Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.109.4.2
      1  1.109.4.2      haad /*	$NetBSD: ffs_alloc.c,v 1.109.4.2 2008/12/13 01:15:41 haad Exp $	*/
      2  1.109.4.1      haad 
      3  1.109.4.1      haad /*-
      4  1.109.4.1      haad  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.109.4.1      haad  * All rights reserved.
      6  1.109.4.1      haad  *
      7  1.109.4.1      haad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.109.4.1      haad  * by Wasabi Systems, Inc.
      9  1.109.4.1      haad  *
     10  1.109.4.1      haad  * Redistribution and use in source and binary forms, with or without
     11  1.109.4.1      haad  * modification, are permitted provided that the following conditions
     12  1.109.4.1      haad  * are met:
     13  1.109.4.1      haad  * 1. Redistributions of source code must retain the above copyright
     14  1.109.4.1      haad  *    notice, this list of conditions and the following disclaimer.
     15  1.109.4.1      haad  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.109.4.1      haad  *    notice, this list of conditions and the following disclaimer in the
     17  1.109.4.1      haad  *    documentation and/or other materials provided with the distribution.
     18  1.109.4.1      haad  *
     19  1.109.4.1      haad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.109.4.1      haad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.109.4.1      haad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.109.4.1      haad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.109.4.1      haad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.109.4.1      haad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.109.4.1      haad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.109.4.1      haad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.109.4.1      haad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.109.4.1      haad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.109.4.1      haad  * POSSIBILITY OF SUCH DAMAGE.
     30  1.109.4.1      haad  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.109.4.2      haad __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.109.4.2 2008/12/13 01:15:41 haad Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78       1.22    scottr #endif
     79        1.1   mycroft 
     80        1.1   mycroft #include <sys/param.h>
     81        1.1   mycroft #include <sys/systm.h>
     82        1.1   mycroft #include <sys/buf.h>
     83  1.109.4.1      haad #include <sys/fstrans.h>
     84  1.109.4.1      haad #include <sys/kauth.h>
     85        1.1   mycroft #include <sys/kernel.h>
     86  1.109.4.1      haad #include <sys/mount.h>
     87  1.109.4.1      haad #include <sys/proc.h>
     88        1.1   mycroft #include <sys/syslog.h>
     89  1.109.4.1      haad #include <sys/vnode.h>
     90  1.109.4.1      haad #include <sys/wapbl.h>
     91       1.29       mrg 
     92       1.76   hannken #include <miscfs/specfs/specdev.h>
     93        1.1   mycroft #include <ufs/ufs/quota.h>
     94       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95        1.1   mycroft #include <ufs/ufs/inode.h>
     96        1.9  christos #include <ufs/ufs/ufs_extern.h>
     97       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.109.4.1      haad #include <ufs/ufs/ufs_wapbl.h>
     99        1.1   mycroft 
    100        1.1   mycroft #include <ufs/ffs/fs.h>
    101        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102        1.1   mycroft 
    103  1.109.4.1      haad static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104  1.109.4.1      haad static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108  1.109.4.1      haad static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109  1.109.4.1      haad     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110  1.109.4.1      haad static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112       1.85   thorpej 				      daddr_t, int);
    113  1.109.4.2      haad static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    114  1.109.4.2      haad     daddr_t, long, bool);
    115  1.109.4.2      haad static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    116  1.109.4.2      haad     int, bool);
    117       1.23  drochner 
    118       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    119       1.34  jdolecek int ffs_log_changeopt = 0;
    120       1.34  jdolecek 
    121       1.23  drochner /* in ffs_tables.c */
    122       1.40  jdolecek extern const int inside[], around[];
    123       1.40  jdolecek extern const u_char * const fragtbl[];
    124        1.1   mycroft 
    125  1.109.4.2      haad /* Basic consistency check for block allocations */
    126  1.109.4.2      haad static int
    127  1.109.4.2      haad ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    128  1.109.4.2      haad     long size, dev_t dev, ino_t inum)
    129  1.109.4.2      haad {
    130  1.109.4.2      haad 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    131  1.109.4.2      haad 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    132  1.109.4.2      haad 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
    133  1.109.4.2      haad 		       "size = %ld, fs = %s\n",
    134  1.109.4.2      haad 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    135  1.109.4.2      haad 		panic("%s: bad size", func);
    136  1.109.4.2      haad 	}
    137  1.109.4.2      haad 
    138  1.109.4.2      haad 	if (bno >= fs->fs_size) {
    139  1.109.4.2      haad 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    140  1.109.4.2      haad 		    (unsigned long long)inum);
    141  1.109.4.2      haad 		ffs_fserr(fs, inum, "bad block");
    142  1.109.4.2      haad 		return EINVAL;
    143  1.109.4.2      haad 	}
    144  1.109.4.2      haad 	return 0;
    145  1.109.4.2      haad }
    146  1.109.4.2      haad 
    147        1.1   mycroft /*
    148        1.1   mycroft  * Allocate a block in the file system.
    149       1.81     perry  *
    150        1.1   mycroft  * The size of the requested block is given, which must be some
    151        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    152        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    153        1.1   mycroft  * the following hierarchy is used to allocate a block:
    154        1.1   mycroft  *   1) allocate the requested block.
    155        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    156        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    157        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    158        1.1   mycroft  *      available block is located.
    159       1.47       wiz  * If no block preference is given the following hierarchy is used
    160        1.1   mycroft  * to allocate a block:
    161        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    162        1.1   mycroft  *      inode for the file.
    163        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    164        1.1   mycroft  *      available block is located.
    165      1.106     pooka  *
    166      1.106     pooka  * => called with um_lock held
    167      1.106     pooka  * => releases um_lock before returning
    168        1.1   mycroft  */
    169        1.9  christos int
    170  1.109.4.1      haad ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    171       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    172        1.1   mycroft {
    173      1.101        ad 	struct ufsmount *ump;
    174       1.62      fvdl 	struct fs *fs;
    175       1.58      fvdl 	daddr_t bno;
    176        1.9  christos 	int cg;
    177        1.9  christos #ifdef QUOTA
    178        1.9  christos 	int error;
    179        1.9  christos #endif
    180       1.81     perry 
    181       1.62      fvdl 	fs = ip->i_fs;
    182      1.101        ad 	ump = ip->i_ump;
    183      1.101        ad 
    184      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    185       1.62      fvdl 
    186       1.37       chs #ifdef UVM_PAGE_TRKOWN
    187       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    188       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    189       1.37       chs 		struct vm_page *pg;
    190       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    191       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    192       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    193       1.37       chs 
    194      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    195       1.37       chs 		while (off < endoff) {
    196       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    197       1.37       chs 			KASSERT(pg != NULL);
    198       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    199       1.37       chs 			off += PAGE_SIZE;
    200       1.37       chs 		}
    201      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    202       1.37       chs 	}
    203       1.37       chs #endif
    204       1.37       chs 
    205        1.1   mycroft 	*bnp = 0;
    206        1.1   mycroft #ifdef DIAGNOSTIC
    207        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    208       1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    209        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    210        1.1   mycroft 		panic("ffs_alloc: bad size");
    211        1.1   mycroft 	}
    212        1.1   mycroft 	if (cred == NOCRED)
    213       1.56    provos 		panic("ffs_alloc: missing credential");
    214        1.1   mycroft #endif /* DIAGNOSTIC */
    215        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    216        1.1   mycroft 		goto nospace;
    217       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    218       1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    219        1.1   mycroft 		goto nospace;
    220        1.1   mycroft #ifdef QUOTA
    221      1.101        ad 	mutex_exit(&ump->um_lock);
    222       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    223        1.1   mycroft 		return (error);
    224      1.101        ad 	mutex_enter(&ump->um_lock);
    225        1.1   mycroft #endif
    226  1.109.4.1      haad 
    227        1.1   mycroft 	if (bpref >= fs->fs_size)
    228        1.1   mycroft 		bpref = 0;
    229        1.1   mycroft 	if (bpref == 0)
    230        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    231        1.1   mycroft 	else
    232        1.1   mycroft 		cg = dtog(fs, bpref);
    233  1.109.4.1      haad 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    234        1.1   mycroft 	if (bno > 0) {
    235       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    236        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    237        1.1   mycroft 		*bnp = bno;
    238        1.1   mycroft 		return (0);
    239        1.1   mycroft 	}
    240        1.1   mycroft #ifdef QUOTA
    241        1.1   mycroft 	/*
    242        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    243        1.1   mycroft 	 */
    244       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    245        1.1   mycroft #endif
    246  1.109.4.1      haad 	if (flags & B_CONTIG) {
    247  1.109.4.1      haad 		/*
    248  1.109.4.1      haad 		 * XXX ump->um_lock handling is "suspect" at best.
    249  1.109.4.1      haad 		 * For the case where ffs_hashalloc() fails early
    250  1.109.4.1      haad 		 * in the B_CONTIG case we reach here with um_lock
    251  1.109.4.1      haad 		 * already unlocked, so we can't release it again
    252  1.109.4.1      haad 		 * like in the normal error path.  See kern/39206.
    253  1.109.4.1      haad 		 *
    254  1.109.4.1      haad 		 *
    255  1.109.4.1      haad 		 * Fail silently - it's up to our caller to report
    256  1.109.4.1      haad 		 * errors.
    257  1.109.4.1      haad 		 */
    258  1.109.4.1      haad 		return (ENOSPC);
    259  1.109.4.1      haad 	}
    260        1.1   mycroft nospace:
    261      1.101        ad 	mutex_exit(&ump->um_lock);
    262       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    263        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    264        1.1   mycroft 	return (ENOSPC);
    265        1.1   mycroft }
    266        1.1   mycroft 
    267        1.1   mycroft /*
    268        1.1   mycroft  * Reallocate a fragment to a bigger size
    269        1.1   mycroft  *
    270        1.1   mycroft  * The number and size of the old block is given, and a preference
    271        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    272        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    273        1.1   mycroft  * invoked to get an appropriate block.
    274      1.106     pooka  *
    275      1.106     pooka  * => called with um_lock held
    276      1.106     pooka  * => return with um_lock released
    277        1.1   mycroft  */
    278        1.9  christos int
    279       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    280       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    281        1.1   mycroft {
    282      1.101        ad 	struct ufsmount *ump;
    283       1.62      fvdl 	struct fs *fs;
    284        1.1   mycroft 	struct buf *bp;
    285        1.1   mycroft 	int cg, request, error;
    286       1.58      fvdl 	daddr_t bprev, bno;
    287       1.25   thorpej 
    288       1.62      fvdl 	fs = ip->i_fs;
    289      1.101        ad 	ump = ip->i_ump;
    290      1.101        ad 
    291      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    292      1.101        ad 
    293       1.37       chs #ifdef UVM_PAGE_TRKOWN
    294       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    295       1.37       chs 		struct vm_page *pg;
    296       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    297       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    298       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    299       1.37       chs 
    300      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    301       1.37       chs 		while (off < endoff) {
    302       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    303       1.37       chs 			KASSERT(pg != NULL);
    304       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    305       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    306       1.37       chs 			off += PAGE_SIZE;
    307       1.37       chs 		}
    308      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    309       1.37       chs 	}
    310       1.37       chs #endif
    311       1.37       chs 
    312        1.1   mycroft #ifdef DIAGNOSTIC
    313        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    314        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    315       1.13  christos 		printf(
    316        1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    317        1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    318        1.1   mycroft 		panic("ffs_realloccg: bad size");
    319        1.1   mycroft 	}
    320        1.1   mycroft 	if (cred == NOCRED)
    321       1.56    provos 		panic("ffs_realloccg: missing credential");
    322        1.1   mycroft #endif /* DIAGNOSTIC */
    323       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    324      1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    325      1.101        ad 		mutex_exit(&ump->um_lock);
    326        1.1   mycroft 		goto nospace;
    327      1.101        ad 	}
    328       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    329       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    330       1.60      fvdl 	else
    331       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    332       1.60      fvdl 
    333       1.60      fvdl 	if (bprev == 0) {
    334       1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    335       1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    336        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    337        1.1   mycroft 	}
    338      1.101        ad 	mutex_exit(&ump->um_lock);
    339      1.101        ad 
    340        1.1   mycroft 	/*
    341        1.1   mycroft 	 * Allocate the extra space in the buffer.
    342        1.1   mycroft 	 */
    343       1.37       chs 	if (bpp != NULL &&
    344      1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    345      1.101        ad 		brelse(bp, 0);
    346        1.1   mycroft 		return (error);
    347        1.1   mycroft 	}
    348        1.1   mycroft #ifdef QUOTA
    349       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    350       1.44       chs 		if (bpp != NULL) {
    351      1.101        ad 			brelse(bp, 0);
    352       1.44       chs 		}
    353        1.1   mycroft 		return (error);
    354        1.1   mycroft 	}
    355        1.1   mycroft #endif
    356        1.1   mycroft 	/*
    357        1.1   mycroft 	 * Check for extension in the existing location.
    358        1.1   mycroft 	 */
    359        1.1   mycroft 	cg = dtog(fs, bprev);
    360      1.101        ad 	mutex_enter(&ump->um_lock);
    361       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    362       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    363        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    364       1.37       chs 
    365       1.37       chs 		if (bpp != NULL) {
    366       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    367       1.37       chs 				panic("bad blockno");
    368       1.72        pk 			allocbuf(bp, nsize, 1);
    369       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    370      1.105        ad 			mutex_enter(bp->b_objlock);
    371      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    372      1.105        ad 			bp->b_oflags |= BO_DONE;
    373      1.105        ad 			mutex_exit(bp->b_objlock);
    374       1.37       chs 			*bpp = bp;
    375       1.37       chs 		}
    376       1.37       chs 		if (blknop != NULL) {
    377       1.37       chs 			*blknop = bno;
    378       1.37       chs 		}
    379        1.1   mycroft 		return (0);
    380        1.1   mycroft 	}
    381        1.1   mycroft 	/*
    382        1.1   mycroft 	 * Allocate a new disk location.
    383        1.1   mycroft 	 */
    384        1.1   mycroft 	if (bpref >= fs->fs_size)
    385        1.1   mycroft 		bpref = 0;
    386        1.1   mycroft 	switch ((int)fs->fs_optim) {
    387        1.1   mycroft 	case FS_OPTSPACE:
    388        1.1   mycroft 		/*
    389       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    390       1.81     perry 		 * best use of space, we will waste time relocating it if
    391        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    392        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    393        1.1   mycroft 		 * to begin optimizing for time.
    394        1.1   mycroft 		 */
    395        1.1   mycroft 		request = nsize;
    396        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    397        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    398        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    399        1.1   mycroft 			break;
    400       1.34  jdolecek 
    401       1.34  jdolecek 		if (ffs_log_changeopt) {
    402       1.34  jdolecek 			log(LOG_NOTICE,
    403       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    404       1.34  jdolecek 				fs->fs_fsmnt);
    405       1.34  jdolecek 		}
    406       1.34  jdolecek 
    407        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    408        1.1   mycroft 		break;
    409        1.1   mycroft 	case FS_OPTTIME:
    410        1.1   mycroft 		/*
    411        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    412        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    413        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    414        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    415        1.1   mycroft 		 * above will be able to grow it in place without further
    416        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    417        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    418        1.1   mycroft 		 * optimizing for space.
    419        1.1   mycroft 		 */
    420        1.1   mycroft 		request = fs->fs_bsize;
    421        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    422        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    423        1.1   mycroft 			break;
    424       1.34  jdolecek 
    425       1.34  jdolecek 		if (ffs_log_changeopt) {
    426       1.34  jdolecek 			log(LOG_NOTICE,
    427       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    428       1.34  jdolecek 				fs->fs_fsmnt);
    429       1.34  jdolecek 		}
    430       1.34  jdolecek 
    431        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    432        1.1   mycroft 		break;
    433        1.1   mycroft 	default:
    434       1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    435        1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    436        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    437        1.1   mycroft 		/* NOTREACHED */
    438        1.1   mycroft 	}
    439  1.109.4.1      haad 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    440        1.1   mycroft 	if (bno > 0) {
    441  1.109.4.1      haad 		if (!DOINGSOFTDEP(ITOV(ip))) {
    442  1.109.4.1      haad 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    443  1.109.4.1      haad 			    (ITOV(ip)->v_type != VREG)) {
    444  1.109.4.1      haad 				UFS_WAPBL_REGISTER_DEALLOCATION(
    445  1.109.4.1      haad 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    446  1.109.4.1      haad 				    osize);
    447  1.109.4.1      haad 			} else
    448  1.109.4.1      haad 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    449  1.109.4.1      haad 				    ip->i_number);
    450  1.109.4.1      haad 		}
    451  1.109.4.1      haad 		if (nsize < request) {
    452  1.109.4.1      haad 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    453  1.109.4.1      haad 			    (ITOV(ip)->v_type != VREG)) {
    454  1.109.4.1      haad 				UFS_WAPBL_REGISTER_DEALLOCATION(
    455  1.109.4.1      haad 				    ip->i_ump->um_mountp,
    456  1.109.4.1      haad 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    457  1.109.4.1      haad 				    request - nsize);
    458  1.109.4.1      haad 			} else
    459  1.109.4.1      haad 				ffs_blkfree(fs, ip->i_devvp,
    460  1.109.4.1      haad 				    bno + numfrags(fs, nsize),
    461  1.109.4.1      haad 				    (long)(request - nsize), ip->i_number);
    462  1.109.4.1      haad 		}
    463       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    464        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    465       1.37       chs 		if (bpp != NULL) {
    466       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    467       1.72        pk 			allocbuf(bp, nsize, 1);
    468       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    469      1.105        ad 			mutex_enter(bp->b_objlock);
    470      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    471      1.105        ad 			bp->b_oflags |= BO_DONE;
    472      1.105        ad 			mutex_exit(bp->b_objlock);
    473       1.37       chs 			*bpp = bp;
    474       1.37       chs 		}
    475       1.37       chs 		if (blknop != NULL) {
    476       1.37       chs 			*blknop = bno;
    477       1.37       chs 		}
    478        1.1   mycroft 		return (0);
    479        1.1   mycroft 	}
    480      1.101        ad 	mutex_exit(&ump->um_lock);
    481      1.101        ad 
    482        1.1   mycroft #ifdef QUOTA
    483        1.1   mycroft 	/*
    484        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    485        1.1   mycroft 	 */
    486       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    487        1.1   mycroft #endif
    488       1.37       chs 	if (bpp != NULL) {
    489      1.101        ad 		brelse(bp, 0);
    490       1.37       chs 	}
    491       1.37       chs 
    492        1.1   mycroft nospace:
    493        1.1   mycroft 	/*
    494        1.1   mycroft 	 * no space available
    495        1.1   mycroft 	 */
    496       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    497        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    498        1.1   mycroft 	return (ENOSPC);
    499        1.1   mycroft }
    500        1.1   mycroft 
    501        1.1   mycroft /*
    502        1.1   mycroft  * Allocate an inode in the file system.
    503       1.81     perry  *
    504        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    505        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    506        1.1   mycroft  *   1) allocate the preferred inode.
    507        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    508        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    509        1.1   mycroft  *      available inode is located.
    510       1.47       wiz  * If no inode preference is given the following hierarchy is used
    511        1.1   mycroft  * to allocate an inode:
    512        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    513        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    514        1.1   mycroft  *      available inode is located.
    515      1.106     pooka  *
    516      1.106     pooka  * => um_lock not held upon entry or return
    517        1.1   mycroft  */
    518        1.9  christos int
    519       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    520       1.88      yamt     struct vnode **vpp)
    521        1.9  christos {
    522      1.101        ad 	struct ufsmount *ump;
    523       1.33  augustss 	struct inode *pip;
    524       1.33  augustss 	struct fs *fs;
    525       1.33  augustss 	struct inode *ip;
    526       1.60      fvdl 	struct timespec ts;
    527        1.1   mycroft 	ino_t ino, ipref;
    528        1.1   mycroft 	int cg, error;
    529       1.81     perry 
    530  1.109.4.1      haad 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    531  1.109.4.1      haad 
    532       1.88      yamt 	*vpp = NULL;
    533        1.1   mycroft 	pip = VTOI(pvp);
    534        1.1   mycroft 	fs = pip->i_fs;
    535      1.101        ad 	ump = pip->i_ump;
    536      1.101        ad 
    537  1.109.4.1      haad 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    538  1.109.4.1      haad 	if (error) {
    539  1.109.4.1      haad 		return error;
    540  1.109.4.1      haad 	}
    541      1.101        ad 	mutex_enter(&ump->um_lock);
    542        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    543        1.1   mycroft 		goto noinodes;
    544        1.1   mycroft 
    545        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    546       1.50     lukem 		ipref = ffs_dirpref(pip);
    547       1.50     lukem 	else
    548       1.50     lukem 		ipref = pip->i_number;
    549        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    550        1.1   mycroft 		ipref = 0;
    551        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    552       1.50     lukem 	/*
    553       1.50     lukem 	 * Track number of dirs created one after another
    554       1.50     lukem 	 * in a same cg without intervening by files.
    555       1.50     lukem 	 */
    556       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    557       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    558       1.50     lukem 			fs->fs_contigdirs[cg]++;
    559       1.50     lukem 	} else {
    560       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    561       1.50     lukem 			fs->fs_contigdirs[cg]--;
    562       1.50     lukem 	}
    563  1.109.4.1      haad 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    564        1.1   mycroft 	if (ino == 0)
    565        1.1   mycroft 		goto noinodes;
    566  1.109.4.1      haad 	UFS_WAPBL_END(pvp->v_mount);
    567       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    568        1.1   mycroft 	if (error) {
    569  1.109.4.1      haad 		int err;
    570  1.109.4.1      haad 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    571  1.109.4.1      haad 		if (err == 0)
    572  1.109.4.1      haad 			ffs_vfree(pvp, ino, mode);
    573  1.109.4.1      haad 		if (err == 0)
    574  1.109.4.1      haad 			UFS_WAPBL_END(pvp->v_mount);
    575        1.1   mycroft 		return (error);
    576        1.1   mycroft 	}
    577       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    578       1.88      yamt 	ip = VTOI(*vpp);
    579       1.60      fvdl 	if (ip->i_mode) {
    580       1.60      fvdl #if 0
    581       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    582       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    583       1.60      fvdl #else
    584       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    585       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    586       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    587       1.60      fvdl 		printf("size %llx blocks %llx\n",
    588       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    589       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    590       1.86  christos 		    (unsigned long long)ipref);
    591       1.60      fvdl #if 0
    592       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    593      1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    594       1.60      fvdl #endif
    595       1.60      fvdl 
    596       1.60      fvdl #endif
    597        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    598        1.1   mycroft 	}
    599       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    600       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    601       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    602       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    603        1.1   mycroft 	}
    604       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    605       1.61      fvdl 	ip->i_flags = 0;
    606       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    607        1.1   mycroft 	/*
    608        1.1   mycroft 	 * Set up a new generation number for this inode.
    609        1.1   mycroft 	 */
    610       1.60      fvdl 	ip->i_gen++;
    611       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    612       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    613       1.93      yamt 		vfs_timestamp(&ts);
    614       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    615       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    616       1.60      fvdl 	}
    617        1.1   mycroft 	return (0);
    618        1.1   mycroft noinodes:
    619      1.101        ad 	mutex_exit(&ump->um_lock);
    620  1.109.4.1      haad 	UFS_WAPBL_END(pvp->v_mount);
    621       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    622        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    623        1.1   mycroft 	return (ENOSPC);
    624        1.1   mycroft }
    625        1.1   mycroft 
    626        1.1   mycroft /*
    627       1.50     lukem  * Find a cylinder group in which to place a directory.
    628       1.42  sommerfe  *
    629       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    630       1.50     lukem  * directory inode in the same cylinder group as its parent
    631       1.50     lukem  * directory, but also to reserve space for its files inodes
    632       1.50     lukem  * and data. Restrict the number of directories which may be
    633       1.50     lukem  * allocated one after another in the same cylinder group
    634       1.50     lukem  * without intervening allocation of files.
    635       1.42  sommerfe  *
    636       1.50     lukem  * If we allocate a first level directory then force allocation
    637       1.50     lukem  * in another cylinder group.
    638        1.1   mycroft  */
    639        1.1   mycroft static ino_t
    640       1.85   thorpej ffs_dirpref(struct inode *pip)
    641        1.1   mycroft {
    642       1.50     lukem 	register struct fs *fs;
    643       1.74     soren 	int cg, prefcg;
    644       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    645       1.89       dsl 	int avgifree, avgbfree, avgndir;
    646       1.50     lukem 	int minifree, minbfree, maxndir;
    647       1.50     lukem 	int mincg, minndir;
    648       1.50     lukem 	int maxcontigdirs;
    649       1.50     lukem 
    650      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    651      1.101        ad 
    652       1.50     lukem 	fs = pip->i_fs;
    653        1.1   mycroft 
    654        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    655       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    656       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    657       1.50     lukem 
    658       1.50     lukem 	/*
    659       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    660       1.50     lukem 	 */
    661      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    662       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    663       1.50     lukem 		mincg = prefcg;
    664       1.50     lukem 		minndir = fs->fs_ipg;
    665       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    666       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    667       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    668       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    669       1.42  sommerfe 				mincg = cg;
    670       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    671       1.42  sommerfe 			}
    672       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    673       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    674       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    675       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    676       1.50     lukem 				mincg = cg;
    677       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    678       1.42  sommerfe 			}
    679       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    680       1.42  sommerfe 	}
    681       1.50     lukem 
    682       1.50     lukem 	/*
    683       1.50     lukem 	 * Count various limits which used for
    684       1.50     lukem 	 * optimal allocation of a directory inode.
    685       1.50     lukem 	 */
    686       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    687       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    688       1.50     lukem 	if (minifree < 0)
    689       1.50     lukem 		minifree = 0;
    690       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    691       1.50     lukem 	if (minbfree < 0)
    692       1.50     lukem 		minbfree = 0;
    693       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    694       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    695       1.89       dsl 	if (avgndir != 0) {
    696       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    697       1.89       dsl 		if (dirsize < curdsz)
    698       1.89       dsl 			dirsize = curdsz;
    699       1.89       dsl 	}
    700       1.89       dsl 	if (cgsize < dirsize * 255)
    701       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    702       1.89       dsl 	else
    703       1.89       dsl 		maxcontigdirs = 255;
    704       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    705       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    706       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    707       1.50     lukem 	if (maxcontigdirs == 0)
    708       1.50     lukem 		maxcontigdirs = 1;
    709       1.50     lukem 
    710       1.50     lukem 	/*
    711       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    712       1.50     lukem 	 * regular files, but only if we have no deficit in
    713       1.50     lukem 	 * inodes or space.
    714       1.50     lukem 	 */
    715       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    716       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    717       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    718       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    719       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    720       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    721       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    722       1.50     lukem 		}
    723       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    724       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    725       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    726       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    727       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    728       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    729       1.50     lukem 		}
    730       1.50     lukem 	/*
    731       1.50     lukem 	 * This is a backstop when we are deficient in space.
    732       1.50     lukem 	 */
    733       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    734       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    735       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    736       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    737       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    738       1.50     lukem 			break;
    739       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    740        1.1   mycroft }
    741        1.1   mycroft 
    742        1.1   mycroft /*
    743        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    744        1.1   mycroft  * logically divided into sections. The first section is composed of the
    745        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    746       1.81     perry  *
    747        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    748        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    749        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    750        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    751        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    752        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    753        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    754        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    755        1.1   mycroft  * continues until a cylinder group with greater than the average number
    756        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    757        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    758        1.1   mycroft  * here a best guess is made based upon the logical block number being
    759        1.1   mycroft  * allocated.
    760       1.81     perry  *
    761        1.1   mycroft  * If a section is already partially allocated, the policy is to
    762        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    763       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    764       1.60      fvdl  * contigously if possible.
    765      1.106     pooka  *
    766      1.106     pooka  * => um_lock held on entry and exit
    767        1.1   mycroft  */
    768       1.58      fvdl daddr_t
    769  1.109.4.1      haad ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    770       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    771        1.1   mycroft {
    772       1.33  augustss 	struct fs *fs;
    773       1.33  augustss 	int cg;
    774        1.1   mycroft 	int avgbfree, startcg;
    775        1.1   mycroft 
    776      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    777      1.101        ad 
    778        1.1   mycroft 	fs = ip->i_fs;
    779  1.109.4.1      haad 
    780  1.109.4.1      haad 	/*
    781  1.109.4.1      haad 	 * If allocating a contiguous file with B_CONTIG, use the hints
    782  1.109.4.1      haad 	 * in the inode extentions to return the desired block.
    783  1.109.4.1      haad 	 *
    784  1.109.4.1      haad 	 * For metadata (indirect blocks) return the address of where
    785  1.109.4.1      haad 	 * the first indirect block resides - we'll scan for the next
    786  1.109.4.1      haad 	 * available slot if we need to allocate more than one indirect
    787  1.109.4.1      haad 	 * block.  For data, return the address of the actual block
    788  1.109.4.1      haad 	 * relative to the address of the first data block.
    789  1.109.4.1      haad 	 */
    790  1.109.4.1      haad 	if (flags & B_CONTIG) {
    791  1.109.4.1      haad 		KASSERT(ip->i_ffs_first_data_blk != 0);
    792  1.109.4.1      haad 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    793  1.109.4.1      haad 		if (flags & B_METAONLY)
    794  1.109.4.1      haad 			return ip->i_ffs_first_indir_blk;
    795  1.109.4.1      haad 		else
    796  1.109.4.1      haad 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    797  1.109.4.1      haad 	}
    798  1.109.4.1      haad 
    799        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    800       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    801        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    802  1.109.4.1      haad 			return (cgbase(fs, cg) + fs->fs_frag);
    803        1.1   mycroft 		}
    804        1.1   mycroft 		/*
    805        1.1   mycroft 		 * Find a cylinder with greater than average number of
    806        1.1   mycroft 		 * unused data blocks.
    807        1.1   mycroft 		 */
    808        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    809        1.1   mycroft 			startcg =
    810        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    811        1.1   mycroft 		else
    812       1.19    bouyer 			startcg = dtog(fs,
    813       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    814        1.1   mycroft 		startcg %= fs->fs_ncg;
    815        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    816        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    817        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    818  1.109.4.1      haad 				return (cgbase(fs, cg) + fs->fs_frag);
    819        1.1   mycroft 			}
    820       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    821        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    822  1.109.4.1      haad 				return (cgbase(fs, cg) + fs->fs_frag);
    823        1.1   mycroft 			}
    824       1.35   thorpej 		return (0);
    825        1.1   mycroft 	}
    826        1.1   mycroft 	/*
    827       1.60      fvdl 	 * We just always try to lay things out contiguously.
    828       1.60      fvdl 	 */
    829       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    830       1.60      fvdl }
    831       1.60      fvdl 
    832       1.60      fvdl daddr_t
    833  1.109.4.1      haad ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    834  1.109.4.1      haad     int64_t *bap)
    835       1.60      fvdl {
    836       1.60      fvdl 	struct fs *fs;
    837       1.60      fvdl 	int cg;
    838       1.60      fvdl 	int avgbfree, startcg;
    839       1.60      fvdl 
    840      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    841      1.101        ad 
    842       1.60      fvdl 	fs = ip->i_fs;
    843  1.109.4.1      haad 
    844  1.109.4.1      haad 	/*
    845  1.109.4.1      haad 	 * If allocating a contiguous file with B_CONTIG, use the hints
    846  1.109.4.1      haad 	 * in the inode extentions to return the desired block.
    847  1.109.4.1      haad 	 *
    848  1.109.4.1      haad 	 * For metadata (indirect blocks) return the address of where
    849  1.109.4.1      haad 	 * the first indirect block resides - we'll scan for the next
    850  1.109.4.1      haad 	 * available slot if we need to allocate more than one indirect
    851  1.109.4.1      haad 	 * block.  For data, return the address of the actual block
    852  1.109.4.1      haad 	 * relative to the address of the first data block.
    853  1.109.4.1      haad 	 */
    854  1.109.4.1      haad 	if (flags & B_CONTIG) {
    855  1.109.4.1      haad 		KASSERT(ip->i_ffs_first_data_blk != 0);
    856  1.109.4.1      haad 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    857  1.109.4.1      haad 		if (flags & B_METAONLY)
    858  1.109.4.1      haad 			return ip->i_ffs_first_indir_blk;
    859  1.109.4.1      haad 		else
    860  1.109.4.1      haad 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    861  1.109.4.1      haad 	}
    862  1.109.4.1      haad 
    863       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    864       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    865       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    866  1.109.4.1      haad 			return (cgbase(fs, cg) + fs->fs_frag);
    867       1.60      fvdl 		}
    868        1.1   mycroft 		/*
    869       1.60      fvdl 		 * Find a cylinder with greater than average number of
    870       1.60      fvdl 		 * unused data blocks.
    871        1.1   mycroft 		 */
    872       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    873       1.60      fvdl 			startcg =
    874       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    875       1.60      fvdl 		else
    876       1.60      fvdl 			startcg = dtog(fs,
    877       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    878       1.60      fvdl 		startcg %= fs->fs_ncg;
    879       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    880       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    881       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    882  1.109.4.1      haad 				return (cgbase(fs, cg) + fs->fs_frag);
    883       1.60      fvdl 			}
    884       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    885       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    886  1.109.4.1      haad 				return (cgbase(fs, cg) + fs->fs_frag);
    887       1.60      fvdl 			}
    888       1.60      fvdl 		return (0);
    889       1.60      fvdl 	}
    890       1.60      fvdl 	/*
    891       1.60      fvdl 	 * We just always try to lay things out contiguously.
    892       1.60      fvdl 	 */
    893       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    894        1.1   mycroft }
    895        1.1   mycroft 
    896       1.60      fvdl 
    897        1.1   mycroft /*
    898        1.1   mycroft  * Implement the cylinder overflow algorithm.
    899        1.1   mycroft  *
    900        1.1   mycroft  * The policy implemented by this algorithm is:
    901        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    902        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    903        1.1   mycroft  *   3) brute force search for a free block.
    904      1.106     pooka  *
    905      1.106     pooka  * => called with um_lock held
    906      1.106     pooka  * => returns with um_lock released on success, held on failure
    907      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    908        1.1   mycroft  */
    909        1.1   mycroft /*VARARGS5*/
    910       1.58      fvdl static daddr_t
    911       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    912       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    913  1.109.4.1      haad     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    914        1.1   mycroft {
    915       1.33  augustss 	struct fs *fs;
    916       1.58      fvdl 	daddr_t result;
    917        1.1   mycroft 	int i, icg = cg;
    918        1.1   mycroft 
    919        1.1   mycroft 	fs = ip->i_fs;
    920        1.1   mycroft 	/*
    921        1.1   mycroft 	 * 1: preferred cylinder group
    922        1.1   mycroft 	 */
    923  1.109.4.1      haad 	result = (*allocator)(ip, cg, pref, size, flags);
    924        1.1   mycroft 	if (result)
    925        1.1   mycroft 		return (result);
    926  1.109.4.1      haad 
    927  1.109.4.1      haad 	if (flags & B_CONTIG)
    928  1.109.4.1      haad 		return (result);
    929        1.1   mycroft 	/*
    930        1.1   mycroft 	 * 2: quadratic rehash
    931        1.1   mycroft 	 */
    932        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    933        1.1   mycroft 		cg += i;
    934        1.1   mycroft 		if (cg >= fs->fs_ncg)
    935        1.1   mycroft 			cg -= fs->fs_ncg;
    936  1.109.4.1      haad 		result = (*allocator)(ip, cg, 0, size, flags);
    937        1.1   mycroft 		if (result)
    938        1.1   mycroft 			return (result);
    939        1.1   mycroft 	}
    940        1.1   mycroft 	/*
    941        1.1   mycroft 	 * 3: brute force search
    942        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    943        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    944        1.1   mycroft 	 */
    945        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    946        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    947  1.109.4.1      haad 		result = (*allocator)(ip, cg, 0, size, flags);
    948        1.1   mycroft 		if (result)
    949        1.1   mycroft 			return (result);
    950        1.1   mycroft 		cg++;
    951        1.1   mycroft 		if (cg == fs->fs_ncg)
    952        1.1   mycroft 			cg = 0;
    953        1.1   mycroft 	}
    954       1.35   thorpej 	return (0);
    955        1.1   mycroft }
    956        1.1   mycroft 
    957        1.1   mycroft /*
    958        1.1   mycroft  * Determine whether a fragment can be extended.
    959        1.1   mycroft  *
    960       1.81     perry  * Check to see if the necessary fragments are available, and
    961        1.1   mycroft  * if they are, allocate them.
    962      1.106     pooka  *
    963      1.106     pooka  * => called with um_lock held
    964      1.106     pooka  * => returns with um_lock released on success, held on failure
    965        1.1   mycroft  */
    966       1.58      fvdl static daddr_t
    967       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    968        1.1   mycroft {
    969      1.101        ad 	struct ufsmount *ump;
    970       1.33  augustss 	struct fs *fs;
    971       1.33  augustss 	struct cg *cgp;
    972        1.1   mycroft 	struct buf *bp;
    973       1.58      fvdl 	daddr_t bno;
    974        1.1   mycroft 	int frags, bbase;
    975        1.1   mycroft 	int i, error;
    976       1.62      fvdl 	u_int8_t *blksfree;
    977        1.1   mycroft 
    978        1.1   mycroft 	fs = ip->i_fs;
    979      1.101        ad 	ump = ip->i_ump;
    980      1.101        ad 
    981      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    982      1.101        ad 
    983        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    984       1.35   thorpej 		return (0);
    985        1.1   mycroft 	frags = numfrags(fs, nsize);
    986        1.1   mycroft 	bbase = fragnum(fs, bprev);
    987        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    988        1.1   mycroft 		/* cannot extend across a block boundary */
    989       1.35   thorpej 		return (0);
    990        1.1   mycroft 	}
    991      1.101        ad 	mutex_exit(&ump->um_lock);
    992        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    993      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    994      1.101        ad 	if (error)
    995      1.101        ad 		goto fail;
    996        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    997      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    998      1.101        ad 		goto fail;
    999       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1000       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1001       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1002       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1003        1.1   mycroft 	bno = dtogd(fs, bprev);
   1004       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1005        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1006      1.101        ad 		if (isclr(blksfree, bno + i))
   1007      1.101        ad 			goto fail;
   1008        1.1   mycroft 	/*
   1009        1.1   mycroft 	 * the current fragment can be extended
   1010        1.1   mycroft 	 * deduct the count on fragment being extended into
   1011        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1012        1.1   mycroft 	 * allocate the extended piece
   1013        1.1   mycroft 	 */
   1014        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1015       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1016        1.1   mycroft 			break;
   1017       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1018        1.1   mycroft 	if (i != frags)
   1019       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1020      1.101        ad 	mutex_enter(&ump->um_lock);
   1021        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1022       1.62      fvdl 		clrbit(blksfree, bno + i);
   1023       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1024        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1025        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1026        1.1   mycroft 	}
   1027        1.1   mycroft 	fs->fs_fmod = 1;
   1028      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1029      1.101        ad 	mutex_exit(&ump->um_lock);
   1030       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1031       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1032        1.1   mycroft 	bdwrite(bp);
   1033        1.1   mycroft 	return (bprev);
   1034      1.101        ad 
   1035      1.101        ad  fail:
   1036      1.101        ad  	brelse(bp, 0);
   1037      1.101        ad  	mutex_enter(&ump->um_lock);
   1038      1.101        ad  	return (0);
   1039        1.1   mycroft }
   1040        1.1   mycroft 
   1041        1.1   mycroft /*
   1042        1.1   mycroft  * Determine whether a block can be allocated.
   1043        1.1   mycroft  *
   1044        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1045        1.1   mycroft  * and if it is, allocate it.
   1046        1.1   mycroft  */
   1047       1.58      fvdl static daddr_t
   1048  1.109.4.1      haad ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1049        1.1   mycroft {
   1050      1.101        ad 	struct ufsmount *ump;
   1051       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1052       1.30      fvdl 	struct cg *cgp;
   1053        1.1   mycroft 	struct buf *bp;
   1054       1.60      fvdl 	int32_t bno;
   1055       1.60      fvdl 	daddr_t blkno;
   1056       1.30      fvdl 	int error, frags, allocsiz, i;
   1057       1.62      fvdl 	u_int8_t *blksfree;
   1058       1.30      fvdl #ifdef FFS_EI
   1059       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1060       1.30      fvdl #endif
   1061        1.1   mycroft 
   1062      1.101        ad 	ump = ip->i_ump;
   1063      1.101        ad 
   1064      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1065      1.101        ad 
   1066        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1067       1.35   thorpej 		return (0);
   1068      1.101        ad 	mutex_exit(&ump->um_lock);
   1069        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1070      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1071      1.101        ad 	if (error)
   1072      1.101        ad 		goto fail;
   1073        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1074       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1075      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1076      1.101        ad 		goto fail;
   1077       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1078       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1079       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1080       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1081        1.1   mycroft 	if (size == fs->fs_bsize) {
   1082      1.101        ad 		mutex_enter(&ump->um_lock);
   1083  1.109.4.1      haad 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1084       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1085      1.101        ad 		mutex_exit(&ump->um_lock);
   1086        1.1   mycroft 		bdwrite(bp);
   1087       1.60      fvdl 		return (blkno);
   1088        1.1   mycroft 	}
   1089        1.1   mycroft 	/*
   1090        1.1   mycroft 	 * check to see if any fragments are already available
   1091        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1092        1.1   mycroft 	 * it down to a smaller size if necessary
   1093        1.1   mycroft 	 */
   1094       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1095        1.1   mycroft 	frags = numfrags(fs, size);
   1096        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1097        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1098        1.1   mycroft 			break;
   1099        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1100        1.1   mycroft 		/*
   1101       1.81     perry 		 * no fragments were available, so a block will be
   1102        1.1   mycroft 		 * allocated, and hacked up
   1103        1.1   mycroft 		 */
   1104      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1105      1.101        ad 			goto fail;
   1106      1.101        ad 		mutex_enter(&ump->um_lock);
   1107  1.109.4.1      haad 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1108       1.60      fvdl 		bno = dtogd(fs, blkno);
   1109        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1110       1.62      fvdl 			setbit(blksfree, bno + i);
   1111        1.1   mycroft 		i = fs->fs_frag - frags;
   1112       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1113        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1114       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1115        1.1   mycroft 		fs->fs_fmod = 1;
   1116       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1117       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1118      1.101        ad 		mutex_exit(&ump->um_lock);
   1119        1.1   mycroft 		bdwrite(bp);
   1120       1.60      fvdl 		return (blkno);
   1121        1.1   mycroft 	}
   1122       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1123       1.30      fvdl #if 0
   1124       1.30      fvdl 	/*
   1125       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1126       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1127       1.30      fvdl 	 */
   1128      1.101        ad 	if (bno < 0)
   1129      1.101        ad 		goto fail;
   1130       1.30      fvdl #endif
   1131        1.1   mycroft 	for (i = 0; i < frags; i++)
   1132       1.62      fvdl 		clrbit(blksfree, bno + i);
   1133      1.101        ad 	mutex_enter(&ump->um_lock);
   1134       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1135        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1136        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1137        1.1   mycroft 	fs->fs_fmod = 1;
   1138       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1139        1.1   mycroft 	if (frags != allocsiz)
   1140       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1141       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1142      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1143      1.101        ad 	mutex_exit(&ump->um_lock);
   1144       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1145       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1146        1.1   mycroft 	bdwrite(bp);
   1147       1.30      fvdl 	return blkno;
   1148      1.101        ad 
   1149      1.101        ad  fail:
   1150      1.101        ad  	brelse(bp, 0);
   1151      1.101        ad  	mutex_enter(&ump->um_lock);
   1152      1.101        ad  	return (0);
   1153        1.1   mycroft }
   1154        1.1   mycroft 
   1155        1.1   mycroft /*
   1156        1.1   mycroft  * Allocate a block in a cylinder group.
   1157        1.1   mycroft  *
   1158        1.1   mycroft  * This algorithm implements the following policy:
   1159        1.1   mycroft  *   1) allocate the requested block.
   1160        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1161        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1162        1.1   mycroft  *      specified cylinder group.
   1163        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1164        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1165        1.1   mycroft  */
   1166       1.58      fvdl static daddr_t
   1167  1.109.4.1      haad ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1168        1.1   mycroft {
   1169      1.101        ad 	struct ufsmount *ump;
   1170       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1171       1.30      fvdl 	struct cg *cgp;
   1172       1.60      fvdl 	daddr_t blkno;
   1173       1.60      fvdl 	int32_t bno;
   1174       1.60      fvdl 	u_int8_t *blksfree;
   1175       1.30      fvdl #ifdef FFS_EI
   1176       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1177       1.30      fvdl #endif
   1178        1.1   mycroft 
   1179      1.101        ad 	ump = ip->i_ump;
   1180      1.101        ad 
   1181      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1182      1.101        ad 
   1183       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1184       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1185       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1186       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1187       1.60      fvdl 	} else {
   1188       1.60      fvdl 		bpref = blknum(fs, bpref);
   1189       1.60      fvdl 		bno = dtogd(fs, bpref);
   1190        1.1   mycroft 		/*
   1191       1.60      fvdl 		 * if the requested block is available, use it
   1192        1.1   mycroft 		 */
   1193       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1194       1.60      fvdl 			goto gotit;
   1195  1.109.4.1      haad 		/*
   1196  1.109.4.1      haad 		 * if the requested data block isn't available and we are
   1197  1.109.4.1      haad 		 * trying to allocate a contiguous file, return an error.
   1198  1.109.4.1      haad 		 */
   1199  1.109.4.1      haad 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1200  1.109.4.1      haad 			return (0);
   1201        1.1   mycroft 	}
   1202  1.109.4.1      haad 
   1203        1.1   mycroft 	/*
   1204       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1205        1.1   mycroft 	 */
   1206       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1207        1.1   mycroft 	if (bno < 0)
   1208       1.35   thorpej 		return (0);
   1209       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1210        1.1   mycroft gotit:
   1211        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1212       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1213       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1214       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1215        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1216       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1217       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1218       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1219       1.73       dbj 		int cylno;
   1220       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1221       1.75       dbj 		KASSERT(cylno >= 0);
   1222       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1223       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1224       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1225       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1226       1.73       dbj 		    needswap);
   1227       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1228       1.73       dbj 	}
   1229        1.1   mycroft 	fs->fs_fmod = 1;
   1230       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1231      1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1232      1.101        ad 		mutex_exit(&ump->um_lock);
   1233       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1234      1.101        ad 		mutex_enter(&ump->um_lock);
   1235      1.101        ad 	}
   1236       1.30      fvdl 	return (blkno);
   1237        1.1   mycroft }
   1238        1.1   mycroft 
   1239        1.1   mycroft /*
   1240        1.1   mycroft  * Determine whether an inode can be allocated.
   1241        1.1   mycroft  *
   1242        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1243        1.1   mycroft  * allocate it using the following policy:
   1244        1.1   mycroft  *   1) allocate the requested inode.
   1245        1.1   mycroft  *   2) allocate the next available inode after the requested
   1246        1.1   mycroft  *      inode in the specified cylinder group.
   1247        1.1   mycroft  */
   1248       1.58      fvdl static daddr_t
   1249  1.109.4.1      haad ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1250        1.1   mycroft {
   1251      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1252       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1253       1.33  augustss 	struct cg *cgp;
   1254       1.60      fvdl 	struct buf *bp, *ibp;
   1255       1.60      fvdl 	u_int8_t *inosused;
   1256        1.1   mycroft 	int error, start, len, loc, map, i;
   1257       1.60      fvdl 	int32_t initediblk;
   1258  1.109.4.1      haad 	daddr_t nalloc;
   1259       1.60      fvdl 	struct ufs2_dinode *dp2;
   1260       1.19    bouyer #ifdef FFS_EI
   1261       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1262       1.19    bouyer #endif
   1263        1.1   mycroft 
   1264      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1265  1.109.4.1      haad 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1266      1.101        ad 
   1267        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1268       1.35   thorpej 		return (0);
   1269      1.101        ad 	mutex_exit(&ump->um_lock);
   1270  1.109.4.1      haad 	ibp = NULL;
   1271  1.109.4.1      haad 	initediblk = -1;
   1272  1.109.4.1      haad retry:
   1273        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1274      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1275      1.101        ad 	if (error)
   1276      1.101        ad 		goto fail;
   1277        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1278      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1279      1.101        ad 		goto fail;
   1280  1.109.4.1      haad 
   1281  1.109.4.1      haad 	if (ibp != NULL &&
   1282  1.109.4.1      haad 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1283  1.109.4.1      haad 		/* Another thread allocated more inodes so we retry the test. */
   1284  1.109.4.1      haad 		brelse(ibp, BC_INVAL);
   1285  1.109.4.1      haad 		ibp = NULL;
   1286  1.109.4.1      haad 	}
   1287  1.109.4.1      haad 	/*
   1288  1.109.4.1      haad 	 * Check to see if we need to initialize more inodes.
   1289  1.109.4.1      haad 	 */
   1290  1.109.4.1      haad 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1291  1.109.4.1      haad 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1292  1.109.4.1      haad 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1293  1.109.4.1      haad 		if (nalloc + INOPB(fs) > initediblk &&
   1294  1.109.4.1      haad 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1295  1.109.4.1      haad 			/*
   1296  1.109.4.1      haad 			 * We have to release the cg buffer here to prevent
   1297  1.109.4.1      haad 			 * a deadlock when reading the inode block will
   1298  1.109.4.1      haad 			 * run a copy-on-write that might use this cg.
   1299  1.109.4.1      haad 			 */
   1300  1.109.4.1      haad 			brelse(bp, 0);
   1301  1.109.4.1      haad 			bp = NULL;
   1302  1.109.4.1      haad 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1303  1.109.4.1      haad 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1304  1.109.4.1      haad 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1305  1.109.4.1      haad 			if (error)
   1306  1.109.4.1      haad 				goto fail;
   1307  1.109.4.1      haad 			goto retry;
   1308  1.109.4.1      haad 		}
   1309  1.109.4.1      haad 	}
   1310  1.109.4.1      haad 
   1311       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1312       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1313       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1314       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1315       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1316        1.1   mycroft 	if (ipref) {
   1317        1.1   mycroft 		ipref %= fs->fs_ipg;
   1318       1.60      fvdl 		if (isclr(inosused, ipref))
   1319        1.1   mycroft 			goto gotit;
   1320        1.1   mycroft 	}
   1321       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1322       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1323       1.19    bouyer 		NBBY);
   1324       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1325        1.1   mycroft 	if (loc == 0) {
   1326        1.1   mycroft 		len = start + 1;
   1327        1.1   mycroft 		start = 0;
   1328       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1329        1.1   mycroft 		if (loc == 0) {
   1330       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1331       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1332       1.19    bouyer 				fs->fs_fsmnt);
   1333        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1334        1.1   mycroft 			/* NOTREACHED */
   1335        1.1   mycroft 		}
   1336        1.1   mycroft 	}
   1337        1.1   mycroft 	i = start + len - loc;
   1338       1.60      fvdl 	map = inosused[i];
   1339        1.1   mycroft 	ipref = i * NBBY;
   1340        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1341        1.1   mycroft 		if ((map & i) == 0) {
   1342       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1343        1.1   mycroft 			goto gotit;
   1344        1.1   mycroft 		}
   1345        1.1   mycroft 	}
   1346       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1347        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1348        1.1   mycroft 	/* NOTREACHED */
   1349        1.1   mycroft gotit:
   1350  1.109.4.1      haad 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1351  1.109.4.1      haad 	    mode);
   1352       1.60      fvdl 	/*
   1353       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1354       1.60      fvdl 	 */
   1355  1.109.4.1      haad 	if (ibp != NULL) {
   1356  1.109.4.1      haad 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1357      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1358      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1359      1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1360       1.60      fvdl 			/*
   1361       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1362       1.60      fvdl 			 * random, after all.
   1363       1.60      fvdl 			 */
   1364       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1365       1.60      fvdl 			dp2++;
   1366       1.60      fvdl 		}
   1367       1.60      fvdl 		initediblk += INOPB(fs);
   1368       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1369       1.60      fvdl 	}
   1370       1.60      fvdl 
   1371      1.101        ad 	mutex_enter(&ump->um_lock);
   1372       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1373      1.101        ad 	setbit(inosused, ipref);
   1374      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1375      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1376      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1377      1.101        ad 	fs->fs_fmod = 1;
   1378      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1379      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1380      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1381      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1382      1.101        ad 	}
   1383      1.101        ad 	mutex_exit(&ump->um_lock);
   1384      1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1385      1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1386  1.109.4.1      haad 	if (ibp != NULL) {
   1387  1.109.4.1      haad 		bwrite(bp);
   1388      1.104   hannken 		bawrite(ibp);
   1389  1.109.4.1      haad 	} else
   1390  1.109.4.1      haad 		bdwrite(bp);
   1391        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1392      1.101        ad  fail:
   1393  1.109.4.1      haad 	if (bp != NULL)
   1394  1.109.4.1      haad 		brelse(bp, 0);
   1395  1.109.4.1      haad 	if (ibp != NULL)
   1396  1.109.4.1      haad 		brelse(ibp, BC_INVAL);
   1397      1.101        ad 	mutex_enter(&ump->um_lock);
   1398      1.101        ad 	return (0);
   1399        1.1   mycroft }
   1400        1.1   mycroft 
   1401        1.1   mycroft /*
   1402  1.109.4.1      haad  * Allocate a block or fragment.
   1403  1.109.4.1      haad  *
   1404  1.109.4.1      haad  * The specified block or fragment is removed from the
   1405  1.109.4.1      haad  * free map, possibly fragmenting a block in the process.
   1406  1.109.4.1      haad  *
   1407  1.109.4.1      haad  * This implementation should mirror fs_blkfree
   1408  1.109.4.1      haad  *
   1409  1.109.4.1      haad  * => um_lock not held on entry or exit
   1410  1.109.4.1      haad  */
   1411  1.109.4.1      haad int
   1412  1.109.4.1      haad ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1413  1.109.4.1      haad {
   1414  1.109.4.2      haad 	int error;
   1415  1.109.4.2      haad 
   1416  1.109.4.2      haad 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1417  1.109.4.2      haad 	    ip->i_dev, ip->i_uid);
   1418  1.109.4.2      haad 	if (error)
   1419  1.109.4.2      haad 		return error;
   1420  1.109.4.2      haad 
   1421  1.109.4.2      haad 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1422  1.109.4.2      haad }
   1423  1.109.4.2      haad 
   1424  1.109.4.2      haad int
   1425  1.109.4.2      haad ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1426  1.109.4.2      haad {
   1427  1.109.4.2      haad 	struct fs *fs = ump->um_fs;
   1428  1.109.4.1      haad 	struct cg *cgp;
   1429  1.109.4.1      haad 	struct buf *bp;
   1430  1.109.4.1      haad 	int32_t fragno, cgbno;
   1431  1.109.4.1      haad 	int i, error, cg, blk, frags, bbase;
   1432  1.109.4.1      haad 	u_int8_t *blksfree;
   1433  1.109.4.1      haad 	const int needswap = UFS_FSNEEDSWAP(fs);
   1434  1.109.4.1      haad 
   1435  1.109.4.2      haad 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1436  1.109.4.2      haad 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1437  1.109.4.2      haad 	KASSERT(bno < fs->fs_size);
   1438  1.109.4.2      haad 
   1439  1.109.4.1      haad 	cg = dtog(fs, bno);
   1440  1.109.4.2      haad 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1441  1.109.4.1      haad 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1442  1.109.4.1      haad 	if (error) {
   1443  1.109.4.1      haad 		brelse(bp, 0);
   1444  1.109.4.1      haad 		return error;
   1445  1.109.4.1      haad 	}
   1446  1.109.4.1      haad 	cgp = (struct cg *)bp->b_data;
   1447  1.109.4.1      haad 	if (!cg_chkmagic(cgp, needswap)) {
   1448  1.109.4.1      haad 		brelse(bp, 0);
   1449  1.109.4.1      haad 		return EIO;
   1450  1.109.4.1      haad 	}
   1451  1.109.4.1      haad 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1452  1.109.4.1      haad 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1453  1.109.4.1      haad 	cgbno = dtogd(fs, bno);
   1454  1.109.4.1      haad 	blksfree = cg_blksfree(cgp, needswap);
   1455  1.109.4.1      haad 
   1456  1.109.4.1      haad 	mutex_enter(&ump->um_lock);
   1457  1.109.4.1      haad 	if (size == fs->fs_bsize) {
   1458  1.109.4.1      haad 		fragno = fragstoblks(fs, cgbno);
   1459  1.109.4.1      haad 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1460  1.109.4.1      haad 			mutex_exit(&ump->um_lock);
   1461  1.109.4.1      haad 			brelse(bp, 0);
   1462  1.109.4.1      haad 			return EBUSY;
   1463  1.109.4.1      haad 		}
   1464  1.109.4.1      haad 		ffs_clrblock(fs, blksfree, fragno);
   1465  1.109.4.1      haad 		ffs_clusteracct(fs, cgp, fragno, -1);
   1466  1.109.4.1      haad 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1467  1.109.4.1      haad 		fs->fs_cstotal.cs_nbfree--;
   1468  1.109.4.1      haad 		fs->fs_cs(fs, cg).cs_nbfree--;
   1469  1.109.4.1      haad 	} else {
   1470  1.109.4.1      haad 		bbase = cgbno - fragnum(fs, cgbno);
   1471  1.109.4.1      haad 
   1472  1.109.4.1      haad 		frags = numfrags(fs, size);
   1473  1.109.4.1      haad 		for (i = 0; i < frags; i++) {
   1474  1.109.4.1      haad 			if (isclr(blksfree, cgbno + i)) {
   1475  1.109.4.1      haad 				mutex_exit(&ump->um_lock);
   1476  1.109.4.1      haad 				brelse(bp, 0);
   1477  1.109.4.1      haad 				return EBUSY;
   1478  1.109.4.1      haad 			}
   1479  1.109.4.1      haad 		}
   1480  1.109.4.1      haad 		/*
   1481  1.109.4.1      haad 		 * if a complete block is being split, account for it
   1482  1.109.4.1      haad 		 */
   1483  1.109.4.1      haad 		fragno = fragstoblks(fs, bbase);
   1484  1.109.4.1      haad 		if (ffs_isblock(fs, blksfree, fragno)) {
   1485  1.109.4.1      haad 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1486  1.109.4.1      haad 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1487  1.109.4.1      haad 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1488  1.109.4.1      haad 			ffs_clusteracct(fs, cgp, fragno, -1);
   1489  1.109.4.1      haad 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1490  1.109.4.1      haad 			fs->fs_cstotal.cs_nbfree--;
   1491  1.109.4.1      haad 			fs->fs_cs(fs, cg).cs_nbfree--;
   1492  1.109.4.1      haad 		}
   1493  1.109.4.1      haad 		/*
   1494  1.109.4.1      haad 		 * decrement the counts associated with the old frags
   1495  1.109.4.1      haad 		 */
   1496  1.109.4.1      haad 		blk = blkmap(fs, blksfree, bbase);
   1497  1.109.4.1      haad 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1498  1.109.4.1      haad 		/*
   1499  1.109.4.1      haad 		 * allocate the fragment
   1500  1.109.4.1      haad 		 */
   1501  1.109.4.1      haad 		for (i = 0; i < frags; i++) {
   1502  1.109.4.1      haad 			clrbit(blksfree, cgbno + i);
   1503  1.109.4.1      haad 		}
   1504  1.109.4.1      haad 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1505  1.109.4.1      haad 		fs->fs_cstotal.cs_nffree -= i;
   1506  1.109.4.1      haad 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1507  1.109.4.1      haad 		/*
   1508  1.109.4.1      haad 		 * add back in counts associated with the new frags
   1509  1.109.4.1      haad 		 */
   1510  1.109.4.1      haad 		blk = blkmap(fs, blksfree, bbase);
   1511  1.109.4.1      haad 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1512  1.109.4.1      haad 	}
   1513  1.109.4.1      haad 	fs->fs_fmod = 1;
   1514  1.109.4.1      haad 	ACTIVECG_CLR(fs, cg);
   1515  1.109.4.1      haad 	mutex_exit(&ump->um_lock);
   1516  1.109.4.1      haad 	bdwrite(bp);
   1517  1.109.4.1      haad 	return 0;
   1518  1.109.4.1      haad }
   1519  1.109.4.1      haad 
   1520  1.109.4.1      haad /*
   1521        1.1   mycroft  * Free a block or fragment.
   1522        1.1   mycroft  *
   1523        1.1   mycroft  * The specified block or fragment is placed back in the
   1524       1.81     perry  * free map. If a fragment is deallocated, a possible
   1525        1.1   mycroft  * block reassembly is checked.
   1526      1.106     pooka  *
   1527      1.106     pooka  * => um_lock not held on entry or exit
   1528        1.1   mycroft  */
   1529        1.9  christos void
   1530       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1531       1.85   thorpej     ino_t inum)
   1532        1.1   mycroft {
   1533       1.33  augustss 	struct cg *cgp;
   1534        1.1   mycroft 	struct buf *bp;
   1535       1.76   hannken 	struct ufsmount *ump;
   1536       1.76   hannken 	daddr_t cgblkno;
   1537  1.109.4.2      haad 	int error, cg;
   1538       1.76   hannken 	dev_t dev;
   1539  1.109.4.1      haad 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1540  1.109.4.2      haad #ifdef FFS_EI
   1541       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1542  1.109.4.2      haad #endif
   1543  1.109.4.2      haad 
   1544  1.109.4.2      haad 	KASSERT(!devvp_is_snapshot);
   1545        1.1   mycroft 
   1546       1.76   hannken 	cg = dtog(fs, bno);
   1547  1.109.4.2      haad 	dev = devvp->v_rdev;
   1548  1.109.4.2      haad 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1549  1.109.4.2      haad 	KASSERT(fs == ump->um_fs);
   1550  1.109.4.2      haad 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1551  1.109.4.2      haad 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1552  1.109.4.2      haad 		return;
   1553  1.109.4.2      haad 
   1554  1.109.4.2      haad 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1555  1.109.4.2      haad 	if (error)
   1556  1.109.4.2      haad 		return;
   1557  1.109.4.2      haad 
   1558  1.109.4.2      haad 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1559  1.109.4.2      haad 	    NOCRED, B_MODIFY, &bp);
   1560  1.109.4.2      haad 	if (error) {
   1561  1.109.4.2      haad 		brelse(bp, 0);
   1562  1.109.4.2      haad 		return;
   1563       1.76   hannken 	}
   1564  1.109.4.2      haad 	cgp = (struct cg *)bp->b_data;
   1565  1.109.4.2      haad 	if (!cg_chkmagic(cgp, needswap)) {
   1566  1.109.4.2      haad 		brelse(bp, 0);
   1567  1.109.4.2      haad 		return;
   1568        1.1   mycroft 	}
   1569       1.76   hannken 
   1570  1.109.4.2      haad 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1571  1.109.4.2      haad 
   1572  1.109.4.2      haad 	bdwrite(bp);
   1573  1.109.4.2      haad }
   1574  1.109.4.2      haad 
   1575  1.109.4.2      haad /*
   1576  1.109.4.2      haad  * Free a block or fragment from a snapshot cg copy.
   1577  1.109.4.2      haad  *
   1578  1.109.4.2      haad  * The specified block or fragment is placed back in the
   1579  1.109.4.2      haad  * free map. If a fragment is deallocated, a possible
   1580  1.109.4.2      haad  * block reassembly is checked.
   1581  1.109.4.2      haad  *
   1582  1.109.4.2      haad  * => um_lock not held on entry or exit
   1583  1.109.4.2      haad  */
   1584  1.109.4.2      haad void
   1585  1.109.4.2      haad ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1586  1.109.4.2      haad     ino_t inum)
   1587  1.109.4.2      haad {
   1588  1.109.4.2      haad 	struct cg *cgp;
   1589  1.109.4.2      haad 	struct buf *bp;
   1590  1.109.4.2      haad 	struct ufsmount *ump;
   1591  1.109.4.2      haad 	daddr_t cgblkno;
   1592  1.109.4.2      haad 	int error, cg;
   1593  1.109.4.2      haad 	dev_t dev;
   1594  1.109.4.2      haad 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1595  1.109.4.2      haad #ifdef FFS_EI
   1596  1.109.4.2      haad 	const int needswap = UFS_FSNEEDSWAP(fs);
   1597  1.109.4.2      haad #endif
   1598  1.109.4.2      haad 
   1599  1.109.4.2      haad 	KASSERT(devvp_is_snapshot);
   1600  1.109.4.2      haad 
   1601  1.109.4.2      haad 	cg = dtog(fs, bno);
   1602  1.109.4.2      haad 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1603  1.109.4.2      haad 	ump = VFSTOUFS(devvp->v_mount);
   1604  1.109.4.2      haad 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1605  1.109.4.2      haad 
   1606  1.109.4.2      haad 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1607  1.109.4.2      haad 	if (error)
   1608        1.1   mycroft 		return;
   1609  1.109.4.2      haad 
   1610      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1611      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1612        1.1   mycroft 	if (error) {
   1613      1.101        ad 		brelse(bp, 0);
   1614        1.1   mycroft 		return;
   1615        1.1   mycroft 	}
   1616        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1617       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1618      1.101        ad 		brelse(bp, 0);
   1619        1.1   mycroft 		return;
   1620        1.1   mycroft 	}
   1621  1.109.4.2      haad 
   1622  1.109.4.2      haad 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1623  1.109.4.2      haad 
   1624  1.109.4.2      haad 	bdwrite(bp);
   1625  1.109.4.2      haad }
   1626  1.109.4.2      haad 
   1627  1.109.4.2      haad static void
   1628  1.109.4.2      haad ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1629  1.109.4.2      haad     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1630  1.109.4.2      haad {
   1631  1.109.4.2      haad 	struct cg *cgp;
   1632  1.109.4.2      haad 	int32_t fragno, cgbno;
   1633  1.109.4.2      haad 	int i, cg, blk, frags, bbase;
   1634  1.109.4.2      haad 	u_int8_t *blksfree;
   1635  1.109.4.2      haad 	const int needswap = UFS_FSNEEDSWAP(fs);
   1636  1.109.4.2      haad 
   1637  1.109.4.2      haad 	cg = dtog(fs, bno);
   1638  1.109.4.2      haad 	cgp = (struct cg *)bp->b_data;
   1639       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1640       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1641       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1642       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1643       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1644       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1645      1.101        ad 	mutex_enter(&ump->um_lock);
   1646        1.1   mycroft 	if (size == fs->fs_bsize) {
   1647       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1648       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1649  1.109.4.1      haad 			if (devvp_is_snapshot) {
   1650      1.101        ad 				mutex_exit(&ump->um_lock);
   1651       1.76   hannken 				return;
   1652       1.76   hannken 			}
   1653       1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1654       1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1655        1.1   mycroft 			panic("blkfree: freeing free block");
   1656        1.1   mycroft 		}
   1657       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1658       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1659       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1660        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1661        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1662       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1663       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1664       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1665       1.75       dbj 			KASSERT(i >= 0);
   1666       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1667       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1668       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1669       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1670       1.73       dbj 			    needswap);
   1671       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1672       1.73       dbj 		}
   1673        1.1   mycroft 	} else {
   1674       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1675        1.1   mycroft 		/*
   1676        1.1   mycroft 		 * decrement the counts associated with the old frags
   1677        1.1   mycroft 		 */
   1678       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1679       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1680        1.1   mycroft 		/*
   1681        1.1   mycroft 		 * deallocate the fragment
   1682        1.1   mycroft 		 */
   1683        1.1   mycroft 		frags = numfrags(fs, size);
   1684        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1685       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1686       1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1687       1.59   tsutsui 				       ", fs = %s\n",
   1688       1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1689        1.1   mycroft 				panic("blkfree: freeing free frag");
   1690        1.1   mycroft 			}
   1691       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1692        1.1   mycroft 		}
   1693       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1694        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1695       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1696        1.1   mycroft 		/*
   1697        1.1   mycroft 		 * add back in counts associated with the new frags
   1698        1.1   mycroft 		 */
   1699       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1700       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1701        1.1   mycroft 		/*
   1702        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1703        1.1   mycroft 		 */
   1704       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1705       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1706       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1707        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1708        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1709       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1710       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1711        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1712        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1713       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1714       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1715       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1716       1.75       dbj 				KASSERT(i >= 0);
   1717       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1718       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1719       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1720       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1721       1.73       dbj 				    bbase)], 1, needswap);
   1722       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1723       1.73       dbj 			}
   1724        1.1   mycroft 		}
   1725        1.1   mycroft 	}
   1726        1.1   mycroft 	fs->fs_fmod = 1;
   1727       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1728      1.101        ad 	mutex_exit(&ump->um_lock);
   1729       1.18      fvdl }
   1730       1.18      fvdl 
   1731        1.1   mycroft /*
   1732        1.1   mycroft  * Free an inode.
   1733       1.30      fvdl  */
   1734       1.30      fvdl int
   1735       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1736       1.30      fvdl {
   1737       1.30      fvdl 
   1738       1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1739       1.88      yamt 		softdep_freefile(vp, ino, mode);
   1740       1.30      fvdl 		return (0);
   1741       1.30      fvdl 	}
   1742  1.109.4.2      haad 	return ffs_freefile(vp->v_mount, ino, mode);
   1743       1.30      fvdl }
   1744       1.30      fvdl 
   1745       1.30      fvdl /*
   1746       1.30      fvdl  * Do the actual free operation.
   1747        1.1   mycroft  * The specified inode is placed back in the free map.
   1748  1.109.4.1      haad  *
   1749  1.109.4.1      haad  * => um_lock not held on entry or exit
   1750        1.1   mycroft  */
   1751        1.1   mycroft int
   1752  1.109.4.2      haad ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1753        1.9  christos {
   1754  1.109.4.2      haad 	struct ufsmount *ump = VFSTOUFS(mp);
   1755  1.109.4.2      haad 	struct fs *fs = ump->um_fs;
   1756  1.109.4.2      haad 	struct vnode *devvp;
   1757       1.33  augustss 	struct cg *cgp;
   1758        1.1   mycroft 	struct buf *bp;
   1759        1.1   mycroft 	int error, cg;
   1760       1.76   hannken 	daddr_t cgbno;
   1761       1.78   hannken 	dev_t dev;
   1762       1.19    bouyer #ifdef FFS_EI
   1763       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1764       1.19    bouyer #endif
   1765        1.1   mycroft 
   1766  1.109.4.2      haad 	cg = ino_to_cg(fs, ino);
   1767  1.109.4.2      haad 	devvp = ump->um_devvp;
   1768  1.109.4.2      haad 	dev = devvp->v_rdev;
   1769  1.109.4.2      haad 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1770  1.109.4.2      haad 
   1771  1.109.4.2      haad 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1772  1.109.4.2      haad 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1773  1.109.4.2      haad 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1774  1.109.4.2      haad 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1775  1.109.4.2      haad 	    NOCRED, B_MODIFY, &bp);
   1776  1.109.4.2      haad 	if (error) {
   1777  1.109.4.2      haad 		brelse(bp, 0);
   1778  1.109.4.2      haad 		return (error);
   1779  1.109.4.2      haad 	}
   1780  1.109.4.2      haad 	cgp = (struct cg *)bp->b_data;
   1781  1.109.4.2      haad 	if (!cg_chkmagic(cgp, needswap)) {
   1782  1.109.4.2      haad 		brelse(bp, 0);
   1783  1.109.4.2      haad 		return (0);
   1784  1.109.4.1      haad 	}
   1785  1.109.4.1      haad 
   1786  1.109.4.2      haad 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1787  1.109.4.2      haad 
   1788  1.109.4.2      haad 	bdwrite(bp);
   1789  1.109.4.2      haad 
   1790  1.109.4.2      haad 	return 0;
   1791  1.109.4.2      haad }
   1792  1.109.4.2      haad 
   1793  1.109.4.2      haad int
   1794  1.109.4.2      haad ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1795  1.109.4.2      haad {
   1796  1.109.4.2      haad 	struct ufsmount *ump;
   1797  1.109.4.2      haad 	struct cg *cgp;
   1798  1.109.4.2      haad 	struct buf *bp;
   1799  1.109.4.2      haad 	int error, cg;
   1800  1.109.4.2      haad 	daddr_t cgbno;
   1801  1.109.4.2      haad 	dev_t dev;
   1802  1.109.4.2      haad #ifdef FFS_EI
   1803  1.109.4.2      haad 	const int needswap = UFS_FSNEEDSWAP(fs);
   1804  1.109.4.2      haad #endif
   1805  1.109.4.2      haad 
   1806  1.109.4.2      haad 	KASSERT(devvp->v_type != VBLK);
   1807  1.109.4.2      haad 
   1808       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1809  1.109.4.2      haad 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1810  1.109.4.2      haad 	ump = VFSTOUFS(devvp->v_mount);
   1811  1.109.4.2      haad 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1812        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1813       1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1814       1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1815      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1816      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1817        1.1   mycroft 	if (error) {
   1818      1.101        ad 		brelse(bp, 0);
   1819       1.30      fvdl 		return (error);
   1820        1.1   mycroft 	}
   1821        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1822       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1823      1.101        ad 		brelse(bp, 0);
   1824        1.1   mycroft 		return (0);
   1825        1.1   mycroft 	}
   1826  1.109.4.2      haad 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1827  1.109.4.2      haad 
   1828  1.109.4.2      haad 	bdwrite(bp);
   1829  1.109.4.2      haad 
   1830  1.109.4.2      haad 	return 0;
   1831  1.109.4.2      haad }
   1832  1.109.4.2      haad 
   1833  1.109.4.2      haad static void
   1834  1.109.4.2      haad ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1835  1.109.4.2      haad     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1836  1.109.4.2      haad {
   1837  1.109.4.2      haad 	int cg;
   1838  1.109.4.2      haad 	struct cg *cgp;
   1839  1.109.4.2      haad 	u_int8_t *inosused;
   1840  1.109.4.2      haad #ifdef FFS_EI
   1841  1.109.4.2      haad 	const int needswap = UFS_FSNEEDSWAP(fs);
   1842  1.109.4.2      haad #endif
   1843  1.109.4.2      haad 
   1844  1.109.4.2      haad 	cg = ino_to_cg(fs, ino);
   1845  1.109.4.2      haad 	cgp = (struct cg *)bp->b_data;
   1846       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1847       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1848       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1849       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1850       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1851        1.1   mycroft 	ino %= fs->fs_ipg;
   1852       1.62      fvdl 	if (isclr(inosused, ino)) {
   1853       1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1854       1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1855       1.86  christos 		    fs->fs_fsmnt);
   1856        1.1   mycroft 		if (fs->fs_ronly == 0)
   1857        1.1   mycroft 			panic("ifree: freeing free inode");
   1858        1.1   mycroft 	}
   1859       1.62      fvdl 	clrbit(inosused, ino);
   1860  1.109.4.1      haad 	if (!devvp_is_snapshot)
   1861  1.109.4.2      haad 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1862  1.109.4.1      haad 		    ino + cg * fs->fs_ipg, mode);
   1863       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1864       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1865       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1866      1.101        ad 	mutex_enter(&ump->um_lock);
   1867        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1868        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1869       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1870       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1871        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1872        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1873        1.1   mycroft 	}
   1874        1.1   mycroft 	fs->fs_fmod = 1;
   1875       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1876      1.101        ad 	mutex_exit(&ump->um_lock);
   1877        1.1   mycroft }
   1878        1.1   mycroft 
   1879        1.1   mycroft /*
   1880       1.76   hannken  * Check to see if a file is free.
   1881       1.76   hannken  */
   1882       1.76   hannken int
   1883       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1884       1.76   hannken {
   1885       1.76   hannken 	struct cg *cgp;
   1886       1.76   hannken 	struct buf *bp;
   1887       1.76   hannken 	daddr_t cgbno;
   1888       1.76   hannken 	int ret, cg;
   1889       1.76   hannken 	u_int8_t *inosused;
   1890  1.109.4.1      haad 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1891       1.76   hannken 
   1892  1.109.4.2      haad 	KASSERT(devvp_is_snapshot);
   1893  1.109.4.2      haad 
   1894       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1895  1.109.4.1      haad 	if (devvp_is_snapshot)
   1896       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1897  1.109.4.1      haad 	else
   1898       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1899       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1900       1.76   hannken 		return 1;
   1901      1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1902      1.101        ad 		brelse(bp, 0);
   1903       1.76   hannken 		return 1;
   1904       1.76   hannken 	}
   1905       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1906       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1907      1.101        ad 		brelse(bp, 0);
   1908       1.76   hannken 		return 1;
   1909       1.76   hannken 	}
   1910       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1911       1.76   hannken 	ino %= fs->fs_ipg;
   1912       1.76   hannken 	ret = isclr(inosused, ino);
   1913      1.101        ad 	brelse(bp, 0);
   1914       1.76   hannken 	return ret;
   1915       1.76   hannken }
   1916       1.76   hannken 
   1917       1.76   hannken /*
   1918        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1919        1.1   mycroft  *
   1920        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1921        1.1   mycroft  * available.
   1922        1.1   mycroft  */
   1923       1.60      fvdl static int32_t
   1924       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1925        1.1   mycroft {
   1926       1.60      fvdl 	int32_t bno;
   1927        1.1   mycroft 	int start, len, loc, i;
   1928        1.1   mycroft 	int blk, field, subfield, pos;
   1929       1.19    bouyer 	int ostart, olen;
   1930       1.62      fvdl 	u_int8_t *blksfree;
   1931       1.30      fvdl #ifdef FFS_EI
   1932       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1933       1.30      fvdl #endif
   1934        1.1   mycroft 
   1935      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1936      1.101        ad 
   1937        1.1   mycroft 	/*
   1938        1.1   mycroft 	 * find the fragment by searching through the free block
   1939        1.1   mycroft 	 * map for an appropriate bit pattern
   1940        1.1   mycroft 	 */
   1941        1.1   mycroft 	if (bpref)
   1942        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1943        1.1   mycroft 	else
   1944       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1945       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1946        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1947       1.19    bouyer 	ostart = start;
   1948       1.19    bouyer 	olen = len;
   1949       1.45     lukem 	loc = scanc((u_int)len,
   1950       1.62      fvdl 		(const u_char *)&blksfree[start],
   1951       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1952       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1953        1.1   mycroft 	if (loc == 0) {
   1954        1.1   mycroft 		len = start + 1;
   1955        1.1   mycroft 		start = 0;
   1956       1.45     lukem 		loc = scanc((u_int)len,
   1957       1.62      fvdl 			(const u_char *)&blksfree[0],
   1958       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1959       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1960        1.1   mycroft 		if (loc == 0) {
   1961       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1962       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1963       1.20      ross 			printf("offset=%d %ld\n",
   1964       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1965       1.62      fvdl 				(long)blksfree - (long)cgp);
   1966       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1967        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1968        1.1   mycroft 			/* NOTREACHED */
   1969        1.1   mycroft 		}
   1970        1.1   mycroft 	}
   1971        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1972       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1973        1.1   mycroft 	/*
   1974        1.1   mycroft 	 * found the byte in the map
   1975        1.1   mycroft 	 * sift through the bits to find the selected frag
   1976        1.1   mycroft 	 */
   1977        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1978       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1979        1.1   mycroft 		blk <<= 1;
   1980        1.1   mycroft 		field = around[allocsiz];
   1981        1.1   mycroft 		subfield = inside[allocsiz];
   1982        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1983        1.1   mycroft 			if ((blk & field) == subfield)
   1984        1.1   mycroft 				return (bno + pos);
   1985        1.1   mycroft 			field <<= 1;
   1986        1.1   mycroft 			subfield <<= 1;
   1987        1.1   mycroft 		}
   1988        1.1   mycroft 	}
   1989       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1990        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1991       1.58      fvdl 	/* return (-1); */
   1992        1.1   mycroft }
   1993        1.1   mycroft 
   1994        1.1   mycroft /*
   1995        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1996        1.1   mycroft  *
   1997        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1998        1.1   mycroft  */
   1999        1.9  christos void
   2000       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2001        1.1   mycroft {
   2002        1.4       cgd 	int32_t *sump;
   2003        1.5   mycroft 	int32_t *lp;
   2004        1.1   mycroft 	u_char *freemapp, *mapp;
   2005        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2006       1.30      fvdl #ifdef FFS_EI
   2007       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2008       1.30      fvdl #endif
   2009        1.1   mycroft 
   2010      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2011      1.101        ad 
   2012        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2013        1.1   mycroft 		return;
   2014       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2015       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2016        1.1   mycroft 	/*
   2017        1.1   mycroft 	 * Allocate or clear the actual block.
   2018        1.1   mycroft 	 */
   2019        1.1   mycroft 	if (cnt > 0)
   2020        1.1   mycroft 		setbit(freemapp, blkno);
   2021        1.1   mycroft 	else
   2022        1.1   mycroft 		clrbit(freemapp, blkno);
   2023        1.1   mycroft 	/*
   2024        1.1   mycroft 	 * Find the size of the cluster going forward.
   2025        1.1   mycroft 	 */
   2026        1.1   mycroft 	start = blkno + 1;
   2027        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2028       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2029       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2030        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2031        1.1   mycroft 	map = *mapp++;
   2032        1.1   mycroft 	bit = 1 << (start % NBBY);
   2033        1.1   mycroft 	for (i = start; i < end; i++) {
   2034        1.1   mycroft 		if ((map & bit) == 0)
   2035        1.1   mycroft 			break;
   2036        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2037        1.1   mycroft 			bit <<= 1;
   2038        1.1   mycroft 		} else {
   2039        1.1   mycroft 			map = *mapp++;
   2040        1.1   mycroft 			bit = 1;
   2041        1.1   mycroft 		}
   2042        1.1   mycroft 	}
   2043        1.1   mycroft 	forw = i - start;
   2044        1.1   mycroft 	/*
   2045        1.1   mycroft 	 * Find the size of the cluster going backward.
   2046        1.1   mycroft 	 */
   2047        1.1   mycroft 	start = blkno - 1;
   2048        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2049        1.1   mycroft 	if (end < 0)
   2050        1.1   mycroft 		end = -1;
   2051        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2052        1.1   mycroft 	map = *mapp--;
   2053        1.1   mycroft 	bit = 1 << (start % NBBY);
   2054        1.1   mycroft 	for (i = start; i > end; i--) {
   2055        1.1   mycroft 		if ((map & bit) == 0)
   2056        1.1   mycroft 			break;
   2057        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2058        1.1   mycroft 			bit >>= 1;
   2059        1.1   mycroft 		} else {
   2060        1.1   mycroft 			map = *mapp--;
   2061        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2062        1.1   mycroft 		}
   2063        1.1   mycroft 	}
   2064        1.1   mycroft 	back = start - i;
   2065        1.1   mycroft 	/*
   2066        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2067        1.1   mycroft 	 * back clusters.
   2068        1.1   mycroft 	 */
   2069        1.1   mycroft 	i = back + forw + 1;
   2070        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2071        1.1   mycroft 		i = fs->fs_contigsumsize;
   2072       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2073        1.1   mycroft 	if (back > 0)
   2074       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2075        1.1   mycroft 	if (forw > 0)
   2076       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2077       1.19    bouyer 
   2078        1.5   mycroft 	/*
   2079        1.5   mycroft 	 * Update cluster summary information.
   2080        1.5   mycroft 	 */
   2081        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2082        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2083       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2084        1.5   mycroft 			break;
   2085       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2086        1.1   mycroft }
   2087        1.1   mycroft 
   2088        1.1   mycroft /*
   2089        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2090       1.81     perry  *
   2091        1.1   mycroft  * The form of the error message is:
   2092        1.1   mycroft  *	fs: error message
   2093        1.1   mycroft  */
   2094        1.1   mycroft static void
   2095       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2096        1.1   mycroft {
   2097        1.1   mycroft 
   2098       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2099       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2100        1.1   mycroft }
   2101