Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.112
      1  1.112   hannken /*	$NetBSD: ffs_alloc.c,v 1.112 2008/07/31 09:35:09 hannken Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.112   hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.112 2008/07/31 09:35:09 hannken Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78   1.22    scottr #endif
     79    1.1   mycroft 
     80    1.1   mycroft #include <sys/param.h>
     81    1.1   mycroft #include <sys/systm.h>
     82    1.1   mycroft #include <sys/buf.h>
     83  1.111    simonb #include <sys/fstrans.h>
     84  1.111    simonb #include <sys/kauth.h>
     85  1.111    simonb #include <sys/kernel.h>
     86  1.111    simonb #include <sys/mount.h>
     87    1.1   mycroft #include <sys/proc.h>
     88  1.111    simonb #include <sys/syslog.h>
     89    1.1   mycroft #include <sys/vnode.h>
     90  1.111    simonb #include <sys/wapbl.h>
     91   1.29       mrg 
     92   1.76   hannken #include <miscfs/specfs/specdev.h>
     93    1.1   mycroft #include <ufs/ufs/quota.h>
     94   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95    1.1   mycroft #include <ufs/ufs/inode.h>
     96    1.9  christos #include <ufs/ufs/ufs_extern.h>
     97   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99    1.1   mycroft 
    100    1.1   mycroft #include <ufs/ffs/fs.h>
    101    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102    1.1   mycroft 
    103  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105   1.55      matt #ifdef XXXUBC
    106   1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
    107   1.55      matt #endif
    108   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    109   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    110   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    111  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    112  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    113  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    114   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    115   1.85   thorpej 				      daddr_t, int);
    116   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
    117   1.55      matt #ifdef XXXUBC
    118   1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
    119   1.18      fvdl #endif
    120   1.55      matt #endif
    121   1.23  drochner 
    122   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    123   1.34  jdolecek int ffs_log_changeopt = 0;
    124   1.34  jdolecek 
    125   1.23  drochner /* in ffs_tables.c */
    126   1.40  jdolecek extern const int inside[], around[];
    127   1.40  jdolecek extern const u_char * const fragtbl[];
    128    1.1   mycroft 
    129    1.1   mycroft /*
    130    1.1   mycroft  * Allocate a block in the file system.
    131   1.81     perry  *
    132    1.1   mycroft  * The size of the requested block is given, which must be some
    133    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    134    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    135    1.1   mycroft  * the following hierarchy is used to allocate a block:
    136    1.1   mycroft  *   1) allocate the requested block.
    137    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    138    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    139    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    140    1.1   mycroft  *      available block is located.
    141   1.47       wiz  * If no block preference is given the following hierarchy is used
    142    1.1   mycroft  * to allocate a block:
    143    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    144    1.1   mycroft  *      inode for the file.
    145    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    146    1.1   mycroft  *      available block is located.
    147  1.106     pooka  *
    148  1.106     pooka  * => called with um_lock held
    149  1.106     pooka  * => releases um_lock before returning
    150    1.1   mycroft  */
    151    1.9  christos int
    152  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    153   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    154    1.1   mycroft {
    155  1.101        ad 	struct ufsmount *ump;
    156   1.62      fvdl 	struct fs *fs;
    157   1.58      fvdl 	daddr_t bno;
    158    1.9  christos 	int cg;
    159    1.9  christos #ifdef QUOTA
    160    1.9  christos 	int error;
    161    1.9  christos #endif
    162   1.81     perry 
    163   1.62      fvdl 	fs = ip->i_fs;
    164  1.101        ad 	ump = ip->i_ump;
    165  1.101        ad 
    166  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    167   1.62      fvdl 
    168   1.37       chs #ifdef UVM_PAGE_TRKOWN
    169   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    170   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    171   1.37       chs 		struct vm_page *pg;
    172   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    173   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    174   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    175   1.37       chs 
    176  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    177   1.37       chs 		while (off < endoff) {
    178   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    179   1.37       chs 			KASSERT(pg != NULL);
    180   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    181   1.37       chs 			off += PAGE_SIZE;
    182   1.37       chs 		}
    183  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    184   1.37       chs 	}
    185   1.37       chs #endif
    186   1.37       chs 
    187    1.1   mycroft 	*bnp = 0;
    188    1.1   mycroft #ifdef DIAGNOSTIC
    189    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    190   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    191    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    192    1.1   mycroft 		panic("ffs_alloc: bad size");
    193    1.1   mycroft 	}
    194    1.1   mycroft 	if (cred == NOCRED)
    195   1.56    provos 		panic("ffs_alloc: missing credential");
    196    1.1   mycroft #endif /* DIAGNOSTIC */
    197    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    198    1.1   mycroft 		goto nospace;
    199   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    200   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    201    1.1   mycroft 		goto nospace;
    202    1.1   mycroft #ifdef QUOTA
    203  1.101        ad 	mutex_exit(&ump->um_lock);
    204   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    205    1.1   mycroft 		return (error);
    206  1.101        ad 	mutex_enter(&ump->um_lock);
    207    1.1   mycroft #endif
    208  1.111    simonb 
    209    1.1   mycroft 	if (bpref >= fs->fs_size)
    210    1.1   mycroft 		bpref = 0;
    211    1.1   mycroft 	if (bpref == 0)
    212    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    213    1.1   mycroft 	else
    214    1.1   mycroft 		cg = dtog(fs, bpref);
    215  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    216    1.1   mycroft 	if (bno > 0) {
    217   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    218    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    219    1.1   mycroft 		*bnp = bno;
    220    1.1   mycroft 		return (0);
    221    1.1   mycroft 	}
    222    1.1   mycroft #ifdef QUOTA
    223    1.1   mycroft 	/*
    224    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    225    1.1   mycroft 	 */
    226   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    227    1.1   mycroft #endif
    228  1.111    simonb 	if (flags & B_CONTIG) {
    229  1.111    simonb 		/*
    230  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    231  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    232  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    233  1.111    simonb 		 * already unlocked, so we can't release it again
    234  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    235  1.111    simonb 		 *
    236  1.111    simonb 		 *
    237  1.111    simonb 		 * Fail silently - it's up to our caller to report
    238  1.111    simonb 		 * errors.
    239  1.111    simonb 		 */
    240  1.111    simonb 		return (ENOSPC);
    241  1.111    simonb 	}
    242    1.1   mycroft nospace:
    243  1.101        ad 	mutex_exit(&ump->um_lock);
    244   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    245    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    246    1.1   mycroft 	return (ENOSPC);
    247    1.1   mycroft }
    248    1.1   mycroft 
    249    1.1   mycroft /*
    250    1.1   mycroft  * Reallocate a fragment to a bigger size
    251    1.1   mycroft  *
    252    1.1   mycroft  * The number and size of the old block is given, and a preference
    253    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    254    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    255    1.1   mycroft  * invoked to get an appropriate block.
    256  1.106     pooka  *
    257  1.106     pooka  * => called with um_lock held
    258  1.106     pooka  * => return with um_lock released
    259    1.1   mycroft  */
    260    1.9  christos int
    261   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    262   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    263    1.1   mycroft {
    264  1.101        ad 	struct ufsmount *ump;
    265   1.62      fvdl 	struct fs *fs;
    266    1.1   mycroft 	struct buf *bp;
    267    1.1   mycroft 	int cg, request, error;
    268   1.58      fvdl 	daddr_t bprev, bno;
    269   1.25   thorpej 
    270   1.62      fvdl 	fs = ip->i_fs;
    271  1.101        ad 	ump = ip->i_ump;
    272  1.101        ad 
    273  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    274  1.101        ad 
    275   1.37       chs #ifdef UVM_PAGE_TRKOWN
    276   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    277   1.37       chs 		struct vm_page *pg;
    278   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    279   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    280   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    281   1.37       chs 
    282  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    283   1.37       chs 		while (off < endoff) {
    284   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    285   1.37       chs 			KASSERT(pg != NULL);
    286   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    287   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    288   1.37       chs 			off += PAGE_SIZE;
    289   1.37       chs 		}
    290  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    291   1.37       chs 	}
    292   1.37       chs #endif
    293   1.37       chs 
    294    1.1   mycroft #ifdef DIAGNOSTIC
    295    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    296    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    297   1.13  christos 		printf(
    298    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    299    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    300    1.1   mycroft 		panic("ffs_realloccg: bad size");
    301    1.1   mycroft 	}
    302    1.1   mycroft 	if (cred == NOCRED)
    303   1.56    provos 		panic("ffs_realloccg: missing credential");
    304    1.1   mycroft #endif /* DIAGNOSTIC */
    305   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    306  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    307  1.101        ad 		mutex_exit(&ump->um_lock);
    308    1.1   mycroft 		goto nospace;
    309  1.101        ad 	}
    310   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    311   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    312   1.60      fvdl 	else
    313   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    314   1.60      fvdl 
    315   1.60      fvdl 	if (bprev == 0) {
    316   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    317   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    318    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    319    1.1   mycroft 	}
    320  1.101        ad 	mutex_exit(&ump->um_lock);
    321  1.101        ad 
    322    1.1   mycroft 	/*
    323    1.1   mycroft 	 * Allocate the extra space in the buffer.
    324    1.1   mycroft 	 */
    325   1.37       chs 	if (bpp != NULL &&
    326  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    327  1.101        ad 		brelse(bp, 0);
    328    1.1   mycroft 		return (error);
    329    1.1   mycroft 	}
    330    1.1   mycroft #ifdef QUOTA
    331   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    332   1.44       chs 		if (bpp != NULL) {
    333  1.101        ad 			brelse(bp, 0);
    334   1.44       chs 		}
    335    1.1   mycroft 		return (error);
    336    1.1   mycroft 	}
    337    1.1   mycroft #endif
    338    1.1   mycroft 	/*
    339    1.1   mycroft 	 * Check for extension in the existing location.
    340    1.1   mycroft 	 */
    341    1.1   mycroft 	cg = dtog(fs, bprev);
    342  1.101        ad 	mutex_enter(&ump->um_lock);
    343   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    344   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    345    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    346   1.37       chs 
    347   1.37       chs 		if (bpp != NULL) {
    348   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    349   1.37       chs 				panic("bad blockno");
    350   1.72        pk 			allocbuf(bp, nsize, 1);
    351   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    352  1.105        ad 			mutex_enter(bp->b_objlock);
    353  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    354  1.105        ad 			bp->b_oflags |= BO_DONE;
    355  1.105        ad 			mutex_exit(bp->b_objlock);
    356   1.37       chs 			*bpp = bp;
    357   1.37       chs 		}
    358   1.37       chs 		if (blknop != NULL) {
    359   1.37       chs 			*blknop = bno;
    360   1.37       chs 		}
    361    1.1   mycroft 		return (0);
    362    1.1   mycroft 	}
    363    1.1   mycroft 	/*
    364    1.1   mycroft 	 * Allocate a new disk location.
    365    1.1   mycroft 	 */
    366    1.1   mycroft 	if (bpref >= fs->fs_size)
    367    1.1   mycroft 		bpref = 0;
    368    1.1   mycroft 	switch ((int)fs->fs_optim) {
    369    1.1   mycroft 	case FS_OPTSPACE:
    370    1.1   mycroft 		/*
    371   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    372   1.81     perry 		 * best use of space, we will waste time relocating it if
    373    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    374    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    375    1.1   mycroft 		 * to begin optimizing for time.
    376    1.1   mycroft 		 */
    377    1.1   mycroft 		request = nsize;
    378    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    379    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    380    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    381    1.1   mycroft 			break;
    382   1.34  jdolecek 
    383   1.34  jdolecek 		if (ffs_log_changeopt) {
    384   1.34  jdolecek 			log(LOG_NOTICE,
    385   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    386   1.34  jdolecek 				fs->fs_fsmnt);
    387   1.34  jdolecek 		}
    388   1.34  jdolecek 
    389    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    390    1.1   mycroft 		break;
    391    1.1   mycroft 	case FS_OPTTIME:
    392    1.1   mycroft 		/*
    393    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    394    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    395    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    396    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    397    1.1   mycroft 		 * above will be able to grow it in place without further
    398    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    399    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    400    1.1   mycroft 		 * optimizing for space.
    401    1.1   mycroft 		 */
    402    1.1   mycroft 		request = fs->fs_bsize;
    403    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    404    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    405    1.1   mycroft 			break;
    406   1.34  jdolecek 
    407   1.34  jdolecek 		if (ffs_log_changeopt) {
    408   1.34  jdolecek 			log(LOG_NOTICE,
    409   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    410   1.34  jdolecek 				fs->fs_fsmnt);
    411   1.34  jdolecek 		}
    412   1.34  jdolecek 
    413    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    414    1.1   mycroft 		break;
    415    1.1   mycroft 	default:
    416   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    417    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    418    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    419    1.1   mycroft 		/* NOTREACHED */
    420    1.1   mycroft 	}
    421  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    422    1.1   mycroft 	if (bno > 0) {
    423  1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    424  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    425  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    426  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    427  1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    428  1.111    simonb 				    osize);
    429  1.111    simonb 			} else
    430  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    431  1.111    simonb 				    ip->i_number);
    432  1.111    simonb 		}
    433  1.111    simonb 		if (nsize < request) {
    434  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    435  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    436  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    437  1.111    simonb 				    ip->i_ump->um_mountp,
    438  1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    439  1.111    simonb 				    request - nsize);
    440  1.111    simonb 			} else
    441  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    442  1.111    simonb 				    bno + numfrags(fs, nsize),
    443  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    444  1.111    simonb 		}
    445   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    446    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    447   1.37       chs 		if (bpp != NULL) {
    448   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    449   1.72        pk 			allocbuf(bp, nsize, 1);
    450   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    451  1.105        ad 			mutex_enter(bp->b_objlock);
    452  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    453  1.105        ad 			bp->b_oflags |= BO_DONE;
    454  1.105        ad 			mutex_exit(bp->b_objlock);
    455   1.37       chs 			*bpp = bp;
    456   1.37       chs 		}
    457   1.37       chs 		if (blknop != NULL) {
    458   1.37       chs 			*blknop = bno;
    459   1.37       chs 		}
    460    1.1   mycroft 		return (0);
    461    1.1   mycroft 	}
    462  1.101        ad 	mutex_exit(&ump->um_lock);
    463  1.101        ad 
    464    1.1   mycroft #ifdef QUOTA
    465    1.1   mycroft 	/*
    466    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    467    1.1   mycroft 	 */
    468   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    469    1.1   mycroft #endif
    470   1.37       chs 	if (bpp != NULL) {
    471  1.101        ad 		brelse(bp, 0);
    472   1.37       chs 	}
    473   1.37       chs 
    474    1.1   mycroft nospace:
    475    1.1   mycroft 	/*
    476    1.1   mycroft 	 * no space available
    477    1.1   mycroft 	 */
    478   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    479    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    480    1.1   mycroft 	return (ENOSPC);
    481    1.1   mycroft }
    482    1.1   mycroft 
    483   1.88      yamt #if 0
    484    1.1   mycroft /*
    485    1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    486    1.1   mycroft  *
    487    1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    488    1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    489   1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    490   1.60      fvdl  * from the end of the allocation for the logical block immediately
    491   1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    492   1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    493   1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    494   1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    495   1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    496   1.60      fvdl  * allocation will be used.
    497   1.60      fvdl 
    498    1.1   mycroft  */
    499   1.55      matt #ifdef XXXUBC
    500    1.3   mycroft #ifdef DEBUG
    501    1.1   mycroft #include <sys/sysctl.h>
    502    1.5   mycroft int prtrealloc = 0;
    503    1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    504    1.1   mycroft #endif
    505   1.55      matt #endif
    506    1.1   mycroft 
    507   1.60      fvdl /*
    508  1.111    simonb  * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
    509   1.60      fvdl  */
    510   1.60      fvdl 
    511   1.18      fvdl int doasyncfree = 1;
    512   1.18      fvdl 
    513    1.1   mycroft int
    514   1.85   thorpej ffs_reallocblks(void *v)
    515    1.9  christos {
    516   1.55      matt #ifdef XXXUBC
    517    1.1   mycroft 	struct vop_reallocblks_args /* {
    518    1.1   mycroft 		struct vnode *a_vp;
    519    1.1   mycroft 		struct cluster_save *a_buflist;
    520    1.9  christos 	} */ *ap = v;
    521    1.1   mycroft 	struct fs *fs;
    522    1.1   mycroft 	struct inode *ip;
    523    1.1   mycroft 	struct vnode *vp;
    524    1.1   mycroft 	struct buf *sbp, *ebp;
    525   1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    526    1.1   mycroft 	struct cluster_save *buflist;
    527   1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    528    1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    529    1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    530  1.101        ad 	struct ufsmount *ump;
    531   1.55      matt #endif /* XXXUBC */
    532    1.1   mycroft 
    533   1.37       chs 	/* XXXUBC don't reallocblks for now */
    534   1.37       chs 	return ENOSPC;
    535   1.37       chs 
    536   1.55      matt #ifdef XXXUBC
    537    1.1   mycroft 	vp = ap->a_vp;
    538    1.1   mycroft 	ip = VTOI(vp);
    539    1.1   mycroft 	fs = ip->i_fs;
    540  1.101        ad 	ump = ip->i_ump;
    541    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    542    1.1   mycroft 		return (ENOSPC);
    543    1.1   mycroft 	buflist = ap->a_buflist;
    544    1.1   mycroft 	len = buflist->bs_nchildren;
    545    1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    546    1.1   mycroft 	end_lbn = start_lbn + len - 1;
    547    1.1   mycroft #ifdef DIAGNOSTIC
    548   1.18      fvdl 	for (i = 0; i < len; i++)
    549   1.18      fvdl 		if (!ffs_checkblk(ip,
    550   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    551   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    552    1.1   mycroft 	for (i = 1; i < len; i++)
    553    1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    554   1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    555   1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    556   1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    557   1.18      fvdl 	for (i = 1; i < len - 1; i++)
    558   1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    559   1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    560    1.1   mycroft #endif
    561    1.1   mycroft 	/*
    562    1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    563    1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    564    1.1   mycroft 	 * the previous cylinder group.
    565    1.1   mycroft 	 */
    566    1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    567    1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    568    1.1   mycroft 		return (ENOSPC);
    569    1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    570    1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    571    1.1   mycroft 		return (ENOSPC);
    572    1.1   mycroft 	/*
    573    1.1   mycroft 	 * Get the starting offset and block map for the first block.
    574    1.1   mycroft 	 */
    575    1.1   mycroft 	if (start_lvl == 0) {
    576   1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    577    1.1   mycroft 		soff = start_lbn;
    578    1.1   mycroft 	} else {
    579    1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    580  1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    581  1.107   hannken 		    NOCRED, B_MODIFY, &sbp)) {
    582  1.101        ad 			brelse(sbp, 0);
    583    1.1   mycroft 			return (ENOSPC);
    584    1.1   mycroft 		}
    585   1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    586    1.1   mycroft 		soff = idp->in_off;
    587    1.1   mycroft 	}
    588    1.1   mycroft 	/*
    589    1.1   mycroft 	 * Find the preferred location for the cluster.
    590    1.1   mycroft 	 */
    591  1.101        ad 	mutex_enter(&ump->um_lock);
    592    1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    593    1.1   mycroft 	/*
    594    1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    595    1.1   mycroft 	 */
    596    1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    597    1.1   mycroft 		ssize = len;
    598    1.1   mycroft 	} else {
    599    1.1   mycroft #ifdef DIAGNOSTIC
    600    1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    601    1.1   mycroft 			panic("ffs_reallocblk: start == end");
    602    1.1   mycroft #endif
    603    1.1   mycroft 		ssize = len - (idp->in_off + 1);
    604  1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    605  1.107   hannken 		    NOCRED, B_MODIFY, &ebp))
    606    1.1   mycroft 			goto fail;
    607   1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    608    1.1   mycroft 	}
    609    1.1   mycroft 	/*
    610    1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    611    1.1   mycroft 	 */
    612   1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    613  1.111    simonb 	    len, flags, ffs_clusteralloc)) == 0) {
    614  1.101        ad 		mutex_exit(&ump->um_lock);
    615    1.1   mycroft 		goto fail;
    616  1.101        ad 	}
    617    1.1   mycroft 	/*
    618    1.1   mycroft 	 * We have found a new contiguous block.
    619    1.1   mycroft 	 *
    620    1.1   mycroft 	 * First we have to replace the old block pointers with the new
    621    1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    622    1.1   mycroft 	 * with the file.
    623    1.1   mycroft 	 */
    624    1.5   mycroft #ifdef DEBUG
    625    1.5   mycroft 	if (prtrealloc)
    626   1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    627    1.5   mycroft 		    start_lbn, end_lbn);
    628    1.5   mycroft #endif
    629    1.1   mycroft 	blkno = newblk;
    630    1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    631   1.58      fvdl 		daddr_t ba;
    632   1.30      fvdl 
    633   1.30      fvdl 		if (i == ssize) {
    634    1.1   mycroft 			bap = ebap;
    635   1.30      fvdl 			soff = -i;
    636   1.30      fvdl 		}
    637   1.58      fvdl 		/* XXX ondisk32 */
    638   1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    639    1.1   mycroft #ifdef DIAGNOSTIC
    640   1.18      fvdl 		if (!ffs_checkblk(ip,
    641   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    642   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    643   1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    644    1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    645    1.1   mycroft #endif
    646    1.5   mycroft #ifdef DEBUG
    647    1.5   mycroft 		if (prtrealloc)
    648   1.30      fvdl 			printf(" %d,", ba);
    649    1.5   mycroft #endif
    650   1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    651   1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    652   1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    653   1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    654   1.30      fvdl  				    buflist->bs_children[i]);
    655   1.30      fvdl  			else
    656   1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    657   1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    658   1.30      fvdl  				    ba, buflist->bs_children[i]);
    659   1.30      fvdl  		}
    660   1.58      fvdl 		/* XXX ondisk32 */
    661   1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    662    1.1   mycroft 	}
    663    1.1   mycroft 	/*
    664    1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    665    1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    666    1.1   mycroft 	 * the old block values may have been written to disk. In practise
    667   1.81     perry 	 * they are almost never written, but if we are concerned about
    668    1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    669    1.1   mycroft 	 *
    670    1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    671    1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    672    1.1   mycroft 	 * been written. The flag should be set when the cluster is
    673    1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    674    1.1   mycroft 	 * We can then check below to see if it is set, and do the
    675    1.1   mycroft 	 * synchronous write only when it has been cleared.
    676    1.1   mycroft 	 */
    677   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    678    1.1   mycroft 		if (doasyncfree)
    679    1.1   mycroft 			bdwrite(sbp);
    680    1.1   mycroft 		else
    681    1.1   mycroft 			bwrite(sbp);
    682    1.1   mycroft 	} else {
    683    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    684   1.28   mycroft 		if (!doasyncfree)
    685   1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    686    1.1   mycroft 	}
    687   1.25   thorpej 	if (ssize < len) {
    688    1.1   mycroft 		if (doasyncfree)
    689    1.1   mycroft 			bdwrite(ebp);
    690    1.1   mycroft 		else
    691    1.1   mycroft 			bwrite(ebp);
    692   1.25   thorpej 	}
    693    1.1   mycroft 	/*
    694    1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    695    1.1   mycroft 	 */
    696    1.5   mycroft #ifdef DEBUG
    697    1.5   mycroft 	if (prtrealloc)
    698   1.13  christos 		printf("\n\tnew:");
    699    1.5   mycroft #endif
    700    1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    701   1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    702   1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    703   1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    704   1.76   hannken 			    fs->fs_bsize, ip->i_number);
    705    1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    706    1.5   mycroft #ifdef DEBUG
    707   1.18      fvdl 		if (!ffs_checkblk(ip,
    708   1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    709   1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    710    1.5   mycroft 		if (prtrealloc)
    711   1.13  christos 			printf(" %d,", blkno);
    712    1.5   mycroft #endif
    713    1.5   mycroft 	}
    714    1.5   mycroft #ifdef DEBUG
    715    1.5   mycroft 	if (prtrealloc) {
    716    1.5   mycroft 		prtrealloc--;
    717   1.13  christos 		printf("\n");
    718    1.1   mycroft 	}
    719    1.5   mycroft #endif
    720    1.1   mycroft 	return (0);
    721    1.1   mycroft 
    722    1.1   mycroft fail:
    723    1.1   mycroft 	if (ssize < len)
    724  1.101        ad 		brelse(ebp, 0);
    725   1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    726  1.101        ad 		brelse(sbp, 0);
    727    1.1   mycroft 	return (ENOSPC);
    728   1.55      matt #endif /* XXXUBC */
    729    1.1   mycroft }
    730   1.88      yamt #endif /* 0 */
    731    1.1   mycroft 
    732    1.1   mycroft /*
    733    1.1   mycroft  * Allocate an inode in the file system.
    734   1.81     perry  *
    735    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    736    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    737    1.1   mycroft  *   1) allocate the preferred inode.
    738    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    739    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    740    1.1   mycroft  *      available inode is located.
    741   1.47       wiz  * If no inode preference is given the following hierarchy is used
    742    1.1   mycroft  * to allocate an inode:
    743    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    744    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    745    1.1   mycroft  *      available inode is located.
    746  1.106     pooka  *
    747  1.106     pooka  * => um_lock not held upon entry or return
    748    1.1   mycroft  */
    749    1.9  christos int
    750   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    751   1.88      yamt     struct vnode **vpp)
    752    1.9  christos {
    753  1.101        ad 	struct ufsmount *ump;
    754   1.33  augustss 	struct inode *pip;
    755   1.33  augustss 	struct fs *fs;
    756   1.33  augustss 	struct inode *ip;
    757   1.60      fvdl 	struct timespec ts;
    758    1.1   mycroft 	ino_t ino, ipref;
    759    1.1   mycroft 	int cg, error;
    760   1.81     perry 
    761  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    762  1.111    simonb 
    763   1.88      yamt 	*vpp = NULL;
    764    1.1   mycroft 	pip = VTOI(pvp);
    765    1.1   mycroft 	fs = pip->i_fs;
    766  1.101        ad 	ump = pip->i_ump;
    767  1.101        ad 
    768  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    769  1.111    simonb 	if (error) {
    770  1.111    simonb 		return error;
    771  1.111    simonb 	}
    772  1.101        ad 	mutex_enter(&ump->um_lock);
    773    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    774    1.1   mycroft 		goto noinodes;
    775    1.1   mycroft 
    776    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    777   1.50     lukem 		ipref = ffs_dirpref(pip);
    778   1.50     lukem 	else
    779   1.50     lukem 		ipref = pip->i_number;
    780    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    781    1.1   mycroft 		ipref = 0;
    782    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    783   1.50     lukem 	/*
    784   1.50     lukem 	 * Track number of dirs created one after another
    785   1.50     lukem 	 * in a same cg without intervening by files.
    786   1.50     lukem 	 */
    787   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    788   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    789   1.50     lukem 			fs->fs_contigdirs[cg]++;
    790   1.50     lukem 	} else {
    791   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    792   1.50     lukem 			fs->fs_contigdirs[cg]--;
    793   1.50     lukem 	}
    794  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    795    1.1   mycroft 	if (ino == 0)
    796    1.1   mycroft 		goto noinodes;
    797  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    798   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    799    1.1   mycroft 	if (error) {
    800  1.111    simonb 		int err;
    801  1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    802  1.111    simonb 		if (err == 0)
    803  1.111    simonb 			ffs_vfree(pvp, ino, mode);
    804  1.111    simonb 		if (err == 0)
    805  1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    806    1.1   mycroft 		return (error);
    807    1.1   mycroft 	}
    808   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    809   1.88      yamt 	ip = VTOI(*vpp);
    810   1.60      fvdl 	if (ip->i_mode) {
    811   1.60      fvdl #if 0
    812   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    813   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    814   1.60      fvdl #else
    815   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    816   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    817   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    818   1.60      fvdl 		printf("size %llx blocks %llx\n",
    819   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    820   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    821   1.86  christos 		    (unsigned long long)ipref);
    822   1.60      fvdl #if 0
    823   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    824  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    825   1.60      fvdl #endif
    826   1.60      fvdl 
    827   1.60      fvdl #endif
    828    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    829    1.1   mycroft 	}
    830   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    831   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    832   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    833   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    834    1.1   mycroft 	}
    835   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    836   1.61      fvdl 	ip->i_flags = 0;
    837   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    838    1.1   mycroft 	/*
    839    1.1   mycroft 	 * Set up a new generation number for this inode.
    840    1.1   mycroft 	 */
    841   1.60      fvdl 	ip->i_gen++;
    842   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    843   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    844   1.93      yamt 		vfs_timestamp(&ts);
    845   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    846   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    847   1.60      fvdl 	}
    848    1.1   mycroft 	return (0);
    849    1.1   mycroft noinodes:
    850  1.101        ad 	mutex_exit(&ump->um_lock);
    851  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    852   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    853    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    854    1.1   mycroft 	return (ENOSPC);
    855    1.1   mycroft }
    856    1.1   mycroft 
    857    1.1   mycroft /*
    858   1.50     lukem  * Find a cylinder group in which to place a directory.
    859   1.42  sommerfe  *
    860   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    861   1.50     lukem  * directory inode in the same cylinder group as its parent
    862   1.50     lukem  * directory, but also to reserve space for its files inodes
    863   1.50     lukem  * and data. Restrict the number of directories which may be
    864   1.50     lukem  * allocated one after another in the same cylinder group
    865   1.50     lukem  * without intervening allocation of files.
    866   1.42  sommerfe  *
    867   1.50     lukem  * If we allocate a first level directory then force allocation
    868   1.50     lukem  * in another cylinder group.
    869    1.1   mycroft  */
    870    1.1   mycroft static ino_t
    871   1.85   thorpej ffs_dirpref(struct inode *pip)
    872    1.1   mycroft {
    873   1.50     lukem 	register struct fs *fs;
    874   1.74     soren 	int cg, prefcg;
    875   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    876   1.89       dsl 	int avgifree, avgbfree, avgndir;
    877   1.50     lukem 	int minifree, minbfree, maxndir;
    878   1.50     lukem 	int mincg, minndir;
    879   1.50     lukem 	int maxcontigdirs;
    880   1.50     lukem 
    881  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    882  1.101        ad 
    883   1.50     lukem 	fs = pip->i_fs;
    884    1.1   mycroft 
    885    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    886   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    887   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    888   1.50     lukem 
    889   1.50     lukem 	/*
    890   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    891   1.50     lukem 	 */
    892  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    893   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    894   1.50     lukem 		mincg = prefcg;
    895   1.50     lukem 		minndir = fs->fs_ipg;
    896   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    897   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    898   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    899   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    900   1.42  sommerfe 				mincg = cg;
    901   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    902   1.42  sommerfe 			}
    903   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    904   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    905   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    906   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    907   1.50     lukem 				mincg = cg;
    908   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    909   1.42  sommerfe 			}
    910   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    911   1.42  sommerfe 	}
    912   1.50     lukem 
    913   1.50     lukem 	/*
    914   1.50     lukem 	 * Count various limits which used for
    915   1.50     lukem 	 * optimal allocation of a directory inode.
    916   1.50     lukem 	 */
    917   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    918   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    919   1.50     lukem 	if (minifree < 0)
    920   1.50     lukem 		minifree = 0;
    921   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    922   1.50     lukem 	if (minbfree < 0)
    923   1.50     lukem 		minbfree = 0;
    924   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    925   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    926   1.89       dsl 	if (avgndir != 0) {
    927   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    928   1.89       dsl 		if (dirsize < curdsz)
    929   1.89       dsl 			dirsize = curdsz;
    930   1.89       dsl 	}
    931   1.89       dsl 	if (cgsize < dirsize * 255)
    932   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    933   1.89       dsl 	else
    934   1.89       dsl 		maxcontigdirs = 255;
    935   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    936   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    937   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    938   1.50     lukem 	if (maxcontigdirs == 0)
    939   1.50     lukem 		maxcontigdirs = 1;
    940   1.50     lukem 
    941   1.50     lukem 	/*
    942   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    943   1.50     lukem 	 * regular files, but only if we have no deficit in
    944   1.50     lukem 	 * inodes or space.
    945   1.50     lukem 	 */
    946   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    947   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    948   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    949   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    950   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    951   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    952   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    953   1.50     lukem 		}
    954   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    955   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    956   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    957   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    958   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    959   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    960   1.50     lukem 		}
    961   1.50     lukem 	/*
    962   1.50     lukem 	 * This is a backstop when we are deficient in space.
    963   1.50     lukem 	 */
    964   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    965   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    966   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    967   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    968   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    969   1.50     lukem 			break;
    970   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    971    1.1   mycroft }
    972    1.1   mycroft 
    973    1.1   mycroft /*
    974    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    975    1.1   mycroft  * logically divided into sections. The first section is composed of the
    976    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    977   1.81     perry  *
    978    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    979    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    980    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    981    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    982    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    983    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    984    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    985    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    986    1.1   mycroft  * continues until a cylinder group with greater than the average number
    987    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    988    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    989    1.1   mycroft  * here a best guess is made based upon the logical block number being
    990    1.1   mycroft  * allocated.
    991   1.81     perry  *
    992    1.1   mycroft  * If a section is already partially allocated, the policy is to
    993    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    994   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    995   1.60      fvdl  * contigously if possible.
    996  1.106     pooka  *
    997  1.106     pooka  * => um_lock held on entry and exit
    998    1.1   mycroft  */
    999   1.58      fvdl daddr_t
   1000  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
   1001   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
   1002    1.1   mycroft {
   1003   1.33  augustss 	struct fs *fs;
   1004   1.33  augustss 	int cg;
   1005    1.1   mycroft 	int avgbfree, startcg;
   1006    1.1   mycroft 
   1007  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1008  1.101        ad 
   1009    1.1   mycroft 	fs = ip->i_fs;
   1010  1.111    simonb 
   1011  1.111    simonb 	/*
   1012  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
   1013  1.111    simonb 	 * in the inode extentions to return the desired block.
   1014  1.111    simonb 	 *
   1015  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
   1016  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
   1017  1.111    simonb 	 * available slot if we need to allocate more than one indirect
   1018  1.111    simonb 	 * block.  For data, return the address of the actual block
   1019  1.111    simonb 	 * relative to the address of the first data block.
   1020  1.111    simonb 	 */
   1021  1.111    simonb 	if (flags & B_CONTIG) {
   1022  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
   1023  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
   1024  1.111    simonb 		if (flags & B_METAONLY)
   1025  1.111    simonb 			return ip->i_ffs_first_indir_blk;
   1026  1.111    simonb 		else
   1027  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
   1028  1.111    simonb 	}
   1029  1.111    simonb 
   1030    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1031   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1032    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
   1033  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
   1034    1.1   mycroft 		}
   1035    1.1   mycroft 		/*
   1036    1.1   mycroft 		 * Find a cylinder with greater than average number of
   1037    1.1   mycroft 		 * unused data blocks.
   1038    1.1   mycroft 		 */
   1039    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
   1040    1.1   mycroft 			startcg =
   1041    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1042    1.1   mycroft 		else
   1043   1.19    bouyer 			startcg = dtog(fs,
   1044   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1045    1.1   mycroft 		startcg %= fs->fs_ncg;
   1046    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1047    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1048    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1049  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1050    1.1   mycroft 			}
   1051   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
   1052    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1053  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1054    1.1   mycroft 			}
   1055   1.35   thorpej 		return (0);
   1056    1.1   mycroft 	}
   1057    1.1   mycroft 	/*
   1058   1.60      fvdl 	 * We just always try to lay things out contiguously.
   1059   1.60      fvdl 	 */
   1060   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1061   1.60      fvdl }
   1062   1.60      fvdl 
   1063   1.60      fvdl daddr_t
   1064  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
   1065  1.111    simonb     int64_t *bap)
   1066   1.60      fvdl {
   1067   1.60      fvdl 	struct fs *fs;
   1068   1.60      fvdl 	int cg;
   1069   1.60      fvdl 	int avgbfree, startcg;
   1070   1.60      fvdl 
   1071  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1072  1.101        ad 
   1073   1.60      fvdl 	fs = ip->i_fs;
   1074  1.111    simonb 
   1075  1.111    simonb 	/*
   1076  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
   1077  1.111    simonb 	 * in the inode extentions to return the desired block.
   1078  1.111    simonb 	 *
   1079  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
   1080  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
   1081  1.111    simonb 	 * available slot if we need to allocate more than one indirect
   1082  1.111    simonb 	 * block.  For data, return the address of the actual block
   1083  1.111    simonb 	 * relative to the address of the first data block.
   1084  1.111    simonb 	 */
   1085  1.111    simonb 	if (flags & B_CONTIG) {
   1086  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
   1087  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
   1088  1.111    simonb 		if (flags & B_METAONLY)
   1089  1.111    simonb 			return ip->i_ffs_first_indir_blk;
   1090  1.111    simonb 		else
   1091  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
   1092  1.111    simonb 	}
   1093  1.111    simonb 
   1094   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1095   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1096   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
   1097  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
   1098   1.60      fvdl 		}
   1099    1.1   mycroft 		/*
   1100   1.60      fvdl 		 * Find a cylinder with greater than average number of
   1101   1.60      fvdl 		 * unused data blocks.
   1102    1.1   mycroft 		 */
   1103   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
   1104   1.60      fvdl 			startcg =
   1105   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1106   1.60      fvdl 		else
   1107   1.60      fvdl 			startcg = dtog(fs,
   1108   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1109   1.60      fvdl 		startcg %= fs->fs_ncg;
   1110   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1111   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1112   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1113  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1114   1.60      fvdl 			}
   1115   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
   1116   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1117  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1118   1.60      fvdl 			}
   1119   1.60      fvdl 		return (0);
   1120   1.60      fvdl 	}
   1121   1.60      fvdl 	/*
   1122   1.60      fvdl 	 * We just always try to lay things out contiguously.
   1123   1.60      fvdl 	 */
   1124   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1125    1.1   mycroft }
   1126    1.1   mycroft 
   1127   1.60      fvdl 
   1128    1.1   mycroft /*
   1129    1.1   mycroft  * Implement the cylinder overflow algorithm.
   1130    1.1   mycroft  *
   1131    1.1   mycroft  * The policy implemented by this algorithm is:
   1132    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1133    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1134    1.1   mycroft  *   3) brute force search for a free block.
   1135  1.106     pooka  *
   1136  1.106     pooka  * => called with um_lock held
   1137  1.106     pooka  * => returns with um_lock released on success, held on failure
   1138  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
   1139    1.1   mycroft  */
   1140    1.1   mycroft /*VARARGS5*/
   1141   1.58      fvdl static daddr_t
   1142   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1143   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1144  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
   1145    1.1   mycroft {
   1146   1.33  augustss 	struct fs *fs;
   1147   1.58      fvdl 	daddr_t result;
   1148    1.1   mycroft 	int i, icg = cg;
   1149    1.1   mycroft 
   1150    1.1   mycroft 	fs = ip->i_fs;
   1151    1.1   mycroft 	/*
   1152    1.1   mycroft 	 * 1: preferred cylinder group
   1153    1.1   mycroft 	 */
   1154  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
   1155    1.1   mycroft 	if (result)
   1156    1.1   mycroft 		return (result);
   1157  1.111    simonb 
   1158  1.111    simonb 	if (flags & B_CONTIG)
   1159  1.111    simonb 		return (result);
   1160    1.1   mycroft 	/*
   1161    1.1   mycroft 	 * 2: quadratic rehash
   1162    1.1   mycroft 	 */
   1163    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1164    1.1   mycroft 		cg += i;
   1165    1.1   mycroft 		if (cg >= fs->fs_ncg)
   1166    1.1   mycroft 			cg -= fs->fs_ncg;
   1167  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
   1168    1.1   mycroft 		if (result)
   1169    1.1   mycroft 			return (result);
   1170    1.1   mycroft 	}
   1171    1.1   mycroft 	/*
   1172    1.1   mycroft 	 * 3: brute force search
   1173    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1174    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1175    1.1   mycroft 	 */
   1176    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1177    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1178  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
   1179    1.1   mycroft 		if (result)
   1180    1.1   mycroft 			return (result);
   1181    1.1   mycroft 		cg++;
   1182    1.1   mycroft 		if (cg == fs->fs_ncg)
   1183    1.1   mycroft 			cg = 0;
   1184    1.1   mycroft 	}
   1185   1.35   thorpej 	return (0);
   1186    1.1   mycroft }
   1187    1.1   mycroft 
   1188    1.1   mycroft /*
   1189    1.1   mycroft  * Determine whether a fragment can be extended.
   1190    1.1   mycroft  *
   1191   1.81     perry  * Check to see if the necessary fragments are available, and
   1192    1.1   mycroft  * if they are, allocate them.
   1193  1.106     pooka  *
   1194  1.106     pooka  * => called with um_lock held
   1195  1.106     pooka  * => returns with um_lock released on success, held on failure
   1196    1.1   mycroft  */
   1197   1.58      fvdl static daddr_t
   1198   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1199    1.1   mycroft {
   1200  1.101        ad 	struct ufsmount *ump;
   1201   1.33  augustss 	struct fs *fs;
   1202   1.33  augustss 	struct cg *cgp;
   1203    1.1   mycroft 	struct buf *bp;
   1204   1.58      fvdl 	daddr_t bno;
   1205    1.1   mycroft 	int frags, bbase;
   1206    1.1   mycroft 	int i, error;
   1207   1.62      fvdl 	u_int8_t *blksfree;
   1208    1.1   mycroft 
   1209    1.1   mycroft 	fs = ip->i_fs;
   1210  1.101        ad 	ump = ip->i_ump;
   1211  1.101        ad 
   1212  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1213  1.101        ad 
   1214    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1215   1.35   thorpej 		return (0);
   1216    1.1   mycroft 	frags = numfrags(fs, nsize);
   1217    1.1   mycroft 	bbase = fragnum(fs, bprev);
   1218    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1219    1.1   mycroft 		/* cannot extend across a block boundary */
   1220   1.35   thorpej 		return (0);
   1221    1.1   mycroft 	}
   1222  1.101        ad 	mutex_exit(&ump->um_lock);
   1223    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1224  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1225  1.101        ad 	if (error)
   1226  1.101        ad 		goto fail;
   1227    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1228  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1229  1.101        ad 		goto fail;
   1230   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1231   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1232   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1233   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1234    1.1   mycroft 	bno = dtogd(fs, bprev);
   1235   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1236    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1237  1.101        ad 		if (isclr(blksfree, bno + i))
   1238  1.101        ad 			goto fail;
   1239    1.1   mycroft 	/*
   1240    1.1   mycroft 	 * the current fragment can be extended
   1241    1.1   mycroft 	 * deduct the count on fragment being extended into
   1242    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1243    1.1   mycroft 	 * allocate the extended piece
   1244    1.1   mycroft 	 */
   1245    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1246   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1247    1.1   mycroft 			break;
   1248   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1249    1.1   mycroft 	if (i != frags)
   1250   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1251  1.101        ad 	mutex_enter(&ump->um_lock);
   1252    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1253   1.62      fvdl 		clrbit(blksfree, bno + i);
   1254   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1255    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1256    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1257    1.1   mycroft 	}
   1258    1.1   mycroft 	fs->fs_fmod = 1;
   1259  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1260  1.101        ad 	mutex_exit(&ump->um_lock);
   1261   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1262   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1263    1.1   mycroft 	bdwrite(bp);
   1264    1.1   mycroft 	return (bprev);
   1265  1.101        ad 
   1266  1.101        ad  fail:
   1267  1.101        ad  	brelse(bp, 0);
   1268  1.101        ad  	mutex_enter(&ump->um_lock);
   1269  1.101        ad  	return (0);
   1270    1.1   mycroft }
   1271    1.1   mycroft 
   1272    1.1   mycroft /*
   1273    1.1   mycroft  * Determine whether a block can be allocated.
   1274    1.1   mycroft  *
   1275    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1276    1.1   mycroft  * and if it is, allocate it.
   1277    1.1   mycroft  */
   1278   1.58      fvdl static daddr_t
   1279  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1280    1.1   mycroft {
   1281  1.101        ad 	struct ufsmount *ump;
   1282   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1283   1.30      fvdl 	struct cg *cgp;
   1284    1.1   mycroft 	struct buf *bp;
   1285   1.60      fvdl 	int32_t bno;
   1286   1.60      fvdl 	daddr_t blkno;
   1287   1.30      fvdl 	int error, frags, allocsiz, i;
   1288   1.62      fvdl 	u_int8_t *blksfree;
   1289   1.30      fvdl #ifdef FFS_EI
   1290   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1291   1.30      fvdl #endif
   1292    1.1   mycroft 
   1293  1.101        ad 	ump = ip->i_ump;
   1294  1.101        ad 
   1295  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1296  1.101        ad 
   1297    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1298   1.35   thorpej 		return (0);
   1299  1.101        ad 	mutex_exit(&ump->um_lock);
   1300    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1301  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1302  1.101        ad 	if (error)
   1303  1.101        ad 		goto fail;
   1304    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1305   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1306  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1307  1.101        ad 		goto fail;
   1308   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1309   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1310   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1311   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1312    1.1   mycroft 	if (size == fs->fs_bsize) {
   1313  1.101        ad 		mutex_enter(&ump->um_lock);
   1314  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1315   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1316  1.101        ad 		mutex_exit(&ump->um_lock);
   1317    1.1   mycroft 		bdwrite(bp);
   1318   1.60      fvdl 		return (blkno);
   1319    1.1   mycroft 	}
   1320    1.1   mycroft 	/*
   1321    1.1   mycroft 	 * check to see if any fragments are already available
   1322    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1323    1.1   mycroft 	 * it down to a smaller size if necessary
   1324    1.1   mycroft 	 */
   1325   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1326    1.1   mycroft 	frags = numfrags(fs, size);
   1327    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1328    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1329    1.1   mycroft 			break;
   1330    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1331    1.1   mycroft 		/*
   1332   1.81     perry 		 * no fragments were available, so a block will be
   1333    1.1   mycroft 		 * allocated, and hacked up
   1334    1.1   mycroft 		 */
   1335  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1336  1.101        ad 			goto fail;
   1337  1.101        ad 		mutex_enter(&ump->um_lock);
   1338  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1339   1.60      fvdl 		bno = dtogd(fs, blkno);
   1340    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1341   1.62      fvdl 			setbit(blksfree, bno + i);
   1342    1.1   mycroft 		i = fs->fs_frag - frags;
   1343   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1344    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1345   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1346    1.1   mycroft 		fs->fs_fmod = 1;
   1347   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1348   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1349  1.101        ad 		mutex_exit(&ump->um_lock);
   1350    1.1   mycroft 		bdwrite(bp);
   1351   1.60      fvdl 		return (blkno);
   1352    1.1   mycroft 	}
   1353   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1354   1.30      fvdl #if 0
   1355   1.30      fvdl 	/*
   1356   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1357   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1358   1.30      fvdl 	 */
   1359  1.101        ad 	if (bno < 0)
   1360  1.101        ad 		goto fail;
   1361   1.30      fvdl #endif
   1362    1.1   mycroft 	for (i = 0; i < frags; i++)
   1363   1.62      fvdl 		clrbit(blksfree, bno + i);
   1364  1.101        ad 	mutex_enter(&ump->um_lock);
   1365   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1366    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1367    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1368    1.1   mycroft 	fs->fs_fmod = 1;
   1369   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1370    1.1   mycroft 	if (frags != allocsiz)
   1371   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1372   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1373  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1374  1.101        ad 	mutex_exit(&ump->um_lock);
   1375   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1376   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1377    1.1   mycroft 	bdwrite(bp);
   1378   1.30      fvdl 	return blkno;
   1379  1.101        ad 
   1380  1.101        ad  fail:
   1381  1.101        ad  	brelse(bp, 0);
   1382  1.101        ad  	mutex_enter(&ump->um_lock);
   1383  1.101        ad  	return (0);
   1384    1.1   mycroft }
   1385    1.1   mycroft 
   1386    1.1   mycroft /*
   1387    1.1   mycroft  * Allocate a block in a cylinder group.
   1388    1.1   mycroft  *
   1389    1.1   mycroft  * This algorithm implements the following policy:
   1390    1.1   mycroft  *   1) allocate the requested block.
   1391    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1392    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1393    1.1   mycroft  *      specified cylinder group.
   1394    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1395    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1396    1.1   mycroft  */
   1397   1.58      fvdl static daddr_t
   1398  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1399    1.1   mycroft {
   1400  1.101        ad 	struct ufsmount *ump;
   1401   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1402   1.30      fvdl 	struct cg *cgp;
   1403   1.60      fvdl 	daddr_t blkno;
   1404   1.60      fvdl 	int32_t bno;
   1405   1.60      fvdl 	u_int8_t *blksfree;
   1406   1.30      fvdl #ifdef FFS_EI
   1407   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1408   1.30      fvdl #endif
   1409    1.1   mycroft 
   1410  1.101        ad 	ump = ip->i_ump;
   1411  1.101        ad 
   1412  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1413  1.101        ad 
   1414   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1415   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1416   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1417   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1418   1.60      fvdl 	} else {
   1419   1.60      fvdl 		bpref = blknum(fs, bpref);
   1420   1.60      fvdl 		bno = dtogd(fs, bpref);
   1421    1.1   mycroft 		/*
   1422   1.60      fvdl 		 * if the requested block is available, use it
   1423    1.1   mycroft 		 */
   1424   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1425   1.60      fvdl 			goto gotit;
   1426  1.111    simonb 		/*
   1427  1.111    simonb 		 * if the requested data block isn't available and we are
   1428  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1429  1.111    simonb 		 */
   1430  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1431  1.111    simonb 			return (0);
   1432    1.1   mycroft 	}
   1433  1.111    simonb 
   1434    1.1   mycroft 	/*
   1435   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1436    1.1   mycroft 	 */
   1437   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1438    1.1   mycroft 	if (bno < 0)
   1439   1.35   thorpej 		return (0);
   1440   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1441    1.1   mycroft gotit:
   1442    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1443   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1444   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1445   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1446    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1447   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1448   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1449   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1450   1.73       dbj 		int cylno;
   1451   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1452   1.75       dbj 		KASSERT(cylno >= 0);
   1453   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1454   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1455   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1456   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1457   1.73       dbj 		    needswap);
   1458   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1459   1.73       dbj 	}
   1460    1.1   mycroft 	fs->fs_fmod = 1;
   1461   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1462  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1463  1.101        ad 		mutex_exit(&ump->um_lock);
   1464   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1465  1.101        ad 		mutex_enter(&ump->um_lock);
   1466  1.101        ad 	}
   1467   1.30      fvdl 	return (blkno);
   1468    1.1   mycroft }
   1469    1.1   mycroft 
   1470   1.55      matt #ifdef XXXUBC
   1471    1.1   mycroft /*
   1472    1.1   mycroft  * Determine whether a cluster can be allocated.
   1473    1.1   mycroft  *
   1474    1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1475    1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1476    1.1   mycroft  * take the first one that we find following bpref.
   1477    1.1   mycroft  */
   1478   1.60      fvdl 
   1479   1.60      fvdl /*
   1480   1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1481   1.60      fvdl  */
   1482   1.58      fvdl static daddr_t
   1483   1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1484    1.1   mycroft {
   1485  1.101        ad 	struct ufsmount *ump;
   1486   1.33  augustss 	struct fs *fs;
   1487   1.33  augustss 	struct cg *cgp;
   1488    1.1   mycroft 	struct buf *bp;
   1489   1.18      fvdl 	int i, got, run, bno, bit, map;
   1490    1.1   mycroft 	u_char *mapp;
   1491    1.5   mycroft 	int32_t *lp;
   1492    1.1   mycroft 
   1493    1.1   mycroft 	fs = ip->i_fs;
   1494  1.101        ad 	ump = ip->i_ump;
   1495  1.101        ad 
   1496  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1497    1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1498   1.35   thorpej 		return (0);
   1499  1.101        ad 	mutex_exit(&ump->um_lock);
   1500    1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1501  1.107   hannken 	    NOCRED, 0, &bp))
   1502    1.1   mycroft 		goto fail;
   1503    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1504   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1505    1.1   mycroft 		goto fail;
   1506    1.1   mycroft 	/*
   1507    1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1508    1.1   mycroft 	 * available in this cylinder group.
   1509    1.1   mycroft 	 */
   1510   1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1511    1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1512   1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1513    1.1   mycroft 			break;
   1514    1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1515    1.5   mycroft 		/*
   1516    1.5   mycroft 		 * This is the first time looking for a cluster in this
   1517    1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1518    1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1519    1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1520    1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1521    1.5   mycroft 		 */
   1522   1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1523    1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1524   1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1525    1.5   mycroft 				break;
   1526  1.101        ad 		mutex_enter(&ump->um_lock);
   1527    1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1528  1.101        ad 		mutex_exit(&ump->um_lock);
   1529    1.1   mycroft 		goto fail;
   1530    1.5   mycroft 	}
   1531    1.1   mycroft 	/*
   1532    1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1533    1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1534    1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1535    1.1   mycroft 	 * block allocation. We do not search before the current
   1536    1.1   mycroft 	 * preference point as we do not want to allocate a block
   1537    1.1   mycroft 	 * that is allocated before the previous one (as we will
   1538    1.1   mycroft 	 * then have to wait for another pass of the elevator
   1539    1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1540    1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1541    1.1   mycroft 	 */
   1542    1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1543    1.1   mycroft 		bpref = 0;
   1544    1.1   mycroft 	else
   1545    1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1546   1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1547    1.1   mycroft 	map = *mapp++;
   1548    1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1549   1.19    bouyer 	for (run = 0, got = bpref;
   1550   1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1551    1.1   mycroft 		if ((map & bit) == 0) {
   1552    1.1   mycroft 			run = 0;
   1553    1.1   mycroft 		} else {
   1554    1.1   mycroft 			run++;
   1555    1.1   mycroft 			if (run == len)
   1556    1.1   mycroft 				break;
   1557    1.1   mycroft 		}
   1558   1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1559    1.1   mycroft 			bit <<= 1;
   1560    1.1   mycroft 		} else {
   1561    1.1   mycroft 			map = *mapp++;
   1562    1.1   mycroft 			bit = 1;
   1563    1.1   mycroft 		}
   1564    1.1   mycroft 	}
   1565   1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1566    1.1   mycroft 		goto fail;
   1567    1.1   mycroft 	/*
   1568    1.1   mycroft 	 * Allocate the cluster that we have found.
   1569    1.1   mycroft 	 */
   1570   1.30      fvdl #ifdef DIAGNOSTIC
   1571   1.18      fvdl 	for (i = 1; i <= len; i++)
   1572   1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1573   1.30      fvdl 		    got - run + i))
   1574   1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1575   1.30      fvdl #endif
   1576   1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1577   1.18      fvdl 	if (dtog(fs, bno) != cg)
   1578   1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1579    1.1   mycroft 	len = blkstofrags(fs, len);
   1580  1.101        ad 	mutex_enter(&ump->um_lock);
   1581    1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1582  1.111    simonb 		if ((got = ffs_alloccgblk(ip, bp, bno + i, flags)) != bno + i)
   1583    1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1584   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1585  1.101        ad 	mutex_exit(&ump->um_lock);
   1586    1.8       cgd 	bdwrite(bp);
   1587    1.1   mycroft 	return (bno);
   1588    1.1   mycroft 
   1589    1.1   mycroft fail:
   1590  1.101        ad 	brelse(bp, 0);
   1591  1.101        ad 	mutex_enter(&ump->um_lock);
   1592    1.1   mycroft 	return (0);
   1593    1.1   mycroft }
   1594   1.55      matt #endif /* XXXUBC */
   1595    1.1   mycroft 
   1596    1.1   mycroft /*
   1597    1.1   mycroft  * Determine whether an inode can be allocated.
   1598    1.1   mycroft  *
   1599    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1600    1.1   mycroft  * allocate it using the following policy:
   1601    1.1   mycroft  *   1) allocate the requested inode.
   1602    1.1   mycroft  *   2) allocate the next available inode after the requested
   1603    1.1   mycroft  *      inode in the specified cylinder group.
   1604    1.1   mycroft  */
   1605   1.58      fvdl static daddr_t
   1606  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1607    1.1   mycroft {
   1608  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1609   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1610   1.33  augustss 	struct cg *cgp;
   1611   1.60      fvdl 	struct buf *bp, *ibp;
   1612   1.60      fvdl 	u_int8_t *inosused;
   1613    1.1   mycroft 	int error, start, len, loc, map, i;
   1614   1.60      fvdl 	int32_t initediblk;
   1615  1.112   hannken 	daddr_t nalloc;
   1616   1.60      fvdl 	struct ufs2_dinode *dp2;
   1617   1.19    bouyer #ifdef FFS_EI
   1618   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1619   1.19    bouyer #endif
   1620    1.1   mycroft 
   1621  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1622  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1623  1.101        ad 
   1624    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1625   1.35   thorpej 		return (0);
   1626  1.101        ad 	mutex_exit(&ump->um_lock);
   1627  1.112   hannken 	ibp = NULL;
   1628  1.112   hannken 	initediblk = -1;
   1629  1.112   hannken retry:
   1630    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1631  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1632  1.101        ad 	if (error)
   1633  1.101        ad 		goto fail;
   1634    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1635  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1636  1.101        ad 		goto fail;
   1637  1.112   hannken 
   1638  1.112   hannken 	if (ibp != NULL &&
   1639  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1640  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1641  1.112   hannken 		brelse(ibp, BC_INVAL);
   1642  1.112   hannken 		ibp = NULL;
   1643  1.112   hannken 	}
   1644  1.112   hannken 	/*
   1645  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1646  1.112   hannken 	 */
   1647  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1648  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1649  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1650  1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1651  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1652  1.112   hannken 			/*
   1653  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1654  1.112   hannken 			 * a deadlock when reading the inode block will
   1655  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1656  1.112   hannken 			 */
   1657  1.112   hannken 			brelse(bp, 0);
   1658  1.112   hannken 			bp = NULL;
   1659  1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1660  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1661  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1662  1.112   hannken 			if (error)
   1663  1.112   hannken 				goto fail;
   1664  1.112   hannken 			goto retry;
   1665  1.112   hannken 		}
   1666  1.112   hannken 	}
   1667  1.112   hannken 
   1668   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1669   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1670   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1671   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1672   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1673    1.1   mycroft 	if (ipref) {
   1674    1.1   mycroft 		ipref %= fs->fs_ipg;
   1675   1.60      fvdl 		if (isclr(inosused, ipref))
   1676    1.1   mycroft 			goto gotit;
   1677    1.1   mycroft 	}
   1678   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1679   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1680   1.19    bouyer 		NBBY);
   1681   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1682    1.1   mycroft 	if (loc == 0) {
   1683    1.1   mycroft 		len = start + 1;
   1684    1.1   mycroft 		start = 0;
   1685   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1686    1.1   mycroft 		if (loc == 0) {
   1687   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1688   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1689   1.19    bouyer 				fs->fs_fsmnt);
   1690    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1691    1.1   mycroft 			/* NOTREACHED */
   1692    1.1   mycroft 		}
   1693    1.1   mycroft 	}
   1694    1.1   mycroft 	i = start + len - loc;
   1695   1.60      fvdl 	map = inosused[i];
   1696    1.1   mycroft 	ipref = i * NBBY;
   1697    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1698    1.1   mycroft 		if ((map & i) == 0) {
   1699   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1700    1.1   mycroft 			goto gotit;
   1701    1.1   mycroft 		}
   1702    1.1   mycroft 	}
   1703   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1704    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1705    1.1   mycroft 	/* NOTREACHED */
   1706    1.1   mycroft gotit:
   1707  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1708  1.111    simonb 	    mode);
   1709   1.60      fvdl 	/*
   1710   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1711   1.60      fvdl 	 */
   1712  1.112   hannken 	if (ibp != NULL) {
   1713  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1714  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1715  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1716  1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1717   1.60      fvdl 			/*
   1718   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1719   1.60      fvdl 			 * random, after all.
   1720   1.60      fvdl 			 */
   1721   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1722   1.60      fvdl 			dp2++;
   1723   1.60      fvdl 		}
   1724   1.60      fvdl 		initediblk += INOPB(fs);
   1725   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1726   1.60      fvdl 	}
   1727   1.60      fvdl 
   1728  1.101        ad 	mutex_enter(&ump->um_lock);
   1729   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1730  1.101        ad 	setbit(inosused, ipref);
   1731  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1732  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1733  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1734  1.101        ad 	fs->fs_fmod = 1;
   1735  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1736  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1737  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1738  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1739  1.101        ad 	}
   1740  1.101        ad 	mutex_exit(&ump->um_lock);
   1741  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1742  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1743  1.112   hannken 	if (ibp != NULL) {
   1744  1.112   hannken 		bwrite(bp);
   1745  1.104   hannken 		bawrite(ibp);
   1746  1.112   hannken 	} else
   1747  1.112   hannken 		bdwrite(bp);
   1748    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1749  1.101        ad  fail:
   1750  1.112   hannken 	if (bp != NULL)
   1751  1.112   hannken 		brelse(bp, 0);
   1752  1.112   hannken 	if (ibp != NULL)
   1753  1.112   hannken 		brelse(ibp, BC_INVAL);
   1754  1.101        ad 	mutex_enter(&ump->um_lock);
   1755  1.101        ad 	return (0);
   1756    1.1   mycroft }
   1757    1.1   mycroft 
   1758    1.1   mycroft /*
   1759  1.111    simonb  * Allocate a block or fragment.
   1760  1.111    simonb  *
   1761  1.111    simonb  * The specified block or fragment is removed from the
   1762  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1763  1.111    simonb  *
   1764  1.111    simonb  * This implementation should mirror fs_blkfree
   1765  1.111    simonb  *
   1766  1.111    simonb  * => um_lock not held on entry or exit
   1767  1.111    simonb  */
   1768  1.111    simonb int
   1769  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1770  1.111    simonb {
   1771  1.111    simonb 	struct ufsmount *ump = ip->i_ump;
   1772  1.111    simonb 	struct fs *fs = ip->i_fs;
   1773  1.111    simonb 	struct cg *cgp;
   1774  1.111    simonb 	struct buf *bp;
   1775  1.111    simonb 	int32_t fragno, cgbno;
   1776  1.111    simonb 	int i, error, cg, blk, frags, bbase;
   1777  1.111    simonb 	u_int8_t *blksfree;
   1778  1.111    simonb 	const int needswap = UFS_FSNEEDSWAP(fs);
   1779  1.111    simonb 
   1780  1.111    simonb 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1781  1.111    simonb 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1782  1.111    simonb 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1783  1.111    simonb 		       "size = %ld, fs = %s\n",
   1784  1.111    simonb 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1785  1.111    simonb 		panic("blkalloc: bad size");
   1786  1.111    simonb 	}
   1787  1.111    simonb 	cg = dtog(fs, bno);
   1788  1.111    simonb 	if (bno >= fs->fs_size) {
   1789  1.111    simonb 		printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
   1790  1.111    simonb 		    ip->i_number);
   1791  1.111    simonb 		ffs_fserr(fs, ip->i_uid, "bad block");
   1792  1.111    simonb 		return EINVAL;
   1793  1.111    simonb 	}
   1794  1.111    simonb 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1795  1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1796  1.111    simonb 	if (error) {
   1797  1.111    simonb 		brelse(bp, 0);
   1798  1.111    simonb 		return error;
   1799  1.111    simonb 	}
   1800  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1801  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1802  1.111    simonb 		brelse(bp, 0);
   1803  1.111    simonb 		return EIO;
   1804  1.111    simonb 	}
   1805  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1806  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1807  1.111    simonb 	cgbno = dtogd(fs, bno);
   1808  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1809  1.111    simonb 
   1810  1.111    simonb 	mutex_enter(&ump->um_lock);
   1811  1.111    simonb 	if (size == fs->fs_bsize) {
   1812  1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1813  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1814  1.111    simonb 			mutex_exit(&ump->um_lock);
   1815  1.111    simonb 			brelse(bp, 0);
   1816  1.111    simonb 			return EBUSY;
   1817  1.111    simonb 		}
   1818  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1819  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1820  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1821  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1822  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1823  1.111    simonb 	} else {
   1824  1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1825  1.111    simonb 
   1826  1.111    simonb 		frags = numfrags(fs, size);
   1827  1.111    simonb 		for (i = 0; i < frags; i++) {
   1828  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1829  1.111    simonb 				mutex_exit(&ump->um_lock);
   1830  1.111    simonb 				brelse(bp, 0);
   1831  1.111    simonb 				return EBUSY;
   1832  1.111    simonb 			}
   1833  1.111    simonb 		}
   1834  1.111    simonb 		/*
   1835  1.111    simonb 		 * if a complete block is being split, account for it
   1836  1.111    simonb 		 */
   1837  1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1838  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1839  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1840  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1841  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1842  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1843  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1844  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1845  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1846  1.111    simonb 		}
   1847  1.111    simonb 		/*
   1848  1.111    simonb 		 * decrement the counts associated with the old frags
   1849  1.111    simonb 		 */
   1850  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1851  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1852  1.111    simonb 		/*
   1853  1.111    simonb 		 * allocate the fragment
   1854  1.111    simonb 		 */
   1855  1.111    simonb 		for (i = 0; i < frags; i++) {
   1856  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1857  1.111    simonb 		}
   1858  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1859  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1860  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1861  1.111    simonb 		/*
   1862  1.111    simonb 		 * add back in counts associated with the new frags
   1863  1.111    simonb 		 */
   1864  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1865  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1866  1.111    simonb 	}
   1867  1.111    simonb 	fs->fs_fmod = 1;
   1868  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1869  1.111    simonb 	mutex_exit(&ump->um_lock);
   1870  1.111    simonb 	bdwrite(bp);
   1871  1.111    simonb 	return 0;
   1872  1.111    simonb }
   1873  1.111    simonb 
   1874  1.111    simonb /*
   1875    1.1   mycroft  * Free a block or fragment.
   1876    1.1   mycroft  *
   1877    1.1   mycroft  * The specified block or fragment is placed back in the
   1878   1.81     perry  * free map. If a fragment is deallocated, a possible
   1879    1.1   mycroft  * block reassembly is checked.
   1880  1.106     pooka  *
   1881  1.106     pooka  * => um_lock not held on entry or exit
   1882    1.1   mycroft  */
   1883    1.9  christos void
   1884   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1885   1.85   thorpej     ino_t inum)
   1886    1.1   mycroft {
   1887   1.33  augustss 	struct cg *cgp;
   1888    1.1   mycroft 	struct buf *bp;
   1889   1.76   hannken 	struct ufsmount *ump;
   1890   1.60      fvdl 	int32_t fragno, cgbno;
   1891   1.76   hannken 	daddr_t cgblkno;
   1892    1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1893   1.62      fvdl 	u_int8_t *blksfree;
   1894   1.76   hannken 	dev_t dev;
   1895   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1896    1.1   mycroft 
   1897   1.76   hannken 	cg = dtog(fs, bno);
   1898   1.77   hannken 	if (devvp->v_type != VBLK) {
   1899   1.77   hannken 		/* devvp is a snapshot */
   1900   1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1901  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1902   1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1903   1.76   hannken 	} else {
   1904   1.76   hannken 		dev = devvp->v_rdev;
   1905  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1906   1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1907  1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1908   1.76   hannken 			return;
   1909   1.76   hannken 	}
   1910   1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1911   1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1912   1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1913   1.58      fvdl 		       "size = %ld, fs = %s\n",
   1914   1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1915    1.1   mycroft 		panic("blkfree: bad size");
   1916    1.1   mycroft 	}
   1917   1.76   hannken 
   1918   1.60      fvdl 	if (bno >= fs->fs_size) {
   1919   1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1920   1.86  christos 		    (unsigned long long)inum);
   1921   1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1922    1.1   mycroft 		return;
   1923    1.1   mycroft 	}
   1924  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1925  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1926    1.1   mycroft 	if (error) {
   1927  1.101        ad 		brelse(bp, 0);
   1928    1.1   mycroft 		return;
   1929    1.1   mycroft 	}
   1930    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1931   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1932  1.101        ad 		brelse(bp, 0);
   1933    1.1   mycroft 		return;
   1934    1.1   mycroft 	}
   1935   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1936   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1937   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1938   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1939   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1940   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1941  1.101        ad 	mutex_enter(&ump->um_lock);
   1942    1.1   mycroft 	if (size == fs->fs_bsize) {
   1943   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1944   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1945   1.77   hannken 			if (devvp->v_type != VBLK) {
   1946   1.77   hannken 				/* devvp is a snapshot */
   1947  1.101        ad 				mutex_exit(&ump->um_lock);
   1948  1.101        ad 				brelse(bp, 0);
   1949   1.76   hannken 				return;
   1950   1.76   hannken 			}
   1951   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1952   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1953    1.1   mycroft 			panic("blkfree: freeing free block");
   1954    1.1   mycroft 		}
   1955   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1956   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1957   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1958    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1959    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1960   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1961   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1962   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1963   1.75       dbj 			KASSERT(i >= 0);
   1964   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1965   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1966   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1967   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1968   1.73       dbj 			    needswap);
   1969   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1970   1.73       dbj 		}
   1971    1.1   mycroft 	} else {
   1972   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1973    1.1   mycroft 		/*
   1974    1.1   mycroft 		 * decrement the counts associated with the old frags
   1975    1.1   mycroft 		 */
   1976   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1977   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1978    1.1   mycroft 		/*
   1979    1.1   mycroft 		 * deallocate the fragment
   1980    1.1   mycroft 		 */
   1981    1.1   mycroft 		frags = numfrags(fs, size);
   1982    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1983   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1984   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1985   1.59   tsutsui 				       ", fs = %s\n",
   1986   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1987    1.1   mycroft 				panic("blkfree: freeing free frag");
   1988    1.1   mycroft 			}
   1989   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1990    1.1   mycroft 		}
   1991   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1992    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1993   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1994    1.1   mycroft 		/*
   1995    1.1   mycroft 		 * add back in counts associated with the new frags
   1996    1.1   mycroft 		 */
   1997   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1998   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1999    1.1   mycroft 		/*
   2000    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   2001    1.1   mycroft 		 */
   2002   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   2003   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   2004   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   2005    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   2006    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   2007   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   2008   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   2009    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   2010    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   2011   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   2012   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   2013   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   2014   1.75       dbj 				KASSERT(i >= 0);
   2015   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   2016   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   2017   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   2018   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   2019   1.73       dbj 				    bbase)], 1, needswap);
   2020   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   2021   1.73       dbj 			}
   2022    1.1   mycroft 		}
   2023    1.1   mycroft 	}
   2024    1.1   mycroft 	fs->fs_fmod = 1;
   2025   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   2026  1.101        ad 	mutex_exit(&ump->um_lock);
   2027    1.1   mycroft 	bdwrite(bp);
   2028    1.1   mycroft }
   2029    1.1   mycroft 
   2030   1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   2031   1.55      matt #ifdef XXXUBC
   2032   1.18      fvdl /*
   2033   1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   2034   1.18      fvdl  * fragment is allocated, false if it is free.
   2035   1.18      fvdl  */
   2036   1.18      fvdl static int
   2037   1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   2038   1.18      fvdl {
   2039   1.18      fvdl 	struct fs *fs;
   2040   1.18      fvdl 	struct cg *cgp;
   2041   1.18      fvdl 	struct buf *bp;
   2042   1.18      fvdl 	int i, error, frags, free;
   2043   1.18      fvdl 
   2044   1.18      fvdl 	fs = ip->i_fs;
   2045   1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   2046   1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   2047   1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   2048   1.18      fvdl 		panic("checkblk: bad size");
   2049   1.18      fvdl 	}
   2050   1.60      fvdl 	if (bno >= fs->fs_size)
   2051   1.18      fvdl 		panic("checkblk: bad block %d", bno);
   2052   1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   2053  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   2054   1.18      fvdl 	if (error) {
   2055  1.101        ad 		brelse(bp, 0);
   2056   1.18      fvdl 		return 0;
   2057   1.18      fvdl 	}
   2058   1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   2059   1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2060  1.101        ad 		brelse(bp, 0);
   2061   1.18      fvdl 		return 0;
   2062   1.18      fvdl 	}
   2063   1.18      fvdl 	bno = dtogd(fs, bno);
   2064   1.18      fvdl 	if (size == fs->fs_bsize) {
   2065   1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   2066   1.19    bouyer 			fragstoblks(fs, bno));
   2067   1.18      fvdl 	} else {
   2068   1.18      fvdl 		frags = numfrags(fs, size);
   2069   1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   2070   1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   2071   1.18      fvdl 				free++;
   2072   1.18      fvdl 		if (free != 0 && free != frags)
   2073   1.18      fvdl 			panic("checkblk: partially free fragment");
   2074   1.18      fvdl 	}
   2075  1.101        ad 	brelse(bp, 0);
   2076   1.18      fvdl 	return (!free);
   2077   1.18      fvdl }
   2078   1.55      matt #endif /* XXXUBC */
   2079   1.18      fvdl #endif /* DIAGNOSTIC */
   2080   1.18      fvdl 
   2081    1.1   mycroft /*
   2082    1.1   mycroft  * Free an inode.
   2083   1.30      fvdl  */
   2084   1.30      fvdl int
   2085   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   2086   1.30      fvdl {
   2087   1.30      fvdl 
   2088   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   2089   1.88      yamt 		softdep_freefile(vp, ino, mode);
   2090   1.30      fvdl 		return (0);
   2091   1.30      fvdl 	}
   2092   1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   2093   1.30      fvdl }
   2094   1.30      fvdl 
   2095   1.30      fvdl /*
   2096   1.30      fvdl  * Do the actual free operation.
   2097    1.1   mycroft  * The specified inode is placed back in the free map.
   2098  1.111    simonb  *
   2099  1.111    simonb  * => um_lock not held on entry or exit
   2100    1.1   mycroft  */
   2101    1.1   mycroft int
   2102   1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2103    1.9  christos {
   2104  1.101        ad 	struct ufsmount *ump;
   2105   1.33  augustss 	struct cg *cgp;
   2106    1.1   mycroft 	struct buf *bp;
   2107    1.1   mycroft 	int error, cg;
   2108   1.76   hannken 	daddr_t cgbno;
   2109   1.62      fvdl 	u_int8_t *inosused;
   2110   1.78   hannken 	dev_t dev;
   2111   1.19    bouyer #ifdef FFS_EI
   2112   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2113   1.19    bouyer #endif
   2114    1.1   mycroft 
   2115  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   2116  1.111    simonb 
   2117   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2118   1.78   hannken 	if (devvp->v_type != VBLK) {
   2119   1.78   hannken 		/* devvp is a snapshot */
   2120   1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   2121  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   2122   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2123   1.76   hannken 	} else {
   2124   1.78   hannken 		dev = devvp->v_rdev;
   2125  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   2126   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2127   1.76   hannken 	}
   2128    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2129   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   2130   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   2131  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2132  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   2133    1.1   mycroft 	if (error) {
   2134  1.101        ad 		brelse(bp, 0);
   2135   1.30      fvdl 		return (error);
   2136    1.1   mycroft 	}
   2137    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2138   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2139  1.101        ad 		brelse(bp, 0);
   2140    1.1   mycroft 		return (0);
   2141    1.1   mycroft 	}
   2142   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2143   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2144   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2145   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2146   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2147    1.1   mycroft 	ino %= fs->fs_ipg;
   2148   1.62      fvdl 	if (isclr(inosused, ino)) {
   2149   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   2150   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   2151   1.86  christos 		    fs->fs_fsmnt);
   2152    1.1   mycroft 		if (fs->fs_ronly == 0)
   2153    1.1   mycroft 			panic("ifree: freeing free inode");
   2154    1.1   mycroft 	}
   2155   1.62      fvdl 	clrbit(inosused, ino);
   2156  1.111    simonb 	UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   2157  1.111    simonb 	    ino + cg * fs->fs_ipg, mode);
   2158   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2159   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2160   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2161  1.101        ad 	mutex_enter(&ump->um_lock);
   2162    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2163    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2164   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2165   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2166    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2167    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2168    1.1   mycroft 	}
   2169    1.1   mycroft 	fs->fs_fmod = 1;
   2170   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2171  1.101        ad 	mutex_exit(&ump->um_lock);
   2172    1.1   mycroft 	bdwrite(bp);
   2173    1.1   mycroft 	return (0);
   2174    1.1   mycroft }
   2175    1.1   mycroft 
   2176    1.1   mycroft /*
   2177   1.76   hannken  * Check to see if a file is free.
   2178   1.76   hannken  */
   2179   1.76   hannken int
   2180   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2181   1.76   hannken {
   2182   1.76   hannken 	struct cg *cgp;
   2183   1.76   hannken 	struct buf *bp;
   2184   1.76   hannken 	daddr_t cgbno;
   2185   1.76   hannken 	int ret, cg;
   2186   1.76   hannken 	u_int8_t *inosused;
   2187   1.76   hannken 
   2188   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2189   1.77   hannken 	if (devvp->v_type != VBLK) {
   2190   1.77   hannken 		/* devvp is a snapshot */
   2191   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2192   1.77   hannken 	} else
   2193   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2194   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2195   1.76   hannken 		return 1;
   2196  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2197  1.101        ad 		brelse(bp, 0);
   2198   1.76   hannken 		return 1;
   2199   1.76   hannken 	}
   2200   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2201   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2202  1.101        ad 		brelse(bp, 0);
   2203   1.76   hannken 		return 1;
   2204   1.76   hannken 	}
   2205   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2206   1.76   hannken 	ino %= fs->fs_ipg;
   2207   1.76   hannken 	ret = isclr(inosused, ino);
   2208  1.101        ad 	brelse(bp, 0);
   2209   1.76   hannken 	return ret;
   2210   1.76   hannken }
   2211   1.76   hannken 
   2212   1.76   hannken /*
   2213    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2214    1.1   mycroft  *
   2215    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2216    1.1   mycroft  * available.
   2217    1.1   mycroft  */
   2218   1.60      fvdl static int32_t
   2219   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2220    1.1   mycroft {
   2221   1.60      fvdl 	int32_t bno;
   2222    1.1   mycroft 	int start, len, loc, i;
   2223    1.1   mycroft 	int blk, field, subfield, pos;
   2224   1.19    bouyer 	int ostart, olen;
   2225   1.62      fvdl 	u_int8_t *blksfree;
   2226   1.30      fvdl #ifdef FFS_EI
   2227   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2228   1.30      fvdl #endif
   2229    1.1   mycroft 
   2230  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2231  1.101        ad 
   2232    1.1   mycroft 	/*
   2233    1.1   mycroft 	 * find the fragment by searching through the free block
   2234    1.1   mycroft 	 * map for an appropriate bit pattern
   2235    1.1   mycroft 	 */
   2236    1.1   mycroft 	if (bpref)
   2237    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2238    1.1   mycroft 	else
   2239   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2240   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2241    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2242   1.19    bouyer 	ostart = start;
   2243   1.19    bouyer 	olen = len;
   2244   1.45     lukem 	loc = scanc((u_int)len,
   2245   1.62      fvdl 		(const u_char *)&blksfree[start],
   2246   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2247   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2248    1.1   mycroft 	if (loc == 0) {
   2249    1.1   mycroft 		len = start + 1;
   2250    1.1   mycroft 		start = 0;
   2251   1.45     lukem 		loc = scanc((u_int)len,
   2252   1.62      fvdl 			(const u_char *)&blksfree[0],
   2253   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2254   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2255    1.1   mycroft 		if (loc == 0) {
   2256   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2257   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2258   1.20      ross 			printf("offset=%d %ld\n",
   2259   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2260   1.62      fvdl 				(long)blksfree - (long)cgp);
   2261   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2262    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2263    1.1   mycroft 			/* NOTREACHED */
   2264    1.1   mycroft 		}
   2265    1.1   mycroft 	}
   2266    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2267   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2268    1.1   mycroft 	/*
   2269    1.1   mycroft 	 * found the byte in the map
   2270    1.1   mycroft 	 * sift through the bits to find the selected frag
   2271    1.1   mycroft 	 */
   2272    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2273   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2274    1.1   mycroft 		blk <<= 1;
   2275    1.1   mycroft 		field = around[allocsiz];
   2276    1.1   mycroft 		subfield = inside[allocsiz];
   2277    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2278    1.1   mycroft 			if ((blk & field) == subfield)
   2279    1.1   mycroft 				return (bno + pos);
   2280    1.1   mycroft 			field <<= 1;
   2281    1.1   mycroft 			subfield <<= 1;
   2282    1.1   mycroft 		}
   2283    1.1   mycroft 	}
   2284   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2285    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2286   1.58      fvdl 	/* return (-1); */
   2287    1.1   mycroft }
   2288    1.1   mycroft 
   2289    1.1   mycroft /*
   2290    1.1   mycroft  * Update the cluster map because of an allocation or free.
   2291    1.1   mycroft  *
   2292    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2293    1.1   mycroft  */
   2294    1.9  christos void
   2295   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2296    1.1   mycroft {
   2297    1.4       cgd 	int32_t *sump;
   2298    1.5   mycroft 	int32_t *lp;
   2299    1.1   mycroft 	u_char *freemapp, *mapp;
   2300    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2301   1.30      fvdl #ifdef FFS_EI
   2302   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2303   1.30      fvdl #endif
   2304    1.1   mycroft 
   2305  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2306  1.101        ad 
   2307    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2308    1.1   mycroft 		return;
   2309   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2310   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2311    1.1   mycroft 	/*
   2312    1.1   mycroft 	 * Allocate or clear the actual block.
   2313    1.1   mycroft 	 */
   2314    1.1   mycroft 	if (cnt > 0)
   2315    1.1   mycroft 		setbit(freemapp, blkno);
   2316    1.1   mycroft 	else
   2317    1.1   mycroft 		clrbit(freemapp, blkno);
   2318    1.1   mycroft 	/*
   2319    1.1   mycroft 	 * Find the size of the cluster going forward.
   2320    1.1   mycroft 	 */
   2321    1.1   mycroft 	start = blkno + 1;
   2322    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2323   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2324   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2325    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2326    1.1   mycroft 	map = *mapp++;
   2327    1.1   mycroft 	bit = 1 << (start % NBBY);
   2328    1.1   mycroft 	for (i = start; i < end; i++) {
   2329    1.1   mycroft 		if ((map & bit) == 0)
   2330    1.1   mycroft 			break;
   2331    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2332    1.1   mycroft 			bit <<= 1;
   2333    1.1   mycroft 		} else {
   2334    1.1   mycroft 			map = *mapp++;
   2335    1.1   mycroft 			bit = 1;
   2336    1.1   mycroft 		}
   2337    1.1   mycroft 	}
   2338    1.1   mycroft 	forw = i - start;
   2339    1.1   mycroft 	/*
   2340    1.1   mycroft 	 * Find the size of the cluster going backward.
   2341    1.1   mycroft 	 */
   2342    1.1   mycroft 	start = blkno - 1;
   2343    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2344    1.1   mycroft 	if (end < 0)
   2345    1.1   mycroft 		end = -1;
   2346    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2347    1.1   mycroft 	map = *mapp--;
   2348    1.1   mycroft 	bit = 1 << (start % NBBY);
   2349    1.1   mycroft 	for (i = start; i > end; i--) {
   2350    1.1   mycroft 		if ((map & bit) == 0)
   2351    1.1   mycroft 			break;
   2352    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2353    1.1   mycroft 			bit >>= 1;
   2354    1.1   mycroft 		} else {
   2355    1.1   mycroft 			map = *mapp--;
   2356    1.1   mycroft 			bit = 1 << (NBBY - 1);
   2357    1.1   mycroft 		}
   2358    1.1   mycroft 	}
   2359    1.1   mycroft 	back = start - i;
   2360    1.1   mycroft 	/*
   2361    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2362    1.1   mycroft 	 * back clusters.
   2363    1.1   mycroft 	 */
   2364    1.1   mycroft 	i = back + forw + 1;
   2365    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2366    1.1   mycroft 		i = fs->fs_contigsumsize;
   2367   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2368    1.1   mycroft 	if (back > 0)
   2369   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2370    1.1   mycroft 	if (forw > 0)
   2371   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2372   1.19    bouyer 
   2373    1.5   mycroft 	/*
   2374    1.5   mycroft 	 * Update cluster summary information.
   2375    1.5   mycroft 	 */
   2376    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2377    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2378   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2379    1.5   mycroft 			break;
   2380   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2381    1.1   mycroft }
   2382    1.1   mycroft 
   2383    1.1   mycroft /*
   2384    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2385   1.81     perry  *
   2386    1.1   mycroft  * The form of the error message is:
   2387    1.1   mycroft  *	fs: error message
   2388    1.1   mycroft  */
   2389    1.1   mycroft static void
   2390   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2391    1.1   mycroft {
   2392    1.1   mycroft 
   2393   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2394   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2395    1.1   mycroft }
   2396