ffs_alloc.c revision 1.111 1 1.111 simonb /* $NetBSD: ffs_alloc.c,v 1.111 2008/07/31 05:38:06 simonb Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.111 simonb * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.111 simonb __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.111 2008/07/31 05:38:06 simonb Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.22 scottr #endif
79 1.1 mycroft
80 1.1 mycroft #include <sys/param.h>
81 1.1 mycroft #include <sys/systm.h>
82 1.1 mycroft #include <sys/buf.h>
83 1.111 simonb #include <sys/fstrans.h>
84 1.111 simonb #include <sys/kauth.h>
85 1.111 simonb #include <sys/kernel.h>
86 1.111 simonb #include <sys/mount.h>
87 1.1 mycroft #include <sys/proc.h>
88 1.111 simonb #include <sys/syslog.h>
89 1.1 mycroft #include <sys/vnode.h>
90 1.111 simonb #include <sys/wapbl.h>
91 1.29 mrg
92 1.76 hannken #include <miscfs/specfs/specdev.h>
93 1.1 mycroft #include <ufs/ufs/quota.h>
94 1.19 bouyer #include <ufs/ufs/ufsmount.h>
95 1.1 mycroft #include <ufs/ufs/inode.h>
96 1.9 christos #include <ufs/ufs/ufs_extern.h>
97 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
98 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
99 1.1 mycroft
100 1.1 mycroft #include <ufs/ffs/fs.h>
101 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
102 1.1 mycroft
103 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 1.55 matt #ifdef XXXUBC
106 1.85 thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
107 1.55 matt #endif
108 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
109 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
110 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
111 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
112 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
113 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
114 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
115 1.85 thorpej daddr_t, int);
116 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
117 1.55 matt #ifdef XXXUBC
118 1.85 thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
119 1.18 fvdl #endif
120 1.55 matt #endif
121 1.23 drochner
122 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
123 1.34 jdolecek int ffs_log_changeopt = 0;
124 1.34 jdolecek
125 1.23 drochner /* in ffs_tables.c */
126 1.40 jdolecek extern const int inside[], around[];
127 1.40 jdolecek extern const u_char * const fragtbl[];
128 1.1 mycroft
129 1.1 mycroft /*
130 1.1 mycroft * Allocate a block in the file system.
131 1.81 perry *
132 1.1 mycroft * The size of the requested block is given, which must be some
133 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
134 1.1 mycroft * A preference may be optionally specified. If a preference is given
135 1.1 mycroft * the following hierarchy is used to allocate a block:
136 1.1 mycroft * 1) allocate the requested block.
137 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
138 1.1 mycroft * 3) allocate a block in the same cylinder group.
139 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
140 1.1 mycroft * available block is located.
141 1.47 wiz * If no block preference is given the following hierarchy is used
142 1.1 mycroft * to allocate a block:
143 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
144 1.1 mycroft * inode for the file.
145 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
146 1.1 mycroft * available block is located.
147 1.106 pooka *
148 1.106 pooka * => called with um_lock held
149 1.106 pooka * => releases um_lock before returning
150 1.1 mycroft */
151 1.9 christos int
152 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
153 1.91 elad kauth_cred_t cred, daddr_t *bnp)
154 1.1 mycroft {
155 1.101 ad struct ufsmount *ump;
156 1.62 fvdl struct fs *fs;
157 1.58 fvdl daddr_t bno;
158 1.9 christos int cg;
159 1.9 christos #ifdef QUOTA
160 1.9 christos int error;
161 1.9 christos #endif
162 1.81 perry
163 1.62 fvdl fs = ip->i_fs;
164 1.101 ad ump = ip->i_ump;
165 1.101 ad
166 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
167 1.62 fvdl
168 1.37 chs #ifdef UVM_PAGE_TRKOWN
169 1.51 chs if (ITOV(ip)->v_type == VREG &&
170 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
171 1.37 chs struct vm_page *pg;
172 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
173 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
174 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
175 1.37 chs
176 1.105 ad mutex_enter(&uobj->vmobjlock);
177 1.37 chs while (off < endoff) {
178 1.37 chs pg = uvm_pagelookup(uobj, off);
179 1.37 chs KASSERT(pg != NULL);
180 1.37 chs KASSERT(pg->owner == curproc->p_pid);
181 1.37 chs off += PAGE_SIZE;
182 1.37 chs }
183 1.105 ad mutex_exit(&uobj->vmobjlock);
184 1.37 chs }
185 1.37 chs #endif
186 1.37 chs
187 1.1 mycroft *bnp = 0;
188 1.1 mycroft #ifdef DIAGNOSTIC
189 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
190 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
191 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
192 1.1 mycroft panic("ffs_alloc: bad size");
193 1.1 mycroft }
194 1.1 mycroft if (cred == NOCRED)
195 1.56 provos panic("ffs_alloc: missing credential");
196 1.1 mycroft #endif /* DIAGNOSTIC */
197 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
198 1.1 mycroft goto nospace;
199 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
200 1.99 pooka kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
201 1.1 mycroft goto nospace;
202 1.1 mycroft #ifdef QUOTA
203 1.101 ad mutex_exit(&ump->um_lock);
204 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
205 1.1 mycroft return (error);
206 1.101 ad mutex_enter(&ump->um_lock);
207 1.1 mycroft #endif
208 1.111 simonb
209 1.1 mycroft if (bpref >= fs->fs_size)
210 1.1 mycroft bpref = 0;
211 1.1 mycroft if (bpref == 0)
212 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
213 1.1 mycroft else
214 1.1 mycroft cg = dtog(fs, bpref);
215 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
216 1.1 mycroft if (bno > 0) {
217 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
218 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
219 1.1 mycroft *bnp = bno;
220 1.1 mycroft return (0);
221 1.1 mycroft }
222 1.1 mycroft #ifdef QUOTA
223 1.1 mycroft /*
224 1.1 mycroft * Restore user's disk quota because allocation failed.
225 1.1 mycroft */
226 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
227 1.1 mycroft #endif
228 1.111 simonb if (flags & B_CONTIG) {
229 1.111 simonb /*
230 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
231 1.111 simonb * For the case where ffs_hashalloc() fails early
232 1.111 simonb * in the B_CONTIG case we reach here with um_lock
233 1.111 simonb * already unlocked, so we can't release it again
234 1.111 simonb * like in the normal error path. See kern/39206.
235 1.111 simonb *
236 1.111 simonb *
237 1.111 simonb * Fail silently - it's up to our caller to report
238 1.111 simonb * errors.
239 1.111 simonb */
240 1.111 simonb return (ENOSPC);
241 1.111 simonb }
242 1.1 mycroft nospace:
243 1.101 ad mutex_exit(&ump->um_lock);
244 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
245 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
246 1.1 mycroft return (ENOSPC);
247 1.1 mycroft }
248 1.1 mycroft
249 1.1 mycroft /*
250 1.1 mycroft * Reallocate a fragment to a bigger size
251 1.1 mycroft *
252 1.1 mycroft * The number and size of the old block is given, and a preference
253 1.1 mycroft * and new size is also specified. The allocator attempts to extend
254 1.1 mycroft * the original block. Failing that, the regular block allocator is
255 1.1 mycroft * invoked to get an appropriate block.
256 1.106 pooka *
257 1.106 pooka * => called with um_lock held
258 1.106 pooka * => return with um_lock released
259 1.1 mycroft */
260 1.9 christos int
261 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
262 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
263 1.1 mycroft {
264 1.101 ad struct ufsmount *ump;
265 1.62 fvdl struct fs *fs;
266 1.1 mycroft struct buf *bp;
267 1.1 mycroft int cg, request, error;
268 1.58 fvdl daddr_t bprev, bno;
269 1.25 thorpej
270 1.62 fvdl fs = ip->i_fs;
271 1.101 ad ump = ip->i_ump;
272 1.101 ad
273 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
274 1.101 ad
275 1.37 chs #ifdef UVM_PAGE_TRKOWN
276 1.37 chs if (ITOV(ip)->v_type == VREG) {
277 1.37 chs struct vm_page *pg;
278 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
279 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
280 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
281 1.37 chs
282 1.105 ad mutex_enter(&uobj->vmobjlock);
283 1.37 chs while (off < endoff) {
284 1.37 chs pg = uvm_pagelookup(uobj, off);
285 1.37 chs KASSERT(pg != NULL);
286 1.37 chs KASSERT(pg->owner == curproc->p_pid);
287 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
288 1.37 chs off += PAGE_SIZE;
289 1.37 chs }
290 1.105 ad mutex_exit(&uobj->vmobjlock);
291 1.37 chs }
292 1.37 chs #endif
293 1.37 chs
294 1.1 mycroft #ifdef DIAGNOSTIC
295 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
296 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
297 1.13 christos printf(
298 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
299 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
300 1.1 mycroft panic("ffs_realloccg: bad size");
301 1.1 mycroft }
302 1.1 mycroft if (cred == NOCRED)
303 1.56 provos panic("ffs_realloccg: missing credential");
304 1.1 mycroft #endif /* DIAGNOSTIC */
305 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
306 1.101 ad kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
307 1.101 ad mutex_exit(&ump->um_lock);
308 1.1 mycroft goto nospace;
309 1.101 ad }
310 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
311 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
312 1.60 fvdl else
313 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
314 1.60 fvdl
315 1.60 fvdl if (bprev == 0) {
316 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
317 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
318 1.1 mycroft panic("ffs_realloccg: bad bprev");
319 1.1 mycroft }
320 1.101 ad mutex_exit(&ump->um_lock);
321 1.101 ad
322 1.1 mycroft /*
323 1.1 mycroft * Allocate the extra space in the buffer.
324 1.1 mycroft */
325 1.37 chs if (bpp != NULL &&
326 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
327 1.101 ad brelse(bp, 0);
328 1.1 mycroft return (error);
329 1.1 mycroft }
330 1.1 mycroft #ifdef QUOTA
331 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
332 1.44 chs if (bpp != NULL) {
333 1.101 ad brelse(bp, 0);
334 1.44 chs }
335 1.1 mycroft return (error);
336 1.1 mycroft }
337 1.1 mycroft #endif
338 1.1 mycroft /*
339 1.1 mycroft * Check for extension in the existing location.
340 1.1 mycroft */
341 1.1 mycroft cg = dtog(fs, bprev);
342 1.101 ad mutex_enter(&ump->um_lock);
343 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
344 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
345 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
346 1.37 chs
347 1.37 chs if (bpp != NULL) {
348 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
349 1.37 chs panic("bad blockno");
350 1.72 pk allocbuf(bp, nsize, 1);
351 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
352 1.105 ad mutex_enter(bp->b_objlock);
353 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
354 1.105 ad bp->b_oflags |= BO_DONE;
355 1.105 ad mutex_exit(bp->b_objlock);
356 1.37 chs *bpp = bp;
357 1.37 chs }
358 1.37 chs if (blknop != NULL) {
359 1.37 chs *blknop = bno;
360 1.37 chs }
361 1.1 mycroft return (0);
362 1.1 mycroft }
363 1.1 mycroft /*
364 1.1 mycroft * Allocate a new disk location.
365 1.1 mycroft */
366 1.1 mycroft if (bpref >= fs->fs_size)
367 1.1 mycroft bpref = 0;
368 1.1 mycroft switch ((int)fs->fs_optim) {
369 1.1 mycroft case FS_OPTSPACE:
370 1.1 mycroft /*
371 1.81 perry * Allocate an exact sized fragment. Although this makes
372 1.81 perry * best use of space, we will waste time relocating it if
373 1.1 mycroft * the file continues to grow. If the fragmentation is
374 1.1 mycroft * less than half of the minimum free reserve, we choose
375 1.1 mycroft * to begin optimizing for time.
376 1.1 mycroft */
377 1.1 mycroft request = nsize;
378 1.1 mycroft if (fs->fs_minfree < 5 ||
379 1.1 mycroft fs->fs_cstotal.cs_nffree >
380 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
381 1.1 mycroft break;
382 1.34 jdolecek
383 1.34 jdolecek if (ffs_log_changeopt) {
384 1.34 jdolecek log(LOG_NOTICE,
385 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
386 1.34 jdolecek fs->fs_fsmnt);
387 1.34 jdolecek }
388 1.34 jdolecek
389 1.1 mycroft fs->fs_optim = FS_OPTTIME;
390 1.1 mycroft break;
391 1.1 mycroft case FS_OPTTIME:
392 1.1 mycroft /*
393 1.1 mycroft * At this point we have discovered a file that is trying to
394 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
395 1.1 mycroft * we allocate a full sized block, then free the unused portion.
396 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
397 1.1 mycroft * above will be able to grow it in place without further
398 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
399 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
400 1.1 mycroft * optimizing for space.
401 1.1 mycroft */
402 1.1 mycroft request = fs->fs_bsize;
403 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
404 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
405 1.1 mycroft break;
406 1.34 jdolecek
407 1.34 jdolecek if (ffs_log_changeopt) {
408 1.34 jdolecek log(LOG_NOTICE,
409 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
410 1.34 jdolecek fs->fs_fsmnt);
411 1.34 jdolecek }
412 1.34 jdolecek
413 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
414 1.1 mycroft break;
415 1.1 mycroft default:
416 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
417 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
418 1.1 mycroft panic("ffs_realloccg: bad optim");
419 1.1 mycroft /* NOTREACHED */
420 1.1 mycroft }
421 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
422 1.1 mycroft if (bno > 0) {
423 1.111 simonb if (!DOINGSOFTDEP(ITOV(ip))) {
424 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
425 1.111 simonb (ITOV(ip)->v_type != VREG)) {
426 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
427 1.111 simonb ip->i_ump->um_mountp, fsbtodb(fs, bprev),
428 1.111 simonb osize);
429 1.111 simonb } else
430 1.111 simonb ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
431 1.111 simonb ip->i_number);
432 1.111 simonb }
433 1.111 simonb if (nsize < request) {
434 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
435 1.111 simonb (ITOV(ip)->v_type != VREG)) {
436 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
437 1.111 simonb ip->i_ump->um_mountp,
438 1.111 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
439 1.111 simonb request - nsize);
440 1.111 simonb } else
441 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
442 1.111 simonb bno + numfrags(fs, nsize),
443 1.111 simonb (long)(request - nsize), ip->i_number);
444 1.111 simonb }
445 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
446 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
447 1.37 chs if (bpp != NULL) {
448 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
449 1.72 pk allocbuf(bp, nsize, 1);
450 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
451 1.105 ad mutex_enter(bp->b_objlock);
452 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
453 1.105 ad bp->b_oflags |= BO_DONE;
454 1.105 ad mutex_exit(bp->b_objlock);
455 1.37 chs *bpp = bp;
456 1.37 chs }
457 1.37 chs if (blknop != NULL) {
458 1.37 chs *blknop = bno;
459 1.37 chs }
460 1.1 mycroft return (0);
461 1.1 mycroft }
462 1.101 ad mutex_exit(&ump->um_lock);
463 1.101 ad
464 1.1 mycroft #ifdef QUOTA
465 1.1 mycroft /*
466 1.1 mycroft * Restore user's disk quota because allocation failed.
467 1.1 mycroft */
468 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
469 1.1 mycroft #endif
470 1.37 chs if (bpp != NULL) {
471 1.101 ad brelse(bp, 0);
472 1.37 chs }
473 1.37 chs
474 1.1 mycroft nospace:
475 1.1 mycroft /*
476 1.1 mycroft * no space available
477 1.1 mycroft */
478 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
479 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
480 1.1 mycroft return (ENOSPC);
481 1.1 mycroft }
482 1.1 mycroft
483 1.88 yamt #if 0
484 1.1 mycroft /*
485 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
486 1.1 mycroft *
487 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
488 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
489 1.60 fvdl * to find a range of sequential blocks starting as close as possible
490 1.60 fvdl * from the end of the allocation for the logical block immediately
491 1.60 fvdl * preceding the current range. If successful, the physical block numbers
492 1.60 fvdl * in the buffer pointers and in the inode are changed to reflect the new
493 1.60 fvdl * allocation. If unsuccessful, the allocation is left unchanged. The
494 1.60 fvdl * success in doing the reallocation is returned. Note that the error
495 1.60 fvdl * return is not reflected back to the user. Rather the previous block
496 1.60 fvdl * allocation will be used.
497 1.60 fvdl
498 1.1 mycroft */
499 1.55 matt #ifdef XXXUBC
500 1.3 mycroft #ifdef DEBUG
501 1.1 mycroft #include <sys/sysctl.h>
502 1.5 mycroft int prtrealloc = 0;
503 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
504 1.1 mycroft #endif
505 1.55 matt #endif
506 1.1 mycroft
507 1.60 fvdl /*
508 1.111 simonb * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
509 1.60 fvdl */
510 1.60 fvdl
511 1.18 fvdl int doasyncfree = 1;
512 1.18 fvdl
513 1.1 mycroft int
514 1.85 thorpej ffs_reallocblks(void *v)
515 1.9 christos {
516 1.55 matt #ifdef XXXUBC
517 1.1 mycroft struct vop_reallocblks_args /* {
518 1.1 mycroft struct vnode *a_vp;
519 1.1 mycroft struct cluster_save *a_buflist;
520 1.9 christos } */ *ap = v;
521 1.1 mycroft struct fs *fs;
522 1.1 mycroft struct inode *ip;
523 1.1 mycroft struct vnode *vp;
524 1.1 mycroft struct buf *sbp, *ebp;
525 1.58 fvdl int32_t *bap, *ebap = NULL, *sbap; /* XXX ondisk32 */
526 1.1 mycroft struct cluster_save *buflist;
527 1.58 fvdl daddr_t start_lbn, end_lbn, soff, newblk, blkno;
528 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
529 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
530 1.101 ad struct ufsmount *ump;
531 1.55 matt #endif /* XXXUBC */
532 1.1 mycroft
533 1.37 chs /* XXXUBC don't reallocblks for now */
534 1.37 chs return ENOSPC;
535 1.37 chs
536 1.55 matt #ifdef XXXUBC
537 1.1 mycroft vp = ap->a_vp;
538 1.1 mycroft ip = VTOI(vp);
539 1.1 mycroft fs = ip->i_fs;
540 1.101 ad ump = ip->i_ump;
541 1.1 mycroft if (fs->fs_contigsumsize <= 0)
542 1.1 mycroft return (ENOSPC);
543 1.1 mycroft buflist = ap->a_buflist;
544 1.1 mycroft len = buflist->bs_nchildren;
545 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
546 1.1 mycroft end_lbn = start_lbn + len - 1;
547 1.1 mycroft #ifdef DIAGNOSTIC
548 1.18 fvdl for (i = 0; i < len; i++)
549 1.18 fvdl if (!ffs_checkblk(ip,
550 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
551 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
552 1.1 mycroft for (i = 1; i < len; i++)
553 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
554 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
555 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
556 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
557 1.18 fvdl for (i = 1; i < len - 1; i++)
558 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
559 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
560 1.1 mycroft #endif
561 1.1 mycroft /*
562 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
563 1.1 mycroft * the filesystem has decided to move and do not force it back to
564 1.1 mycroft * the previous cylinder group.
565 1.1 mycroft */
566 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
567 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
568 1.1 mycroft return (ENOSPC);
569 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
570 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
571 1.1 mycroft return (ENOSPC);
572 1.1 mycroft /*
573 1.1 mycroft * Get the starting offset and block map for the first block.
574 1.1 mycroft */
575 1.1 mycroft if (start_lvl == 0) {
576 1.60 fvdl sbap = &ip->i_ffs1_db[0];
577 1.1 mycroft soff = start_lbn;
578 1.1 mycroft } else {
579 1.1 mycroft idp = &start_ap[start_lvl - 1];
580 1.107 hannken if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
581 1.107 hannken NOCRED, B_MODIFY, &sbp)) {
582 1.101 ad brelse(sbp, 0);
583 1.1 mycroft return (ENOSPC);
584 1.1 mycroft }
585 1.60 fvdl sbap = (int32_t *)sbp->b_data;
586 1.1 mycroft soff = idp->in_off;
587 1.1 mycroft }
588 1.1 mycroft /*
589 1.1 mycroft * Find the preferred location for the cluster.
590 1.1 mycroft */
591 1.101 ad mutex_enter(&ump->um_lock);
592 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
593 1.1 mycroft /*
594 1.1 mycroft * If the block range spans two block maps, get the second map.
595 1.1 mycroft */
596 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
597 1.1 mycroft ssize = len;
598 1.1 mycroft } else {
599 1.1 mycroft #ifdef DIAGNOSTIC
600 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
601 1.1 mycroft panic("ffs_reallocblk: start == end");
602 1.1 mycroft #endif
603 1.1 mycroft ssize = len - (idp->in_off + 1);
604 1.107 hannken if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
605 1.107 hannken NOCRED, B_MODIFY, &ebp))
606 1.1 mycroft goto fail;
607 1.58 fvdl ebap = (int32_t *)ebp->b_data; /* XXX ondisk32 */
608 1.1 mycroft }
609 1.1 mycroft /*
610 1.1 mycroft * Search the block map looking for an allocation of the desired size.
611 1.1 mycroft */
612 1.58 fvdl if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
613 1.111 simonb len, flags, ffs_clusteralloc)) == 0) {
614 1.101 ad mutex_exit(&ump->um_lock);
615 1.1 mycroft goto fail;
616 1.101 ad }
617 1.1 mycroft /*
618 1.1 mycroft * We have found a new contiguous block.
619 1.1 mycroft *
620 1.1 mycroft * First we have to replace the old block pointers with the new
621 1.1 mycroft * block pointers in the inode and indirect blocks associated
622 1.1 mycroft * with the file.
623 1.1 mycroft */
624 1.5 mycroft #ifdef DEBUG
625 1.5 mycroft if (prtrealloc)
626 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
627 1.5 mycroft start_lbn, end_lbn);
628 1.5 mycroft #endif
629 1.1 mycroft blkno = newblk;
630 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
631 1.58 fvdl daddr_t ba;
632 1.30 fvdl
633 1.30 fvdl if (i == ssize) {
634 1.1 mycroft bap = ebap;
635 1.30 fvdl soff = -i;
636 1.30 fvdl }
637 1.58 fvdl /* XXX ondisk32 */
638 1.30 fvdl ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
639 1.1 mycroft #ifdef DIAGNOSTIC
640 1.18 fvdl if (!ffs_checkblk(ip,
641 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
642 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
643 1.30 fvdl if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
644 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
645 1.1 mycroft #endif
646 1.5 mycroft #ifdef DEBUG
647 1.5 mycroft if (prtrealloc)
648 1.30 fvdl printf(" %d,", ba);
649 1.5 mycroft #endif
650 1.30 fvdl if (DOINGSOFTDEP(vp)) {
651 1.60 fvdl if (sbap == &ip->i_ffs1_db[0] && i < ssize)
652 1.30 fvdl softdep_setup_allocdirect(ip, start_lbn + i,
653 1.30 fvdl blkno, ba, fs->fs_bsize, fs->fs_bsize,
654 1.30 fvdl buflist->bs_children[i]);
655 1.30 fvdl else
656 1.30 fvdl softdep_setup_allocindir_page(ip, start_lbn + i,
657 1.30 fvdl i < ssize ? sbp : ebp, soff + i, blkno,
658 1.30 fvdl ba, buflist->bs_children[i]);
659 1.30 fvdl }
660 1.58 fvdl /* XXX ondisk32 */
661 1.80 mycroft *bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
662 1.1 mycroft }
663 1.1 mycroft /*
664 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
665 1.1 mycroft * For strict correctness, the writes should be synchronous since
666 1.1 mycroft * the old block values may have been written to disk. In practise
667 1.81 perry * they are almost never written, but if we are concerned about
668 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
669 1.1 mycroft *
670 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
671 1.1 mycroft * that shows whether the associated buffers and inodes have
672 1.1 mycroft * been written. The flag should be set when the cluster is
673 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
674 1.1 mycroft * We can then check below to see if it is set, and do the
675 1.1 mycroft * synchronous write only when it has been cleared.
676 1.1 mycroft */
677 1.60 fvdl if (sbap != &ip->i_ffs1_db[0]) {
678 1.1 mycroft if (doasyncfree)
679 1.1 mycroft bdwrite(sbp);
680 1.1 mycroft else
681 1.1 mycroft bwrite(sbp);
682 1.1 mycroft } else {
683 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
684 1.28 mycroft if (!doasyncfree)
685 1.88 yamt ffs_update(vp, NULL, NULL, 1);
686 1.1 mycroft }
687 1.25 thorpej if (ssize < len) {
688 1.1 mycroft if (doasyncfree)
689 1.1 mycroft bdwrite(ebp);
690 1.1 mycroft else
691 1.1 mycroft bwrite(ebp);
692 1.25 thorpej }
693 1.1 mycroft /*
694 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
695 1.1 mycroft */
696 1.5 mycroft #ifdef DEBUG
697 1.5 mycroft if (prtrealloc)
698 1.13 christos printf("\n\tnew:");
699 1.5 mycroft #endif
700 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
701 1.30 fvdl if (!DOINGSOFTDEP(vp))
702 1.76 hannken ffs_blkfree(fs, ip->i_devvp,
703 1.30 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno),
704 1.76 hannken fs->fs_bsize, ip->i_number);
705 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
706 1.5 mycroft #ifdef DEBUG
707 1.18 fvdl if (!ffs_checkblk(ip,
708 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
709 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
710 1.5 mycroft if (prtrealloc)
711 1.13 christos printf(" %d,", blkno);
712 1.5 mycroft #endif
713 1.5 mycroft }
714 1.5 mycroft #ifdef DEBUG
715 1.5 mycroft if (prtrealloc) {
716 1.5 mycroft prtrealloc--;
717 1.13 christos printf("\n");
718 1.1 mycroft }
719 1.5 mycroft #endif
720 1.1 mycroft return (0);
721 1.1 mycroft
722 1.1 mycroft fail:
723 1.1 mycroft if (ssize < len)
724 1.101 ad brelse(ebp, 0);
725 1.60 fvdl if (sbap != &ip->i_ffs1_db[0])
726 1.101 ad brelse(sbp, 0);
727 1.1 mycroft return (ENOSPC);
728 1.55 matt #endif /* XXXUBC */
729 1.1 mycroft }
730 1.88 yamt #endif /* 0 */
731 1.1 mycroft
732 1.1 mycroft /*
733 1.1 mycroft * Allocate an inode in the file system.
734 1.81 perry *
735 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
736 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
737 1.1 mycroft * 1) allocate the preferred inode.
738 1.1 mycroft * 2) allocate an inode in the same cylinder group.
739 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
740 1.1 mycroft * available inode is located.
741 1.47 wiz * If no inode preference is given the following hierarchy is used
742 1.1 mycroft * to allocate an inode:
743 1.1 mycroft * 1) allocate an inode in cylinder group 0.
744 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
745 1.1 mycroft * available inode is located.
746 1.106 pooka *
747 1.106 pooka * => um_lock not held upon entry or return
748 1.1 mycroft */
749 1.9 christos int
750 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
751 1.88 yamt struct vnode **vpp)
752 1.9 christos {
753 1.101 ad struct ufsmount *ump;
754 1.33 augustss struct inode *pip;
755 1.33 augustss struct fs *fs;
756 1.33 augustss struct inode *ip;
757 1.60 fvdl struct timespec ts;
758 1.1 mycroft ino_t ino, ipref;
759 1.1 mycroft int cg, error;
760 1.81 perry
761 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
762 1.111 simonb
763 1.88 yamt *vpp = NULL;
764 1.1 mycroft pip = VTOI(pvp);
765 1.1 mycroft fs = pip->i_fs;
766 1.101 ad ump = pip->i_ump;
767 1.101 ad
768 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
769 1.111 simonb if (error) {
770 1.111 simonb return error;
771 1.111 simonb }
772 1.101 ad mutex_enter(&ump->um_lock);
773 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
774 1.1 mycroft goto noinodes;
775 1.1 mycroft
776 1.1 mycroft if ((mode & IFMT) == IFDIR)
777 1.50 lukem ipref = ffs_dirpref(pip);
778 1.50 lukem else
779 1.50 lukem ipref = pip->i_number;
780 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
781 1.1 mycroft ipref = 0;
782 1.1 mycroft cg = ino_to_cg(fs, ipref);
783 1.50 lukem /*
784 1.50 lukem * Track number of dirs created one after another
785 1.50 lukem * in a same cg without intervening by files.
786 1.50 lukem */
787 1.50 lukem if ((mode & IFMT) == IFDIR) {
788 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
789 1.50 lukem fs->fs_contigdirs[cg]++;
790 1.50 lukem } else {
791 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
792 1.50 lukem fs->fs_contigdirs[cg]--;
793 1.50 lukem }
794 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
795 1.1 mycroft if (ino == 0)
796 1.1 mycroft goto noinodes;
797 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
798 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
799 1.1 mycroft if (error) {
800 1.111 simonb int err;
801 1.111 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
802 1.111 simonb if (err == 0)
803 1.111 simonb ffs_vfree(pvp, ino, mode);
804 1.111 simonb if (err == 0)
805 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
806 1.1 mycroft return (error);
807 1.1 mycroft }
808 1.90 yamt KASSERT((*vpp)->v_type == VNON);
809 1.88 yamt ip = VTOI(*vpp);
810 1.60 fvdl if (ip->i_mode) {
811 1.60 fvdl #if 0
812 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
813 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
814 1.60 fvdl #else
815 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
816 1.60 fvdl DIP(ip, mode), ip->i_mode,
817 1.60 fvdl DIP(ip, gen), ip->i_gen);
818 1.60 fvdl printf("size %llx blocks %llx\n",
819 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
820 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
821 1.86 christos (unsigned long long)ipref);
822 1.60 fvdl #if 0
823 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
824 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
825 1.60 fvdl #endif
826 1.60 fvdl
827 1.60 fvdl #endif
828 1.1 mycroft panic("ffs_valloc: dup alloc");
829 1.1 mycroft }
830 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
831 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
832 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
833 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
834 1.1 mycroft }
835 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
836 1.61 fvdl ip->i_flags = 0;
837 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
838 1.1 mycroft /*
839 1.1 mycroft * Set up a new generation number for this inode.
840 1.1 mycroft */
841 1.60 fvdl ip->i_gen++;
842 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
843 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
844 1.93 yamt vfs_timestamp(&ts);
845 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
846 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
847 1.60 fvdl }
848 1.1 mycroft return (0);
849 1.1 mycroft noinodes:
850 1.101 ad mutex_exit(&ump->um_lock);
851 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
852 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
853 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
854 1.1 mycroft return (ENOSPC);
855 1.1 mycroft }
856 1.1 mycroft
857 1.1 mycroft /*
858 1.50 lukem * Find a cylinder group in which to place a directory.
859 1.42 sommerfe *
860 1.50 lukem * The policy implemented by this algorithm is to allocate a
861 1.50 lukem * directory inode in the same cylinder group as its parent
862 1.50 lukem * directory, but also to reserve space for its files inodes
863 1.50 lukem * and data. Restrict the number of directories which may be
864 1.50 lukem * allocated one after another in the same cylinder group
865 1.50 lukem * without intervening allocation of files.
866 1.42 sommerfe *
867 1.50 lukem * If we allocate a first level directory then force allocation
868 1.50 lukem * in another cylinder group.
869 1.1 mycroft */
870 1.1 mycroft static ino_t
871 1.85 thorpej ffs_dirpref(struct inode *pip)
872 1.1 mycroft {
873 1.50 lukem register struct fs *fs;
874 1.74 soren int cg, prefcg;
875 1.89 dsl int64_t dirsize, cgsize, curdsz;
876 1.89 dsl int avgifree, avgbfree, avgndir;
877 1.50 lukem int minifree, minbfree, maxndir;
878 1.50 lukem int mincg, minndir;
879 1.50 lukem int maxcontigdirs;
880 1.50 lukem
881 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
882 1.101 ad
883 1.50 lukem fs = pip->i_fs;
884 1.1 mycroft
885 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
886 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
887 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
888 1.50 lukem
889 1.50 lukem /*
890 1.50 lukem * Force allocation in another cg if creating a first level dir.
891 1.50 lukem */
892 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
893 1.71 mycroft prefcg = random() % fs->fs_ncg;
894 1.50 lukem mincg = prefcg;
895 1.50 lukem minndir = fs->fs_ipg;
896 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
897 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
898 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
899 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
900 1.42 sommerfe mincg = cg;
901 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
902 1.42 sommerfe }
903 1.50 lukem for (cg = 0; cg < prefcg; cg++)
904 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
905 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
906 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
907 1.50 lukem mincg = cg;
908 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
909 1.42 sommerfe }
910 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
911 1.42 sommerfe }
912 1.50 lukem
913 1.50 lukem /*
914 1.50 lukem * Count various limits which used for
915 1.50 lukem * optimal allocation of a directory inode.
916 1.50 lukem */
917 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
918 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
919 1.50 lukem if (minifree < 0)
920 1.50 lukem minifree = 0;
921 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
922 1.50 lukem if (minbfree < 0)
923 1.50 lukem minbfree = 0;
924 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
925 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
926 1.89 dsl if (avgndir != 0) {
927 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
928 1.89 dsl if (dirsize < curdsz)
929 1.89 dsl dirsize = curdsz;
930 1.89 dsl }
931 1.89 dsl if (cgsize < dirsize * 255)
932 1.89 dsl maxcontigdirs = cgsize / dirsize;
933 1.89 dsl else
934 1.89 dsl maxcontigdirs = 255;
935 1.50 lukem if (fs->fs_avgfpdir > 0)
936 1.50 lukem maxcontigdirs = min(maxcontigdirs,
937 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
938 1.50 lukem if (maxcontigdirs == 0)
939 1.50 lukem maxcontigdirs = 1;
940 1.50 lukem
941 1.50 lukem /*
942 1.81 perry * Limit number of dirs in one cg and reserve space for
943 1.50 lukem * regular files, but only if we have no deficit in
944 1.50 lukem * inodes or space.
945 1.50 lukem */
946 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
947 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
948 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
949 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
950 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
951 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
952 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
953 1.50 lukem }
954 1.50 lukem for (cg = 0; cg < prefcg; cg++)
955 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
956 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
957 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
958 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
959 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
960 1.50 lukem }
961 1.50 lukem /*
962 1.50 lukem * This is a backstop when we are deficient in space.
963 1.50 lukem */
964 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
965 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
966 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
967 1.50 lukem for (cg = 0; cg < prefcg; cg++)
968 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
969 1.50 lukem break;
970 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
971 1.1 mycroft }
972 1.1 mycroft
973 1.1 mycroft /*
974 1.1 mycroft * Select the desired position for the next block in a file. The file is
975 1.1 mycroft * logically divided into sections. The first section is composed of the
976 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
977 1.81 perry *
978 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
979 1.1 mycroft * request a block in the same cylinder group as the inode that describes
980 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
981 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
982 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
983 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
984 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
985 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
986 1.1 mycroft * continues until a cylinder group with greater than the average number
987 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
988 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
989 1.1 mycroft * here a best guess is made based upon the logical block number being
990 1.1 mycroft * allocated.
991 1.81 perry *
992 1.1 mycroft * If a section is already partially allocated, the policy is to
993 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
994 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
995 1.60 fvdl * contigously if possible.
996 1.106 pooka *
997 1.106 pooka * => um_lock held on entry and exit
998 1.1 mycroft */
999 1.58 fvdl daddr_t
1000 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
1001 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
1002 1.1 mycroft {
1003 1.33 augustss struct fs *fs;
1004 1.33 augustss int cg;
1005 1.1 mycroft int avgbfree, startcg;
1006 1.1 mycroft
1007 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
1008 1.101 ad
1009 1.1 mycroft fs = ip->i_fs;
1010 1.111 simonb
1011 1.111 simonb /*
1012 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
1013 1.111 simonb * in the inode extentions to return the desired block.
1014 1.111 simonb *
1015 1.111 simonb * For metadata (indirect blocks) return the address of where
1016 1.111 simonb * the first indirect block resides - we'll scan for the next
1017 1.111 simonb * available slot if we need to allocate more than one indirect
1018 1.111 simonb * block. For data, return the address of the actual block
1019 1.111 simonb * relative to the address of the first data block.
1020 1.111 simonb */
1021 1.111 simonb if (flags & B_CONTIG) {
1022 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
1023 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
1024 1.111 simonb if (flags & B_METAONLY)
1025 1.111 simonb return ip->i_ffs_first_indir_blk;
1026 1.111 simonb else
1027 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
1028 1.111 simonb }
1029 1.111 simonb
1030 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1031 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
1032 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
1033 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
1034 1.1 mycroft }
1035 1.1 mycroft /*
1036 1.1 mycroft * Find a cylinder with greater than average number of
1037 1.1 mycroft * unused data blocks.
1038 1.1 mycroft */
1039 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
1040 1.1 mycroft startcg =
1041 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1042 1.1 mycroft else
1043 1.19 bouyer startcg = dtog(fs,
1044 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1045 1.1 mycroft startcg %= fs->fs_ncg;
1046 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1047 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
1048 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1049 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
1050 1.1 mycroft }
1051 1.52 lukem for (cg = 0; cg < startcg; cg++)
1052 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1053 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
1054 1.1 mycroft }
1055 1.35 thorpej return (0);
1056 1.1 mycroft }
1057 1.1 mycroft /*
1058 1.60 fvdl * We just always try to lay things out contiguously.
1059 1.60 fvdl */
1060 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1061 1.60 fvdl }
1062 1.60 fvdl
1063 1.60 fvdl daddr_t
1064 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
1065 1.111 simonb int64_t *bap)
1066 1.60 fvdl {
1067 1.60 fvdl struct fs *fs;
1068 1.60 fvdl int cg;
1069 1.60 fvdl int avgbfree, startcg;
1070 1.60 fvdl
1071 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
1072 1.101 ad
1073 1.60 fvdl fs = ip->i_fs;
1074 1.111 simonb
1075 1.111 simonb /*
1076 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
1077 1.111 simonb * in the inode extentions to return the desired block.
1078 1.111 simonb *
1079 1.111 simonb * For metadata (indirect blocks) return the address of where
1080 1.111 simonb * the first indirect block resides - we'll scan for the next
1081 1.111 simonb * available slot if we need to allocate more than one indirect
1082 1.111 simonb * block. For data, return the address of the actual block
1083 1.111 simonb * relative to the address of the first data block.
1084 1.111 simonb */
1085 1.111 simonb if (flags & B_CONTIG) {
1086 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
1087 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
1088 1.111 simonb if (flags & B_METAONLY)
1089 1.111 simonb return ip->i_ffs_first_indir_blk;
1090 1.111 simonb else
1091 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
1092 1.111 simonb }
1093 1.111 simonb
1094 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1095 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
1096 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
1097 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
1098 1.60 fvdl }
1099 1.1 mycroft /*
1100 1.60 fvdl * Find a cylinder with greater than average number of
1101 1.60 fvdl * unused data blocks.
1102 1.1 mycroft */
1103 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
1104 1.60 fvdl startcg =
1105 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1106 1.60 fvdl else
1107 1.60 fvdl startcg = dtog(fs,
1108 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
1109 1.60 fvdl startcg %= fs->fs_ncg;
1110 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1111 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
1112 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1113 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
1114 1.60 fvdl }
1115 1.60 fvdl for (cg = 0; cg < startcg; cg++)
1116 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1117 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
1118 1.60 fvdl }
1119 1.60 fvdl return (0);
1120 1.60 fvdl }
1121 1.60 fvdl /*
1122 1.60 fvdl * We just always try to lay things out contiguously.
1123 1.60 fvdl */
1124 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
1125 1.1 mycroft }
1126 1.1 mycroft
1127 1.60 fvdl
1128 1.1 mycroft /*
1129 1.1 mycroft * Implement the cylinder overflow algorithm.
1130 1.1 mycroft *
1131 1.1 mycroft * The policy implemented by this algorithm is:
1132 1.1 mycroft * 1) allocate the block in its requested cylinder group.
1133 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
1134 1.1 mycroft * 3) brute force search for a free block.
1135 1.106 pooka *
1136 1.106 pooka * => called with um_lock held
1137 1.106 pooka * => returns with um_lock released on success, held on failure
1138 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
1139 1.1 mycroft */
1140 1.1 mycroft /*VARARGS5*/
1141 1.58 fvdl static daddr_t
1142 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
1143 1.85 thorpej int size /* size for data blocks, mode for inodes */,
1144 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
1145 1.1 mycroft {
1146 1.33 augustss struct fs *fs;
1147 1.58 fvdl daddr_t result;
1148 1.1 mycroft int i, icg = cg;
1149 1.1 mycroft
1150 1.1 mycroft fs = ip->i_fs;
1151 1.1 mycroft /*
1152 1.1 mycroft * 1: preferred cylinder group
1153 1.1 mycroft */
1154 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
1155 1.1 mycroft if (result)
1156 1.1 mycroft return (result);
1157 1.111 simonb
1158 1.111 simonb if (flags & B_CONTIG)
1159 1.111 simonb return (result);
1160 1.1 mycroft /*
1161 1.1 mycroft * 2: quadratic rehash
1162 1.1 mycroft */
1163 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
1164 1.1 mycroft cg += i;
1165 1.1 mycroft if (cg >= fs->fs_ncg)
1166 1.1 mycroft cg -= fs->fs_ncg;
1167 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
1168 1.1 mycroft if (result)
1169 1.1 mycroft return (result);
1170 1.1 mycroft }
1171 1.1 mycroft /*
1172 1.1 mycroft * 3: brute force search
1173 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
1174 1.1 mycroft * and 1 is always checked in the quadratic rehash.
1175 1.1 mycroft */
1176 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
1177 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
1178 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
1179 1.1 mycroft if (result)
1180 1.1 mycroft return (result);
1181 1.1 mycroft cg++;
1182 1.1 mycroft if (cg == fs->fs_ncg)
1183 1.1 mycroft cg = 0;
1184 1.1 mycroft }
1185 1.35 thorpej return (0);
1186 1.1 mycroft }
1187 1.1 mycroft
1188 1.1 mycroft /*
1189 1.1 mycroft * Determine whether a fragment can be extended.
1190 1.1 mycroft *
1191 1.81 perry * Check to see if the necessary fragments are available, and
1192 1.1 mycroft * if they are, allocate them.
1193 1.106 pooka *
1194 1.106 pooka * => called with um_lock held
1195 1.106 pooka * => returns with um_lock released on success, held on failure
1196 1.1 mycroft */
1197 1.58 fvdl static daddr_t
1198 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1199 1.1 mycroft {
1200 1.101 ad struct ufsmount *ump;
1201 1.33 augustss struct fs *fs;
1202 1.33 augustss struct cg *cgp;
1203 1.1 mycroft struct buf *bp;
1204 1.58 fvdl daddr_t bno;
1205 1.1 mycroft int frags, bbase;
1206 1.1 mycroft int i, error;
1207 1.62 fvdl u_int8_t *blksfree;
1208 1.1 mycroft
1209 1.1 mycroft fs = ip->i_fs;
1210 1.101 ad ump = ip->i_ump;
1211 1.101 ad
1212 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1213 1.101 ad
1214 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1215 1.35 thorpej return (0);
1216 1.1 mycroft frags = numfrags(fs, nsize);
1217 1.1 mycroft bbase = fragnum(fs, bprev);
1218 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1219 1.1 mycroft /* cannot extend across a block boundary */
1220 1.35 thorpej return (0);
1221 1.1 mycroft }
1222 1.101 ad mutex_exit(&ump->um_lock);
1223 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1224 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1225 1.101 ad if (error)
1226 1.101 ad goto fail;
1227 1.1 mycroft cgp = (struct cg *)bp->b_data;
1228 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1229 1.101 ad goto fail;
1230 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1231 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1232 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1233 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1234 1.1 mycroft bno = dtogd(fs, bprev);
1235 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1236 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1237 1.101 ad if (isclr(blksfree, bno + i))
1238 1.101 ad goto fail;
1239 1.1 mycroft /*
1240 1.1 mycroft * the current fragment can be extended
1241 1.1 mycroft * deduct the count on fragment being extended into
1242 1.1 mycroft * increase the count on the remaining fragment (if any)
1243 1.1 mycroft * allocate the extended piece
1244 1.1 mycroft */
1245 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1246 1.62 fvdl if (isclr(blksfree, bno + i))
1247 1.1 mycroft break;
1248 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1249 1.1 mycroft if (i != frags)
1250 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1251 1.101 ad mutex_enter(&ump->um_lock);
1252 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1253 1.62 fvdl clrbit(blksfree, bno + i);
1254 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1255 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1256 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1257 1.1 mycroft }
1258 1.1 mycroft fs->fs_fmod = 1;
1259 1.101 ad ACTIVECG_CLR(fs, cg);
1260 1.101 ad mutex_exit(&ump->um_lock);
1261 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1262 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1263 1.1 mycroft bdwrite(bp);
1264 1.1 mycroft return (bprev);
1265 1.101 ad
1266 1.101 ad fail:
1267 1.101 ad brelse(bp, 0);
1268 1.101 ad mutex_enter(&ump->um_lock);
1269 1.101 ad return (0);
1270 1.1 mycroft }
1271 1.1 mycroft
1272 1.1 mycroft /*
1273 1.1 mycroft * Determine whether a block can be allocated.
1274 1.1 mycroft *
1275 1.1 mycroft * Check to see if a block of the appropriate size is available,
1276 1.1 mycroft * and if it is, allocate it.
1277 1.1 mycroft */
1278 1.58 fvdl static daddr_t
1279 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1280 1.1 mycroft {
1281 1.101 ad struct ufsmount *ump;
1282 1.62 fvdl struct fs *fs = ip->i_fs;
1283 1.30 fvdl struct cg *cgp;
1284 1.1 mycroft struct buf *bp;
1285 1.60 fvdl int32_t bno;
1286 1.60 fvdl daddr_t blkno;
1287 1.30 fvdl int error, frags, allocsiz, i;
1288 1.62 fvdl u_int8_t *blksfree;
1289 1.30 fvdl #ifdef FFS_EI
1290 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1291 1.30 fvdl #endif
1292 1.1 mycroft
1293 1.101 ad ump = ip->i_ump;
1294 1.101 ad
1295 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1296 1.101 ad
1297 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1298 1.35 thorpej return (0);
1299 1.101 ad mutex_exit(&ump->um_lock);
1300 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1301 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1302 1.101 ad if (error)
1303 1.101 ad goto fail;
1304 1.1 mycroft cgp = (struct cg *)bp->b_data;
1305 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1306 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1307 1.101 ad goto fail;
1308 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1309 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1310 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1311 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1312 1.1 mycroft if (size == fs->fs_bsize) {
1313 1.101 ad mutex_enter(&ump->um_lock);
1314 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1315 1.76 hannken ACTIVECG_CLR(fs, cg);
1316 1.101 ad mutex_exit(&ump->um_lock);
1317 1.1 mycroft bdwrite(bp);
1318 1.60 fvdl return (blkno);
1319 1.1 mycroft }
1320 1.1 mycroft /*
1321 1.1 mycroft * check to see if any fragments are already available
1322 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1323 1.1 mycroft * it down to a smaller size if necessary
1324 1.1 mycroft */
1325 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1326 1.1 mycroft frags = numfrags(fs, size);
1327 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1328 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1329 1.1 mycroft break;
1330 1.1 mycroft if (allocsiz == fs->fs_frag) {
1331 1.1 mycroft /*
1332 1.81 perry * no fragments were available, so a block will be
1333 1.1 mycroft * allocated, and hacked up
1334 1.1 mycroft */
1335 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1336 1.101 ad goto fail;
1337 1.101 ad mutex_enter(&ump->um_lock);
1338 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1339 1.60 fvdl bno = dtogd(fs, blkno);
1340 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1341 1.62 fvdl setbit(blksfree, bno + i);
1342 1.1 mycroft i = fs->fs_frag - frags;
1343 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1344 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1345 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1346 1.1 mycroft fs->fs_fmod = 1;
1347 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1348 1.76 hannken ACTIVECG_CLR(fs, cg);
1349 1.101 ad mutex_exit(&ump->um_lock);
1350 1.1 mycroft bdwrite(bp);
1351 1.60 fvdl return (blkno);
1352 1.1 mycroft }
1353 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1354 1.30 fvdl #if 0
1355 1.30 fvdl /*
1356 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1357 1.58 fvdl * also: returning NULL as daddr_t ?
1358 1.30 fvdl */
1359 1.101 ad if (bno < 0)
1360 1.101 ad goto fail;
1361 1.30 fvdl #endif
1362 1.1 mycroft for (i = 0; i < frags; i++)
1363 1.62 fvdl clrbit(blksfree, bno + i);
1364 1.101 ad mutex_enter(&ump->um_lock);
1365 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1366 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1367 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1368 1.1 mycroft fs->fs_fmod = 1;
1369 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1370 1.1 mycroft if (frags != allocsiz)
1371 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1372 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1373 1.101 ad ACTIVECG_CLR(fs, cg);
1374 1.101 ad mutex_exit(&ump->um_lock);
1375 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1376 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1377 1.1 mycroft bdwrite(bp);
1378 1.30 fvdl return blkno;
1379 1.101 ad
1380 1.101 ad fail:
1381 1.101 ad brelse(bp, 0);
1382 1.101 ad mutex_enter(&ump->um_lock);
1383 1.101 ad return (0);
1384 1.1 mycroft }
1385 1.1 mycroft
1386 1.1 mycroft /*
1387 1.1 mycroft * Allocate a block in a cylinder group.
1388 1.1 mycroft *
1389 1.1 mycroft * This algorithm implements the following policy:
1390 1.1 mycroft * 1) allocate the requested block.
1391 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1392 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1393 1.1 mycroft * specified cylinder group.
1394 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1395 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1396 1.1 mycroft */
1397 1.58 fvdl static daddr_t
1398 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1399 1.1 mycroft {
1400 1.101 ad struct ufsmount *ump;
1401 1.62 fvdl struct fs *fs = ip->i_fs;
1402 1.30 fvdl struct cg *cgp;
1403 1.60 fvdl daddr_t blkno;
1404 1.60 fvdl int32_t bno;
1405 1.60 fvdl u_int8_t *blksfree;
1406 1.30 fvdl #ifdef FFS_EI
1407 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1408 1.30 fvdl #endif
1409 1.1 mycroft
1410 1.101 ad ump = ip->i_ump;
1411 1.101 ad
1412 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1413 1.101 ad
1414 1.30 fvdl cgp = (struct cg *)bp->b_data;
1415 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1416 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1417 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1418 1.60 fvdl } else {
1419 1.60 fvdl bpref = blknum(fs, bpref);
1420 1.60 fvdl bno = dtogd(fs, bpref);
1421 1.1 mycroft /*
1422 1.60 fvdl * if the requested block is available, use it
1423 1.1 mycroft */
1424 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1425 1.60 fvdl goto gotit;
1426 1.111 simonb /*
1427 1.111 simonb * if the requested data block isn't available and we are
1428 1.111 simonb * trying to allocate a contiguous file, return an error.
1429 1.111 simonb */
1430 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1431 1.111 simonb return (0);
1432 1.1 mycroft }
1433 1.111 simonb
1434 1.1 mycroft /*
1435 1.60 fvdl * Take the next available block in this cylinder group.
1436 1.1 mycroft */
1437 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1438 1.1 mycroft if (bno < 0)
1439 1.35 thorpej return (0);
1440 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1441 1.1 mycroft gotit:
1442 1.1 mycroft blkno = fragstoblks(fs, bno);
1443 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1444 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1445 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1446 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1447 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1448 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1449 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1450 1.73 dbj int cylno;
1451 1.73 dbj cylno = old_cbtocylno(fs, bno);
1452 1.75 dbj KASSERT(cylno >= 0);
1453 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1454 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1455 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1456 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1457 1.73 dbj needswap);
1458 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1459 1.73 dbj }
1460 1.1 mycroft fs->fs_fmod = 1;
1461 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1462 1.101 ad if (DOINGSOFTDEP(ITOV(ip))) {
1463 1.101 ad mutex_exit(&ump->um_lock);
1464 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1465 1.101 ad mutex_enter(&ump->um_lock);
1466 1.101 ad }
1467 1.30 fvdl return (blkno);
1468 1.1 mycroft }
1469 1.1 mycroft
1470 1.55 matt #ifdef XXXUBC
1471 1.1 mycroft /*
1472 1.1 mycroft * Determine whether a cluster can be allocated.
1473 1.1 mycroft *
1474 1.1 mycroft * We do not currently check for optimal rotational layout if there
1475 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1476 1.1 mycroft * take the first one that we find following bpref.
1477 1.1 mycroft */
1478 1.60 fvdl
1479 1.60 fvdl /*
1480 1.60 fvdl * This function must be fixed for UFS2 if re-enabled.
1481 1.60 fvdl */
1482 1.58 fvdl static daddr_t
1483 1.85 thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
1484 1.1 mycroft {
1485 1.101 ad struct ufsmount *ump;
1486 1.33 augustss struct fs *fs;
1487 1.33 augustss struct cg *cgp;
1488 1.1 mycroft struct buf *bp;
1489 1.18 fvdl int i, got, run, bno, bit, map;
1490 1.1 mycroft u_char *mapp;
1491 1.5 mycroft int32_t *lp;
1492 1.1 mycroft
1493 1.1 mycroft fs = ip->i_fs;
1494 1.101 ad ump = ip->i_ump;
1495 1.101 ad
1496 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1497 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1498 1.35 thorpej return (0);
1499 1.101 ad mutex_exit(&ump->um_lock);
1500 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1501 1.107 hannken NOCRED, 0, &bp))
1502 1.1 mycroft goto fail;
1503 1.1 mycroft cgp = (struct cg *)bp->b_data;
1504 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1505 1.1 mycroft goto fail;
1506 1.1 mycroft /*
1507 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1508 1.1 mycroft * available in this cylinder group.
1509 1.1 mycroft */
1510 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
1511 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1512 1.30 fvdl if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
1513 1.1 mycroft break;
1514 1.5 mycroft if (i > fs->fs_contigsumsize) {
1515 1.5 mycroft /*
1516 1.5 mycroft * This is the first time looking for a cluster in this
1517 1.5 mycroft * cylinder group. Update the cluster summary information
1518 1.5 mycroft * to reflect the true maximum sized cluster so that
1519 1.5 mycroft * future cluster allocation requests can avoid reading
1520 1.5 mycroft * the cylinder group map only to find no clusters.
1521 1.5 mycroft */
1522 1.30 fvdl lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
1523 1.5 mycroft for (i = len - 1; i > 0; i--)
1524 1.30 fvdl if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
1525 1.5 mycroft break;
1526 1.101 ad mutex_enter(&ump->um_lock);
1527 1.5 mycroft fs->fs_maxcluster[cg] = i;
1528 1.101 ad mutex_exit(&ump->um_lock);
1529 1.1 mycroft goto fail;
1530 1.5 mycroft }
1531 1.1 mycroft /*
1532 1.1 mycroft * Search the cluster map to find a big enough cluster.
1533 1.1 mycroft * We take the first one that we find, even if it is larger
1534 1.1 mycroft * than we need as we prefer to get one close to the previous
1535 1.1 mycroft * block allocation. We do not search before the current
1536 1.1 mycroft * preference point as we do not want to allocate a block
1537 1.1 mycroft * that is allocated before the previous one (as we will
1538 1.1 mycroft * then have to wait for another pass of the elevator
1539 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1540 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1541 1.1 mycroft */
1542 1.1 mycroft if (dtog(fs, bpref) != cg)
1543 1.1 mycroft bpref = 0;
1544 1.1 mycroft else
1545 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1546 1.30 fvdl mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
1547 1.1 mycroft map = *mapp++;
1548 1.1 mycroft bit = 1 << (bpref % NBBY);
1549 1.19 bouyer for (run = 0, got = bpref;
1550 1.30 fvdl got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
1551 1.1 mycroft if ((map & bit) == 0) {
1552 1.1 mycroft run = 0;
1553 1.1 mycroft } else {
1554 1.1 mycroft run++;
1555 1.1 mycroft if (run == len)
1556 1.1 mycroft break;
1557 1.1 mycroft }
1558 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1559 1.1 mycroft bit <<= 1;
1560 1.1 mycroft } else {
1561 1.1 mycroft map = *mapp++;
1562 1.1 mycroft bit = 1;
1563 1.1 mycroft }
1564 1.1 mycroft }
1565 1.30 fvdl if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
1566 1.1 mycroft goto fail;
1567 1.1 mycroft /*
1568 1.1 mycroft * Allocate the cluster that we have found.
1569 1.1 mycroft */
1570 1.30 fvdl #ifdef DIAGNOSTIC
1571 1.18 fvdl for (i = 1; i <= len; i++)
1572 1.30 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
1573 1.30 fvdl got - run + i))
1574 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1575 1.30 fvdl #endif
1576 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1577 1.18 fvdl if (dtog(fs, bno) != cg)
1578 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1579 1.1 mycroft len = blkstofrags(fs, len);
1580 1.101 ad mutex_enter(&ump->um_lock);
1581 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1582 1.111 simonb if ((got = ffs_alloccgblk(ip, bp, bno + i, flags)) != bno + i)
1583 1.1 mycroft panic("ffs_clusteralloc: lost block");
1584 1.76 hannken ACTIVECG_CLR(fs, cg);
1585 1.101 ad mutex_exit(&ump->um_lock);
1586 1.8 cgd bdwrite(bp);
1587 1.1 mycroft return (bno);
1588 1.1 mycroft
1589 1.1 mycroft fail:
1590 1.101 ad brelse(bp, 0);
1591 1.101 ad mutex_enter(&ump->um_lock);
1592 1.1 mycroft return (0);
1593 1.1 mycroft }
1594 1.55 matt #endif /* XXXUBC */
1595 1.1 mycroft
1596 1.1 mycroft /*
1597 1.1 mycroft * Determine whether an inode can be allocated.
1598 1.1 mycroft *
1599 1.1 mycroft * Check to see if an inode is available, and if it is,
1600 1.1 mycroft * allocate it using the following policy:
1601 1.1 mycroft * 1) allocate the requested inode.
1602 1.1 mycroft * 2) allocate the next available inode after the requested
1603 1.1 mycroft * inode in the specified cylinder group.
1604 1.1 mycroft */
1605 1.58 fvdl static daddr_t
1606 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1607 1.1 mycroft {
1608 1.101 ad struct ufsmount *ump = ip->i_ump;
1609 1.62 fvdl struct fs *fs = ip->i_fs;
1610 1.33 augustss struct cg *cgp;
1611 1.60 fvdl struct buf *bp, *ibp;
1612 1.60 fvdl u_int8_t *inosused;
1613 1.1 mycroft int error, start, len, loc, map, i;
1614 1.60 fvdl int32_t initediblk;
1615 1.60 fvdl struct ufs2_dinode *dp2;
1616 1.19 bouyer #ifdef FFS_EI
1617 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1618 1.19 bouyer #endif
1619 1.1 mycroft
1620 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1621 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1622 1.101 ad
1623 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1624 1.35 thorpej return (0);
1625 1.101 ad mutex_exit(&ump->um_lock);
1626 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1627 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1628 1.101 ad if (error)
1629 1.101 ad goto fail;
1630 1.1 mycroft cgp = (struct cg *)bp->b_data;
1631 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1632 1.101 ad goto fail;
1633 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1634 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1635 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1636 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1637 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1638 1.1 mycroft if (ipref) {
1639 1.1 mycroft ipref %= fs->fs_ipg;
1640 1.60 fvdl if (isclr(inosused, ipref))
1641 1.1 mycroft goto gotit;
1642 1.1 mycroft }
1643 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1644 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1645 1.19 bouyer NBBY);
1646 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1647 1.1 mycroft if (loc == 0) {
1648 1.1 mycroft len = start + 1;
1649 1.1 mycroft start = 0;
1650 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1651 1.1 mycroft if (loc == 0) {
1652 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1653 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1654 1.19 bouyer fs->fs_fsmnt);
1655 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1656 1.1 mycroft /* NOTREACHED */
1657 1.1 mycroft }
1658 1.1 mycroft }
1659 1.1 mycroft i = start + len - loc;
1660 1.60 fvdl map = inosused[i];
1661 1.1 mycroft ipref = i * NBBY;
1662 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1663 1.1 mycroft if ((map & i) == 0) {
1664 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1665 1.1 mycroft goto gotit;
1666 1.1 mycroft }
1667 1.1 mycroft }
1668 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1669 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1670 1.1 mycroft /* NOTREACHED */
1671 1.1 mycroft gotit:
1672 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1673 1.111 simonb mode);
1674 1.60 fvdl /*
1675 1.60 fvdl * Check to see if we need to initialize more inodes.
1676 1.60 fvdl */
1677 1.60 fvdl initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1678 1.104 hannken ibp = NULL;
1679 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC &&
1680 1.60 fvdl ipref + INOPB(fs) > initediblk &&
1681 1.60 fvdl initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1682 1.108 hannken if (ffs_getblk(ip->i_devvp, fsbtodb(fs,
1683 1.60 fvdl ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1684 1.108 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp) != 0)
1685 1.108 hannken goto fail;
1686 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1687 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1688 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1689 1.60 fvdl /*
1690 1.60 fvdl * Don't bother to swap, it's supposed to be
1691 1.60 fvdl * random, after all.
1692 1.60 fvdl */
1693 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1694 1.60 fvdl dp2++;
1695 1.60 fvdl }
1696 1.60 fvdl initediblk += INOPB(fs);
1697 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1698 1.60 fvdl }
1699 1.60 fvdl
1700 1.101 ad mutex_enter(&ump->um_lock);
1701 1.76 hannken ACTIVECG_CLR(fs, cg);
1702 1.101 ad setbit(inosused, ipref);
1703 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1704 1.101 ad fs->fs_cstotal.cs_nifree--;
1705 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1706 1.101 ad fs->fs_fmod = 1;
1707 1.101 ad if ((mode & IFMT) == IFDIR) {
1708 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1709 1.101 ad fs->fs_cstotal.cs_ndir++;
1710 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1711 1.101 ad }
1712 1.101 ad mutex_exit(&ump->um_lock);
1713 1.101 ad if (DOINGSOFTDEP(ITOV(ip)))
1714 1.101 ad softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1715 1.1 mycroft bdwrite(bp);
1716 1.104 hannken if (ibp != NULL)
1717 1.104 hannken bawrite(ibp);
1718 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1719 1.101 ad fail:
1720 1.101 ad brelse(bp, 0);
1721 1.101 ad mutex_enter(&ump->um_lock);
1722 1.101 ad return (0);
1723 1.1 mycroft }
1724 1.1 mycroft
1725 1.1 mycroft /*
1726 1.111 simonb * Allocate a block or fragment.
1727 1.111 simonb *
1728 1.111 simonb * The specified block or fragment is removed from the
1729 1.111 simonb * free map, possibly fragmenting a block in the process.
1730 1.111 simonb *
1731 1.111 simonb * This implementation should mirror fs_blkfree
1732 1.111 simonb *
1733 1.111 simonb * => um_lock not held on entry or exit
1734 1.111 simonb */
1735 1.111 simonb int
1736 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1737 1.111 simonb {
1738 1.111 simonb struct ufsmount *ump = ip->i_ump;
1739 1.111 simonb struct fs *fs = ip->i_fs;
1740 1.111 simonb struct cg *cgp;
1741 1.111 simonb struct buf *bp;
1742 1.111 simonb int32_t fragno, cgbno;
1743 1.111 simonb int i, error, cg, blk, frags, bbase;
1744 1.111 simonb u_int8_t *blksfree;
1745 1.111 simonb const int needswap = UFS_FSNEEDSWAP(fs);
1746 1.111 simonb
1747 1.111 simonb if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1748 1.111 simonb fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1749 1.111 simonb printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1750 1.111 simonb "size = %ld, fs = %s\n",
1751 1.111 simonb ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1752 1.111 simonb panic("blkalloc: bad size");
1753 1.111 simonb }
1754 1.111 simonb cg = dtog(fs, bno);
1755 1.111 simonb if (bno >= fs->fs_size) {
1756 1.111 simonb printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
1757 1.111 simonb ip->i_number);
1758 1.111 simonb ffs_fserr(fs, ip->i_uid, "bad block");
1759 1.111 simonb return EINVAL;
1760 1.111 simonb }
1761 1.111 simonb error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1762 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1763 1.111 simonb if (error) {
1764 1.111 simonb brelse(bp, 0);
1765 1.111 simonb return error;
1766 1.111 simonb }
1767 1.111 simonb cgp = (struct cg *)bp->b_data;
1768 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1769 1.111 simonb brelse(bp, 0);
1770 1.111 simonb return EIO;
1771 1.111 simonb }
1772 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1773 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1774 1.111 simonb cgbno = dtogd(fs, bno);
1775 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1776 1.111 simonb
1777 1.111 simonb mutex_enter(&ump->um_lock);
1778 1.111 simonb if (size == fs->fs_bsize) {
1779 1.111 simonb fragno = fragstoblks(fs, cgbno);
1780 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1781 1.111 simonb mutex_exit(&ump->um_lock);
1782 1.111 simonb brelse(bp, 0);
1783 1.111 simonb return EBUSY;
1784 1.111 simonb }
1785 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1786 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1787 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1788 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1789 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1790 1.111 simonb } else {
1791 1.111 simonb bbase = cgbno - fragnum(fs, cgbno);
1792 1.111 simonb
1793 1.111 simonb frags = numfrags(fs, size);
1794 1.111 simonb for (i = 0; i < frags; i++) {
1795 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1796 1.111 simonb mutex_exit(&ump->um_lock);
1797 1.111 simonb brelse(bp, 0);
1798 1.111 simonb return EBUSY;
1799 1.111 simonb }
1800 1.111 simonb }
1801 1.111 simonb /*
1802 1.111 simonb * if a complete block is being split, account for it
1803 1.111 simonb */
1804 1.111 simonb fragno = fragstoblks(fs, bbase);
1805 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1806 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1807 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1808 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1809 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1810 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1811 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1812 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1813 1.111 simonb }
1814 1.111 simonb /*
1815 1.111 simonb * decrement the counts associated with the old frags
1816 1.111 simonb */
1817 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1818 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1819 1.111 simonb /*
1820 1.111 simonb * allocate the fragment
1821 1.111 simonb */
1822 1.111 simonb for (i = 0; i < frags; i++) {
1823 1.111 simonb clrbit(blksfree, cgbno + i);
1824 1.111 simonb }
1825 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1826 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1827 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1828 1.111 simonb /*
1829 1.111 simonb * add back in counts associated with the new frags
1830 1.111 simonb */
1831 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1832 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1833 1.111 simonb }
1834 1.111 simonb fs->fs_fmod = 1;
1835 1.111 simonb ACTIVECG_CLR(fs, cg);
1836 1.111 simonb mutex_exit(&ump->um_lock);
1837 1.111 simonb bdwrite(bp);
1838 1.111 simonb return 0;
1839 1.111 simonb }
1840 1.111 simonb
1841 1.111 simonb /*
1842 1.1 mycroft * Free a block or fragment.
1843 1.1 mycroft *
1844 1.1 mycroft * The specified block or fragment is placed back in the
1845 1.81 perry * free map. If a fragment is deallocated, a possible
1846 1.1 mycroft * block reassembly is checked.
1847 1.106 pooka *
1848 1.106 pooka * => um_lock not held on entry or exit
1849 1.1 mycroft */
1850 1.9 christos void
1851 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1852 1.85 thorpej ino_t inum)
1853 1.1 mycroft {
1854 1.33 augustss struct cg *cgp;
1855 1.1 mycroft struct buf *bp;
1856 1.76 hannken struct ufsmount *ump;
1857 1.60 fvdl int32_t fragno, cgbno;
1858 1.76 hannken daddr_t cgblkno;
1859 1.1 mycroft int i, error, cg, blk, frags, bbase;
1860 1.62 fvdl u_int8_t *blksfree;
1861 1.76 hannken dev_t dev;
1862 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1863 1.1 mycroft
1864 1.76 hannken cg = dtog(fs, bno);
1865 1.77 hannken if (devvp->v_type != VBLK) {
1866 1.77 hannken /* devvp is a snapshot */
1867 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1868 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1869 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1870 1.76 hannken } else {
1871 1.76 hannken dev = devvp->v_rdev;
1872 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1873 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1874 1.100 hannken if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1875 1.76 hannken return;
1876 1.76 hannken }
1877 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1878 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1879 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1880 1.58 fvdl "size = %ld, fs = %s\n",
1881 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1882 1.1 mycroft panic("blkfree: bad size");
1883 1.1 mycroft }
1884 1.76 hannken
1885 1.60 fvdl if (bno >= fs->fs_size) {
1886 1.86 christos printf("bad block %" PRId64 ", ino %llu\n", bno,
1887 1.86 christos (unsigned long long)inum);
1888 1.76 hannken ffs_fserr(fs, inum, "bad block");
1889 1.1 mycroft return;
1890 1.1 mycroft }
1891 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1892 1.107 hannken NOCRED, B_MODIFY, &bp);
1893 1.1 mycroft if (error) {
1894 1.101 ad brelse(bp, 0);
1895 1.1 mycroft return;
1896 1.1 mycroft }
1897 1.1 mycroft cgp = (struct cg *)bp->b_data;
1898 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1899 1.101 ad brelse(bp, 0);
1900 1.1 mycroft return;
1901 1.1 mycroft }
1902 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1903 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1904 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1905 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1906 1.60 fvdl cgbno = dtogd(fs, bno);
1907 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1908 1.101 ad mutex_enter(&ump->um_lock);
1909 1.1 mycroft if (size == fs->fs_bsize) {
1910 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1911 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1912 1.77 hannken if (devvp->v_type != VBLK) {
1913 1.77 hannken /* devvp is a snapshot */
1914 1.101 ad mutex_exit(&ump->um_lock);
1915 1.101 ad brelse(bp, 0);
1916 1.76 hannken return;
1917 1.76 hannken }
1918 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1919 1.76 hannken dev, bno, fs->fs_fsmnt);
1920 1.1 mycroft panic("blkfree: freeing free block");
1921 1.1 mycroft }
1922 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1923 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1924 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1925 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1926 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1927 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1928 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1929 1.73 dbj i = old_cbtocylno(fs, cgbno);
1930 1.75 dbj KASSERT(i >= 0);
1931 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1932 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1933 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1934 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1935 1.73 dbj needswap);
1936 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1937 1.73 dbj }
1938 1.1 mycroft } else {
1939 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1940 1.1 mycroft /*
1941 1.1 mycroft * decrement the counts associated with the old frags
1942 1.1 mycroft */
1943 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1944 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1945 1.1 mycroft /*
1946 1.1 mycroft * deallocate the fragment
1947 1.1 mycroft */
1948 1.1 mycroft frags = numfrags(fs, size);
1949 1.1 mycroft for (i = 0; i < frags; i++) {
1950 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1951 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1952 1.59 tsutsui ", fs = %s\n",
1953 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1954 1.1 mycroft panic("blkfree: freeing free frag");
1955 1.1 mycroft }
1956 1.62 fvdl setbit(blksfree, cgbno + i);
1957 1.1 mycroft }
1958 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1959 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1960 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1961 1.1 mycroft /*
1962 1.1 mycroft * add back in counts associated with the new frags
1963 1.1 mycroft */
1964 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1965 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1966 1.1 mycroft /*
1967 1.1 mycroft * if a complete block has been reassembled, account for it
1968 1.1 mycroft */
1969 1.60 fvdl fragno = fragstoblks(fs, bbase);
1970 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1971 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1972 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1973 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1974 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1975 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1976 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1977 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1978 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1979 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1980 1.73 dbj i = old_cbtocylno(fs, bbase);
1981 1.75 dbj KASSERT(i >= 0);
1982 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1983 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1984 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1985 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1986 1.73 dbj bbase)], 1, needswap);
1987 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1988 1.73 dbj }
1989 1.1 mycroft }
1990 1.1 mycroft }
1991 1.1 mycroft fs->fs_fmod = 1;
1992 1.76 hannken ACTIVECG_CLR(fs, cg);
1993 1.101 ad mutex_exit(&ump->um_lock);
1994 1.1 mycroft bdwrite(bp);
1995 1.1 mycroft }
1996 1.1 mycroft
1997 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1998 1.55 matt #ifdef XXXUBC
1999 1.18 fvdl /*
2000 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
2001 1.18 fvdl * fragment is allocated, false if it is free.
2002 1.18 fvdl */
2003 1.18 fvdl static int
2004 1.85 thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
2005 1.18 fvdl {
2006 1.18 fvdl struct fs *fs;
2007 1.18 fvdl struct cg *cgp;
2008 1.18 fvdl struct buf *bp;
2009 1.18 fvdl int i, error, frags, free;
2010 1.18 fvdl
2011 1.18 fvdl fs = ip->i_fs;
2012 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2013 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
2014 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
2015 1.18 fvdl panic("checkblk: bad size");
2016 1.18 fvdl }
2017 1.60 fvdl if (bno >= fs->fs_size)
2018 1.18 fvdl panic("checkblk: bad block %d", bno);
2019 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
2020 1.107 hannken (int)fs->fs_cgsize, NOCRED, 0, &bp);
2021 1.18 fvdl if (error) {
2022 1.101 ad brelse(bp, 0);
2023 1.18 fvdl return 0;
2024 1.18 fvdl }
2025 1.18 fvdl cgp = (struct cg *)bp->b_data;
2026 1.30 fvdl if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2027 1.101 ad brelse(bp, 0);
2028 1.18 fvdl return 0;
2029 1.18 fvdl }
2030 1.18 fvdl bno = dtogd(fs, bno);
2031 1.18 fvdl if (size == fs->fs_bsize) {
2032 1.30 fvdl free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
2033 1.19 bouyer fragstoblks(fs, bno));
2034 1.18 fvdl } else {
2035 1.18 fvdl frags = numfrags(fs, size);
2036 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
2037 1.30 fvdl if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
2038 1.18 fvdl free++;
2039 1.18 fvdl if (free != 0 && free != frags)
2040 1.18 fvdl panic("checkblk: partially free fragment");
2041 1.18 fvdl }
2042 1.101 ad brelse(bp, 0);
2043 1.18 fvdl return (!free);
2044 1.18 fvdl }
2045 1.55 matt #endif /* XXXUBC */
2046 1.18 fvdl #endif /* DIAGNOSTIC */
2047 1.18 fvdl
2048 1.1 mycroft /*
2049 1.1 mycroft * Free an inode.
2050 1.30 fvdl */
2051 1.30 fvdl int
2052 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
2053 1.30 fvdl {
2054 1.30 fvdl
2055 1.88 yamt if (DOINGSOFTDEP(vp)) {
2056 1.88 yamt softdep_freefile(vp, ino, mode);
2057 1.30 fvdl return (0);
2058 1.30 fvdl }
2059 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
2060 1.30 fvdl }
2061 1.30 fvdl
2062 1.30 fvdl /*
2063 1.30 fvdl * Do the actual free operation.
2064 1.1 mycroft * The specified inode is placed back in the free map.
2065 1.111 simonb *
2066 1.111 simonb * => um_lock not held on entry or exit
2067 1.1 mycroft */
2068 1.1 mycroft int
2069 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
2070 1.9 christos {
2071 1.101 ad struct ufsmount *ump;
2072 1.33 augustss struct cg *cgp;
2073 1.1 mycroft struct buf *bp;
2074 1.1 mycroft int error, cg;
2075 1.76 hannken daddr_t cgbno;
2076 1.62 fvdl u_int8_t *inosused;
2077 1.78 hannken dev_t dev;
2078 1.19 bouyer #ifdef FFS_EI
2079 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2080 1.19 bouyer #endif
2081 1.1 mycroft
2082 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
2083 1.111 simonb
2084 1.76 hannken cg = ino_to_cg(fs, ino);
2085 1.78 hannken if (devvp->v_type != VBLK) {
2086 1.78 hannken /* devvp is a snapshot */
2087 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
2088 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
2089 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
2090 1.76 hannken } else {
2091 1.78 hannken dev = devvp->v_rdev;
2092 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
2093 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
2094 1.76 hannken }
2095 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2096 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
2097 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
2098 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2099 1.107 hannken NOCRED, B_MODIFY, &bp);
2100 1.1 mycroft if (error) {
2101 1.101 ad brelse(bp, 0);
2102 1.30 fvdl return (error);
2103 1.1 mycroft }
2104 1.1 mycroft cgp = (struct cg *)bp->b_data;
2105 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
2106 1.101 ad brelse(bp, 0);
2107 1.1 mycroft return (0);
2108 1.1 mycroft }
2109 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
2110 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2111 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
2112 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
2113 1.62 fvdl inosused = cg_inosused(cgp, needswap);
2114 1.1 mycroft ino %= fs->fs_ipg;
2115 1.62 fvdl if (isclr(inosused, ino)) {
2116 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
2117 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
2118 1.86 christos fs->fs_fsmnt);
2119 1.1 mycroft if (fs->fs_ronly == 0)
2120 1.1 mycroft panic("ifree: freeing free inode");
2121 1.1 mycroft }
2122 1.62 fvdl clrbit(inosused, ino);
2123 1.111 simonb UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
2124 1.111 simonb ino + cg * fs->fs_ipg, mode);
2125 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2126 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
2127 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2128 1.101 ad mutex_enter(&ump->um_lock);
2129 1.1 mycroft fs->fs_cstotal.cs_nifree++;
2130 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
2131 1.78 hannken if ((mode & IFMT) == IFDIR) {
2132 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2133 1.1 mycroft fs->fs_cstotal.cs_ndir--;
2134 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
2135 1.1 mycroft }
2136 1.1 mycroft fs->fs_fmod = 1;
2137 1.82 hannken ACTIVECG_CLR(fs, cg);
2138 1.101 ad mutex_exit(&ump->um_lock);
2139 1.1 mycroft bdwrite(bp);
2140 1.1 mycroft return (0);
2141 1.1 mycroft }
2142 1.1 mycroft
2143 1.1 mycroft /*
2144 1.76 hannken * Check to see if a file is free.
2145 1.76 hannken */
2146 1.76 hannken int
2147 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2148 1.76 hannken {
2149 1.76 hannken struct cg *cgp;
2150 1.76 hannken struct buf *bp;
2151 1.76 hannken daddr_t cgbno;
2152 1.76 hannken int ret, cg;
2153 1.76 hannken u_int8_t *inosused;
2154 1.76 hannken
2155 1.76 hannken cg = ino_to_cg(fs, ino);
2156 1.77 hannken if (devvp->v_type != VBLK) {
2157 1.77 hannken /* devvp is a snapshot */
2158 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
2159 1.77 hannken } else
2160 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
2161 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2162 1.76 hannken return 1;
2163 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
2164 1.101 ad brelse(bp, 0);
2165 1.76 hannken return 1;
2166 1.76 hannken }
2167 1.76 hannken cgp = (struct cg *)bp->b_data;
2168 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2169 1.101 ad brelse(bp, 0);
2170 1.76 hannken return 1;
2171 1.76 hannken }
2172 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2173 1.76 hannken ino %= fs->fs_ipg;
2174 1.76 hannken ret = isclr(inosused, ino);
2175 1.101 ad brelse(bp, 0);
2176 1.76 hannken return ret;
2177 1.76 hannken }
2178 1.76 hannken
2179 1.76 hannken /*
2180 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
2181 1.1 mycroft *
2182 1.1 mycroft * It is a panic if a request is made to find a block if none are
2183 1.1 mycroft * available.
2184 1.1 mycroft */
2185 1.60 fvdl static int32_t
2186 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2187 1.1 mycroft {
2188 1.60 fvdl int32_t bno;
2189 1.1 mycroft int start, len, loc, i;
2190 1.1 mycroft int blk, field, subfield, pos;
2191 1.19 bouyer int ostart, olen;
2192 1.62 fvdl u_int8_t *blksfree;
2193 1.30 fvdl #ifdef FFS_EI
2194 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2195 1.30 fvdl #endif
2196 1.1 mycroft
2197 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2198 1.101 ad
2199 1.1 mycroft /*
2200 1.1 mycroft * find the fragment by searching through the free block
2201 1.1 mycroft * map for an appropriate bit pattern
2202 1.1 mycroft */
2203 1.1 mycroft if (bpref)
2204 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
2205 1.1 mycroft else
2206 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2207 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
2208 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
2209 1.19 bouyer ostart = start;
2210 1.19 bouyer olen = len;
2211 1.45 lukem loc = scanc((u_int)len,
2212 1.62 fvdl (const u_char *)&blksfree[start],
2213 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2214 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2215 1.1 mycroft if (loc == 0) {
2216 1.1 mycroft len = start + 1;
2217 1.1 mycroft start = 0;
2218 1.45 lukem loc = scanc((u_int)len,
2219 1.62 fvdl (const u_char *)&blksfree[0],
2220 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2221 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2222 1.1 mycroft if (loc == 0) {
2223 1.13 christos printf("start = %d, len = %d, fs = %s\n",
2224 1.19 bouyer ostart, olen, fs->fs_fsmnt);
2225 1.20 ross printf("offset=%d %ld\n",
2226 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
2227 1.62 fvdl (long)blksfree - (long)cgp);
2228 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
2229 1.1 mycroft panic("ffs_alloccg: map corrupted");
2230 1.1 mycroft /* NOTREACHED */
2231 1.1 mycroft }
2232 1.1 mycroft }
2233 1.1 mycroft bno = (start + len - loc) * NBBY;
2234 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
2235 1.1 mycroft /*
2236 1.1 mycroft * found the byte in the map
2237 1.1 mycroft * sift through the bits to find the selected frag
2238 1.1 mycroft */
2239 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2240 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2241 1.1 mycroft blk <<= 1;
2242 1.1 mycroft field = around[allocsiz];
2243 1.1 mycroft subfield = inside[allocsiz];
2244 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2245 1.1 mycroft if ((blk & field) == subfield)
2246 1.1 mycroft return (bno + pos);
2247 1.1 mycroft field <<= 1;
2248 1.1 mycroft subfield <<= 1;
2249 1.1 mycroft }
2250 1.1 mycroft }
2251 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2252 1.1 mycroft panic("ffs_alloccg: block not in map");
2253 1.58 fvdl /* return (-1); */
2254 1.1 mycroft }
2255 1.1 mycroft
2256 1.1 mycroft /*
2257 1.1 mycroft * Update the cluster map because of an allocation or free.
2258 1.1 mycroft *
2259 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
2260 1.1 mycroft */
2261 1.9 christos void
2262 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
2263 1.1 mycroft {
2264 1.4 cgd int32_t *sump;
2265 1.5 mycroft int32_t *lp;
2266 1.1 mycroft u_char *freemapp, *mapp;
2267 1.1 mycroft int i, start, end, forw, back, map, bit;
2268 1.30 fvdl #ifdef FFS_EI
2269 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2270 1.30 fvdl #endif
2271 1.1 mycroft
2272 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2273 1.101 ad
2274 1.1 mycroft if (fs->fs_contigsumsize <= 0)
2275 1.1 mycroft return;
2276 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
2277 1.19 bouyer sump = cg_clustersum(cgp, needswap);
2278 1.1 mycroft /*
2279 1.1 mycroft * Allocate or clear the actual block.
2280 1.1 mycroft */
2281 1.1 mycroft if (cnt > 0)
2282 1.1 mycroft setbit(freemapp, blkno);
2283 1.1 mycroft else
2284 1.1 mycroft clrbit(freemapp, blkno);
2285 1.1 mycroft /*
2286 1.1 mycroft * Find the size of the cluster going forward.
2287 1.1 mycroft */
2288 1.1 mycroft start = blkno + 1;
2289 1.1 mycroft end = start + fs->fs_contigsumsize;
2290 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2291 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2292 1.1 mycroft mapp = &freemapp[start / NBBY];
2293 1.1 mycroft map = *mapp++;
2294 1.1 mycroft bit = 1 << (start % NBBY);
2295 1.1 mycroft for (i = start; i < end; i++) {
2296 1.1 mycroft if ((map & bit) == 0)
2297 1.1 mycroft break;
2298 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
2299 1.1 mycroft bit <<= 1;
2300 1.1 mycroft } else {
2301 1.1 mycroft map = *mapp++;
2302 1.1 mycroft bit = 1;
2303 1.1 mycroft }
2304 1.1 mycroft }
2305 1.1 mycroft forw = i - start;
2306 1.1 mycroft /*
2307 1.1 mycroft * Find the size of the cluster going backward.
2308 1.1 mycroft */
2309 1.1 mycroft start = blkno - 1;
2310 1.1 mycroft end = start - fs->fs_contigsumsize;
2311 1.1 mycroft if (end < 0)
2312 1.1 mycroft end = -1;
2313 1.1 mycroft mapp = &freemapp[start / NBBY];
2314 1.1 mycroft map = *mapp--;
2315 1.1 mycroft bit = 1 << (start % NBBY);
2316 1.1 mycroft for (i = start; i > end; i--) {
2317 1.1 mycroft if ((map & bit) == 0)
2318 1.1 mycroft break;
2319 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
2320 1.1 mycroft bit >>= 1;
2321 1.1 mycroft } else {
2322 1.1 mycroft map = *mapp--;
2323 1.1 mycroft bit = 1 << (NBBY - 1);
2324 1.1 mycroft }
2325 1.1 mycroft }
2326 1.1 mycroft back = start - i;
2327 1.1 mycroft /*
2328 1.1 mycroft * Account for old cluster and the possibly new forward and
2329 1.1 mycroft * back clusters.
2330 1.1 mycroft */
2331 1.1 mycroft i = back + forw + 1;
2332 1.1 mycroft if (i > fs->fs_contigsumsize)
2333 1.1 mycroft i = fs->fs_contigsumsize;
2334 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
2335 1.1 mycroft if (back > 0)
2336 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
2337 1.1 mycroft if (forw > 0)
2338 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
2339 1.19 bouyer
2340 1.5 mycroft /*
2341 1.5 mycroft * Update cluster summary information.
2342 1.5 mycroft */
2343 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
2344 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
2345 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
2346 1.5 mycroft break;
2347 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2348 1.1 mycroft }
2349 1.1 mycroft
2350 1.1 mycroft /*
2351 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2352 1.81 perry *
2353 1.1 mycroft * The form of the error message is:
2354 1.1 mycroft * fs: error message
2355 1.1 mycroft */
2356 1.1 mycroft static void
2357 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2358 1.1 mycroft {
2359 1.1 mycroft
2360 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2361 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2362 1.1 mycroft }
2363