Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.113.2.1
      1  1.113.2.1     skrll /*	$NetBSD: ffs_alloc.c,v 1.113.2.1 2009/01/19 13:20:31 skrll Exp $	*/
      2      1.111    simonb 
      3      1.111    simonb /*-
      4      1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5      1.111    simonb  * All rights reserved.
      6      1.111    simonb  *
      7      1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8      1.111    simonb  * by Wasabi Systems, Inc.
      9      1.111    simonb  *
     10      1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11      1.111    simonb  * modification, are permitted provided that the following conditions
     12      1.111    simonb  * are met:
     13      1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14      1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15      1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17      1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18      1.111    simonb  *
     19      1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30      1.111    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.113.2.1     skrll __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.113.2.1 2009/01/19 13:20:31 skrll Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78       1.22    scottr #endif
     79        1.1   mycroft 
     80        1.1   mycroft #include <sys/param.h>
     81        1.1   mycroft #include <sys/systm.h>
     82        1.1   mycroft #include <sys/buf.h>
     83      1.111    simonb #include <sys/fstrans.h>
     84      1.111    simonb #include <sys/kauth.h>
     85      1.111    simonb #include <sys/kernel.h>
     86      1.111    simonb #include <sys/mount.h>
     87        1.1   mycroft #include <sys/proc.h>
     88      1.111    simonb #include <sys/syslog.h>
     89        1.1   mycroft #include <sys/vnode.h>
     90      1.111    simonb #include <sys/wapbl.h>
     91       1.29       mrg 
     92       1.76   hannken #include <miscfs/specfs/specdev.h>
     93        1.1   mycroft #include <ufs/ufs/quota.h>
     94       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95        1.1   mycroft #include <ufs/ufs/inode.h>
     96        1.9  christos #include <ufs/ufs/ufs_extern.h>
     97       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98      1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99        1.1   mycroft 
    100        1.1   mycroft #include <ufs/ffs/fs.h>
    101        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102        1.1   mycroft 
    103      1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104      1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108      1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109      1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110      1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112       1.85   thorpej 				      daddr_t, int);
    113  1.113.2.1     skrll static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    114  1.113.2.1     skrll     daddr_t, long, bool);
    115  1.113.2.1     skrll static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    116  1.113.2.1     skrll     int, bool);
    117       1.23  drochner 
    118       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    119       1.34  jdolecek int ffs_log_changeopt = 0;
    120       1.34  jdolecek 
    121       1.23  drochner /* in ffs_tables.c */
    122       1.40  jdolecek extern const int inside[], around[];
    123       1.40  jdolecek extern const u_char * const fragtbl[];
    124        1.1   mycroft 
    125  1.113.2.1     skrll /* Basic consistency check for block allocations */
    126  1.113.2.1     skrll static int
    127  1.113.2.1     skrll ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    128  1.113.2.1     skrll     long size, dev_t dev, ino_t inum)
    129  1.113.2.1     skrll {
    130  1.113.2.1     skrll 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    131  1.113.2.1     skrll 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    132  1.113.2.1     skrll 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    133  1.113.2.1     skrll 		    "size = %ld, fs = %s\n",
    134  1.113.2.1     skrll 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    135  1.113.2.1     skrll 		panic("%s: bad size", func);
    136  1.113.2.1     skrll 	}
    137  1.113.2.1     skrll 
    138  1.113.2.1     skrll 	if (bno >= fs->fs_size) {
    139  1.113.2.1     skrll 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    140  1.113.2.1     skrll 		    (unsigned long long)inum);
    141  1.113.2.1     skrll 		ffs_fserr(fs, inum, "bad block");
    142  1.113.2.1     skrll 		return EINVAL;
    143  1.113.2.1     skrll 	}
    144  1.113.2.1     skrll 	return 0;
    145  1.113.2.1     skrll }
    146  1.113.2.1     skrll 
    147        1.1   mycroft /*
    148        1.1   mycroft  * Allocate a block in the file system.
    149       1.81     perry  *
    150        1.1   mycroft  * The size of the requested block is given, which must be some
    151        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    152        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    153        1.1   mycroft  * the following hierarchy is used to allocate a block:
    154        1.1   mycroft  *   1) allocate the requested block.
    155        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    156        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    157        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    158        1.1   mycroft  *      available block is located.
    159       1.47       wiz  * If no block preference is given the following hierarchy is used
    160        1.1   mycroft  * to allocate a block:
    161        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    162        1.1   mycroft  *      inode for the file.
    163        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    164        1.1   mycroft  *      available block is located.
    165      1.106     pooka  *
    166      1.106     pooka  * => called with um_lock held
    167      1.106     pooka  * => releases um_lock before returning
    168        1.1   mycroft  */
    169        1.9  christos int
    170      1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    171       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    172        1.1   mycroft {
    173      1.101        ad 	struct ufsmount *ump;
    174       1.62      fvdl 	struct fs *fs;
    175       1.58      fvdl 	daddr_t bno;
    176        1.9  christos 	int cg;
    177        1.9  christos #ifdef QUOTA
    178        1.9  christos 	int error;
    179        1.9  christos #endif
    180       1.81     perry 
    181       1.62      fvdl 	fs = ip->i_fs;
    182      1.101        ad 	ump = ip->i_ump;
    183      1.101        ad 
    184      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    185       1.62      fvdl 
    186       1.37       chs #ifdef UVM_PAGE_TRKOWN
    187       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    188       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    189       1.37       chs 		struct vm_page *pg;
    190       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    191       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    192       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    193       1.37       chs 
    194      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    195       1.37       chs 		while (off < endoff) {
    196       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    197       1.37       chs 			KASSERT(pg != NULL);
    198       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    199       1.37       chs 			off += PAGE_SIZE;
    200       1.37       chs 		}
    201      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    202       1.37       chs 	}
    203       1.37       chs #endif
    204       1.37       chs 
    205        1.1   mycroft 	*bnp = 0;
    206        1.1   mycroft #ifdef DIAGNOSTIC
    207        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    208  1.113.2.1     skrll 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    209  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    210  1.113.2.1     skrll 		    fs->fs_fsmnt);
    211        1.1   mycroft 		panic("ffs_alloc: bad size");
    212        1.1   mycroft 	}
    213        1.1   mycroft 	if (cred == NOCRED)
    214       1.56    provos 		panic("ffs_alloc: missing credential");
    215        1.1   mycroft #endif /* DIAGNOSTIC */
    216        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    217        1.1   mycroft 		goto nospace;
    218       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    219       1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    220        1.1   mycroft 		goto nospace;
    221        1.1   mycroft #ifdef QUOTA
    222      1.101        ad 	mutex_exit(&ump->um_lock);
    223       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    224        1.1   mycroft 		return (error);
    225      1.101        ad 	mutex_enter(&ump->um_lock);
    226        1.1   mycroft #endif
    227      1.111    simonb 
    228        1.1   mycroft 	if (bpref >= fs->fs_size)
    229        1.1   mycroft 		bpref = 0;
    230        1.1   mycroft 	if (bpref == 0)
    231        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    232        1.1   mycroft 	else
    233        1.1   mycroft 		cg = dtog(fs, bpref);
    234      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    235        1.1   mycroft 	if (bno > 0) {
    236       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    237        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    238        1.1   mycroft 		*bnp = bno;
    239        1.1   mycroft 		return (0);
    240        1.1   mycroft 	}
    241        1.1   mycroft #ifdef QUOTA
    242        1.1   mycroft 	/*
    243        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    244        1.1   mycroft 	 */
    245       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    246        1.1   mycroft #endif
    247      1.111    simonb 	if (flags & B_CONTIG) {
    248      1.111    simonb 		/*
    249      1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    250      1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    251      1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    252      1.111    simonb 		 * already unlocked, so we can't release it again
    253      1.111    simonb 		 * like in the normal error path.  See kern/39206.
    254      1.111    simonb 		 *
    255      1.111    simonb 		 *
    256      1.111    simonb 		 * Fail silently - it's up to our caller to report
    257      1.111    simonb 		 * errors.
    258      1.111    simonb 		 */
    259      1.111    simonb 		return (ENOSPC);
    260      1.111    simonb 	}
    261        1.1   mycroft nospace:
    262      1.101        ad 	mutex_exit(&ump->um_lock);
    263       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    264        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    265        1.1   mycroft 	return (ENOSPC);
    266        1.1   mycroft }
    267        1.1   mycroft 
    268        1.1   mycroft /*
    269        1.1   mycroft  * Reallocate a fragment to a bigger size
    270        1.1   mycroft  *
    271        1.1   mycroft  * The number and size of the old block is given, and a preference
    272        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    273        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    274        1.1   mycroft  * invoked to get an appropriate block.
    275      1.106     pooka  *
    276      1.106     pooka  * => called with um_lock held
    277      1.106     pooka  * => return with um_lock released
    278        1.1   mycroft  */
    279        1.9  christos int
    280       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    281       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    282        1.1   mycroft {
    283      1.101        ad 	struct ufsmount *ump;
    284       1.62      fvdl 	struct fs *fs;
    285        1.1   mycroft 	struct buf *bp;
    286        1.1   mycroft 	int cg, request, error;
    287       1.58      fvdl 	daddr_t bprev, bno;
    288       1.25   thorpej 
    289       1.62      fvdl 	fs = ip->i_fs;
    290      1.101        ad 	ump = ip->i_ump;
    291      1.101        ad 
    292      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    293      1.101        ad 
    294       1.37       chs #ifdef UVM_PAGE_TRKOWN
    295       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    296       1.37       chs 		struct vm_page *pg;
    297       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    298       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    299       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    300       1.37       chs 
    301      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    302       1.37       chs 		while (off < endoff) {
    303       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    304       1.37       chs 			KASSERT(pg != NULL);
    305       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    306       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    307       1.37       chs 			off += PAGE_SIZE;
    308       1.37       chs 		}
    309      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    310       1.37       chs 	}
    311       1.37       chs #endif
    312       1.37       chs 
    313        1.1   mycroft #ifdef DIAGNOSTIC
    314        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    315        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    316       1.13  christos 		printf(
    317  1.113.2.1     skrll 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    318  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    319  1.113.2.1     skrll 		    fs->fs_fsmnt);
    320        1.1   mycroft 		panic("ffs_realloccg: bad size");
    321        1.1   mycroft 	}
    322        1.1   mycroft 	if (cred == NOCRED)
    323       1.56    provos 		panic("ffs_realloccg: missing credential");
    324        1.1   mycroft #endif /* DIAGNOSTIC */
    325       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    326      1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    327      1.101        ad 		mutex_exit(&ump->um_lock);
    328        1.1   mycroft 		goto nospace;
    329      1.101        ad 	}
    330       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    331       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    332       1.60      fvdl 	else
    333       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    334       1.60      fvdl 
    335       1.60      fvdl 	if (bprev == 0) {
    336  1.113.2.1     skrll 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    337  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    338  1.113.2.1     skrll 		    fs->fs_fsmnt);
    339        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    340        1.1   mycroft 	}
    341      1.101        ad 	mutex_exit(&ump->um_lock);
    342      1.101        ad 
    343        1.1   mycroft 	/*
    344        1.1   mycroft 	 * Allocate the extra space in the buffer.
    345        1.1   mycroft 	 */
    346       1.37       chs 	if (bpp != NULL &&
    347      1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    348      1.101        ad 		brelse(bp, 0);
    349        1.1   mycroft 		return (error);
    350        1.1   mycroft 	}
    351        1.1   mycroft #ifdef QUOTA
    352       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    353       1.44       chs 		if (bpp != NULL) {
    354      1.101        ad 			brelse(bp, 0);
    355       1.44       chs 		}
    356        1.1   mycroft 		return (error);
    357        1.1   mycroft 	}
    358        1.1   mycroft #endif
    359        1.1   mycroft 	/*
    360        1.1   mycroft 	 * Check for extension in the existing location.
    361        1.1   mycroft 	 */
    362        1.1   mycroft 	cg = dtog(fs, bprev);
    363      1.101        ad 	mutex_enter(&ump->um_lock);
    364       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    365       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    366        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    367       1.37       chs 
    368       1.37       chs 		if (bpp != NULL) {
    369       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    370       1.37       chs 				panic("bad blockno");
    371       1.72        pk 			allocbuf(bp, nsize, 1);
    372       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    373      1.105        ad 			mutex_enter(bp->b_objlock);
    374      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    375      1.105        ad 			bp->b_oflags |= BO_DONE;
    376      1.105        ad 			mutex_exit(bp->b_objlock);
    377       1.37       chs 			*bpp = bp;
    378       1.37       chs 		}
    379       1.37       chs 		if (blknop != NULL) {
    380       1.37       chs 			*blknop = bno;
    381       1.37       chs 		}
    382        1.1   mycroft 		return (0);
    383        1.1   mycroft 	}
    384        1.1   mycroft 	/*
    385        1.1   mycroft 	 * Allocate a new disk location.
    386        1.1   mycroft 	 */
    387        1.1   mycroft 	if (bpref >= fs->fs_size)
    388        1.1   mycroft 		bpref = 0;
    389        1.1   mycroft 	switch ((int)fs->fs_optim) {
    390        1.1   mycroft 	case FS_OPTSPACE:
    391        1.1   mycroft 		/*
    392       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    393       1.81     perry 		 * best use of space, we will waste time relocating it if
    394        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    395        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    396        1.1   mycroft 		 * to begin optimizing for time.
    397        1.1   mycroft 		 */
    398        1.1   mycroft 		request = nsize;
    399        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    400        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    401        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    402        1.1   mycroft 			break;
    403       1.34  jdolecek 
    404       1.34  jdolecek 		if (ffs_log_changeopt) {
    405       1.34  jdolecek 			log(LOG_NOTICE,
    406       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    407       1.34  jdolecek 				fs->fs_fsmnt);
    408       1.34  jdolecek 		}
    409       1.34  jdolecek 
    410        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    411        1.1   mycroft 		break;
    412        1.1   mycroft 	case FS_OPTTIME:
    413        1.1   mycroft 		/*
    414        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    415        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    416        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    417        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    418        1.1   mycroft 		 * above will be able to grow it in place without further
    419        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    420        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    421        1.1   mycroft 		 * optimizing for space.
    422        1.1   mycroft 		 */
    423        1.1   mycroft 		request = fs->fs_bsize;
    424        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    425        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    426        1.1   mycroft 			break;
    427       1.34  jdolecek 
    428       1.34  jdolecek 		if (ffs_log_changeopt) {
    429       1.34  jdolecek 			log(LOG_NOTICE,
    430       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    431       1.34  jdolecek 				fs->fs_fsmnt);
    432       1.34  jdolecek 		}
    433       1.34  jdolecek 
    434        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    435        1.1   mycroft 		break;
    436        1.1   mycroft 	default:
    437  1.113.2.1     skrll 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    438  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    439        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    440        1.1   mycroft 		/* NOTREACHED */
    441        1.1   mycroft 	}
    442      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    443        1.1   mycroft 	if (bno > 0) {
    444      1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    445      1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    446      1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    447      1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    448      1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    449      1.111    simonb 				    osize);
    450      1.111    simonb 			} else
    451      1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    452      1.111    simonb 				    ip->i_number);
    453      1.111    simonb 		}
    454      1.111    simonb 		if (nsize < request) {
    455      1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    456      1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    457      1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    458      1.111    simonb 				    ip->i_ump->um_mountp,
    459      1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    460      1.111    simonb 				    request - nsize);
    461      1.111    simonb 			} else
    462      1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    463      1.111    simonb 				    bno + numfrags(fs, nsize),
    464      1.111    simonb 				    (long)(request - nsize), ip->i_number);
    465      1.111    simonb 		}
    466       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    467        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    468       1.37       chs 		if (bpp != NULL) {
    469       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    470       1.72        pk 			allocbuf(bp, nsize, 1);
    471       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    472      1.105        ad 			mutex_enter(bp->b_objlock);
    473      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    474      1.105        ad 			bp->b_oflags |= BO_DONE;
    475      1.105        ad 			mutex_exit(bp->b_objlock);
    476       1.37       chs 			*bpp = bp;
    477       1.37       chs 		}
    478       1.37       chs 		if (blknop != NULL) {
    479       1.37       chs 			*blknop = bno;
    480       1.37       chs 		}
    481        1.1   mycroft 		return (0);
    482        1.1   mycroft 	}
    483      1.101        ad 	mutex_exit(&ump->um_lock);
    484      1.101        ad 
    485        1.1   mycroft #ifdef QUOTA
    486        1.1   mycroft 	/*
    487        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    488        1.1   mycroft 	 */
    489       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    490        1.1   mycroft #endif
    491       1.37       chs 	if (bpp != NULL) {
    492      1.101        ad 		brelse(bp, 0);
    493       1.37       chs 	}
    494       1.37       chs 
    495        1.1   mycroft nospace:
    496        1.1   mycroft 	/*
    497        1.1   mycroft 	 * no space available
    498        1.1   mycroft 	 */
    499       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    500        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    501        1.1   mycroft 	return (ENOSPC);
    502        1.1   mycroft }
    503        1.1   mycroft 
    504        1.1   mycroft /*
    505        1.1   mycroft  * Allocate an inode in the file system.
    506       1.81     perry  *
    507        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    508        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    509        1.1   mycroft  *   1) allocate the preferred inode.
    510        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    511        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    512        1.1   mycroft  *      available inode is located.
    513       1.47       wiz  * If no inode preference is given the following hierarchy is used
    514        1.1   mycroft  * to allocate an inode:
    515        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    516        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    517        1.1   mycroft  *      available inode is located.
    518      1.106     pooka  *
    519      1.106     pooka  * => um_lock not held upon entry or return
    520        1.1   mycroft  */
    521        1.9  christos int
    522       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    523       1.88      yamt     struct vnode **vpp)
    524        1.9  christos {
    525      1.101        ad 	struct ufsmount *ump;
    526       1.33  augustss 	struct inode *pip;
    527       1.33  augustss 	struct fs *fs;
    528       1.33  augustss 	struct inode *ip;
    529       1.60      fvdl 	struct timespec ts;
    530        1.1   mycroft 	ino_t ino, ipref;
    531        1.1   mycroft 	int cg, error;
    532       1.81     perry 
    533      1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    534      1.111    simonb 
    535       1.88      yamt 	*vpp = NULL;
    536        1.1   mycroft 	pip = VTOI(pvp);
    537        1.1   mycroft 	fs = pip->i_fs;
    538      1.101        ad 	ump = pip->i_ump;
    539      1.101        ad 
    540      1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    541      1.111    simonb 	if (error) {
    542      1.111    simonb 		return error;
    543      1.111    simonb 	}
    544      1.101        ad 	mutex_enter(&ump->um_lock);
    545        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    546        1.1   mycroft 		goto noinodes;
    547        1.1   mycroft 
    548        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    549       1.50     lukem 		ipref = ffs_dirpref(pip);
    550       1.50     lukem 	else
    551       1.50     lukem 		ipref = pip->i_number;
    552        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    553        1.1   mycroft 		ipref = 0;
    554        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    555       1.50     lukem 	/*
    556       1.50     lukem 	 * Track number of dirs created one after another
    557       1.50     lukem 	 * in a same cg without intervening by files.
    558       1.50     lukem 	 */
    559       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    560       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    561       1.50     lukem 			fs->fs_contigdirs[cg]++;
    562       1.50     lukem 	} else {
    563       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    564       1.50     lukem 			fs->fs_contigdirs[cg]--;
    565       1.50     lukem 	}
    566      1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    567        1.1   mycroft 	if (ino == 0)
    568        1.1   mycroft 		goto noinodes;
    569      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    570       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    571        1.1   mycroft 	if (error) {
    572      1.111    simonb 		int err;
    573      1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    574      1.111    simonb 		if (err == 0)
    575      1.111    simonb 			ffs_vfree(pvp, ino, mode);
    576      1.111    simonb 		if (err == 0)
    577      1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    578        1.1   mycroft 		return (error);
    579        1.1   mycroft 	}
    580       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    581       1.88      yamt 	ip = VTOI(*vpp);
    582       1.60      fvdl 	if (ip->i_mode) {
    583       1.60      fvdl #if 0
    584       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    585       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    586       1.60      fvdl #else
    587       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    588       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    589       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    590       1.60      fvdl 		printf("size %llx blocks %llx\n",
    591       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    592       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    593       1.86  christos 		    (unsigned long long)ipref);
    594       1.60      fvdl #if 0
    595       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    596      1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    597       1.60      fvdl #endif
    598       1.60      fvdl 
    599       1.60      fvdl #endif
    600        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    601        1.1   mycroft 	}
    602       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    603       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    604       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    605       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    606        1.1   mycroft 	}
    607       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    608       1.61      fvdl 	ip->i_flags = 0;
    609       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    610        1.1   mycroft 	/*
    611        1.1   mycroft 	 * Set up a new generation number for this inode.
    612        1.1   mycroft 	 */
    613       1.60      fvdl 	ip->i_gen++;
    614       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    615       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    616       1.93      yamt 		vfs_timestamp(&ts);
    617       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    618       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    619       1.60      fvdl 	}
    620        1.1   mycroft 	return (0);
    621        1.1   mycroft noinodes:
    622      1.101        ad 	mutex_exit(&ump->um_lock);
    623      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    624       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    625        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    626        1.1   mycroft 	return (ENOSPC);
    627        1.1   mycroft }
    628        1.1   mycroft 
    629        1.1   mycroft /*
    630       1.50     lukem  * Find a cylinder group in which to place a directory.
    631       1.42  sommerfe  *
    632       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    633       1.50     lukem  * directory inode in the same cylinder group as its parent
    634       1.50     lukem  * directory, but also to reserve space for its files inodes
    635       1.50     lukem  * and data. Restrict the number of directories which may be
    636       1.50     lukem  * allocated one after another in the same cylinder group
    637       1.50     lukem  * without intervening allocation of files.
    638       1.42  sommerfe  *
    639       1.50     lukem  * If we allocate a first level directory then force allocation
    640       1.50     lukem  * in another cylinder group.
    641        1.1   mycroft  */
    642        1.1   mycroft static ino_t
    643       1.85   thorpej ffs_dirpref(struct inode *pip)
    644        1.1   mycroft {
    645       1.50     lukem 	register struct fs *fs;
    646       1.74     soren 	int cg, prefcg;
    647       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    648       1.89       dsl 	int avgifree, avgbfree, avgndir;
    649       1.50     lukem 	int minifree, minbfree, maxndir;
    650       1.50     lukem 	int mincg, minndir;
    651       1.50     lukem 	int maxcontigdirs;
    652       1.50     lukem 
    653      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    654      1.101        ad 
    655       1.50     lukem 	fs = pip->i_fs;
    656        1.1   mycroft 
    657        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    658       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    659       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    660       1.50     lukem 
    661       1.50     lukem 	/*
    662       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    663       1.50     lukem 	 */
    664      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    665       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    666       1.50     lukem 		mincg = prefcg;
    667       1.50     lukem 		minndir = fs->fs_ipg;
    668       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    669       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    670       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    671       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    672       1.42  sommerfe 				mincg = cg;
    673       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    674       1.42  sommerfe 			}
    675       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    676       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    677       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    678       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    679       1.50     lukem 				mincg = cg;
    680       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    681       1.42  sommerfe 			}
    682       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    683       1.42  sommerfe 	}
    684       1.50     lukem 
    685       1.50     lukem 	/*
    686       1.50     lukem 	 * Count various limits which used for
    687       1.50     lukem 	 * optimal allocation of a directory inode.
    688       1.50     lukem 	 */
    689       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    690       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    691       1.50     lukem 	if (minifree < 0)
    692       1.50     lukem 		minifree = 0;
    693       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    694       1.50     lukem 	if (minbfree < 0)
    695       1.50     lukem 		minbfree = 0;
    696       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    697       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    698       1.89       dsl 	if (avgndir != 0) {
    699       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    700       1.89       dsl 		if (dirsize < curdsz)
    701       1.89       dsl 			dirsize = curdsz;
    702       1.89       dsl 	}
    703       1.89       dsl 	if (cgsize < dirsize * 255)
    704       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    705       1.89       dsl 	else
    706       1.89       dsl 		maxcontigdirs = 255;
    707       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    708       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    709       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    710       1.50     lukem 	if (maxcontigdirs == 0)
    711       1.50     lukem 		maxcontigdirs = 1;
    712       1.50     lukem 
    713       1.50     lukem 	/*
    714       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    715       1.50     lukem 	 * regular files, but only if we have no deficit in
    716       1.50     lukem 	 * inodes or space.
    717       1.50     lukem 	 */
    718       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    719       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    720       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    721       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    722       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    723       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    724       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    725       1.50     lukem 		}
    726       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    727       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    728       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    729       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    730       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    731       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    732       1.50     lukem 		}
    733       1.50     lukem 	/*
    734       1.50     lukem 	 * This is a backstop when we are deficient in space.
    735       1.50     lukem 	 */
    736       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    737       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    738       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    739       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    740       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    741       1.50     lukem 			break;
    742       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    743        1.1   mycroft }
    744        1.1   mycroft 
    745        1.1   mycroft /*
    746        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    747        1.1   mycroft  * logically divided into sections. The first section is composed of the
    748        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    749       1.81     perry  *
    750        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    751        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    752        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    753        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    754        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    755        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    756        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    757        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    758        1.1   mycroft  * continues until a cylinder group with greater than the average number
    759        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    760        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    761        1.1   mycroft  * here a best guess is made based upon the logical block number being
    762        1.1   mycroft  * allocated.
    763       1.81     perry  *
    764        1.1   mycroft  * If a section is already partially allocated, the policy is to
    765        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    766       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    767       1.60      fvdl  * contigously if possible.
    768      1.106     pooka  *
    769      1.106     pooka  * => um_lock held on entry and exit
    770        1.1   mycroft  */
    771       1.58      fvdl daddr_t
    772      1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    773       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    774        1.1   mycroft {
    775       1.33  augustss 	struct fs *fs;
    776       1.33  augustss 	int cg;
    777        1.1   mycroft 	int avgbfree, startcg;
    778        1.1   mycroft 
    779      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    780      1.101        ad 
    781        1.1   mycroft 	fs = ip->i_fs;
    782      1.111    simonb 
    783      1.111    simonb 	/*
    784      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    785      1.111    simonb 	 * in the inode extentions to return the desired block.
    786      1.111    simonb 	 *
    787      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    788      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    789      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    790      1.111    simonb 	 * block.  For data, return the address of the actual block
    791      1.111    simonb 	 * relative to the address of the first data block.
    792      1.111    simonb 	 */
    793      1.111    simonb 	if (flags & B_CONTIG) {
    794      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    795      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    796      1.111    simonb 		if (flags & B_METAONLY)
    797      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    798      1.111    simonb 		else
    799      1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    800      1.111    simonb 	}
    801      1.111    simonb 
    802        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    803       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    804        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    805      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    806        1.1   mycroft 		}
    807        1.1   mycroft 		/*
    808        1.1   mycroft 		 * Find a cylinder with greater than average number of
    809        1.1   mycroft 		 * unused data blocks.
    810        1.1   mycroft 		 */
    811        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    812        1.1   mycroft 			startcg =
    813        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    814        1.1   mycroft 		else
    815       1.19    bouyer 			startcg = dtog(fs,
    816       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    817        1.1   mycroft 		startcg %= fs->fs_ncg;
    818        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    819        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    820        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    821      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    822        1.1   mycroft 			}
    823       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    824        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    825      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    826        1.1   mycroft 			}
    827       1.35   thorpej 		return (0);
    828        1.1   mycroft 	}
    829        1.1   mycroft 	/*
    830       1.60      fvdl 	 * We just always try to lay things out contiguously.
    831       1.60      fvdl 	 */
    832       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    833       1.60      fvdl }
    834       1.60      fvdl 
    835       1.60      fvdl daddr_t
    836      1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    837      1.111    simonb     int64_t *bap)
    838       1.60      fvdl {
    839       1.60      fvdl 	struct fs *fs;
    840       1.60      fvdl 	int cg;
    841       1.60      fvdl 	int avgbfree, startcg;
    842       1.60      fvdl 
    843      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    844      1.101        ad 
    845       1.60      fvdl 	fs = ip->i_fs;
    846      1.111    simonb 
    847      1.111    simonb 	/*
    848      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    849      1.111    simonb 	 * in the inode extentions to return the desired block.
    850      1.111    simonb 	 *
    851      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    852      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    853      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    854      1.111    simonb 	 * block.  For data, return the address of the actual block
    855      1.111    simonb 	 * relative to the address of the first data block.
    856      1.111    simonb 	 */
    857      1.111    simonb 	if (flags & B_CONTIG) {
    858      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    859      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    860      1.111    simonb 		if (flags & B_METAONLY)
    861      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    862      1.111    simonb 		else
    863      1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    864      1.111    simonb 	}
    865      1.111    simonb 
    866       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    867       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    868       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    869      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    870       1.60      fvdl 		}
    871        1.1   mycroft 		/*
    872       1.60      fvdl 		 * Find a cylinder with greater than average number of
    873       1.60      fvdl 		 * unused data blocks.
    874        1.1   mycroft 		 */
    875       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    876       1.60      fvdl 			startcg =
    877       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    878       1.60      fvdl 		else
    879       1.60      fvdl 			startcg = dtog(fs,
    880       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    881       1.60      fvdl 		startcg %= fs->fs_ncg;
    882       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    883       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    884       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    885      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    886       1.60      fvdl 			}
    887       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    888       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    889      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    890       1.60      fvdl 			}
    891       1.60      fvdl 		return (0);
    892       1.60      fvdl 	}
    893       1.60      fvdl 	/*
    894       1.60      fvdl 	 * We just always try to lay things out contiguously.
    895       1.60      fvdl 	 */
    896       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    897        1.1   mycroft }
    898        1.1   mycroft 
    899       1.60      fvdl 
    900        1.1   mycroft /*
    901        1.1   mycroft  * Implement the cylinder overflow algorithm.
    902        1.1   mycroft  *
    903        1.1   mycroft  * The policy implemented by this algorithm is:
    904        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    905        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    906        1.1   mycroft  *   3) brute force search for a free block.
    907      1.106     pooka  *
    908      1.106     pooka  * => called with um_lock held
    909      1.106     pooka  * => returns with um_lock released on success, held on failure
    910      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    911        1.1   mycroft  */
    912        1.1   mycroft /*VARARGS5*/
    913       1.58      fvdl static daddr_t
    914       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    915       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    916      1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    917        1.1   mycroft {
    918       1.33  augustss 	struct fs *fs;
    919       1.58      fvdl 	daddr_t result;
    920        1.1   mycroft 	int i, icg = cg;
    921        1.1   mycroft 
    922        1.1   mycroft 	fs = ip->i_fs;
    923        1.1   mycroft 	/*
    924        1.1   mycroft 	 * 1: preferred cylinder group
    925        1.1   mycroft 	 */
    926      1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    927        1.1   mycroft 	if (result)
    928        1.1   mycroft 		return (result);
    929      1.111    simonb 
    930      1.111    simonb 	if (flags & B_CONTIG)
    931      1.111    simonb 		return (result);
    932        1.1   mycroft 	/*
    933        1.1   mycroft 	 * 2: quadratic rehash
    934        1.1   mycroft 	 */
    935        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    936        1.1   mycroft 		cg += i;
    937        1.1   mycroft 		if (cg >= fs->fs_ncg)
    938        1.1   mycroft 			cg -= fs->fs_ncg;
    939      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    940        1.1   mycroft 		if (result)
    941        1.1   mycroft 			return (result);
    942        1.1   mycroft 	}
    943        1.1   mycroft 	/*
    944        1.1   mycroft 	 * 3: brute force search
    945        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    946        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    947        1.1   mycroft 	 */
    948        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    949        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    950      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    951        1.1   mycroft 		if (result)
    952        1.1   mycroft 			return (result);
    953        1.1   mycroft 		cg++;
    954        1.1   mycroft 		if (cg == fs->fs_ncg)
    955        1.1   mycroft 			cg = 0;
    956        1.1   mycroft 	}
    957       1.35   thorpej 	return (0);
    958        1.1   mycroft }
    959        1.1   mycroft 
    960        1.1   mycroft /*
    961        1.1   mycroft  * Determine whether a fragment can be extended.
    962        1.1   mycroft  *
    963       1.81     perry  * Check to see if the necessary fragments are available, and
    964        1.1   mycroft  * if they are, allocate them.
    965      1.106     pooka  *
    966      1.106     pooka  * => called with um_lock held
    967      1.106     pooka  * => returns with um_lock released on success, held on failure
    968        1.1   mycroft  */
    969       1.58      fvdl static daddr_t
    970       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    971        1.1   mycroft {
    972      1.101        ad 	struct ufsmount *ump;
    973       1.33  augustss 	struct fs *fs;
    974       1.33  augustss 	struct cg *cgp;
    975        1.1   mycroft 	struct buf *bp;
    976       1.58      fvdl 	daddr_t bno;
    977        1.1   mycroft 	int frags, bbase;
    978        1.1   mycroft 	int i, error;
    979       1.62      fvdl 	u_int8_t *blksfree;
    980        1.1   mycroft 
    981        1.1   mycroft 	fs = ip->i_fs;
    982      1.101        ad 	ump = ip->i_ump;
    983      1.101        ad 
    984      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    985      1.101        ad 
    986        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    987       1.35   thorpej 		return (0);
    988        1.1   mycroft 	frags = numfrags(fs, nsize);
    989        1.1   mycroft 	bbase = fragnum(fs, bprev);
    990        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    991        1.1   mycroft 		/* cannot extend across a block boundary */
    992       1.35   thorpej 		return (0);
    993        1.1   mycroft 	}
    994      1.101        ad 	mutex_exit(&ump->um_lock);
    995        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    996      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    997      1.101        ad 	if (error)
    998      1.101        ad 		goto fail;
    999        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1000      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1001      1.101        ad 		goto fail;
   1002       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1003       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1004       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1005       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1006        1.1   mycroft 	bno = dtogd(fs, bprev);
   1007       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1008        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1009      1.101        ad 		if (isclr(blksfree, bno + i))
   1010      1.101        ad 			goto fail;
   1011        1.1   mycroft 	/*
   1012        1.1   mycroft 	 * the current fragment can be extended
   1013        1.1   mycroft 	 * deduct the count on fragment being extended into
   1014        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1015        1.1   mycroft 	 * allocate the extended piece
   1016        1.1   mycroft 	 */
   1017        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1018       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1019        1.1   mycroft 			break;
   1020       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1021        1.1   mycroft 	if (i != frags)
   1022       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1023      1.101        ad 	mutex_enter(&ump->um_lock);
   1024        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1025       1.62      fvdl 		clrbit(blksfree, bno + i);
   1026       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1027        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1028        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1029        1.1   mycroft 	}
   1030        1.1   mycroft 	fs->fs_fmod = 1;
   1031      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1032      1.101        ad 	mutex_exit(&ump->um_lock);
   1033       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1034       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1035        1.1   mycroft 	bdwrite(bp);
   1036        1.1   mycroft 	return (bprev);
   1037      1.101        ad 
   1038      1.101        ad  fail:
   1039      1.101        ad  	brelse(bp, 0);
   1040      1.101        ad  	mutex_enter(&ump->um_lock);
   1041      1.101        ad  	return (0);
   1042        1.1   mycroft }
   1043        1.1   mycroft 
   1044        1.1   mycroft /*
   1045        1.1   mycroft  * Determine whether a block can be allocated.
   1046        1.1   mycroft  *
   1047        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1048        1.1   mycroft  * and if it is, allocate it.
   1049        1.1   mycroft  */
   1050       1.58      fvdl static daddr_t
   1051      1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1052        1.1   mycroft {
   1053      1.101        ad 	struct ufsmount *ump;
   1054       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1055       1.30      fvdl 	struct cg *cgp;
   1056        1.1   mycroft 	struct buf *bp;
   1057       1.60      fvdl 	int32_t bno;
   1058       1.60      fvdl 	daddr_t blkno;
   1059       1.30      fvdl 	int error, frags, allocsiz, i;
   1060       1.62      fvdl 	u_int8_t *blksfree;
   1061       1.30      fvdl #ifdef FFS_EI
   1062       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1063       1.30      fvdl #endif
   1064        1.1   mycroft 
   1065      1.101        ad 	ump = ip->i_ump;
   1066      1.101        ad 
   1067      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1068      1.101        ad 
   1069        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1070       1.35   thorpej 		return (0);
   1071      1.101        ad 	mutex_exit(&ump->um_lock);
   1072        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1073      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1074      1.101        ad 	if (error)
   1075      1.101        ad 		goto fail;
   1076        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1077       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1078      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1079      1.101        ad 		goto fail;
   1080       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1081       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1082       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1083       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1084        1.1   mycroft 	if (size == fs->fs_bsize) {
   1085      1.101        ad 		mutex_enter(&ump->um_lock);
   1086      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1087       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1088      1.101        ad 		mutex_exit(&ump->um_lock);
   1089        1.1   mycroft 		bdwrite(bp);
   1090       1.60      fvdl 		return (blkno);
   1091        1.1   mycroft 	}
   1092        1.1   mycroft 	/*
   1093        1.1   mycroft 	 * check to see if any fragments are already available
   1094        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1095        1.1   mycroft 	 * it down to a smaller size if necessary
   1096        1.1   mycroft 	 */
   1097       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1098        1.1   mycroft 	frags = numfrags(fs, size);
   1099        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1100        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1101        1.1   mycroft 			break;
   1102        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1103        1.1   mycroft 		/*
   1104       1.81     perry 		 * no fragments were available, so a block will be
   1105        1.1   mycroft 		 * allocated, and hacked up
   1106        1.1   mycroft 		 */
   1107      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1108      1.101        ad 			goto fail;
   1109      1.101        ad 		mutex_enter(&ump->um_lock);
   1110      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1111       1.60      fvdl 		bno = dtogd(fs, blkno);
   1112        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1113       1.62      fvdl 			setbit(blksfree, bno + i);
   1114        1.1   mycroft 		i = fs->fs_frag - frags;
   1115       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1116        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1117       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1118        1.1   mycroft 		fs->fs_fmod = 1;
   1119       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1120       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1121      1.101        ad 		mutex_exit(&ump->um_lock);
   1122        1.1   mycroft 		bdwrite(bp);
   1123       1.60      fvdl 		return (blkno);
   1124        1.1   mycroft 	}
   1125       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1126       1.30      fvdl #if 0
   1127       1.30      fvdl 	/*
   1128       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1129       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1130       1.30      fvdl 	 */
   1131      1.101        ad 	if (bno < 0)
   1132      1.101        ad 		goto fail;
   1133       1.30      fvdl #endif
   1134        1.1   mycroft 	for (i = 0; i < frags; i++)
   1135       1.62      fvdl 		clrbit(blksfree, bno + i);
   1136      1.101        ad 	mutex_enter(&ump->um_lock);
   1137       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1138        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1139        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1140        1.1   mycroft 	fs->fs_fmod = 1;
   1141       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1142        1.1   mycroft 	if (frags != allocsiz)
   1143       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1144       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1145      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1146      1.101        ad 	mutex_exit(&ump->um_lock);
   1147       1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1148       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1149        1.1   mycroft 	bdwrite(bp);
   1150       1.30      fvdl 	return blkno;
   1151      1.101        ad 
   1152      1.101        ad  fail:
   1153      1.101        ad  	brelse(bp, 0);
   1154      1.101        ad  	mutex_enter(&ump->um_lock);
   1155      1.101        ad  	return (0);
   1156        1.1   mycroft }
   1157        1.1   mycroft 
   1158        1.1   mycroft /*
   1159        1.1   mycroft  * Allocate a block in a cylinder group.
   1160        1.1   mycroft  *
   1161        1.1   mycroft  * This algorithm implements the following policy:
   1162        1.1   mycroft  *   1) allocate the requested block.
   1163        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1164        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1165        1.1   mycroft  *      specified cylinder group.
   1166        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1167        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1168        1.1   mycroft  */
   1169       1.58      fvdl static daddr_t
   1170      1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1171        1.1   mycroft {
   1172      1.101        ad 	struct ufsmount *ump;
   1173       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1174       1.30      fvdl 	struct cg *cgp;
   1175       1.60      fvdl 	daddr_t blkno;
   1176       1.60      fvdl 	int32_t bno;
   1177       1.60      fvdl 	u_int8_t *blksfree;
   1178       1.30      fvdl #ifdef FFS_EI
   1179       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1180       1.30      fvdl #endif
   1181        1.1   mycroft 
   1182      1.101        ad 	ump = ip->i_ump;
   1183      1.101        ad 
   1184      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1185      1.101        ad 
   1186       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1187       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1188       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1189       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1190       1.60      fvdl 	} else {
   1191       1.60      fvdl 		bpref = blknum(fs, bpref);
   1192       1.60      fvdl 		bno = dtogd(fs, bpref);
   1193        1.1   mycroft 		/*
   1194       1.60      fvdl 		 * if the requested block is available, use it
   1195        1.1   mycroft 		 */
   1196       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1197       1.60      fvdl 			goto gotit;
   1198      1.111    simonb 		/*
   1199      1.111    simonb 		 * if the requested data block isn't available and we are
   1200      1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1201      1.111    simonb 		 */
   1202      1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1203      1.111    simonb 			return (0);
   1204        1.1   mycroft 	}
   1205      1.111    simonb 
   1206        1.1   mycroft 	/*
   1207       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1208        1.1   mycroft 	 */
   1209       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1210        1.1   mycroft 	if (bno < 0)
   1211       1.35   thorpej 		return (0);
   1212       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1213        1.1   mycroft gotit:
   1214        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1215       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1216       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1217       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1218        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1219       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1220       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1221       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1222       1.73       dbj 		int cylno;
   1223       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1224       1.75       dbj 		KASSERT(cylno >= 0);
   1225       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1226       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1227       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1228       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1229       1.73       dbj 		    needswap);
   1230       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1231       1.73       dbj 	}
   1232        1.1   mycroft 	fs->fs_fmod = 1;
   1233       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1234      1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1235      1.101        ad 		mutex_exit(&ump->um_lock);
   1236       1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1237      1.101        ad 		mutex_enter(&ump->um_lock);
   1238      1.101        ad 	}
   1239       1.30      fvdl 	return (blkno);
   1240        1.1   mycroft }
   1241        1.1   mycroft 
   1242        1.1   mycroft /*
   1243        1.1   mycroft  * Determine whether an inode can be allocated.
   1244        1.1   mycroft  *
   1245        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1246        1.1   mycroft  * allocate it using the following policy:
   1247        1.1   mycroft  *   1) allocate the requested inode.
   1248        1.1   mycroft  *   2) allocate the next available inode after the requested
   1249        1.1   mycroft  *      inode in the specified cylinder group.
   1250        1.1   mycroft  */
   1251       1.58      fvdl static daddr_t
   1252      1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1253        1.1   mycroft {
   1254      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1255       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1256       1.33  augustss 	struct cg *cgp;
   1257       1.60      fvdl 	struct buf *bp, *ibp;
   1258       1.60      fvdl 	u_int8_t *inosused;
   1259        1.1   mycroft 	int error, start, len, loc, map, i;
   1260       1.60      fvdl 	int32_t initediblk;
   1261      1.112   hannken 	daddr_t nalloc;
   1262       1.60      fvdl 	struct ufs2_dinode *dp2;
   1263       1.19    bouyer #ifdef FFS_EI
   1264       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1265       1.19    bouyer #endif
   1266        1.1   mycroft 
   1267      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1268      1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1269      1.101        ad 
   1270        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1271       1.35   thorpej 		return (0);
   1272      1.101        ad 	mutex_exit(&ump->um_lock);
   1273      1.112   hannken 	ibp = NULL;
   1274      1.112   hannken 	initediblk = -1;
   1275      1.112   hannken retry:
   1276        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1277      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1278      1.101        ad 	if (error)
   1279      1.101        ad 		goto fail;
   1280        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1281      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1282      1.101        ad 		goto fail;
   1283      1.112   hannken 
   1284      1.112   hannken 	if (ibp != NULL &&
   1285      1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1286      1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1287      1.112   hannken 		brelse(ibp, BC_INVAL);
   1288      1.112   hannken 		ibp = NULL;
   1289      1.112   hannken 	}
   1290      1.112   hannken 	/*
   1291      1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1292      1.112   hannken 	 */
   1293      1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1294      1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1295      1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1296      1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1297      1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1298      1.112   hannken 			/*
   1299      1.112   hannken 			 * We have to release the cg buffer here to prevent
   1300      1.112   hannken 			 * a deadlock when reading the inode block will
   1301      1.112   hannken 			 * run a copy-on-write that might use this cg.
   1302      1.112   hannken 			 */
   1303      1.112   hannken 			brelse(bp, 0);
   1304      1.112   hannken 			bp = NULL;
   1305      1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1306      1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1307      1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1308      1.112   hannken 			if (error)
   1309      1.112   hannken 				goto fail;
   1310      1.112   hannken 			goto retry;
   1311      1.112   hannken 		}
   1312      1.112   hannken 	}
   1313      1.112   hannken 
   1314       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1315       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1316       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1317       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1318       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1319        1.1   mycroft 	if (ipref) {
   1320        1.1   mycroft 		ipref %= fs->fs_ipg;
   1321       1.60      fvdl 		if (isclr(inosused, ipref))
   1322        1.1   mycroft 			goto gotit;
   1323        1.1   mycroft 	}
   1324       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1325       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1326       1.19    bouyer 		NBBY);
   1327       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1328        1.1   mycroft 	if (loc == 0) {
   1329        1.1   mycroft 		len = start + 1;
   1330        1.1   mycroft 		start = 0;
   1331       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1332        1.1   mycroft 		if (loc == 0) {
   1333       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1334       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1335       1.19    bouyer 				fs->fs_fsmnt);
   1336        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1337        1.1   mycroft 			/* NOTREACHED */
   1338        1.1   mycroft 		}
   1339        1.1   mycroft 	}
   1340        1.1   mycroft 	i = start + len - loc;
   1341       1.60      fvdl 	map = inosused[i];
   1342        1.1   mycroft 	ipref = i * NBBY;
   1343        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1344        1.1   mycroft 		if ((map & i) == 0) {
   1345       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1346        1.1   mycroft 			goto gotit;
   1347        1.1   mycroft 		}
   1348        1.1   mycroft 	}
   1349       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1350        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1351        1.1   mycroft 	/* NOTREACHED */
   1352        1.1   mycroft gotit:
   1353      1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1354      1.111    simonb 	    mode);
   1355       1.60      fvdl 	/*
   1356       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1357       1.60      fvdl 	 */
   1358      1.112   hannken 	if (ibp != NULL) {
   1359      1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1360      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1361      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1362      1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1363       1.60      fvdl 			/*
   1364       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1365       1.60      fvdl 			 * random, after all.
   1366       1.60      fvdl 			 */
   1367       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1368       1.60      fvdl 			dp2++;
   1369       1.60      fvdl 		}
   1370       1.60      fvdl 		initediblk += INOPB(fs);
   1371       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1372       1.60      fvdl 	}
   1373       1.60      fvdl 
   1374      1.101        ad 	mutex_enter(&ump->um_lock);
   1375       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1376      1.101        ad 	setbit(inosused, ipref);
   1377      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1378      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1379      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1380      1.101        ad 	fs->fs_fmod = 1;
   1381      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1382      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1383      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1384      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1385      1.101        ad 	}
   1386      1.101        ad 	mutex_exit(&ump->um_lock);
   1387      1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1388      1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1389      1.112   hannken 	if (ibp != NULL) {
   1390      1.112   hannken 		bwrite(bp);
   1391      1.104   hannken 		bawrite(ibp);
   1392      1.112   hannken 	} else
   1393      1.112   hannken 		bdwrite(bp);
   1394        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1395      1.101        ad  fail:
   1396      1.112   hannken 	if (bp != NULL)
   1397      1.112   hannken 		brelse(bp, 0);
   1398      1.112   hannken 	if (ibp != NULL)
   1399      1.112   hannken 		brelse(ibp, BC_INVAL);
   1400      1.101        ad 	mutex_enter(&ump->um_lock);
   1401      1.101        ad 	return (0);
   1402        1.1   mycroft }
   1403        1.1   mycroft 
   1404        1.1   mycroft /*
   1405      1.111    simonb  * Allocate a block or fragment.
   1406      1.111    simonb  *
   1407      1.111    simonb  * The specified block or fragment is removed from the
   1408      1.111    simonb  * free map, possibly fragmenting a block in the process.
   1409      1.111    simonb  *
   1410      1.111    simonb  * This implementation should mirror fs_blkfree
   1411      1.111    simonb  *
   1412      1.111    simonb  * => um_lock not held on entry or exit
   1413      1.111    simonb  */
   1414      1.111    simonb int
   1415      1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1416      1.111    simonb {
   1417  1.113.2.1     skrll 	int error;
   1418  1.113.2.1     skrll 
   1419  1.113.2.1     skrll 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1420  1.113.2.1     skrll 	    ip->i_dev, ip->i_uid);
   1421  1.113.2.1     skrll 	if (error)
   1422  1.113.2.1     skrll 		return error;
   1423  1.113.2.1     skrll 
   1424  1.113.2.1     skrll 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1425  1.113.2.1     skrll }
   1426  1.113.2.1     skrll 
   1427  1.113.2.1     skrll int
   1428  1.113.2.1     skrll ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1429  1.113.2.1     skrll {
   1430  1.113.2.1     skrll 	struct fs *fs = ump->um_fs;
   1431      1.111    simonb 	struct cg *cgp;
   1432      1.111    simonb 	struct buf *bp;
   1433      1.111    simonb 	int32_t fragno, cgbno;
   1434      1.111    simonb 	int i, error, cg, blk, frags, bbase;
   1435      1.111    simonb 	u_int8_t *blksfree;
   1436      1.111    simonb 	const int needswap = UFS_FSNEEDSWAP(fs);
   1437      1.111    simonb 
   1438  1.113.2.1     skrll 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1439  1.113.2.1     skrll 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1440  1.113.2.1     skrll 	KASSERT(bno < fs->fs_size);
   1441  1.113.2.1     skrll 
   1442      1.111    simonb 	cg = dtog(fs, bno);
   1443  1.113.2.1     skrll 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1444      1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1445      1.111    simonb 	if (error) {
   1446      1.111    simonb 		brelse(bp, 0);
   1447      1.111    simonb 		return error;
   1448      1.111    simonb 	}
   1449      1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1450      1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1451      1.111    simonb 		brelse(bp, 0);
   1452      1.111    simonb 		return EIO;
   1453      1.111    simonb 	}
   1454      1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1455      1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1456      1.111    simonb 	cgbno = dtogd(fs, bno);
   1457      1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1458      1.111    simonb 
   1459      1.111    simonb 	mutex_enter(&ump->um_lock);
   1460      1.111    simonb 	if (size == fs->fs_bsize) {
   1461      1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1462      1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1463      1.111    simonb 			mutex_exit(&ump->um_lock);
   1464      1.111    simonb 			brelse(bp, 0);
   1465      1.111    simonb 			return EBUSY;
   1466      1.111    simonb 		}
   1467      1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1468      1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1469      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1470      1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1471      1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1472      1.111    simonb 	} else {
   1473      1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1474      1.111    simonb 
   1475      1.111    simonb 		frags = numfrags(fs, size);
   1476      1.111    simonb 		for (i = 0; i < frags; i++) {
   1477      1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1478      1.111    simonb 				mutex_exit(&ump->um_lock);
   1479      1.111    simonb 				brelse(bp, 0);
   1480      1.111    simonb 				return EBUSY;
   1481      1.111    simonb 			}
   1482      1.111    simonb 		}
   1483      1.111    simonb 		/*
   1484      1.111    simonb 		 * if a complete block is being split, account for it
   1485      1.111    simonb 		 */
   1486      1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1487      1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1488      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1489      1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1490      1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1491      1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1492      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1493      1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1494      1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1495      1.111    simonb 		}
   1496      1.111    simonb 		/*
   1497      1.111    simonb 		 * decrement the counts associated with the old frags
   1498      1.111    simonb 		 */
   1499      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1500      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1501      1.111    simonb 		/*
   1502      1.111    simonb 		 * allocate the fragment
   1503      1.111    simonb 		 */
   1504      1.111    simonb 		for (i = 0; i < frags; i++) {
   1505      1.111    simonb 			clrbit(blksfree, cgbno + i);
   1506      1.111    simonb 		}
   1507      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1508      1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1509      1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1510      1.111    simonb 		/*
   1511      1.111    simonb 		 * add back in counts associated with the new frags
   1512      1.111    simonb 		 */
   1513      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1514      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1515      1.111    simonb 	}
   1516      1.111    simonb 	fs->fs_fmod = 1;
   1517      1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1518      1.111    simonb 	mutex_exit(&ump->um_lock);
   1519      1.111    simonb 	bdwrite(bp);
   1520      1.111    simonb 	return 0;
   1521      1.111    simonb }
   1522      1.111    simonb 
   1523      1.111    simonb /*
   1524        1.1   mycroft  * Free a block or fragment.
   1525        1.1   mycroft  *
   1526        1.1   mycroft  * The specified block or fragment is placed back in the
   1527       1.81     perry  * free map. If a fragment is deallocated, a possible
   1528        1.1   mycroft  * block reassembly is checked.
   1529      1.106     pooka  *
   1530      1.106     pooka  * => um_lock not held on entry or exit
   1531        1.1   mycroft  */
   1532        1.9  christos void
   1533       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1534       1.85   thorpej     ino_t inum)
   1535        1.1   mycroft {
   1536       1.33  augustss 	struct cg *cgp;
   1537        1.1   mycroft 	struct buf *bp;
   1538       1.76   hannken 	struct ufsmount *ump;
   1539       1.76   hannken 	daddr_t cgblkno;
   1540  1.113.2.1     skrll 	int error, cg;
   1541       1.76   hannken 	dev_t dev;
   1542      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1543  1.113.2.1     skrll #ifdef FFS_EI
   1544       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1545  1.113.2.1     skrll #endif
   1546  1.113.2.1     skrll 
   1547  1.113.2.1     skrll 	KASSERT(!devvp_is_snapshot);
   1548        1.1   mycroft 
   1549       1.76   hannken 	cg = dtog(fs, bno);
   1550  1.113.2.1     skrll 	dev = devvp->v_rdev;
   1551  1.113.2.1     skrll 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1552  1.113.2.1     skrll 	KASSERT(fs == ump->um_fs);
   1553  1.113.2.1     skrll 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1554  1.113.2.1     skrll 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1555  1.113.2.1     skrll 		return;
   1556  1.113.2.1     skrll 
   1557  1.113.2.1     skrll 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1558  1.113.2.1     skrll 	if (error)
   1559  1.113.2.1     skrll 		return;
   1560  1.113.2.1     skrll 
   1561  1.113.2.1     skrll 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1562  1.113.2.1     skrll 	    NOCRED, B_MODIFY, &bp);
   1563  1.113.2.1     skrll 	if (error) {
   1564  1.113.2.1     skrll 		brelse(bp, 0);
   1565  1.113.2.1     skrll 		return;
   1566       1.76   hannken 	}
   1567  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1568  1.113.2.1     skrll 	if (!cg_chkmagic(cgp, needswap)) {
   1569  1.113.2.1     skrll 		brelse(bp, 0);
   1570  1.113.2.1     skrll 		return;
   1571        1.1   mycroft 	}
   1572       1.76   hannken 
   1573  1.113.2.1     skrll 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1574  1.113.2.1     skrll 
   1575  1.113.2.1     skrll 	bdwrite(bp);
   1576  1.113.2.1     skrll }
   1577  1.113.2.1     skrll 
   1578  1.113.2.1     skrll /*
   1579  1.113.2.1     skrll  * Free a block or fragment from a snapshot cg copy.
   1580  1.113.2.1     skrll  *
   1581  1.113.2.1     skrll  * The specified block or fragment is placed back in the
   1582  1.113.2.1     skrll  * free map. If a fragment is deallocated, a possible
   1583  1.113.2.1     skrll  * block reassembly is checked.
   1584  1.113.2.1     skrll  *
   1585  1.113.2.1     skrll  * => um_lock not held on entry or exit
   1586  1.113.2.1     skrll  */
   1587  1.113.2.1     skrll void
   1588  1.113.2.1     skrll ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1589  1.113.2.1     skrll     ino_t inum)
   1590  1.113.2.1     skrll {
   1591  1.113.2.1     skrll 	struct cg *cgp;
   1592  1.113.2.1     skrll 	struct buf *bp;
   1593  1.113.2.1     skrll 	struct ufsmount *ump;
   1594  1.113.2.1     skrll 	daddr_t cgblkno;
   1595  1.113.2.1     skrll 	int error, cg;
   1596  1.113.2.1     skrll 	dev_t dev;
   1597  1.113.2.1     skrll 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1598  1.113.2.1     skrll #ifdef FFS_EI
   1599  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1600  1.113.2.1     skrll #endif
   1601  1.113.2.1     skrll 
   1602  1.113.2.1     skrll 	KASSERT(devvp_is_snapshot);
   1603  1.113.2.1     skrll 
   1604  1.113.2.1     skrll 	cg = dtog(fs, bno);
   1605  1.113.2.1     skrll 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1606  1.113.2.1     skrll 	ump = VFSTOUFS(devvp->v_mount);
   1607  1.113.2.1     skrll 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1608  1.113.2.1     skrll 
   1609  1.113.2.1     skrll 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1610  1.113.2.1     skrll 	if (error)
   1611        1.1   mycroft 		return;
   1612  1.113.2.1     skrll 
   1613      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1614      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1615        1.1   mycroft 	if (error) {
   1616      1.101        ad 		brelse(bp, 0);
   1617        1.1   mycroft 		return;
   1618        1.1   mycroft 	}
   1619        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1620       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1621      1.101        ad 		brelse(bp, 0);
   1622        1.1   mycroft 		return;
   1623        1.1   mycroft 	}
   1624  1.113.2.1     skrll 
   1625  1.113.2.1     skrll 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1626  1.113.2.1     skrll 
   1627  1.113.2.1     skrll 	bdwrite(bp);
   1628  1.113.2.1     skrll }
   1629  1.113.2.1     skrll 
   1630  1.113.2.1     skrll static void
   1631  1.113.2.1     skrll ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1632  1.113.2.1     skrll     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1633  1.113.2.1     skrll {
   1634  1.113.2.1     skrll 	struct cg *cgp;
   1635  1.113.2.1     skrll 	int32_t fragno, cgbno;
   1636  1.113.2.1     skrll 	int i, cg, blk, frags, bbase;
   1637  1.113.2.1     skrll 	u_int8_t *blksfree;
   1638  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1639  1.113.2.1     skrll 
   1640  1.113.2.1     skrll 	cg = dtog(fs, bno);
   1641  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1642       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1643       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1644       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1645       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1646       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1647       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1648      1.101        ad 	mutex_enter(&ump->um_lock);
   1649        1.1   mycroft 	if (size == fs->fs_bsize) {
   1650       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1651       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1652      1.113   hannken 			if (devvp_is_snapshot) {
   1653      1.101        ad 				mutex_exit(&ump->um_lock);
   1654       1.76   hannken 				return;
   1655       1.76   hannken 			}
   1656  1.113.2.1     skrll 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1657  1.113.2.1     skrll 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1658        1.1   mycroft 			panic("blkfree: freeing free block");
   1659        1.1   mycroft 		}
   1660       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1661       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1662       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1663        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1664        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1665       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1666       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1667       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1668       1.75       dbj 			KASSERT(i >= 0);
   1669       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1670       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1671       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1672       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1673       1.73       dbj 			    needswap);
   1674       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1675       1.73       dbj 		}
   1676        1.1   mycroft 	} else {
   1677       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1678        1.1   mycroft 		/*
   1679        1.1   mycroft 		 * decrement the counts associated with the old frags
   1680        1.1   mycroft 		 */
   1681       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1682       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1683        1.1   mycroft 		/*
   1684        1.1   mycroft 		 * deallocate the fragment
   1685        1.1   mycroft 		 */
   1686        1.1   mycroft 		frags = numfrags(fs, size);
   1687        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1688       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1689  1.113.2.1     skrll 				printf("dev = 0x%llx, block = %" PRId64
   1690       1.59   tsutsui 				       ", fs = %s\n",
   1691  1.113.2.1     skrll 				    (unsigned long long)dev, bno + i,
   1692  1.113.2.1     skrll 				    fs->fs_fsmnt);
   1693        1.1   mycroft 				panic("blkfree: freeing free frag");
   1694        1.1   mycroft 			}
   1695       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1696        1.1   mycroft 		}
   1697       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1698        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1699       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1700        1.1   mycroft 		/*
   1701        1.1   mycroft 		 * add back in counts associated with the new frags
   1702        1.1   mycroft 		 */
   1703       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1704       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1705        1.1   mycroft 		/*
   1706        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1707        1.1   mycroft 		 */
   1708       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1709       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1710       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1711        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1712        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1713       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1714       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1715        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1716        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1717       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1718       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1719       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1720       1.75       dbj 				KASSERT(i >= 0);
   1721       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1722       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1723       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1724       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1725       1.73       dbj 				    bbase)], 1, needswap);
   1726       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1727       1.73       dbj 			}
   1728        1.1   mycroft 		}
   1729        1.1   mycroft 	}
   1730        1.1   mycroft 	fs->fs_fmod = 1;
   1731       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1732      1.101        ad 	mutex_exit(&ump->um_lock);
   1733        1.1   mycroft }
   1734        1.1   mycroft 
   1735        1.1   mycroft /*
   1736        1.1   mycroft  * Free an inode.
   1737       1.30      fvdl  */
   1738       1.30      fvdl int
   1739       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1740       1.30      fvdl {
   1741       1.30      fvdl 
   1742       1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1743       1.88      yamt 		softdep_freefile(vp, ino, mode);
   1744       1.30      fvdl 		return (0);
   1745       1.30      fvdl 	}
   1746  1.113.2.1     skrll 	return ffs_freefile(vp->v_mount, ino, mode);
   1747       1.30      fvdl }
   1748       1.30      fvdl 
   1749       1.30      fvdl /*
   1750       1.30      fvdl  * Do the actual free operation.
   1751        1.1   mycroft  * The specified inode is placed back in the free map.
   1752      1.111    simonb  *
   1753      1.111    simonb  * => um_lock not held on entry or exit
   1754        1.1   mycroft  */
   1755        1.1   mycroft int
   1756  1.113.2.1     skrll ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1757        1.9  christos {
   1758  1.113.2.1     skrll 	struct ufsmount *ump = VFSTOUFS(mp);
   1759  1.113.2.1     skrll 	struct fs *fs = ump->um_fs;
   1760  1.113.2.1     skrll 	struct vnode *devvp;
   1761       1.33  augustss 	struct cg *cgp;
   1762        1.1   mycroft 	struct buf *bp;
   1763        1.1   mycroft 	int error, cg;
   1764       1.76   hannken 	daddr_t cgbno;
   1765       1.78   hannken 	dev_t dev;
   1766       1.19    bouyer #ifdef FFS_EI
   1767       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1768       1.19    bouyer #endif
   1769        1.1   mycroft 
   1770  1.113.2.1     skrll 	cg = ino_to_cg(fs, ino);
   1771  1.113.2.1     skrll 	devvp = ump->um_devvp;
   1772  1.113.2.1     skrll 	dev = devvp->v_rdev;
   1773  1.113.2.1     skrll 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1774  1.113.2.1     skrll 
   1775  1.113.2.1     skrll 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1776  1.113.2.1     skrll 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1777  1.113.2.1     skrll 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1778  1.113.2.1     skrll 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1779  1.113.2.1     skrll 	    NOCRED, B_MODIFY, &bp);
   1780  1.113.2.1     skrll 	if (error) {
   1781  1.113.2.1     skrll 		brelse(bp, 0);
   1782  1.113.2.1     skrll 		return (error);
   1783  1.113.2.1     skrll 	}
   1784  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1785  1.113.2.1     skrll 	if (!cg_chkmagic(cgp, needswap)) {
   1786  1.113.2.1     skrll 		brelse(bp, 0);
   1787  1.113.2.1     skrll 		return (0);
   1788      1.113   hannken 	}
   1789      1.111    simonb 
   1790  1.113.2.1     skrll 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1791  1.113.2.1     skrll 
   1792  1.113.2.1     skrll 	bdwrite(bp);
   1793  1.113.2.1     skrll 
   1794  1.113.2.1     skrll 	return 0;
   1795  1.113.2.1     skrll }
   1796  1.113.2.1     skrll 
   1797  1.113.2.1     skrll int
   1798  1.113.2.1     skrll ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1799  1.113.2.1     skrll {
   1800  1.113.2.1     skrll 	struct ufsmount *ump;
   1801  1.113.2.1     skrll 	struct cg *cgp;
   1802  1.113.2.1     skrll 	struct buf *bp;
   1803  1.113.2.1     skrll 	int error, cg;
   1804  1.113.2.1     skrll 	daddr_t cgbno;
   1805  1.113.2.1     skrll 	dev_t dev;
   1806  1.113.2.1     skrll #ifdef FFS_EI
   1807  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1808  1.113.2.1     skrll #endif
   1809  1.113.2.1     skrll 
   1810  1.113.2.1     skrll 	KASSERT(devvp->v_type != VBLK);
   1811  1.113.2.1     skrll 
   1812       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1813  1.113.2.1     skrll 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1814  1.113.2.1     skrll 	ump = VFSTOUFS(devvp->v_mount);
   1815  1.113.2.1     skrll 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1816        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1817  1.113.2.1     skrll 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1818  1.113.2.1     skrll 		    (unsigned long long)dev, (unsigned long long)ino,
   1819  1.113.2.1     skrll 		    fs->fs_fsmnt);
   1820      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1821      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1822        1.1   mycroft 	if (error) {
   1823      1.101        ad 		brelse(bp, 0);
   1824       1.30      fvdl 		return (error);
   1825        1.1   mycroft 	}
   1826        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1827       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1828      1.101        ad 		brelse(bp, 0);
   1829        1.1   mycroft 		return (0);
   1830        1.1   mycroft 	}
   1831  1.113.2.1     skrll 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1832  1.113.2.1     skrll 
   1833  1.113.2.1     skrll 	bdwrite(bp);
   1834  1.113.2.1     skrll 
   1835  1.113.2.1     skrll 	return 0;
   1836  1.113.2.1     skrll }
   1837  1.113.2.1     skrll 
   1838  1.113.2.1     skrll static void
   1839  1.113.2.1     skrll ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1840  1.113.2.1     skrll     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1841  1.113.2.1     skrll {
   1842  1.113.2.1     skrll 	int cg;
   1843  1.113.2.1     skrll 	struct cg *cgp;
   1844  1.113.2.1     skrll 	u_int8_t *inosused;
   1845  1.113.2.1     skrll #ifdef FFS_EI
   1846  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1847  1.113.2.1     skrll #endif
   1848  1.113.2.1     skrll 
   1849  1.113.2.1     skrll 	cg = ino_to_cg(fs, ino);
   1850  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1851       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1852       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1853       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1854       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1855       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1856        1.1   mycroft 	ino %= fs->fs_ipg;
   1857       1.62      fvdl 	if (isclr(inosused, ino)) {
   1858  1.113.2.1     skrll 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   1859  1.113.2.1     skrll 		    (unsigned long long)dev, (unsigned long long)ino +
   1860  1.113.2.1     skrll 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   1861        1.1   mycroft 		if (fs->fs_ronly == 0)
   1862        1.1   mycroft 			panic("ifree: freeing free inode");
   1863        1.1   mycroft 	}
   1864       1.62      fvdl 	clrbit(inosused, ino);
   1865      1.113   hannken 	if (!devvp_is_snapshot)
   1866  1.113.2.1     skrll 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1867      1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1868       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1869       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1870       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1871      1.101        ad 	mutex_enter(&ump->um_lock);
   1872        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1873        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1874       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1875       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1876        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1877        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1878        1.1   mycroft 	}
   1879        1.1   mycroft 	fs->fs_fmod = 1;
   1880       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1881      1.101        ad 	mutex_exit(&ump->um_lock);
   1882        1.1   mycroft }
   1883        1.1   mycroft 
   1884        1.1   mycroft /*
   1885       1.76   hannken  * Check to see if a file is free.
   1886       1.76   hannken  */
   1887       1.76   hannken int
   1888       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1889       1.76   hannken {
   1890       1.76   hannken 	struct cg *cgp;
   1891       1.76   hannken 	struct buf *bp;
   1892       1.76   hannken 	daddr_t cgbno;
   1893       1.76   hannken 	int ret, cg;
   1894       1.76   hannken 	u_int8_t *inosused;
   1895      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1896       1.76   hannken 
   1897  1.113.2.1     skrll 	KASSERT(devvp_is_snapshot);
   1898  1.113.2.1     skrll 
   1899       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1900      1.113   hannken 	if (devvp_is_snapshot)
   1901       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1902      1.113   hannken 	else
   1903       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1904       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1905       1.76   hannken 		return 1;
   1906      1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1907      1.101        ad 		brelse(bp, 0);
   1908       1.76   hannken 		return 1;
   1909       1.76   hannken 	}
   1910       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1911       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1912      1.101        ad 		brelse(bp, 0);
   1913       1.76   hannken 		return 1;
   1914       1.76   hannken 	}
   1915       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1916       1.76   hannken 	ino %= fs->fs_ipg;
   1917       1.76   hannken 	ret = isclr(inosused, ino);
   1918      1.101        ad 	brelse(bp, 0);
   1919       1.76   hannken 	return ret;
   1920       1.76   hannken }
   1921       1.76   hannken 
   1922       1.76   hannken /*
   1923        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1924        1.1   mycroft  *
   1925        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1926        1.1   mycroft  * available.
   1927        1.1   mycroft  */
   1928       1.60      fvdl static int32_t
   1929       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1930        1.1   mycroft {
   1931       1.60      fvdl 	int32_t bno;
   1932        1.1   mycroft 	int start, len, loc, i;
   1933        1.1   mycroft 	int blk, field, subfield, pos;
   1934       1.19    bouyer 	int ostart, olen;
   1935       1.62      fvdl 	u_int8_t *blksfree;
   1936       1.30      fvdl #ifdef FFS_EI
   1937       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1938       1.30      fvdl #endif
   1939        1.1   mycroft 
   1940      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1941      1.101        ad 
   1942        1.1   mycroft 	/*
   1943        1.1   mycroft 	 * find the fragment by searching through the free block
   1944        1.1   mycroft 	 * map for an appropriate bit pattern
   1945        1.1   mycroft 	 */
   1946        1.1   mycroft 	if (bpref)
   1947        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1948        1.1   mycroft 	else
   1949       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1950       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1951        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1952       1.19    bouyer 	ostart = start;
   1953       1.19    bouyer 	olen = len;
   1954       1.45     lukem 	loc = scanc((u_int)len,
   1955       1.62      fvdl 		(const u_char *)&blksfree[start],
   1956       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1957       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1958        1.1   mycroft 	if (loc == 0) {
   1959        1.1   mycroft 		len = start + 1;
   1960        1.1   mycroft 		start = 0;
   1961       1.45     lukem 		loc = scanc((u_int)len,
   1962       1.62      fvdl 			(const u_char *)&blksfree[0],
   1963       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1964       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1965        1.1   mycroft 		if (loc == 0) {
   1966       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1967       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1968       1.20      ross 			printf("offset=%d %ld\n",
   1969       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1970       1.62      fvdl 				(long)blksfree - (long)cgp);
   1971       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1972        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1973        1.1   mycroft 			/* NOTREACHED */
   1974        1.1   mycroft 		}
   1975        1.1   mycroft 	}
   1976        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1977       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1978        1.1   mycroft 	/*
   1979        1.1   mycroft 	 * found the byte in the map
   1980        1.1   mycroft 	 * sift through the bits to find the selected frag
   1981        1.1   mycroft 	 */
   1982        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1983       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1984        1.1   mycroft 		blk <<= 1;
   1985        1.1   mycroft 		field = around[allocsiz];
   1986        1.1   mycroft 		subfield = inside[allocsiz];
   1987        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1988        1.1   mycroft 			if ((blk & field) == subfield)
   1989        1.1   mycroft 				return (bno + pos);
   1990        1.1   mycroft 			field <<= 1;
   1991        1.1   mycroft 			subfield <<= 1;
   1992        1.1   mycroft 		}
   1993        1.1   mycroft 	}
   1994       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1995        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1996       1.58      fvdl 	/* return (-1); */
   1997        1.1   mycroft }
   1998        1.1   mycroft 
   1999        1.1   mycroft /*
   2000        1.1   mycroft  * Update the cluster map because of an allocation or free.
   2001        1.1   mycroft  *
   2002        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2003        1.1   mycroft  */
   2004        1.9  christos void
   2005       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2006        1.1   mycroft {
   2007        1.4       cgd 	int32_t *sump;
   2008        1.5   mycroft 	int32_t *lp;
   2009        1.1   mycroft 	u_char *freemapp, *mapp;
   2010        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2011       1.30      fvdl #ifdef FFS_EI
   2012       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2013       1.30      fvdl #endif
   2014        1.1   mycroft 
   2015      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2016      1.101        ad 
   2017        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2018        1.1   mycroft 		return;
   2019       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2020       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2021        1.1   mycroft 	/*
   2022        1.1   mycroft 	 * Allocate or clear the actual block.
   2023        1.1   mycroft 	 */
   2024        1.1   mycroft 	if (cnt > 0)
   2025        1.1   mycroft 		setbit(freemapp, blkno);
   2026        1.1   mycroft 	else
   2027        1.1   mycroft 		clrbit(freemapp, blkno);
   2028        1.1   mycroft 	/*
   2029        1.1   mycroft 	 * Find the size of the cluster going forward.
   2030        1.1   mycroft 	 */
   2031        1.1   mycroft 	start = blkno + 1;
   2032        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2033       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2034       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2035        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2036        1.1   mycroft 	map = *mapp++;
   2037        1.1   mycroft 	bit = 1 << (start % NBBY);
   2038        1.1   mycroft 	for (i = start; i < end; i++) {
   2039        1.1   mycroft 		if ((map & bit) == 0)
   2040        1.1   mycroft 			break;
   2041        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2042        1.1   mycroft 			bit <<= 1;
   2043        1.1   mycroft 		} else {
   2044        1.1   mycroft 			map = *mapp++;
   2045        1.1   mycroft 			bit = 1;
   2046        1.1   mycroft 		}
   2047        1.1   mycroft 	}
   2048        1.1   mycroft 	forw = i - start;
   2049        1.1   mycroft 	/*
   2050        1.1   mycroft 	 * Find the size of the cluster going backward.
   2051        1.1   mycroft 	 */
   2052        1.1   mycroft 	start = blkno - 1;
   2053        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2054        1.1   mycroft 	if (end < 0)
   2055        1.1   mycroft 		end = -1;
   2056        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2057        1.1   mycroft 	map = *mapp--;
   2058        1.1   mycroft 	bit = 1 << (start % NBBY);
   2059        1.1   mycroft 	for (i = start; i > end; i--) {
   2060        1.1   mycroft 		if ((map & bit) == 0)
   2061        1.1   mycroft 			break;
   2062        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2063        1.1   mycroft 			bit >>= 1;
   2064        1.1   mycroft 		} else {
   2065        1.1   mycroft 			map = *mapp--;
   2066        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2067        1.1   mycroft 		}
   2068        1.1   mycroft 	}
   2069        1.1   mycroft 	back = start - i;
   2070        1.1   mycroft 	/*
   2071        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2072        1.1   mycroft 	 * back clusters.
   2073        1.1   mycroft 	 */
   2074        1.1   mycroft 	i = back + forw + 1;
   2075        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2076        1.1   mycroft 		i = fs->fs_contigsumsize;
   2077       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2078        1.1   mycroft 	if (back > 0)
   2079       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2080        1.1   mycroft 	if (forw > 0)
   2081       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2082       1.19    bouyer 
   2083        1.5   mycroft 	/*
   2084        1.5   mycroft 	 * Update cluster summary information.
   2085        1.5   mycroft 	 */
   2086        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2087        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2088       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2089        1.5   mycroft 			break;
   2090       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2091        1.1   mycroft }
   2092        1.1   mycroft 
   2093        1.1   mycroft /*
   2094        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2095       1.81     perry  *
   2096        1.1   mycroft  * The form of the error message is:
   2097        1.1   mycroft  *	fs: error message
   2098        1.1   mycroft  */
   2099        1.1   mycroft static void
   2100       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2101        1.1   mycroft {
   2102        1.1   mycroft 
   2103       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2104       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2105        1.1   mycroft }
   2106