Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.113.4.1.2.1
      1  1.113.4.1.2.1       snj /*	$NetBSD: ffs_alloc.c,v 1.113.4.1.2.1 2009/05/07 00:24:19 snj Exp $	*/
      2          1.111    simonb 
      3          1.111    simonb /*-
      4          1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5          1.111    simonb  * All rights reserved.
      6          1.111    simonb  *
      7          1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8          1.111    simonb  * by Wasabi Systems, Inc.
      9          1.111    simonb  *
     10          1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11          1.111    simonb  * modification, are permitted provided that the following conditions
     12          1.111    simonb  * are met:
     13          1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14          1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15          1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16          1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17          1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18          1.111    simonb  *
     19          1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20          1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21          1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22          1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23          1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24          1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25          1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26          1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27          1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28          1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29          1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30          1.111    simonb  */
     31            1.2       cgd 
     32            1.1   mycroft /*
     33           1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34           1.60      fvdl  * All rights reserved.
     35           1.60      fvdl  *
     36           1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37           1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38           1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39           1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40           1.60      fvdl  * research program
     41           1.60      fvdl  *
     42            1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43            1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44            1.1   mycroft  *
     45            1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46            1.1   mycroft  * modification, are permitted provided that the following conditions
     47            1.1   mycroft  * are met:
     48            1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49            1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50            1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51            1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52            1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53           1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54            1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55            1.1   mycroft  *    without specific prior written permission.
     56            1.1   mycroft  *
     57            1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58            1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59            1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60            1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61            1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62            1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63            1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64            1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65            1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66            1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67            1.1   mycroft  * SUCH DAMAGE.
     68            1.1   mycroft  *
     69           1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70            1.1   mycroft  */
     71           1.53     lukem 
     72           1.53     lukem #include <sys/cdefs.h>
     73  1.113.4.1.2.1       snj __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.113.4.1.2.1 2009/05/07 00:24:19 snj Exp $");
     74           1.17       mrg 
     75           1.43       mrg #if defined(_KERNEL_OPT)
     76           1.27   thorpej #include "opt_ffs.h"
     77           1.21    scottr #include "opt_quota.h"
     78           1.22    scottr #endif
     79            1.1   mycroft 
     80            1.1   mycroft #include <sys/param.h>
     81            1.1   mycroft #include <sys/systm.h>
     82            1.1   mycroft #include <sys/buf.h>
     83          1.111    simonb #include <sys/fstrans.h>
     84          1.111    simonb #include <sys/kauth.h>
     85          1.111    simonb #include <sys/kernel.h>
     86          1.111    simonb #include <sys/mount.h>
     87            1.1   mycroft #include <sys/proc.h>
     88          1.111    simonb #include <sys/syslog.h>
     89            1.1   mycroft #include <sys/vnode.h>
     90          1.111    simonb #include <sys/wapbl.h>
     91           1.29       mrg 
     92           1.76   hannken #include <miscfs/specfs/specdev.h>
     93            1.1   mycroft #include <ufs/ufs/quota.h>
     94           1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95            1.1   mycroft #include <ufs/ufs/inode.h>
     96            1.9  christos #include <ufs/ufs/ufs_extern.h>
     97           1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98          1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99            1.1   mycroft 
    100            1.1   mycroft #include <ufs/ffs/fs.h>
    101            1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102            1.1   mycroft 
    103          1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104          1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105           1.55      matt #ifdef XXXUBC
    106           1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
    107           1.55      matt #endif
    108           1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    109           1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    110           1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    111          1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    112          1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    113          1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    114           1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    115           1.85   thorpej 				      daddr_t, int);
    116           1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
    117           1.55      matt #ifdef XXXUBC
    118           1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
    119           1.18      fvdl #endif
    120           1.55      matt #endif
    121           1.23  drochner 
    122           1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    123           1.34  jdolecek int ffs_log_changeopt = 0;
    124           1.34  jdolecek 
    125           1.23  drochner /* in ffs_tables.c */
    126           1.40  jdolecek extern const int inside[], around[];
    127           1.40  jdolecek extern const u_char * const fragtbl[];
    128            1.1   mycroft 
    129            1.1   mycroft /*
    130            1.1   mycroft  * Allocate a block in the file system.
    131           1.81     perry  *
    132            1.1   mycroft  * The size of the requested block is given, which must be some
    133            1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    134            1.1   mycroft  * A preference may be optionally specified. If a preference is given
    135            1.1   mycroft  * the following hierarchy is used to allocate a block:
    136            1.1   mycroft  *   1) allocate the requested block.
    137            1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    138            1.1   mycroft  *   3) allocate a block in the same cylinder group.
    139            1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    140            1.1   mycroft  *      available block is located.
    141           1.47       wiz  * If no block preference is given the following hierarchy is used
    142            1.1   mycroft  * to allocate a block:
    143            1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    144            1.1   mycroft  *      inode for the file.
    145            1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    146            1.1   mycroft  *      available block is located.
    147          1.106     pooka  *
    148          1.106     pooka  * => called with um_lock held
    149          1.106     pooka  * => releases um_lock before returning
    150            1.1   mycroft  */
    151            1.9  christos int
    152          1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    153           1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    154            1.1   mycroft {
    155          1.101        ad 	struct ufsmount *ump;
    156           1.62      fvdl 	struct fs *fs;
    157           1.58      fvdl 	daddr_t bno;
    158            1.9  christos 	int cg;
    159            1.9  christos #ifdef QUOTA
    160            1.9  christos 	int error;
    161            1.9  christos #endif
    162           1.81     perry 
    163           1.62      fvdl 	fs = ip->i_fs;
    164          1.101        ad 	ump = ip->i_ump;
    165          1.101        ad 
    166          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    167           1.62      fvdl 
    168           1.37       chs #ifdef UVM_PAGE_TRKOWN
    169           1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    170           1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    171           1.37       chs 		struct vm_page *pg;
    172           1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    173           1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    174           1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    175           1.37       chs 
    176          1.105        ad 		mutex_enter(&uobj->vmobjlock);
    177           1.37       chs 		while (off < endoff) {
    178           1.37       chs 			pg = uvm_pagelookup(uobj, off);
    179           1.37       chs 			KASSERT(pg != NULL);
    180           1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    181           1.37       chs 			off += PAGE_SIZE;
    182           1.37       chs 		}
    183          1.105        ad 		mutex_exit(&uobj->vmobjlock);
    184           1.37       chs 	}
    185           1.37       chs #endif
    186           1.37       chs 
    187            1.1   mycroft 	*bnp = 0;
    188            1.1   mycroft #ifdef DIAGNOSTIC
    189            1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    190           1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    191            1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    192            1.1   mycroft 		panic("ffs_alloc: bad size");
    193            1.1   mycroft 	}
    194            1.1   mycroft 	if (cred == NOCRED)
    195           1.56    provos 		panic("ffs_alloc: missing credential");
    196            1.1   mycroft #endif /* DIAGNOSTIC */
    197            1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    198            1.1   mycroft 		goto nospace;
    199           1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    200           1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    201            1.1   mycroft 		goto nospace;
    202            1.1   mycroft #ifdef QUOTA
    203          1.101        ad 	mutex_exit(&ump->um_lock);
    204           1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    205            1.1   mycroft 		return (error);
    206          1.101        ad 	mutex_enter(&ump->um_lock);
    207            1.1   mycroft #endif
    208          1.111    simonb 
    209            1.1   mycroft 	if (bpref >= fs->fs_size)
    210            1.1   mycroft 		bpref = 0;
    211            1.1   mycroft 	if (bpref == 0)
    212            1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    213            1.1   mycroft 	else
    214            1.1   mycroft 		cg = dtog(fs, bpref);
    215          1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    216            1.1   mycroft 	if (bno > 0) {
    217           1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    218            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    219            1.1   mycroft 		*bnp = bno;
    220            1.1   mycroft 		return (0);
    221            1.1   mycroft 	}
    222            1.1   mycroft #ifdef QUOTA
    223            1.1   mycroft 	/*
    224            1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    225            1.1   mycroft 	 */
    226           1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    227            1.1   mycroft #endif
    228          1.111    simonb 	if (flags & B_CONTIG) {
    229          1.111    simonb 		/*
    230          1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    231          1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    232          1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    233          1.111    simonb 		 * already unlocked, so we can't release it again
    234          1.111    simonb 		 * like in the normal error path.  See kern/39206.
    235          1.111    simonb 		 *
    236          1.111    simonb 		 *
    237          1.111    simonb 		 * Fail silently - it's up to our caller to report
    238          1.111    simonb 		 * errors.
    239          1.111    simonb 		 */
    240          1.111    simonb 		return (ENOSPC);
    241          1.111    simonb 	}
    242            1.1   mycroft nospace:
    243          1.101        ad 	mutex_exit(&ump->um_lock);
    244           1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    245            1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    246            1.1   mycroft 	return (ENOSPC);
    247            1.1   mycroft }
    248            1.1   mycroft 
    249            1.1   mycroft /*
    250            1.1   mycroft  * Reallocate a fragment to a bigger size
    251            1.1   mycroft  *
    252            1.1   mycroft  * The number and size of the old block is given, and a preference
    253            1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    254            1.1   mycroft  * the original block. Failing that, the regular block allocator is
    255            1.1   mycroft  * invoked to get an appropriate block.
    256          1.106     pooka  *
    257          1.106     pooka  * => called with um_lock held
    258          1.106     pooka  * => return with um_lock released
    259            1.1   mycroft  */
    260            1.9  christos int
    261           1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    262           1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    263            1.1   mycroft {
    264          1.101        ad 	struct ufsmount *ump;
    265           1.62      fvdl 	struct fs *fs;
    266            1.1   mycroft 	struct buf *bp;
    267            1.1   mycroft 	int cg, request, error;
    268           1.58      fvdl 	daddr_t bprev, bno;
    269           1.25   thorpej 
    270           1.62      fvdl 	fs = ip->i_fs;
    271          1.101        ad 	ump = ip->i_ump;
    272          1.101        ad 
    273          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    274          1.101        ad 
    275           1.37       chs #ifdef UVM_PAGE_TRKOWN
    276           1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    277           1.37       chs 		struct vm_page *pg;
    278           1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    279           1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    280           1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    281           1.37       chs 
    282          1.105        ad 		mutex_enter(&uobj->vmobjlock);
    283           1.37       chs 		while (off < endoff) {
    284           1.37       chs 			pg = uvm_pagelookup(uobj, off);
    285           1.37       chs 			KASSERT(pg != NULL);
    286           1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    287           1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    288           1.37       chs 			off += PAGE_SIZE;
    289           1.37       chs 		}
    290          1.105        ad 		mutex_exit(&uobj->vmobjlock);
    291           1.37       chs 	}
    292           1.37       chs #endif
    293           1.37       chs 
    294            1.1   mycroft #ifdef DIAGNOSTIC
    295            1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    296            1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    297           1.13  christos 		printf(
    298            1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    299            1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    300            1.1   mycroft 		panic("ffs_realloccg: bad size");
    301            1.1   mycroft 	}
    302            1.1   mycroft 	if (cred == NOCRED)
    303           1.56    provos 		panic("ffs_realloccg: missing credential");
    304            1.1   mycroft #endif /* DIAGNOSTIC */
    305           1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    306          1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    307          1.101        ad 		mutex_exit(&ump->um_lock);
    308            1.1   mycroft 		goto nospace;
    309          1.101        ad 	}
    310           1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    311           1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    312           1.60      fvdl 	else
    313           1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    314           1.60      fvdl 
    315           1.60      fvdl 	if (bprev == 0) {
    316           1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    317           1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    318            1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    319            1.1   mycroft 	}
    320          1.101        ad 	mutex_exit(&ump->um_lock);
    321          1.101        ad 
    322            1.1   mycroft 	/*
    323            1.1   mycroft 	 * Allocate the extra space in the buffer.
    324            1.1   mycroft 	 */
    325           1.37       chs 	if (bpp != NULL &&
    326          1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    327          1.101        ad 		brelse(bp, 0);
    328            1.1   mycroft 		return (error);
    329            1.1   mycroft 	}
    330            1.1   mycroft #ifdef QUOTA
    331           1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    332           1.44       chs 		if (bpp != NULL) {
    333          1.101        ad 			brelse(bp, 0);
    334           1.44       chs 		}
    335            1.1   mycroft 		return (error);
    336            1.1   mycroft 	}
    337            1.1   mycroft #endif
    338            1.1   mycroft 	/*
    339            1.1   mycroft 	 * Check for extension in the existing location.
    340            1.1   mycroft 	 */
    341            1.1   mycroft 	cg = dtog(fs, bprev);
    342          1.101        ad 	mutex_enter(&ump->um_lock);
    343           1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    344           1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    345            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    346           1.37       chs 
    347           1.37       chs 		if (bpp != NULL) {
    348           1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    349           1.37       chs 				panic("bad blockno");
    350           1.72        pk 			allocbuf(bp, nsize, 1);
    351           1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    352          1.105        ad 			mutex_enter(bp->b_objlock);
    353          1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    354          1.105        ad 			bp->b_oflags |= BO_DONE;
    355          1.105        ad 			mutex_exit(bp->b_objlock);
    356           1.37       chs 			*bpp = bp;
    357           1.37       chs 		}
    358           1.37       chs 		if (blknop != NULL) {
    359           1.37       chs 			*blknop = bno;
    360           1.37       chs 		}
    361            1.1   mycroft 		return (0);
    362            1.1   mycroft 	}
    363            1.1   mycroft 	/*
    364            1.1   mycroft 	 * Allocate a new disk location.
    365            1.1   mycroft 	 */
    366            1.1   mycroft 	if (bpref >= fs->fs_size)
    367            1.1   mycroft 		bpref = 0;
    368            1.1   mycroft 	switch ((int)fs->fs_optim) {
    369            1.1   mycroft 	case FS_OPTSPACE:
    370            1.1   mycroft 		/*
    371           1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    372           1.81     perry 		 * best use of space, we will waste time relocating it if
    373            1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    374            1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    375            1.1   mycroft 		 * to begin optimizing for time.
    376            1.1   mycroft 		 */
    377            1.1   mycroft 		request = nsize;
    378            1.1   mycroft 		if (fs->fs_minfree < 5 ||
    379            1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    380            1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    381            1.1   mycroft 			break;
    382           1.34  jdolecek 
    383           1.34  jdolecek 		if (ffs_log_changeopt) {
    384           1.34  jdolecek 			log(LOG_NOTICE,
    385           1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    386           1.34  jdolecek 				fs->fs_fsmnt);
    387           1.34  jdolecek 		}
    388           1.34  jdolecek 
    389            1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    390            1.1   mycroft 		break;
    391            1.1   mycroft 	case FS_OPTTIME:
    392            1.1   mycroft 		/*
    393            1.1   mycroft 		 * At this point we have discovered a file that is trying to
    394            1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    395            1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    396            1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    397            1.1   mycroft 		 * above will be able to grow it in place without further
    398            1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    399            1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    400            1.1   mycroft 		 * optimizing for space.
    401            1.1   mycroft 		 */
    402            1.1   mycroft 		request = fs->fs_bsize;
    403            1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    404            1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    405            1.1   mycroft 			break;
    406           1.34  jdolecek 
    407           1.34  jdolecek 		if (ffs_log_changeopt) {
    408           1.34  jdolecek 			log(LOG_NOTICE,
    409           1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    410           1.34  jdolecek 				fs->fs_fsmnt);
    411           1.34  jdolecek 		}
    412           1.34  jdolecek 
    413            1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    414            1.1   mycroft 		break;
    415            1.1   mycroft 	default:
    416           1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    417            1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    418            1.1   mycroft 		panic("ffs_realloccg: bad optim");
    419            1.1   mycroft 		/* NOTREACHED */
    420            1.1   mycroft 	}
    421          1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    422            1.1   mycroft 	if (bno > 0) {
    423          1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    424          1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    425          1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    426          1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    427          1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    428          1.111    simonb 				    osize);
    429          1.111    simonb 			} else
    430          1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    431          1.111    simonb 				    ip->i_number);
    432          1.111    simonb 		}
    433          1.111    simonb 		if (nsize < request) {
    434          1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    435          1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    436          1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    437          1.111    simonb 				    ip->i_ump->um_mountp,
    438          1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    439          1.111    simonb 				    request - nsize);
    440          1.111    simonb 			} else
    441          1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    442          1.111    simonb 				    bno + numfrags(fs, nsize),
    443          1.111    simonb 				    (long)(request - nsize), ip->i_number);
    444          1.111    simonb 		}
    445           1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    446            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    447           1.37       chs 		if (bpp != NULL) {
    448           1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    449           1.72        pk 			allocbuf(bp, nsize, 1);
    450           1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    451          1.105        ad 			mutex_enter(bp->b_objlock);
    452          1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    453          1.105        ad 			bp->b_oflags |= BO_DONE;
    454          1.105        ad 			mutex_exit(bp->b_objlock);
    455           1.37       chs 			*bpp = bp;
    456           1.37       chs 		}
    457           1.37       chs 		if (blknop != NULL) {
    458           1.37       chs 			*blknop = bno;
    459           1.37       chs 		}
    460            1.1   mycroft 		return (0);
    461            1.1   mycroft 	}
    462          1.101        ad 	mutex_exit(&ump->um_lock);
    463          1.101        ad 
    464            1.1   mycroft #ifdef QUOTA
    465            1.1   mycroft 	/*
    466            1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    467            1.1   mycroft 	 */
    468           1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    469            1.1   mycroft #endif
    470           1.37       chs 	if (bpp != NULL) {
    471          1.101        ad 		brelse(bp, 0);
    472           1.37       chs 	}
    473           1.37       chs 
    474            1.1   mycroft nospace:
    475            1.1   mycroft 	/*
    476            1.1   mycroft 	 * no space available
    477            1.1   mycroft 	 */
    478           1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    479            1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    480            1.1   mycroft 	return (ENOSPC);
    481            1.1   mycroft }
    482            1.1   mycroft 
    483           1.88      yamt #if 0
    484            1.1   mycroft /*
    485            1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    486            1.1   mycroft  *
    487            1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    488            1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    489           1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    490           1.60      fvdl  * from the end of the allocation for the logical block immediately
    491           1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    492           1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    493           1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    494           1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    495           1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    496           1.60      fvdl  * allocation will be used.
    497           1.60      fvdl 
    498            1.1   mycroft  */
    499           1.55      matt #ifdef XXXUBC
    500            1.3   mycroft #ifdef DEBUG
    501            1.1   mycroft #include <sys/sysctl.h>
    502            1.5   mycroft int prtrealloc = 0;
    503            1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    504            1.1   mycroft #endif
    505           1.55      matt #endif
    506            1.1   mycroft 
    507           1.60      fvdl /*
    508          1.111    simonb  * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
    509           1.60      fvdl  */
    510           1.60      fvdl 
    511           1.18      fvdl int doasyncfree = 1;
    512           1.18      fvdl 
    513            1.1   mycroft int
    514           1.85   thorpej ffs_reallocblks(void *v)
    515            1.9  christos {
    516           1.55      matt #ifdef XXXUBC
    517            1.1   mycroft 	struct vop_reallocblks_args /* {
    518            1.1   mycroft 		struct vnode *a_vp;
    519            1.1   mycroft 		struct cluster_save *a_buflist;
    520            1.9  christos 	} */ *ap = v;
    521            1.1   mycroft 	struct fs *fs;
    522            1.1   mycroft 	struct inode *ip;
    523            1.1   mycroft 	struct vnode *vp;
    524            1.1   mycroft 	struct buf *sbp, *ebp;
    525           1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    526            1.1   mycroft 	struct cluster_save *buflist;
    527           1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    528            1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    529            1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    530          1.101        ad 	struct ufsmount *ump;
    531           1.55      matt #endif /* XXXUBC */
    532            1.1   mycroft 
    533           1.37       chs 	/* XXXUBC don't reallocblks for now */
    534           1.37       chs 	return ENOSPC;
    535           1.37       chs 
    536           1.55      matt #ifdef XXXUBC
    537            1.1   mycroft 	vp = ap->a_vp;
    538            1.1   mycroft 	ip = VTOI(vp);
    539            1.1   mycroft 	fs = ip->i_fs;
    540          1.101        ad 	ump = ip->i_ump;
    541            1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    542            1.1   mycroft 		return (ENOSPC);
    543            1.1   mycroft 	buflist = ap->a_buflist;
    544            1.1   mycroft 	len = buflist->bs_nchildren;
    545            1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    546            1.1   mycroft 	end_lbn = start_lbn + len - 1;
    547            1.1   mycroft #ifdef DIAGNOSTIC
    548           1.18      fvdl 	for (i = 0; i < len; i++)
    549           1.18      fvdl 		if (!ffs_checkblk(ip,
    550           1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    551           1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    552            1.1   mycroft 	for (i = 1; i < len; i++)
    553            1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    554           1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    555           1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    556           1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    557           1.18      fvdl 	for (i = 1; i < len - 1; i++)
    558           1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    559           1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    560            1.1   mycroft #endif
    561            1.1   mycroft 	/*
    562            1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    563            1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    564            1.1   mycroft 	 * the previous cylinder group.
    565            1.1   mycroft 	 */
    566            1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    567            1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    568            1.1   mycroft 		return (ENOSPC);
    569            1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    570            1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    571            1.1   mycroft 		return (ENOSPC);
    572            1.1   mycroft 	/*
    573            1.1   mycroft 	 * Get the starting offset and block map for the first block.
    574            1.1   mycroft 	 */
    575            1.1   mycroft 	if (start_lvl == 0) {
    576           1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    577            1.1   mycroft 		soff = start_lbn;
    578            1.1   mycroft 	} else {
    579            1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    580          1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    581          1.107   hannken 		    NOCRED, B_MODIFY, &sbp)) {
    582          1.101        ad 			brelse(sbp, 0);
    583            1.1   mycroft 			return (ENOSPC);
    584            1.1   mycroft 		}
    585           1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    586            1.1   mycroft 		soff = idp->in_off;
    587            1.1   mycroft 	}
    588            1.1   mycroft 	/*
    589            1.1   mycroft 	 * Find the preferred location for the cluster.
    590            1.1   mycroft 	 */
    591          1.101        ad 	mutex_enter(&ump->um_lock);
    592            1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    593            1.1   mycroft 	/*
    594            1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    595            1.1   mycroft 	 */
    596            1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    597            1.1   mycroft 		ssize = len;
    598            1.1   mycroft 	} else {
    599            1.1   mycroft #ifdef DIAGNOSTIC
    600            1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    601            1.1   mycroft 			panic("ffs_reallocblk: start == end");
    602            1.1   mycroft #endif
    603            1.1   mycroft 		ssize = len - (idp->in_off + 1);
    604          1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    605          1.107   hannken 		    NOCRED, B_MODIFY, &ebp))
    606            1.1   mycroft 			goto fail;
    607           1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    608            1.1   mycroft 	}
    609            1.1   mycroft 	/*
    610            1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    611            1.1   mycroft 	 */
    612           1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    613          1.111    simonb 	    len, flags, ffs_clusteralloc)) == 0) {
    614          1.101        ad 		mutex_exit(&ump->um_lock);
    615            1.1   mycroft 		goto fail;
    616          1.101        ad 	}
    617            1.1   mycroft 	/*
    618            1.1   mycroft 	 * We have found a new contiguous block.
    619            1.1   mycroft 	 *
    620            1.1   mycroft 	 * First we have to replace the old block pointers with the new
    621            1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    622            1.1   mycroft 	 * with the file.
    623            1.1   mycroft 	 */
    624            1.5   mycroft #ifdef DEBUG
    625            1.5   mycroft 	if (prtrealloc)
    626           1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    627            1.5   mycroft 		    start_lbn, end_lbn);
    628            1.5   mycroft #endif
    629            1.1   mycroft 	blkno = newblk;
    630            1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    631           1.58      fvdl 		daddr_t ba;
    632           1.30      fvdl 
    633           1.30      fvdl 		if (i == ssize) {
    634            1.1   mycroft 			bap = ebap;
    635           1.30      fvdl 			soff = -i;
    636           1.30      fvdl 		}
    637           1.58      fvdl 		/* XXX ondisk32 */
    638           1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    639            1.1   mycroft #ifdef DIAGNOSTIC
    640           1.18      fvdl 		if (!ffs_checkblk(ip,
    641           1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    642           1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    643           1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    644            1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    645            1.1   mycroft #endif
    646            1.5   mycroft #ifdef DEBUG
    647            1.5   mycroft 		if (prtrealloc)
    648           1.30      fvdl 			printf(" %d,", ba);
    649            1.5   mycroft #endif
    650           1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    651           1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    652           1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    653           1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    654           1.30      fvdl  				    buflist->bs_children[i]);
    655           1.30      fvdl  			else
    656           1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    657           1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    658           1.30      fvdl  				    ba, buflist->bs_children[i]);
    659           1.30      fvdl  		}
    660           1.58      fvdl 		/* XXX ondisk32 */
    661           1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    662            1.1   mycroft 	}
    663            1.1   mycroft 	/*
    664            1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    665            1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    666            1.1   mycroft 	 * the old block values may have been written to disk. In practise
    667           1.81     perry 	 * they are almost never written, but if we are concerned about
    668            1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    669            1.1   mycroft 	 *
    670            1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    671            1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    672            1.1   mycroft 	 * been written. The flag should be set when the cluster is
    673            1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    674            1.1   mycroft 	 * We can then check below to see if it is set, and do the
    675            1.1   mycroft 	 * synchronous write only when it has been cleared.
    676            1.1   mycroft 	 */
    677           1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    678            1.1   mycroft 		if (doasyncfree)
    679            1.1   mycroft 			bdwrite(sbp);
    680            1.1   mycroft 		else
    681            1.1   mycroft 			bwrite(sbp);
    682            1.1   mycroft 	} else {
    683            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    684           1.28   mycroft 		if (!doasyncfree)
    685           1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    686            1.1   mycroft 	}
    687           1.25   thorpej 	if (ssize < len) {
    688            1.1   mycroft 		if (doasyncfree)
    689            1.1   mycroft 			bdwrite(ebp);
    690            1.1   mycroft 		else
    691            1.1   mycroft 			bwrite(ebp);
    692           1.25   thorpej 	}
    693            1.1   mycroft 	/*
    694            1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    695            1.1   mycroft 	 */
    696            1.5   mycroft #ifdef DEBUG
    697            1.5   mycroft 	if (prtrealloc)
    698           1.13  christos 		printf("\n\tnew:");
    699            1.5   mycroft #endif
    700            1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    701           1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    702           1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    703           1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    704           1.76   hannken 			    fs->fs_bsize, ip->i_number);
    705            1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    706            1.5   mycroft #ifdef DEBUG
    707           1.18      fvdl 		if (!ffs_checkblk(ip,
    708           1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    709           1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    710            1.5   mycroft 		if (prtrealloc)
    711           1.13  christos 			printf(" %d,", blkno);
    712            1.5   mycroft #endif
    713            1.5   mycroft 	}
    714            1.5   mycroft #ifdef DEBUG
    715            1.5   mycroft 	if (prtrealloc) {
    716            1.5   mycroft 		prtrealloc--;
    717           1.13  christos 		printf("\n");
    718            1.1   mycroft 	}
    719            1.5   mycroft #endif
    720            1.1   mycroft 	return (0);
    721            1.1   mycroft 
    722            1.1   mycroft fail:
    723            1.1   mycroft 	if (ssize < len)
    724          1.101        ad 		brelse(ebp, 0);
    725           1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    726          1.101        ad 		brelse(sbp, 0);
    727            1.1   mycroft 	return (ENOSPC);
    728           1.55      matt #endif /* XXXUBC */
    729            1.1   mycroft }
    730           1.88      yamt #endif /* 0 */
    731            1.1   mycroft 
    732            1.1   mycroft /*
    733            1.1   mycroft  * Allocate an inode in the file system.
    734           1.81     perry  *
    735            1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    736            1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    737            1.1   mycroft  *   1) allocate the preferred inode.
    738            1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    739            1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    740            1.1   mycroft  *      available inode is located.
    741           1.47       wiz  * If no inode preference is given the following hierarchy is used
    742            1.1   mycroft  * to allocate an inode:
    743            1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    744            1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    745            1.1   mycroft  *      available inode is located.
    746          1.106     pooka  *
    747          1.106     pooka  * => um_lock not held upon entry or return
    748            1.1   mycroft  */
    749            1.9  christos int
    750           1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    751           1.88      yamt     struct vnode **vpp)
    752            1.9  christos {
    753          1.101        ad 	struct ufsmount *ump;
    754           1.33  augustss 	struct inode *pip;
    755           1.33  augustss 	struct fs *fs;
    756           1.33  augustss 	struct inode *ip;
    757           1.60      fvdl 	struct timespec ts;
    758            1.1   mycroft 	ino_t ino, ipref;
    759            1.1   mycroft 	int cg, error;
    760           1.81     perry 
    761          1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    762          1.111    simonb 
    763           1.88      yamt 	*vpp = NULL;
    764            1.1   mycroft 	pip = VTOI(pvp);
    765            1.1   mycroft 	fs = pip->i_fs;
    766          1.101        ad 	ump = pip->i_ump;
    767          1.101        ad 
    768          1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    769          1.111    simonb 	if (error) {
    770          1.111    simonb 		return error;
    771          1.111    simonb 	}
    772          1.101        ad 	mutex_enter(&ump->um_lock);
    773            1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    774            1.1   mycroft 		goto noinodes;
    775            1.1   mycroft 
    776            1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    777           1.50     lukem 		ipref = ffs_dirpref(pip);
    778           1.50     lukem 	else
    779           1.50     lukem 		ipref = pip->i_number;
    780            1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    781            1.1   mycroft 		ipref = 0;
    782            1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    783           1.50     lukem 	/*
    784           1.50     lukem 	 * Track number of dirs created one after another
    785           1.50     lukem 	 * in a same cg without intervening by files.
    786           1.50     lukem 	 */
    787           1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    788           1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    789           1.50     lukem 			fs->fs_contigdirs[cg]++;
    790           1.50     lukem 	} else {
    791           1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    792           1.50     lukem 			fs->fs_contigdirs[cg]--;
    793           1.50     lukem 	}
    794          1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    795            1.1   mycroft 	if (ino == 0)
    796            1.1   mycroft 		goto noinodes;
    797          1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    798           1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    799            1.1   mycroft 	if (error) {
    800          1.111    simonb 		int err;
    801          1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    802          1.111    simonb 		if (err == 0)
    803          1.111    simonb 			ffs_vfree(pvp, ino, mode);
    804          1.111    simonb 		if (err == 0)
    805          1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    806            1.1   mycroft 		return (error);
    807            1.1   mycroft 	}
    808           1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    809           1.88      yamt 	ip = VTOI(*vpp);
    810           1.60      fvdl 	if (ip->i_mode) {
    811           1.60      fvdl #if 0
    812           1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    813           1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    814           1.60      fvdl #else
    815           1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    816           1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    817           1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    818           1.60      fvdl 		printf("size %llx blocks %llx\n",
    819           1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    820           1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    821           1.86  christos 		    (unsigned long long)ipref);
    822           1.60      fvdl #if 0
    823           1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    824          1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    825           1.60      fvdl #endif
    826           1.60      fvdl 
    827           1.60      fvdl #endif
    828            1.1   mycroft 		panic("ffs_valloc: dup alloc");
    829            1.1   mycroft 	}
    830           1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    831           1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    832           1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    833           1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    834            1.1   mycroft 	}
    835           1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    836           1.61      fvdl 	ip->i_flags = 0;
    837           1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    838            1.1   mycroft 	/*
    839            1.1   mycroft 	 * Set up a new generation number for this inode.
    840            1.1   mycroft 	 */
    841           1.60      fvdl 	ip->i_gen++;
    842           1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    843           1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    844           1.93      yamt 		vfs_timestamp(&ts);
    845           1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    846           1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    847           1.60      fvdl 	}
    848            1.1   mycroft 	return (0);
    849            1.1   mycroft noinodes:
    850          1.101        ad 	mutex_exit(&ump->um_lock);
    851          1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    852           1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    853            1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    854            1.1   mycroft 	return (ENOSPC);
    855            1.1   mycroft }
    856            1.1   mycroft 
    857            1.1   mycroft /*
    858           1.50     lukem  * Find a cylinder group in which to place a directory.
    859           1.42  sommerfe  *
    860           1.50     lukem  * The policy implemented by this algorithm is to allocate a
    861           1.50     lukem  * directory inode in the same cylinder group as its parent
    862           1.50     lukem  * directory, but also to reserve space for its files inodes
    863           1.50     lukem  * and data. Restrict the number of directories which may be
    864           1.50     lukem  * allocated one after another in the same cylinder group
    865           1.50     lukem  * without intervening allocation of files.
    866           1.42  sommerfe  *
    867           1.50     lukem  * If we allocate a first level directory then force allocation
    868           1.50     lukem  * in another cylinder group.
    869            1.1   mycroft  */
    870            1.1   mycroft static ino_t
    871           1.85   thorpej ffs_dirpref(struct inode *pip)
    872            1.1   mycroft {
    873           1.50     lukem 	register struct fs *fs;
    874           1.74     soren 	int cg, prefcg;
    875           1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    876           1.89       dsl 	int avgifree, avgbfree, avgndir;
    877           1.50     lukem 	int minifree, minbfree, maxndir;
    878           1.50     lukem 	int mincg, minndir;
    879           1.50     lukem 	int maxcontigdirs;
    880           1.50     lukem 
    881          1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    882          1.101        ad 
    883           1.50     lukem 	fs = pip->i_fs;
    884            1.1   mycroft 
    885            1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    886           1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    887           1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    888           1.50     lukem 
    889           1.50     lukem 	/*
    890           1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    891           1.50     lukem 	 */
    892          1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    893           1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    894           1.50     lukem 		mincg = prefcg;
    895           1.50     lukem 		minndir = fs->fs_ipg;
    896           1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    897           1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    898           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    899           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    900           1.42  sommerfe 				mincg = cg;
    901           1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    902           1.42  sommerfe 			}
    903           1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    904           1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    905           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    906           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    907           1.50     lukem 				mincg = cg;
    908           1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    909           1.42  sommerfe 			}
    910           1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    911           1.42  sommerfe 	}
    912           1.50     lukem 
    913           1.50     lukem 	/*
    914           1.50     lukem 	 * Count various limits which used for
    915           1.50     lukem 	 * optimal allocation of a directory inode.
    916           1.50     lukem 	 */
    917           1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    918           1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    919           1.50     lukem 	if (minifree < 0)
    920           1.50     lukem 		minifree = 0;
    921           1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    922           1.50     lukem 	if (minbfree < 0)
    923           1.50     lukem 		minbfree = 0;
    924           1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    925           1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    926           1.89       dsl 	if (avgndir != 0) {
    927           1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    928           1.89       dsl 		if (dirsize < curdsz)
    929           1.89       dsl 			dirsize = curdsz;
    930           1.89       dsl 	}
    931           1.89       dsl 	if (cgsize < dirsize * 255)
    932           1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    933           1.89       dsl 	else
    934           1.89       dsl 		maxcontigdirs = 255;
    935           1.50     lukem 	if (fs->fs_avgfpdir > 0)
    936           1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    937           1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    938           1.50     lukem 	if (maxcontigdirs == 0)
    939           1.50     lukem 		maxcontigdirs = 1;
    940           1.50     lukem 
    941           1.50     lukem 	/*
    942           1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    943           1.50     lukem 	 * regular files, but only if we have no deficit in
    944           1.50     lukem 	 * inodes or space.
    945           1.50     lukem 	 */
    946           1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    947           1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    948           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    949           1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    950           1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    951           1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    952           1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    953           1.50     lukem 		}
    954           1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    955           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    956           1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    957           1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    958           1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    959           1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    960           1.50     lukem 		}
    961           1.50     lukem 	/*
    962           1.50     lukem 	 * This is a backstop when we are deficient in space.
    963           1.50     lukem 	 */
    964           1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    965           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    966           1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    967           1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    968           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    969           1.50     lukem 			break;
    970           1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    971            1.1   mycroft }
    972            1.1   mycroft 
    973            1.1   mycroft /*
    974            1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    975            1.1   mycroft  * logically divided into sections. The first section is composed of the
    976            1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    977           1.81     perry  *
    978            1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    979            1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    980            1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    981            1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    982            1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    983            1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    984            1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    985            1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    986            1.1   mycroft  * continues until a cylinder group with greater than the average number
    987            1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    988            1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    989            1.1   mycroft  * here a best guess is made based upon the logical block number being
    990            1.1   mycroft  * allocated.
    991           1.81     perry  *
    992            1.1   mycroft  * If a section is already partially allocated, the policy is to
    993            1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    994           1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    995           1.60      fvdl  * contigously if possible.
    996          1.106     pooka  *
    997          1.106     pooka  * => um_lock held on entry and exit
    998            1.1   mycroft  */
    999           1.58      fvdl daddr_t
   1000          1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
   1001           1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
   1002            1.1   mycroft {
   1003           1.33  augustss 	struct fs *fs;
   1004           1.33  augustss 	int cg;
   1005            1.1   mycroft 	int avgbfree, startcg;
   1006            1.1   mycroft 
   1007          1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1008          1.101        ad 
   1009            1.1   mycroft 	fs = ip->i_fs;
   1010          1.111    simonb 
   1011          1.111    simonb 	/*
   1012          1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
   1013          1.111    simonb 	 * in the inode extentions to return the desired block.
   1014          1.111    simonb 	 *
   1015          1.111    simonb 	 * For metadata (indirect blocks) return the address of where
   1016          1.111    simonb 	 * the first indirect block resides - we'll scan for the next
   1017          1.111    simonb 	 * available slot if we need to allocate more than one indirect
   1018          1.111    simonb 	 * block.  For data, return the address of the actual block
   1019          1.111    simonb 	 * relative to the address of the first data block.
   1020          1.111    simonb 	 */
   1021          1.111    simonb 	if (flags & B_CONTIG) {
   1022          1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
   1023          1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
   1024          1.111    simonb 		if (flags & B_METAONLY)
   1025          1.111    simonb 			return ip->i_ffs_first_indir_blk;
   1026          1.111    simonb 		else
   1027          1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
   1028          1.111    simonb 	}
   1029          1.111    simonb 
   1030            1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1031           1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1032            1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
   1033          1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
   1034            1.1   mycroft 		}
   1035            1.1   mycroft 		/*
   1036            1.1   mycroft 		 * Find a cylinder with greater than average number of
   1037            1.1   mycroft 		 * unused data blocks.
   1038            1.1   mycroft 		 */
   1039            1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
   1040            1.1   mycroft 			startcg =
   1041            1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1042            1.1   mycroft 		else
   1043           1.19    bouyer 			startcg = dtog(fs,
   1044           1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1045            1.1   mycroft 		startcg %= fs->fs_ncg;
   1046            1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1047            1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1048            1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1049          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1050            1.1   mycroft 			}
   1051           1.52     lukem 		for (cg = 0; cg < startcg; cg++)
   1052            1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1053          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1054            1.1   mycroft 			}
   1055           1.35   thorpej 		return (0);
   1056            1.1   mycroft 	}
   1057            1.1   mycroft 	/*
   1058           1.60      fvdl 	 * We just always try to lay things out contiguously.
   1059           1.60      fvdl 	 */
   1060           1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1061           1.60      fvdl }
   1062           1.60      fvdl 
   1063           1.60      fvdl daddr_t
   1064          1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
   1065          1.111    simonb     int64_t *bap)
   1066           1.60      fvdl {
   1067           1.60      fvdl 	struct fs *fs;
   1068           1.60      fvdl 	int cg;
   1069           1.60      fvdl 	int avgbfree, startcg;
   1070           1.60      fvdl 
   1071          1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1072          1.101        ad 
   1073           1.60      fvdl 	fs = ip->i_fs;
   1074          1.111    simonb 
   1075          1.111    simonb 	/*
   1076          1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
   1077          1.111    simonb 	 * in the inode extentions to return the desired block.
   1078          1.111    simonb 	 *
   1079          1.111    simonb 	 * For metadata (indirect blocks) return the address of where
   1080          1.111    simonb 	 * the first indirect block resides - we'll scan for the next
   1081          1.111    simonb 	 * available slot if we need to allocate more than one indirect
   1082          1.111    simonb 	 * block.  For data, return the address of the actual block
   1083          1.111    simonb 	 * relative to the address of the first data block.
   1084          1.111    simonb 	 */
   1085          1.111    simonb 	if (flags & B_CONTIG) {
   1086          1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
   1087          1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
   1088          1.111    simonb 		if (flags & B_METAONLY)
   1089          1.111    simonb 			return ip->i_ffs_first_indir_blk;
   1090          1.111    simonb 		else
   1091          1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
   1092          1.111    simonb 	}
   1093          1.111    simonb 
   1094           1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1095           1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1096           1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
   1097          1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
   1098           1.60      fvdl 		}
   1099            1.1   mycroft 		/*
   1100           1.60      fvdl 		 * Find a cylinder with greater than average number of
   1101           1.60      fvdl 		 * unused data blocks.
   1102            1.1   mycroft 		 */
   1103           1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
   1104           1.60      fvdl 			startcg =
   1105           1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1106           1.60      fvdl 		else
   1107           1.60      fvdl 			startcg = dtog(fs,
   1108           1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1109           1.60      fvdl 		startcg %= fs->fs_ncg;
   1110           1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1111           1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1112           1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1113          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1114           1.60      fvdl 			}
   1115           1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
   1116           1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1117          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1118           1.60      fvdl 			}
   1119           1.60      fvdl 		return (0);
   1120           1.60      fvdl 	}
   1121           1.60      fvdl 	/*
   1122           1.60      fvdl 	 * We just always try to lay things out contiguously.
   1123           1.60      fvdl 	 */
   1124           1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1125            1.1   mycroft }
   1126            1.1   mycroft 
   1127           1.60      fvdl 
   1128            1.1   mycroft /*
   1129            1.1   mycroft  * Implement the cylinder overflow algorithm.
   1130            1.1   mycroft  *
   1131            1.1   mycroft  * The policy implemented by this algorithm is:
   1132            1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1133            1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1134            1.1   mycroft  *   3) brute force search for a free block.
   1135          1.106     pooka  *
   1136          1.106     pooka  * => called with um_lock held
   1137          1.106     pooka  * => returns with um_lock released on success, held on failure
   1138          1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
   1139            1.1   mycroft  */
   1140            1.1   mycroft /*VARARGS5*/
   1141           1.58      fvdl static daddr_t
   1142           1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1143           1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1144          1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
   1145            1.1   mycroft {
   1146           1.33  augustss 	struct fs *fs;
   1147           1.58      fvdl 	daddr_t result;
   1148            1.1   mycroft 	int i, icg = cg;
   1149            1.1   mycroft 
   1150            1.1   mycroft 	fs = ip->i_fs;
   1151            1.1   mycroft 	/*
   1152            1.1   mycroft 	 * 1: preferred cylinder group
   1153            1.1   mycroft 	 */
   1154          1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
   1155            1.1   mycroft 	if (result)
   1156            1.1   mycroft 		return (result);
   1157          1.111    simonb 
   1158          1.111    simonb 	if (flags & B_CONTIG)
   1159          1.111    simonb 		return (result);
   1160            1.1   mycroft 	/*
   1161            1.1   mycroft 	 * 2: quadratic rehash
   1162            1.1   mycroft 	 */
   1163            1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1164            1.1   mycroft 		cg += i;
   1165            1.1   mycroft 		if (cg >= fs->fs_ncg)
   1166            1.1   mycroft 			cg -= fs->fs_ncg;
   1167          1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
   1168            1.1   mycroft 		if (result)
   1169            1.1   mycroft 			return (result);
   1170            1.1   mycroft 	}
   1171            1.1   mycroft 	/*
   1172            1.1   mycroft 	 * 3: brute force search
   1173            1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1174            1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1175            1.1   mycroft 	 */
   1176            1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1177            1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1178          1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
   1179            1.1   mycroft 		if (result)
   1180            1.1   mycroft 			return (result);
   1181            1.1   mycroft 		cg++;
   1182            1.1   mycroft 		if (cg == fs->fs_ncg)
   1183            1.1   mycroft 			cg = 0;
   1184            1.1   mycroft 	}
   1185           1.35   thorpej 	return (0);
   1186            1.1   mycroft }
   1187            1.1   mycroft 
   1188            1.1   mycroft /*
   1189            1.1   mycroft  * Determine whether a fragment can be extended.
   1190            1.1   mycroft  *
   1191           1.81     perry  * Check to see if the necessary fragments are available, and
   1192            1.1   mycroft  * if they are, allocate them.
   1193          1.106     pooka  *
   1194          1.106     pooka  * => called with um_lock held
   1195          1.106     pooka  * => returns with um_lock released on success, held on failure
   1196            1.1   mycroft  */
   1197           1.58      fvdl static daddr_t
   1198           1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1199            1.1   mycroft {
   1200          1.101        ad 	struct ufsmount *ump;
   1201           1.33  augustss 	struct fs *fs;
   1202           1.33  augustss 	struct cg *cgp;
   1203            1.1   mycroft 	struct buf *bp;
   1204           1.58      fvdl 	daddr_t bno;
   1205            1.1   mycroft 	int frags, bbase;
   1206            1.1   mycroft 	int i, error;
   1207           1.62      fvdl 	u_int8_t *blksfree;
   1208            1.1   mycroft 
   1209            1.1   mycroft 	fs = ip->i_fs;
   1210          1.101        ad 	ump = ip->i_ump;
   1211          1.101        ad 
   1212          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1213          1.101        ad 
   1214            1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1215           1.35   thorpej 		return (0);
   1216            1.1   mycroft 	frags = numfrags(fs, nsize);
   1217            1.1   mycroft 	bbase = fragnum(fs, bprev);
   1218            1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1219            1.1   mycroft 		/* cannot extend across a block boundary */
   1220           1.35   thorpej 		return (0);
   1221            1.1   mycroft 	}
   1222          1.101        ad 	mutex_exit(&ump->um_lock);
   1223            1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1224          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1225          1.101        ad 	if (error)
   1226          1.101        ad 		goto fail;
   1227            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1228          1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1229          1.101        ad 		goto fail;
   1230           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1231           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1232           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1233           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1234            1.1   mycroft 	bno = dtogd(fs, bprev);
   1235           1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1236            1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1237          1.101        ad 		if (isclr(blksfree, bno + i))
   1238          1.101        ad 			goto fail;
   1239            1.1   mycroft 	/*
   1240            1.1   mycroft 	 * the current fragment can be extended
   1241            1.1   mycroft 	 * deduct the count on fragment being extended into
   1242            1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1243            1.1   mycroft 	 * allocate the extended piece
   1244            1.1   mycroft 	 */
   1245            1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1246           1.62      fvdl 		if (isclr(blksfree, bno + i))
   1247            1.1   mycroft 			break;
   1248           1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1249            1.1   mycroft 	if (i != frags)
   1250           1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1251          1.101        ad 	mutex_enter(&ump->um_lock);
   1252            1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1253           1.62      fvdl 		clrbit(blksfree, bno + i);
   1254           1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1255            1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1256            1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1257            1.1   mycroft 	}
   1258            1.1   mycroft 	fs->fs_fmod = 1;
   1259          1.101        ad 	ACTIVECG_CLR(fs, cg);
   1260          1.101        ad 	mutex_exit(&ump->um_lock);
   1261           1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1262           1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1263            1.1   mycroft 	bdwrite(bp);
   1264            1.1   mycroft 	return (bprev);
   1265          1.101        ad 
   1266          1.101        ad  fail:
   1267          1.101        ad  	brelse(bp, 0);
   1268          1.101        ad  	mutex_enter(&ump->um_lock);
   1269          1.101        ad  	return (0);
   1270            1.1   mycroft }
   1271            1.1   mycroft 
   1272            1.1   mycroft /*
   1273            1.1   mycroft  * Determine whether a block can be allocated.
   1274            1.1   mycroft  *
   1275            1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1276            1.1   mycroft  * and if it is, allocate it.
   1277            1.1   mycroft  */
   1278           1.58      fvdl static daddr_t
   1279          1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1280            1.1   mycroft {
   1281          1.101        ad 	struct ufsmount *ump;
   1282           1.62      fvdl 	struct fs *fs = ip->i_fs;
   1283           1.30      fvdl 	struct cg *cgp;
   1284            1.1   mycroft 	struct buf *bp;
   1285           1.60      fvdl 	int32_t bno;
   1286           1.60      fvdl 	daddr_t blkno;
   1287           1.30      fvdl 	int error, frags, allocsiz, i;
   1288           1.62      fvdl 	u_int8_t *blksfree;
   1289           1.30      fvdl #ifdef FFS_EI
   1290           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1291           1.30      fvdl #endif
   1292            1.1   mycroft 
   1293          1.101        ad 	ump = ip->i_ump;
   1294          1.101        ad 
   1295          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1296          1.101        ad 
   1297            1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1298           1.35   thorpej 		return (0);
   1299          1.101        ad 	mutex_exit(&ump->um_lock);
   1300            1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1301          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1302          1.101        ad 	if (error)
   1303          1.101        ad 		goto fail;
   1304            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1305           1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1306          1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1307          1.101        ad 		goto fail;
   1308           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1309           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1310           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1311           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1312            1.1   mycroft 	if (size == fs->fs_bsize) {
   1313          1.101        ad 		mutex_enter(&ump->um_lock);
   1314          1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1315           1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1316          1.101        ad 		mutex_exit(&ump->um_lock);
   1317            1.1   mycroft 		bdwrite(bp);
   1318           1.60      fvdl 		return (blkno);
   1319            1.1   mycroft 	}
   1320            1.1   mycroft 	/*
   1321            1.1   mycroft 	 * check to see if any fragments are already available
   1322            1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1323            1.1   mycroft 	 * it down to a smaller size if necessary
   1324            1.1   mycroft 	 */
   1325           1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1326            1.1   mycroft 	frags = numfrags(fs, size);
   1327            1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1328            1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1329            1.1   mycroft 			break;
   1330            1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1331            1.1   mycroft 		/*
   1332           1.81     perry 		 * no fragments were available, so a block will be
   1333            1.1   mycroft 		 * allocated, and hacked up
   1334            1.1   mycroft 		 */
   1335          1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1336          1.101        ad 			goto fail;
   1337          1.101        ad 		mutex_enter(&ump->um_lock);
   1338          1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1339           1.60      fvdl 		bno = dtogd(fs, blkno);
   1340            1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1341           1.62      fvdl 			setbit(blksfree, bno + i);
   1342            1.1   mycroft 		i = fs->fs_frag - frags;
   1343           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1344            1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1345           1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1346            1.1   mycroft 		fs->fs_fmod = 1;
   1347           1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1348           1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1349          1.101        ad 		mutex_exit(&ump->um_lock);
   1350            1.1   mycroft 		bdwrite(bp);
   1351           1.60      fvdl 		return (blkno);
   1352            1.1   mycroft 	}
   1353           1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1354           1.30      fvdl #if 0
   1355           1.30      fvdl 	/*
   1356           1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1357           1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1358           1.30      fvdl 	 */
   1359          1.101        ad 	if (bno < 0)
   1360          1.101        ad 		goto fail;
   1361           1.30      fvdl #endif
   1362            1.1   mycroft 	for (i = 0; i < frags; i++)
   1363           1.62      fvdl 		clrbit(blksfree, bno + i);
   1364          1.101        ad 	mutex_enter(&ump->um_lock);
   1365           1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1366            1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1367            1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1368            1.1   mycroft 	fs->fs_fmod = 1;
   1369           1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1370            1.1   mycroft 	if (frags != allocsiz)
   1371           1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1372  1.113.4.1.2.1       snj 	blkno = cgbase(fs, cg) + bno;
   1373          1.101        ad 	ACTIVECG_CLR(fs, cg);
   1374          1.101        ad 	mutex_exit(&ump->um_lock);
   1375           1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1376           1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1377            1.1   mycroft 	bdwrite(bp);
   1378           1.30      fvdl 	return blkno;
   1379          1.101        ad 
   1380          1.101        ad  fail:
   1381          1.101        ad  	brelse(bp, 0);
   1382          1.101        ad  	mutex_enter(&ump->um_lock);
   1383          1.101        ad  	return (0);
   1384            1.1   mycroft }
   1385            1.1   mycroft 
   1386            1.1   mycroft /*
   1387            1.1   mycroft  * Allocate a block in a cylinder group.
   1388            1.1   mycroft  *
   1389            1.1   mycroft  * This algorithm implements the following policy:
   1390            1.1   mycroft  *   1) allocate the requested block.
   1391            1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1392            1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1393            1.1   mycroft  *      specified cylinder group.
   1394            1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1395            1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1396            1.1   mycroft  */
   1397           1.58      fvdl static daddr_t
   1398          1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1399            1.1   mycroft {
   1400          1.101        ad 	struct ufsmount *ump;
   1401           1.62      fvdl 	struct fs *fs = ip->i_fs;
   1402           1.30      fvdl 	struct cg *cgp;
   1403           1.60      fvdl 	daddr_t blkno;
   1404           1.60      fvdl 	int32_t bno;
   1405           1.60      fvdl 	u_int8_t *blksfree;
   1406           1.30      fvdl #ifdef FFS_EI
   1407           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1408           1.30      fvdl #endif
   1409            1.1   mycroft 
   1410          1.101        ad 	ump = ip->i_ump;
   1411          1.101        ad 
   1412          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1413          1.101        ad 
   1414           1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1415           1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1416           1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1417           1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1418           1.60      fvdl 	} else {
   1419           1.60      fvdl 		bpref = blknum(fs, bpref);
   1420           1.60      fvdl 		bno = dtogd(fs, bpref);
   1421            1.1   mycroft 		/*
   1422           1.60      fvdl 		 * if the requested block is available, use it
   1423            1.1   mycroft 		 */
   1424           1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1425           1.60      fvdl 			goto gotit;
   1426          1.111    simonb 		/*
   1427          1.111    simonb 		 * if the requested data block isn't available and we are
   1428          1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1429          1.111    simonb 		 */
   1430          1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1431          1.111    simonb 			return (0);
   1432            1.1   mycroft 	}
   1433          1.111    simonb 
   1434            1.1   mycroft 	/*
   1435           1.60      fvdl 	 * Take the next available block in this cylinder group.
   1436            1.1   mycroft 	 */
   1437           1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1438            1.1   mycroft 	if (bno < 0)
   1439           1.35   thorpej 		return (0);
   1440           1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1441            1.1   mycroft gotit:
   1442            1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1443           1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1444           1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1445           1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1446            1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1447           1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1448           1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1449           1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1450           1.73       dbj 		int cylno;
   1451           1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1452           1.75       dbj 		KASSERT(cylno >= 0);
   1453           1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1454           1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1455           1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1456           1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1457           1.73       dbj 		    needswap);
   1458           1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1459           1.73       dbj 	}
   1460            1.1   mycroft 	fs->fs_fmod = 1;
   1461           1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1462          1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1463          1.101        ad 		mutex_exit(&ump->um_lock);
   1464           1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1465          1.101        ad 		mutex_enter(&ump->um_lock);
   1466          1.101        ad 	}
   1467           1.30      fvdl 	return (blkno);
   1468            1.1   mycroft }
   1469            1.1   mycroft 
   1470           1.55      matt #ifdef XXXUBC
   1471            1.1   mycroft /*
   1472            1.1   mycroft  * Determine whether a cluster can be allocated.
   1473            1.1   mycroft  *
   1474            1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1475            1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1476            1.1   mycroft  * take the first one that we find following bpref.
   1477            1.1   mycroft  */
   1478           1.60      fvdl 
   1479           1.60      fvdl /*
   1480           1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1481           1.60      fvdl  */
   1482           1.58      fvdl static daddr_t
   1483           1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1484            1.1   mycroft {
   1485          1.101        ad 	struct ufsmount *ump;
   1486           1.33  augustss 	struct fs *fs;
   1487           1.33  augustss 	struct cg *cgp;
   1488            1.1   mycroft 	struct buf *bp;
   1489           1.18      fvdl 	int i, got, run, bno, bit, map;
   1490            1.1   mycroft 	u_char *mapp;
   1491            1.5   mycroft 	int32_t *lp;
   1492            1.1   mycroft 
   1493            1.1   mycroft 	fs = ip->i_fs;
   1494          1.101        ad 	ump = ip->i_ump;
   1495          1.101        ad 
   1496          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1497            1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1498           1.35   thorpej 		return (0);
   1499          1.101        ad 	mutex_exit(&ump->um_lock);
   1500            1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1501          1.107   hannken 	    NOCRED, 0, &bp))
   1502            1.1   mycroft 		goto fail;
   1503            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1504           1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1505            1.1   mycroft 		goto fail;
   1506            1.1   mycroft 	/*
   1507            1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1508            1.1   mycroft 	 * available in this cylinder group.
   1509            1.1   mycroft 	 */
   1510           1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1511            1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1512           1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1513            1.1   mycroft 			break;
   1514            1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1515            1.5   mycroft 		/*
   1516            1.5   mycroft 		 * This is the first time looking for a cluster in this
   1517            1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1518            1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1519            1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1520            1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1521            1.5   mycroft 		 */
   1522           1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1523            1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1524           1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1525            1.5   mycroft 				break;
   1526          1.101        ad 		mutex_enter(&ump->um_lock);
   1527            1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1528          1.101        ad 		mutex_exit(&ump->um_lock);
   1529            1.1   mycroft 		goto fail;
   1530            1.5   mycroft 	}
   1531            1.1   mycroft 	/*
   1532            1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1533            1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1534            1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1535            1.1   mycroft 	 * block allocation. We do not search before the current
   1536            1.1   mycroft 	 * preference point as we do not want to allocate a block
   1537            1.1   mycroft 	 * that is allocated before the previous one (as we will
   1538            1.1   mycroft 	 * then have to wait for another pass of the elevator
   1539            1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1540            1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1541            1.1   mycroft 	 */
   1542            1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1543            1.1   mycroft 		bpref = 0;
   1544            1.1   mycroft 	else
   1545            1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1546           1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1547            1.1   mycroft 	map = *mapp++;
   1548            1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1549           1.19    bouyer 	for (run = 0, got = bpref;
   1550           1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1551            1.1   mycroft 		if ((map & bit) == 0) {
   1552            1.1   mycroft 			run = 0;
   1553            1.1   mycroft 		} else {
   1554            1.1   mycroft 			run++;
   1555            1.1   mycroft 			if (run == len)
   1556            1.1   mycroft 				break;
   1557            1.1   mycroft 		}
   1558           1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1559            1.1   mycroft 			bit <<= 1;
   1560            1.1   mycroft 		} else {
   1561            1.1   mycroft 			map = *mapp++;
   1562            1.1   mycroft 			bit = 1;
   1563            1.1   mycroft 		}
   1564            1.1   mycroft 	}
   1565           1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1566            1.1   mycroft 		goto fail;
   1567            1.1   mycroft 	/*
   1568            1.1   mycroft 	 * Allocate the cluster that we have found.
   1569            1.1   mycroft 	 */
   1570           1.30      fvdl #ifdef DIAGNOSTIC
   1571           1.18      fvdl 	for (i = 1; i <= len; i++)
   1572           1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1573           1.30      fvdl 		    got - run + i))
   1574           1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1575           1.30      fvdl #endif
   1576  1.113.4.1.2.1       snj 	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
   1577           1.18      fvdl 	if (dtog(fs, bno) != cg)
   1578           1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1579            1.1   mycroft 	len = blkstofrags(fs, len);
   1580          1.101        ad 	mutex_enter(&ump->um_lock);
   1581            1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1582          1.111    simonb 		if ((got = ffs_alloccgblk(ip, bp, bno + i, flags)) != bno + i)
   1583            1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1584           1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1585          1.101        ad 	mutex_exit(&ump->um_lock);
   1586            1.8       cgd 	bdwrite(bp);
   1587            1.1   mycroft 	return (bno);
   1588            1.1   mycroft 
   1589            1.1   mycroft fail:
   1590          1.101        ad 	brelse(bp, 0);
   1591          1.101        ad 	mutex_enter(&ump->um_lock);
   1592            1.1   mycroft 	return (0);
   1593            1.1   mycroft }
   1594           1.55      matt #endif /* XXXUBC */
   1595            1.1   mycroft 
   1596            1.1   mycroft /*
   1597            1.1   mycroft  * Determine whether an inode can be allocated.
   1598            1.1   mycroft  *
   1599            1.1   mycroft  * Check to see if an inode is available, and if it is,
   1600            1.1   mycroft  * allocate it using the following policy:
   1601            1.1   mycroft  *   1) allocate the requested inode.
   1602            1.1   mycroft  *   2) allocate the next available inode after the requested
   1603            1.1   mycroft  *      inode in the specified cylinder group.
   1604            1.1   mycroft  */
   1605           1.58      fvdl static daddr_t
   1606          1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1607            1.1   mycroft {
   1608          1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1609           1.62      fvdl 	struct fs *fs = ip->i_fs;
   1610           1.33  augustss 	struct cg *cgp;
   1611           1.60      fvdl 	struct buf *bp, *ibp;
   1612           1.60      fvdl 	u_int8_t *inosused;
   1613            1.1   mycroft 	int error, start, len, loc, map, i;
   1614           1.60      fvdl 	int32_t initediblk;
   1615          1.112   hannken 	daddr_t nalloc;
   1616           1.60      fvdl 	struct ufs2_dinode *dp2;
   1617           1.19    bouyer #ifdef FFS_EI
   1618           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1619           1.19    bouyer #endif
   1620            1.1   mycroft 
   1621          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1622          1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1623          1.101        ad 
   1624            1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1625           1.35   thorpej 		return (0);
   1626          1.101        ad 	mutex_exit(&ump->um_lock);
   1627          1.112   hannken 	ibp = NULL;
   1628          1.112   hannken 	initediblk = -1;
   1629          1.112   hannken retry:
   1630            1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1631          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1632          1.101        ad 	if (error)
   1633          1.101        ad 		goto fail;
   1634            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1635          1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1636          1.101        ad 		goto fail;
   1637          1.112   hannken 
   1638          1.112   hannken 	if (ibp != NULL &&
   1639          1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1640          1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1641      1.113.4.1       snj 		brelse(ibp, 0);
   1642          1.112   hannken 		ibp = NULL;
   1643          1.112   hannken 	}
   1644          1.112   hannken 	/*
   1645          1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1646          1.112   hannken 	 */
   1647          1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1648          1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1649          1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1650          1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1651          1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1652          1.112   hannken 			/*
   1653          1.112   hannken 			 * We have to release the cg buffer here to prevent
   1654          1.112   hannken 			 * a deadlock when reading the inode block will
   1655          1.112   hannken 			 * run a copy-on-write that might use this cg.
   1656          1.112   hannken 			 */
   1657          1.112   hannken 			brelse(bp, 0);
   1658          1.112   hannken 			bp = NULL;
   1659          1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1660          1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1661          1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1662          1.112   hannken 			if (error)
   1663          1.112   hannken 				goto fail;
   1664          1.112   hannken 			goto retry;
   1665          1.112   hannken 		}
   1666          1.112   hannken 	}
   1667          1.112   hannken 
   1668           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1669           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1670           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1671           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1672           1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1673            1.1   mycroft 	if (ipref) {
   1674            1.1   mycroft 		ipref %= fs->fs_ipg;
   1675           1.60      fvdl 		if (isclr(inosused, ipref))
   1676            1.1   mycroft 			goto gotit;
   1677            1.1   mycroft 	}
   1678           1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1679           1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1680           1.19    bouyer 		NBBY);
   1681           1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1682            1.1   mycroft 	if (loc == 0) {
   1683            1.1   mycroft 		len = start + 1;
   1684            1.1   mycroft 		start = 0;
   1685           1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1686            1.1   mycroft 		if (loc == 0) {
   1687           1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1688           1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1689           1.19    bouyer 				fs->fs_fsmnt);
   1690            1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1691            1.1   mycroft 			/* NOTREACHED */
   1692            1.1   mycroft 		}
   1693            1.1   mycroft 	}
   1694            1.1   mycroft 	i = start + len - loc;
   1695           1.60      fvdl 	map = inosused[i];
   1696            1.1   mycroft 	ipref = i * NBBY;
   1697            1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1698            1.1   mycroft 		if ((map & i) == 0) {
   1699           1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1700            1.1   mycroft 			goto gotit;
   1701            1.1   mycroft 		}
   1702            1.1   mycroft 	}
   1703           1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1704            1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1705            1.1   mycroft 	/* NOTREACHED */
   1706            1.1   mycroft gotit:
   1707          1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1708          1.111    simonb 	    mode);
   1709           1.60      fvdl 	/*
   1710           1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1711           1.60      fvdl 	 */
   1712          1.112   hannken 	if (ibp != NULL) {
   1713          1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1714          1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1715          1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1716          1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1717           1.60      fvdl 			/*
   1718           1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1719           1.60      fvdl 			 * random, after all.
   1720           1.60      fvdl 			 */
   1721           1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1722           1.60      fvdl 			dp2++;
   1723           1.60      fvdl 		}
   1724           1.60      fvdl 		initediblk += INOPB(fs);
   1725           1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1726           1.60      fvdl 	}
   1727           1.60      fvdl 
   1728          1.101        ad 	mutex_enter(&ump->um_lock);
   1729           1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1730          1.101        ad 	setbit(inosused, ipref);
   1731          1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1732          1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1733          1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1734          1.101        ad 	fs->fs_fmod = 1;
   1735          1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1736          1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1737          1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1738          1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1739          1.101        ad 	}
   1740          1.101        ad 	mutex_exit(&ump->um_lock);
   1741          1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1742          1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1743          1.112   hannken 	if (ibp != NULL) {
   1744          1.112   hannken 		bwrite(bp);
   1745          1.104   hannken 		bawrite(ibp);
   1746          1.112   hannken 	} else
   1747          1.112   hannken 		bdwrite(bp);
   1748            1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1749          1.101        ad  fail:
   1750          1.112   hannken 	if (bp != NULL)
   1751          1.112   hannken 		brelse(bp, 0);
   1752          1.112   hannken 	if (ibp != NULL)
   1753      1.113.4.1       snj 		brelse(ibp, 0);
   1754          1.101        ad 	mutex_enter(&ump->um_lock);
   1755          1.101        ad 	return (0);
   1756            1.1   mycroft }
   1757            1.1   mycroft 
   1758            1.1   mycroft /*
   1759          1.111    simonb  * Allocate a block or fragment.
   1760          1.111    simonb  *
   1761          1.111    simonb  * The specified block or fragment is removed from the
   1762          1.111    simonb  * free map, possibly fragmenting a block in the process.
   1763          1.111    simonb  *
   1764          1.111    simonb  * This implementation should mirror fs_blkfree
   1765          1.111    simonb  *
   1766          1.111    simonb  * => um_lock not held on entry or exit
   1767          1.111    simonb  */
   1768          1.111    simonb int
   1769          1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1770          1.111    simonb {
   1771          1.111    simonb 	struct ufsmount *ump = ip->i_ump;
   1772          1.111    simonb 	struct fs *fs = ip->i_fs;
   1773          1.111    simonb 	struct cg *cgp;
   1774          1.111    simonb 	struct buf *bp;
   1775          1.111    simonb 	int32_t fragno, cgbno;
   1776          1.111    simonb 	int i, error, cg, blk, frags, bbase;
   1777          1.111    simonb 	u_int8_t *blksfree;
   1778          1.111    simonb 	const int needswap = UFS_FSNEEDSWAP(fs);
   1779          1.111    simonb 
   1780          1.111    simonb 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1781          1.111    simonb 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1782          1.111    simonb 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1783          1.111    simonb 		       "size = %ld, fs = %s\n",
   1784          1.111    simonb 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1785          1.111    simonb 		panic("blkalloc: bad size");
   1786          1.111    simonb 	}
   1787          1.111    simonb 	cg = dtog(fs, bno);
   1788          1.111    simonb 	if (bno >= fs->fs_size) {
   1789          1.111    simonb 		printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
   1790          1.111    simonb 		    ip->i_number);
   1791          1.111    simonb 		ffs_fserr(fs, ip->i_uid, "bad block");
   1792          1.111    simonb 		return EINVAL;
   1793          1.111    simonb 	}
   1794          1.111    simonb 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1795          1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1796          1.111    simonb 	if (error) {
   1797          1.111    simonb 		brelse(bp, 0);
   1798          1.111    simonb 		return error;
   1799          1.111    simonb 	}
   1800          1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1801          1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1802          1.111    simonb 		brelse(bp, 0);
   1803          1.111    simonb 		return EIO;
   1804          1.111    simonb 	}
   1805          1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1806          1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1807          1.111    simonb 	cgbno = dtogd(fs, bno);
   1808          1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1809          1.111    simonb 
   1810          1.111    simonb 	mutex_enter(&ump->um_lock);
   1811          1.111    simonb 	if (size == fs->fs_bsize) {
   1812          1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1813          1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1814          1.111    simonb 			mutex_exit(&ump->um_lock);
   1815          1.111    simonb 			brelse(bp, 0);
   1816          1.111    simonb 			return EBUSY;
   1817          1.111    simonb 		}
   1818          1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1819          1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1820          1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1821          1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1822          1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1823          1.111    simonb 	} else {
   1824          1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1825          1.111    simonb 
   1826          1.111    simonb 		frags = numfrags(fs, size);
   1827          1.111    simonb 		for (i = 0; i < frags; i++) {
   1828          1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1829          1.111    simonb 				mutex_exit(&ump->um_lock);
   1830          1.111    simonb 				brelse(bp, 0);
   1831          1.111    simonb 				return EBUSY;
   1832          1.111    simonb 			}
   1833          1.111    simonb 		}
   1834          1.111    simonb 		/*
   1835          1.111    simonb 		 * if a complete block is being split, account for it
   1836          1.111    simonb 		 */
   1837          1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1838          1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1839          1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1840          1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1841          1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1842          1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1843          1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1844          1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1845          1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1846          1.111    simonb 		}
   1847          1.111    simonb 		/*
   1848          1.111    simonb 		 * decrement the counts associated with the old frags
   1849          1.111    simonb 		 */
   1850          1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1851          1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1852          1.111    simonb 		/*
   1853          1.111    simonb 		 * allocate the fragment
   1854          1.111    simonb 		 */
   1855          1.111    simonb 		for (i = 0; i < frags; i++) {
   1856          1.111    simonb 			clrbit(blksfree, cgbno + i);
   1857          1.111    simonb 		}
   1858          1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1859          1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1860          1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1861          1.111    simonb 		/*
   1862          1.111    simonb 		 * add back in counts associated with the new frags
   1863          1.111    simonb 		 */
   1864          1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1865          1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1866          1.111    simonb 	}
   1867          1.111    simonb 	fs->fs_fmod = 1;
   1868          1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1869          1.111    simonb 	mutex_exit(&ump->um_lock);
   1870          1.111    simonb 	bdwrite(bp);
   1871          1.111    simonb 	return 0;
   1872          1.111    simonb }
   1873          1.111    simonb 
   1874          1.111    simonb /*
   1875            1.1   mycroft  * Free a block or fragment.
   1876            1.1   mycroft  *
   1877            1.1   mycroft  * The specified block or fragment is placed back in the
   1878           1.81     perry  * free map. If a fragment is deallocated, a possible
   1879            1.1   mycroft  * block reassembly is checked.
   1880          1.106     pooka  *
   1881          1.106     pooka  * => um_lock not held on entry or exit
   1882            1.1   mycroft  */
   1883            1.9  christos void
   1884           1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1885           1.85   thorpej     ino_t inum)
   1886            1.1   mycroft {
   1887           1.33  augustss 	struct cg *cgp;
   1888            1.1   mycroft 	struct buf *bp;
   1889           1.76   hannken 	struct ufsmount *ump;
   1890           1.60      fvdl 	int32_t fragno, cgbno;
   1891           1.76   hannken 	daddr_t cgblkno;
   1892            1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1893           1.62      fvdl 	u_int8_t *blksfree;
   1894           1.76   hannken 	dev_t dev;
   1895          1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1896           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1897            1.1   mycroft 
   1898           1.76   hannken 	cg = dtog(fs, bno);
   1899          1.113   hannken 	if (devvp_is_snapshot) {
   1900           1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1901          1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1902           1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1903           1.76   hannken 	} else {
   1904           1.76   hannken 		dev = devvp->v_rdev;
   1905          1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1906           1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1907          1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1908           1.76   hannken 			return;
   1909           1.76   hannken 	}
   1910           1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1911           1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1912           1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1913           1.58      fvdl 		       "size = %ld, fs = %s\n",
   1914           1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1915            1.1   mycroft 		panic("blkfree: bad size");
   1916            1.1   mycroft 	}
   1917           1.76   hannken 
   1918           1.60      fvdl 	if (bno >= fs->fs_size) {
   1919           1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1920           1.86  christos 		    (unsigned long long)inum);
   1921           1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1922            1.1   mycroft 		return;
   1923            1.1   mycroft 	}
   1924          1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1925          1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1926            1.1   mycroft 	if (error) {
   1927          1.101        ad 		brelse(bp, 0);
   1928            1.1   mycroft 		return;
   1929            1.1   mycroft 	}
   1930            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1931           1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1932          1.101        ad 		brelse(bp, 0);
   1933            1.1   mycroft 		return;
   1934            1.1   mycroft 	}
   1935           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1936           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1937           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1938           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1939           1.60      fvdl 	cgbno = dtogd(fs, bno);
   1940           1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1941          1.101        ad 	mutex_enter(&ump->um_lock);
   1942            1.1   mycroft 	if (size == fs->fs_bsize) {
   1943           1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1944           1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1945          1.113   hannken 			if (devvp_is_snapshot) {
   1946          1.101        ad 				mutex_exit(&ump->um_lock);
   1947          1.101        ad 				brelse(bp, 0);
   1948           1.76   hannken 				return;
   1949           1.76   hannken 			}
   1950           1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1951           1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1952            1.1   mycroft 			panic("blkfree: freeing free block");
   1953            1.1   mycroft 		}
   1954           1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1955           1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1956           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1957            1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1958            1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1959           1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1960           1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1961           1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1962           1.75       dbj 			KASSERT(i >= 0);
   1963           1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1964           1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1965           1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1966           1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1967           1.73       dbj 			    needswap);
   1968           1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1969           1.73       dbj 		}
   1970            1.1   mycroft 	} else {
   1971           1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1972            1.1   mycroft 		/*
   1973            1.1   mycroft 		 * decrement the counts associated with the old frags
   1974            1.1   mycroft 		 */
   1975           1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1976           1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1977            1.1   mycroft 		/*
   1978            1.1   mycroft 		 * deallocate the fragment
   1979            1.1   mycroft 		 */
   1980            1.1   mycroft 		frags = numfrags(fs, size);
   1981            1.1   mycroft 		for (i = 0; i < frags; i++) {
   1982           1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1983           1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1984           1.59   tsutsui 				       ", fs = %s\n",
   1985           1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1986            1.1   mycroft 				panic("blkfree: freeing free frag");
   1987            1.1   mycroft 			}
   1988           1.62      fvdl 			setbit(blksfree, cgbno + i);
   1989            1.1   mycroft 		}
   1990           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1991            1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1992           1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1993            1.1   mycroft 		/*
   1994            1.1   mycroft 		 * add back in counts associated with the new frags
   1995            1.1   mycroft 		 */
   1996           1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1997           1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1998            1.1   mycroft 		/*
   1999            1.1   mycroft 		 * if a complete block has been reassembled, account for it
   2000            1.1   mycroft 		 */
   2001           1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   2002           1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   2003           1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   2004            1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   2005            1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   2006           1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   2007           1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   2008            1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   2009            1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   2010           1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   2011           1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   2012           1.73       dbj 				i = old_cbtocylno(fs, bbase);
   2013           1.75       dbj 				KASSERT(i >= 0);
   2014           1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   2015           1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   2016           1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   2017           1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   2018           1.73       dbj 				    bbase)], 1, needswap);
   2019           1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   2020           1.73       dbj 			}
   2021            1.1   mycroft 		}
   2022            1.1   mycroft 	}
   2023            1.1   mycroft 	fs->fs_fmod = 1;
   2024           1.76   hannken 	ACTIVECG_CLR(fs, cg);
   2025          1.101        ad 	mutex_exit(&ump->um_lock);
   2026            1.1   mycroft 	bdwrite(bp);
   2027            1.1   mycroft }
   2028            1.1   mycroft 
   2029           1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   2030           1.55      matt #ifdef XXXUBC
   2031           1.18      fvdl /*
   2032           1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   2033           1.18      fvdl  * fragment is allocated, false if it is free.
   2034           1.18      fvdl  */
   2035           1.18      fvdl static int
   2036           1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   2037           1.18      fvdl {
   2038           1.18      fvdl 	struct fs *fs;
   2039           1.18      fvdl 	struct cg *cgp;
   2040           1.18      fvdl 	struct buf *bp;
   2041           1.18      fvdl 	int i, error, frags, free;
   2042           1.18      fvdl 
   2043           1.18      fvdl 	fs = ip->i_fs;
   2044           1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   2045           1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   2046           1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   2047           1.18      fvdl 		panic("checkblk: bad size");
   2048           1.18      fvdl 	}
   2049           1.60      fvdl 	if (bno >= fs->fs_size)
   2050           1.18      fvdl 		panic("checkblk: bad block %d", bno);
   2051           1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   2052          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   2053           1.18      fvdl 	if (error) {
   2054          1.101        ad 		brelse(bp, 0);
   2055           1.18      fvdl 		return 0;
   2056           1.18      fvdl 	}
   2057           1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   2058           1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2059          1.101        ad 		brelse(bp, 0);
   2060           1.18      fvdl 		return 0;
   2061           1.18      fvdl 	}
   2062           1.18      fvdl 	bno = dtogd(fs, bno);
   2063           1.18      fvdl 	if (size == fs->fs_bsize) {
   2064           1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   2065           1.19    bouyer 			fragstoblks(fs, bno));
   2066           1.18      fvdl 	} else {
   2067           1.18      fvdl 		frags = numfrags(fs, size);
   2068           1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   2069           1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   2070           1.18      fvdl 				free++;
   2071           1.18      fvdl 		if (free != 0 && free != frags)
   2072           1.18      fvdl 			panic("checkblk: partially free fragment");
   2073           1.18      fvdl 	}
   2074          1.101        ad 	brelse(bp, 0);
   2075           1.18      fvdl 	return (!free);
   2076           1.18      fvdl }
   2077           1.55      matt #endif /* XXXUBC */
   2078           1.18      fvdl #endif /* DIAGNOSTIC */
   2079           1.18      fvdl 
   2080            1.1   mycroft /*
   2081            1.1   mycroft  * Free an inode.
   2082           1.30      fvdl  */
   2083           1.30      fvdl int
   2084           1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   2085           1.30      fvdl {
   2086           1.30      fvdl 
   2087           1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   2088           1.88      yamt 		softdep_freefile(vp, ino, mode);
   2089           1.30      fvdl 		return (0);
   2090           1.30      fvdl 	}
   2091           1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   2092           1.30      fvdl }
   2093           1.30      fvdl 
   2094           1.30      fvdl /*
   2095           1.30      fvdl  * Do the actual free operation.
   2096            1.1   mycroft  * The specified inode is placed back in the free map.
   2097          1.111    simonb  *
   2098          1.111    simonb  * => um_lock not held on entry or exit
   2099            1.1   mycroft  */
   2100            1.1   mycroft int
   2101           1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2102            1.9  christos {
   2103          1.101        ad 	struct ufsmount *ump;
   2104           1.33  augustss 	struct cg *cgp;
   2105            1.1   mycroft 	struct buf *bp;
   2106            1.1   mycroft 	int error, cg;
   2107           1.76   hannken 	daddr_t cgbno;
   2108           1.62      fvdl 	u_int8_t *inosused;
   2109           1.78   hannken 	dev_t dev;
   2110          1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2111           1.19    bouyer #ifdef FFS_EI
   2112           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2113           1.19    bouyer #endif
   2114            1.1   mycroft 
   2115          1.113   hannken 	if (!devvp_is_snapshot) {
   2116          1.113   hannken 		UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   2117          1.113   hannken 	}
   2118          1.111    simonb 
   2119           1.76   hannken 	cg = ino_to_cg(fs, ino);
   2120          1.113   hannken 	if (devvp_is_snapshot) {
   2121           1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   2122          1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   2123           1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2124           1.76   hannken 	} else {
   2125           1.78   hannken 		dev = devvp->v_rdev;
   2126          1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   2127           1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2128           1.76   hannken 	}
   2129            1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2130           1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   2131           1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   2132          1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2133          1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   2134            1.1   mycroft 	if (error) {
   2135          1.101        ad 		brelse(bp, 0);
   2136           1.30      fvdl 		return (error);
   2137            1.1   mycroft 	}
   2138            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2139           1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2140          1.101        ad 		brelse(bp, 0);
   2141            1.1   mycroft 		return (0);
   2142            1.1   mycroft 	}
   2143           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2144           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2145           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2146           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2147           1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2148            1.1   mycroft 	ino %= fs->fs_ipg;
   2149           1.62      fvdl 	if (isclr(inosused, ino)) {
   2150           1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   2151           1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   2152           1.86  christos 		    fs->fs_fsmnt);
   2153            1.1   mycroft 		if (fs->fs_ronly == 0)
   2154            1.1   mycroft 			panic("ifree: freeing free inode");
   2155            1.1   mycroft 	}
   2156           1.62      fvdl 	clrbit(inosused, ino);
   2157          1.113   hannken 	if (!devvp_is_snapshot)
   2158          1.113   hannken 		UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   2159          1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2160           1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2161           1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2162           1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2163          1.101        ad 	mutex_enter(&ump->um_lock);
   2164            1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2165            1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2166           1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2167           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2168            1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2169            1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2170            1.1   mycroft 	}
   2171            1.1   mycroft 	fs->fs_fmod = 1;
   2172           1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2173          1.101        ad 	mutex_exit(&ump->um_lock);
   2174            1.1   mycroft 	bdwrite(bp);
   2175            1.1   mycroft 	return (0);
   2176            1.1   mycroft }
   2177            1.1   mycroft 
   2178            1.1   mycroft /*
   2179           1.76   hannken  * Check to see if a file is free.
   2180           1.76   hannken  */
   2181           1.76   hannken int
   2182           1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2183           1.76   hannken {
   2184           1.76   hannken 	struct cg *cgp;
   2185           1.76   hannken 	struct buf *bp;
   2186           1.76   hannken 	daddr_t cgbno;
   2187           1.76   hannken 	int ret, cg;
   2188           1.76   hannken 	u_int8_t *inosused;
   2189          1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2190           1.76   hannken 
   2191           1.76   hannken 	cg = ino_to_cg(fs, ino);
   2192          1.113   hannken 	if (devvp_is_snapshot)
   2193           1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2194          1.113   hannken 	else
   2195           1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2196           1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2197           1.76   hannken 		return 1;
   2198          1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2199          1.101        ad 		brelse(bp, 0);
   2200           1.76   hannken 		return 1;
   2201           1.76   hannken 	}
   2202           1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2203           1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2204          1.101        ad 		brelse(bp, 0);
   2205           1.76   hannken 		return 1;
   2206           1.76   hannken 	}
   2207           1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2208           1.76   hannken 	ino %= fs->fs_ipg;
   2209           1.76   hannken 	ret = isclr(inosused, ino);
   2210          1.101        ad 	brelse(bp, 0);
   2211           1.76   hannken 	return ret;
   2212           1.76   hannken }
   2213           1.76   hannken 
   2214           1.76   hannken /*
   2215            1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2216            1.1   mycroft  *
   2217            1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2218            1.1   mycroft  * available.
   2219            1.1   mycroft  */
   2220           1.60      fvdl static int32_t
   2221           1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2222            1.1   mycroft {
   2223           1.60      fvdl 	int32_t bno;
   2224            1.1   mycroft 	int start, len, loc, i;
   2225            1.1   mycroft 	int blk, field, subfield, pos;
   2226           1.19    bouyer 	int ostart, olen;
   2227           1.62      fvdl 	u_int8_t *blksfree;
   2228           1.30      fvdl #ifdef FFS_EI
   2229           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2230           1.30      fvdl #endif
   2231            1.1   mycroft 
   2232          1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2233          1.101        ad 
   2234            1.1   mycroft 	/*
   2235            1.1   mycroft 	 * find the fragment by searching through the free block
   2236            1.1   mycroft 	 * map for an appropriate bit pattern
   2237            1.1   mycroft 	 */
   2238            1.1   mycroft 	if (bpref)
   2239            1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2240            1.1   mycroft 	else
   2241           1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2242           1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2243            1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2244           1.19    bouyer 	ostart = start;
   2245           1.19    bouyer 	olen = len;
   2246           1.45     lukem 	loc = scanc((u_int)len,
   2247           1.62      fvdl 		(const u_char *)&blksfree[start],
   2248           1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2249           1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2250            1.1   mycroft 	if (loc == 0) {
   2251            1.1   mycroft 		len = start + 1;
   2252            1.1   mycroft 		start = 0;
   2253           1.45     lukem 		loc = scanc((u_int)len,
   2254           1.62      fvdl 			(const u_char *)&blksfree[0],
   2255           1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2256           1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2257            1.1   mycroft 		if (loc == 0) {
   2258           1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2259           1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2260           1.20      ross 			printf("offset=%d %ld\n",
   2261           1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2262           1.62      fvdl 				(long)blksfree - (long)cgp);
   2263           1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2264            1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2265            1.1   mycroft 			/* NOTREACHED */
   2266            1.1   mycroft 		}
   2267            1.1   mycroft 	}
   2268            1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2269           1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2270            1.1   mycroft 	/*
   2271            1.1   mycroft 	 * found the byte in the map
   2272            1.1   mycroft 	 * sift through the bits to find the selected frag
   2273            1.1   mycroft 	 */
   2274            1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2275           1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2276            1.1   mycroft 		blk <<= 1;
   2277            1.1   mycroft 		field = around[allocsiz];
   2278            1.1   mycroft 		subfield = inside[allocsiz];
   2279            1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2280            1.1   mycroft 			if ((blk & field) == subfield)
   2281            1.1   mycroft 				return (bno + pos);
   2282            1.1   mycroft 			field <<= 1;
   2283            1.1   mycroft 			subfield <<= 1;
   2284            1.1   mycroft 		}
   2285            1.1   mycroft 	}
   2286           1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2287            1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2288           1.58      fvdl 	/* return (-1); */
   2289            1.1   mycroft }
   2290            1.1   mycroft 
   2291            1.1   mycroft /*
   2292            1.1   mycroft  * Update the cluster map because of an allocation or free.
   2293            1.1   mycroft  *
   2294            1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2295            1.1   mycroft  */
   2296            1.9  christos void
   2297           1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2298            1.1   mycroft {
   2299            1.4       cgd 	int32_t *sump;
   2300            1.5   mycroft 	int32_t *lp;
   2301            1.1   mycroft 	u_char *freemapp, *mapp;
   2302            1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2303           1.30      fvdl #ifdef FFS_EI
   2304           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2305           1.30      fvdl #endif
   2306            1.1   mycroft 
   2307          1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2308          1.101        ad 
   2309            1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2310            1.1   mycroft 		return;
   2311           1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2312           1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2313            1.1   mycroft 	/*
   2314            1.1   mycroft 	 * Allocate or clear the actual block.
   2315            1.1   mycroft 	 */
   2316            1.1   mycroft 	if (cnt > 0)
   2317            1.1   mycroft 		setbit(freemapp, blkno);
   2318            1.1   mycroft 	else
   2319            1.1   mycroft 		clrbit(freemapp, blkno);
   2320            1.1   mycroft 	/*
   2321            1.1   mycroft 	 * Find the size of the cluster going forward.
   2322            1.1   mycroft 	 */
   2323            1.1   mycroft 	start = blkno + 1;
   2324            1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2325           1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2326           1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2327            1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2328            1.1   mycroft 	map = *mapp++;
   2329            1.1   mycroft 	bit = 1 << (start % NBBY);
   2330            1.1   mycroft 	for (i = start; i < end; i++) {
   2331            1.1   mycroft 		if ((map & bit) == 0)
   2332            1.1   mycroft 			break;
   2333            1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2334            1.1   mycroft 			bit <<= 1;
   2335            1.1   mycroft 		} else {
   2336            1.1   mycroft 			map = *mapp++;
   2337            1.1   mycroft 			bit = 1;
   2338            1.1   mycroft 		}
   2339            1.1   mycroft 	}
   2340            1.1   mycroft 	forw = i - start;
   2341            1.1   mycroft 	/*
   2342            1.1   mycroft 	 * Find the size of the cluster going backward.
   2343            1.1   mycroft 	 */
   2344            1.1   mycroft 	start = blkno - 1;
   2345            1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2346            1.1   mycroft 	if (end < 0)
   2347            1.1   mycroft 		end = -1;
   2348            1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2349            1.1   mycroft 	map = *mapp--;
   2350            1.1   mycroft 	bit = 1 << (start % NBBY);
   2351            1.1   mycroft 	for (i = start; i > end; i--) {
   2352            1.1   mycroft 		if ((map & bit) == 0)
   2353            1.1   mycroft 			break;
   2354            1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2355            1.1   mycroft 			bit >>= 1;
   2356            1.1   mycroft 		} else {
   2357            1.1   mycroft 			map = *mapp--;
   2358            1.1   mycroft 			bit = 1 << (NBBY - 1);
   2359            1.1   mycroft 		}
   2360            1.1   mycroft 	}
   2361            1.1   mycroft 	back = start - i;
   2362            1.1   mycroft 	/*
   2363            1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2364            1.1   mycroft 	 * back clusters.
   2365            1.1   mycroft 	 */
   2366            1.1   mycroft 	i = back + forw + 1;
   2367            1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2368            1.1   mycroft 		i = fs->fs_contigsumsize;
   2369           1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2370            1.1   mycroft 	if (back > 0)
   2371           1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2372            1.1   mycroft 	if (forw > 0)
   2373           1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2374           1.19    bouyer 
   2375            1.5   mycroft 	/*
   2376            1.5   mycroft 	 * Update cluster summary information.
   2377            1.5   mycroft 	 */
   2378            1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2379            1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2380           1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2381            1.5   mycroft 			break;
   2382           1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2383            1.1   mycroft }
   2384            1.1   mycroft 
   2385            1.1   mycroft /*
   2386            1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2387           1.81     perry  *
   2388            1.1   mycroft  * The form of the error message is:
   2389            1.1   mycroft  *	fs: error message
   2390            1.1   mycroft  */
   2391            1.1   mycroft static void
   2392           1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2393            1.1   mycroft {
   2394            1.1   mycroft 
   2395           1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2396           1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2397            1.1   mycroft }
   2398