Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.113.2.2
      1  1.113.2.2     skrll /*	$NetBSD: ffs_alloc.c,v 1.113.2.2 2009/03/03 18:34:39 skrll Exp $	*/
      2      1.111    simonb 
      3      1.111    simonb /*-
      4  1.113.2.2     skrll  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.111    simonb  * All rights reserved.
      6      1.111    simonb  *
      7      1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8      1.111    simonb  * by Wasabi Systems, Inc.
      9      1.111    simonb  *
     10      1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11      1.111    simonb  * modification, are permitted provided that the following conditions
     12      1.111    simonb  * are met:
     13      1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14      1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15      1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17      1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18      1.111    simonb  *
     19      1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30      1.111    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.113.2.2     skrll __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.113.2.2 2009/03/03 18:34:39 skrll Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78       1.22    scottr #endif
     79        1.1   mycroft 
     80        1.1   mycroft #include <sys/param.h>
     81        1.1   mycroft #include <sys/systm.h>
     82        1.1   mycroft #include <sys/buf.h>
     83      1.111    simonb #include <sys/fstrans.h>
     84      1.111    simonb #include <sys/kauth.h>
     85      1.111    simonb #include <sys/kernel.h>
     86      1.111    simonb #include <sys/mount.h>
     87        1.1   mycroft #include <sys/proc.h>
     88      1.111    simonb #include <sys/syslog.h>
     89        1.1   mycroft #include <sys/vnode.h>
     90      1.111    simonb #include <sys/wapbl.h>
     91       1.29       mrg 
     92       1.76   hannken #include <miscfs/specfs/specdev.h>
     93        1.1   mycroft #include <ufs/ufs/quota.h>
     94       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95        1.1   mycroft #include <ufs/ufs/inode.h>
     96        1.9  christos #include <ufs/ufs/ufs_extern.h>
     97       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98      1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99        1.1   mycroft 
    100        1.1   mycroft #include <ufs/ffs/fs.h>
    101        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102        1.1   mycroft 
    103      1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104      1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108      1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109      1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110      1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112       1.85   thorpej 				      daddr_t, int);
    113  1.113.2.1     skrll static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    114  1.113.2.1     skrll     daddr_t, long, bool);
    115  1.113.2.1     skrll static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    116  1.113.2.1     skrll     int, bool);
    117       1.23  drochner 
    118       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    119       1.34  jdolecek int ffs_log_changeopt = 0;
    120       1.34  jdolecek 
    121       1.23  drochner /* in ffs_tables.c */
    122       1.40  jdolecek extern const int inside[], around[];
    123       1.40  jdolecek extern const u_char * const fragtbl[];
    124        1.1   mycroft 
    125  1.113.2.1     skrll /* Basic consistency check for block allocations */
    126  1.113.2.1     skrll static int
    127  1.113.2.1     skrll ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    128  1.113.2.1     skrll     long size, dev_t dev, ino_t inum)
    129  1.113.2.1     skrll {
    130  1.113.2.1     skrll 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    131  1.113.2.1     skrll 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    132  1.113.2.1     skrll 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    133  1.113.2.1     skrll 		    "size = %ld, fs = %s\n",
    134  1.113.2.1     skrll 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    135  1.113.2.1     skrll 		panic("%s: bad size", func);
    136  1.113.2.1     skrll 	}
    137  1.113.2.1     skrll 
    138  1.113.2.1     skrll 	if (bno >= fs->fs_size) {
    139  1.113.2.1     skrll 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    140  1.113.2.1     skrll 		    (unsigned long long)inum);
    141  1.113.2.1     skrll 		ffs_fserr(fs, inum, "bad block");
    142  1.113.2.1     skrll 		return EINVAL;
    143  1.113.2.1     skrll 	}
    144  1.113.2.1     skrll 	return 0;
    145  1.113.2.1     skrll }
    146  1.113.2.1     skrll 
    147        1.1   mycroft /*
    148        1.1   mycroft  * Allocate a block in the file system.
    149       1.81     perry  *
    150        1.1   mycroft  * The size of the requested block is given, which must be some
    151        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    152        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    153        1.1   mycroft  * the following hierarchy is used to allocate a block:
    154        1.1   mycroft  *   1) allocate the requested block.
    155        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    156        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    157        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    158        1.1   mycroft  *      available block is located.
    159       1.47       wiz  * If no block preference is given the following hierarchy is used
    160        1.1   mycroft  * to allocate a block:
    161        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    162        1.1   mycroft  *      inode for the file.
    163        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    164        1.1   mycroft  *      available block is located.
    165      1.106     pooka  *
    166      1.106     pooka  * => called with um_lock held
    167      1.106     pooka  * => releases um_lock before returning
    168        1.1   mycroft  */
    169        1.9  christos int
    170      1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    171       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    172        1.1   mycroft {
    173      1.101        ad 	struct ufsmount *ump;
    174       1.62      fvdl 	struct fs *fs;
    175       1.58      fvdl 	daddr_t bno;
    176        1.9  christos 	int cg;
    177        1.9  christos #ifdef QUOTA
    178        1.9  christos 	int error;
    179        1.9  christos #endif
    180       1.81     perry 
    181       1.62      fvdl 	fs = ip->i_fs;
    182      1.101        ad 	ump = ip->i_ump;
    183      1.101        ad 
    184      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    185       1.62      fvdl 
    186       1.37       chs #ifdef UVM_PAGE_TRKOWN
    187       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    188       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    189       1.37       chs 		struct vm_page *pg;
    190       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    191       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    192       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    193       1.37       chs 
    194      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    195       1.37       chs 		while (off < endoff) {
    196       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    197       1.37       chs 			KASSERT(pg != NULL);
    198       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    199       1.37       chs 			off += PAGE_SIZE;
    200       1.37       chs 		}
    201      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    202       1.37       chs 	}
    203       1.37       chs #endif
    204       1.37       chs 
    205        1.1   mycroft 	*bnp = 0;
    206        1.1   mycroft #ifdef DIAGNOSTIC
    207        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    208  1.113.2.1     skrll 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    209  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    210  1.113.2.1     skrll 		    fs->fs_fsmnt);
    211        1.1   mycroft 		panic("ffs_alloc: bad size");
    212        1.1   mycroft 	}
    213        1.1   mycroft 	if (cred == NOCRED)
    214       1.56    provos 		panic("ffs_alloc: missing credential");
    215        1.1   mycroft #endif /* DIAGNOSTIC */
    216        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    217        1.1   mycroft 		goto nospace;
    218       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    219       1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    220        1.1   mycroft 		goto nospace;
    221        1.1   mycroft #ifdef QUOTA
    222      1.101        ad 	mutex_exit(&ump->um_lock);
    223       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    224        1.1   mycroft 		return (error);
    225      1.101        ad 	mutex_enter(&ump->um_lock);
    226        1.1   mycroft #endif
    227      1.111    simonb 
    228        1.1   mycroft 	if (bpref >= fs->fs_size)
    229        1.1   mycroft 		bpref = 0;
    230        1.1   mycroft 	if (bpref == 0)
    231        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    232        1.1   mycroft 	else
    233        1.1   mycroft 		cg = dtog(fs, bpref);
    234      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    235        1.1   mycroft 	if (bno > 0) {
    236       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    237        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    238        1.1   mycroft 		*bnp = bno;
    239        1.1   mycroft 		return (0);
    240        1.1   mycroft 	}
    241        1.1   mycroft #ifdef QUOTA
    242        1.1   mycroft 	/*
    243        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    244        1.1   mycroft 	 */
    245       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    246        1.1   mycroft #endif
    247      1.111    simonb 	if (flags & B_CONTIG) {
    248      1.111    simonb 		/*
    249      1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    250      1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    251      1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    252      1.111    simonb 		 * already unlocked, so we can't release it again
    253      1.111    simonb 		 * like in the normal error path.  See kern/39206.
    254      1.111    simonb 		 *
    255      1.111    simonb 		 *
    256      1.111    simonb 		 * Fail silently - it's up to our caller to report
    257      1.111    simonb 		 * errors.
    258      1.111    simonb 		 */
    259      1.111    simonb 		return (ENOSPC);
    260      1.111    simonb 	}
    261        1.1   mycroft nospace:
    262      1.101        ad 	mutex_exit(&ump->um_lock);
    263       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    264        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    265        1.1   mycroft 	return (ENOSPC);
    266        1.1   mycroft }
    267        1.1   mycroft 
    268        1.1   mycroft /*
    269        1.1   mycroft  * Reallocate a fragment to a bigger size
    270        1.1   mycroft  *
    271        1.1   mycroft  * The number and size of the old block is given, and a preference
    272        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    273        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    274        1.1   mycroft  * invoked to get an appropriate block.
    275      1.106     pooka  *
    276      1.106     pooka  * => called with um_lock held
    277      1.106     pooka  * => return with um_lock released
    278        1.1   mycroft  */
    279        1.9  christos int
    280       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    281       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    282        1.1   mycroft {
    283      1.101        ad 	struct ufsmount *ump;
    284       1.62      fvdl 	struct fs *fs;
    285        1.1   mycroft 	struct buf *bp;
    286        1.1   mycroft 	int cg, request, error;
    287       1.58      fvdl 	daddr_t bprev, bno;
    288       1.25   thorpej 
    289       1.62      fvdl 	fs = ip->i_fs;
    290      1.101        ad 	ump = ip->i_ump;
    291      1.101        ad 
    292      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    293      1.101        ad 
    294       1.37       chs #ifdef UVM_PAGE_TRKOWN
    295       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    296       1.37       chs 		struct vm_page *pg;
    297       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    298       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    299       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    300       1.37       chs 
    301      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    302       1.37       chs 		while (off < endoff) {
    303       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    304       1.37       chs 			KASSERT(pg != NULL);
    305       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    306       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    307       1.37       chs 			off += PAGE_SIZE;
    308       1.37       chs 		}
    309      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    310       1.37       chs 	}
    311       1.37       chs #endif
    312       1.37       chs 
    313        1.1   mycroft #ifdef DIAGNOSTIC
    314        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    315        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    316       1.13  christos 		printf(
    317  1.113.2.1     skrll 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    318  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    319  1.113.2.1     skrll 		    fs->fs_fsmnt);
    320        1.1   mycroft 		panic("ffs_realloccg: bad size");
    321        1.1   mycroft 	}
    322        1.1   mycroft 	if (cred == NOCRED)
    323       1.56    provos 		panic("ffs_realloccg: missing credential");
    324        1.1   mycroft #endif /* DIAGNOSTIC */
    325       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    326      1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    327      1.101        ad 		mutex_exit(&ump->um_lock);
    328        1.1   mycroft 		goto nospace;
    329      1.101        ad 	}
    330       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    331       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    332       1.60      fvdl 	else
    333       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    334       1.60      fvdl 
    335       1.60      fvdl 	if (bprev == 0) {
    336  1.113.2.1     skrll 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    337  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    338  1.113.2.1     skrll 		    fs->fs_fsmnt);
    339        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    340        1.1   mycroft 	}
    341      1.101        ad 	mutex_exit(&ump->um_lock);
    342      1.101        ad 
    343        1.1   mycroft 	/*
    344        1.1   mycroft 	 * Allocate the extra space in the buffer.
    345        1.1   mycroft 	 */
    346       1.37       chs 	if (bpp != NULL &&
    347      1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    348      1.101        ad 		brelse(bp, 0);
    349        1.1   mycroft 		return (error);
    350        1.1   mycroft 	}
    351        1.1   mycroft #ifdef QUOTA
    352       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    353       1.44       chs 		if (bpp != NULL) {
    354      1.101        ad 			brelse(bp, 0);
    355       1.44       chs 		}
    356        1.1   mycroft 		return (error);
    357        1.1   mycroft 	}
    358        1.1   mycroft #endif
    359        1.1   mycroft 	/*
    360        1.1   mycroft 	 * Check for extension in the existing location.
    361        1.1   mycroft 	 */
    362        1.1   mycroft 	cg = dtog(fs, bprev);
    363      1.101        ad 	mutex_enter(&ump->um_lock);
    364       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    365       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    366        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    367       1.37       chs 
    368       1.37       chs 		if (bpp != NULL) {
    369       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    370       1.37       chs 				panic("bad blockno");
    371       1.72        pk 			allocbuf(bp, nsize, 1);
    372       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    373      1.105        ad 			mutex_enter(bp->b_objlock);
    374      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    375      1.105        ad 			bp->b_oflags |= BO_DONE;
    376      1.105        ad 			mutex_exit(bp->b_objlock);
    377       1.37       chs 			*bpp = bp;
    378       1.37       chs 		}
    379       1.37       chs 		if (blknop != NULL) {
    380       1.37       chs 			*blknop = bno;
    381       1.37       chs 		}
    382        1.1   mycroft 		return (0);
    383        1.1   mycroft 	}
    384        1.1   mycroft 	/*
    385        1.1   mycroft 	 * Allocate a new disk location.
    386        1.1   mycroft 	 */
    387        1.1   mycroft 	if (bpref >= fs->fs_size)
    388        1.1   mycroft 		bpref = 0;
    389        1.1   mycroft 	switch ((int)fs->fs_optim) {
    390        1.1   mycroft 	case FS_OPTSPACE:
    391        1.1   mycroft 		/*
    392       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    393       1.81     perry 		 * best use of space, we will waste time relocating it if
    394        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    395        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    396        1.1   mycroft 		 * to begin optimizing for time.
    397        1.1   mycroft 		 */
    398        1.1   mycroft 		request = nsize;
    399        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    400        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    401        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    402        1.1   mycroft 			break;
    403       1.34  jdolecek 
    404       1.34  jdolecek 		if (ffs_log_changeopt) {
    405       1.34  jdolecek 			log(LOG_NOTICE,
    406       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    407       1.34  jdolecek 				fs->fs_fsmnt);
    408       1.34  jdolecek 		}
    409       1.34  jdolecek 
    410        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    411        1.1   mycroft 		break;
    412        1.1   mycroft 	case FS_OPTTIME:
    413        1.1   mycroft 		/*
    414        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    415        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    416        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    417        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    418        1.1   mycroft 		 * above will be able to grow it in place without further
    419        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    420        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    421        1.1   mycroft 		 * optimizing for space.
    422        1.1   mycroft 		 */
    423        1.1   mycroft 		request = fs->fs_bsize;
    424        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    425        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    426        1.1   mycroft 			break;
    427       1.34  jdolecek 
    428       1.34  jdolecek 		if (ffs_log_changeopt) {
    429       1.34  jdolecek 			log(LOG_NOTICE,
    430       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    431       1.34  jdolecek 				fs->fs_fsmnt);
    432       1.34  jdolecek 		}
    433       1.34  jdolecek 
    434        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    435        1.1   mycroft 		break;
    436        1.1   mycroft 	default:
    437  1.113.2.1     skrll 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    438  1.113.2.1     skrll 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    439        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    440        1.1   mycroft 		/* NOTREACHED */
    441        1.1   mycroft 	}
    442      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    443        1.1   mycroft 	if (bno > 0) {
    444  1.113.2.2     skrll 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    445  1.113.2.2     skrll 		    (ITOV(ip)->v_type != VREG)) {
    446  1.113.2.2     skrll 			UFS_WAPBL_REGISTER_DEALLOCATION(
    447  1.113.2.2     skrll 			    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    448  1.113.2.2     skrll 			    osize);
    449  1.113.2.2     skrll 		} else {
    450  1.113.2.2     skrll 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    451  1.113.2.2     skrll 			    ip->i_number);
    452      1.111    simonb 		}
    453      1.111    simonb 		if (nsize < request) {
    454      1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    455      1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    456      1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    457      1.111    simonb 				    ip->i_ump->um_mountp,
    458      1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    459      1.111    simonb 				    request - nsize);
    460      1.111    simonb 			} else
    461      1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    462      1.111    simonb 				    bno + numfrags(fs, nsize),
    463      1.111    simonb 				    (long)(request - nsize), ip->i_number);
    464      1.111    simonb 		}
    465       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    466        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    467       1.37       chs 		if (bpp != NULL) {
    468       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    469       1.72        pk 			allocbuf(bp, nsize, 1);
    470       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    471      1.105        ad 			mutex_enter(bp->b_objlock);
    472      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    473      1.105        ad 			bp->b_oflags |= BO_DONE;
    474      1.105        ad 			mutex_exit(bp->b_objlock);
    475       1.37       chs 			*bpp = bp;
    476       1.37       chs 		}
    477       1.37       chs 		if (blknop != NULL) {
    478       1.37       chs 			*blknop = bno;
    479       1.37       chs 		}
    480        1.1   mycroft 		return (0);
    481        1.1   mycroft 	}
    482      1.101        ad 	mutex_exit(&ump->um_lock);
    483      1.101        ad 
    484        1.1   mycroft #ifdef QUOTA
    485        1.1   mycroft 	/*
    486        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    487        1.1   mycroft 	 */
    488       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    489        1.1   mycroft #endif
    490       1.37       chs 	if (bpp != NULL) {
    491      1.101        ad 		brelse(bp, 0);
    492       1.37       chs 	}
    493       1.37       chs 
    494        1.1   mycroft nospace:
    495        1.1   mycroft 	/*
    496        1.1   mycroft 	 * no space available
    497        1.1   mycroft 	 */
    498       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    499        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    500        1.1   mycroft 	return (ENOSPC);
    501        1.1   mycroft }
    502        1.1   mycroft 
    503        1.1   mycroft /*
    504        1.1   mycroft  * Allocate an inode in the file system.
    505       1.81     perry  *
    506        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    507        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    508        1.1   mycroft  *   1) allocate the preferred inode.
    509        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    510        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    511        1.1   mycroft  *      available inode is located.
    512       1.47       wiz  * If no inode preference is given the following hierarchy is used
    513        1.1   mycroft  * to allocate an inode:
    514        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    515        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    516        1.1   mycroft  *      available inode is located.
    517      1.106     pooka  *
    518      1.106     pooka  * => um_lock not held upon entry or return
    519        1.1   mycroft  */
    520        1.9  christos int
    521       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    522       1.88      yamt     struct vnode **vpp)
    523        1.9  christos {
    524      1.101        ad 	struct ufsmount *ump;
    525       1.33  augustss 	struct inode *pip;
    526       1.33  augustss 	struct fs *fs;
    527       1.33  augustss 	struct inode *ip;
    528       1.60      fvdl 	struct timespec ts;
    529        1.1   mycroft 	ino_t ino, ipref;
    530        1.1   mycroft 	int cg, error;
    531       1.81     perry 
    532      1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    533      1.111    simonb 
    534       1.88      yamt 	*vpp = NULL;
    535        1.1   mycroft 	pip = VTOI(pvp);
    536        1.1   mycroft 	fs = pip->i_fs;
    537      1.101        ad 	ump = pip->i_ump;
    538      1.101        ad 
    539      1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    540      1.111    simonb 	if (error) {
    541      1.111    simonb 		return error;
    542      1.111    simonb 	}
    543      1.101        ad 	mutex_enter(&ump->um_lock);
    544        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    545        1.1   mycroft 		goto noinodes;
    546        1.1   mycroft 
    547        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    548       1.50     lukem 		ipref = ffs_dirpref(pip);
    549       1.50     lukem 	else
    550       1.50     lukem 		ipref = pip->i_number;
    551        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    552        1.1   mycroft 		ipref = 0;
    553        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    554       1.50     lukem 	/*
    555       1.50     lukem 	 * Track number of dirs created one after another
    556       1.50     lukem 	 * in a same cg without intervening by files.
    557       1.50     lukem 	 */
    558       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    559       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    560       1.50     lukem 			fs->fs_contigdirs[cg]++;
    561       1.50     lukem 	} else {
    562       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    563       1.50     lukem 			fs->fs_contigdirs[cg]--;
    564       1.50     lukem 	}
    565      1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    566        1.1   mycroft 	if (ino == 0)
    567        1.1   mycroft 		goto noinodes;
    568      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    569       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    570        1.1   mycroft 	if (error) {
    571      1.111    simonb 		int err;
    572      1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    573      1.111    simonb 		if (err == 0)
    574      1.111    simonb 			ffs_vfree(pvp, ino, mode);
    575      1.111    simonb 		if (err == 0)
    576      1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    577        1.1   mycroft 		return (error);
    578        1.1   mycroft 	}
    579       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    580       1.88      yamt 	ip = VTOI(*vpp);
    581       1.60      fvdl 	if (ip->i_mode) {
    582       1.60      fvdl #if 0
    583       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    584       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    585       1.60      fvdl #else
    586       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    587       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    588       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    589       1.60      fvdl 		printf("size %llx blocks %llx\n",
    590       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    591       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    592       1.86  christos 		    (unsigned long long)ipref);
    593       1.60      fvdl #if 0
    594       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    595      1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    596       1.60      fvdl #endif
    597       1.60      fvdl 
    598       1.60      fvdl #endif
    599        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    600        1.1   mycroft 	}
    601       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    602       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    603       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    604       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    605        1.1   mycroft 	}
    606       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    607       1.61      fvdl 	ip->i_flags = 0;
    608       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    609        1.1   mycroft 	/*
    610        1.1   mycroft 	 * Set up a new generation number for this inode.
    611        1.1   mycroft 	 */
    612       1.60      fvdl 	ip->i_gen++;
    613       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    614       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    615       1.93      yamt 		vfs_timestamp(&ts);
    616       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    617       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    618       1.60      fvdl 	}
    619        1.1   mycroft 	return (0);
    620        1.1   mycroft noinodes:
    621      1.101        ad 	mutex_exit(&ump->um_lock);
    622      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    623       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    624        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    625        1.1   mycroft 	return (ENOSPC);
    626        1.1   mycroft }
    627        1.1   mycroft 
    628        1.1   mycroft /*
    629       1.50     lukem  * Find a cylinder group in which to place a directory.
    630       1.42  sommerfe  *
    631       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    632       1.50     lukem  * directory inode in the same cylinder group as its parent
    633       1.50     lukem  * directory, but also to reserve space for its files inodes
    634       1.50     lukem  * and data. Restrict the number of directories which may be
    635       1.50     lukem  * allocated one after another in the same cylinder group
    636       1.50     lukem  * without intervening allocation of files.
    637       1.42  sommerfe  *
    638       1.50     lukem  * If we allocate a first level directory then force allocation
    639       1.50     lukem  * in another cylinder group.
    640        1.1   mycroft  */
    641        1.1   mycroft static ino_t
    642       1.85   thorpej ffs_dirpref(struct inode *pip)
    643        1.1   mycroft {
    644       1.50     lukem 	register struct fs *fs;
    645       1.74     soren 	int cg, prefcg;
    646       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    647       1.89       dsl 	int avgifree, avgbfree, avgndir;
    648       1.50     lukem 	int minifree, minbfree, maxndir;
    649       1.50     lukem 	int mincg, minndir;
    650       1.50     lukem 	int maxcontigdirs;
    651       1.50     lukem 
    652      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    653      1.101        ad 
    654       1.50     lukem 	fs = pip->i_fs;
    655        1.1   mycroft 
    656        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    657       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    658       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    659       1.50     lukem 
    660       1.50     lukem 	/*
    661       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    662       1.50     lukem 	 */
    663      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    664       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    665       1.50     lukem 		mincg = prefcg;
    666       1.50     lukem 		minndir = fs->fs_ipg;
    667       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    668       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    669       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    670       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    671       1.42  sommerfe 				mincg = cg;
    672       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    673       1.42  sommerfe 			}
    674       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    675       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    676       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    677       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    678       1.50     lukem 				mincg = cg;
    679       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    680       1.42  sommerfe 			}
    681       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    682       1.42  sommerfe 	}
    683       1.50     lukem 
    684       1.50     lukem 	/*
    685       1.50     lukem 	 * Count various limits which used for
    686       1.50     lukem 	 * optimal allocation of a directory inode.
    687       1.50     lukem 	 */
    688       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    689       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    690       1.50     lukem 	if (minifree < 0)
    691       1.50     lukem 		minifree = 0;
    692       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    693       1.50     lukem 	if (minbfree < 0)
    694       1.50     lukem 		minbfree = 0;
    695       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    696       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    697       1.89       dsl 	if (avgndir != 0) {
    698       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    699       1.89       dsl 		if (dirsize < curdsz)
    700       1.89       dsl 			dirsize = curdsz;
    701       1.89       dsl 	}
    702       1.89       dsl 	if (cgsize < dirsize * 255)
    703       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    704       1.89       dsl 	else
    705       1.89       dsl 		maxcontigdirs = 255;
    706       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    707       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    708       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    709       1.50     lukem 	if (maxcontigdirs == 0)
    710       1.50     lukem 		maxcontigdirs = 1;
    711       1.50     lukem 
    712       1.50     lukem 	/*
    713       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    714       1.50     lukem 	 * regular files, but only if we have no deficit in
    715       1.50     lukem 	 * inodes or space.
    716       1.50     lukem 	 */
    717       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    718       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    719       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    720       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    721       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    722       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    723       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    724       1.50     lukem 		}
    725       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    726       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    727       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    728       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    729       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    730       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    731       1.50     lukem 		}
    732       1.50     lukem 	/*
    733       1.50     lukem 	 * This is a backstop when we are deficient in space.
    734       1.50     lukem 	 */
    735       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    736       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    737       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    738       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    739       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    740       1.50     lukem 			break;
    741       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    742        1.1   mycroft }
    743        1.1   mycroft 
    744        1.1   mycroft /*
    745        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    746        1.1   mycroft  * logically divided into sections. The first section is composed of the
    747        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    748       1.81     perry  *
    749        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    750        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    751        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    752        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    753        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    754        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    755        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    756        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    757        1.1   mycroft  * continues until a cylinder group with greater than the average number
    758        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    759        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    760        1.1   mycroft  * here a best guess is made based upon the logical block number being
    761        1.1   mycroft  * allocated.
    762       1.81     perry  *
    763        1.1   mycroft  * If a section is already partially allocated, the policy is to
    764        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    765       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    766       1.60      fvdl  * contigously if possible.
    767      1.106     pooka  *
    768      1.106     pooka  * => um_lock held on entry and exit
    769        1.1   mycroft  */
    770       1.58      fvdl daddr_t
    771      1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    772       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    773        1.1   mycroft {
    774       1.33  augustss 	struct fs *fs;
    775       1.33  augustss 	int cg;
    776        1.1   mycroft 	int avgbfree, startcg;
    777        1.1   mycroft 
    778      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    779      1.101        ad 
    780        1.1   mycroft 	fs = ip->i_fs;
    781      1.111    simonb 
    782      1.111    simonb 	/*
    783      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    784      1.111    simonb 	 * in the inode extentions to return the desired block.
    785      1.111    simonb 	 *
    786      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    787      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    788      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    789      1.111    simonb 	 * block.  For data, return the address of the actual block
    790      1.111    simonb 	 * relative to the address of the first data block.
    791      1.111    simonb 	 */
    792      1.111    simonb 	if (flags & B_CONTIG) {
    793      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    794      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    795      1.111    simonb 		if (flags & B_METAONLY)
    796      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    797      1.111    simonb 		else
    798      1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    799      1.111    simonb 	}
    800      1.111    simonb 
    801        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    802       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    803        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    804      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    805        1.1   mycroft 		}
    806        1.1   mycroft 		/*
    807        1.1   mycroft 		 * Find a cylinder with greater than average number of
    808        1.1   mycroft 		 * unused data blocks.
    809        1.1   mycroft 		 */
    810        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    811        1.1   mycroft 			startcg =
    812        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    813        1.1   mycroft 		else
    814       1.19    bouyer 			startcg = dtog(fs,
    815       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    816        1.1   mycroft 		startcg %= fs->fs_ncg;
    817        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    818        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    819        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    821        1.1   mycroft 			}
    822       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    823        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    824      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    825        1.1   mycroft 			}
    826       1.35   thorpej 		return (0);
    827        1.1   mycroft 	}
    828        1.1   mycroft 	/*
    829       1.60      fvdl 	 * We just always try to lay things out contiguously.
    830       1.60      fvdl 	 */
    831       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    832       1.60      fvdl }
    833       1.60      fvdl 
    834       1.60      fvdl daddr_t
    835      1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    836      1.111    simonb     int64_t *bap)
    837       1.60      fvdl {
    838       1.60      fvdl 	struct fs *fs;
    839       1.60      fvdl 	int cg;
    840       1.60      fvdl 	int avgbfree, startcg;
    841       1.60      fvdl 
    842      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    843      1.101        ad 
    844       1.60      fvdl 	fs = ip->i_fs;
    845      1.111    simonb 
    846      1.111    simonb 	/*
    847      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    848      1.111    simonb 	 * in the inode extentions to return the desired block.
    849      1.111    simonb 	 *
    850      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    851      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    852      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    853      1.111    simonb 	 * block.  For data, return the address of the actual block
    854      1.111    simonb 	 * relative to the address of the first data block.
    855      1.111    simonb 	 */
    856      1.111    simonb 	if (flags & B_CONTIG) {
    857      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    858      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    859      1.111    simonb 		if (flags & B_METAONLY)
    860      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    861      1.111    simonb 		else
    862      1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    863      1.111    simonb 	}
    864      1.111    simonb 
    865       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    866       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    867       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    868      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    869       1.60      fvdl 		}
    870        1.1   mycroft 		/*
    871       1.60      fvdl 		 * Find a cylinder with greater than average number of
    872       1.60      fvdl 		 * unused data blocks.
    873        1.1   mycroft 		 */
    874       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    875       1.60      fvdl 			startcg =
    876       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    877       1.60      fvdl 		else
    878       1.60      fvdl 			startcg = dtog(fs,
    879       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    880       1.60      fvdl 		startcg %= fs->fs_ncg;
    881       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    882       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    883       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    884      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    885       1.60      fvdl 			}
    886       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    887       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    888      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    889       1.60      fvdl 			}
    890       1.60      fvdl 		return (0);
    891       1.60      fvdl 	}
    892       1.60      fvdl 	/*
    893       1.60      fvdl 	 * We just always try to lay things out contiguously.
    894       1.60      fvdl 	 */
    895       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    896        1.1   mycroft }
    897        1.1   mycroft 
    898       1.60      fvdl 
    899        1.1   mycroft /*
    900        1.1   mycroft  * Implement the cylinder overflow algorithm.
    901        1.1   mycroft  *
    902        1.1   mycroft  * The policy implemented by this algorithm is:
    903        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    904        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    905        1.1   mycroft  *   3) brute force search for a free block.
    906      1.106     pooka  *
    907      1.106     pooka  * => called with um_lock held
    908      1.106     pooka  * => returns with um_lock released on success, held on failure
    909      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    910        1.1   mycroft  */
    911        1.1   mycroft /*VARARGS5*/
    912       1.58      fvdl static daddr_t
    913       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    914       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    915      1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    916        1.1   mycroft {
    917       1.33  augustss 	struct fs *fs;
    918       1.58      fvdl 	daddr_t result;
    919        1.1   mycroft 	int i, icg = cg;
    920        1.1   mycroft 
    921        1.1   mycroft 	fs = ip->i_fs;
    922        1.1   mycroft 	/*
    923        1.1   mycroft 	 * 1: preferred cylinder group
    924        1.1   mycroft 	 */
    925      1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    926        1.1   mycroft 	if (result)
    927        1.1   mycroft 		return (result);
    928      1.111    simonb 
    929      1.111    simonb 	if (flags & B_CONTIG)
    930      1.111    simonb 		return (result);
    931        1.1   mycroft 	/*
    932        1.1   mycroft 	 * 2: quadratic rehash
    933        1.1   mycroft 	 */
    934        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    935        1.1   mycroft 		cg += i;
    936        1.1   mycroft 		if (cg >= fs->fs_ncg)
    937        1.1   mycroft 			cg -= fs->fs_ncg;
    938      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    939        1.1   mycroft 		if (result)
    940        1.1   mycroft 			return (result);
    941        1.1   mycroft 	}
    942        1.1   mycroft 	/*
    943        1.1   mycroft 	 * 3: brute force search
    944        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    945        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    946        1.1   mycroft 	 */
    947        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    948        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    949      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    950        1.1   mycroft 		if (result)
    951        1.1   mycroft 			return (result);
    952        1.1   mycroft 		cg++;
    953        1.1   mycroft 		if (cg == fs->fs_ncg)
    954        1.1   mycroft 			cg = 0;
    955        1.1   mycroft 	}
    956       1.35   thorpej 	return (0);
    957        1.1   mycroft }
    958        1.1   mycroft 
    959        1.1   mycroft /*
    960        1.1   mycroft  * Determine whether a fragment can be extended.
    961        1.1   mycroft  *
    962       1.81     perry  * Check to see if the necessary fragments are available, and
    963        1.1   mycroft  * if they are, allocate them.
    964      1.106     pooka  *
    965      1.106     pooka  * => called with um_lock held
    966      1.106     pooka  * => returns with um_lock released on success, held on failure
    967        1.1   mycroft  */
    968       1.58      fvdl static daddr_t
    969       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    970        1.1   mycroft {
    971      1.101        ad 	struct ufsmount *ump;
    972       1.33  augustss 	struct fs *fs;
    973       1.33  augustss 	struct cg *cgp;
    974        1.1   mycroft 	struct buf *bp;
    975       1.58      fvdl 	daddr_t bno;
    976        1.1   mycroft 	int frags, bbase;
    977        1.1   mycroft 	int i, error;
    978       1.62      fvdl 	u_int8_t *blksfree;
    979        1.1   mycroft 
    980        1.1   mycroft 	fs = ip->i_fs;
    981      1.101        ad 	ump = ip->i_ump;
    982      1.101        ad 
    983      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    984      1.101        ad 
    985        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    986       1.35   thorpej 		return (0);
    987        1.1   mycroft 	frags = numfrags(fs, nsize);
    988        1.1   mycroft 	bbase = fragnum(fs, bprev);
    989        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    990        1.1   mycroft 		/* cannot extend across a block boundary */
    991       1.35   thorpej 		return (0);
    992        1.1   mycroft 	}
    993      1.101        ad 	mutex_exit(&ump->um_lock);
    994        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    995      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    996      1.101        ad 	if (error)
    997      1.101        ad 		goto fail;
    998        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    999      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1000      1.101        ad 		goto fail;
   1001       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1002       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1003       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1004       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1005        1.1   mycroft 	bno = dtogd(fs, bprev);
   1006       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1007        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1008      1.101        ad 		if (isclr(blksfree, bno + i))
   1009      1.101        ad 			goto fail;
   1010        1.1   mycroft 	/*
   1011        1.1   mycroft 	 * the current fragment can be extended
   1012        1.1   mycroft 	 * deduct the count on fragment being extended into
   1013        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1014        1.1   mycroft 	 * allocate the extended piece
   1015        1.1   mycroft 	 */
   1016        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1017       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1018        1.1   mycroft 			break;
   1019       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1020        1.1   mycroft 	if (i != frags)
   1021       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1022      1.101        ad 	mutex_enter(&ump->um_lock);
   1023        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1024       1.62      fvdl 		clrbit(blksfree, bno + i);
   1025       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1026        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1027        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1028        1.1   mycroft 	}
   1029        1.1   mycroft 	fs->fs_fmod = 1;
   1030      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1031      1.101        ad 	mutex_exit(&ump->um_lock);
   1032        1.1   mycroft 	bdwrite(bp);
   1033        1.1   mycroft 	return (bprev);
   1034      1.101        ad 
   1035      1.101        ad  fail:
   1036      1.101        ad  	brelse(bp, 0);
   1037      1.101        ad  	mutex_enter(&ump->um_lock);
   1038      1.101        ad  	return (0);
   1039        1.1   mycroft }
   1040        1.1   mycroft 
   1041        1.1   mycroft /*
   1042        1.1   mycroft  * Determine whether a block can be allocated.
   1043        1.1   mycroft  *
   1044        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1045        1.1   mycroft  * and if it is, allocate it.
   1046        1.1   mycroft  */
   1047       1.58      fvdl static daddr_t
   1048      1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1049        1.1   mycroft {
   1050      1.101        ad 	struct ufsmount *ump;
   1051       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1052       1.30      fvdl 	struct cg *cgp;
   1053        1.1   mycroft 	struct buf *bp;
   1054       1.60      fvdl 	int32_t bno;
   1055       1.60      fvdl 	daddr_t blkno;
   1056       1.30      fvdl 	int error, frags, allocsiz, i;
   1057       1.62      fvdl 	u_int8_t *blksfree;
   1058       1.30      fvdl #ifdef FFS_EI
   1059       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1060       1.30      fvdl #endif
   1061        1.1   mycroft 
   1062      1.101        ad 	ump = ip->i_ump;
   1063      1.101        ad 
   1064      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1065      1.101        ad 
   1066        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1067       1.35   thorpej 		return (0);
   1068      1.101        ad 	mutex_exit(&ump->um_lock);
   1069        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1070      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1071      1.101        ad 	if (error)
   1072      1.101        ad 		goto fail;
   1073        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1074       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1075      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1076      1.101        ad 		goto fail;
   1077       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1078       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1079       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1080       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1081        1.1   mycroft 	if (size == fs->fs_bsize) {
   1082      1.101        ad 		mutex_enter(&ump->um_lock);
   1083      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1084       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1085      1.101        ad 		mutex_exit(&ump->um_lock);
   1086        1.1   mycroft 		bdwrite(bp);
   1087       1.60      fvdl 		return (blkno);
   1088        1.1   mycroft 	}
   1089        1.1   mycroft 	/*
   1090        1.1   mycroft 	 * check to see if any fragments are already available
   1091        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1092        1.1   mycroft 	 * it down to a smaller size if necessary
   1093        1.1   mycroft 	 */
   1094       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1095        1.1   mycroft 	frags = numfrags(fs, size);
   1096        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1097        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1098        1.1   mycroft 			break;
   1099        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1100        1.1   mycroft 		/*
   1101       1.81     perry 		 * no fragments were available, so a block will be
   1102        1.1   mycroft 		 * allocated, and hacked up
   1103        1.1   mycroft 		 */
   1104      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1105      1.101        ad 			goto fail;
   1106      1.101        ad 		mutex_enter(&ump->um_lock);
   1107      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1108       1.60      fvdl 		bno = dtogd(fs, blkno);
   1109        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1110       1.62      fvdl 			setbit(blksfree, bno + i);
   1111        1.1   mycroft 		i = fs->fs_frag - frags;
   1112       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1113        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1114       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1115        1.1   mycroft 		fs->fs_fmod = 1;
   1116       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1117       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1118      1.101        ad 		mutex_exit(&ump->um_lock);
   1119        1.1   mycroft 		bdwrite(bp);
   1120       1.60      fvdl 		return (blkno);
   1121        1.1   mycroft 	}
   1122       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1123       1.30      fvdl #if 0
   1124       1.30      fvdl 	/*
   1125       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1126       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1127       1.30      fvdl 	 */
   1128      1.101        ad 	if (bno < 0)
   1129      1.101        ad 		goto fail;
   1130       1.30      fvdl #endif
   1131        1.1   mycroft 	for (i = 0; i < frags; i++)
   1132       1.62      fvdl 		clrbit(blksfree, bno + i);
   1133      1.101        ad 	mutex_enter(&ump->um_lock);
   1134       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1135        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1136        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1137        1.1   mycroft 	fs->fs_fmod = 1;
   1138       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1139        1.1   mycroft 	if (frags != allocsiz)
   1140       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1141       1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1142      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1143      1.101        ad 	mutex_exit(&ump->um_lock);
   1144        1.1   mycroft 	bdwrite(bp);
   1145       1.30      fvdl 	return blkno;
   1146      1.101        ad 
   1147      1.101        ad  fail:
   1148      1.101        ad  	brelse(bp, 0);
   1149      1.101        ad  	mutex_enter(&ump->um_lock);
   1150      1.101        ad  	return (0);
   1151        1.1   mycroft }
   1152        1.1   mycroft 
   1153        1.1   mycroft /*
   1154        1.1   mycroft  * Allocate a block in a cylinder group.
   1155        1.1   mycroft  *
   1156        1.1   mycroft  * This algorithm implements the following policy:
   1157        1.1   mycroft  *   1) allocate the requested block.
   1158        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1159        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1160        1.1   mycroft  *      specified cylinder group.
   1161        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1162        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1163        1.1   mycroft  */
   1164       1.58      fvdl static daddr_t
   1165      1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1166        1.1   mycroft {
   1167      1.101        ad 	struct ufsmount *ump;
   1168       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1169       1.30      fvdl 	struct cg *cgp;
   1170       1.60      fvdl 	daddr_t blkno;
   1171       1.60      fvdl 	int32_t bno;
   1172       1.60      fvdl 	u_int8_t *blksfree;
   1173       1.30      fvdl #ifdef FFS_EI
   1174       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1175       1.30      fvdl #endif
   1176        1.1   mycroft 
   1177      1.101        ad 	ump = ip->i_ump;
   1178      1.101        ad 
   1179      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1180      1.101        ad 
   1181       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1182       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1183       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1184       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1185       1.60      fvdl 	} else {
   1186       1.60      fvdl 		bpref = blknum(fs, bpref);
   1187       1.60      fvdl 		bno = dtogd(fs, bpref);
   1188        1.1   mycroft 		/*
   1189       1.60      fvdl 		 * if the requested block is available, use it
   1190        1.1   mycroft 		 */
   1191       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1192       1.60      fvdl 			goto gotit;
   1193      1.111    simonb 		/*
   1194      1.111    simonb 		 * if the requested data block isn't available and we are
   1195      1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1196      1.111    simonb 		 */
   1197      1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1198      1.111    simonb 			return (0);
   1199        1.1   mycroft 	}
   1200      1.111    simonb 
   1201        1.1   mycroft 	/*
   1202       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1203        1.1   mycroft 	 */
   1204       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1205        1.1   mycroft 	if (bno < 0)
   1206       1.35   thorpej 		return (0);
   1207       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1208        1.1   mycroft gotit:
   1209        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1210       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1211       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1212       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1213        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1214       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1215       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1216       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1217       1.73       dbj 		int cylno;
   1218       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1219       1.75       dbj 		KASSERT(cylno >= 0);
   1220       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1221       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1222       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1223       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1224       1.73       dbj 		    needswap);
   1225       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1226       1.73       dbj 	}
   1227        1.1   mycroft 	fs->fs_fmod = 1;
   1228       1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1229       1.30      fvdl 	return (blkno);
   1230        1.1   mycroft }
   1231        1.1   mycroft 
   1232        1.1   mycroft /*
   1233        1.1   mycroft  * Determine whether an inode can be allocated.
   1234        1.1   mycroft  *
   1235        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1236        1.1   mycroft  * allocate it using the following policy:
   1237        1.1   mycroft  *   1) allocate the requested inode.
   1238        1.1   mycroft  *   2) allocate the next available inode after the requested
   1239        1.1   mycroft  *      inode in the specified cylinder group.
   1240        1.1   mycroft  */
   1241       1.58      fvdl static daddr_t
   1242      1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1243        1.1   mycroft {
   1244      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1245       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1246       1.33  augustss 	struct cg *cgp;
   1247       1.60      fvdl 	struct buf *bp, *ibp;
   1248       1.60      fvdl 	u_int8_t *inosused;
   1249        1.1   mycroft 	int error, start, len, loc, map, i;
   1250       1.60      fvdl 	int32_t initediblk;
   1251      1.112   hannken 	daddr_t nalloc;
   1252       1.60      fvdl 	struct ufs2_dinode *dp2;
   1253       1.19    bouyer #ifdef FFS_EI
   1254       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1255       1.19    bouyer #endif
   1256        1.1   mycroft 
   1257      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1258      1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1259      1.101        ad 
   1260        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1261       1.35   thorpej 		return (0);
   1262      1.101        ad 	mutex_exit(&ump->um_lock);
   1263      1.112   hannken 	ibp = NULL;
   1264      1.112   hannken 	initediblk = -1;
   1265      1.112   hannken retry:
   1266        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1267      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1268      1.101        ad 	if (error)
   1269      1.101        ad 		goto fail;
   1270        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1271      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1272      1.101        ad 		goto fail;
   1273      1.112   hannken 
   1274      1.112   hannken 	if (ibp != NULL &&
   1275      1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1276      1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1277  1.113.2.2     skrll 		brelse(ibp, 0);
   1278      1.112   hannken 		ibp = NULL;
   1279      1.112   hannken 	}
   1280      1.112   hannken 	/*
   1281      1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1282      1.112   hannken 	 */
   1283      1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1284      1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1285      1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1286      1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1287      1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1288      1.112   hannken 			/*
   1289      1.112   hannken 			 * We have to release the cg buffer here to prevent
   1290      1.112   hannken 			 * a deadlock when reading the inode block will
   1291      1.112   hannken 			 * run a copy-on-write that might use this cg.
   1292      1.112   hannken 			 */
   1293      1.112   hannken 			brelse(bp, 0);
   1294      1.112   hannken 			bp = NULL;
   1295      1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1296      1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1297      1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1298      1.112   hannken 			if (error)
   1299      1.112   hannken 				goto fail;
   1300      1.112   hannken 			goto retry;
   1301      1.112   hannken 		}
   1302      1.112   hannken 	}
   1303      1.112   hannken 
   1304       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1305       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1306       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1307       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1308       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1309        1.1   mycroft 	if (ipref) {
   1310        1.1   mycroft 		ipref %= fs->fs_ipg;
   1311       1.60      fvdl 		if (isclr(inosused, ipref))
   1312        1.1   mycroft 			goto gotit;
   1313        1.1   mycroft 	}
   1314       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1315       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1316       1.19    bouyer 		NBBY);
   1317       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1318        1.1   mycroft 	if (loc == 0) {
   1319        1.1   mycroft 		len = start + 1;
   1320        1.1   mycroft 		start = 0;
   1321       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1322        1.1   mycroft 		if (loc == 0) {
   1323       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1324       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1325       1.19    bouyer 				fs->fs_fsmnt);
   1326        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1327        1.1   mycroft 			/* NOTREACHED */
   1328        1.1   mycroft 		}
   1329        1.1   mycroft 	}
   1330        1.1   mycroft 	i = start + len - loc;
   1331       1.60      fvdl 	map = inosused[i];
   1332        1.1   mycroft 	ipref = i * NBBY;
   1333        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1334        1.1   mycroft 		if ((map & i) == 0) {
   1335       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1336        1.1   mycroft 			goto gotit;
   1337        1.1   mycroft 		}
   1338        1.1   mycroft 	}
   1339       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1340        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1341        1.1   mycroft 	/* NOTREACHED */
   1342        1.1   mycroft gotit:
   1343      1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1344      1.111    simonb 	    mode);
   1345       1.60      fvdl 	/*
   1346       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1347       1.60      fvdl 	 */
   1348      1.112   hannken 	if (ibp != NULL) {
   1349      1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1350      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1351      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1352      1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1353       1.60      fvdl 			/*
   1354       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1355       1.60      fvdl 			 * random, after all.
   1356       1.60      fvdl 			 */
   1357       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1358       1.60      fvdl 			dp2++;
   1359       1.60      fvdl 		}
   1360       1.60      fvdl 		initediblk += INOPB(fs);
   1361       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1362       1.60      fvdl 	}
   1363       1.60      fvdl 
   1364      1.101        ad 	mutex_enter(&ump->um_lock);
   1365       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1366      1.101        ad 	setbit(inosused, ipref);
   1367      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1368      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1369      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1370      1.101        ad 	fs->fs_fmod = 1;
   1371      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1372      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1373      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1374      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1375      1.101        ad 	}
   1376      1.101        ad 	mutex_exit(&ump->um_lock);
   1377      1.112   hannken 	if (ibp != NULL) {
   1378      1.112   hannken 		bwrite(bp);
   1379      1.104   hannken 		bawrite(ibp);
   1380      1.112   hannken 	} else
   1381      1.112   hannken 		bdwrite(bp);
   1382        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1383      1.101        ad  fail:
   1384      1.112   hannken 	if (bp != NULL)
   1385      1.112   hannken 		brelse(bp, 0);
   1386      1.112   hannken 	if (ibp != NULL)
   1387  1.113.2.2     skrll 		brelse(ibp, 0);
   1388      1.101        ad 	mutex_enter(&ump->um_lock);
   1389      1.101        ad 	return (0);
   1390        1.1   mycroft }
   1391        1.1   mycroft 
   1392        1.1   mycroft /*
   1393      1.111    simonb  * Allocate a block or fragment.
   1394      1.111    simonb  *
   1395      1.111    simonb  * The specified block or fragment is removed from the
   1396      1.111    simonb  * free map, possibly fragmenting a block in the process.
   1397      1.111    simonb  *
   1398      1.111    simonb  * This implementation should mirror fs_blkfree
   1399      1.111    simonb  *
   1400      1.111    simonb  * => um_lock not held on entry or exit
   1401      1.111    simonb  */
   1402      1.111    simonb int
   1403      1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1404      1.111    simonb {
   1405  1.113.2.1     skrll 	int error;
   1406  1.113.2.1     skrll 
   1407  1.113.2.1     skrll 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1408  1.113.2.1     skrll 	    ip->i_dev, ip->i_uid);
   1409  1.113.2.1     skrll 	if (error)
   1410  1.113.2.1     skrll 		return error;
   1411  1.113.2.1     skrll 
   1412  1.113.2.1     skrll 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1413  1.113.2.1     skrll }
   1414  1.113.2.1     skrll 
   1415  1.113.2.1     skrll int
   1416  1.113.2.1     skrll ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1417  1.113.2.1     skrll {
   1418  1.113.2.1     skrll 	struct fs *fs = ump->um_fs;
   1419      1.111    simonb 	struct cg *cgp;
   1420      1.111    simonb 	struct buf *bp;
   1421      1.111    simonb 	int32_t fragno, cgbno;
   1422      1.111    simonb 	int i, error, cg, blk, frags, bbase;
   1423      1.111    simonb 	u_int8_t *blksfree;
   1424      1.111    simonb 	const int needswap = UFS_FSNEEDSWAP(fs);
   1425      1.111    simonb 
   1426  1.113.2.1     skrll 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1427  1.113.2.1     skrll 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1428  1.113.2.1     skrll 	KASSERT(bno < fs->fs_size);
   1429  1.113.2.1     skrll 
   1430      1.111    simonb 	cg = dtog(fs, bno);
   1431  1.113.2.1     skrll 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1432      1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1433      1.111    simonb 	if (error) {
   1434      1.111    simonb 		brelse(bp, 0);
   1435      1.111    simonb 		return error;
   1436      1.111    simonb 	}
   1437      1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1438      1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1439      1.111    simonb 		brelse(bp, 0);
   1440      1.111    simonb 		return EIO;
   1441      1.111    simonb 	}
   1442      1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1443      1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1444      1.111    simonb 	cgbno = dtogd(fs, bno);
   1445      1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1446      1.111    simonb 
   1447      1.111    simonb 	mutex_enter(&ump->um_lock);
   1448      1.111    simonb 	if (size == fs->fs_bsize) {
   1449      1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1450      1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1451      1.111    simonb 			mutex_exit(&ump->um_lock);
   1452      1.111    simonb 			brelse(bp, 0);
   1453      1.111    simonb 			return EBUSY;
   1454      1.111    simonb 		}
   1455      1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1456      1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1457      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1458      1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1459      1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1460      1.111    simonb 	} else {
   1461      1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1462      1.111    simonb 
   1463      1.111    simonb 		frags = numfrags(fs, size);
   1464      1.111    simonb 		for (i = 0; i < frags; i++) {
   1465      1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1466      1.111    simonb 				mutex_exit(&ump->um_lock);
   1467      1.111    simonb 				brelse(bp, 0);
   1468      1.111    simonb 				return EBUSY;
   1469      1.111    simonb 			}
   1470      1.111    simonb 		}
   1471      1.111    simonb 		/*
   1472      1.111    simonb 		 * if a complete block is being split, account for it
   1473      1.111    simonb 		 */
   1474      1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1475      1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1476      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1477      1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1478      1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1479      1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1480      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1481      1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1482      1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1483      1.111    simonb 		}
   1484      1.111    simonb 		/*
   1485      1.111    simonb 		 * decrement the counts associated with the old frags
   1486      1.111    simonb 		 */
   1487      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1488      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1489      1.111    simonb 		/*
   1490      1.111    simonb 		 * allocate the fragment
   1491      1.111    simonb 		 */
   1492      1.111    simonb 		for (i = 0; i < frags; i++) {
   1493      1.111    simonb 			clrbit(blksfree, cgbno + i);
   1494      1.111    simonb 		}
   1495      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1496      1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1497      1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1498      1.111    simonb 		/*
   1499      1.111    simonb 		 * add back in counts associated with the new frags
   1500      1.111    simonb 		 */
   1501      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1502      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1503      1.111    simonb 	}
   1504      1.111    simonb 	fs->fs_fmod = 1;
   1505      1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1506      1.111    simonb 	mutex_exit(&ump->um_lock);
   1507      1.111    simonb 	bdwrite(bp);
   1508      1.111    simonb 	return 0;
   1509      1.111    simonb }
   1510      1.111    simonb 
   1511      1.111    simonb /*
   1512        1.1   mycroft  * Free a block or fragment.
   1513        1.1   mycroft  *
   1514        1.1   mycroft  * The specified block or fragment is placed back in the
   1515       1.81     perry  * free map. If a fragment is deallocated, a possible
   1516        1.1   mycroft  * block reassembly is checked.
   1517      1.106     pooka  *
   1518      1.106     pooka  * => um_lock not held on entry or exit
   1519        1.1   mycroft  */
   1520        1.9  christos void
   1521       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1522       1.85   thorpej     ino_t inum)
   1523        1.1   mycroft {
   1524       1.33  augustss 	struct cg *cgp;
   1525        1.1   mycroft 	struct buf *bp;
   1526       1.76   hannken 	struct ufsmount *ump;
   1527       1.76   hannken 	daddr_t cgblkno;
   1528  1.113.2.1     skrll 	int error, cg;
   1529       1.76   hannken 	dev_t dev;
   1530      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1531  1.113.2.1     skrll #ifdef FFS_EI
   1532       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1533  1.113.2.1     skrll #endif
   1534  1.113.2.1     skrll 
   1535  1.113.2.1     skrll 	KASSERT(!devvp_is_snapshot);
   1536        1.1   mycroft 
   1537       1.76   hannken 	cg = dtog(fs, bno);
   1538  1.113.2.1     skrll 	dev = devvp->v_rdev;
   1539  1.113.2.1     skrll 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1540  1.113.2.1     skrll 	KASSERT(fs == ump->um_fs);
   1541  1.113.2.1     skrll 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1542  1.113.2.1     skrll 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1543  1.113.2.1     skrll 		return;
   1544  1.113.2.1     skrll 
   1545  1.113.2.1     skrll 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1546  1.113.2.1     skrll 	if (error)
   1547  1.113.2.1     skrll 		return;
   1548  1.113.2.1     skrll 
   1549  1.113.2.1     skrll 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1550  1.113.2.1     skrll 	    NOCRED, B_MODIFY, &bp);
   1551  1.113.2.1     skrll 	if (error) {
   1552  1.113.2.1     skrll 		brelse(bp, 0);
   1553  1.113.2.1     skrll 		return;
   1554       1.76   hannken 	}
   1555  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1556  1.113.2.1     skrll 	if (!cg_chkmagic(cgp, needswap)) {
   1557  1.113.2.1     skrll 		brelse(bp, 0);
   1558  1.113.2.1     skrll 		return;
   1559        1.1   mycroft 	}
   1560       1.76   hannken 
   1561  1.113.2.1     skrll 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1562  1.113.2.1     skrll 
   1563  1.113.2.1     skrll 	bdwrite(bp);
   1564  1.113.2.1     skrll }
   1565  1.113.2.1     skrll 
   1566  1.113.2.1     skrll /*
   1567  1.113.2.1     skrll  * Free a block or fragment from a snapshot cg copy.
   1568  1.113.2.1     skrll  *
   1569  1.113.2.1     skrll  * The specified block or fragment is placed back in the
   1570  1.113.2.1     skrll  * free map. If a fragment is deallocated, a possible
   1571  1.113.2.1     skrll  * block reassembly is checked.
   1572  1.113.2.1     skrll  *
   1573  1.113.2.1     skrll  * => um_lock not held on entry or exit
   1574  1.113.2.1     skrll  */
   1575  1.113.2.1     skrll void
   1576  1.113.2.1     skrll ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1577  1.113.2.1     skrll     ino_t inum)
   1578  1.113.2.1     skrll {
   1579  1.113.2.1     skrll 	struct cg *cgp;
   1580  1.113.2.1     skrll 	struct buf *bp;
   1581  1.113.2.1     skrll 	struct ufsmount *ump;
   1582  1.113.2.1     skrll 	daddr_t cgblkno;
   1583  1.113.2.1     skrll 	int error, cg;
   1584  1.113.2.1     skrll 	dev_t dev;
   1585  1.113.2.1     skrll 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1586  1.113.2.1     skrll #ifdef FFS_EI
   1587  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1588  1.113.2.1     skrll #endif
   1589  1.113.2.1     skrll 
   1590  1.113.2.1     skrll 	KASSERT(devvp_is_snapshot);
   1591  1.113.2.1     skrll 
   1592  1.113.2.1     skrll 	cg = dtog(fs, bno);
   1593  1.113.2.1     skrll 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1594  1.113.2.1     skrll 	ump = VFSTOUFS(devvp->v_mount);
   1595  1.113.2.1     skrll 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1596  1.113.2.1     skrll 
   1597  1.113.2.1     skrll 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1598  1.113.2.1     skrll 	if (error)
   1599        1.1   mycroft 		return;
   1600  1.113.2.1     skrll 
   1601      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1602      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1603        1.1   mycroft 	if (error) {
   1604      1.101        ad 		brelse(bp, 0);
   1605        1.1   mycroft 		return;
   1606        1.1   mycroft 	}
   1607        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1608       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1609      1.101        ad 		brelse(bp, 0);
   1610        1.1   mycroft 		return;
   1611        1.1   mycroft 	}
   1612  1.113.2.1     skrll 
   1613  1.113.2.1     skrll 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1614  1.113.2.1     skrll 
   1615  1.113.2.1     skrll 	bdwrite(bp);
   1616  1.113.2.1     skrll }
   1617  1.113.2.1     skrll 
   1618  1.113.2.1     skrll static void
   1619  1.113.2.1     skrll ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1620  1.113.2.1     skrll     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1621  1.113.2.1     skrll {
   1622  1.113.2.1     skrll 	struct cg *cgp;
   1623  1.113.2.1     skrll 	int32_t fragno, cgbno;
   1624  1.113.2.1     skrll 	int i, cg, blk, frags, bbase;
   1625  1.113.2.1     skrll 	u_int8_t *blksfree;
   1626  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1627  1.113.2.1     skrll 
   1628  1.113.2.1     skrll 	cg = dtog(fs, bno);
   1629  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1630       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1631       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1632       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1633       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1634       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1635       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1636      1.101        ad 	mutex_enter(&ump->um_lock);
   1637        1.1   mycroft 	if (size == fs->fs_bsize) {
   1638       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1639       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1640      1.113   hannken 			if (devvp_is_snapshot) {
   1641      1.101        ad 				mutex_exit(&ump->um_lock);
   1642       1.76   hannken 				return;
   1643       1.76   hannken 			}
   1644  1.113.2.1     skrll 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1645  1.113.2.1     skrll 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1646        1.1   mycroft 			panic("blkfree: freeing free block");
   1647        1.1   mycroft 		}
   1648       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1649       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1650       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1651        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1652        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1653       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1654       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1655       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1656       1.75       dbj 			KASSERT(i >= 0);
   1657       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1658       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1659       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1660       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1661       1.73       dbj 			    needswap);
   1662       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1663       1.73       dbj 		}
   1664        1.1   mycroft 	} else {
   1665       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1666        1.1   mycroft 		/*
   1667        1.1   mycroft 		 * decrement the counts associated with the old frags
   1668        1.1   mycroft 		 */
   1669       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1670       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1671        1.1   mycroft 		/*
   1672        1.1   mycroft 		 * deallocate the fragment
   1673        1.1   mycroft 		 */
   1674        1.1   mycroft 		frags = numfrags(fs, size);
   1675        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1676       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1677  1.113.2.1     skrll 				printf("dev = 0x%llx, block = %" PRId64
   1678       1.59   tsutsui 				       ", fs = %s\n",
   1679  1.113.2.1     skrll 				    (unsigned long long)dev, bno + i,
   1680  1.113.2.1     skrll 				    fs->fs_fsmnt);
   1681        1.1   mycroft 				panic("blkfree: freeing free frag");
   1682        1.1   mycroft 			}
   1683       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1684        1.1   mycroft 		}
   1685       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1686        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1687       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1688        1.1   mycroft 		/*
   1689        1.1   mycroft 		 * add back in counts associated with the new frags
   1690        1.1   mycroft 		 */
   1691       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1692       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1693        1.1   mycroft 		/*
   1694        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1695        1.1   mycroft 		 */
   1696       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1697       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1698       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1699        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1700        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1701       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1702       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1703        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1704        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1705       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1706       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1707       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1708       1.75       dbj 				KASSERT(i >= 0);
   1709       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1710       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1711       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1712       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1713       1.73       dbj 				    bbase)], 1, needswap);
   1714       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1715       1.73       dbj 			}
   1716        1.1   mycroft 		}
   1717        1.1   mycroft 	}
   1718        1.1   mycroft 	fs->fs_fmod = 1;
   1719       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1720      1.101        ad 	mutex_exit(&ump->um_lock);
   1721        1.1   mycroft }
   1722        1.1   mycroft 
   1723        1.1   mycroft /*
   1724        1.1   mycroft  * Free an inode.
   1725       1.30      fvdl  */
   1726       1.30      fvdl int
   1727       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1728       1.30      fvdl {
   1729       1.30      fvdl 
   1730  1.113.2.1     skrll 	return ffs_freefile(vp->v_mount, ino, mode);
   1731       1.30      fvdl }
   1732       1.30      fvdl 
   1733       1.30      fvdl /*
   1734       1.30      fvdl  * Do the actual free operation.
   1735        1.1   mycroft  * The specified inode is placed back in the free map.
   1736      1.111    simonb  *
   1737      1.111    simonb  * => um_lock not held on entry or exit
   1738        1.1   mycroft  */
   1739        1.1   mycroft int
   1740  1.113.2.1     skrll ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1741        1.9  christos {
   1742  1.113.2.1     skrll 	struct ufsmount *ump = VFSTOUFS(mp);
   1743  1.113.2.1     skrll 	struct fs *fs = ump->um_fs;
   1744  1.113.2.1     skrll 	struct vnode *devvp;
   1745       1.33  augustss 	struct cg *cgp;
   1746        1.1   mycroft 	struct buf *bp;
   1747        1.1   mycroft 	int error, cg;
   1748       1.76   hannken 	daddr_t cgbno;
   1749       1.78   hannken 	dev_t dev;
   1750       1.19    bouyer #ifdef FFS_EI
   1751       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1752       1.19    bouyer #endif
   1753        1.1   mycroft 
   1754  1.113.2.1     skrll 	cg = ino_to_cg(fs, ino);
   1755  1.113.2.1     skrll 	devvp = ump->um_devvp;
   1756  1.113.2.1     skrll 	dev = devvp->v_rdev;
   1757  1.113.2.1     skrll 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1758  1.113.2.1     skrll 
   1759  1.113.2.1     skrll 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1760  1.113.2.1     skrll 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1761  1.113.2.1     skrll 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1762  1.113.2.1     skrll 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1763  1.113.2.1     skrll 	    NOCRED, B_MODIFY, &bp);
   1764  1.113.2.1     skrll 	if (error) {
   1765  1.113.2.1     skrll 		brelse(bp, 0);
   1766  1.113.2.1     skrll 		return (error);
   1767  1.113.2.1     skrll 	}
   1768  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1769  1.113.2.1     skrll 	if (!cg_chkmagic(cgp, needswap)) {
   1770  1.113.2.1     skrll 		brelse(bp, 0);
   1771  1.113.2.1     skrll 		return (0);
   1772      1.113   hannken 	}
   1773      1.111    simonb 
   1774  1.113.2.1     skrll 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1775  1.113.2.1     skrll 
   1776  1.113.2.1     skrll 	bdwrite(bp);
   1777  1.113.2.1     skrll 
   1778  1.113.2.1     skrll 	return 0;
   1779  1.113.2.1     skrll }
   1780  1.113.2.1     skrll 
   1781  1.113.2.1     skrll int
   1782  1.113.2.1     skrll ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1783  1.113.2.1     skrll {
   1784  1.113.2.1     skrll 	struct ufsmount *ump;
   1785  1.113.2.1     skrll 	struct cg *cgp;
   1786  1.113.2.1     skrll 	struct buf *bp;
   1787  1.113.2.1     skrll 	int error, cg;
   1788  1.113.2.1     skrll 	daddr_t cgbno;
   1789  1.113.2.1     skrll 	dev_t dev;
   1790  1.113.2.1     skrll #ifdef FFS_EI
   1791  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1792  1.113.2.1     skrll #endif
   1793  1.113.2.1     skrll 
   1794  1.113.2.1     skrll 	KASSERT(devvp->v_type != VBLK);
   1795  1.113.2.1     skrll 
   1796       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1797  1.113.2.1     skrll 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1798  1.113.2.1     skrll 	ump = VFSTOUFS(devvp->v_mount);
   1799  1.113.2.1     skrll 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1800        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1801  1.113.2.1     skrll 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1802  1.113.2.1     skrll 		    (unsigned long long)dev, (unsigned long long)ino,
   1803  1.113.2.1     skrll 		    fs->fs_fsmnt);
   1804      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1805      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1806        1.1   mycroft 	if (error) {
   1807      1.101        ad 		brelse(bp, 0);
   1808       1.30      fvdl 		return (error);
   1809        1.1   mycroft 	}
   1810        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1811       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1812      1.101        ad 		brelse(bp, 0);
   1813        1.1   mycroft 		return (0);
   1814        1.1   mycroft 	}
   1815  1.113.2.1     skrll 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1816  1.113.2.1     skrll 
   1817  1.113.2.1     skrll 	bdwrite(bp);
   1818  1.113.2.1     skrll 
   1819  1.113.2.1     skrll 	return 0;
   1820  1.113.2.1     skrll }
   1821  1.113.2.1     skrll 
   1822  1.113.2.1     skrll static void
   1823  1.113.2.1     skrll ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1824  1.113.2.1     skrll     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1825  1.113.2.1     skrll {
   1826  1.113.2.1     skrll 	int cg;
   1827  1.113.2.1     skrll 	struct cg *cgp;
   1828  1.113.2.1     skrll 	u_int8_t *inosused;
   1829  1.113.2.1     skrll #ifdef FFS_EI
   1830  1.113.2.1     skrll 	const int needswap = UFS_FSNEEDSWAP(fs);
   1831  1.113.2.1     skrll #endif
   1832  1.113.2.1     skrll 
   1833  1.113.2.1     skrll 	cg = ino_to_cg(fs, ino);
   1834  1.113.2.1     skrll 	cgp = (struct cg *)bp->b_data;
   1835       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1836       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1837       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1838       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1839       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1840        1.1   mycroft 	ino %= fs->fs_ipg;
   1841       1.62      fvdl 	if (isclr(inosused, ino)) {
   1842  1.113.2.1     skrll 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   1843  1.113.2.1     skrll 		    (unsigned long long)dev, (unsigned long long)ino +
   1844  1.113.2.1     skrll 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   1845        1.1   mycroft 		if (fs->fs_ronly == 0)
   1846        1.1   mycroft 			panic("ifree: freeing free inode");
   1847        1.1   mycroft 	}
   1848       1.62      fvdl 	clrbit(inosused, ino);
   1849      1.113   hannken 	if (!devvp_is_snapshot)
   1850  1.113.2.1     skrll 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1851      1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1852       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1853       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1854       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1855      1.101        ad 	mutex_enter(&ump->um_lock);
   1856        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1857        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1858       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1859       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1860        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1861        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1862        1.1   mycroft 	}
   1863        1.1   mycroft 	fs->fs_fmod = 1;
   1864       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1865      1.101        ad 	mutex_exit(&ump->um_lock);
   1866        1.1   mycroft }
   1867        1.1   mycroft 
   1868        1.1   mycroft /*
   1869       1.76   hannken  * Check to see if a file is free.
   1870       1.76   hannken  */
   1871       1.76   hannken int
   1872       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1873       1.76   hannken {
   1874       1.76   hannken 	struct cg *cgp;
   1875       1.76   hannken 	struct buf *bp;
   1876       1.76   hannken 	daddr_t cgbno;
   1877       1.76   hannken 	int ret, cg;
   1878       1.76   hannken 	u_int8_t *inosused;
   1879      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1880       1.76   hannken 
   1881  1.113.2.1     skrll 	KASSERT(devvp_is_snapshot);
   1882  1.113.2.1     skrll 
   1883       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1884      1.113   hannken 	if (devvp_is_snapshot)
   1885       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1886      1.113   hannken 	else
   1887       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1888       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1889       1.76   hannken 		return 1;
   1890      1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1891      1.101        ad 		brelse(bp, 0);
   1892       1.76   hannken 		return 1;
   1893       1.76   hannken 	}
   1894       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1895       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1896      1.101        ad 		brelse(bp, 0);
   1897       1.76   hannken 		return 1;
   1898       1.76   hannken 	}
   1899       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1900       1.76   hannken 	ino %= fs->fs_ipg;
   1901       1.76   hannken 	ret = isclr(inosused, ino);
   1902      1.101        ad 	brelse(bp, 0);
   1903       1.76   hannken 	return ret;
   1904       1.76   hannken }
   1905       1.76   hannken 
   1906       1.76   hannken /*
   1907        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1908        1.1   mycroft  *
   1909        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1910        1.1   mycroft  * available.
   1911        1.1   mycroft  */
   1912       1.60      fvdl static int32_t
   1913       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1914        1.1   mycroft {
   1915       1.60      fvdl 	int32_t bno;
   1916        1.1   mycroft 	int start, len, loc, i;
   1917        1.1   mycroft 	int blk, field, subfield, pos;
   1918       1.19    bouyer 	int ostart, olen;
   1919       1.62      fvdl 	u_int8_t *blksfree;
   1920       1.30      fvdl #ifdef FFS_EI
   1921       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1922       1.30      fvdl #endif
   1923        1.1   mycroft 
   1924      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1925      1.101        ad 
   1926        1.1   mycroft 	/*
   1927        1.1   mycroft 	 * find the fragment by searching through the free block
   1928        1.1   mycroft 	 * map for an appropriate bit pattern
   1929        1.1   mycroft 	 */
   1930        1.1   mycroft 	if (bpref)
   1931        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1932        1.1   mycroft 	else
   1933       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1934       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1935        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1936       1.19    bouyer 	ostart = start;
   1937       1.19    bouyer 	olen = len;
   1938       1.45     lukem 	loc = scanc((u_int)len,
   1939       1.62      fvdl 		(const u_char *)&blksfree[start],
   1940       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1941       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1942        1.1   mycroft 	if (loc == 0) {
   1943        1.1   mycroft 		len = start + 1;
   1944        1.1   mycroft 		start = 0;
   1945       1.45     lukem 		loc = scanc((u_int)len,
   1946       1.62      fvdl 			(const u_char *)&blksfree[0],
   1947       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1948       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1949        1.1   mycroft 		if (loc == 0) {
   1950       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1951       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1952       1.20      ross 			printf("offset=%d %ld\n",
   1953       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1954       1.62      fvdl 				(long)blksfree - (long)cgp);
   1955       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1956        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1957        1.1   mycroft 			/* NOTREACHED */
   1958        1.1   mycroft 		}
   1959        1.1   mycroft 	}
   1960        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1961       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1962        1.1   mycroft 	/*
   1963        1.1   mycroft 	 * found the byte in the map
   1964        1.1   mycroft 	 * sift through the bits to find the selected frag
   1965        1.1   mycroft 	 */
   1966        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1967       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1968        1.1   mycroft 		blk <<= 1;
   1969        1.1   mycroft 		field = around[allocsiz];
   1970        1.1   mycroft 		subfield = inside[allocsiz];
   1971        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1972        1.1   mycroft 			if ((blk & field) == subfield)
   1973        1.1   mycroft 				return (bno + pos);
   1974        1.1   mycroft 			field <<= 1;
   1975        1.1   mycroft 			subfield <<= 1;
   1976        1.1   mycroft 		}
   1977        1.1   mycroft 	}
   1978       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1979        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1980       1.58      fvdl 	/* return (-1); */
   1981        1.1   mycroft }
   1982        1.1   mycroft 
   1983        1.1   mycroft /*
   1984        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1985        1.1   mycroft  *
   1986        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1987        1.1   mycroft  */
   1988        1.9  christos void
   1989       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1990        1.1   mycroft {
   1991        1.4       cgd 	int32_t *sump;
   1992        1.5   mycroft 	int32_t *lp;
   1993        1.1   mycroft 	u_char *freemapp, *mapp;
   1994        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1995       1.30      fvdl #ifdef FFS_EI
   1996       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1997       1.30      fvdl #endif
   1998        1.1   mycroft 
   1999      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2000      1.101        ad 
   2001        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2002        1.1   mycroft 		return;
   2003       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2004       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2005        1.1   mycroft 	/*
   2006        1.1   mycroft 	 * Allocate or clear the actual block.
   2007        1.1   mycroft 	 */
   2008        1.1   mycroft 	if (cnt > 0)
   2009        1.1   mycroft 		setbit(freemapp, blkno);
   2010        1.1   mycroft 	else
   2011        1.1   mycroft 		clrbit(freemapp, blkno);
   2012        1.1   mycroft 	/*
   2013        1.1   mycroft 	 * Find the size of the cluster going forward.
   2014        1.1   mycroft 	 */
   2015        1.1   mycroft 	start = blkno + 1;
   2016        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2017       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2018       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2019        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2020        1.1   mycroft 	map = *mapp++;
   2021        1.1   mycroft 	bit = 1 << (start % NBBY);
   2022        1.1   mycroft 	for (i = start; i < end; i++) {
   2023        1.1   mycroft 		if ((map & bit) == 0)
   2024        1.1   mycroft 			break;
   2025        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2026        1.1   mycroft 			bit <<= 1;
   2027        1.1   mycroft 		} else {
   2028        1.1   mycroft 			map = *mapp++;
   2029        1.1   mycroft 			bit = 1;
   2030        1.1   mycroft 		}
   2031        1.1   mycroft 	}
   2032        1.1   mycroft 	forw = i - start;
   2033        1.1   mycroft 	/*
   2034        1.1   mycroft 	 * Find the size of the cluster going backward.
   2035        1.1   mycroft 	 */
   2036        1.1   mycroft 	start = blkno - 1;
   2037        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2038        1.1   mycroft 	if (end < 0)
   2039        1.1   mycroft 		end = -1;
   2040        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2041        1.1   mycroft 	map = *mapp--;
   2042        1.1   mycroft 	bit = 1 << (start % NBBY);
   2043        1.1   mycroft 	for (i = start; i > end; i--) {
   2044        1.1   mycroft 		if ((map & bit) == 0)
   2045        1.1   mycroft 			break;
   2046        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2047        1.1   mycroft 			bit >>= 1;
   2048        1.1   mycroft 		} else {
   2049        1.1   mycroft 			map = *mapp--;
   2050        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2051        1.1   mycroft 		}
   2052        1.1   mycroft 	}
   2053        1.1   mycroft 	back = start - i;
   2054        1.1   mycroft 	/*
   2055        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2056        1.1   mycroft 	 * back clusters.
   2057        1.1   mycroft 	 */
   2058        1.1   mycroft 	i = back + forw + 1;
   2059        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2060        1.1   mycroft 		i = fs->fs_contigsumsize;
   2061       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2062        1.1   mycroft 	if (back > 0)
   2063       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2064        1.1   mycroft 	if (forw > 0)
   2065       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2066       1.19    bouyer 
   2067        1.5   mycroft 	/*
   2068        1.5   mycroft 	 * Update cluster summary information.
   2069        1.5   mycroft 	 */
   2070        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2071        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2072       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2073        1.5   mycroft 			break;
   2074       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2075        1.1   mycroft }
   2076        1.1   mycroft 
   2077        1.1   mycroft /*
   2078        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2079       1.81     perry  *
   2080        1.1   mycroft  * The form of the error message is:
   2081        1.1   mycroft  *	fs: error message
   2082        1.1   mycroft  */
   2083        1.1   mycroft static void
   2084       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2085        1.1   mycroft {
   2086        1.1   mycroft 
   2087       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2088       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2089        1.1   mycroft }
   2090