukem * inodes or space.
937 1.50 lukem */
938 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
939 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
940 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
941 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
942 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
943 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
944 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
945 1.50 lukem }
946 1.50 lukem for (cg = 0; cg < prefcg; cg++)
947 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
948 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
949 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
950 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
951 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
952 1.50 lukem }
953 1.50 lukem /*
954 1.50 lukem * This is a backstop when we are deficient in space.
955 1.50 lukem */
956 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
957 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
958 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
959 1.50 lukem for (cg = 0; cg < prefcg; cg++)
960 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
961 1.50 lukem break;
962 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
963 1.1 mycroft }
964 1.1 mycroft
965 1.1 mycroft /*
966 1.1 mycroft * Select the desired position for the next block in a file. The file is
967 1.1 mycroft * logically divided into sections. The first section is composed of the
968 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
969 1.81 perry *
970 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
971 1.1 mycroft * request a block in the same cylinder group as the inode that describes
972 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
973 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
974 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
975 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
976 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
977 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
978 1.1 mycroft * continues until a cylinder group with greater than the average number
979 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
980 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
981 1.1 mycroft * here a best guess is made based upon the logical block number being
982 1.1 mycroft * allocated.
983 1.81 perry *
984 1.1 mycroft * If a section is already partially allocated, the policy is to
985 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
986 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
987 1.60 fvdl * contigously if possible.
988 1.106 pooka *
989 1.106 pooka * => um_lock held on entry and exit
990 1.1 mycroft */
991 1.58 fvdl daddr_t
992 1.85 thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
993 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
994 1.1 mycroft {
995 1.33 augustss struct fs *fs;
996 1.33 augustss int cg;
997 1.1 mycroft int avgbfree, startcg;
998 1.1 mycroft
999 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
1000 1.101 ad
1001 1.1 mycroft fs = ip->i_fs;
1002 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1003 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
1004 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
1005 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
1006 1.1 mycroft }
1007 1.1 mycroft /*
1008 1.1 mycroft * Find a cylinder with greater than average number of
1009 1.1 mycroft * unused data blocks.
1010 1.1 mycroft */
1011 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
1012 1.1 mycroft startcg =
1013 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1014 1.1 mycroft else
1015 1.19 bouyer startcg = dtog(fs,
1016 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1017 1.1 mycroft startcg %= fs->fs_ncg;
1018 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1019 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
1020 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1021 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
1022 1.1 mycroft }
1023 1.52 lukem for (cg = 0; cg < startcg; cg++)
1024 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1025 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
1026 1.1 mycroft }
1027 1.35 thorpej return (0);
1028 1.1 mycroft }
1029 1.1 mycroft /*
1030 1.60 fvdl * We just always try to lay things out contiguously.
1031 1.60 fvdl */
1032 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1033 1.60 fvdl }
1034 1.60 fvdl
1035 1.60 fvdl daddr_t
1036 1.85 thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
1037 1.60 fvdl {
1038 1.60 fvdl struct fs *fs;
1039 1.60 fvdl int cg;
1040 1.60 fvdl int avgbfree, startcg;
1041 1.60 fvdl
1042 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
1043 1.101 ad
1044 1.60 fvdl fs = ip->i_fs;
1045 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1046 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
1047 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
1048 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
1049 1.60 fvdl }
1050 1.1 mycroft /*
1051 1.60 fvdl * Find a cylinder with greater than average number of
1052 1.60 fvdl * unused data blocks.
1053 1.1 mycroft */
1054 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
1055 1.60 fvdl startcg =
1056 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1057 1.60 fvdl else
1058 1.60 fvdl startcg = dtog(fs,
1059 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1060 1.60 fvdl startcg %= fs->fs_ncg;
1061 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1062 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
1063 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1064 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
1065 1.60 fvdl }
1066 1.60 fvdl for (cg = 0; cg < startcg; cg++)
1067 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1068 1.60 fvdl return (fs->fs_fpg * cg + fs->fs_frag);
1069 1.60 fvdl }
1070 1.60 fvdl return (0);
1071 1.60 fvdl }
1072 1.60 fvdl /*
1073 1.60 fvdl * We just always try to lay things out contiguously.
1074 1.60 fvdl */
1075 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1076 1.1 mycroft }
1077 1.1 mycroft
1078 1.60 fvdl
1079 1.1 mycroft /*
1080 1.1 mycroft * Implement the cylinder overflow algorithm.
1081 1.1 mycroft *
1082 1.1 mycroft * The policy implemented by this algorithm is:
1083 1.1 mycroft * 1) allocate the block in its requested cylinder group.
1084 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
1085 1.1 mycroft * 3) brute force search for a free block.
1086 1.106 pooka *
1087 1.106 pooka * => called with um_lock held
1088 1.106 pooka * => returns with um_lock released on success, held on failure
1089 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
1090 1.1 mycroft */
1091 1.1 mycroft /*VARARGS5*/
1092 1.58 fvdl static daddr_t
1093 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1094 1.85 thorpej int size /* size for data blocks, mode for inodes */,
1095 1.85 thorpej daddr_t (*allocator)(struct inode *, int, daddr_t, int))
1096 1.1 mycroft {
1097 1.33 augustss struct fs *fs;
1098 1.58 fvdl daddr_t result;
1099 1.1 mycroft int i, icg = cg;
1100 1.1 mycroft
1101 1.1 mycroft fs = ip->i_fs;
1102 1.1 mycroft /*
1103 1.1 mycroft * 1: preferred cylinder group
1104 1.1 mycroft */
1105 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
1106 1.1 mycroft if (result)
1107 1.1 mycroft return (result);
1108 1.1 mycroft /*
1109 1.1 mycroft * 2: quadratic rehash
1110 1.1 mycroft */
1111 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
1112 1.1 mycroft cg += i;
1113 1.1 mycroft if (cg >= fs->fs_ncg)
1114 1.1 mycroft cg -= fs->fs_ncg;
1115 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1116 1.1 mycroft if (result)
1117 1.1 mycroft return (result);
1118 1.1 mycroft }
1119 1.1 mycroft /*
1120 1.1 mycroft * 3: brute force search
1121 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
1122 1.1 mycroft * and 1 is always checked in the quadratic rehash.
1123 1.1 mycroft */
1124 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
1125 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
1126 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
1127 1.1 mycroft if (result)
1128 1.1 mycroft return (result);
1129 1.1 mycroft cg++;
1130 1.1 mycroft if (cg == fs->fs_ncg)
1131 1.1 mycroft cg = 0;
1132 1.1 mycroft }
1133 1.35 thorpej return (0);
1134 1.1 mycroft }
1135 1.1 mycroft
1136 1.1 mycroft /*
1137 1.1 mycroft * Determine whether a fragment can be extended.
1138 1.1 mycroft *
1139 1.81 perry * Check to see if the necessary fragments are available, and
1140 1.1 mycroft * if they are, allocate them.
1141 1.106 pooka *
1142 1.106 pooka * => called with um_lock held
1143 1.106 pooka * => returns with um_lock released on success, held on failure
1144 1.1 mycroft */
1145 1.58 fvdl static daddr_t
1146 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1147 1.1 mycroft {
1148 1.101 ad struct ufsmount *ump;
1149 1.33 augustss struct fs *fs;
1150 1.33 augustss struct cg *cgp;
1151 1.1 mycroft struct buf *bp;
1152 1.58 fvdl daddr_t bno;
1153 1.1 mycroft int frags, bbase;
1154 1.1 mycroft int i, error;
1155 1.62 fvdl u_int8_t *blksfree;
1156 1.1 mycroft
1157 1.1 mycroft fs = ip->i_fs;
1158 1.101 ad ump = ip->i_ump;
1159 1.101 ad
1160 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1161 1.101 ad
1162 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1163 1.35 thorpej return (0);
1164 1.1 mycroft frags = numfrags(fs, nsize);
1165 1.1 mycroft bbase = fragnum(fs, bprev);
1166 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1167 1.1 mycroft /* cannot extend across a block boundary */
1168 1.35 thorpej return (0);
1169 1.1 mycroft }
1170 1.101 ad mutex_exit(&ump->um_lock);
1171 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1172 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1173 1.101 ad if (error)
1174 1.101 ad goto fail;
1175 1.1 mycroft cgp = (struct cg *)bp->b_data;
1176 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1177 1.101 ad goto fail;
1178 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1179 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1180 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1181 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1182 1.1 mycroft bno = dtogd(fs, bprev);
1183 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1184 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1185 1.101 ad if (isclr(blksfree, bno + i))
1186 1.101 ad goto fail;
1187 1.1 mycroft /*
1188 1.1 mycroft * the current fragment can be extended
1189 1.1 mycroft * deduct the count on fragment being extended into
1190 1.1 mycroft * increase the count on the remaining fragment (if any)
1191 1.1 mycroft * allocate the extended piece
1192 1.1 mycroft */
1193 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1194 1.62 fvdl if (isclr(blksfree, bno + i))
1195 1.1 mycroft break;
1196 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1197 1.1 mycroft if (i != frags)
1198 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1199 1.101 ad mutex_enter(&ump->um_lock);
1200 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1201 1.62 fvdl clrbit(blksfree, bno + i);
1202 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1203 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1204 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1205 1.1 mycroft }
1206 1.1 mycroft fs->fs_fmod = 1;
1207 1.101 ad ACTIVECG_CLR(fs, cg);
1208 1.101 ad mutex_exit(&ump->um_lock);
1209 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1210 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1211 1.1 mycroft bdwrite(bp);
1212 1.1 mycroft return (bprev);
1213 1.101 ad
1214 1.101 ad fail:
1215 1.101 ad brelse(bp, 0);
1216 1.101 ad mutex_enter(&ump->um_lock);
1217 1.101 ad return (0);
1218 1.1 mycroft }
1219 1.1 mycroft
1220 1.1 mycroft /*
1221 1.1 mycroft * Determine whether a block can be allocated.
1222 1.1 mycroft *
1223 1.1 mycroft * Check to see if a block of the appropriate size is available,
1224 1.1 mycroft * and if it is, allocate it.
1225 1.1 mycroft */
1226 1.58 fvdl static daddr_t
1227 1.85 thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
1228 1.1 mycroft {
1229 1.101 ad struct ufsmount *ump;
1230 1.62 fvdl struct fs *fs = ip->i_fs;
1231 1.30 fvdl struct cg *cgp;
1232 1.1 mycroft struct buf *bp;
1233 1.60 fvdl int32_t bno;
1234 1.60 fvdl daddr_t blkno;
1235 1.30 fvdl int error, frags, allocsiz, i;
1236 1.62 fvdl u_int8_t *blksfree;
1237 1.30 fvdl #ifdef FFS_EI
1238 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1239 1.30 fvdl #endif
1240 1.1 mycroft
1241 1.101 ad ump = ip->i_ump;
1242 1.101 ad
1243 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1244 1.101 ad
1245 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1246 1.35 thorpej return (0);
1247 1.101 ad mutex_exit(&ump->um_lock);
1248 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1249 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1250 1.101 ad if (error)
1251 1.101 ad goto fail;
1252 1.1 mycroft cgp = (struct cg *)bp->b_data;
1253 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1254 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1255 1.101 ad goto fail;
1256 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1257 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1258 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1259 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1260 1.1 mycroft if (size == fs->fs_bsize) {
1261 1.101 ad mutex_enter(&ump->um_lock);
1262 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1263 1.76 hannken ACTIVECG_CLR(fs, cg);
1264 1.101 ad mutex_exit(&ump->um_lock);
1265 1.1 mycroft bdwrite(bp);
1266 1.60 fvdl return (blkno);
1267 1.1 mycroft }
1268 1.1 mycroft /*
1269 1.1 mycroft * check to see if any fragments are already available
1270 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1271 1.1 mycroft * it down to a smaller size if necessary
1272 1.1 mycroft */
1273 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1274 1.1 mycroft frags = numfrags(fs, size);
1275 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1276 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1277 1.1 mycroft break;
1278 1.1 mycroft if (allocsiz == fs->fs_frag) {
1279 1.1 mycroft /*
1280 1.81 perry * no fragments were available, so a block will be
1281 1.1 mycroft * allocated, and hacked up
1282 1.1 mycroft */
1283 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1284 1.101 ad goto fail;
1285 1.101 ad mutex_enter(&ump->um_lock);
1286 1.60 fvdl blkno = ffs_alloccgblk(ip, bp, bpref);
1287 1.60 fvdl bno = dtogd(fs, blkno);
1288 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1289 1.62 fvdl setbit(blksfree, bno + i);
1290 1.1 mycroft i = fs->fs_frag - frags;
1291 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1292 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1293 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1294 1.1 mycroft fs->fs_fmod = 1;
1295 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1296 1.76 hannken ACTIVECG_CLR(fs, cg);
1297 1.101 ad mutex_exit(&ump->um_lock);
1298 1.1 mycroft bdwrite(bp);
1299 1.60 fvdl return (blkno);
1300 1.1 mycroft }
1301 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1302 1.30 fvdl #if 0
1303 1.30 fvdl /*
1304 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1305 1.58 fvdl * also: returning NULL as daddr_t ?
1306 1.30 fvdl */
1307 1.101 ad if (bno < 0)
1308 1.101 ad goto fail;
1309 1.30 fvdl #endif
1310 1.1 mycroft for (i = 0; i < frags; i++)
1311 1.62 fvdl clrbit(blksfree, bno + i);
1312 1.101 ad mutex_enter(&ump->um_lock);
1313 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1314 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1315 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1316 1.1 mycroft fs->fs_fmod = 1;
1317 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1318 1.1 mycroft if (frags != allocsiz)
1319 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1320 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1321 1.101 ad ACTIVECG_CLR(fs, cg);
1322 1.101 ad mutex_exit(&ump->um_lock);
1323 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1324 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1325 1.1 mycroft bdwrite(bp);
1326 1.30 fvdl return blkno;
1327 1.101 ad
1328 1.101 ad fail:
1329 1.101 ad brelse(bp, 0);
1330 1.101 ad mutex_enter(&ump->um_lock);
1331 1.101 ad return (0);
1332 1.1 mycroft }
1333 1.1 mycroft
1334 1.1 mycroft /*
1335 1.1 mycroft * Allocate a block in a cylinder group.
1336 1.1 mycroft *
1337 1.1 mycroft * This algorithm implements the following policy:
1338 1.1 mycroft * 1) allocate the requested block.
1339 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1340 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1341 1.1 mycroft * specified cylinder group.
1342 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1343 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1344 1.1 mycroft */
1345 1.58 fvdl static daddr_t
1346 1.85 thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
1347 1.1 mycroft {
1348 1.101 ad struct ufsmount *ump;
1349 1.62 fvdl struct fs *fs = ip->i_fs;
1350 1.30 fvdl struct cg *cgp;
1351 1.60 fvdl daddr_t blkno;
1352 1.60 fvdl int32_t bno;
1353 1.60 fvdl u_int8_t *blksfree;
1354 1.30 fvdl #ifdef FFS_EI
1355 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1356 1.30 fvdl #endif
1357 1.1 mycroft
1358 1.101 ad ump = ip->i_ump;
1359 1.101 ad
1360 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1361 1.101 ad
1362 1.30 fvdl cgp = (struct cg *)bp->b_data;
1363 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1364 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1365 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1366 1.60 fvdl } else {
1367 1.60 fvdl bpref = blknum(fs, bpref);
1368 1.60 fvdl bno = dtogd(fs, bpref);
1369 1.1 mycroft /*
1370 1.60 fvdl * if the requested block is available, use it
1371 1.1 mycroft */
1372 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1373 1.60 fvdl goto gotit;
1374 1.1 mycroft }
1375 1.1 mycroft /*
1376 1.60 fvdl * Take the next available block in this cylinder group.
1377 1.1 mycroft */
1378 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1379 1.1 mycroft if (bno < 0)
1380 1.35 thorpej return (0);
1381 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1382 1.1 mycroft gotit:
1383 1.1 mycroft blkno = fragstoblks(fs, bno);
1384 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1385 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1386 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1387 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1388 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1389 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1390 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1391 1.73 dbj int cylno;
1392 1.73 dbj cylno = old_cbtocylno(fs, bno);
1393 1.75 dbj KASSERT(cylno >= 0);
1394 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1395 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1396 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1397 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1398 1.73 dbj needswap);
1399 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1400 1.73 dbj }
1401 1.1 mycroft fs->fs_fmod = 1;
1402 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1403 1.101 ad if (DOINGSOFTDEP(ITOV(ip))) {
1404 1.101 ad mutex_exit(&ump->um_lock);
1405 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1406 1.101 ad mutex_enter(&ump->um_lock);
1407 1.101 ad }
1408 1.30 fvdl return (blkno);
1409 1.1 mycroft }
1410 1.1 mycroft
1411 1.55 matt #ifdef XXXUBC
1412 1.1 mycroft /*
1413 1.1 mycroft * Determine whether a cluster can be allocated.
1414 1.1 mycroft *
1415 1.1 mycroft * We do not currently check for optimal rotational layout if there
1416 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1417 1.1 mycroft * take the first one that we find following bpref.
1418 1.1 mycroft */
1419 1.60 fvdl
1420 1.60 fvdl /*
1421 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1422 1.60 fvdl */
1423 1.58 fvdl static daddr_t
1424 1.85 thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1425 1.1 mycroft {
1426 1.101 ad struct ufsmount *ump;
1427 1.33 augustss struct fs *fs;
1428 1.33 augustss struct cg *cgp;
1429 1.1 mycroft struct buf *bp;
1430 1.18 fvdl int i, got, run, bno, bit, map;
1431 1.1 mycroft u_char *mapp;
1432 1.5 mycroft int32_t *lp;
1433 1.1 mycroft
1434 1.1 mycroft fs = ip->i_fs;
1435 1.101 ad ump = ip->i_ump;
1436 1.101 ad
1437 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1438 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1439 1.35 thorpej return (0);
1440 1.101 ad mutex_exit(&ump->um_lock);
1441 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1442 1.107 hannken NOCRED, 0, &bp))
1443 1.1 mycroft goto fail;
1444 1.1 mycroft cgp = (struct cg *)bp->b_data;
1445 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1446 1.1 mycroft goto fail;
1447 1.1 mycroft /*
1448 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1449 1.1 mycroft * available in this cylinder group.
1450 1.1 mycroft */
1451 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1452 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1453 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1454 1.1 mycroft break;
1455 1.5 mycroft if (i > fs->fs_contigsumsize) {
1456 1.5 mycroft /*
1457 1.5 mycroft * This is the first time looking for a cluster in this
1458 1.5 mycroft * cylinder group. Update the cluster summary information
1459 1.5 mycroft * to reflect the true maximum sized cluster so that
1460 1.5 mycroft * future cluster allocation requests can avoid reading
1461 1.5 mycroft * the cylinder group map only to find no clusters.
1462 1.5 mycroft */
1463 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1464 1.5 mycroft for (i = len - 1; i > 0; i--)
1465 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1466 1.5 mycroft break;
1467 1.101 ad mutex_enter(&ump->um_lock);
1468 1.5 mycroft fs->fs_maxcluster[cg] = i;
1469 1.101 ad mutex_exit(&ump->um_lock);
1470 1.1 mycroft goto fail;
1471 1.5 mycroft }
1472 1.1 mycroft /*
1473 1.1 mycroft * Search the cluster map to find a big enough cluster.
1474 1.1 mycroft * We take the first one that we find, even if it is larger
1475 1.1 mycroft * than we need as we prefer to get one close to the previous
1476 1.1 mycroft * block allocation. We do not search before the current
1477 1.1 mycroft * preference point as we do not want to allocate a block
1478 1.1 mycroft * that is allocated before the previous one (as we will
1479 1.1 mycroft * then have to wait for another pass of the elevator
1480 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1481 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1482 1.1 mycroft */
1483 1.1 mycroft if (dtog(fs, bpref) != cg)
1484 1.1 mycroft bpref = 0;
1485 1.1 mycroft else
1486 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1487 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1488 1.1 mycroft map = *mapp++;
1489 1.1 mycroft bit = 1 << (bpref % NBBY);
1490 1.19 bouyer for (run = 0, got = bpref;
1491 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1492 1.1 mycroft if ((map & bit) == 0) {
1493 1.1 mycroft run = 0;
1494 1.1 mycroft } else {
1495 1.1 mycroft run++;
1496 1.1 mycroft if (run == len)
1497 1.1 mycroft break;
1498 1.1 mycroft }
1499 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1500 1.1 mycroft bit <<= 1;
1501 1.1 mycroft } else {
1502 1.1 mycroft map = *mapp++;
1503 1.1 mycroft bit = 1;
1504 1.1 mycroft }
1505 1.1 mycroft }
1506 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1507 1.1 mycroft goto fail;
1508 1.1 mycroft /*
1509 1.1 mycroft * Allocate the cluster that we have found.
1510 1.1 mycroft */
1511 1.30 fvdl #ifdef DIAGNOSTIC
1512 1.18 fvdl for (i = 1; i <= len; i++)
1513 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1514 1.30 fvdl got - run + i))
1515 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1516 1.30 fvdl #endif
1517 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1518 1.18 fvdl if (dtog(fs, bno) != cg)
1519 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1520 1.1 mycroft len = blkstofrags(fs, len);
1521 1.101 ad mutex_enter(&ump->um_lock);
1522 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1523 1.30 fvdl if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1524 1.1 mycroft panic("ffs_clusteralloc: lost block");
1525 1.76 hannken ACTIVECG_CLR(fs, cg);
1526 1.101 ad mutex_exit(&ump->um_lock);
1527 1.8 cgd bdwrite(bp);
1528 1.1 mycroft return (bno);
1529 1.1 mycroft
1530 1.1 mycroft fail:
1531 1.101 ad brelse(bp, 0);
1532 1.101 ad mutex_enter(&ump->um_lock);
1533 1.1 mycroft return (0);
1534 1.1 mycroft }
1535 1.55 matt #endif /* XXXUBC */
1536 1.1 mycroft
1537 1.1 mycroft /*
1538 1.1 mycroft * Determine whether an inode can be allocated.
1539 1.1 mycroft *
1540 1.1 mycroft * Check to see if an inode is available, and if it is,
1541 1.1 mycroft * allocate it using the following policy:
1542 1.1 mycroft * 1) allocate the requested inode.
1543 1.1 mycroft * 2) allocate the next available inode after the requested
1544 1.1 mycroft * inode in the specified cylinder group.
1545 1.1 mycroft */
1546 1.58 fvdl static daddr_t
1547 1.85 thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
1548 1.1 mycroft {
1549 1.101 ad struct ufsmount *ump = ip->i_ump;
1550 1.62 fvdl struct fs *fs = ip->i_fs;
1551 1.33 augustss struct cg *cgp;
1552 1.60 fvdl struct buf *bp, *ibp;
1553 1.60 fvdl u_int8_t *inosused;
1554 1.1 mycroft int error, start, len, loc, map, i;
1555 1.60 fvdl int32_t initediblk;
1556 1.60 fvdl struct ufs2_dinode *dp2;
1557 1.19 bouyer #ifdef FFS_EI
1558 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1559 1.19 bouyer #endif
1560 1.1 mycroft
1561 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1562 1.109.2.1 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1563 1.101 ad
1564 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1565 1.35 thorpej return (0);
1566 1.101 ad mutex_exit(&ump->um_lock);
1567 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1568 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1569 1.101 ad if (error)
1570 1.101 ad goto fail;
1571 1.1 mycroft cgp = (struct cg *)bp->b_data;
1572 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1573 1.101 ad goto fail;
1574 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1575 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1576 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1577 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1578 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1579 1.1 mycroft if (ipref) {
1580 1.1 mycroft ipref %= fs->fs_ipg;
1581 1.60 fvdl if (isclr(inosused, ipref))
1582 1.1 mycroft goto gotit;
1583 1.1 mycroft }
1584 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1585 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1586 1.19 bouyer NBBY);
1587 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1588 1.1 mycroft if (loc == 0) {
1589 1.1 mycroft len = start + 1;
1590 1.1 mycroft start = 0;
1591 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1592 1.1 mycroft if (loc == 0) {
1593 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1594 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1595 1.19 bouyer fs->fs_fsmnt);
1596 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1597 1.1 mycroft /* NOTREACHED */
1598 1.1 mycroft }
1599 1.1 mycroft }
1600 1.1 mycroft i = start + len - loc;
1601 1.60 fvdl map = inosused[i];
1602 1.1 mycroft ipref = i * NBBY;
1603 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1604 1.1 mycroft if ((map & i) == 0) {
1605 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1606 1.1 mycroft goto gotit;
1607 1.1 mycroft }
1608 1.1 mycroft }
1609 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1610 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1611 1.1 mycroft /* NOTREACHED */
1612 1.1 mycroft gotit:
1613 1.109.2.1 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1614 1.109.2.1 simonb mode);
1615 1.60 fvdl /*
1616 1.60 fvdl * Check to see if we need to initialize more inodes.
1617 1.60 fvdl */
1618 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1619 1.104 hannken ibp = NULL;
1620 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1621 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1622 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1623 1.108 hannken if (ffs_getblk(ip->i_devvp, fsbtodb(fs,
1624 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1625 1.108 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp) != 0)
1626 1.108 hannken goto fail;
1627 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1628 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1629 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1630 1.60 fvdl /*
1631 1.60 fvdl * Don't bother to swap, it's supposed to be
1632 1.60 fvdl * random, after all.
1633 1.60 fvdl */
1634 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1635 1.60 fvdl dp2++;
1636 1.60 fvdl }
1637 1.60 fvdl initediblk += INOPB(fs);
1638 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1639 1.60 fvdl }
1640 1.60 fvdl
1641 1.101 ad mutex_enter(&ump->um_lock);
1642 1.76 hannken ACTIVECG_CLR(fs, cg);
1643 1.101 ad setbit(inosused, ipref);
1644 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1645 1.101 ad fs->fs_cstotal.cs_nifree--;
1646 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1647 1.101 ad fs->fs_fmod = 1;
1648 1.101 ad if ((mode & IFMT) == IFDIR) {
1649 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1650 1.101 ad fs->fs_cstotal.cs_ndir++;
1651 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1652 1.101 ad }
1653 1.101 ad mutex_exit(&ump->um_lock);
1654 1.101 ad if (DOINGSOFTDEP(ITOV(ip)))
1655 1.101 ad softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1656 1.1 mycroft bdwrite(bp);
1657 1.104 hannken if (ibp != NULL)
1658 1.104 hannken bawrite(ibp);
1659 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1660 1.101 ad fail:
1661 1.101 ad brelse(bp, 0);
1662 1.101 ad mutex_enter(&ump->um_lock);
1663 1.101 ad return (0);
1664 1.1 mycroft }
1665 1.1 mycroft
1666 1.1 mycroft /*
1667 1.109.2.1 simonb * Allocate a block or fragment.
1668 1.109.2.1 simonb *
1669 1.109.2.1 simonb * The specified block or fragment is removed from the
1670 1.109.2.1 simonb * free map, possibly fragmenting a block in the process.
1671 1.109.2.1 simonb *
1672 1.109.2.1 simonb * This implementation should mirror fs_blkfree
1673 1.109.2.1 simonb *
1674 1.109.2.1 simonb * => um_lock not held on entry or exit
1675 1.109.2.1 simonb */
1676 1.109.2.1 simonb int
1677 1.109.2.1 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1678 1.109.2.1 simonb {
1679 1.109.2.1 simonb struct ufsmount *ump = ip->i_ump;
1680 1.109.2.1 simonb struct fs *fs = ip->i_fs;
1681 1.109.2.1 simonb struct cg *cgp;
1682 1.109.2.1 simonb struct buf *bp;
1683 1.109.2.1 simonb int32_t fragno, cgbno;
1684 1.109.2.1 simonb int i, error, cg, blk, frags, bbase;
1685 1.109.2.1 simonb u_int8_t *blksfree;
1686 1.109.2.1 simonb const int needswap = UFS_FSNEEDSWAP(fs);
1687 1.109.2.1 simonb
1688 1.109.2.1 simonb if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1689 1.109.2.1 simonb fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1690 1.109.2.1 simonb printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1691 1.109.2.1 simonb "size = %ld, fs = %s\n",
1692 1.109.2.1 simonb ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1693 1.109.2.1 simonb panic("blkalloc: bad size");
1694 1.109.2.1 simonb }
1695 1.109.2.1 simonb cg = dtog(fs, bno);
1696 1.109.2.1 simonb if (bno >= fs->fs_size) {
1697 1.109.2.1 simonb printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
1698 1.109.2.1 simonb ip->i_number);
1699 1.109.2.1 simonb ffs_fserr(fs, ip->i_uid, "bad block");
1700 1.109.2.1 simonb return EINVAL;
1701 1.109.2.1 simonb }
1702 1.109.2.1 simonb error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1703 1.109.2.1 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1704 1.109.2.1 simonb if (error) {
1705 1.109.2.1 simonb brelse(bp, 0);
1706 1.109.2.1 simonb return error;
1707 1.109.2.1 simonb }
1708 1.109.2.1 simonb cgp = (struct cg *)bp->b_data;
1709 1.109.2.1 simonb if (!cg_chkmagic(cgp, needswap)) {
1710 1.109.2.1 simonb brelse(bp, 0);
1711 1.109.2.1 simonb return EIO;
1712 1.109.2.1 simonb }
1713 1.109.2.1 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1714 1.109.2.1 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1715 1.109.2.1 simonb cgbno = dtogd(fs, bno);
1716 1.109.2.1 simonb blksfree = cg_blksfree(cgp, needswap);
1717 1.109.2.1 simonb
1718 1.109.2.1 simonb mutex_enter(&ump->um_lock);
1719 1.109.2.1 simonb if (size == fs->fs_bsize) {
1720 1.109.2.1 simonb fragno = fragstoblks(fs, cgbno);
1721 1.109.2.1 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1722 1.109.2.1 simonb mutex_exit(&ump->um_lock);
1723 1.109.2.1 simonb brelse(bp, 0);
1724 1.109.2.1 simonb return EBUSY;
1725 1.109.2.1 simonb }
1726 1.109.2.1 simonb ffs_clrblock(fs, blksfree, fragno);
1727 1.109.2.1 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1728 1.109.2.1 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1729 1.109.2.1 simonb fs->fs_cstotal.cs_nbfree--;
1730 1.109.2.1 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1731 1.109.2.1 simonb } else {
1732 1.109.2.1 simonb bbase = cgbno - fragnum(fs, cgbno);
1733 1.109.2.1 simonb
1734 1.109.2.1 simonb frags = numfrags(fs, size);
1735 1.109.2.1 simonb for (i = 0; i < frags; i++) {
1736 1.109.2.1 simonb if (isclr(blksfree, cgbno + i)) {
1737 1.109.2.1 simonb mutex_exit(&ump->um_lock);
1738 1.109.2.1 simonb brelse(bp, 0);
1739 1.109.2.1 simonb return EBUSY;
1740 1.109.2.1 simonb }
1741 1.109.2.1 simonb }
1742 1.109.2.1 simonb /*
1743 1.109.2.1 simonb * if a complete block is being split, account for it
1744 1.109.2.1 simonb */
1745 1.109.2.1 simonb fragno = fragstoblks(fs, bbase);
1746 1.109.2.1 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1747 1.109.2.1 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1748 1.109.2.1 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1749 1.109.2.1 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1750 1.109.2.1 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1751 1.109.2.1 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1752 1.109.2.1 simonb fs->fs_cstotal.cs_nbfree--;
1753 1.109.2.1 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1754 1.109.2.1 simonb }
1755 1.109.2.1 simonb /*
1756 1.109.2.1 simonb * decrement the counts associated with the old frags
1757 1.109.2.1 simonb */
1758 1.109.2.1 simonb blk = blkmap(fs, blksfree, bbase);
1759 1.109.2.1 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1760 1.109.2.1 simonb /*
1761 1.109.2.1 simonb * allocate the fragment
1762 1.109.2.1 simonb */
1763 1.109.2.1 simonb for (i = 0; i < frags; i++) {
1764 1.109.2.1 simonb clrbit(blksfree, cgbno + i);
1765 1.109.2.1 simonb }
1766 1.109.2.1 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1767 1.109.2.1 simonb fs->fs_cstotal.cs_nffree -= i;
1768 1.109.2.1 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1769 1.109.2.1 simonb /*
1770 1.109.2.1 simonb * add back in counts associated with the new frags
1771 1.109.2.1 simonb */
1772 1.109.2.1 simonb blk = blkmap(fs, blksfree, bbase);
1773 1.109.2.1 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1774 1.109.2.1 simonb }
1775 1.109.2.1 simonb fs->fs_fmod = 1;
1776 1.109.2.1 simonb ACTIVECG_CLR(fs, cg);
1777 1.109.2.1 simonb mutex_exit(&ump->um_lock);
1778 1.109.2.1 simonb bdwrite(bp);
1779 1.109.2.1 simonb return 0;
1780 1.109.2.1 simonb }
1781 1.109.2.1 simonb
1782 1.109.2.1 simonb /*
1783 1.1 mycroft * Free a block or fragment.
1784 1.1 mycroft *
1785 1.1 mycroft * The specified block or fragment is placed back in the
1786 1.81 perry * free map. If a fragment is deallocated, a possible
1787 1.1 mycroft * block reassembly is checked.
1788 1.106 pooka *
1789 1.106 pooka * => um_lock not held on entry or exit
1790 1.1 mycroft */
1791 1.9 christos void
1792 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1793 1.85 thorpej ino_t inum)
1794 1.1 mycroft {
1795 1.33 augustss struct cg *cgp;
1796 1.1 mycroft struct buf *bp;
1797 1.76 hannken struct ufsmount *ump;
1798 1.60 fvdl int32_t fragno, cgbno;
1799 1.76 hannken daddr_t cgblkno;
1800 1.1 mycroft int i, error, cg, blk, frags, bbase;
1801 1.62 fvdl u_int8_t *blksfree;
1802 1.76 hannken dev_t dev;
1803 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1804 1.1 mycroft
1805 1.76 hannken cg = dtog(fs, bno);
1806 1.77 hannken if (devvp->v_type != VBLK) {
1807 1.77 hannken /* devvp is a snapshot */
1808 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1809 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1810 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1811 1.76 hannken } else {
1812 1.76 hannken dev = devvp->v_rdev;
1813 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1814 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1815 1.100 hannken if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1816 1.76 hannken return;
1817 1.76 hannken }
1818 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1819 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1820 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1821 1.58 fvdl "size = %ld, fs = %s\n",
1822 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1823 1.1 mycroft panic("blkfree: bad size");
1824 1.1 mycroft }
1825 1.76 hannken
1826 1.60 fvdl if (bno >= fs->fs_size) {
1827 1.86 christos printf("bad block %" PRId64 ", ino %llu\n", bno,
1828 1.86 christos (unsigned long long)inum);
1829 1.76 hannken ffs_fserr(fs, inum, "bad block");
1830 1.1 mycroft return;
1831 1.1 mycroft }
1832 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1833 1.107 hannken NOCRED, B_MODIFY, &bp);
1834 1.1 mycroft if (error) {
1835 1.101 ad brelse(bp, 0);
1836 1.1 mycroft return;
1837 1.1 mycroft }
1838 1.1 mycroft cgp = (struct cg *)bp->b_data;
1839 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1840 1.101 ad brelse(bp, 0);
1841 1.1 mycroft return;
1842 1.1 mycroft }
1843 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1844 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1845 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1846 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1847 1.60 fvdl cgbno = dtogd(fs, bno);
1848 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1849 1.101 ad mutex_enter(&ump->um_lock);
1850 1.1 mycroft if (size == fs->fs_bsize) {
1851 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1852 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1853 1.77 hannken if (devvp->v_type != VBLK) {
1854 1.77 hannken /* devvp is a snapshot */
1855 1.101 ad mutex_exit(&ump->um_lock);
1856 1.101 ad brelse(bp, 0);
1857 1.76 hannken return;
1858 1.76 hannken }
1859 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1860 1.76 hannken dev, bno, fs->fs_fsmnt);
1861 1.1 mycroft panic("blkfree: freeing free block");
1862 1.1 mycroft }
1863 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1864 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1865 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1866 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1867 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1868 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1869 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1870 1.73 dbj i = old_cbtocylno(fs, cgbno);
1871 1.75 dbj KASSERT(i >= 0);
1872 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1873 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1874 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1875 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1876 1.73 dbj needswap);
1877 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1878 1.73 dbj }
1879 1.1 mycroft } else {
1880 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1881 1.1 mycroft /*
1882 1.1 mycroft * decrement the counts associated with the old frags
1883 1.1 mycroft */
1884 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1885 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1886 1.1 mycroft /*
1887 1.1 mycroft * deallocate the fragment
1888 1.1 mycroft */
1889 1.1 mycroft frags = numfrags(fs, size);
1890 1.1 mycroft for (i = 0; i < frags; i++) {
1891 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1892 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1893 1.59 tsutsui ", fs = %s\n",
1894 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1895 1.1 mycroft panic("blkfree: freeing free frag");
1896 1.1 mycroft }
1897 1.62 fvdl setbit(blksfree, cgbno + i);
1898 1.1 mycroft }
1899 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1900 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1901 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1902 1.1 mycroft /*
1903 1.1 mycroft * add back in counts associated with the new frags
1904 1.1 mycroft */
1905 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1906 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1907 1.1 mycroft /*
1908 1.1 mycroft * if a complete block has been reassembled, account for it
1909 1.1 mycroft */
1910 1.60 fvdl fragno = fragstoblks(fs, bbase);
1911 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1912 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1913 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1914 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1915 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1916 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1917 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1918 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1919 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1920 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1921 1.73 dbj i = old_cbtocylno(fs, bbase);
1922 1.75 dbj KASSERT(i >= 0);
1923 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1924 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1925 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1926 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1927 1.73 dbj bbase)], 1, needswap);
1928 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1929 1.73 dbj }
1930 1.1 mycroft }
1931 1.1 mycroft }
1932 1.1 mycroft fs->fs_fmod = 1;
1933 1.76 hannken ACTIVECG_CLR(fs, cg);
1934 1.101 ad mutex_exit(&ump->um_lock);
1935 1.1 mycroft bdwrite(bp);
1936 1.1 mycroft }
1937 1.1 mycroft
1938 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1939 1.55 matt #ifdef XXXUBC
1940 1.18 fvdl /*
1941 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1942 1.18 fvdl * fragment is allocated, false if it is free.
1943 1.18 fvdl */
1944 1.18 fvdl static int
1945 1.85 thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
1946 1.18 fvdl {
1947 1.18 fvdl struct fs *fs;
1948 1.18 fvdl struct cg *cgp;
1949 1.18 fvdl struct buf *bp;
1950 1.18 fvdl int i, error, frags, free;
1951 1.18 fvdl
1952 1.18 fvdl fs = ip->i_fs;
1953 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1954 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1955 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1956 1.18 fvdl panic("checkblk: bad size");
1957 1.18 fvdl }
1958 1.60 fvdl if (bno >= fs->fs_size)
1959 1.18 fvdl panic("checkblk: bad block %d", bno);
1960 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1961 1.107 hannken (int)fs->fs_cgsize, NOCRED, 0, &bp);
1962 1.18 fvdl if (error) {
1963 1.101 ad brelse(bp, 0);
1964 1.18 fvdl return 0;
1965 1.18 fvdl }
1966 1.18 fvdl cgp = (struct cg *)bp->b_data;
1967 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1968 1.101 ad brelse(bp, 0);
1969 1.18 fvdl return 0;
1970 1.18 fvdl }
1971 1.18 fvdl bno = dtogd(fs, bno);
1972 1.18 fvdl if (size == fs->fs_bsize) {
1973 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1974 1.19 bouyer fragstoblks(fs, bno));
1975 1.18 fvdl } else {
1976 1.18 fvdl frags = numfrags(fs, size);
1977 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1978 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
1979 1.18 fvdl free++;
1980 1.18 fvdl if (free != 0 && free != frags)
1981 1.18 fvdl panic("checkblk: partially free fragment");
1982 1.18 fvdl }
1983 1.101 ad brelse(bp, 0);
1984 1.18 fvdl return (!free);
1985 1.18 fvdl }
1986 1.55 matt #endif /* XXXUBC */
1987 1.18 fvdl #endif /* DIAGNOSTIC */
1988 1.18 fvdl
1989 1.1 mycroft /*
1990 1.1 mycroft * Free an inode.
1991 1.30 fvdl */
1992 1.30 fvdl int
1993 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1994 1.30 fvdl {
1995 1.30 fvdl
1996 1.88 yamt if (DOINGSOFTDEP(vp)) {
1997 1.88 yamt softdep_freefile(vp, ino, mode);
1998 1.30 fvdl return (0);
1999 1.30 fvdl }
2000 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
2001 1.30 fvdl }
2002 1.30 fvdl
2003 1.30 fvdl /*
2004 1.30 fvdl * Do the actual free operation.
2005 1.1 mycroft * The specified inode is placed back in the free map.
2006 1.109.2.1 simonb *
2007 1.109.2.1 simonb * => um_lock not held on entry or exit
2008 1.1 mycroft */
2009 1.1 mycroft int
2010 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
2011 1.9 christos {
2012 1.101 ad struct ufsmount *ump;
2013 1.33 augustss struct cg *cgp;
2014 1.1 mycroft struct buf *bp;
2015 1.1 mycroft int error, cg;
2016 1.76 hannken daddr_t cgbno;
2017 1.62 fvdl u_int8_t *inosused;
2018 1.78 hannken dev_t dev;
2019 1.19 bouyer #ifdef FFS_EI
2020 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2021 1.19 bouyer #endif
2022 1.1 mycroft
2023 1.109.2.1 simonb UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
2024 1.109.2.1 simonb
2025 1.76 hannken cg = ino_to_cg(fs, ino);
2026 1.78 hannken if (devvp->v_type != VBLK) {
2027 1.78 hannken /* devvp is a snapshot */
2028 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
2029 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
2030 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
2031 1.76 hannken } else {
2032 1.78 hannken dev = devvp->v_rdev;
2033 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
2034 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
2035 1.76 hannken }
2036 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2037 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
2038 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
2039 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2040 1.107 hannken NOCRED, B_MODIFY, &bp);
2041 1.1 mycroft if (error) {
2042 1.101 ad brelse(bp, 0);
2043 1.30 fvdl return (error);
2044 1.1 mycroft }
2045 1.1 mycroft cgp = (struct cg *)bp->b_data;
2046 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
2047 1.101 ad brelse(bp, 0);
2048 1.1 mycroft return (0);
2049 1.1 mycroft }
2050 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
2051 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2052 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
2053 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
2054 1.62 fvdl inosused = cg_inosused(cgp, needswap);
2055 1.1 mycroft ino %= fs->fs_ipg;
2056 1.62 fvdl if (isclr(inosused, ino)) {
2057 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
2058 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
2059 1.86 christos fs->fs_fsmnt);
2060 1.1 mycroft if (fs->fs_ronly == 0)
2061 1.1 mycroft panic("ifree: freeing free inode");
2062 1.1 mycroft }
2063 1.62 fvdl clrbit(inosused, ino);
2064 1.109.2.1 simonb UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
2065 1.109.2.1 simonb ino + cg * fs->fs_ipg, mode);
2066 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2067 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
2068 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2069 1.101 ad mutex_enter(&ump->um_lock);
2070 1.1 mycroft fs->fs_cstotal.cs_nifree++;
2071 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
2072 1.78 hannken if ((mode & IFMT) == IFDIR) {
2073 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2074 1.1 mycroft fs->fs_cstotal.cs_ndir--;
2075 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
2076 1.1 mycroft }
2077 1.1 mycroft fs->fs_fmod = 1;
2078 1.82 hannken ACTIVECG_CLR(fs, cg);
2079 1.101 ad mutex_exit(&ump->um_lock);
2080 1.1 mycroft bdwrite(bp);
2081 1.1 mycroft return (0);
2082 1.1 mycroft }
2083 1.1 mycroft
2084 1.1 mycroft /*
2085 1.76 hannken * Check to see if a file is free.
2086 1.76 hannken */
2087 1.76 hannken int
2088 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2089 1.76 hannken {
2090 1.76 hannken struct cg *cgp;
2091 1.76 hannken struct buf *bp;
2092 1.76 hannken daddr_t cgbno;
2093 1.76 hannken int ret, cg;
2094 1.76 hannken u_int8_t *inosused;
2095 1.76 hannken
2096 1.76 hannken cg = ino_to_cg(fs, ino);
2097 1.77 hannken if (devvp->v_type != VBLK) {
2098 1.77 hannken /* devvp is a snapshot */
2099 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
2100 1.77 hannken } else
2101 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
2102 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2103 1.76 hannken return 1;
2104 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
2105 1.101 ad brelse(bp, 0);
2106 1.76 hannken return 1;
2107 1.76 hannken }
2108 1.76 hannken cgp = (struct cg *)bp->b_data;
2109 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2110 1.101 ad brelse(bp, 0);
2111 1.76 hannken return 1;
2112 1.76 hannken }
2113 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2114 1.76 hannken ino %= fs->fs_ipg;
2115 1.76 hannken ret = isclr(inosused, ino);
2116 1.101 ad brelse(bp, 0);
2117 1.76 hannken return ret;
2118 1.76 hannken }
2119 1.76 hannken
2120 1.76 hannken /*
2121 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
2122 1.1 mycroft *
2123 1.1 mycroft * It is a panic if a request is made to find a block if none are
2124 1.1 mycroft * available.
2125 1.1 mycroft */
2126 1.60 fvdl static int32_t
2127 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2128 1.1 mycroft {
2129 1.60 fvdl int32_t bno;
2130 1.1 mycroft int start, len, loc, i;
2131 1.1 mycroft int blk, field, subfield, pos;
2132 1.19 bouyer int ostart, olen;
2133 1.62 fvdl u_int8_t *blksfree;
2134 1.30 fvdl #ifdef FFS_EI
2135 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2136 1.30 fvdl #endif
2137 1.1 mycroft
2138 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2139 1.101 ad
2140 1.1 mycroft /*
2141 1.1 mycroft * find the fragment by searching through the free block
2142 1.1 mycroft * map for an appropriate bit pattern
2143 1.1 mycroft */
2144 1.1 mycroft if (bpref)
2145 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
2146 1.1 mycroft else
2147 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2148 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
2149 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
2150 1.19 bouyer ostart = start;
2151 1.19 bouyer olen = len;
2152 1.45 lukem loc = scanc((u_int)len,
2153 1.62 fvdl (const u_char *)&blksfree[start],
2154 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2155 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2156 1.1 mycroft if (loc == 0) {
2157 1.1 mycroft len = start + 1;
2158 1.1 mycroft start = 0;
2159 1.45 lukem loc = scanc((u_int)len,
2160 1.62 fvdl (const u_char *)&blksfree[0],
2161 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2162 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2163 1.1 mycroft if (loc == 0) {
2164 1.13 christos printf("start = %d, len = %d, fs = %s\n",
2165 1.19 bouyer ostart, olen, fs->fs_fsmnt);
2166 1.20 ross printf("offset=%d %ld\n",
2167 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
2168 1.62 fvdl (long)blksfree - (long)cgp);
2169 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
2170 1.1 mycroft panic("ffs_alloccg: map corrupted");
2171 1.1 mycroft /* NOTREACHED */
2172 1.1 mycroft }
2173 1.1 mycroft }
2174 1.1 mycroft bno = (start + len - loc) * NBBY;
2175 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
2176 1.1 mycroft /*
2177 1.1 mycroft * found the byte in the map
2178 1.1 mycroft * sift through the bits to find the selected frag
2179 1.1 mycroft */
2180 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2181 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2182 1.1 mycroft blk <<= 1;
2183 1.1 mycroft field = around[allocsiz];
2184 1.1 mycroft subfield = inside[allocsiz];
2185 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2186 1.1 mycroft if ((blk & field) == subfield)
2187 1.1 mycroft return (bno + pos);
2188 1.1 mycroft field <<= 1;
2189 1.1 mycroft subfield <<= 1;
2190 1.1 mycroft }
2191 1.1 mycroft }
2192 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2193 1.1 mycroft panic("ffs_alloccg: block not in map");
2194 1.58 fvdl /* return (-1); */
2195 1.1 mycroft }
2196 1.1 mycroft
2197 1.1 mycroft /*
2198 1.1 mycroft * Update the cluster map because of an allocation or free.
2199 1.1 mycroft *
2200 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
2201 1.1 mycroft */
2202 1.9 christos void
2203 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2204 1.1 mycroft {
2205 1.4 cgd int32_t *sump;
2206 1.5 mycroft int32_t *lp;
2207 1.1 mycroft u_char *freemapp, *mapp;
2208 1.1 mycroft int i, start, end, forw, back, map, bit;
2209 1.30 fvdl #ifdef FFS_EI
2210 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2211 1.30 fvdl #endif
2212 1.1 mycroft
2213 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2214 1.101 ad
2215 1.1 mycroft if (fs->fs_contigsumsize <= 0)
2216 1.1 mycroft return;
2217 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
2218 1.19 bouyer sump = cg_clustersum(cgp, needswap);
2219 1.1 mycroft /*
2220 1.1 mycroft * Allocate or clear the actual block.
2221 1.1 mycroft */
2222 1.1 mycroft if (cnt > 0)
2223 1.1 mycroft setbit(freemapp, blkno);
2224 1.1 mycroft else
2225 1.1 mycroft clrbit(freemapp, blkno);
2226 1.1 mycroft /*
2227 1.1 mycroft * Find the size of the cluster going forward.
2228 1.1 mycroft */
2229 1.1 mycroft start = blkno + 1;
2230 1.1 mycroft end = start + fs->fs_contigsumsize;
2231 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2232 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2233 1.1 mycroft mapp = &freemapp[start / NBBY];
2234 1.1 mycroft map = *mapp++;
2235 1.1 mycroft bit = 1 << (start % NBBY);
2236 1.1 mycroft for (i = start; i < end; i++) {
2237 1.1 mycroft if ((map & bit) == 0)
2238 1.1 mycroft break;
2239 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
2240 1.1 mycroft bit <<= 1;
2241 1.1 mycroft } else {
2242 1.1 mycroft map = *mapp++;
2243 1.1 mycroft bit = 1;
2244 1.1 mycroft }
2245 1.1 mycroft }
2246 1.1 mycroft forw = i - start;
2247 1.1 mycroft /*
2248 1.1 mycroft * Find the size of the cluster going backward.
2249 1.1 mycroft */
2250 1.1 mycroft start = blkno - 1;
2251 1.1 mycroft end = start - fs->fs_contigsumsize;
2252 1.1 mycroft if (end < 0)
2253 1.1 mycroft end = -1;
2254 1.1 mycroft mapp = &freemapp[start / NBBY];
2255 1.1 mycroft map = *mapp--;
2256 1.1 mycroft bit = 1 << (start % NBBY);
2257 1.1 mycroft for (i = start; i > end; i--) {
2258 1.1 mycroft if ((map & bit) == 0)
2259 1.1 mycroft break;
2260 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
2261 1.1 mycroft bit >>= 1;
2262 1.1 mycroft } else {
2263 1.1 mycroft map = *mapp--;
2264 1.1 mycroft bit = 1 << (NBBY - 1);
2265 1.1 mycroft }
2266 1.1 mycroft }
2267 1.1 mycroft back = start - i;
2268 1.1 mycroft /*
2269 1.1 mycroft * Account for old cluster and the possibly new forward and
2270 1.1 mycroft * back clusters.
2271 1.1 mycroft */
2272 1.1 mycroft i = back + forw + 1;
2273 1.1 mycroft if (i > fs->fs_contigsumsize)
2274 1.1 mycroft i = fs->fs_contigsumsize;
2275 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
2276 1.1 mycroft if (back > 0)
2277 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
2278 1.1 mycroft if (forw > 0)
2279 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
2280 1.19 bouyer
2281 1.5 mycroft /*
2282 1.5 mycroft * Update cluster summary information.
2283 1.5 mycroft */
2284 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
2285 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
2286 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
2287 1.5 mycroft break;
2288 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2289 1.1 mycroft }
2290 1.1 mycroft
2291 1.1 mycroft /*
2292 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2293 1.81 perry *
2294 1.1 mycroft * The form of the error message is:
2295 1.1 mycroft * fs: error message
2296 1.1 mycroft */
2297 1.1 mycroft static void
2298 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2299 1.1 mycroft {
2300 1.1 mycroft
2301 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2302 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2303 1.1 mycroft }
2304