Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.109.2.2
      1  1.109.2.2    martin /*	$NetBSD: ffs_alloc.c,v 1.109.2.2 2008/06/12 08:39:22 martin Exp $	*/
      2  1.109.2.1    simonb 
      3  1.109.2.1    simonb /*-
      4  1.109.2.1    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.109.2.1    simonb  * All rights reserved.
      6  1.109.2.1    simonb  *
      7  1.109.2.1    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.109.2.1    simonb  * by Wasabi Systems, Inc.
      9  1.109.2.1    simonb  *
     10  1.109.2.1    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.109.2.1    simonb  * modification, are permitted provided that the following conditions
     12  1.109.2.1    simonb  * are met:
     13  1.109.2.1    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.109.2.1    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.109.2.1    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.109.2.1    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.109.2.1    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.109.2.1    simonb  *
     19  1.109.2.1    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.109.2.1    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.109.2.1    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.109.2.1    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.109.2.1    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.109.2.1    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.109.2.1    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.109.2.1    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.109.2.1    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.109.2.1    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.109.2.1    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.109.2.1    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.109.2.2    martin __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.109.2.2 2008/06/12 08:39:22 martin Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78       1.22    scottr #endif
     79        1.1   mycroft 
     80        1.1   mycroft #include <sys/param.h>
     81        1.1   mycroft #include <sys/systm.h>
     82        1.1   mycroft #include <sys/buf.h>
     83  1.109.2.1    simonb #include <sys/fstrans.h>
     84  1.109.2.1    simonb #include <sys/kauth.h>
     85        1.1   mycroft #include <sys/kernel.h>
     86  1.109.2.1    simonb #include <sys/mount.h>
     87  1.109.2.1    simonb #include <sys/proc.h>
     88        1.1   mycroft #include <sys/syslog.h>
     89  1.109.2.1    simonb #include <sys/vnode.h>
     90  1.109.2.1    simonb #include <sys/wapbl.h>
     91       1.29       mrg 
     92       1.76   hannken #include <miscfs/specfs/specdev.h>
     93        1.1   mycroft #include <ufs/ufs/quota.h>
     94       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95        1.1   mycroft #include <ufs/ufs/inode.h>
     96        1.9  christos #include <ufs/ufs/ufs_extern.h>
     97       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.109.2.1    simonb #include <ufs/ufs/ufs_wapbl.h>
     99        1.1   mycroft 
    100        1.1   mycroft #include <ufs/ffs/fs.h>
    101        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102        1.1   mycroft 
    103       1.85   thorpej static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
    104       1.85   thorpej static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
    105       1.55      matt #ifdef XXXUBC
    106       1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
    107       1.55      matt #endif
    108       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    109       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    110       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    111       1.85   thorpej static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
    112       1.85   thorpej     daddr_t (*)(struct inode *, int, daddr_t, int));
    113       1.85   thorpej static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int);
    114       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    115       1.85   thorpej 				      daddr_t, int);
    116       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
    117       1.55      matt #ifdef XXXUBC
    118       1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
    119       1.18      fvdl #endif
    120       1.55      matt #endif
    121       1.23  drochner 
    122       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    123       1.34  jdolecek int ffs_log_changeopt = 0;
    124       1.34  jdolecek 
    125       1.23  drochner /* in ffs_tables.c */
    126       1.40  jdolecek extern const int inside[], around[];
    127       1.40  jdolecek extern const u_char * const fragtbl[];
    128        1.1   mycroft 
    129        1.1   mycroft /*
    130        1.1   mycroft  * Allocate a block in the file system.
    131       1.81     perry  *
    132        1.1   mycroft  * The size of the requested block is given, which must be some
    133        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    134        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    135        1.1   mycroft  * the following hierarchy is used to allocate a block:
    136        1.1   mycroft  *   1) allocate the requested block.
    137        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    138        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    139        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    140        1.1   mycroft  *      available block is located.
    141       1.47       wiz  * If no block preference is given the following hierarchy is used
    142        1.1   mycroft  * to allocate a block:
    143        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    144        1.1   mycroft  *      inode for the file.
    145        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    146        1.1   mycroft  *      available block is located.
    147      1.106     pooka  *
    148      1.106     pooka  * => called with um_lock held
    149      1.106     pooka  * => releases um_lock before returning
    150        1.1   mycroft  */
    151        1.9  christos int
    152       1.96  christos ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    153       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    154        1.1   mycroft {
    155      1.101        ad 	struct ufsmount *ump;
    156       1.62      fvdl 	struct fs *fs;
    157       1.58      fvdl 	daddr_t bno;
    158        1.9  christos 	int cg;
    159        1.9  christos #ifdef QUOTA
    160        1.9  christos 	int error;
    161        1.9  christos #endif
    162       1.81     perry 
    163       1.62      fvdl 	fs = ip->i_fs;
    164      1.101        ad 	ump = ip->i_ump;
    165      1.101        ad 
    166      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    167       1.62      fvdl 
    168       1.37       chs #ifdef UVM_PAGE_TRKOWN
    169       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    170       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    171       1.37       chs 		struct vm_page *pg;
    172       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    173       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    174       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    175       1.37       chs 
    176      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    177       1.37       chs 		while (off < endoff) {
    178       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    179       1.37       chs 			KASSERT(pg != NULL);
    180       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    181       1.37       chs 			off += PAGE_SIZE;
    182       1.37       chs 		}
    183      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    184       1.37       chs 	}
    185       1.37       chs #endif
    186       1.37       chs 
    187        1.1   mycroft 	*bnp = 0;
    188        1.1   mycroft #ifdef DIAGNOSTIC
    189        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    190       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    191        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    192        1.1   mycroft 		panic("ffs_alloc: bad size");
    193        1.1   mycroft 	}
    194        1.1   mycroft 	if (cred == NOCRED)
    195       1.56    provos 		panic("ffs_alloc: missing credential");
    196        1.1   mycroft #endif /* DIAGNOSTIC */
    197        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    198        1.1   mycroft 		goto nospace;
    199       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    200       1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    201        1.1   mycroft 		goto nospace;
    202        1.1   mycroft #ifdef QUOTA
    203      1.101        ad 	mutex_exit(&ump->um_lock);
    204       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    205        1.1   mycroft 		return (error);
    206      1.101        ad 	mutex_enter(&ump->um_lock);
    207        1.1   mycroft #endif
    208        1.1   mycroft 	if (bpref >= fs->fs_size)
    209        1.1   mycroft 		bpref = 0;
    210        1.1   mycroft 	if (bpref == 0)
    211        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    212        1.1   mycroft 	else
    213        1.1   mycroft 		cg = dtog(fs, bpref);
    214       1.84       dbj 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
    215        1.1   mycroft 	if (bno > 0) {
    216       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    217        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    218        1.1   mycroft 		*bnp = bno;
    219        1.1   mycroft 		return (0);
    220        1.1   mycroft 	}
    221        1.1   mycroft #ifdef QUOTA
    222        1.1   mycroft 	/*
    223        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    224        1.1   mycroft 	 */
    225       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    226        1.1   mycroft #endif
    227        1.1   mycroft nospace:
    228      1.101        ad 	mutex_exit(&ump->um_lock);
    229       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    230        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    231        1.1   mycroft 	return (ENOSPC);
    232        1.1   mycroft }
    233        1.1   mycroft 
    234        1.1   mycroft /*
    235        1.1   mycroft  * Reallocate a fragment to a bigger size
    236        1.1   mycroft  *
    237        1.1   mycroft  * The number and size of the old block is given, and a preference
    238        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    239        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    240        1.1   mycroft  * invoked to get an appropriate block.
    241      1.106     pooka  *
    242      1.106     pooka  * => called with um_lock held
    243      1.106     pooka  * => return with um_lock released
    244        1.1   mycroft  */
    245        1.9  christos int
    246       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    247       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    248        1.1   mycroft {
    249      1.101        ad 	struct ufsmount *ump;
    250       1.62      fvdl 	struct fs *fs;
    251        1.1   mycroft 	struct buf *bp;
    252        1.1   mycroft 	int cg, request, error;
    253       1.58      fvdl 	daddr_t bprev, bno;
    254       1.25   thorpej 
    255       1.62      fvdl 	fs = ip->i_fs;
    256      1.101        ad 	ump = ip->i_ump;
    257      1.101        ad 
    258      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    259      1.101        ad 
    260       1.37       chs #ifdef UVM_PAGE_TRKOWN
    261       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    262       1.37       chs 		struct vm_page *pg;
    263       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    264       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    265       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    266       1.37       chs 
    267      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    268       1.37       chs 		while (off < endoff) {
    269       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    270       1.37       chs 			KASSERT(pg != NULL);
    271       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    272       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    273       1.37       chs 			off += PAGE_SIZE;
    274       1.37       chs 		}
    275      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    276       1.37       chs 	}
    277       1.37       chs #endif
    278       1.37       chs 
    279        1.1   mycroft #ifdef DIAGNOSTIC
    280        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    281        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    282       1.13  christos 		printf(
    283        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    284        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    285        1.1   mycroft 		panic("ffs_realloccg: bad size");
    286        1.1   mycroft 	}
    287        1.1   mycroft 	if (cred == NOCRED)
    288       1.56    provos 		panic("ffs_realloccg: missing credential");
    289        1.1   mycroft #endif /* DIAGNOSTIC */
    290       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    291      1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    292      1.101        ad 		mutex_exit(&ump->um_lock);
    293        1.1   mycroft 		goto nospace;
    294      1.101        ad 	}
    295       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    296       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    297       1.60      fvdl 	else
    298       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    299       1.60      fvdl 
    300       1.60      fvdl 	if (bprev == 0) {
    301       1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    302       1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    303        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    304        1.1   mycroft 	}
    305      1.101        ad 	mutex_exit(&ump->um_lock);
    306      1.101        ad 
    307        1.1   mycroft 	/*
    308        1.1   mycroft 	 * Allocate the extra space in the buffer.
    309        1.1   mycroft 	 */
    310       1.37       chs 	if (bpp != NULL &&
    311      1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    312      1.101        ad 		brelse(bp, 0);
    313        1.1   mycroft 		return (error);
    314        1.1   mycroft 	}
    315        1.1   mycroft #ifdef QUOTA
    316       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    317       1.44       chs 		if (bpp != NULL) {
    318      1.101        ad 			brelse(bp, 0);
    319       1.44       chs 		}
    320        1.1   mycroft 		return (error);
    321        1.1   mycroft 	}
    322        1.1   mycroft #endif
    323        1.1   mycroft 	/*
    324        1.1   mycroft 	 * Check for extension in the existing location.
    325        1.1   mycroft 	 */
    326        1.1   mycroft 	cg = dtog(fs, bprev);
    327      1.101        ad 	mutex_enter(&ump->um_lock);
    328       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    329       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    330        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    331       1.37       chs 
    332       1.37       chs 		if (bpp != NULL) {
    333       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    334       1.37       chs 				panic("bad blockno");
    335       1.72        pk 			allocbuf(bp, nsize, 1);
    336       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    337      1.105        ad 			mutex_enter(bp->b_objlock);
    338      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    339      1.105        ad 			bp->b_oflags |= BO_DONE;
    340      1.105        ad 			mutex_exit(bp->b_objlock);
    341       1.37       chs 			*bpp = bp;
    342       1.37       chs 		}
    343       1.37       chs 		if (blknop != NULL) {
    344       1.37       chs 			*blknop = bno;
    345       1.37       chs 		}
    346        1.1   mycroft 		return (0);
    347        1.1   mycroft 	}
    348        1.1   mycroft 	/*
    349        1.1   mycroft 	 * Allocate a new disk location.
    350        1.1   mycroft 	 */
    351        1.1   mycroft 	if (bpref >= fs->fs_size)
    352        1.1   mycroft 		bpref = 0;
    353        1.1   mycroft 	switch ((int)fs->fs_optim) {
    354        1.1   mycroft 	case FS_OPTSPACE:
    355        1.1   mycroft 		/*
    356       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    357       1.81     perry 		 * best use of space, we will waste time relocating it if
    358        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    359        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    360        1.1   mycroft 		 * to begin optimizing for time.
    361        1.1   mycroft 		 */
    362        1.1   mycroft 		request = nsize;
    363        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    364        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    365        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    366        1.1   mycroft 			break;
    367       1.34  jdolecek 
    368       1.34  jdolecek 		if (ffs_log_changeopt) {
    369       1.34  jdolecek 			log(LOG_NOTICE,
    370       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    371       1.34  jdolecek 				fs->fs_fsmnt);
    372       1.34  jdolecek 		}
    373       1.34  jdolecek 
    374        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    375        1.1   mycroft 		break;
    376        1.1   mycroft 	case FS_OPTTIME:
    377        1.1   mycroft 		/*
    378        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    379        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    380        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    381        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    382        1.1   mycroft 		 * above will be able to grow it in place without further
    383        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    384        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    385        1.1   mycroft 		 * optimizing for space.
    386        1.1   mycroft 		 */
    387        1.1   mycroft 		request = fs->fs_bsize;
    388        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    389        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    390        1.1   mycroft 			break;
    391       1.34  jdolecek 
    392       1.34  jdolecek 		if (ffs_log_changeopt) {
    393       1.34  jdolecek 			log(LOG_NOTICE,
    394       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    395       1.34  jdolecek 				fs->fs_fsmnt);
    396       1.34  jdolecek 		}
    397       1.34  jdolecek 
    398        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    399        1.1   mycroft 		break;
    400        1.1   mycroft 	default:
    401       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    402        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    403        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    404        1.1   mycroft 		/* NOTREACHED */
    405        1.1   mycroft 	}
    406       1.58      fvdl 	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
    407        1.1   mycroft 	if (bno > 0) {
    408  1.109.2.1    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    409  1.109.2.1    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    410  1.109.2.1    simonb 			    (ITOV(ip)->v_type != VREG)) {
    411  1.109.2.1    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    412  1.109.2.1    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    413  1.109.2.1    simonb 				    osize);
    414  1.109.2.1    simonb 			} else
    415  1.109.2.1    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    416  1.109.2.1    simonb 				    ip->i_number);
    417  1.109.2.1    simonb 		}
    418  1.109.2.1    simonb 		if (nsize < request) {
    419  1.109.2.1    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    420  1.109.2.1    simonb 			    (ITOV(ip)->v_type != VREG)) {
    421  1.109.2.1    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    422  1.109.2.1    simonb 				    ip->i_ump->um_mountp,
    423  1.109.2.1    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    424  1.109.2.1    simonb 				    request - nsize);
    425  1.109.2.1    simonb 			} else
    426  1.109.2.1    simonb 				ffs_blkfree(fs, ip->i_devvp,
    427  1.109.2.1    simonb 				    bno + numfrags(fs, nsize),
    428  1.109.2.1    simonb 				    (long)(request - nsize), ip->i_number);
    429  1.109.2.1    simonb 		}
    430       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    431        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    432       1.37       chs 		if (bpp != NULL) {
    433       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    434       1.72        pk 			allocbuf(bp, nsize, 1);
    435       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    436      1.105        ad 			mutex_enter(bp->b_objlock);
    437      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    438      1.105        ad 			bp->b_oflags |= BO_DONE;
    439      1.105        ad 			mutex_exit(bp->b_objlock);
    440       1.37       chs 			*bpp = bp;
    441       1.37       chs 		}
    442       1.37       chs 		if (blknop != NULL) {
    443       1.37       chs 			*blknop = bno;
    444       1.37       chs 		}
    445        1.1   mycroft 		return (0);
    446        1.1   mycroft 	}
    447      1.101        ad 	mutex_exit(&ump->um_lock);
    448      1.101        ad 
    449        1.1   mycroft #ifdef QUOTA
    450        1.1   mycroft 	/*
    451        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    452        1.1   mycroft 	 */
    453       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    454        1.1   mycroft #endif
    455       1.37       chs 	if (bpp != NULL) {
    456      1.101        ad 		brelse(bp, 0);
    457       1.37       chs 	}
    458       1.37       chs 
    459        1.1   mycroft nospace:
    460        1.1   mycroft 	/*
    461        1.1   mycroft 	 * no space available
    462        1.1   mycroft 	 */
    463       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    464        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    465        1.1   mycroft 	return (ENOSPC);
    466        1.1   mycroft }
    467        1.1   mycroft 
    468       1.88      yamt #if 0
    469        1.1   mycroft /*
    470        1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    471        1.1   mycroft  *
    472        1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    473        1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    474       1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    475       1.60      fvdl  * from the end of the allocation for the logical block immediately
    476       1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    477       1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    478       1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    479       1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    480       1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    481       1.60      fvdl  * allocation will be used.
    482       1.60      fvdl 
    483        1.1   mycroft  */
    484       1.55      matt #ifdef XXXUBC
    485        1.3   mycroft #ifdef DEBUG
    486        1.1   mycroft #include <sys/sysctl.h>
    487        1.5   mycroft int prtrealloc = 0;
    488        1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    489        1.1   mycroft #endif
    490       1.55      matt #endif
    491        1.1   mycroft 
    492       1.60      fvdl /*
    493  1.109.2.1    simonb  * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
    494       1.60      fvdl  */
    495       1.60      fvdl 
    496       1.18      fvdl int doasyncfree = 1;
    497       1.18      fvdl 
    498        1.1   mycroft int
    499       1.85   thorpej ffs_reallocblks(void *v)
    500        1.9  christos {
    501       1.55      matt #ifdef XXXUBC
    502        1.1   mycroft 	struct vop_reallocblks_args /* {
    503        1.1   mycroft 		struct vnode *a_vp;
    504        1.1   mycroft 		struct cluster_save *a_buflist;
    505        1.9  christos 	} */ *ap = v;
    506        1.1   mycroft 	struct fs *fs;
    507        1.1   mycroft 	struct inode *ip;
    508        1.1   mycroft 	struct vnode *vp;
    509        1.1   mycroft 	struct buf *sbp, *ebp;
    510       1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    511        1.1   mycroft 	struct cluster_save *buflist;
    512       1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    513        1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    514        1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    515      1.101        ad 	struct ufsmount *ump;
    516       1.55      matt #endif /* XXXUBC */
    517        1.1   mycroft 
    518       1.37       chs 	/* XXXUBC don't reallocblks for now */
    519       1.37       chs 	return ENOSPC;
    520       1.37       chs 
    521       1.55      matt #ifdef XXXUBC
    522        1.1   mycroft 	vp = ap->a_vp;
    523        1.1   mycroft 	ip = VTOI(vp);
    524        1.1   mycroft 	fs = ip->i_fs;
    525      1.101        ad 	ump = ip->i_ump;
    526        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    527        1.1   mycroft 		return (ENOSPC);
    528        1.1   mycroft 	buflist = ap->a_buflist;
    529        1.1   mycroft 	len = buflist->bs_nchildren;
    530        1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    531        1.1   mycroft 	end_lbn = start_lbn + len - 1;
    532        1.1   mycroft #ifdef DIAGNOSTIC
    533       1.18      fvdl 	for (i = 0; i < len; i++)
    534       1.18      fvdl 		if (!ffs_checkblk(ip,
    535       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    536       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    537        1.1   mycroft 	for (i = 1; i < len; i++)
    538        1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    539       1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    540       1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    541       1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    542       1.18      fvdl 	for (i = 1; i < len - 1; i++)
    543       1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    544       1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    545        1.1   mycroft #endif
    546        1.1   mycroft 	/*
    547        1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    548        1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    549        1.1   mycroft 	 * the previous cylinder group.
    550        1.1   mycroft 	 */
    551        1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    552        1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    553        1.1   mycroft 		return (ENOSPC);
    554        1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    555        1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    556        1.1   mycroft 		return (ENOSPC);
    557        1.1   mycroft 	/*
    558        1.1   mycroft 	 * Get the starting offset and block map for the first block.
    559        1.1   mycroft 	 */
    560        1.1   mycroft 	if (start_lvl == 0) {
    561       1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    562        1.1   mycroft 		soff = start_lbn;
    563        1.1   mycroft 	} else {
    564        1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    565      1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    566      1.107   hannken 		    NOCRED, B_MODIFY, &sbp)) {
    567      1.101        ad 			brelse(sbp, 0);
    568        1.1   mycroft 			return (ENOSPC);
    569        1.1   mycroft 		}
    570       1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    571        1.1   mycroft 		soff = idp->in_off;
    572        1.1   mycroft 	}
    573        1.1   mycroft 	/*
    574        1.1   mycroft 	 * Find the preferred location for the cluster.
    575        1.1   mycroft 	 */
    576      1.101        ad 	mutex_enter(&ump->um_lock);
    577        1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    578        1.1   mycroft 	/*
    579        1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    580        1.1   mycroft 	 */
    581        1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    582        1.1   mycroft 		ssize = len;
    583        1.1   mycroft 	} else {
    584        1.1   mycroft #ifdef DIAGNOSTIC
    585        1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    586        1.1   mycroft 			panic("ffs_reallocblk: start == end");
    587        1.1   mycroft #endif
    588        1.1   mycroft 		ssize = len - (idp->in_off + 1);
    589      1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    590      1.107   hannken 		    NOCRED, B_MODIFY, &ebp))
    591        1.1   mycroft 			goto fail;
    592       1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    593        1.1   mycroft 	}
    594        1.1   mycroft 	/*
    595        1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    596        1.1   mycroft 	 */
    597       1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    598      1.101        ad 	    len, ffs_clusteralloc)) == 0) {
    599      1.101        ad 		mutex_exit(&ump->um_lock);
    600        1.1   mycroft 		goto fail;
    601      1.101        ad 	}
    602        1.1   mycroft 	/*
    603        1.1   mycroft 	 * We have found a new contiguous block.
    604        1.1   mycroft 	 *
    605        1.1   mycroft 	 * First we have to replace the old block pointers with the new
    606        1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    607        1.1   mycroft 	 * with the file.
    608        1.1   mycroft 	 */
    609        1.5   mycroft #ifdef DEBUG
    610        1.5   mycroft 	if (prtrealloc)
    611       1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    612        1.5   mycroft 		    start_lbn, end_lbn);
    613        1.5   mycroft #endif
    614        1.1   mycroft 	blkno = newblk;
    615        1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    616       1.58      fvdl 		daddr_t ba;
    617       1.30      fvdl 
    618       1.30      fvdl 		if (i == ssize) {
    619        1.1   mycroft 			bap = ebap;
    620       1.30      fvdl 			soff = -i;
    621       1.30      fvdl 		}
    622       1.58      fvdl 		/* XXX ondisk32 */
    623       1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    624        1.1   mycroft #ifdef DIAGNOSTIC
    625       1.18      fvdl 		if (!ffs_checkblk(ip,
    626       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    627       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    628       1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    629        1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    630        1.1   mycroft #endif
    631        1.5   mycroft #ifdef DEBUG
    632        1.5   mycroft 		if (prtrealloc)
    633       1.30      fvdl 			printf(" %d,", ba);
    634        1.5   mycroft #endif
    635       1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    636       1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    637       1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    638       1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    639       1.30      fvdl  				    buflist->bs_children[i]);
    640       1.30      fvdl  			else
    641       1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    642       1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    643       1.30      fvdl  				    ba, buflist->bs_children[i]);
    644       1.30      fvdl  		}
    645       1.58      fvdl 		/* XXX ondisk32 */
    646       1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    647        1.1   mycroft 	}
    648        1.1   mycroft 	/*
    649        1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    650        1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    651        1.1   mycroft 	 * the old block values may have been written to disk. In practise
    652       1.81     perry 	 * they are almost never written, but if we are concerned about
    653        1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    654        1.1   mycroft 	 *
    655        1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    656        1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    657        1.1   mycroft 	 * been written. The flag should be set when the cluster is
    658        1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    659        1.1   mycroft 	 * We can then check below to see if it is set, and do the
    660        1.1   mycroft 	 * synchronous write only when it has been cleared.
    661        1.1   mycroft 	 */
    662       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    663        1.1   mycroft 		if (doasyncfree)
    664        1.1   mycroft 			bdwrite(sbp);
    665        1.1   mycroft 		else
    666        1.1   mycroft 			bwrite(sbp);
    667        1.1   mycroft 	} else {
    668        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    669       1.28   mycroft 		if (!doasyncfree)
    670       1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    671        1.1   mycroft 	}
    672       1.25   thorpej 	if (ssize < len) {
    673        1.1   mycroft 		if (doasyncfree)
    674        1.1   mycroft 			bdwrite(ebp);
    675        1.1   mycroft 		else
    676        1.1   mycroft 			bwrite(ebp);
    677       1.25   thorpej 	}
    678        1.1   mycroft 	/*
    679        1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    680        1.1   mycroft 	 */
    681        1.5   mycroft #ifdef DEBUG
    682        1.5   mycroft 	if (prtrealloc)
    683       1.13  christos 		printf("\n\tnew:");
    684        1.5   mycroft #endif
    685        1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    686       1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    687       1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    688       1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    689       1.76   hannken 			    fs->fs_bsize, ip->i_number);
    690        1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    691        1.5   mycroft #ifdef DEBUG
    692       1.18      fvdl 		if (!ffs_checkblk(ip,
    693       1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    694       1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    695        1.5   mycroft 		if (prtrealloc)
    696       1.13  christos 			printf(" %d,", blkno);
    697        1.5   mycroft #endif
    698        1.5   mycroft 	}
    699        1.5   mycroft #ifdef DEBUG
    700        1.5   mycroft 	if (prtrealloc) {
    701        1.5   mycroft 		prtrealloc--;
    702       1.13  christos 		printf("\n");
    703        1.1   mycroft 	}
    704        1.5   mycroft #endif
    705        1.1   mycroft 	return (0);
    706        1.1   mycroft 
    707        1.1   mycroft fail:
    708        1.1   mycroft 	if (ssize < len)
    709      1.101        ad 		brelse(ebp, 0);
    710       1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    711      1.101        ad 		brelse(sbp, 0);
    712        1.1   mycroft 	return (ENOSPC);
    713       1.55      matt #endif /* XXXUBC */
    714        1.1   mycroft }
    715       1.88      yamt #endif /* 0 */
    716        1.1   mycroft 
    717        1.1   mycroft /*
    718        1.1   mycroft  * Allocate an inode in the file system.
    719       1.81     perry  *
    720        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    721        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    722        1.1   mycroft  *   1) allocate the preferred inode.
    723        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    724        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    725        1.1   mycroft  *      available inode is located.
    726       1.47       wiz  * If no inode preference is given the following hierarchy is used
    727        1.1   mycroft  * to allocate an inode:
    728        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    729        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    730        1.1   mycroft  *      available inode is located.
    731      1.106     pooka  *
    732      1.106     pooka  * => um_lock not held upon entry or return
    733        1.1   mycroft  */
    734        1.9  christos int
    735       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    736       1.88      yamt     struct vnode **vpp)
    737        1.9  christos {
    738      1.101        ad 	struct ufsmount *ump;
    739       1.33  augustss 	struct inode *pip;
    740       1.33  augustss 	struct fs *fs;
    741       1.33  augustss 	struct inode *ip;
    742       1.60      fvdl 	struct timespec ts;
    743        1.1   mycroft 	ino_t ino, ipref;
    744        1.1   mycroft 	int cg, error;
    745       1.81     perry 
    746  1.109.2.1    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    747  1.109.2.1    simonb 
    748       1.88      yamt 	*vpp = NULL;
    749        1.1   mycroft 	pip = VTOI(pvp);
    750        1.1   mycroft 	fs = pip->i_fs;
    751      1.101        ad 	ump = pip->i_ump;
    752      1.101        ad 
    753  1.109.2.1    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    754  1.109.2.1    simonb 	if (error) {
    755  1.109.2.1    simonb 		return error;
    756  1.109.2.1    simonb 	}
    757      1.101        ad 	mutex_enter(&ump->um_lock);
    758        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    759        1.1   mycroft 		goto noinodes;
    760        1.1   mycroft 
    761        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    762       1.50     lukem 		ipref = ffs_dirpref(pip);
    763       1.50     lukem 	else
    764       1.50     lukem 		ipref = pip->i_number;
    765        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    766        1.1   mycroft 		ipref = 0;
    767        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    768       1.50     lukem 	/*
    769       1.50     lukem 	 * Track number of dirs created one after another
    770       1.50     lukem 	 * in a same cg without intervening by files.
    771       1.50     lukem 	 */
    772       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    773       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    774       1.50     lukem 			fs->fs_contigdirs[cg]++;
    775       1.50     lukem 	} else {
    776       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    777       1.50     lukem 			fs->fs_contigdirs[cg]--;
    778       1.50     lukem 	}
    779       1.60      fvdl 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg);
    780        1.1   mycroft 	if (ino == 0)
    781        1.1   mycroft 		goto noinodes;
    782  1.109.2.1    simonb 	UFS_WAPBL_END(pvp->v_mount);
    783       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    784        1.1   mycroft 	if (error) {
    785  1.109.2.1    simonb 		int err;
    786  1.109.2.1    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    787  1.109.2.1    simonb 		if (err == 0)
    788  1.109.2.1    simonb 			ffs_vfree(pvp, ino, mode);
    789  1.109.2.1    simonb 		if (err == 0)
    790  1.109.2.1    simonb 			UFS_WAPBL_END(pvp->v_mount);
    791        1.1   mycroft 		return (error);
    792        1.1   mycroft 	}
    793       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    794       1.88      yamt 	ip = VTOI(*vpp);
    795       1.60      fvdl 	if (ip->i_mode) {
    796       1.60      fvdl #if 0
    797       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    798       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    799       1.60      fvdl #else
    800       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    801       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    802       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    803       1.60      fvdl 		printf("size %llx blocks %llx\n",
    804       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    805       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    806       1.86  christos 		    (unsigned long long)ipref);
    807       1.60      fvdl #if 0
    808       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    809      1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    810       1.60      fvdl #endif
    811       1.60      fvdl 
    812       1.60      fvdl #endif
    813        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    814        1.1   mycroft 	}
    815       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    816       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    817       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    818       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    819        1.1   mycroft 	}
    820       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    821       1.61      fvdl 	ip->i_flags = 0;
    822       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    823        1.1   mycroft 	/*
    824        1.1   mycroft 	 * Set up a new generation number for this inode.
    825        1.1   mycroft 	 */
    826       1.60      fvdl 	ip->i_gen++;
    827       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    828       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    829       1.93      yamt 		vfs_timestamp(&ts);
    830       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    831       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    832       1.60      fvdl 	}
    833        1.1   mycroft 	return (0);
    834        1.1   mycroft noinodes:
    835      1.101        ad 	mutex_exit(&ump->um_lock);
    836  1.109.2.1    simonb 	UFS_WAPBL_END(pvp->v_mount);
    837       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    838        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    839        1.1   mycroft 	return (ENOSPC);
    840        1.1   mycroft }
    841        1.1   mycroft 
    842        1.1   mycroft /*
    843       1.50     lukem  * Find a cylinder group in which to place a directory.
    844       1.42  sommerfe  *
    845       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    846       1.50     lukem  * directory inode in the same cylinder group as its parent
    847       1.50     lukem  * directory, but also to reserve space for its files inodes
    848       1.50     lukem  * and data. Restrict the number of directories which may be
    849       1.50     lukem  * allocated one after another in the same cylinder group
    850       1.50     lukem  * without intervening allocation of files.
    851       1.42  sommerfe  *
    852       1.50     lukem  * If we allocate a first level directory then force allocation
    853       1.50     lukem  * in another cylinder group.
    854        1.1   mycroft  */
    855        1.1   mycroft static ino_t
    856       1.85   thorpej ffs_dirpref(struct inode *pip)
    857        1.1   mycroft {
    858       1.50     lukem 	register struct fs *fs;
    859       1.74     soren 	int cg, prefcg;
    860       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    861       1.89       dsl 	int avgifree, avgbfree, avgndir;
    862       1.50     lukem 	int minifree, minbfree, maxndir;
    863       1.50     lukem 	int mincg, minndir;
    864       1.50     lukem 	int maxcontigdirs;
    865       1.50     lukem 
    866      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    867      1.101        ad 
    868       1.50     lukem 	fs = pip->i_fs;
    869        1.1   mycroft 
    870        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    871       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    872       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    873       1.50     lukem 
    874       1.50     lukem 	/*
    875       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    876       1.50     lukem 	 */
    877      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    878       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    879       1.50     lukem 		mincg = prefcg;
    880       1.50     lukem 		minndir = fs->fs_ipg;
    881       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    882       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    883       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    884       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    885       1.42  sommerfe 				mincg = cg;
    886       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    887       1.42  sommerfe 			}
    888       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    889       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    890       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    891       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    892       1.50     lukem 				mincg = cg;
    893       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    894       1.42  sommerfe 			}
    895       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    896       1.42  sommerfe 	}
    897       1.50     lukem 
    898       1.50     lukem 	/*
    899       1.50     lukem 	 * Count various limits which used for
    900       1.50     lukem 	 * optimal allocation of a directory inode.
    901       1.50     lukem 	 */
    902       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    903       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    904       1.50     lukem 	if (minifree < 0)
    905       1.50     lukem 		minifree = 0;
    906       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    907       1.50     lukem 	if (minbfree < 0)
    908       1.50     lukem 		minbfree = 0;
    909       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    910       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    911       1.89       dsl 	if (avgndir != 0) {
    912       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    913       1.89       dsl 		if (dirsize < curdsz)
    914       1.89       dsl 			dirsize = curdsz;
    915       1.89       dsl 	}
    916       1.89       dsl 	if (cgsize < dirsize * 255)
    917       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    918       1.89       dsl 	else
    919       1.89       dsl 		maxcontigdirs = 255;
    920       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    921       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    922       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    923       1.50     lukem 	if (maxcontigdirs == 0)
    924       1.50     lukem 		maxcontigdirs = 1;
    925       1.50     lukem 
    926       1.50     lukem 	/*
    927       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    928       1.50     lukem 	 * regular files, but only if we have no deficit in
    929       1.50     lukem 	 * inodes or space.
    930       1.50     lukem 	 */
    931       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    932       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    933       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    934       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    935       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    936       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    937       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    938       1.50     lukem 		}
    939       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    940       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    941       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    942       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    943       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    944       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    945       1.50     lukem 		}
    946       1.50     lukem 	/*
    947       1.50     lukem 	 * This is a backstop when we are deficient in space.
    948       1.50     lukem 	 */
    949       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    950       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    951       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    952       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    953       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    954       1.50     lukem 			break;
    955       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    956        1.1   mycroft }
    957        1.1   mycroft 
    958        1.1   mycroft /*
    959        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    960        1.1   mycroft  * logically divided into sections. The first section is composed of the
    961        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    962       1.81     perry  *
    963        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    964        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    965        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    966        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    967        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    968        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    969        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    970        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    971        1.1   mycroft  * continues until a cylinder group with greater than the average number
    972        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    973        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    974        1.1   mycroft  * here a best guess is made based upon the logical block number being
    975        1.1   mycroft  * allocated.
    976       1.81     perry  *
    977        1.1   mycroft  * If a section is already partially allocated, the policy is to
    978        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    979       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    980       1.60      fvdl  * contigously if possible.
    981      1.106     pooka  *
    982      1.106     pooka  * => um_lock held on entry and exit
    983        1.1   mycroft  */
    984       1.58      fvdl daddr_t
    985       1.85   thorpej ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx,
    986       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    987        1.1   mycroft {
    988       1.33  augustss 	struct fs *fs;
    989       1.33  augustss 	int cg;
    990        1.1   mycroft 	int avgbfree, startcg;
    991        1.1   mycroft 
    992      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    993      1.101        ad 
    994        1.1   mycroft 	fs = ip->i_fs;
    995        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    996       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    997        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    998        1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    999        1.1   mycroft 		}
   1000        1.1   mycroft 		/*
   1001        1.1   mycroft 		 * Find a cylinder with greater than average number of
   1002        1.1   mycroft 		 * unused data blocks.
   1003        1.1   mycroft 		 */
   1004        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
   1005        1.1   mycroft 			startcg =
   1006        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1007        1.1   mycroft 		else
   1008       1.19    bouyer 			startcg = dtog(fs,
   1009       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1010        1.1   mycroft 		startcg %= fs->fs_ncg;
   1011        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1012        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1013        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1014        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
   1015        1.1   mycroft 			}
   1016       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
   1017        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1018        1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
   1019        1.1   mycroft 			}
   1020       1.35   thorpej 		return (0);
   1021        1.1   mycroft 	}
   1022        1.1   mycroft 	/*
   1023       1.60      fvdl 	 * We just always try to lay things out contiguously.
   1024       1.60      fvdl 	 */
   1025       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1026       1.60      fvdl }
   1027       1.60      fvdl 
   1028       1.60      fvdl daddr_t
   1029       1.85   thorpej ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
   1030       1.60      fvdl {
   1031       1.60      fvdl 	struct fs *fs;
   1032       1.60      fvdl 	int cg;
   1033       1.60      fvdl 	int avgbfree, startcg;
   1034       1.60      fvdl 
   1035      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1036      1.101        ad 
   1037       1.60      fvdl 	fs = ip->i_fs;
   1038       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1039       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1040       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
   1041       1.60      fvdl 			return (fs->fs_fpg * cg + fs->fs_frag);
   1042       1.60      fvdl 		}
   1043        1.1   mycroft 		/*
   1044       1.60      fvdl 		 * Find a cylinder with greater than average number of
   1045       1.60      fvdl 		 * unused data blocks.
   1046        1.1   mycroft 		 */
   1047       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
   1048       1.60      fvdl 			startcg =
   1049       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1050       1.60      fvdl 		else
   1051       1.60      fvdl 			startcg = dtog(fs,
   1052       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1053       1.60      fvdl 		startcg %= fs->fs_ncg;
   1054       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1055       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1056       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1057       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
   1058       1.60      fvdl 			}
   1059       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
   1060       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1061       1.60      fvdl 				return (fs->fs_fpg * cg + fs->fs_frag);
   1062       1.60      fvdl 			}
   1063       1.60      fvdl 		return (0);
   1064       1.60      fvdl 	}
   1065       1.60      fvdl 	/*
   1066       1.60      fvdl 	 * We just always try to lay things out contiguously.
   1067       1.60      fvdl 	 */
   1068       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1069        1.1   mycroft }
   1070        1.1   mycroft 
   1071       1.60      fvdl 
   1072        1.1   mycroft /*
   1073        1.1   mycroft  * Implement the cylinder overflow algorithm.
   1074        1.1   mycroft  *
   1075        1.1   mycroft  * The policy implemented by this algorithm is:
   1076        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1077        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1078        1.1   mycroft  *   3) brute force search for a free block.
   1079      1.106     pooka  *
   1080      1.106     pooka  * => called with um_lock held
   1081      1.106     pooka  * => returns with um_lock released on success, held on failure
   1082      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
   1083        1.1   mycroft  */
   1084        1.1   mycroft /*VARARGS5*/
   1085       1.58      fvdl static daddr_t
   1086       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1087       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1088       1.85   thorpej     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
   1089        1.1   mycroft {
   1090       1.33  augustss 	struct fs *fs;
   1091       1.58      fvdl 	daddr_t result;
   1092        1.1   mycroft 	int i, icg = cg;
   1093        1.1   mycroft 
   1094        1.1   mycroft 	fs = ip->i_fs;
   1095        1.1   mycroft 	/*
   1096        1.1   mycroft 	 * 1: preferred cylinder group
   1097        1.1   mycroft 	 */
   1098        1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
   1099        1.1   mycroft 	if (result)
   1100        1.1   mycroft 		return (result);
   1101        1.1   mycroft 	/*
   1102        1.1   mycroft 	 * 2: quadratic rehash
   1103        1.1   mycroft 	 */
   1104        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1105        1.1   mycroft 		cg += i;
   1106        1.1   mycroft 		if (cg >= fs->fs_ncg)
   1107        1.1   mycroft 			cg -= fs->fs_ncg;
   1108        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1109        1.1   mycroft 		if (result)
   1110        1.1   mycroft 			return (result);
   1111        1.1   mycroft 	}
   1112        1.1   mycroft 	/*
   1113        1.1   mycroft 	 * 3: brute force search
   1114        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1115        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1116        1.1   mycroft 	 */
   1117        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1118        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1119        1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
   1120        1.1   mycroft 		if (result)
   1121        1.1   mycroft 			return (result);
   1122        1.1   mycroft 		cg++;
   1123        1.1   mycroft 		if (cg == fs->fs_ncg)
   1124        1.1   mycroft 			cg = 0;
   1125        1.1   mycroft 	}
   1126       1.35   thorpej 	return (0);
   1127        1.1   mycroft }
   1128        1.1   mycroft 
   1129        1.1   mycroft /*
   1130        1.1   mycroft  * Determine whether a fragment can be extended.
   1131        1.1   mycroft  *
   1132       1.81     perry  * Check to see if the necessary fragments are available, and
   1133        1.1   mycroft  * if they are, allocate them.
   1134      1.106     pooka  *
   1135      1.106     pooka  * => called with um_lock held
   1136      1.106     pooka  * => returns with um_lock released on success, held on failure
   1137        1.1   mycroft  */
   1138       1.58      fvdl static daddr_t
   1139       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1140        1.1   mycroft {
   1141      1.101        ad 	struct ufsmount *ump;
   1142       1.33  augustss 	struct fs *fs;
   1143       1.33  augustss 	struct cg *cgp;
   1144        1.1   mycroft 	struct buf *bp;
   1145       1.58      fvdl 	daddr_t bno;
   1146        1.1   mycroft 	int frags, bbase;
   1147        1.1   mycroft 	int i, error;
   1148       1.62      fvdl 	u_int8_t *blksfree;
   1149        1.1   mycroft 
   1150        1.1   mycroft 	fs = ip->i_fs;
   1151      1.101        ad 	ump = ip->i_ump;
   1152      1.101        ad 
   1153      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1154      1.101        ad 
   1155        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1156       1.35   thorpej 		return (0);
   1157        1.1   mycroft 	frags = numfrags(fs, nsize);
   1158        1.1   mycroft 	bbase = fragnum(fs, bprev);
   1159        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1160        1.1   mycroft 		/* cannot extend across a block boundary */
   1161       1.35   thorpej 		return (0);
   1162        1.1   mycroft 	}
   1163      1.101        ad 	mutex_exit(&ump->um_lock);
   1164        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1165      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1166      1.101        ad 	if (error)
   1167      1.101        ad 		goto fail;
   1168        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1169      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1170      1.101        ad 		goto fail;
   1171       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1172       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1173       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1174       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1175        1.1   mycroft 	bno = dtogd(fs, bprev);
   1176       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1177        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1178      1.101        ad 		if (isclr(blksfree, bno + i))
   1179      1.101        ad 			goto fail;
   1180        1.1   mycroft 	/*
   1181        1.1   mycroft 	 * the current fragment can be extended
   1182        1.1   mycroft 	 * deduct the count on fragment being extended into
   1183        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1184        1.1   mycroft 	 * allocate the extended piece
   1185        1.1   mycroft 	 */
   1186        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1187       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1188        1.1   mycroft 			break;
   1189       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1190        1.1   mycroft 	if (i != frags)
   1191       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1192      1.101        ad 	mutex_enter(&ump->um_lock);
   1193        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1194       1.62      fvdl 		clrbit(blksfree, bno + i);
   1195       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1196        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1197        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1198        1.1   mycroft 	}
   1199        1.1   mycroft 	fs->fs_fmod = 1;
   1200      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1201      1.101        ad 	mutex_exit(&ump->um_lock);
   1202       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1203       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1204        1.1   mycroft 	bdwrite(bp);
   1205        1.1   mycroft 	return (bprev);
   1206      1.101        ad 
   1207      1.101        ad  fail:
   1208      1.101        ad  	brelse(bp, 0);
   1209      1.101        ad  	mutex_enter(&ump->um_lock);
   1210      1.101        ad  	return (0);
   1211        1.1   mycroft }
   1212        1.1   mycroft 
   1213        1.1   mycroft /*
   1214        1.1   mycroft  * Determine whether a block can be allocated.
   1215        1.1   mycroft  *
   1216        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1217        1.1   mycroft  * and if it is, allocate it.
   1218        1.1   mycroft  */
   1219       1.58      fvdl static daddr_t
   1220       1.85   thorpej ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
   1221        1.1   mycroft {
   1222      1.101        ad 	struct ufsmount *ump;
   1223       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1224       1.30      fvdl 	struct cg *cgp;
   1225        1.1   mycroft 	struct buf *bp;
   1226       1.60      fvdl 	int32_t bno;
   1227       1.60      fvdl 	daddr_t blkno;
   1228       1.30      fvdl 	int error, frags, allocsiz, i;
   1229       1.62      fvdl 	u_int8_t *blksfree;
   1230       1.30      fvdl #ifdef FFS_EI
   1231       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1232       1.30      fvdl #endif
   1233        1.1   mycroft 
   1234      1.101        ad 	ump = ip->i_ump;
   1235      1.101        ad 
   1236      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1237      1.101        ad 
   1238        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1239       1.35   thorpej 		return (0);
   1240      1.101        ad 	mutex_exit(&ump->um_lock);
   1241        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1242      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1243      1.101        ad 	if (error)
   1244      1.101        ad 		goto fail;
   1245        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1246       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1247      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1248      1.101        ad 		goto fail;
   1249       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1250       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1251       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1252       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1253        1.1   mycroft 	if (size == fs->fs_bsize) {
   1254      1.101        ad 		mutex_enter(&ump->um_lock);
   1255       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1256       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1257      1.101        ad 		mutex_exit(&ump->um_lock);
   1258        1.1   mycroft 		bdwrite(bp);
   1259       1.60      fvdl 		return (blkno);
   1260        1.1   mycroft 	}
   1261        1.1   mycroft 	/*
   1262        1.1   mycroft 	 * check to see if any fragments are already available
   1263        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1264        1.1   mycroft 	 * it down to a smaller size if necessary
   1265        1.1   mycroft 	 */
   1266       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1267        1.1   mycroft 	frags = numfrags(fs, size);
   1268        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1269        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1270        1.1   mycroft 			break;
   1271        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1272        1.1   mycroft 		/*
   1273       1.81     perry 		 * no fragments were available, so a block will be
   1274        1.1   mycroft 		 * allocated, and hacked up
   1275        1.1   mycroft 		 */
   1276      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1277      1.101        ad 			goto fail;
   1278      1.101        ad 		mutex_enter(&ump->um_lock);
   1279       1.60      fvdl 		blkno = ffs_alloccgblk(ip, bp, bpref);
   1280       1.60      fvdl 		bno = dtogd(fs, blkno);
   1281        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1282       1.62      fvdl 			setbit(blksfree, bno + i);
   1283        1.1   mycroft 		i = fs->fs_frag - frags;
   1284       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1285        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1286       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1287        1.1   mycroft 		fs->fs_fmod = 1;
   1288       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1289       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1290      1.101        ad 		mutex_exit(&ump->um_lock);
   1291        1.1   mycroft 		bdwrite(bp);
   1292       1.60      fvdl 		return (blkno);
   1293        1.1   mycroft 	}
   1294       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1295       1.30      fvdl #if 0
   1296       1.30      fvdl 	/*
   1297       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1298       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1299       1.30      fvdl 	 */
   1300      1.101        ad 	if (bno < 0)
   1301      1.101        ad 		goto fail;
   1302       1.30      fvdl #endif
   1303        1.1   mycroft 	for (i = 0; i < frags; i++)
   1304       1.62      fvdl 		clrbit(blksfree, bno + i);
   1305      1.101        ad 	mutex_enter(&ump->um_lock);
   1306       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1307        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1308        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1309        1.1   mycroft 	fs->fs_fmod = 1;
   1310       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1311        1.1   mycroft 	if (frags != allocsiz)
   1312       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1313       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1314      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1315      1.101        ad 	mutex_exit(&ump->um_lock);
   1316       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1317       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1318        1.1   mycroft 	bdwrite(bp);
   1319       1.30      fvdl 	return blkno;
   1320      1.101        ad 
   1321      1.101        ad  fail:
   1322      1.101        ad  	brelse(bp, 0);
   1323      1.101        ad  	mutex_enter(&ump->um_lock);
   1324      1.101        ad  	return (0);
   1325        1.1   mycroft }
   1326        1.1   mycroft 
   1327        1.1   mycroft /*
   1328        1.1   mycroft  * Allocate a block in a cylinder group.
   1329        1.1   mycroft  *
   1330        1.1   mycroft  * This algorithm implements the following policy:
   1331        1.1   mycroft  *   1) allocate the requested block.
   1332        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1333        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1334        1.1   mycroft  *      specified cylinder group.
   1335        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1336        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1337        1.1   mycroft  */
   1338       1.58      fvdl static daddr_t
   1339       1.85   thorpej ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
   1340        1.1   mycroft {
   1341      1.101        ad 	struct ufsmount *ump;
   1342       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1343       1.30      fvdl 	struct cg *cgp;
   1344       1.60      fvdl 	daddr_t blkno;
   1345       1.60      fvdl 	int32_t bno;
   1346       1.60      fvdl 	u_int8_t *blksfree;
   1347       1.30      fvdl #ifdef FFS_EI
   1348       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1349       1.30      fvdl #endif
   1350        1.1   mycroft 
   1351      1.101        ad 	ump = ip->i_ump;
   1352      1.101        ad 
   1353      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1354      1.101        ad 
   1355       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1356       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1357       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1358       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1359       1.60      fvdl 	} else {
   1360       1.60      fvdl 		bpref = blknum(fs, bpref);
   1361       1.60      fvdl 		bno = dtogd(fs, bpref);
   1362        1.1   mycroft 		/*
   1363       1.60      fvdl 		 * if the requested block is available, use it
   1364        1.1   mycroft 		 */
   1365       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1366       1.60      fvdl 			goto gotit;
   1367        1.1   mycroft 	}
   1368        1.1   mycroft 	/*
   1369       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1370        1.1   mycroft 	 */
   1371       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1372        1.1   mycroft 	if (bno < 0)
   1373       1.35   thorpej 		return (0);
   1374       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1375        1.1   mycroft gotit:
   1376        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1377       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1378       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1379       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1380        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1381       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1382       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1383       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1384       1.73       dbj 		int cylno;
   1385       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1386       1.75       dbj 		KASSERT(cylno >= 0);
   1387       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1388       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1389       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1390       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1391       1.73       dbj 		    needswap);
   1392       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1393       1.73       dbj 	}
   1394        1.1   mycroft 	fs->fs_fmod = 1;
   1395       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1396      1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1397      1.101        ad 		mutex_exit(&ump->um_lock);
   1398       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1399      1.101        ad 		mutex_enter(&ump->um_lock);
   1400      1.101        ad 	}
   1401       1.30      fvdl 	return (blkno);
   1402        1.1   mycroft }
   1403        1.1   mycroft 
   1404       1.55      matt #ifdef XXXUBC
   1405        1.1   mycroft /*
   1406        1.1   mycroft  * Determine whether a cluster can be allocated.
   1407        1.1   mycroft  *
   1408        1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1409        1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1410        1.1   mycroft  * take the first one that we find following bpref.
   1411        1.1   mycroft  */
   1412       1.60      fvdl 
   1413       1.60      fvdl /*
   1414       1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1415       1.60      fvdl  */
   1416       1.58      fvdl static daddr_t
   1417       1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1418        1.1   mycroft {
   1419      1.101        ad 	struct ufsmount *ump;
   1420       1.33  augustss 	struct fs *fs;
   1421       1.33  augustss 	struct cg *cgp;
   1422        1.1   mycroft 	struct buf *bp;
   1423       1.18      fvdl 	int i, got, run, bno, bit, map;
   1424        1.1   mycroft 	u_char *mapp;
   1425        1.5   mycroft 	int32_t *lp;
   1426        1.1   mycroft 
   1427        1.1   mycroft 	fs = ip->i_fs;
   1428      1.101        ad 	ump = ip->i_ump;
   1429      1.101        ad 
   1430      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1431        1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1432       1.35   thorpej 		return (0);
   1433      1.101        ad 	mutex_exit(&ump->um_lock);
   1434        1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1435      1.107   hannken 	    NOCRED, 0, &bp))
   1436        1.1   mycroft 		goto fail;
   1437        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1438       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1439        1.1   mycroft 		goto fail;
   1440        1.1   mycroft 	/*
   1441        1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1442        1.1   mycroft 	 * available in this cylinder group.
   1443        1.1   mycroft 	 */
   1444       1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1445        1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1446       1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1447        1.1   mycroft 			break;
   1448        1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1449        1.5   mycroft 		/*
   1450        1.5   mycroft 		 * This is the first time looking for a cluster in this
   1451        1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1452        1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1453        1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1454        1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1455        1.5   mycroft 		 */
   1456       1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1457        1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1458       1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1459        1.5   mycroft 				break;
   1460      1.101        ad 		mutex_enter(&ump->um_lock);
   1461        1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1462      1.101        ad 		mutex_exit(&ump->um_lock);
   1463        1.1   mycroft 		goto fail;
   1464        1.5   mycroft 	}
   1465        1.1   mycroft 	/*
   1466        1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1467        1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1468        1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1469        1.1   mycroft 	 * block allocation. We do not search before the current
   1470        1.1   mycroft 	 * preference point as we do not want to allocate a block
   1471        1.1   mycroft 	 * that is allocated before the previous one (as we will
   1472        1.1   mycroft 	 * then have to wait for another pass of the elevator
   1473        1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1474        1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1475        1.1   mycroft 	 */
   1476        1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1477        1.1   mycroft 		bpref = 0;
   1478        1.1   mycroft 	else
   1479        1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1480       1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1481        1.1   mycroft 	map = *mapp++;
   1482        1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1483       1.19    bouyer 	for (run = 0, got = bpref;
   1484       1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1485        1.1   mycroft 		if ((map & bit) == 0) {
   1486        1.1   mycroft 			run = 0;
   1487        1.1   mycroft 		} else {
   1488        1.1   mycroft 			run++;
   1489        1.1   mycroft 			if (run == len)
   1490        1.1   mycroft 				break;
   1491        1.1   mycroft 		}
   1492       1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1493        1.1   mycroft 			bit <<= 1;
   1494        1.1   mycroft 		} else {
   1495        1.1   mycroft 			map = *mapp++;
   1496        1.1   mycroft 			bit = 1;
   1497        1.1   mycroft 		}
   1498        1.1   mycroft 	}
   1499       1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1500        1.1   mycroft 		goto fail;
   1501        1.1   mycroft 	/*
   1502        1.1   mycroft 	 * Allocate the cluster that we have found.
   1503        1.1   mycroft 	 */
   1504       1.30      fvdl #ifdef DIAGNOSTIC
   1505       1.18      fvdl 	for (i = 1; i <= len; i++)
   1506       1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1507       1.30      fvdl 		    got - run + i))
   1508       1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1509       1.30      fvdl #endif
   1510       1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1511       1.18      fvdl 	if (dtog(fs, bno) != cg)
   1512       1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1513        1.1   mycroft 	len = blkstofrags(fs, len);
   1514      1.101        ad 	mutex_enter(&ump->um_lock);
   1515        1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1516       1.30      fvdl 		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
   1517        1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1518       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1519      1.101        ad 	mutex_exit(&ump->um_lock);
   1520        1.8       cgd 	bdwrite(bp);
   1521        1.1   mycroft 	return (bno);
   1522        1.1   mycroft 
   1523        1.1   mycroft fail:
   1524      1.101        ad 	brelse(bp, 0);
   1525      1.101        ad 	mutex_enter(&ump->um_lock);
   1526        1.1   mycroft 	return (0);
   1527        1.1   mycroft }
   1528       1.55      matt #endif /* XXXUBC */
   1529        1.1   mycroft 
   1530        1.1   mycroft /*
   1531        1.1   mycroft  * Determine whether an inode can be allocated.
   1532        1.1   mycroft  *
   1533        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1534        1.1   mycroft  * allocate it using the following policy:
   1535        1.1   mycroft  *   1) allocate the requested inode.
   1536        1.1   mycroft  *   2) allocate the next available inode after the requested
   1537        1.1   mycroft  *      inode in the specified cylinder group.
   1538        1.1   mycroft  */
   1539       1.58      fvdl static daddr_t
   1540       1.85   thorpej ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode)
   1541        1.1   mycroft {
   1542      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1543       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1544       1.33  augustss 	struct cg *cgp;
   1545       1.60      fvdl 	struct buf *bp, *ibp;
   1546       1.60      fvdl 	u_int8_t *inosused;
   1547        1.1   mycroft 	int error, start, len, loc, map, i;
   1548       1.60      fvdl 	int32_t initediblk;
   1549       1.60      fvdl 	struct ufs2_dinode *dp2;
   1550       1.19    bouyer #ifdef FFS_EI
   1551       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1552       1.19    bouyer #endif
   1553        1.1   mycroft 
   1554      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1555  1.109.2.1    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1556      1.101        ad 
   1557        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1558       1.35   thorpej 		return (0);
   1559      1.101        ad 	mutex_exit(&ump->um_lock);
   1560        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1561      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1562      1.101        ad 	if (error)
   1563      1.101        ad 		goto fail;
   1564        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1565      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1566      1.101        ad 		goto fail;
   1567       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1568       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1569       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1570       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1571       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1572        1.1   mycroft 	if (ipref) {
   1573        1.1   mycroft 		ipref %= fs->fs_ipg;
   1574       1.60      fvdl 		if (isclr(inosused, ipref))
   1575        1.1   mycroft 			goto gotit;
   1576        1.1   mycroft 	}
   1577       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1578       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1579       1.19    bouyer 		NBBY);
   1580       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1581        1.1   mycroft 	if (loc == 0) {
   1582        1.1   mycroft 		len = start + 1;
   1583        1.1   mycroft 		start = 0;
   1584       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1585        1.1   mycroft 		if (loc == 0) {
   1586       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1587       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1588       1.19    bouyer 				fs->fs_fsmnt);
   1589        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1590        1.1   mycroft 			/* NOTREACHED */
   1591        1.1   mycroft 		}
   1592        1.1   mycroft 	}
   1593        1.1   mycroft 	i = start + len - loc;
   1594       1.60      fvdl 	map = inosused[i];
   1595        1.1   mycroft 	ipref = i * NBBY;
   1596        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1597        1.1   mycroft 		if ((map & i) == 0) {
   1598       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1599        1.1   mycroft 			goto gotit;
   1600        1.1   mycroft 		}
   1601        1.1   mycroft 	}
   1602       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1603        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1604        1.1   mycroft 	/* NOTREACHED */
   1605        1.1   mycroft gotit:
   1606  1.109.2.1    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1607  1.109.2.1    simonb 	    mode);
   1608       1.60      fvdl 	/*
   1609       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1610       1.60      fvdl 	 */
   1611       1.60      fvdl 	initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1612      1.104   hannken 	ibp = NULL;
   1613       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC &&
   1614       1.60      fvdl 	    ipref + INOPB(fs) > initediblk &&
   1615       1.60      fvdl 	    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1616      1.108   hannken 		if (ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1617       1.60      fvdl 		    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1618      1.108   hannken 		    FFS_NOBLK, fs->fs_bsize, false, &ibp) != 0)
   1619      1.108   hannken 			goto fail;
   1620      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1621      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1622      1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1623       1.60      fvdl 			/*
   1624       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1625       1.60      fvdl 			 * random, after all.
   1626       1.60      fvdl 			 */
   1627       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1628       1.60      fvdl 			dp2++;
   1629       1.60      fvdl 		}
   1630       1.60      fvdl 		initediblk += INOPB(fs);
   1631       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1632       1.60      fvdl 	}
   1633       1.60      fvdl 
   1634      1.101        ad 	mutex_enter(&ump->um_lock);
   1635       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1636      1.101        ad 	setbit(inosused, ipref);
   1637      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1638      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1639      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1640      1.101        ad 	fs->fs_fmod = 1;
   1641      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1642      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1643      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1644      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1645      1.101        ad 	}
   1646      1.101        ad 	mutex_exit(&ump->um_lock);
   1647      1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1648      1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1649        1.1   mycroft 	bdwrite(bp);
   1650      1.104   hannken 	if (ibp != NULL)
   1651      1.104   hannken 		bawrite(ibp);
   1652        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1653      1.101        ad  fail:
   1654      1.101        ad 	brelse(bp, 0);
   1655      1.101        ad 	mutex_enter(&ump->um_lock);
   1656      1.101        ad 	return (0);
   1657        1.1   mycroft }
   1658        1.1   mycroft 
   1659        1.1   mycroft /*
   1660  1.109.2.1    simonb  * Allocate a block or fragment.
   1661  1.109.2.1    simonb  *
   1662  1.109.2.1    simonb  * The specified block or fragment is removed from the
   1663  1.109.2.1    simonb  * free map, possibly fragmenting a block in the process.
   1664  1.109.2.1    simonb  *
   1665  1.109.2.1    simonb  * This implementation should mirror fs_blkfree
   1666  1.109.2.1    simonb  *
   1667  1.109.2.1    simonb  * => um_lock not held on entry or exit
   1668  1.109.2.1    simonb  */
   1669  1.109.2.1    simonb int
   1670  1.109.2.1    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1671  1.109.2.1    simonb {
   1672  1.109.2.1    simonb 	struct ufsmount *ump = ip->i_ump;
   1673  1.109.2.1    simonb 	struct fs *fs = ip->i_fs;
   1674  1.109.2.1    simonb 	struct cg *cgp;
   1675  1.109.2.1    simonb 	struct buf *bp;
   1676  1.109.2.1    simonb 	int32_t fragno, cgbno;
   1677  1.109.2.1    simonb 	int i, error, cg, blk, frags, bbase;
   1678  1.109.2.1    simonb 	u_int8_t *blksfree;
   1679  1.109.2.1    simonb 	const int needswap = UFS_FSNEEDSWAP(fs);
   1680  1.109.2.1    simonb 
   1681  1.109.2.1    simonb 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1682  1.109.2.1    simonb 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1683  1.109.2.1    simonb 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1684  1.109.2.1    simonb 		       "size = %ld, fs = %s\n",
   1685  1.109.2.1    simonb 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1686  1.109.2.1    simonb 		panic("blkalloc: bad size");
   1687  1.109.2.1    simonb 	}
   1688  1.109.2.1    simonb 	cg = dtog(fs, bno);
   1689  1.109.2.1    simonb 	if (bno >= fs->fs_size) {
   1690  1.109.2.1    simonb 		printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
   1691  1.109.2.1    simonb 		    ip->i_number);
   1692  1.109.2.1    simonb 		ffs_fserr(fs, ip->i_uid, "bad block");
   1693  1.109.2.1    simonb 		return EINVAL;
   1694  1.109.2.1    simonb 	}
   1695  1.109.2.1    simonb 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1696  1.109.2.1    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1697  1.109.2.1    simonb 	if (error) {
   1698  1.109.2.1    simonb 		brelse(bp, 0);
   1699  1.109.2.1    simonb 		return error;
   1700  1.109.2.1    simonb 	}
   1701  1.109.2.1    simonb 	cgp = (struct cg *)bp->b_data;
   1702  1.109.2.1    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1703  1.109.2.1    simonb 		brelse(bp, 0);
   1704  1.109.2.1    simonb 		return EIO;
   1705  1.109.2.1    simonb 	}
   1706  1.109.2.1    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1707  1.109.2.1    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1708  1.109.2.1    simonb 	cgbno = dtogd(fs, bno);
   1709  1.109.2.1    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1710  1.109.2.1    simonb 
   1711  1.109.2.1    simonb 	mutex_enter(&ump->um_lock);
   1712  1.109.2.1    simonb 	if (size == fs->fs_bsize) {
   1713  1.109.2.1    simonb 		fragno = fragstoblks(fs, cgbno);
   1714  1.109.2.1    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1715  1.109.2.1    simonb 			mutex_exit(&ump->um_lock);
   1716  1.109.2.1    simonb 			brelse(bp, 0);
   1717  1.109.2.1    simonb 			return EBUSY;
   1718  1.109.2.1    simonb 		}
   1719  1.109.2.1    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1720  1.109.2.1    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1721  1.109.2.1    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1722  1.109.2.1    simonb 		fs->fs_cstotal.cs_nbfree--;
   1723  1.109.2.1    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1724  1.109.2.1    simonb 	} else {
   1725  1.109.2.1    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1726  1.109.2.1    simonb 
   1727  1.109.2.1    simonb 		frags = numfrags(fs, size);
   1728  1.109.2.1    simonb 		for (i = 0; i < frags; i++) {
   1729  1.109.2.1    simonb 			if (isclr(blksfree, cgbno + i)) {
   1730  1.109.2.1    simonb 				mutex_exit(&ump->um_lock);
   1731  1.109.2.1    simonb 				brelse(bp, 0);
   1732  1.109.2.1    simonb 				return EBUSY;
   1733  1.109.2.1    simonb 			}
   1734  1.109.2.1    simonb 		}
   1735  1.109.2.1    simonb 		/*
   1736  1.109.2.1    simonb 		 * if a complete block is being split, account for it
   1737  1.109.2.1    simonb 		 */
   1738  1.109.2.1    simonb 		fragno = fragstoblks(fs, bbase);
   1739  1.109.2.1    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1740  1.109.2.1    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1741  1.109.2.1    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1742  1.109.2.1    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1743  1.109.2.1    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1744  1.109.2.1    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1745  1.109.2.1    simonb 			fs->fs_cstotal.cs_nbfree--;
   1746  1.109.2.1    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1747  1.109.2.1    simonb 		}
   1748  1.109.2.1    simonb 		/*
   1749  1.109.2.1    simonb 		 * decrement the counts associated with the old frags
   1750  1.109.2.1    simonb 		 */
   1751  1.109.2.1    simonb 		blk = blkmap(fs, blksfree, bbase);
   1752  1.109.2.1    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1753  1.109.2.1    simonb 		/*
   1754  1.109.2.1    simonb 		 * allocate the fragment
   1755  1.109.2.1    simonb 		 */
   1756  1.109.2.1    simonb 		for (i = 0; i < frags; i++) {
   1757  1.109.2.1    simonb 			clrbit(blksfree, cgbno + i);
   1758  1.109.2.1    simonb 		}
   1759  1.109.2.1    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1760  1.109.2.1    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1761  1.109.2.1    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1762  1.109.2.1    simonb 		/*
   1763  1.109.2.1    simonb 		 * add back in counts associated with the new frags
   1764  1.109.2.1    simonb 		 */
   1765  1.109.2.1    simonb 		blk = blkmap(fs, blksfree, bbase);
   1766  1.109.2.1    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1767  1.109.2.1    simonb 	}
   1768  1.109.2.1    simonb 	fs->fs_fmod = 1;
   1769  1.109.2.1    simonb 	ACTIVECG_CLR(fs, cg);
   1770  1.109.2.1    simonb 	mutex_exit(&ump->um_lock);
   1771  1.109.2.1    simonb 	bdwrite(bp);
   1772  1.109.2.1    simonb 	return 0;
   1773  1.109.2.1    simonb }
   1774  1.109.2.1    simonb 
   1775  1.109.2.1    simonb /*
   1776        1.1   mycroft  * Free a block or fragment.
   1777        1.1   mycroft  *
   1778        1.1   mycroft  * The specified block or fragment is placed back in the
   1779       1.81     perry  * free map. If a fragment is deallocated, a possible
   1780        1.1   mycroft  * block reassembly is checked.
   1781      1.106     pooka  *
   1782      1.106     pooka  * => um_lock not held on entry or exit
   1783        1.1   mycroft  */
   1784        1.9  christos void
   1785       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1786       1.85   thorpej     ino_t inum)
   1787        1.1   mycroft {
   1788       1.33  augustss 	struct cg *cgp;
   1789        1.1   mycroft 	struct buf *bp;
   1790       1.76   hannken 	struct ufsmount *ump;
   1791       1.60      fvdl 	int32_t fragno, cgbno;
   1792       1.76   hannken 	daddr_t cgblkno;
   1793        1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1794       1.62      fvdl 	u_int8_t *blksfree;
   1795       1.76   hannken 	dev_t dev;
   1796       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1797        1.1   mycroft 
   1798       1.76   hannken 	cg = dtog(fs, bno);
   1799       1.77   hannken 	if (devvp->v_type != VBLK) {
   1800       1.77   hannken 		/* devvp is a snapshot */
   1801       1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1802      1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1803       1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1804       1.76   hannken 	} else {
   1805       1.76   hannken 		dev = devvp->v_rdev;
   1806      1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1807       1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1808      1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1809       1.76   hannken 			return;
   1810       1.76   hannken 	}
   1811       1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1812       1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1813       1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1814       1.58      fvdl 		       "size = %ld, fs = %s\n",
   1815       1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1816        1.1   mycroft 		panic("blkfree: bad size");
   1817        1.1   mycroft 	}
   1818       1.76   hannken 
   1819       1.60      fvdl 	if (bno >= fs->fs_size) {
   1820       1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1821       1.86  christos 		    (unsigned long long)inum);
   1822       1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1823        1.1   mycroft 		return;
   1824        1.1   mycroft 	}
   1825      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1826      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1827        1.1   mycroft 	if (error) {
   1828      1.101        ad 		brelse(bp, 0);
   1829        1.1   mycroft 		return;
   1830        1.1   mycroft 	}
   1831        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1832       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1833      1.101        ad 		brelse(bp, 0);
   1834        1.1   mycroft 		return;
   1835        1.1   mycroft 	}
   1836       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1837       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1838       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1839       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1840       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1841       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1842      1.101        ad 	mutex_enter(&ump->um_lock);
   1843        1.1   mycroft 	if (size == fs->fs_bsize) {
   1844       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1845       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1846       1.77   hannken 			if (devvp->v_type != VBLK) {
   1847       1.77   hannken 				/* devvp is a snapshot */
   1848      1.101        ad 				mutex_exit(&ump->um_lock);
   1849      1.101        ad 				brelse(bp, 0);
   1850       1.76   hannken 				return;
   1851       1.76   hannken 			}
   1852       1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1853       1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1854        1.1   mycroft 			panic("blkfree: freeing free block");
   1855        1.1   mycroft 		}
   1856       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1857       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1858       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1859        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1860        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1861       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1862       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1863       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1864       1.75       dbj 			KASSERT(i >= 0);
   1865       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1866       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1867       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1868       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1869       1.73       dbj 			    needswap);
   1870       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1871       1.73       dbj 		}
   1872        1.1   mycroft 	} else {
   1873       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1874        1.1   mycroft 		/*
   1875        1.1   mycroft 		 * decrement the counts associated with the old frags
   1876        1.1   mycroft 		 */
   1877       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1878       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1879        1.1   mycroft 		/*
   1880        1.1   mycroft 		 * deallocate the fragment
   1881        1.1   mycroft 		 */
   1882        1.1   mycroft 		frags = numfrags(fs, size);
   1883        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1884       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1885       1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1886       1.59   tsutsui 				       ", fs = %s\n",
   1887       1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1888        1.1   mycroft 				panic("blkfree: freeing free frag");
   1889        1.1   mycroft 			}
   1890       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1891        1.1   mycroft 		}
   1892       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1893        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1894       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1895        1.1   mycroft 		/*
   1896        1.1   mycroft 		 * add back in counts associated with the new frags
   1897        1.1   mycroft 		 */
   1898       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1899       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1900        1.1   mycroft 		/*
   1901        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1902        1.1   mycroft 		 */
   1903       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1904       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1905       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1906        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1907        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1908       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1909       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1910        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1911        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1912       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1913       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1914       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1915       1.75       dbj 				KASSERT(i >= 0);
   1916       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1917       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1918       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1919       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1920       1.73       dbj 				    bbase)], 1, needswap);
   1921       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1922       1.73       dbj 			}
   1923        1.1   mycroft 		}
   1924        1.1   mycroft 	}
   1925        1.1   mycroft 	fs->fs_fmod = 1;
   1926       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1927      1.101        ad 	mutex_exit(&ump->um_lock);
   1928        1.1   mycroft 	bdwrite(bp);
   1929        1.1   mycroft }
   1930        1.1   mycroft 
   1931       1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1932       1.55      matt #ifdef XXXUBC
   1933       1.18      fvdl /*
   1934       1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1935       1.18      fvdl  * fragment is allocated, false if it is free.
   1936       1.18      fvdl  */
   1937       1.18      fvdl static int
   1938       1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   1939       1.18      fvdl {
   1940       1.18      fvdl 	struct fs *fs;
   1941       1.18      fvdl 	struct cg *cgp;
   1942       1.18      fvdl 	struct buf *bp;
   1943       1.18      fvdl 	int i, error, frags, free;
   1944       1.18      fvdl 
   1945       1.18      fvdl 	fs = ip->i_fs;
   1946       1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1947       1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1948       1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1949       1.18      fvdl 		panic("checkblk: bad size");
   1950       1.18      fvdl 	}
   1951       1.60      fvdl 	if (bno >= fs->fs_size)
   1952       1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1953       1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1954      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   1955       1.18      fvdl 	if (error) {
   1956      1.101        ad 		brelse(bp, 0);
   1957       1.18      fvdl 		return 0;
   1958       1.18      fvdl 	}
   1959       1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1960       1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1961      1.101        ad 		brelse(bp, 0);
   1962       1.18      fvdl 		return 0;
   1963       1.18      fvdl 	}
   1964       1.18      fvdl 	bno = dtogd(fs, bno);
   1965       1.18      fvdl 	if (size == fs->fs_bsize) {
   1966       1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1967       1.19    bouyer 			fragstoblks(fs, bno));
   1968       1.18      fvdl 	} else {
   1969       1.18      fvdl 		frags = numfrags(fs, size);
   1970       1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1971       1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   1972       1.18      fvdl 				free++;
   1973       1.18      fvdl 		if (free != 0 && free != frags)
   1974       1.18      fvdl 			panic("checkblk: partially free fragment");
   1975       1.18      fvdl 	}
   1976      1.101        ad 	brelse(bp, 0);
   1977       1.18      fvdl 	return (!free);
   1978       1.18      fvdl }
   1979       1.55      matt #endif /* XXXUBC */
   1980       1.18      fvdl #endif /* DIAGNOSTIC */
   1981       1.18      fvdl 
   1982        1.1   mycroft /*
   1983        1.1   mycroft  * Free an inode.
   1984       1.30      fvdl  */
   1985       1.30      fvdl int
   1986       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1987       1.30      fvdl {
   1988       1.30      fvdl 
   1989       1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1990       1.88      yamt 		softdep_freefile(vp, ino, mode);
   1991       1.30      fvdl 		return (0);
   1992       1.30      fvdl 	}
   1993       1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1994       1.30      fvdl }
   1995       1.30      fvdl 
   1996       1.30      fvdl /*
   1997       1.30      fvdl  * Do the actual free operation.
   1998        1.1   mycroft  * The specified inode is placed back in the free map.
   1999  1.109.2.1    simonb  *
   2000  1.109.2.1    simonb  * => um_lock not held on entry or exit
   2001        1.1   mycroft  */
   2002        1.1   mycroft int
   2003       1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2004        1.9  christos {
   2005      1.101        ad 	struct ufsmount *ump;
   2006       1.33  augustss 	struct cg *cgp;
   2007        1.1   mycroft 	struct buf *bp;
   2008        1.1   mycroft 	int error, cg;
   2009       1.76   hannken 	daddr_t cgbno;
   2010       1.62      fvdl 	u_int8_t *inosused;
   2011       1.78   hannken 	dev_t dev;
   2012       1.19    bouyer #ifdef FFS_EI
   2013       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2014       1.19    bouyer #endif
   2015        1.1   mycroft 
   2016  1.109.2.1    simonb 	UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   2017  1.109.2.1    simonb 
   2018       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2019       1.78   hannken 	if (devvp->v_type != VBLK) {
   2020       1.78   hannken 		/* devvp is a snapshot */
   2021       1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   2022      1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   2023       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2024       1.76   hannken 	} else {
   2025       1.78   hannken 		dev = devvp->v_rdev;
   2026      1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   2027       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2028       1.76   hannken 	}
   2029        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2030       1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   2031       1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   2032      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2033      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   2034        1.1   mycroft 	if (error) {
   2035      1.101        ad 		brelse(bp, 0);
   2036       1.30      fvdl 		return (error);
   2037        1.1   mycroft 	}
   2038        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2039       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2040      1.101        ad 		brelse(bp, 0);
   2041        1.1   mycroft 		return (0);
   2042        1.1   mycroft 	}
   2043       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2044       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2045       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2046       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2047       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2048        1.1   mycroft 	ino %= fs->fs_ipg;
   2049       1.62      fvdl 	if (isclr(inosused, ino)) {
   2050       1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   2051       1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   2052       1.86  christos 		    fs->fs_fsmnt);
   2053        1.1   mycroft 		if (fs->fs_ronly == 0)
   2054        1.1   mycroft 			panic("ifree: freeing free inode");
   2055        1.1   mycroft 	}
   2056       1.62      fvdl 	clrbit(inosused, ino);
   2057  1.109.2.1    simonb 	UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   2058  1.109.2.1    simonb 	    ino + cg * fs->fs_ipg, mode);
   2059       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2060       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2061       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2062      1.101        ad 	mutex_enter(&ump->um_lock);
   2063        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2064        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2065       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2066       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2067        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2068        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2069        1.1   mycroft 	}
   2070        1.1   mycroft 	fs->fs_fmod = 1;
   2071       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2072      1.101        ad 	mutex_exit(&ump->um_lock);
   2073        1.1   mycroft 	bdwrite(bp);
   2074        1.1   mycroft 	return (0);
   2075        1.1   mycroft }
   2076        1.1   mycroft 
   2077        1.1   mycroft /*
   2078       1.76   hannken  * Check to see if a file is free.
   2079       1.76   hannken  */
   2080       1.76   hannken int
   2081       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2082       1.76   hannken {
   2083       1.76   hannken 	struct cg *cgp;
   2084       1.76   hannken 	struct buf *bp;
   2085       1.76   hannken 	daddr_t cgbno;
   2086       1.76   hannken 	int ret, cg;
   2087       1.76   hannken 	u_int8_t *inosused;
   2088       1.76   hannken 
   2089       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2090       1.77   hannken 	if (devvp->v_type != VBLK) {
   2091       1.77   hannken 		/* devvp is a snapshot */
   2092       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2093       1.77   hannken 	} else
   2094       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2095       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2096       1.76   hannken 		return 1;
   2097      1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2098      1.101        ad 		brelse(bp, 0);
   2099       1.76   hannken 		return 1;
   2100       1.76   hannken 	}
   2101       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2102       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2103      1.101        ad 		brelse(bp, 0);
   2104       1.76   hannken 		return 1;
   2105       1.76   hannken 	}
   2106       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2107       1.76   hannken 	ino %= fs->fs_ipg;
   2108       1.76   hannken 	ret = isclr(inosused, ino);
   2109      1.101        ad 	brelse(bp, 0);
   2110       1.76   hannken 	return ret;
   2111       1.76   hannken }
   2112       1.76   hannken 
   2113       1.76   hannken /*
   2114        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2115        1.1   mycroft  *
   2116        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2117        1.1   mycroft  * available.
   2118        1.1   mycroft  */
   2119       1.60      fvdl static int32_t
   2120       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2121        1.1   mycroft {
   2122       1.60      fvdl 	int32_t bno;
   2123        1.1   mycroft 	int start, len, loc, i;
   2124        1.1   mycroft 	int blk, field, subfield, pos;
   2125       1.19    bouyer 	int ostart, olen;
   2126       1.62      fvdl 	u_int8_t *blksfree;
   2127       1.30      fvdl #ifdef FFS_EI
   2128       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2129       1.30      fvdl #endif
   2130        1.1   mycroft 
   2131      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2132      1.101        ad 
   2133        1.1   mycroft 	/*
   2134        1.1   mycroft 	 * find the fragment by searching through the free block
   2135        1.1   mycroft 	 * map for an appropriate bit pattern
   2136        1.1   mycroft 	 */
   2137        1.1   mycroft 	if (bpref)
   2138        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2139        1.1   mycroft 	else
   2140       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2141       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2142        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2143       1.19    bouyer 	ostart = start;
   2144       1.19    bouyer 	olen = len;
   2145       1.45     lukem 	loc = scanc((u_int)len,
   2146       1.62      fvdl 		(const u_char *)&blksfree[start],
   2147       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2148       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2149        1.1   mycroft 	if (loc == 0) {
   2150        1.1   mycroft 		len = start + 1;
   2151        1.1   mycroft 		start = 0;
   2152       1.45     lukem 		loc = scanc((u_int)len,
   2153       1.62      fvdl 			(const u_char *)&blksfree[0],
   2154       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2155       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2156        1.1   mycroft 		if (loc == 0) {
   2157       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2158       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2159       1.20      ross 			printf("offset=%d %ld\n",
   2160       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2161       1.62      fvdl 				(long)blksfree - (long)cgp);
   2162       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2163        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2164        1.1   mycroft 			/* NOTREACHED */
   2165        1.1   mycroft 		}
   2166        1.1   mycroft 	}
   2167        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2168       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2169        1.1   mycroft 	/*
   2170        1.1   mycroft 	 * found the byte in the map
   2171        1.1   mycroft 	 * sift through the bits to find the selected frag
   2172        1.1   mycroft 	 */
   2173        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2174       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2175        1.1   mycroft 		blk <<= 1;
   2176        1.1   mycroft 		field = around[allocsiz];
   2177        1.1   mycroft 		subfield = inside[allocsiz];
   2178        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2179        1.1   mycroft 			if ((blk & field) == subfield)
   2180        1.1   mycroft 				return (bno + pos);
   2181        1.1   mycroft 			field <<= 1;
   2182        1.1   mycroft 			subfield <<= 1;
   2183        1.1   mycroft 		}
   2184        1.1   mycroft 	}
   2185       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2186        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2187       1.58      fvdl 	/* return (-1); */
   2188        1.1   mycroft }
   2189        1.1   mycroft 
   2190        1.1   mycroft /*
   2191        1.1   mycroft  * Update the cluster map because of an allocation or free.
   2192        1.1   mycroft  *
   2193        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2194        1.1   mycroft  */
   2195        1.9  christos void
   2196       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2197        1.1   mycroft {
   2198        1.4       cgd 	int32_t *sump;
   2199        1.5   mycroft 	int32_t *lp;
   2200        1.1   mycroft 	u_char *freemapp, *mapp;
   2201        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2202       1.30      fvdl #ifdef FFS_EI
   2203       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2204       1.30      fvdl #endif
   2205        1.1   mycroft 
   2206      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2207      1.101        ad 
   2208        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2209        1.1   mycroft 		return;
   2210       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2211       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2212        1.1   mycroft 	/*
   2213        1.1   mycroft 	 * Allocate or clear the actual block.
   2214        1.1   mycroft 	 */
   2215        1.1   mycroft 	if (cnt > 0)
   2216        1.1   mycroft 		setbit(freemapp, blkno);
   2217        1.1   mycroft 	else
   2218        1.1   mycroft 		clrbit(freemapp, blkno);
   2219        1.1   mycroft 	/*
   2220        1.1   mycroft 	 * Find the size of the cluster going forward.
   2221        1.1   mycroft 	 */
   2222        1.1   mycroft 	start = blkno + 1;
   2223        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2224       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2225       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2226        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2227        1.1   mycroft 	map = *mapp++;
   2228        1.1   mycroft 	bit = 1 << (start % NBBY);
   2229        1.1   mycroft 	for (i = start; i < end; i++) {
   2230        1.1   mycroft 		if ((map & bit) == 0)
   2231        1.1   mycroft 			break;
   2232        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2233        1.1   mycroft 			bit <<= 1;
   2234        1.1   mycroft 		} else {
   2235        1.1   mycroft 			map = *mapp++;
   2236        1.1   mycroft 			bit = 1;
   2237        1.1   mycroft 		}
   2238        1.1   mycroft 	}
   2239        1.1   mycroft 	forw = i - start;
   2240        1.1   mycroft 	/*
   2241        1.1   mycroft 	 * Find the size of the cluster going backward.
   2242        1.1   mycroft 	 */
   2243        1.1   mycroft 	start = blkno - 1;
   2244        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2245        1.1   mycroft 	if (end < 0)
   2246        1.1   mycroft 		end = -1;
   2247        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2248        1.1   mycroft 	map = *mapp--;
   2249        1.1   mycroft 	bit = 1 << (start % NBBY);
   2250        1.1   mycroft 	for (i = start; i > end; i--) {
   2251        1.1   mycroft 		if ((map & bit) == 0)
   2252        1.1   mycroft 			break;
   2253        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2254        1.1   mycroft 			bit >>= 1;
   2255        1.1   mycroft 		} else {
   2256        1.1   mycroft 			map = *mapp--;
   2257        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2258        1.1   mycroft 		}
   2259        1.1   mycroft 	}
   2260        1.1   mycroft 	back = start - i;
   2261        1.1   mycroft 	/*
   2262        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2263        1.1   mycroft 	 * back clusters.
   2264        1.1   mycroft 	 */
   2265        1.1   mycroft 	i = back + forw + 1;
   2266        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2267        1.1   mycroft 		i = fs->fs_contigsumsize;
   2268       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2269        1.1   mycroft 	if (back > 0)
   2270       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2271        1.1   mycroft 	if (forw > 0)
   2272       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2273       1.19    bouyer 
   2274        1.5   mycroft 	/*
   2275        1.5   mycroft 	 * Update cluster summary information.
   2276        1.5   mycroft 	 */
   2277        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2278        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2279       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2280        1.5   mycroft 			break;
   2281       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2282        1.1   mycroft }
   2283        1.1   mycroft 
   2284        1.1   mycroft /*
   2285        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2286       1.81     perry  *
   2287        1.1   mycroft  * The form of the error message is:
   2288        1.1   mycroft  *	fs: error message
   2289        1.1   mycroft  */
   2290        1.1   mycroft static void
   2291       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2292        1.1   mycroft {
   2293        1.1   mycroft 
   2294       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2295       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2296        1.1   mycroft }
   2297