Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.113.4.1.2.1.2.1
      1  1.113.4.1.2.1.2.1      matt /*	$NetBSD: ffs_alloc.c,v 1.113.4.1.2.1.2.1 2010/04/21 00:28:25 matt Exp $	*/
      2              1.111    simonb 
      3              1.111    simonb /*-
      4              1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5              1.111    simonb  * All rights reserved.
      6              1.111    simonb  *
      7              1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8              1.111    simonb  * by Wasabi Systems, Inc.
      9              1.111    simonb  *
     10              1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11              1.111    simonb  * modification, are permitted provided that the following conditions
     12              1.111    simonb  * are met:
     13              1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14              1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15              1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16              1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17              1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18              1.111    simonb  *
     19              1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20              1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21              1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22              1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23              1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24              1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25              1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26              1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27              1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28              1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29              1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30              1.111    simonb  */
     31                1.2       cgd 
     32                1.1   mycroft /*
     33               1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34               1.60      fvdl  * All rights reserved.
     35               1.60      fvdl  *
     36               1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37               1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38               1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39               1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40               1.60      fvdl  * research program
     41               1.60      fvdl  *
     42                1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43                1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44                1.1   mycroft  *
     45                1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46                1.1   mycroft  * modification, are permitted provided that the following conditions
     47                1.1   mycroft  * are met:
     48                1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49                1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50                1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51                1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52                1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53               1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54                1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55                1.1   mycroft  *    without specific prior written permission.
     56                1.1   mycroft  *
     57                1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58                1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59                1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60                1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61                1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62                1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63                1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64                1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65                1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66                1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67                1.1   mycroft  * SUCH DAMAGE.
     68                1.1   mycroft  *
     69               1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70                1.1   mycroft  */
     71               1.53     lukem 
     72               1.53     lukem #include <sys/cdefs.h>
     73  1.113.4.1.2.1.2.1      matt __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.113.4.1.2.1.2.1 2010/04/21 00:28:25 matt Exp $");
     74               1.17       mrg 
     75               1.43       mrg #if defined(_KERNEL_OPT)
     76               1.27   thorpej #include "opt_ffs.h"
     77               1.21    scottr #include "opt_quota.h"
     78               1.22    scottr #endif
     79                1.1   mycroft 
     80                1.1   mycroft #include <sys/param.h>
     81                1.1   mycroft #include <sys/systm.h>
     82                1.1   mycroft #include <sys/buf.h>
     83              1.111    simonb #include <sys/fstrans.h>
     84              1.111    simonb #include <sys/kauth.h>
     85              1.111    simonb #include <sys/kernel.h>
     86              1.111    simonb #include <sys/mount.h>
     87                1.1   mycroft #include <sys/proc.h>
     88              1.111    simonb #include <sys/syslog.h>
     89                1.1   mycroft #include <sys/vnode.h>
     90              1.111    simonb #include <sys/wapbl.h>
     91               1.29       mrg 
     92               1.76   hannken #include <miscfs/specfs/specdev.h>
     93                1.1   mycroft #include <ufs/ufs/quota.h>
     94               1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95                1.1   mycroft #include <ufs/ufs/inode.h>
     96                1.9  christos #include <ufs/ufs/ufs_extern.h>
     97               1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98              1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99                1.1   mycroft 
    100                1.1   mycroft #include <ufs/ffs/fs.h>
    101                1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102                1.1   mycroft 
    103              1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104              1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105               1.55      matt #ifdef XXXUBC
    106               1.85   thorpej static daddr_t ffs_clusteralloc(struct inode *, int, daddr_t, int);
    107               1.55      matt #endif
    108               1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    109               1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    110               1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    111              1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    112              1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    113              1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    114               1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    115               1.85   thorpej 				      daddr_t, int);
    116               1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
    117               1.55      matt #ifdef XXXUBC
    118               1.85   thorpej static int ffs_checkblk(struct inode *, daddr_t, long size);
    119               1.18      fvdl #endif
    120               1.55      matt #endif
    121               1.23  drochner 
    122               1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    123               1.34  jdolecek int ffs_log_changeopt = 0;
    124               1.34  jdolecek 
    125               1.23  drochner /* in ffs_tables.c */
    126               1.40  jdolecek extern const int inside[], around[];
    127               1.40  jdolecek extern const u_char * const fragtbl[];
    128                1.1   mycroft 
    129                1.1   mycroft /*
    130                1.1   mycroft  * Allocate a block in the file system.
    131               1.81     perry  *
    132                1.1   mycroft  * The size of the requested block is given, which must be some
    133                1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    134                1.1   mycroft  * A preference may be optionally specified. If a preference is given
    135                1.1   mycroft  * the following hierarchy is used to allocate a block:
    136                1.1   mycroft  *   1) allocate the requested block.
    137                1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    138                1.1   mycroft  *   3) allocate a block in the same cylinder group.
    139                1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    140                1.1   mycroft  *      available block is located.
    141               1.47       wiz  * If no block preference is given the following hierarchy is used
    142                1.1   mycroft  * to allocate a block:
    143                1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    144                1.1   mycroft  *      inode for the file.
    145                1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    146                1.1   mycroft  *      available block is located.
    147              1.106     pooka  *
    148              1.106     pooka  * => called with um_lock held
    149              1.106     pooka  * => releases um_lock before returning
    150                1.1   mycroft  */
    151                1.9  christos int
    152              1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    153               1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    154                1.1   mycroft {
    155              1.101        ad 	struct ufsmount *ump;
    156               1.62      fvdl 	struct fs *fs;
    157               1.58      fvdl 	daddr_t bno;
    158                1.9  christos 	int cg;
    159                1.9  christos #ifdef QUOTA
    160                1.9  christos 	int error;
    161                1.9  christos #endif
    162               1.81     perry 
    163               1.62      fvdl 	fs = ip->i_fs;
    164              1.101        ad 	ump = ip->i_ump;
    165              1.101        ad 
    166              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    167               1.62      fvdl 
    168               1.37       chs #ifdef UVM_PAGE_TRKOWN
    169               1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    170               1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    171               1.37       chs 		struct vm_page *pg;
    172               1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    173               1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    174               1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    175               1.37       chs 
    176              1.105        ad 		mutex_enter(&uobj->vmobjlock);
    177               1.37       chs 		while (off < endoff) {
    178               1.37       chs 			pg = uvm_pagelookup(uobj, off);
    179               1.37       chs 			KASSERT(pg != NULL);
    180               1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    181               1.37       chs 			off += PAGE_SIZE;
    182               1.37       chs 		}
    183              1.105        ad 		mutex_exit(&uobj->vmobjlock);
    184               1.37       chs 	}
    185               1.37       chs #endif
    186               1.37       chs 
    187                1.1   mycroft 	*bnp = 0;
    188                1.1   mycroft #ifdef DIAGNOSTIC
    189                1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    190               1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    191                1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    192                1.1   mycroft 		panic("ffs_alloc: bad size");
    193                1.1   mycroft 	}
    194                1.1   mycroft 	if (cred == NOCRED)
    195               1.56    provos 		panic("ffs_alloc: missing credential");
    196                1.1   mycroft #endif /* DIAGNOSTIC */
    197                1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    198                1.1   mycroft 		goto nospace;
    199               1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    200               1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    201                1.1   mycroft 		goto nospace;
    202                1.1   mycroft #ifdef QUOTA
    203              1.101        ad 	mutex_exit(&ump->um_lock);
    204               1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    205                1.1   mycroft 		return (error);
    206              1.101        ad 	mutex_enter(&ump->um_lock);
    207                1.1   mycroft #endif
    208              1.111    simonb 
    209                1.1   mycroft 	if (bpref >= fs->fs_size)
    210                1.1   mycroft 		bpref = 0;
    211                1.1   mycroft 	if (bpref == 0)
    212                1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    213                1.1   mycroft 	else
    214                1.1   mycroft 		cg = dtog(fs, bpref);
    215              1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    216                1.1   mycroft 	if (bno > 0) {
    217               1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    218                1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    219                1.1   mycroft 		*bnp = bno;
    220                1.1   mycroft 		return (0);
    221                1.1   mycroft 	}
    222                1.1   mycroft #ifdef QUOTA
    223                1.1   mycroft 	/*
    224                1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    225                1.1   mycroft 	 */
    226               1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    227                1.1   mycroft #endif
    228              1.111    simonb 	if (flags & B_CONTIG) {
    229              1.111    simonb 		/*
    230              1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    231              1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    232              1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    233              1.111    simonb 		 * already unlocked, so we can't release it again
    234              1.111    simonb 		 * like in the normal error path.  See kern/39206.
    235              1.111    simonb 		 *
    236              1.111    simonb 		 *
    237              1.111    simonb 		 * Fail silently - it's up to our caller to report
    238              1.111    simonb 		 * errors.
    239              1.111    simonb 		 */
    240              1.111    simonb 		return (ENOSPC);
    241              1.111    simonb 	}
    242                1.1   mycroft nospace:
    243              1.101        ad 	mutex_exit(&ump->um_lock);
    244               1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    245                1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    246                1.1   mycroft 	return (ENOSPC);
    247                1.1   mycroft }
    248                1.1   mycroft 
    249                1.1   mycroft /*
    250                1.1   mycroft  * Reallocate a fragment to a bigger size
    251                1.1   mycroft  *
    252                1.1   mycroft  * The number and size of the old block is given, and a preference
    253                1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    254                1.1   mycroft  * the original block. Failing that, the regular block allocator is
    255                1.1   mycroft  * invoked to get an appropriate block.
    256              1.106     pooka  *
    257              1.106     pooka  * => called with um_lock held
    258              1.106     pooka  * => return with um_lock released
    259                1.1   mycroft  */
    260                1.9  christos int
    261               1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    262               1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    263                1.1   mycroft {
    264              1.101        ad 	struct ufsmount *ump;
    265               1.62      fvdl 	struct fs *fs;
    266                1.1   mycroft 	struct buf *bp;
    267                1.1   mycroft 	int cg, request, error;
    268               1.58      fvdl 	daddr_t bprev, bno;
    269               1.25   thorpej 
    270               1.62      fvdl 	fs = ip->i_fs;
    271              1.101        ad 	ump = ip->i_ump;
    272              1.101        ad 
    273              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    274              1.101        ad 
    275               1.37       chs #ifdef UVM_PAGE_TRKOWN
    276               1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    277               1.37       chs 		struct vm_page *pg;
    278               1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    279               1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    280               1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    281               1.37       chs 
    282              1.105        ad 		mutex_enter(&uobj->vmobjlock);
    283               1.37       chs 		while (off < endoff) {
    284               1.37       chs 			pg = uvm_pagelookup(uobj, off);
    285               1.37       chs 			KASSERT(pg != NULL);
    286               1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    287               1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    288               1.37       chs 			off += PAGE_SIZE;
    289               1.37       chs 		}
    290              1.105        ad 		mutex_exit(&uobj->vmobjlock);
    291               1.37       chs 	}
    292               1.37       chs #endif
    293               1.37       chs 
    294                1.1   mycroft #ifdef DIAGNOSTIC
    295                1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    296                1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    297               1.13  christos 		printf(
    298                1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    299                1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    300                1.1   mycroft 		panic("ffs_realloccg: bad size");
    301                1.1   mycroft 	}
    302                1.1   mycroft 	if (cred == NOCRED)
    303               1.56    provos 		panic("ffs_realloccg: missing credential");
    304                1.1   mycroft #endif /* DIAGNOSTIC */
    305               1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    306              1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    307              1.101        ad 		mutex_exit(&ump->um_lock);
    308                1.1   mycroft 		goto nospace;
    309              1.101        ad 	}
    310               1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    311               1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    312               1.60      fvdl 	else
    313               1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    314               1.60      fvdl 
    315               1.60      fvdl 	if (bprev == 0) {
    316               1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    317               1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    318                1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    319                1.1   mycroft 	}
    320              1.101        ad 	mutex_exit(&ump->um_lock);
    321              1.101        ad 
    322                1.1   mycroft 	/*
    323                1.1   mycroft 	 * Allocate the extra space in the buffer.
    324                1.1   mycroft 	 */
    325               1.37       chs 	if (bpp != NULL &&
    326              1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    327              1.101        ad 		brelse(bp, 0);
    328                1.1   mycroft 		return (error);
    329                1.1   mycroft 	}
    330                1.1   mycroft #ifdef QUOTA
    331               1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    332               1.44       chs 		if (bpp != NULL) {
    333              1.101        ad 			brelse(bp, 0);
    334               1.44       chs 		}
    335                1.1   mycroft 		return (error);
    336                1.1   mycroft 	}
    337                1.1   mycroft #endif
    338                1.1   mycroft 	/*
    339                1.1   mycroft 	 * Check for extension in the existing location.
    340                1.1   mycroft 	 */
    341                1.1   mycroft 	cg = dtog(fs, bprev);
    342              1.101        ad 	mutex_enter(&ump->um_lock);
    343               1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    344               1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    345                1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    346               1.37       chs 
    347               1.37       chs 		if (bpp != NULL) {
    348               1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    349               1.37       chs 				panic("bad blockno");
    350               1.72        pk 			allocbuf(bp, nsize, 1);
    351               1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    352              1.105        ad 			mutex_enter(bp->b_objlock);
    353              1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    354              1.105        ad 			bp->b_oflags |= BO_DONE;
    355              1.105        ad 			mutex_exit(bp->b_objlock);
    356               1.37       chs 			*bpp = bp;
    357               1.37       chs 		}
    358               1.37       chs 		if (blknop != NULL) {
    359               1.37       chs 			*blknop = bno;
    360               1.37       chs 		}
    361                1.1   mycroft 		return (0);
    362                1.1   mycroft 	}
    363                1.1   mycroft 	/*
    364                1.1   mycroft 	 * Allocate a new disk location.
    365                1.1   mycroft 	 */
    366                1.1   mycroft 	if (bpref >= fs->fs_size)
    367                1.1   mycroft 		bpref = 0;
    368                1.1   mycroft 	switch ((int)fs->fs_optim) {
    369                1.1   mycroft 	case FS_OPTSPACE:
    370                1.1   mycroft 		/*
    371               1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    372               1.81     perry 		 * best use of space, we will waste time relocating it if
    373                1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    374                1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    375                1.1   mycroft 		 * to begin optimizing for time.
    376                1.1   mycroft 		 */
    377                1.1   mycroft 		request = nsize;
    378                1.1   mycroft 		if (fs->fs_minfree < 5 ||
    379                1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    380                1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    381                1.1   mycroft 			break;
    382               1.34  jdolecek 
    383               1.34  jdolecek 		if (ffs_log_changeopt) {
    384               1.34  jdolecek 			log(LOG_NOTICE,
    385               1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    386               1.34  jdolecek 				fs->fs_fsmnt);
    387               1.34  jdolecek 		}
    388               1.34  jdolecek 
    389                1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    390                1.1   mycroft 		break;
    391                1.1   mycroft 	case FS_OPTTIME:
    392                1.1   mycroft 		/*
    393                1.1   mycroft 		 * At this point we have discovered a file that is trying to
    394                1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    395                1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    396                1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    397                1.1   mycroft 		 * above will be able to grow it in place without further
    398                1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    399                1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    400                1.1   mycroft 		 * optimizing for space.
    401                1.1   mycroft 		 */
    402                1.1   mycroft 		request = fs->fs_bsize;
    403                1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    404                1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    405                1.1   mycroft 			break;
    406               1.34  jdolecek 
    407               1.34  jdolecek 		if (ffs_log_changeopt) {
    408               1.34  jdolecek 			log(LOG_NOTICE,
    409               1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    410               1.34  jdolecek 				fs->fs_fsmnt);
    411               1.34  jdolecek 		}
    412               1.34  jdolecek 
    413                1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    414                1.1   mycroft 		break;
    415                1.1   mycroft 	default:
    416               1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    417                1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    418                1.1   mycroft 		panic("ffs_realloccg: bad optim");
    419                1.1   mycroft 		/* NOTREACHED */
    420                1.1   mycroft 	}
    421              1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    422                1.1   mycroft 	if (bno > 0) {
    423              1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    424              1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    425              1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    426              1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    427              1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    428              1.111    simonb 				    osize);
    429              1.111    simonb 			} else
    430              1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    431              1.111    simonb 				    ip->i_number);
    432              1.111    simonb 		}
    433              1.111    simonb 		if (nsize < request) {
    434              1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    435              1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    436              1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    437              1.111    simonb 				    ip->i_ump->um_mountp,
    438              1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    439              1.111    simonb 				    request - nsize);
    440              1.111    simonb 			} else
    441              1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    442              1.111    simonb 				    bno + numfrags(fs, nsize),
    443              1.111    simonb 				    (long)(request - nsize), ip->i_number);
    444              1.111    simonb 		}
    445               1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    446                1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    447               1.37       chs 		if (bpp != NULL) {
    448               1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    449               1.72        pk 			allocbuf(bp, nsize, 1);
    450               1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    451              1.105        ad 			mutex_enter(bp->b_objlock);
    452              1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    453              1.105        ad 			bp->b_oflags |= BO_DONE;
    454              1.105        ad 			mutex_exit(bp->b_objlock);
    455               1.37       chs 			*bpp = bp;
    456               1.37       chs 		}
    457               1.37       chs 		if (blknop != NULL) {
    458               1.37       chs 			*blknop = bno;
    459               1.37       chs 		}
    460                1.1   mycroft 		return (0);
    461                1.1   mycroft 	}
    462              1.101        ad 	mutex_exit(&ump->um_lock);
    463              1.101        ad 
    464                1.1   mycroft #ifdef QUOTA
    465                1.1   mycroft 	/*
    466                1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    467                1.1   mycroft 	 */
    468               1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    469                1.1   mycroft #endif
    470               1.37       chs 	if (bpp != NULL) {
    471              1.101        ad 		brelse(bp, 0);
    472               1.37       chs 	}
    473               1.37       chs 
    474                1.1   mycroft nospace:
    475                1.1   mycroft 	/*
    476                1.1   mycroft 	 * no space available
    477                1.1   mycroft 	 */
    478               1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    479                1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    480                1.1   mycroft 	return (ENOSPC);
    481                1.1   mycroft }
    482                1.1   mycroft 
    483               1.88      yamt #if 0
    484                1.1   mycroft /*
    485                1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    486                1.1   mycroft  *
    487                1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    488                1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    489               1.60      fvdl  * to find a range of sequential blocks starting as close as possible
    490               1.60      fvdl  * from the end of the allocation for the logical block immediately
    491               1.60      fvdl  * preceding the current range. If successful, the physical block numbers
    492               1.60      fvdl  * in the buffer pointers and in the inode are changed to reflect the new
    493               1.60      fvdl  * allocation. If unsuccessful, the allocation is left unchanged. The
    494               1.60      fvdl  * success in doing the reallocation is returned. Note that the error
    495               1.60      fvdl  * return is not reflected back to the user. Rather the previous block
    496               1.60      fvdl  * allocation will be used.
    497               1.60      fvdl 
    498                1.1   mycroft  */
    499               1.55      matt #ifdef XXXUBC
    500                1.3   mycroft #ifdef DEBUG
    501                1.1   mycroft #include <sys/sysctl.h>
    502                1.5   mycroft int prtrealloc = 0;
    503                1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    504                1.1   mycroft #endif
    505               1.55      matt #endif
    506                1.1   mycroft 
    507               1.60      fvdl /*
    508              1.111    simonb  * NOTE: when re-enabling this, it must be updated for UFS2 and WAPBL.
    509               1.60      fvdl  */
    510               1.60      fvdl 
    511               1.18      fvdl int doasyncfree = 1;
    512               1.18      fvdl 
    513                1.1   mycroft int
    514               1.85   thorpej ffs_reallocblks(void *v)
    515                1.9  christos {
    516               1.55      matt #ifdef XXXUBC
    517                1.1   mycroft 	struct vop_reallocblks_args /* {
    518                1.1   mycroft 		struct vnode *a_vp;
    519                1.1   mycroft 		struct cluster_save *a_buflist;
    520                1.9  christos 	} */ *ap = v;
    521                1.1   mycroft 	struct fs *fs;
    522                1.1   mycroft 	struct inode *ip;
    523                1.1   mycroft 	struct vnode *vp;
    524                1.1   mycroft 	struct buf *sbp, *ebp;
    525               1.58      fvdl 	int32_t *bap, *ebap = NULL, *sbap;	/* XXX ondisk32 */
    526                1.1   mycroft 	struct cluster_save *buflist;
    527               1.58      fvdl 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    528                1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    529                1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    530              1.101        ad 	struct ufsmount *ump;
    531               1.55      matt #endif /* XXXUBC */
    532                1.1   mycroft 
    533               1.37       chs 	/* XXXUBC don't reallocblks for now */
    534               1.37       chs 	return ENOSPC;
    535               1.37       chs 
    536               1.55      matt #ifdef XXXUBC
    537                1.1   mycroft 	vp = ap->a_vp;
    538                1.1   mycroft 	ip = VTOI(vp);
    539                1.1   mycroft 	fs = ip->i_fs;
    540              1.101        ad 	ump = ip->i_ump;
    541                1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    542                1.1   mycroft 		return (ENOSPC);
    543                1.1   mycroft 	buflist = ap->a_buflist;
    544                1.1   mycroft 	len = buflist->bs_nchildren;
    545                1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    546                1.1   mycroft 	end_lbn = start_lbn + len - 1;
    547                1.1   mycroft #ifdef DIAGNOSTIC
    548               1.18      fvdl 	for (i = 0; i < len; i++)
    549               1.18      fvdl 		if (!ffs_checkblk(ip,
    550               1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    551               1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    552                1.1   mycroft 	for (i = 1; i < len; i++)
    553                1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    554               1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    555               1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    556               1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    557               1.18      fvdl 	for (i = 1; i < len - 1; i++)
    558               1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    559               1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    560                1.1   mycroft #endif
    561                1.1   mycroft 	/*
    562                1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    563                1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    564                1.1   mycroft 	 * the previous cylinder group.
    565                1.1   mycroft 	 */
    566                1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    567                1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    568                1.1   mycroft 		return (ENOSPC);
    569                1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    570                1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    571                1.1   mycroft 		return (ENOSPC);
    572                1.1   mycroft 	/*
    573                1.1   mycroft 	 * Get the starting offset and block map for the first block.
    574                1.1   mycroft 	 */
    575                1.1   mycroft 	if (start_lvl == 0) {
    576               1.60      fvdl 		sbap = &ip->i_ffs1_db[0];
    577                1.1   mycroft 		soff = start_lbn;
    578                1.1   mycroft 	} else {
    579                1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    580              1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    581              1.107   hannken 		    NOCRED, B_MODIFY, &sbp)) {
    582              1.101        ad 			brelse(sbp, 0);
    583                1.1   mycroft 			return (ENOSPC);
    584                1.1   mycroft 		}
    585               1.60      fvdl 		sbap = (int32_t *)sbp->b_data;
    586                1.1   mycroft 		soff = idp->in_off;
    587                1.1   mycroft 	}
    588                1.1   mycroft 	/*
    589                1.1   mycroft 	 * Find the preferred location for the cluster.
    590                1.1   mycroft 	 */
    591              1.101        ad 	mutex_enter(&ump->um_lock);
    592                1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    593                1.1   mycroft 	/*
    594                1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    595                1.1   mycroft 	 */
    596                1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    597                1.1   mycroft 		ssize = len;
    598                1.1   mycroft 	} else {
    599                1.1   mycroft #ifdef DIAGNOSTIC
    600                1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    601                1.1   mycroft 			panic("ffs_reallocblk: start == end");
    602                1.1   mycroft #endif
    603                1.1   mycroft 		ssize = len - (idp->in_off + 1);
    604              1.107   hannken 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize,
    605              1.107   hannken 		    NOCRED, B_MODIFY, &ebp))
    606                1.1   mycroft 			goto fail;
    607               1.58      fvdl 		ebap = (int32_t *)ebp->b_data;	/* XXX ondisk32 */
    608                1.1   mycroft 	}
    609                1.1   mycroft 	/*
    610                1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    611                1.1   mycroft 	 */
    612               1.58      fvdl 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    613              1.111    simonb 	    len, flags, ffs_clusteralloc)) == 0) {
    614              1.101        ad 		mutex_exit(&ump->um_lock);
    615                1.1   mycroft 		goto fail;
    616              1.101        ad 	}
    617                1.1   mycroft 	/*
    618                1.1   mycroft 	 * We have found a new contiguous block.
    619                1.1   mycroft 	 *
    620                1.1   mycroft 	 * First we have to replace the old block pointers with the new
    621                1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    622                1.1   mycroft 	 * with the file.
    623                1.1   mycroft 	 */
    624                1.5   mycroft #ifdef DEBUG
    625                1.5   mycroft 	if (prtrealloc)
    626               1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    627                1.5   mycroft 		    start_lbn, end_lbn);
    628                1.5   mycroft #endif
    629                1.1   mycroft 	blkno = newblk;
    630                1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    631               1.58      fvdl 		daddr_t ba;
    632               1.30      fvdl 
    633               1.30      fvdl 		if (i == ssize) {
    634                1.1   mycroft 			bap = ebap;
    635               1.30      fvdl 			soff = -i;
    636               1.30      fvdl 		}
    637               1.58      fvdl 		/* XXX ondisk32 */
    638               1.30      fvdl 		ba = ufs_rw32(*bap, UFS_FSNEEDSWAP(fs));
    639                1.1   mycroft #ifdef DIAGNOSTIC
    640               1.18      fvdl 		if (!ffs_checkblk(ip,
    641               1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    642               1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    643               1.30      fvdl 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != ba)
    644                1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    645                1.1   mycroft #endif
    646                1.5   mycroft #ifdef DEBUG
    647                1.5   mycroft 		if (prtrealloc)
    648               1.30      fvdl 			printf(" %d,", ba);
    649                1.5   mycroft #endif
    650               1.30      fvdl  		if (DOINGSOFTDEP(vp)) {
    651               1.60      fvdl  			if (sbap == &ip->i_ffs1_db[0] && i < ssize)
    652               1.30      fvdl  				softdep_setup_allocdirect(ip, start_lbn + i,
    653               1.30      fvdl  				    blkno, ba, fs->fs_bsize, fs->fs_bsize,
    654               1.30      fvdl  				    buflist->bs_children[i]);
    655               1.30      fvdl  			else
    656               1.30      fvdl  				softdep_setup_allocindir_page(ip, start_lbn + i,
    657               1.30      fvdl  				    i < ssize ? sbp : ebp, soff + i, blkno,
    658               1.30      fvdl  				    ba, buflist->bs_children[i]);
    659               1.30      fvdl  		}
    660               1.58      fvdl 		/* XXX ondisk32 */
    661               1.80   mycroft 		*bap++ = ufs_rw32((u_int32_t)blkno, UFS_FSNEEDSWAP(fs));
    662                1.1   mycroft 	}
    663                1.1   mycroft 	/*
    664                1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    665                1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    666                1.1   mycroft 	 * the old block values may have been written to disk. In practise
    667               1.81     perry 	 * they are almost never written, but if we are concerned about
    668                1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    669                1.1   mycroft 	 *
    670                1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    671                1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    672                1.1   mycroft 	 * been written. The flag should be set when the cluster is
    673                1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    674                1.1   mycroft 	 * We can then check below to see if it is set, and do the
    675                1.1   mycroft 	 * synchronous write only when it has been cleared.
    676                1.1   mycroft 	 */
    677               1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0]) {
    678                1.1   mycroft 		if (doasyncfree)
    679                1.1   mycroft 			bdwrite(sbp);
    680                1.1   mycroft 		else
    681                1.1   mycroft 			bwrite(sbp);
    682                1.1   mycroft 	} else {
    683                1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    684               1.28   mycroft 		if (!doasyncfree)
    685               1.88      yamt 			ffs_update(vp, NULL, NULL, 1);
    686                1.1   mycroft 	}
    687               1.25   thorpej 	if (ssize < len) {
    688                1.1   mycroft 		if (doasyncfree)
    689                1.1   mycroft 			bdwrite(ebp);
    690                1.1   mycroft 		else
    691                1.1   mycroft 			bwrite(ebp);
    692               1.25   thorpej 	}
    693                1.1   mycroft 	/*
    694                1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    695                1.1   mycroft 	 */
    696                1.5   mycroft #ifdef DEBUG
    697                1.5   mycroft 	if (prtrealloc)
    698               1.13  christos 		printf("\n\tnew:");
    699                1.5   mycroft #endif
    700                1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    701               1.30      fvdl 		if (!DOINGSOFTDEP(vp))
    702               1.76   hannken 			ffs_blkfree(fs, ip->i_devvp,
    703               1.30      fvdl 			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    704               1.76   hannken 			    fs->fs_bsize, ip->i_number);
    705                1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    706                1.5   mycroft #ifdef DEBUG
    707               1.18      fvdl 		if (!ffs_checkblk(ip,
    708               1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    709               1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    710                1.5   mycroft 		if (prtrealloc)
    711               1.13  christos 			printf(" %d,", blkno);
    712                1.5   mycroft #endif
    713                1.5   mycroft 	}
    714                1.5   mycroft #ifdef DEBUG
    715                1.5   mycroft 	if (prtrealloc) {
    716                1.5   mycroft 		prtrealloc--;
    717               1.13  christos 		printf("\n");
    718                1.1   mycroft 	}
    719                1.5   mycroft #endif
    720                1.1   mycroft 	return (0);
    721                1.1   mycroft 
    722                1.1   mycroft fail:
    723                1.1   mycroft 	if (ssize < len)
    724              1.101        ad 		brelse(ebp, 0);
    725               1.60      fvdl 	if (sbap != &ip->i_ffs1_db[0])
    726              1.101        ad 		brelse(sbp, 0);
    727                1.1   mycroft 	return (ENOSPC);
    728               1.55      matt #endif /* XXXUBC */
    729                1.1   mycroft }
    730               1.88      yamt #endif /* 0 */
    731                1.1   mycroft 
    732                1.1   mycroft /*
    733                1.1   mycroft  * Allocate an inode in the file system.
    734               1.81     perry  *
    735                1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    736                1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    737                1.1   mycroft  *   1) allocate the preferred inode.
    738                1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    739                1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    740                1.1   mycroft  *      available inode is located.
    741               1.47       wiz  * If no inode preference is given the following hierarchy is used
    742                1.1   mycroft  * to allocate an inode:
    743                1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    744                1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    745                1.1   mycroft  *      available inode is located.
    746              1.106     pooka  *
    747              1.106     pooka  * => um_lock not held upon entry or return
    748                1.1   mycroft  */
    749                1.9  christos int
    750               1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    751               1.88      yamt     struct vnode **vpp)
    752                1.9  christos {
    753              1.101        ad 	struct ufsmount *ump;
    754               1.33  augustss 	struct inode *pip;
    755               1.33  augustss 	struct fs *fs;
    756               1.33  augustss 	struct inode *ip;
    757               1.60      fvdl 	struct timespec ts;
    758                1.1   mycroft 	ino_t ino, ipref;
    759                1.1   mycroft 	int cg, error;
    760               1.81     perry 
    761              1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    762              1.111    simonb 
    763               1.88      yamt 	*vpp = NULL;
    764                1.1   mycroft 	pip = VTOI(pvp);
    765                1.1   mycroft 	fs = pip->i_fs;
    766              1.101        ad 	ump = pip->i_ump;
    767              1.101        ad 
    768              1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    769              1.111    simonb 	if (error) {
    770              1.111    simonb 		return error;
    771              1.111    simonb 	}
    772              1.101        ad 	mutex_enter(&ump->um_lock);
    773                1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    774                1.1   mycroft 		goto noinodes;
    775                1.1   mycroft 
    776                1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    777               1.50     lukem 		ipref = ffs_dirpref(pip);
    778               1.50     lukem 	else
    779               1.50     lukem 		ipref = pip->i_number;
    780                1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    781                1.1   mycroft 		ipref = 0;
    782                1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    783               1.50     lukem 	/*
    784               1.50     lukem 	 * Track number of dirs created one after another
    785               1.50     lukem 	 * in a same cg without intervening by files.
    786               1.50     lukem 	 */
    787               1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    788               1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    789               1.50     lukem 			fs->fs_contigdirs[cg]++;
    790               1.50     lukem 	} else {
    791               1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    792               1.50     lukem 			fs->fs_contigdirs[cg]--;
    793               1.50     lukem 	}
    794              1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    795                1.1   mycroft 	if (ino == 0)
    796                1.1   mycroft 		goto noinodes;
    797              1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    798               1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    799                1.1   mycroft 	if (error) {
    800              1.111    simonb 		int err;
    801              1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    802              1.111    simonb 		if (err == 0)
    803              1.111    simonb 			ffs_vfree(pvp, ino, mode);
    804              1.111    simonb 		if (err == 0)
    805              1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    806                1.1   mycroft 		return (error);
    807                1.1   mycroft 	}
    808               1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    809               1.88      yamt 	ip = VTOI(*vpp);
    810               1.60      fvdl 	if (ip->i_mode) {
    811               1.60      fvdl #if 0
    812               1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    813               1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    814               1.60      fvdl #else
    815               1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    816               1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    817               1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    818               1.60      fvdl 		printf("size %llx blocks %llx\n",
    819               1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    820               1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    821               1.86  christos 		    (unsigned long long)ipref);
    822               1.60      fvdl #if 0
    823               1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    824              1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    825               1.60      fvdl #endif
    826               1.60      fvdl 
    827               1.60      fvdl #endif
    828                1.1   mycroft 		panic("ffs_valloc: dup alloc");
    829                1.1   mycroft 	}
    830               1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    831               1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    832               1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    833               1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    834                1.1   mycroft 	}
    835               1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    836               1.61      fvdl 	ip->i_flags = 0;
    837               1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    838                1.1   mycroft 	/*
    839                1.1   mycroft 	 * Set up a new generation number for this inode.
    840                1.1   mycroft 	 */
    841               1.60      fvdl 	ip->i_gen++;
    842               1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    843               1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    844               1.93      yamt 		vfs_timestamp(&ts);
    845               1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    846               1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    847               1.60      fvdl 	}
    848                1.1   mycroft 	return (0);
    849                1.1   mycroft noinodes:
    850              1.101        ad 	mutex_exit(&ump->um_lock);
    851              1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    852               1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    853                1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    854                1.1   mycroft 	return (ENOSPC);
    855                1.1   mycroft }
    856                1.1   mycroft 
    857                1.1   mycroft /*
    858               1.50     lukem  * Find a cylinder group in which to place a directory.
    859               1.42  sommerfe  *
    860               1.50     lukem  * The policy implemented by this algorithm is to allocate a
    861               1.50     lukem  * directory inode in the same cylinder group as its parent
    862               1.50     lukem  * directory, but also to reserve space for its files inodes
    863               1.50     lukem  * and data. Restrict the number of directories which may be
    864               1.50     lukem  * allocated one after another in the same cylinder group
    865               1.50     lukem  * without intervening allocation of files.
    866               1.42  sommerfe  *
    867               1.50     lukem  * If we allocate a first level directory then force allocation
    868               1.50     lukem  * in another cylinder group.
    869                1.1   mycroft  */
    870                1.1   mycroft static ino_t
    871               1.85   thorpej ffs_dirpref(struct inode *pip)
    872                1.1   mycroft {
    873               1.50     lukem 	register struct fs *fs;
    874               1.74     soren 	int cg, prefcg;
    875               1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    876               1.89       dsl 	int avgifree, avgbfree, avgndir;
    877               1.50     lukem 	int minifree, minbfree, maxndir;
    878               1.50     lukem 	int mincg, minndir;
    879               1.50     lukem 	int maxcontigdirs;
    880               1.50     lukem 
    881              1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    882              1.101        ad 
    883               1.50     lukem 	fs = pip->i_fs;
    884                1.1   mycroft 
    885                1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    886               1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    887               1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    888               1.50     lukem 
    889               1.50     lukem 	/*
    890               1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    891               1.50     lukem 	 */
    892              1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    893               1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    894               1.50     lukem 		mincg = prefcg;
    895               1.50     lukem 		minndir = fs->fs_ipg;
    896               1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    897               1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    898               1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    899               1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    900               1.42  sommerfe 				mincg = cg;
    901               1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    902               1.42  sommerfe 			}
    903               1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    904               1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    905               1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    906               1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    907               1.50     lukem 				mincg = cg;
    908               1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    909               1.42  sommerfe 			}
    910               1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    911               1.42  sommerfe 	}
    912               1.50     lukem 
    913               1.50     lukem 	/*
    914               1.50     lukem 	 * Count various limits which used for
    915               1.50     lukem 	 * optimal allocation of a directory inode.
    916               1.50     lukem 	 */
    917               1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    918               1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    919               1.50     lukem 	if (minifree < 0)
    920               1.50     lukem 		minifree = 0;
    921               1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    922               1.50     lukem 	if (minbfree < 0)
    923               1.50     lukem 		minbfree = 0;
    924               1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    925               1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    926               1.89       dsl 	if (avgndir != 0) {
    927               1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    928               1.89       dsl 		if (dirsize < curdsz)
    929               1.89       dsl 			dirsize = curdsz;
    930               1.89       dsl 	}
    931               1.89       dsl 	if (cgsize < dirsize * 255)
    932               1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    933               1.89       dsl 	else
    934               1.89       dsl 		maxcontigdirs = 255;
    935               1.50     lukem 	if (fs->fs_avgfpdir > 0)
    936               1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    937               1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    938               1.50     lukem 	if (maxcontigdirs == 0)
    939               1.50     lukem 		maxcontigdirs = 1;
    940               1.50     lukem 
    941               1.50     lukem 	/*
    942               1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    943               1.50     lukem 	 * regular files, but only if we have no deficit in
    944               1.50     lukem 	 * inodes or space.
    945               1.50     lukem 	 */
    946               1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    947               1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    948               1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    949               1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    950               1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    951               1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    952               1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    953               1.50     lukem 		}
    954               1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    955               1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    956               1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    957               1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    958               1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    959               1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    960               1.50     lukem 		}
    961               1.50     lukem 	/*
    962               1.50     lukem 	 * This is a backstop when we are deficient in space.
    963               1.50     lukem 	 */
    964               1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    965               1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    966               1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    967               1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    968               1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    969               1.50     lukem 			break;
    970               1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    971                1.1   mycroft }
    972                1.1   mycroft 
    973                1.1   mycroft /*
    974                1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    975                1.1   mycroft  * logically divided into sections. The first section is composed of the
    976                1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    977               1.81     perry  *
    978                1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    979                1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    980                1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    981                1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    982                1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    983                1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    984                1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    985                1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    986                1.1   mycroft  * continues until a cylinder group with greater than the average number
    987                1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    988                1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    989                1.1   mycroft  * here a best guess is made based upon the logical block number being
    990                1.1   mycroft  * allocated.
    991               1.81     perry  *
    992                1.1   mycroft  * If a section is already partially allocated, the policy is to
    993                1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    994               1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    995               1.60      fvdl  * contigously if possible.
    996              1.106     pooka  *
    997              1.106     pooka  * => um_lock held on entry and exit
    998                1.1   mycroft  */
    999               1.58      fvdl daddr_t
   1000              1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
   1001               1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
   1002                1.1   mycroft {
   1003               1.33  augustss 	struct fs *fs;
   1004               1.33  augustss 	int cg;
   1005                1.1   mycroft 	int avgbfree, startcg;
   1006                1.1   mycroft 
   1007              1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1008              1.101        ad 
   1009                1.1   mycroft 	fs = ip->i_fs;
   1010              1.111    simonb 
   1011              1.111    simonb 	/*
   1012              1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
   1013              1.111    simonb 	 * in the inode extentions to return the desired block.
   1014              1.111    simonb 	 *
   1015              1.111    simonb 	 * For metadata (indirect blocks) return the address of where
   1016              1.111    simonb 	 * the first indirect block resides - we'll scan for the next
   1017              1.111    simonb 	 * available slot if we need to allocate more than one indirect
   1018              1.111    simonb 	 * block.  For data, return the address of the actual block
   1019              1.111    simonb 	 * relative to the address of the first data block.
   1020              1.111    simonb 	 */
   1021              1.111    simonb 	if (flags & B_CONTIG) {
   1022              1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
   1023              1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
   1024              1.111    simonb 		if (flags & B_METAONLY)
   1025              1.111    simonb 			return ip->i_ffs_first_indir_blk;
   1026              1.111    simonb 		else
   1027              1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
   1028              1.111    simonb 	}
   1029              1.111    simonb 
   1030                1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1031               1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1032                1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
   1033              1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
   1034                1.1   mycroft 		}
   1035                1.1   mycroft 		/*
   1036                1.1   mycroft 		 * Find a cylinder with greater than average number of
   1037                1.1   mycroft 		 * unused data blocks.
   1038                1.1   mycroft 		 */
   1039                1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
   1040                1.1   mycroft 			startcg =
   1041                1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1042                1.1   mycroft 		else
   1043               1.19    bouyer 			startcg = dtog(fs,
   1044               1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1045                1.1   mycroft 		startcg %= fs->fs_ncg;
   1046                1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1047                1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1048                1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1049              1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1050                1.1   mycroft 			}
   1051               1.52     lukem 		for (cg = 0; cg < startcg; cg++)
   1052                1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1053              1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1054                1.1   mycroft 			}
   1055               1.35   thorpej 		return (0);
   1056                1.1   mycroft 	}
   1057                1.1   mycroft 	/*
   1058               1.60      fvdl 	 * We just always try to lay things out contiguously.
   1059               1.60      fvdl 	 */
   1060               1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1061               1.60      fvdl }
   1062               1.60      fvdl 
   1063               1.60      fvdl daddr_t
   1064              1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
   1065              1.111    simonb     int64_t *bap)
   1066               1.60      fvdl {
   1067               1.60      fvdl 	struct fs *fs;
   1068               1.60      fvdl 	int cg;
   1069               1.60      fvdl 	int avgbfree, startcg;
   1070               1.60      fvdl 
   1071              1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1072              1.101        ad 
   1073               1.60      fvdl 	fs = ip->i_fs;
   1074              1.111    simonb 
   1075              1.111    simonb 	/*
   1076              1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
   1077              1.111    simonb 	 * in the inode extentions to return the desired block.
   1078              1.111    simonb 	 *
   1079              1.111    simonb 	 * For metadata (indirect blocks) return the address of where
   1080              1.111    simonb 	 * the first indirect block resides - we'll scan for the next
   1081              1.111    simonb 	 * available slot if we need to allocate more than one indirect
   1082              1.111    simonb 	 * block.  For data, return the address of the actual block
   1083              1.111    simonb 	 * relative to the address of the first data block.
   1084              1.111    simonb 	 */
   1085              1.111    simonb 	if (flags & B_CONTIG) {
   1086              1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
   1087              1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
   1088              1.111    simonb 		if (flags & B_METAONLY)
   1089              1.111    simonb 			return ip->i_ffs_first_indir_blk;
   1090              1.111    simonb 		else
   1091              1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
   1092              1.111    simonb 	}
   1093              1.111    simonb 
   1094               1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
   1095               1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
   1096               1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
   1097              1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
   1098               1.60      fvdl 		}
   1099                1.1   mycroft 		/*
   1100               1.60      fvdl 		 * Find a cylinder with greater than average number of
   1101               1.60      fvdl 		 * unused data blocks.
   1102                1.1   mycroft 		 */
   1103               1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
   1104               1.60      fvdl 			startcg =
   1105               1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
   1106               1.60      fvdl 		else
   1107               1.60      fvdl 			startcg = dtog(fs,
   1108               1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
   1109               1.60      fvdl 		startcg %= fs->fs_ncg;
   1110               1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
   1111               1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
   1112               1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1113              1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1114               1.60      fvdl 			}
   1115               1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
   1116               1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
   1117              1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
   1118               1.60      fvdl 			}
   1119               1.60      fvdl 		return (0);
   1120               1.60      fvdl 	}
   1121               1.60      fvdl 	/*
   1122               1.60      fvdl 	 * We just always try to lay things out contiguously.
   1123               1.60      fvdl 	 */
   1124               1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
   1125                1.1   mycroft }
   1126                1.1   mycroft 
   1127               1.60      fvdl 
   1128                1.1   mycroft /*
   1129                1.1   mycroft  * Implement the cylinder overflow algorithm.
   1130                1.1   mycroft  *
   1131                1.1   mycroft  * The policy implemented by this algorithm is:
   1132                1.1   mycroft  *   1) allocate the block in its requested cylinder group.
   1133                1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
   1134                1.1   mycroft  *   3) brute force search for a free block.
   1135              1.106     pooka  *
   1136              1.106     pooka  * => called with um_lock held
   1137              1.106     pooka  * => returns with um_lock released on success, held on failure
   1138              1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
   1139                1.1   mycroft  */
   1140                1.1   mycroft /*VARARGS5*/
   1141               1.58      fvdl static daddr_t
   1142               1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
   1143               1.85   thorpej     int size /* size for data blocks, mode for inodes */,
   1144              1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
   1145                1.1   mycroft {
   1146               1.33  augustss 	struct fs *fs;
   1147               1.58      fvdl 	daddr_t result;
   1148                1.1   mycroft 	int i, icg = cg;
   1149                1.1   mycroft 
   1150                1.1   mycroft 	fs = ip->i_fs;
   1151                1.1   mycroft 	/*
   1152                1.1   mycroft 	 * 1: preferred cylinder group
   1153                1.1   mycroft 	 */
   1154              1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
   1155                1.1   mycroft 	if (result)
   1156                1.1   mycroft 		return (result);
   1157              1.111    simonb 
   1158              1.111    simonb 	if (flags & B_CONTIG)
   1159              1.111    simonb 		return (result);
   1160                1.1   mycroft 	/*
   1161                1.1   mycroft 	 * 2: quadratic rehash
   1162                1.1   mycroft 	 */
   1163                1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
   1164                1.1   mycroft 		cg += i;
   1165                1.1   mycroft 		if (cg >= fs->fs_ncg)
   1166                1.1   mycroft 			cg -= fs->fs_ncg;
   1167              1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
   1168                1.1   mycroft 		if (result)
   1169                1.1   mycroft 			return (result);
   1170                1.1   mycroft 	}
   1171                1.1   mycroft 	/*
   1172                1.1   mycroft 	 * 3: brute force search
   1173                1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
   1174                1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
   1175                1.1   mycroft 	 */
   1176                1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
   1177                1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
   1178              1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
   1179                1.1   mycroft 		if (result)
   1180                1.1   mycroft 			return (result);
   1181                1.1   mycroft 		cg++;
   1182                1.1   mycroft 		if (cg == fs->fs_ncg)
   1183                1.1   mycroft 			cg = 0;
   1184                1.1   mycroft 	}
   1185               1.35   thorpej 	return (0);
   1186                1.1   mycroft }
   1187                1.1   mycroft 
   1188                1.1   mycroft /*
   1189                1.1   mycroft  * Determine whether a fragment can be extended.
   1190                1.1   mycroft  *
   1191               1.81     perry  * Check to see if the necessary fragments are available, and
   1192                1.1   mycroft  * if they are, allocate them.
   1193              1.106     pooka  *
   1194              1.106     pooka  * => called with um_lock held
   1195              1.106     pooka  * => returns with um_lock released on success, held on failure
   1196                1.1   mycroft  */
   1197               1.58      fvdl static daddr_t
   1198               1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1199                1.1   mycroft {
   1200              1.101        ad 	struct ufsmount *ump;
   1201               1.33  augustss 	struct fs *fs;
   1202               1.33  augustss 	struct cg *cgp;
   1203                1.1   mycroft 	struct buf *bp;
   1204               1.58      fvdl 	daddr_t bno;
   1205                1.1   mycroft 	int frags, bbase;
   1206                1.1   mycroft 	int i, error;
   1207               1.62      fvdl 	u_int8_t *blksfree;
   1208                1.1   mycroft 
   1209                1.1   mycroft 	fs = ip->i_fs;
   1210              1.101        ad 	ump = ip->i_ump;
   1211              1.101        ad 
   1212              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1213              1.101        ad 
   1214                1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1215               1.35   thorpej 		return (0);
   1216                1.1   mycroft 	frags = numfrags(fs, nsize);
   1217                1.1   mycroft 	bbase = fragnum(fs, bprev);
   1218                1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1219                1.1   mycroft 		/* cannot extend across a block boundary */
   1220               1.35   thorpej 		return (0);
   1221                1.1   mycroft 	}
   1222              1.101        ad 	mutex_exit(&ump->um_lock);
   1223                1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1224              1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1225              1.101        ad 	if (error)
   1226              1.101        ad 		goto fail;
   1227                1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1228              1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1229              1.101        ad 		goto fail;
   1230               1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1231               1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1232               1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1233               1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1234                1.1   mycroft 	bno = dtogd(fs, bprev);
   1235               1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1236                1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1237              1.101        ad 		if (isclr(blksfree, bno + i))
   1238              1.101        ad 			goto fail;
   1239                1.1   mycroft 	/*
   1240                1.1   mycroft 	 * the current fragment can be extended
   1241                1.1   mycroft 	 * deduct the count on fragment being extended into
   1242                1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1243                1.1   mycroft 	 * allocate the extended piece
   1244                1.1   mycroft 	 */
   1245                1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1246               1.62      fvdl 		if (isclr(blksfree, bno + i))
   1247                1.1   mycroft 			break;
   1248               1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1249                1.1   mycroft 	if (i != frags)
   1250               1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1251              1.101        ad 	mutex_enter(&ump->um_lock);
   1252                1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1253               1.62      fvdl 		clrbit(blksfree, bno + i);
   1254               1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1255                1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1256                1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1257                1.1   mycroft 	}
   1258                1.1   mycroft 	fs->fs_fmod = 1;
   1259              1.101        ad 	ACTIVECG_CLR(fs, cg);
   1260              1.101        ad 	mutex_exit(&ump->um_lock);
   1261               1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1262               1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1263                1.1   mycroft 	bdwrite(bp);
   1264                1.1   mycroft 	return (bprev);
   1265              1.101        ad 
   1266              1.101        ad  fail:
   1267              1.101        ad  	brelse(bp, 0);
   1268              1.101        ad  	mutex_enter(&ump->um_lock);
   1269              1.101        ad  	return (0);
   1270                1.1   mycroft }
   1271                1.1   mycroft 
   1272                1.1   mycroft /*
   1273                1.1   mycroft  * Determine whether a block can be allocated.
   1274                1.1   mycroft  *
   1275                1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1276                1.1   mycroft  * and if it is, allocate it.
   1277                1.1   mycroft  */
   1278               1.58      fvdl static daddr_t
   1279              1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1280                1.1   mycroft {
   1281              1.101        ad 	struct ufsmount *ump;
   1282               1.62      fvdl 	struct fs *fs = ip->i_fs;
   1283               1.30      fvdl 	struct cg *cgp;
   1284                1.1   mycroft 	struct buf *bp;
   1285               1.60      fvdl 	int32_t bno;
   1286               1.60      fvdl 	daddr_t blkno;
   1287               1.30      fvdl 	int error, frags, allocsiz, i;
   1288               1.62      fvdl 	u_int8_t *blksfree;
   1289               1.30      fvdl #ifdef FFS_EI
   1290               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1291               1.30      fvdl #endif
   1292                1.1   mycroft 
   1293              1.101        ad 	ump = ip->i_ump;
   1294              1.101        ad 
   1295              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1296              1.101        ad 
   1297                1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1298               1.35   thorpej 		return (0);
   1299              1.101        ad 	mutex_exit(&ump->um_lock);
   1300                1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1301              1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1302              1.101        ad 	if (error)
   1303              1.101        ad 		goto fail;
   1304                1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1305               1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1306              1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1307              1.101        ad 		goto fail;
   1308               1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1309               1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1310               1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1311               1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1312                1.1   mycroft 	if (size == fs->fs_bsize) {
   1313              1.101        ad 		mutex_enter(&ump->um_lock);
   1314              1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1315               1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1316              1.101        ad 		mutex_exit(&ump->um_lock);
   1317                1.1   mycroft 		bdwrite(bp);
   1318               1.60      fvdl 		return (blkno);
   1319                1.1   mycroft 	}
   1320                1.1   mycroft 	/*
   1321                1.1   mycroft 	 * check to see if any fragments are already available
   1322                1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1323                1.1   mycroft 	 * it down to a smaller size if necessary
   1324                1.1   mycroft 	 */
   1325               1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1326                1.1   mycroft 	frags = numfrags(fs, size);
   1327                1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1328                1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1329                1.1   mycroft 			break;
   1330                1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1331                1.1   mycroft 		/*
   1332               1.81     perry 		 * no fragments were available, so a block will be
   1333                1.1   mycroft 		 * allocated, and hacked up
   1334                1.1   mycroft 		 */
   1335              1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1336              1.101        ad 			goto fail;
   1337              1.101        ad 		mutex_enter(&ump->um_lock);
   1338              1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1339               1.60      fvdl 		bno = dtogd(fs, blkno);
   1340                1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1341               1.62      fvdl 			setbit(blksfree, bno + i);
   1342                1.1   mycroft 		i = fs->fs_frag - frags;
   1343               1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1344                1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1345               1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1346                1.1   mycroft 		fs->fs_fmod = 1;
   1347               1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1348               1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1349              1.101        ad 		mutex_exit(&ump->um_lock);
   1350                1.1   mycroft 		bdwrite(bp);
   1351               1.60      fvdl 		return (blkno);
   1352                1.1   mycroft 	}
   1353               1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1354               1.30      fvdl #if 0
   1355               1.30      fvdl 	/*
   1356               1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1357               1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1358               1.30      fvdl 	 */
   1359              1.101        ad 	if (bno < 0)
   1360              1.101        ad 		goto fail;
   1361               1.30      fvdl #endif
   1362                1.1   mycroft 	for (i = 0; i < frags; i++)
   1363               1.62      fvdl 		clrbit(blksfree, bno + i);
   1364              1.101        ad 	mutex_enter(&ump->um_lock);
   1365               1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1366                1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1367                1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1368                1.1   mycroft 	fs->fs_fmod = 1;
   1369               1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1370                1.1   mycroft 	if (frags != allocsiz)
   1371               1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1372      1.113.4.1.2.1       snj 	blkno = cgbase(fs, cg) + bno;
   1373              1.101        ad 	ACTIVECG_CLR(fs, cg);
   1374              1.101        ad 	mutex_exit(&ump->um_lock);
   1375               1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1376               1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1377                1.1   mycroft 	bdwrite(bp);
   1378               1.30      fvdl 	return blkno;
   1379              1.101        ad 
   1380              1.101        ad  fail:
   1381              1.101        ad  	brelse(bp, 0);
   1382              1.101        ad  	mutex_enter(&ump->um_lock);
   1383              1.101        ad  	return (0);
   1384                1.1   mycroft }
   1385                1.1   mycroft 
   1386                1.1   mycroft /*
   1387                1.1   mycroft  * Allocate a block in a cylinder group.
   1388                1.1   mycroft  *
   1389                1.1   mycroft  * This algorithm implements the following policy:
   1390                1.1   mycroft  *   1) allocate the requested block.
   1391                1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1392                1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1393                1.1   mycroft  *      specified cylinder group.
   1394                1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1395                1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1396                1.1   mycroft  */
   1397               1.58      fvdl static daddr_t
   1398              1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1399                1.1   mycroft {
   1400              1.101        ad 	struct ufsmount *ump;
   1401               1.62      fvdl 	struct fs *fs = ip->i_fs;
   1402               1.30      fvdl 	struct cg *cgp;
   1403               1.60      fvdl 	daddr_t blkno;
   1404               1.60      fvdl 	int32_t bno;
   1405               1.60      fvdl 	u_int8_t *blksfree;
   1406               1.30      fvdl #ifdef FFS_EI
   1407               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1408               1.30      fvdl #endif
   1409                1.1   mycroft 
   1410              1.101        ad 	ump = ip->i_ump;
   1411              1.101        ad 
   1412              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1413              1.101        ad 
   1414               1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1415               1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1416               1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1417               1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1418               1.60      fvdl 	} else {
   1419               1.60      fvdl 		bpref = blknum(fs, bpref);
   1420               1.60      fvdl 		bno = dtogd(fs, bpref);
   1421                1.1   mycroft 		/*
   1422               1.60      fvdl 		 * if the requested block is available, use it
   1423                1.1   mycroft 		 */
   1424               1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1425               1.60      fvdl 			goto gotit;
   1426              1.111    simonb 		/*
   1427              1.111    simonb 		 * if the requested data block isn't available and we are
   1428              1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1429              1.111    simonb 		 */
   1430              1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1431              1.111    simonb 			return (0);
   1432                1.1   mycroft 	}
   1433              1.111    simonb 
   1434                1.1   mycroft 	/*
   1435               1.60      fvdl 	 * Take the next available block in this cylinder group.
   1436                1.1   mycroft 	 */
   1437               1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1438                1.1   mycroft 	if (bno < 0)
   1439               1.35   thorpej 		return (0);
   1440               1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1441                1.1   mycroft gotit:
   1442                1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1443               1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1444               1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1445               1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1446                1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1447               1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1448               1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1449               1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1450               1.73       dbj 		int cylno;
   1451               1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1452               1.75       dbj 		KASSERT(cylno >= 0);
   1453               1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1454               1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1455               1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1456               1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1457               1.73       dbj 		    needswap);
   1458               1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1459               1.73       dbj 	}
   1460                1.1   mycroft 	fs->fs_fmod = 1;
   1461               1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1462              1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1463              1.101        ad 		mutex_exit(&ump->um_lock);
   1464               1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1465              1.101        ad 		mutex_enter(&ump->um_lock);
   1466              1.101        ad 	}
   1467               1.30      fvdl 	return (blkno);
   1468                1.1   mycroft }
   1469                1.1   mycroft 
   1470               1.55      matt #ifdef XXXUBC
   1471                1.1   mycroft /*
   1472                1.1   mycroft  * Determine whether a cluster can be allocated.
   1473                1.1   mycroft  *
   1474                1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1475                1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1476                1.1   mycroft  * take the first one that we find following bpref.
   1477                1.1   mycroft  */
   1478               1.60      fvdl 
   1479               1.60      fvdl /*
   1480               1.60      fvdl  * This function must be fixed for UFS2 if re-enabled.
   1481               1.60      fvdl  */
   1482               1.58      fvdl static daddr_t
   1483               1.85   thorpej ffs_clusteralloc(struct inode *ip, int cg, daddr_t bpref, int len)
   1484                1.1   mycroft {
   1485              1.101        ad 	struct ufsmount *ump;
   1486               1.33  augustss 	struct fs *fs;
   1487               1.33  augustss 	struct cg *cgp;
   1488                1.1   mycroft 	struct buf *bp;
   1489               1.18      fvdl 	int i, got, run, bno, bit, map;
   1490                1.1   mycroft 	u_char *mapp;
   1491                1.5   mycroft 	int32_t *lp;
   1492                1.1   mycroft 
   1493                1.1   mycroft 	fs = ip->i_fs;
   1494              1.101        ad 	ump = ip->i_ump;
   1495              1.101        ad 
   1496              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1497                1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1498               1.35   thorpej 		return (0);
   1499              1.101        ad 	mutex_exit(&ump->um_lock);
   1500                1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1501              1.107   hannken 	    NOCRED, 0, &bp))
   1502                1.1   mycroft 		goto fail;
   1503                1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1504               1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1505                1.1   mycroft 		goto fail;
   1506                1.1   mycroft 	/*
   1507                1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1508                1.1   mycroft 	 * available in this cylinder group.
   1509                1.1   mycroft 	 */
   1510               1.30      fvdl 	lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len];
   1511                1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1512               1.30      fvdl 		if (ufs_rw32(*lp++, UFS_FSNEEDSWAP(fs)) > 0)
   1513                1.1   mycroft 			break;
   1514                1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1515                1.5   mycroft 		/*
   1516                1.5   mycroft 		 * This is the first time looking for a cluster in this
   1517                1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1518                1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1519                1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1520                1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1521                1.5   mycroft 		 */
   1522               1.30      fvdl 		lp = &cg_clustersum(cgp, UFS_FSNEEDSWAP(fs))[len - 1];
   1523                1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1524               1.30      fvdl 			if (ufs_rw32(*lp--, UFS_FSNEEDSWAP(fs)) > 0)
   1525                1.5   mycroft 				break;
   1526              1.101        ad 		mutex_enter(&ump->um_lock);
   1527                1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1528              1.101        ad 		mutex_exit(&ump->um_lock);
   1529                1.1   mycroft 		goto fail;
   1530                1.5   mycroft 	}
   1531                1.1   mycroft 	/*
   1532                1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1533                1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1534                1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1535                1.1   mycroft 	 * block allocation. We do not search before the current
   1536                1.1   mycroft 	 * preference point as we do not want to allocate a block
   1537                1.1   mycroft 	 * that is allocated before the previous one (as we will
   1538                1.1   mycroft 	 * then have to wait for another pass of the elevator
   1539                1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1540                1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1541                1.1   mycroft 	 */
   1542                1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1543                1.1   mycroft 		bpref = 0;
   1544                1.1   mycroft 	else
   1545                1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1546               1.30      fvdl 	mapp = &cg_clustersfree(cgp, UFS_FSNEEDSWAP(fs))[bpref / NBBY];
   1547                1.1   mycroft 	map = *mapp++;
   1548                1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1549               1.19    bouyer 	for (run = 0, got = bpref;
   1550               1.30      fvdl 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)); got++) {
   1551                1.1   mycroft 		if ((map & bit) == 0) {
   1552                1.1   mycroft 			run = 0;
   1553                1.1   mycroft 		} else {
   1554                1.1   mycroft 			run++;
   1555                1.1   mycroft 			if (run == len)
   1556                1.1   mycroft 				break;
   1557                1.1   mycroft 		}
   1558               1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1559                1.1   mycroft 			bit <<= 1;
   1560                1.1   mycroft 		} else {
   1561                1.1   mycroft 			map = *mapp++;
   1562                1.1   mycroft 			bit = 1;
   1563                1.1   mycroft 		}
   1564                1.1   mycroft 	}
   1565               1.30      fvdl 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_FSNEEDSWAP(fs)))
   1566                1.1   mycroft 		goto fail;
   1567                1.1   mycroft 	/*
   1568                1.1   mycroft 	 * Allocate the cluster that we have found.
   1569                1.1   mycroft 	 */
   1570               1.30      fvdl #ifdef DIAGNOSTIC
   1571               1.18      fvdl 	for (i = 1; i <= len; i++)
   1572               1.30      fvdl 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   1573               1.30      fvdl 		    got - run + i))
   1574               1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1575               1.30      fvdl #endif
   1576      1.113.4.1.2.1       snj 	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
   1577               1.18      fvdl 	if (dtog(fs, bno) != cg)
   1578               1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1579                1.1   mycroft 	len = blkstofrags(fs, len);
   1580              1.101        ad 	mutex_enter(&ump->um_lock);
   1581                1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1582              1.111    simonb 		if ((got = ffs_alloccgblk(ip, bp, bno + i, flags)) != bno + i)
   1583                1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1584               1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1585              1.101        ad 	mutex_exit(&ump->um_lock);
   1586                1.8       cgd 	bdwrite(bp);
   1587                1.1   mycroft 	return (bno);
   1588                1.1   mycroft 
   1589                1.1   mycroft fail:
   1590              1.101        ad 	brelse(bp, 0);
   1591              1.101        ad 	mutex_enter(&ump->um_lock);
   1592                1.1   mycroft 	return (0);
   1593                1.1   mycroft }
   1594               1.55      matt #endif /* XXXUBC */
   1595                1.1   mycroft 
   1596                1.1   mycroft /*
   1597                1.1   mycroft  * Determine whether an inode can be allocated.
   1598                1.1   mycroft  *
   1599                1.1   mycroft  * Check to see if an inode is available, and if it is,
   1600                1.1   mycroft  * allocate it using the following policy:
   1601                1.1   mycroft  *   1) allocate the requested inode.
   1602                1.1   mycroft  *   2) allocate the next available inode after the requested
   1603                1.1   mycroft  *      inode in the specified cylinder group.
   1604                1.1   mycroft  */
   1605               1.58      fvdl static daddr_t
   1606              1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1607                1.1   mycroft {
   1608              1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1609               1.62      fvdl 	struct fs *fs = ip->i_fs;
   1610               1.33  augustss 	struct cg *cgp;
   1611               1.60      fvdl 	struct buf *bp, *ibp;
   1612               1.60      fvdl 	u_int8_t *inosused;
   1613                1.1   mycroft 	int error, start, len, loc, map, i;
   1614               1.60      fvdl 	int32_t initediblk;
   1615              1.112   hannken 	daddr_t nalloc;
   1616               1.60      fvdl 	struct ufs2_dinode *dp2;
   1617               1.19    bouyer #ifdef FFS_EI
   1618               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1619               1.19    bouyer #endif
   1620                1.1   mycroft 
   1621              1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1622              1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1623              1.101        ad 
   1624                1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1625               1.35   thorpej 		return (0);
   1626              1.101        ad 	mutex_exit(&ump->um_lock);
   1627              1.112   hannken 	ibp = NULL;
   1628              1.112   hannken 	initediblk = -1;
   1629              1.112   hannken retry:
   1630                1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1631              1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1632              1.101        ad 	if (error)
   1633              1.101        ad 		goto fail;
   1634                1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1635              1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1636              1.101        ad 		goto fail;
   1637              1.112   hannken 
   1638              1.112   hannken 	if (ibp != NULL &&
   1639              1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1640              1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1641          1.113.4.1       snj 		brelse(ibp, 0);
   1642              1.112   hannken 		ibp = NULL;
   1643              1.112   hannken 	}
   1644              1.112   hannken 	/*
   1645              1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1646              1.112   hannken 	 */
   1647              1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1648              1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1649              1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1650              1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1651              1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1652              1.112   hannken 			/*
   1653              1.112   hannken 			 * We have to release the cg buffer here to prevent
   1654              1.112   hannken 			 * a deadlock when reading the inode block will
   1655              1.112   hannken 			 * run a copy-on-write that might use this cg.
   1656              1.112   hannken 			 */
   1657              1.112   hannken 			brelse(bp, 0);
   1658              1.112   hannken 			bp = NULL;
   1659              1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1660              1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1661              1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1662              1.112   hannken 			if (error)
   1663              1.112   hannken 				goto fail;
   1664              1.112   hannken 			goto retry;
   1665              1.112   hannken 		}
   1666              1.112   hannken 	}
   1667              1.112   hannken 
   1668               1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1669               1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1670               1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1671               1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1672               1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1673                1.1   mycroft 	if (ipref) {
   1674                1.1   mycroft 		ipref %= fs->fs_ipg;
   1675               1.60      fvdl 		if (isclr(inosused, ipref))
   1676                1.1   mycroft 			goto gotit;
   1677                1.1   mycroft 	}
   1678               1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1679               1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1680               1.19    bouyer 		NBBY);
   1681               1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1682                1.1   mycroft 	if (loc == 0) {
   1683                1.1   mycroft 		len = start + 1;
   1684                1.1   mycroft 		start = 0;
   1685               1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1686                1.1   mycroft 		if (loc == 0) {
   1687               1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1688               1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1689               1.19    bouyer 				fs->fs_fsmnt);
   1690                1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1691                1.1   mycroft 			/* NOTREACHED */
   1692                1.1   mycroft 		}
   1693                1.1   mycroft 	}
   1694                1.1   mycroft 	i = start + len - loc;
   1695               1.60      fvdl 	map = inosused[i];
   1696                1.1   mycroft 	ipref = i * NBBY;
   1697                1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1698                1.1   mycroft 		if ((map & i) == 0) {
   1699               1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1700                1.1   mycroft 			goto gotit;
   1701                1.1   mycroft 		}
   1702                1.1   mycroft 	}
   1703               1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1704                1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1705                1.1   mycroft 	/* NOTREACHED */
   1706                1.1   mycroft gotit:
   1707              1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1708              1.111    simonb 	    mode);
   1709               1.60      fvdl 	/*
   1710               1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1711               1.60      fvdl 	 */
   1712              1.112   hannken 	if (ibp != NULL) {
   1713              1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1714              1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1715              1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1716              1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1717               1.60      fvdl 			/*
   1718               1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1719               1.60      fvdl 			 * random, after all.
   1720               1.60      fvdl 			 */
   1721               1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1722               1.60      fvdl 			dp2++;
   1723               1.60      fvdl 		}
   1724               1.60      fvdl 		initediblk += INOPB(fs);
   1725               1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1726               1.60      fvdl 	}
   1727               1.60      fvdl 
   1728              1.101        ad 	mutex_enter(&ump->um_lock);
   1729               1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1730              1.101        ad 	setbit(inosused, ipref);
   1731              1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1732              1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1733              1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1734              1.101        ad 	fs->fs_fmod = 1;
   1735              1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1736              1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1737              1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1738              1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1739              1.101        ad 	}
   1740              1.101        ad 	mutex_exit(&ump->um_lock);
   1741              1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1742              1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1743              1.112   hannken 	if (ibp != NULL) {
   1744              1.112   hannken 		bwrite(bp);
   1745              1.104   hannken 		bawrite(ibp);
   1746              1.112   hannken 	} else
   1747              1.112   hannken 		bdwrite(bp);
   1748                1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1749              1.101        ad  fail:
   1750              1.112   hannken 	if (bp != NULL)
   1751              1.112   hannken 		brelse(bp, 0);
   1752              1.112   hannken 	if (ibp != NULL)
   1753          1.113.4.1       snj 		brelse(ibp, 0);
   1754              1.101        ad 	mutex_enter(&ump->um_lock);
   1755              1.101        ad 	return (0);
   1756                1.1   mycroft }
   1757                1.1   mycroft 
   1758                1.1   mycroft /*
   1759              1.111    simonb  * Allocate a block or fragment.
   1760              1.111    simonb  *
   1761              1.111    simonb  * The specified block or fragment is removed from the
   1762              1.111    simonb  * free map, possibly fragmenting a block in the process.
   1763              1.111    simonb  *
   1764              1.111    simonb  * This implementation should mirror fs_blkfree
   1765              1.111    simonb  *
   1766              1.111    simonb  * => um_lock not held on entry or exit
   1767              1.111    simonb  */
   1768              1.111    simonb int
   1769              1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1770              1.111    simonb {
   1771              1.111    simonb 	struct ufsmount *ump = ip->i_ump;
   1772              1.111    simonb 	struct fs *fs = ip->i_fs;
   1773              1.111    simonb 	struct cg *cgp;
   1774              1.111    simonb 	struct buf *bp;
   1775              1.111    simonb 	int32_t fragno, cgbno;
   1776              1.111    simonb 	int i, error, cg, blk, frags, bbase;
   1777              1.111    simonb 	u_int8_t *blksfree;
   1778              1.111    simonb 	const int needswap = UFS_FSNEEDSWAP(fs);
   1779              1.111    simonb 
   1780              1.111    simonb 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1781              1.111    simonb 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1782              1.111    simonb 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1783              1.111    simonb 		       "size = %ld, fs = %s\n",
   1784              1.111    simonb 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1785              1.111    simonb 		panic("blkalloc: bad size");
   1786              1.111    simonb 	}
   1787              1.111    simonb 	cg = dtog(fs, bno);
   1788              1.111    simonb 	if (bno >= fs->fs_size) {
   1789              1.111    simonb 		printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
   1790              1.111    simonb 		    ip->i_number);
   1791              1.111    simonb 		ffs_fserr(fs, ip->i_uid, "bad block");
   1792              1.111    simonb 		return EINVAL;
   1793              1.111    simonb 	}
   1794              1.111    simonb 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1795              1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1796              1.111    simonb 	if (error) {
   1797              1.111    simonb 		brelse(bp, 0);
   1798              1.111    simonb 		return error;
   1799              1.111    simonb 	}
   1800              1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1801              1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1802              1.111    simonb 		brelse(bp, 0);
   1803              1.111    simonb 		return EIO;
   1804              1.111    simonb 	}
   1805              1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1806              1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1807              1.111    simonb 	cgbno = dtogd(fs, bno);
   1808              1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1809              1.111    simonb 
   1810              1.111    simonb 	mutex_enter(&ump->um_lock);
   1811              1.111    simonb 	if (size == fs->fs_bsize) {
   1812              1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1813              1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1814              1.111    simonb 			mutex_exit(&ump->um_lock);
   1815              1.111    simonb 			brelse(bp, 0);
   1816              1.111    simonb 			return EBUSY;
   1817              1.111    simonb 		}
   1818              1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1819              1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1820              1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1821              1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1822              1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1823              1.111    simonb 	} else {
   1824              1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1825              1.111    simonb 
   1826              1.111    simonb 		frags = numfrags(fs, size);
   1827              1.111    simonb 		for (i = 0; i < frags; i++) {
   1828              1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1829              1.111    simonb 				mutex_exit(&ump->um_lock);
   1830              1.111    simonb 				brelse(bp, 0);
   1831              1.111    simonb 				return EBUSY;
   1832              1.111    simonb 			}
   1833              1.111    simonb 		}
   1834              1.111    simonb 		/*
   1835              1.111    simonb 		 * if a complete block is being split, account for it
   1836              1.111    simonb 		 */
   1837              1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1838              1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1839              1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1840              1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1841              1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1842              1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1843              1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1844              1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1845              1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1846              1.111    simonb 		}
   1847              1.111    simonb 		/*
   1848              1.111    simonb 		 * decrement the counts associated with the old frags
   1849              1.111    simonb 		 */
   1850              1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1851              1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1852              1.111    simonb 		/*
   1853              1.111    simonb 		 * allocate the fragment
   1854              1.111    simonb 		 */
   1855              1.111    simonb 		for (i = 0; i < frags; i++) {
   1856              1.111    simonb 			clrbit(blksfree, cgbno + i);
   1857              1.111    simonb 		}
   1858              1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1859              1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1860              1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1861              1.111    simonb 		/*
   1862              1.111    simonb 		 * add back in counts associated with the new frags
   1863              1.111    simonb 		 */
   1864              1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1865              1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1866              1.111    simonb 	}
   1867              1.111    simonb 	fs->fs_fmod = 1;
   1868              1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1869              1.111    simonb 	mutex_exit(&ump->um_lock);
   1870              1.111    simonb 	bdwrite(bp);
   1871              1.111    simonb 	return 0;
   1872              1.111    simonb }
   1873              1.111    simonb 
   1874              1.111    simonb /*
   1875                1.1   mycroft  * Free a block or fragment.
   1876                1.1   mycroft  *
   1877                1.1   mycroft  * The specified block or fragment is placed back in the
   1878               1.81     perry  * free map. If a fragment is deallocated, a possible
   1879                1.1   mycroft  * block reassembly is checked.
   1880              1.106     pooka  *
   1881              1.106     pooka  * => um_lock not held on entry or exit
   1882                1.1   mycroft  */
   1883                1.9  christos void
   1884               1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1885               1.85   thorpej     ino_t inum)
   1886                1.1   mycroft {
   1887               1.33  augustss 	struct cg *cgp;
   1888                1.1   mycroft 	struct buf *bp;
   1889               1.76   hannken 	struct ufsmount *ump;
   1890               1.60      fvdl 	int32_t fragno, cgbno;
   1891               1.76   hannken 	daddr_t cgblkno;
   1892                1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1893               1.62      fvdl 	u_int8_t *blksfree;
   1894               1.76   hannken 	dev_t dev;
   1895              1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1896               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1897                1.1   mycroft 
   1898               1.76   hannken 	cg = dtog(fs, bno);
   1899              1.113   hannken 	if (devvp_is_snapshot) {
   1900               1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1901              1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1902               1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1903               1.76   hannken 	} else {
   1904               1.76   hannken 		dev = devvp->v_rdev;
   1905              1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1906               1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1907              1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1908               1.76   hannken 			return;
   1909               1.76   hannken 	}
   1910               1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1911               1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1912               1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1913               1.58      fvdl 		       "size = %ld, fs = %s\n",
   1914               1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1915                1.1   mycroft 		panic("blkfree: bad size");
   1916                1.1   mycroft 	}
   1917               1.76   hannken 
   1918               1.60      fvdl 	if (bno >= fs->fs_size) {
   1919               1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1920               1.86  christos 		    (unsigned long long)inum);
   1921               1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1922                1.1   mycroft 		return;
   1923                1.1   mycroft 	}
   1924              1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1925              1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1926                1.1   mycroft 	if (error) {
   1927              1.101        ad 		brelse(bp, 0);
   1928                1.1   mycroft 		return;
   1929                1.1   mycroft 	}
   1930                1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1931               1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1932              1.101        ad 		brelse(bp, 0);
   1933                1.1   mycroft 		return;
   1934                1.1   mycroft 	}
   1935               1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1936               1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1937               1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1938               1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1939               1.60      fvdl 	cgbno = dtogd(fs, bno);
   1940               1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1941              1.101        ad 	mutex_enter(&ump->um_lock);
   1942                1.1   mycroft 	if (size == fs->fs_bsize) {
   1943               1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1944               1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1945              1.113   hannken 			if (devvp_is_snapshot) {
   1946              1.101        ad 				mutex_exit(&ump->um_lock);
   1947              1.101        ad 				brelse(bp, 0);
   1948               1.76   hannken 				return;
   1949               1.76   hannken 			}
   1950               1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1951               1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1952                1.1   mycroft 			panic("blkfree: freeing free block");
   1953                1.1   mycroft 		}
   1954               1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1955               1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1956               1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1957                1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1958                1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1959               1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1960               1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1961               1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1962               1.75       dbj 			KASSERT(i >= 0);
   1963               1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1964               1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1965               1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1966               1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1967               1.73       dbj 			    needswap);
   1968               1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1969               1.73       dbj 		}
   1970                1.1   mycroft 	} else {
   1971               1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1972                1.1   mycroft 		/*
   1973                1.1   mycroft 		 * decrement the counts associated with the old frags
   1974                1.1   mycroft 		 */
   1975               1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1976               1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1977                1.1   mycroft 		/*
   1978                1.1   mycroft 		 * deallocate the fragment
   1979                1.1   mycroft 		 */
   1980                1.1   mycroft 		frags = numfrags(fs, size);
   1981                1.1   mycroft 		for (i = 0; i < frags; i++) {
   1982               1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1983               1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1984               1.59   tsutsui 				       ", fs = %s\n",
   1985               1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1986                1.1   mycroft 				panic("blkfree: freeing free frag");
   1987                1.1   mycroft 			}
   1988               1.62      fvdl 			setbit(blksfree, cgbno + i);
   1989                1.1   mycroft 		}
   1990               1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1991                1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1992               1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1993                1.1   mycroft 		/*
   1994                1.1   mycroft 		 * add back in counts associated with the new frags
   1995                1.1   mycroft 		 */
   1996               1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1997               1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1998                1.1   mycroft 		/*
   1999                1.1   mycroft 		 * if a complete block has been reassembled, account for it
   2000                1.1   mycroft 		 */
   2001               1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   2002               1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   2003               1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   2004                1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   2005                1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   2006               1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   2007               1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   2008                1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   2009                1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   2010               1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   2011               1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   2012               1.73       dbj 				i = old_cbtocylno(fs, bbase);
   2013               1.75       dbj 				KASSERT(i >= 0);
   2014               1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   2015               1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   2016               1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   2017               1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   2018               1.73       dbj 				    bbase)], 1, needswap);
   2019               1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   2020               1.73       dbj 			}
   2021                1.1   mycroft 		}
   2022                1.1   mycroft 	}
   2023                1.1   mycroft 	fs->fs_fmod = 1;
   2024               1.76   hannken 	ACTIVECG_CLR(fs, cg);
   2025              1.101        ad 	mutex_exit(&ump->um_lock);
   2026                1.1   mycroft 	bdwrite(bp);
   2027                1.1   mycroft }
   2028                1.1   mycroft 
   2029               1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   2030               1.55      matt #ifdef XXXUBC
   2031               1.18      fvdl /*
   2032               1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   2033               1.18      fvdl  * fragment is allocated, false if it is free.
   2034               1.18      fvdl  */
   2035               1.18      fvdl static int
   2036               1.85   thorpej ffs_checkblk(struct inode *ip, daddr_t bno, long size)
   2037               1.18      fvdl {
   2038               1.18      fvdl 	struct fs *fs;
   2039               1.18      fvdl 	struct cg *cgp;
   2040               1.18      fvdl 	struct buf *bp;
   2041               1.18      fvdl 	int i, error, frags, free;
   2042               1.18      fvdl 
   2043               1.18      fvdl 	fs = ip->i_fs;
   2044               1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   2045               1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   2046               1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   2047               1.18      fvdl 		panic("checkblk: bad size");
   2048               1.18      fvdl 	}
   2049               1.60      fvdl 	if (bno >= fs->fs_size)
   2050               1.18      fvdl 		panic("checkblk: bad block %d", bno);
   2051               1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   2052              1.107   hannken 		(int)fs->fs_cgsize, NOCRED, 0, &bp);
   2053               1.18      fvdl 	if (error) {
   2054              1.101        ad 		brelse(bp, 0);
   2055               1.18      fvdl 		return 0;
   2056               1.18      fvdl 	}
   2057               1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   2058               1.30      fvdl 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2059              1.101        ad 		brelse(bp, 0);
   2060               1.18      fvdl 		return 0;
   2061               1.18      fvdl 	}
   2062               1.18      fvdl 	bno = dtogd(fs, bno);
   2063               1.18      fvdl 	if (size == fs->fs_bsize) {
   2064               1.30      fvdl 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)),
   2065               1.19    bouyer 			fragstoblks(fs, bno));
   2066               1.18      fvdl 	} else {
   2067               1.18      fvdl 		frags = numfrags(fs, size);
   2068               1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   2069               1.30      fvdl 			if (isset(cg_blksfree(cgp, UFS_FSNEEDSWAP(fs)), bno + i))
   2070               1.18      fvdl 				free++;
   2071               1.18      fvdl 		if (free != 0 && free != frags)
   2072               1.18      fvdl 			panic("checkblk: partially free fragment");
   2073               1.18      fvdl 	}
   2074              1.101        ad 	brelse(bp, 0);
   2075               1.18      fvdl 	return (!free);
   2076               1.18      fvdl }
   2077               1.55      matt #endif /* XXXUBC */
   2078               1.18      fvdl #endif /* DIAGNOSTIC */
   2079               1.18      fvdl 
   2080                1.1   mycroft /*
   2081                1.1   mycroft  * Free an inode.
   2082               1.30      fvdl  */
   2083               1.30      fvdl int
   2084               1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   2085               1.30      fvdl {
   2086               1.30      fvdl 
   2087               1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   2088               1.88      yamt 		softdep_freefile(vp, ino, mode);
   2089               1.30      fvdl 		return (0);
   2090               1.30      fvdl 	}
   2091               1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   2092               1.30      fvdl }
   2093               1.30      fvdl 
   2094               1.30      fvdl /*
   2095               1.30      fvdl  * Do the actual free operation.
   2096                1.1   mycroft  * The specified inode is placed back in the free map.
   2097              1.111    simonb  *
   2098              1.111    simonb  * => um_lock not held on entry or exit
   2099                1.1   mycroft  */
   2100                1.1   mycroft int
   2101               1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2102                1.9  christos {
   2103              1.101        ad 	struct ufsmount *ump;
   2104               1.33  augustss 	struct cg *cgp;
   2105                1.1   mycroft 	struct buf *bp;
   2106                1.1   mycroft 	int error, cg;
   2107               1.76   hannken 	daddr_t cgbno;
   2108               1.62      fvdl 	u_int8_t *inosused;
   2109               1.78   hannken 	dev_t dev;
   2110              1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2111               1.19    bouyer #ifdef FFS_EI
   2112               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2113               1.19    bouyer #endif
   2114                1.1   mycroft 
   2115              1.113   hannken 	if (!devvp_is_snapshot) {
   2116              1.113   hannken 		UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   2117              1.113   hannken 	}
   2118              1.111    simonb 
   2119               1.76   hannken 	cg = ino_to_cg(fs, ino);
   2120              1.113   hannken 	if (devvp_is_snapshot) {
   2121               1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   2122              1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   2123               1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2124               1.76   hannken 	} else {
   2125               1.78   hannken 		dev = devvp->v_rdev;
   2126              1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   2127               1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2128               1.76   hannken 	}
   2129                1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2130               1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   2131               1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   2132              1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2133              1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   2134                1.1   mycroft 	if (error) {
   2135              1.101        ad 		brelse(bp, 0);
   2136               1.30      fvdl 		return (error);
   2137                1.1   mycroft 	}
   2138                1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2139               1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2140              1.101        ad 		brelse(bp, 0);
   2141                1.1   mycroft 		return (0);
   2142                1.1   mycroft 	}
   2143               1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2144               1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2145               1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2146               1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2147               1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2148                1.1   mycroft 	ino %= fs->fs_ipg;
   2149               1.62      fvdl 	if (isclr(inosused, ino)) {
   2150               1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   2151               1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   2152               1.86  christos 		    fs->fs_fsmnt);
   2153                1.1   mycroft 		if (fs->fs_ronly == 0)
   2154                1.1   mycroft 			panic("ifree: freeing free inode");
   2155                1.1   mycroft 	}
   2156               1.62      fvdl 	clrbit(inosused, ino);
   2157              1.113   hannken 	if (!devvp_is_snapshot)
   2158              1.113   hannken 		UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   2159              1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2160               1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2161               1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2162               1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2163              1.101        ad 	mutex_enter(&ump->um_lock);
   2164                1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2165                1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2166               1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2167               1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2168                1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2169                1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2170                1.1   mycroft 	}
   2171                1.1   mycroft 	fs->fs_fmod = 1;
   2172               1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2173              1.101        ad 	mutex_exit(&ump->um_lock);
   2174                1.1   mycroft 	bdwrite(bp);
   2175                1.1   mycroft 	return (0);
   2176                1.1   mycroft }
   2177                1.1   mycroft 
   2178                1.1   mycroft /*
   2179               1.76   hannken  * Check to see if a file is free.
   2180               1.76   hannken  */
   2181               1.76   hannken int
   2182               1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2183               1.76   hannken {
   2184               1.76   hannken 	struct cg *cgp;
   2185               1.76   hannken 	struct buf *bp;
   2186               1.76   hannken 	daddr_t cgbno;
   2187               1.76   hannken 	int ret, cg;
   2188               1.76   hannken 	u_int8_t *inosused;
   2189              1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2190               1.76   hannken 
   2191               1.76   hannken 	cg = ino_to_cg(fs, ino);
   2192              1.113   hannken 	if (devvp_is_snapshot)
   2193               1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2194              1.113   hannken 	else
   2195               1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2196               1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2197               1.76   hannken 		return 1;
   2198              1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2199              1.101        ad 		brelse(bp, 0);
   2200               1.76   hannken 		return 1;
   2201               1.76   hannken 	}
   2202               1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2203               1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2204              1.101        ad 		brelse(bp, 0);
   2205               1.76   hannken 		return 1;
   2206               1.76   hannken 	}
   2207               1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2208               1.76   hannken 	ino %= fs->fs_ipg;
   2209               1.76   hannken 	ret = isclr(inosused, ino);
   2210              1.101        ad 	brelse(bp, 0);
   2211               1.76   hannken 	return ret;
   2212               1.76   hannken }
   2213               1.76   hannken 
   2214               1.76   hannken /*
   2215                1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2216                1.1   mycroft  *
   2217                1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2218                1.1   mycroft  * available.
   2219                1.1   mycroft  */
   2220               1.60      fvdl static int32_t
   2221               1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2222                1.1   mycroft {
   2223               1.60      fvdl 	int32_t bno;
   2224                1.1   mycroft 	int start, len, loc, i;
   2225                1.1   mycroft 	int blk, field, subfield, pos;
   2226               1.19    bouyer 	int ostart, olen;
   2227               1.62      fvdl 	u_int8_t *blksfree;
   2228               1.30      fvdl #ifdef FFS_EI
   2229               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2230               1.30      fvdl #endif
   2231                1.1   mycroft 
   2232              1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2233              1.101        ad 
   2234                1.1   mycroft 	/*
   2235                1.1   mycroft 	 * find the fragment by searching through the free block
   2236                1.1   mycroft 	 * map for an appropriate bit pattern
   2237                1.1   mycroft 	 */
   2238                1.1   mycroft 	if (bpref)
   2239                1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2240                1.1   mycroft 	else
   2241               1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2242               1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2243                1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2244               1.19    bouyer 	ostart = start;
   2245               1.19    bouyer 	olen = len;
   2246               1.45     lukem 	loc = scanc((u_int)len,
   2247               1.62      fvdl 		(const u_char *)&blksfree[start],
   2248               1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2249               1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2250                1.1   mycroft 	if (loc == 0) {
   2251                1.1   mycroft 		len = start + 1;
   2252                1.1   mycroft 		start = 0;
   2253               1.45     lukem 		loc = scanc((u_int)len,
   2254               1.62      fvdl 			(const u_char *)&blksfree[0],
   2255               1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2256               1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2257                1.1   mycroft 		if (loc == 0) {
   2258               1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2259               1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2260               1.20      ross 			printf("offset=%d %ld\n",
   2261               1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2262               1.62      fvdl 				(long)blksfree - (long)cgp);
   2263               1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2264                1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2265                1.1   mycroft 			/* NOTREACHED */
   2266                1.1   mycroft 		}
   2267                1.1   mycroft 	}
   2268                1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2269               1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2270                1.1   mycroft 	/*
   2271                1.1   mycroft 	 * found the byte in the map
   2272                1.1   mycroft 	 * sift through the bits to find the selected frag
   2273                1.1   mycroft 	 */
   2274                1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2275               1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2276                1.1   mycroft 		blk <<= 1;
   2277                1.1   mycroft 		field = around[allocsiz];
   2278                1.1   mycroft 		subfield = inside[allocsiz];
   2279                1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2280                1.1   mycroft 			if ((blk & field) == subfield)
   2281                1.1   mycroft 				return (bno + pos);
   2282                1.1   mycroft 			field <<= 1;
   2283                1.1   mycroft 			subfield <<= 1;
   2284                1.1   mycroft 		}
   2285                1.1   mycroft 	}
   2286               1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2287                1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2288               1.58      fvdl 	/* return (-1); */
   2289                1.1   mycroft }
   2290                1.1   mycroft 
   2291                1.1   mycroft /*
   2292                1.1   mycroft  * Update the cluster map because of an allocation or free.
   2293                1.1   mycroft  *
   2294                1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   2295                1.1   mycroft  */
   2296                1.9  christos void
   2297               1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2298                1.1   mycroft {
   2299                1.4       cgd 	int32_t *sump;
   2300                1.5   mycroft 	int32_t *lp;
   2301                1.1   mycroft 	u_char *freemapp, *mapp;
   2302                1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2303               1.30      fvdl #ifdef FFS_EI
   2304               1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2305               1.30      fvdl #endif
   2306                1.1   mycroft 
   2307              1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2308              1.101        ad 
   2309                1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2310                1.1   mycroft 		return;
   2311               1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2312               1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2313                1.1   mycroft 	/*
   2314                1.1   mycroft 	 * Allocate or clear the actual block.
   2315                1.1   mycroft 	 */
   2316                1.1   mycroft 	if (cnt > 0)
   2317                1.1   mycroft 		setbit(freemapp, blkno);
   2318                1.1   mycroft 	else
   2319                1.1   mycroft 		clrbit(freemapp, blkno);
   2320                1.1   mycroft 	/*
   2321                1.1   mycroft 	 * Find the size of the cluster going forward.
   2322                1.1   mycroft 	 */
   2323                1.1   mycroft 	start = blkno + 1;
   2324                1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2325               1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2326               1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2327                1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2328                1.1   mycroft 	map = *mapp++;
   2329                1.1   mycroft 	bit = 1 << (start % NBBY);
   2330                1.1   mycroft 	for (i = start; i < end; i++) {
   2331                1.1   mycroft 		if ((map & bit) == 0)
   2332                1.1   mycroft 			break;
   2333                1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2334                1.1   mycroft 			bit <<= 1;
   2335                1.1   mycroft 		} else {
   2336                1.1   mycroft 			map = *mapp++;
   2337                1.1   mycroft 			bit = 1;
   2338                1.1   mycroft 		}
   2339                1.1   mycroft 	}
   2340                1.1   mycroft 	forw = i - start;
   2341                1.1   mycroft 	/*
   2342                1.1   mycroft 	 * Find the size of the cluster going backward.
   2343                1.1   mycroft 	 */
   2344                1.1   mycroft 	start = blkno - 1;
   2345                1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2346                1.1   mycroft 	if (end < 0)
   2347                1.1   mycroft 		end = -1;
   2348                1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2349                1.1   mycroft 	map = *mapp--;
   2350                1.1   mycroft 	bit = 1 << (start % NBBY);
   2351                1.1   mycroft 	for (i = start; i > end; i--) {
   2352                1.1   mycroft 		if ((map & bit) == 0)
   2353                1.1   mycroft 			break;
   2354                1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2355                1.1   mycroft 			bit >>= 1;
   2356                1.1   mycroft 		} else {
   2357                1.1   mycroft 			map = *mapp--;
   2358                1.1   mycroft 			bit = 1 << (NBBY - 1);
   2359                1.1   mycroft 		}
   2360                1.1   mycroft 	}
   2361                1.1   mycroft 	back = start - i;
   2362                1.1   mycroft 	/*
   2363                1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2364                1.1   mycroft 	 * back clusters.
   2365                1.1   mycroft 	 */
   2366                1.1   mycroft 	i = back + forw + 1;
   2367                1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2368                1.1   mycroft 		i = fs->fs_contigsumsize;
   2369               1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2370                1.1   mycroft 	if (back > 0)
   2371               1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2372                1.1   mycroft 	if (forw > 0)
   2373               1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2374               1.19    bouyer 
   2375                1.5   mycroft 	/*
   2376                1.5   mycroft 	 * Update cluster summary information.
   2377                1.5   mycroft 	 */
   2378                1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2379                1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2380               1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2381                1.5   mycroft 			break;
   2382               1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2383                1.1   mycroft }
   2384                1.1   mycroft 
   2385                1.1   mycroft /*
   2386                1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2387               1.81     perry  *
   2388                1.1   mycroft  * The form of the error message is:
   2389                1.1   mycroft  *	fs: error message
   2390                1.1   mycroft  */
   2391                1.1   mycroft static void
   2392               1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2393                1.1   mycroft {
   2394                1.1   mycroft 
   2395               1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2396               1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2397                1.1   mycroft }
   2398