ffs_alloc.c revision 1.115 1 1.115 joerg /* $NetBSD: ffs_alloc.c,v 1.115 2008/11/30 16:20:44 joerg Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.111 simonb * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.115 joerg __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.115 2008/11/30 16:20:44 joerg Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.22 scottr #endif
79 1.1 mycroft
80 1.1 mycroft #include <sys/param.h>
81 1.1 mycroft #include <sys/systm.h>
82 1.1 mycroft #include <sys/buf.h>
83 1.111 simonb #include <sys/fstrans.h>
84 1.111 simonb #include <sys/kauth.h>
85 1.111 simonb #include <sys/kernel.h>
86 1.111 simonb #include <sys/mount.h>
87 1.1 mycroft #include <sys/proc.h>
88 1.111 simonb #include <sys/syslog.h>
89 1.1 mycroft #include <sys/vnode.h>
90 1.111 simonb #include <sys/wapbl.h>
91 1.29 mrg
92 1.76 hannken #include <miscfs/specfs/specdev.h>
93 1.1 mycroft #include <ufs/ufs/quota.h>
94 1.19 bouyer #include <ufs/ufs/ufsmount.h>
95 1.1 mycroft #include <ufs/ufs/inode.h>
96 1.9 christos #include <ufs/ufs/ufs_extern.h>
97 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
98 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
99 1.1 mycroft
100 1.1 mycroft #include <ufs/ffs/fs.h>
101 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
102 1.1 mycroft
103 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
106 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
107 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
108 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
109 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
110 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
111 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
112 1.85 thorpej daddr_t, int);
113 1.23 drochner
114 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
115 1.34 jdolecek int ffs_log_changeopt = 0;
116 1.34 jdolecek
117 1.23 drochner /* in ffs_tables.c */
118 1.40 jdolecek extern const int inside[], around[];
119 1.40 jdolecek extern const u_char * const fragtbl[];
120 1.1 mycroft
121 1.1 mycroft /*
122 1.1 mycroft * Allocate a block in the file system.
123 1.81 perry *
124 1.1 mycroft * The size of the requested block is given, which must be some
125 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
126 1.1 mycroft * A preference may be optionally specified. If a preference is given
127 1.1 mycroft * the following hierarchy is used to allocate a block:
128 1.1 mycroft * 1) allocate the requested block.
129 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
130 1.1 mycroft * 3) allocate a block in the same cylinder group.
131 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
132 1.1 mycroft * available block is located.
133 1.47 wiz * If no block preference is given the following hierarchy is used
134 1.1 mycroft * to allocate a block:
135 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
136 1.1 mycroft * inode for the file.
137 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
138 1.1 mycroft * available block is located.
139 1.106 pooka *
140 1.106 pooka * => called with um_lock held
141 1.106 pooka * => releases um_lock before returning
142 1.1 mycroft */
143 1.9 christos int
144 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
145 1.91 elad kauth_cred_t cred, daddr_t *bnp)
146 1.1 mycroft {
147 1.101 ad struct ufsmount *ump;
148 1.62 fvdl struct fs *fs;
149 1.58 fvdl daddr_t bno;
150 1.9 christos int cg;
151 1.9 christos #ifdef QUOTA
152 1.9 christos int error;
153 1.9 christos #endif
154 1.81 perry
155 1.62 fvdl fs = ip->i_fs;
156 1.101 ad ump = ip->i_ump;
157 1.101 ad
158 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
159 1.62 fvdl
160 1.37 chs #ifdef UVM_PAGE_TRKOWN
161 1.51 chs if (ITOV(ip)->v_type == VREG &&
162 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
163 1.37 chs struct vm_page *pg;
164 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
165 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
166 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
167 1.37 chs
168 1.105 ad mutex_enter(&uobj->vmobjlock);
169 1.37 chs while (off < endoff) {
170 1.37 chs pg = uvm_pagelookup(uobj, off);
171 1.37 chs KASSERT(pg != NULL);
172 1.37 chs KASSERT(pg->owner == curproc->p_pid);
173 1.37 chs off += PAGE_SIZE;
174 1.37 chs }
175 1.105 ad mutex_exit(&uobj->vmobjlock);
176 1.37 chs }
177 1.37 chs #endif
178 1.37 chs
179 1.1 mycroft *bnp = 0;
180 1.1 mycroft #ifdef DIAGNOSTIC
181 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
182 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
183 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
184 1.1 mycroft panic("ffs_alloc: bad size");
185 1.1 mycroft }
186 1.1 mycroft if (cred == NOCRED)
187 1.56 provos panic("ffs_alloc: missing credential");
188 1.1 mycroft #endif /* DIAGNOSTIC */
189 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
190 1.1 mycroft goto nospace;
191 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
192 1.99 pooka kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
193 1.1 mycroft goto nospace;
194 1.1 mycroft #ifdef QUOTA
195 1.101 ad mutex_exit(&ump->um_lock);
196 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
197 1.1 mycroft return (error);
198 1.101 ad mutex_enter(&ump->um_lock);
199 1.1 mycroft #endif
200 1.111 simonb
201 1.1 mycroft if (bpref >= fs->fs_size)
202 1.1 mycroft bpref = 0;
203 1.1 mycroft if (bpref == 0)
204 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
205 1.1 mycroft else
206 1.1 mycroft cg = dtog(fs, bpref);
207 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
208 1.1 mycroft if (bno > 0) {
209 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
210 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
211 1.1 mycroft *bnp = bno;
212 1.1 mycroft return (0);
213 1.1 mycroft }
214 1.1 mycroft #ifdef QUOTA
215 1.1 mycroft /*
216 1.1 mycroft * Restore user's disk quota because allocation failed.
217 1.1 mycroft */
218 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
219 1.1 mycroft #endif
220 1.111 simonb if (flags & B_CONTIG) {
221 1.111 simonb /*
222 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
223 1.111 simonb * For the case where ffs_hashalloc() fails early
224 1.111 simonb * in the B_CONTIG case we reach here with um_lock
225 1.111 simonb * already unlocked, so we can't release it again
226 1.111 simonb * like in the normal error path. See kern/39206.
227 1.111 simonb *
228 1.111 simonb *
229 1.111 simonb * Fail silently - it's up to our caller to report
230 1.111 simonb * errors.
231 1.111 simonb */
232 1.111 simonb return (ENOSPC);
233 1.111 simonb }
234 1.1 mycroft nospace:
235 1.101 ad mutex_exit(&ump->um_lock);
236 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
237 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
238 1.1 mycroft return (ENOSPC);
239 1.1 mycroft }
240 1.1 mycroft
241 1.1 mycroft /*
242 1.1 mycroft * Reallocate a fragment to a bigger size
243 1.1 mycroft *
244 1.1 mycroft * The number and size of the old block is given, and a preference
245 1.1 mycroft * and new size is also specified. The allocator attempts to extend
246 1.1 mycroft * the original block. Failing that, the regular block allocator is
247 1.1 mycroft * invoked to get an appropriate block.
248 1.106 pooka *
249 1.106 pooka * => called with um_lock held
250 1.106 pooka * => return with um_lock released
251 1.1 mycroft */
252 1.9 christos int
253 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
254 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
255 1.1 mycroft {
256 1.101 ad struct ufsmount *ump;
257 1.62 fvdl struct fs *fs;
258 1.1 mycroft struct buf *bp;
259 1.1 mycroft int cg, request, error;
260 1.58 fvdl daddr_t bprev, bno;
261 1.25 thorpej
262 1.62 fvdl fs = ip->i_fs;
263 1.101 ad ump = ip->i_ump;
264 1.101 ad
265 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
266 1.101 ad
267 1.37 chs #ifdef UVM_PAGE_TRKOWN
268 1.37 chs if (ITOV(ip)->v_type == VREG) {
269 1.37 chs struct vm_page *pg;
270 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
271 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
272 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
273 1.37 chs
274 1.105 ad mutex_enter(&uobj->vmobjlock);
275 1.37 chs while (off < endoff) {
276 1.37 chs pg = uvm_pagelookup(uobj, off);
277 1.37 chs KASSERT(pg != NULL);
278 1.37 chs KASSERT(pg->owner == curproc->p_pid);
279 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
280 1.37 chs off += PAGE_SIZE;
281 1.37 chs }
282 1.105 ad mutex_exit(&uobj->vmobjlock);
283 1.37 chs }
284 1.37 chs #endif
285 1.37 chs
286 1.1 mycroft #ifdef DIAGNOSTIC
287 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
288 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
289 1.13 christos printf(
290 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
291 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
292 1.1 mycroft panic("ffs_realloccg: bad size");
293 1.1 mycroft }
294 1.1 mycroft if (cred == NOCRED)
295 1.56 provos panic("ffs_realloccg: missing credential");
296 1.1 mycroft #endif /* DIAGNOSTIC */
297 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
298 1.101 ad kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
299 1.101 ad mutex_exit(&ump->um_lock);
300 1.1 mycroft goto nospace;
301 1.101 ad }
302 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
303 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
304 1.60 fvdl else
305 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
306 1.60 fvdl
307 1.60 fvdl if (bprev == 0) {
308 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
309 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
310 1.1 mycroft panic("ffs_realloccg: bad bprev");
311 1.1 mycroft }
312 1.101 ad mutex_exit(&ump->um_lock);
313 1.101 ad
314 1.1 mycroft /*
315 1.1 mycroft * Allocate the extra space in the buffer.
316 1.1 mycroft */
317 1.37 chs if (bpp != NULL &&
318 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
319 1.101 ad brelse(bp, 0);
320 1.1 mycroft return (error);
321 1.1 mycroft }
322 1.1 mycroft #ifdef QUOTA
323 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
324 1.44 chs if (bpp != NULL) {
325 1.101 ad brelse(bp, 0);
326 1.44 chs }
327 1.1 mycroft return (error);
328 1.1 mycroft }
329 1.1 mycroft #endif
330 1.1 mycroft /*
331 1.1 mycroft * Check for extension in the existing location.
332 1.1 mycroft */
333 1.1 mycroft cg = dtog(fs, bprev);
334 1.101 ad mutex_enter(&ump->um_lock);
335 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
336 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
337 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
338 1.37 chs
339 1.37 chs if (bpp != NULL) {
340 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
341 1.37 chs panic("bad blockno");
342 1.72 pk allocbuf(bp, nsize, 1);
343 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
344 1.105 ad mutex_enter(bp->b_objlock);
345 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
346 1.105 ad bp->b_oflags |= BO_DONE;
347 1.105 ad mutex_exit(bp->b_objlock);
348 1.37 chs *bpp = bp;
349 1.37 chs }
350 1.37 chs if (blknop != NULL) {
351 1.37 chs *blknop = bno;
352 1.37 chs }
353 1.1 mycroft return (0);
354 1.1 mycroft }
355 1.1 mycroft /*
356 1.1 mycroft * Allocate a new disk location.
357 1.1 mycroft */
358 1.1 mycroft if (bpref >= fs->fs_size)
359 1.1 mycroft bpref = 0;
360 1.1 mycroft switch ((int)fs->fs_optim) {
361 1.1 mycroft case FS_OPTSPACE:
362 1.1 mycroft /*
363 1.81 perry * Allocate an exact sized fragment. Although this makes
364 1.81 perry * best use of space, we will waste time relocating it if
365 1.1 mycroft * the file continues to grow. If the fragmentation is
366 1.1 mycroft * less than half of the minimum free reserve, we choose
367 1.1 mycroft * to begin optimizing for time.
368 1.1 mycroft */
369 1.1 mycroft request = nsize;
370 1.1 mycroft if (fs->fs_minfree < 5 ||
371 1.1 mycroft fs->fs_cstotal.cs_nffree >
372 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
373 1.1 mycroft break;
374 1.34 jdolecek
375 1.34 jdolecek if (ffs_log_changeopt) {
376 1.34 jdolecek log(LOG_NOTICE,
377 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
378 1.34 jdolecek fs->fs_fsmnt);
379 1.34 jdolecek }
380 1.34 jdolecek
381 1.1 mycroft fs->fs_optim = FS_OPTTIME;
382 1.1 mycroft break;
383 1.1 mycroft case FS_OPTTIME:
384 1.1 mycroft /*
385 1.1 mycroft * At this point we have discovered a file that is trying to
386 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
387 1.1 mycroft * we allocate a full sized block, then free the unused portion.
388 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
389 1.1 mycroft * above will be able to grow it in place without further
390 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
391 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
392 1.1 mycroft * optimizing for space.
393 1.1 mycroft */
394 1.1 mycroft request = fs->fs_bsize;
395 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
396 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
397 1.1 mycroft break;
398 1.34 jdolecek
399 1.34 jdolecek if (ffs_log_changeopt) {
400 1.34 jdolecek log(LOG_NOTICE,
401 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
402 1.34 jdolecek fs->fs_fsmnt);
403 1.34 jdolecek }
404 1.34 jdolecek
405 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
406 1.1 mycroft break;
407 1.1 mycroft default:
408 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
409 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
410 1.1 mycroft panic("ffs_realloccg: bad optim");
411 1.1 mycroft /* NOTREACHED */
412 1.1 mycroft }
413 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
414 1.1 mycroft if (bno > 0) {
415 1.111 simonb if (!DOINGSOFTDEP(ITOV(ip))) {
416 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
417 1.111 simonb (ITOV(ip)->v_type != VREG)) {
418 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
419 1.111 simonb ip->i_ump->um_mountp, fsbtodb(fs, bprev),
420 1.111 simonb osize);
421 1.111 simonb } else
422 1.111 simonb ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
423 1.111 simonb ip->i_number);
424 1.111 simonb }
425 1.111 simonb if (nsize < request) {
426 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
427 1.111 simonb (ITOV(ip)->v_type != VREG)) {
428 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
429 1.111 simonb ip->i_ump->um_mountp,
430 1.111 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
431 1.111 simonb request - nsize);
432 1.111 simonb } else
433 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
434 1.111 simonb bno + numfrags(fs, nsize),
435 1.111 simonb (long)(request - nsize), ip->i_number);
436 1.111 simonb }
437 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
438 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
439 1.37 chs if (bpp != NULL) {
440 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
441 1.72 pk allocbuf(bp, nsize, 1);
442 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
443 1.105 ad mutex_enter(bp->b_objlock);
444 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
445 1.105 ad bp->b_oflags |= BO_DONE;
446 1.105 ad mutex_exit(bp->b_objlock);
447 1.37 chs *bpp = bp;
448 1.37 chs }
449 1.37 chs if (blknop != NULL) {
450 1.37 chs *blknop = bno;
451 1.37 chs }
452 1.1 mycroft return (0);
453 1.1 mycroft }
454 1.101 ad mutex_exit(&ump->um_lock);
455 1.101 ad
456 1.1 mycroft #ifdef QUOTA
457 1.1 mycroft /*
458 1.1 mycroft * Restore user's disk quota because allocation failed.
459 1.1 mycroft */
460 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
461 1.1 mycroft #endif
462 1.37 chs if (bpp != NULL) {
463 1.101 ad brelse(bp, 0);
464 1.37 chs }
465 1.37 chs
466 1.1 mycroft nospace:
467 1.1 mycroft /*
468 1.1 mycroft * no space available
469 1.1 mycroft */
470 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
471 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
472 1.1 mycroft return (ENOSPC);
473 1.1 mycroft }
474 1.1 mycroft
475 1.1 mycroft /*
476 1.1 mycroft * Allocate an inode in the file system.
477 1.81 perry *
478 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
479 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
480 1.1 mycroft * 1) allocate the preferred inode.
481 1.1 mycroft * 2) allocate an inode in the same cylinder group.
482 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
483 1.1 mycroft * available inode is located.
484 1.47 wiz * If no inode preference is given the following hierarchy is used
485 1.1 mycroft * to allocate an inode:
486 1.1 mycroft * 1) allocate an inode in cylinder group 0.
487 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
488 1.1 mycroft * available inode is located.
489 1.106 pooka *
490 1.106 pooka * => um_lock not held upon entry or return
491 1.1 mycroft */
492 1.9 christos int
493 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
494 1.88 yamt struct vnode **vpp)
495 1.9 christos {
496 1.101 ad struct ufsmount *ump;
497 1.33 augustss struct inode *pip;
498 1.33 augustss struct fs *fs;
499 1.33 augustss struct inode *ip;
500 1.60 fvdl struct timespec ts;
501 1.1 mycroft ino_t ino, ipref;
502 1.1 mycroft int cg, error;
503 1.81 perry
504 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
505 1.111 simonb
506 1.88 yamt *vpp = NULL;
507 1.1 mycroft pip = VTOI(pvp);
508 1.1 mycroft fs = pip->i_fs;
509 1.101 ad ump = pip->i_ump;
510 1.101 ad
511 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
512 1.111 simonb if (error) {
513 1.111 simonb return error;
514 1.111 simonb }
515 1.101 ad mutex_enter(&ump->um_lock);
516 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
517 1.1 mycroft goto noinodes;
518 1.1 mycroft
519 1.1 mycroft if ((mode & IFMT) == IFDIR)
520 1.50 lukem ipref = ffs_dirpref(pip);
521 1.50 lukem else
522 1.50 lukem ipref = pip->i_number;
523 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
524 1.1 mycroft ipref = 0;
525 1.1 mycroft cg = ino_to_cg(fs, ipref);
526 1.50 lukem /*
527 1.50 lukem * Track number of dirs created one after another
528 1.50 lukem * in a same cg without intervening by files.
529 1.50 lukem */
530 1.50 lukem if ((mode & IFMT) == IFDIR) {
531 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
532 1.50 lukem fs->fs_contigdirs[cg]++;
533 1.50 lukem } else {
534 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
535 1.50 lukem fs->fs_contigdirs[cg]--;
536 1.50 lukem }
537 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
538 1.1 mycroft if (ino == 0)
539 1.1 mycroft goto noinodes;
540 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
541 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
542 1.1 mycroft if (error) {
543 1.111 simonb int err;
544 1.111 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
545 1.111 simonb if (err == 0)
546 1.111 simonb ffs_vfree(pvp, ino, mode);
547 1.111 simonb if (err == 0)
548 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
549 1.1 mycroft return (error);
550 1.1 mycroft }
551 1.90 yamt KASSERT((*vpp)->v_type == VNON);
552 1.88 yamt ip = VTOI(*vpp);
553 1.60 fvdl if (ip->i_mode) {
554 1.60 fvdl #if 0
555 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
556 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
557 1.60 fvdl #else
558 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
559 1.60 fvdl DIP(ip, mode), ip->i_mode,
560 1.60 fvdl DIP(ip, gen), ip->i_gen);
561 1.60 fvdl printf("size %llx blocks %llx\n",
562 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
563 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
564 1.86 christos (unsigned long long)ipref);
565 1.60 fvdl #if 0
566 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
567 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
568 1.60 fvdl #endif
569 1.60 fvdl
570 1.60 fvdl #endif
571 1.1 mycroft panic("ffs_valloc: dup alloc");
572 1.1 mycroft }
573 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
574 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
575 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
576 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
577 1.1 mycroft }
578 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
579 1.61 fvdl ip->i_flags = 0;
580 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
581 1.1 mycroft /*
582 1.1 mycroft * Set up a new generation number for this inode.
583 1.1 mycroft */
584 1.60 fvdl ip->i_gen++;
585 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
586 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
587 1.93 yamt vfs_timestamp(&ts);
588 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
589 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
590 1.60 fvdl }
591 1.1 mycroft return (0);
592 1.1 mycroft noinodes:
593 1.101 ad mutex_exit(&ump->um_lock);
594 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
595 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
596 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
597 1.1 mycroft return (ENOSPC);
598 1.1 mycroft }
599 1.1 mycroft
600 1.1 mycroft /*
601 1.50 lukem * Find a cylinder group in which to place a directory.
602 1.42 sommerfe *
603 1.50 lukem * The policy implemented by this algorithm is to allocate a
604 1.50 lukem * directory inode in the same cylinder group as its parent
605 1.50 lukem * directory, but also to reserve space for its files inodes
606 1.50 lukem * and data. Restrict the number of directories which may be
607 1.50 lukem * allocated one after another in the same cylinder group
608 1.50 lukem * without intervening allocation of files.
609 1.42 sommerfe *
610 1.50 lukem * If we allocate a first level directory then force allocation
611 1.50 lukem * in another cylinder group.
612 1.1 mycroft */
613 1.1 mycroft static ino_t
614 1.85 thorpej ffs_dirpref(struct inode *pip)
615 1.1 mycroft {
616 1.50 lukem register struct fs *fs;
617 1.74 soren int cg, prefcg;
618 1.89 dsl int64_t dirsize, cgsize, curdsz;
619 1.89 dsl int avgifree, avgbfree, avgndir;
620 1.50 lukem int minifree, minbfree, maxndir;
621 1.50 lukem int mincg, minndir;
622 1.50 lukem int maxcontigdirs;
623 1.50 lukem
624 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
625 1.101 ad
626 1.50 lukem fs = pip->i_fs;
627 1.1 mycroft
628 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
629 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
630 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
631 1.50 lukem
632 1.50 lukem /*
633 1.50 lukem * Force allocation in another cg if creating a first level dir.
634 1.50 lukem */
635 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
636 1.71 mycroft prefcg = random() % fs->fs_ncg;
637 1.50 lukem mincg = prefcg;
638 1.50 lukem minndir = fs->fs_ipg;
639 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
640 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
641 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
642 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
643 1.42 sommerfe mincg = cg;
644 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
645 1.42 sommerfe }
646 1.50 lukem for (cg = 0; cg < prefcg; cg++)
647 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
648 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
649 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
650 1.50 lukem mincg = cg;
651 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
652 1.42 sommerfe }
653 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
654 1.42 sommerfe }
655 1.50 lukem
656 1.50 lukem /*
657 1.50 lukem * Count various limits which used for
658 1.50 lukem * optimal allocation of a directory inode.
659 1.50 lukem */
660 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
661 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
662 1.50 lukem if (minifree < 0)
663 1.50 lukem minifree = 0;
664 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
665 1.50 lukem if (minbfree < 0)
666 1.50 lukem minbfree = 0;
667 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
668 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
669 1.89 dsl if (avgndir != 0) {
670 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
671 1.89 dsl if (dirsize < curdsz)
672 1.89 dsl dirsize = curdsz;
673 1.89 dsl }
674 1.89 dsl if (cgsize < dirsize * 255)
675 1.89 dsl maxcontigdirs = cgsize / dirsize;
676 1.89 dsl else
677 1.89 dsl maxcontigdirs = 255;
678 1.50 lukem if (fs->fs_avgfpdir > 0)
679 1.50 lukem maxcontigdirs = min(maxcontigdirs,
680 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
681 1.50 lukem if (maxcontigdirs == 0)
682 1.50 lukem maxcontigdirs = 1;
683 1.50 lukem
684 1.50 lukem /*
685 1.81 perry * Limit number of dirs in one cg and reserve space for
686 1.50 lukem * regular files, but only if we have no deficit in
687 1.50 lukem * inodes or space.
688 1.50 lukem */
689 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
690 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
691 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
692 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
693 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
694 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
695 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
696 1.50 lukem }
697 1.50 lukem for (cg = 0; cg < prefcg; cg++)
698 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
699 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
700 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
701 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
702 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
703 1.50 lukem }
704 1.50 lukem /*
705 1.50 lukem * This is a backstop when we are deficient in space.
706 1.50 lukem */
707 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
708 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
709 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
710 1.50 lukem for (cg = 0; cg < prefcg; cg++)
711 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
712 1.50 lukem break;
713 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
714 1.1 mycroft }
715 1.1 mycroft
716 1.1 mycroft /*
717 1.1 mycroft * Select the desired position for the next block in a file. The file is
718 1.1 mycroft * logically divided into sections. The first section is composed of the
719 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
720 1.81 perry *
721 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
722 1.1 mycroft * request a block in the same cylinder group as the inode that describes
723 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
724 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
725 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
726 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
727 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
728 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
729 1.1 mycroft * continues until a cylinder group with greater than the average number
730 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
731 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
732 1.1 mycroft * here a best guess is made based upon the logical block number being
733 1.1 mycroft * allocated.
734 1.81 perry *
735 1.1 mycroft * If a section is already partially allocated, the policy is to
736 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
737 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
738 1.60 fvdl * contigously if possible.
739 1.106 pooka *
740 1.106 pooka * => um_lock held on entry and exit
741 1.1 mycroft */
742 1.58 fvdl daddr_t
743 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
744 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
745 1.1 mycroft {
746 1.33 augustss struct fs *fs;
747 1.33 augustss int cg;
748 1.1 mycroft int avgbfree, startcg;
749 1.1 mycroft
750 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
751 1.101 ad
752 1.1 mycroft fs = ip->i_fs;
753 1.111 simonb
754 1.111 simonb /*
755 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
756 1.111 simonb * in the inode extentions to return the desired block.
757 1.111 simonb *
758 1.111 simonb * For metadata (indirect blocks) return the address of where
759 1.111 simonb * the first indirect block resides - we'll scan for the next
760 1.111 simonb * available slot if we need to allocate more than one indirect
761 1.111 simonb * block. For data, return the address of the actual block
762 1.111 simonb * relative to the address of the first data block.
763 1.111 simonb */
764 1.111 simonb if (flags & B_CONTIG) {
765 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
766 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
767 1.111 simonb if (flags & B_METAONLY)
768 1.111 simonb return ip->i_ffs_first_indir_blk;
769 1.111 simonb else
770 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
771 1.111 simonb }
772 1.111 simonb
773 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
774 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
775 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
776 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
777 1.1 mycroft }
778 1.1 mycroft /*
779 1.1 mycroft * Find a cylinder with greater than average number of
780 1.1 mycroft * unused data blocks.
781 1.1 mycroft */
782 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
783 1.1 mycroft startcg =
784 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
785 1.1 mycroft else
786 1.19 bouyer startcg = dtog(fs,
787 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
788 1.1 mycroft startcg %= fs->fs_ncg;
789 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
790 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
791 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
792 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
793 1.1 mycroft }
794 1.52 lukem for (cg = 0; cg < startcg; cg++)
795 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
796 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
797 1.1 mycroft }
798 1.35 thorpej return (0);
799 1.1 mycroft }
800 1.1 mycroft /*
801 1.60 fvdl * We just always try to lay things out contiguously.
802 1.60 fvdl */
803 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
804 1.60 fvdl }
805 1.60 fvdl
806 1.60 fvdl daddr_t
807 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
808 1.111 simonb int64_t *bap)
809 1.60 fvdl {
810 1.60 fvdl struct fs *fs;
811 1.60 fvdl int cg;
812 1.60 fvdl int avgbfree, startcg;
813 1.60 fvdl
814 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
815 1.101 ad
816 1.60 fvdl fs = ip->i_fs;
817 1.111 simonb
818 1.111 simonb /*
819 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
820 1.111 simonb * in the inode extentions to return the desired block.
821 1.111 simonb *
822 1.111 simonb * For metadata (indirect blocks) return the address of where
823 1.111 simonb * the first indirect block resides - we'll scan for the next
824 1.111 simonb * available slot if we need to allocate more than one indirect
825 1.111 simonb * block. For data, return the address of the actual block
826 1.111 simonb * relative to the address of the first data block.
827 1.111 simonb */
828 1.111 simonb if (flags & B_CONTIG) {
829 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
830 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
831 1.111 simonb if (flags & B_METAONLY)
832 1.111 simonb return ip->i_ffs_first_indir_blk;
833 1.111 simonb else
834 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
835 1.111 simonb }
836 1.111 simonb
837 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
838 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
839 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
840 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
841 1.60 fvdl }
842 1.1 mycroft /*
843 1.60 fvdl * Find a cylinder with greater than average number of
844 1.60 fvdl * unused data blocks.
845 1.1 mycroft */
846 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
847 1.60 fvdl startcg =
848 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
849 1.60 fvdl else
850 1.60 fvdl startcg = dtog(fs,
851 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
852 1.60 fvdl startcg %= fs->fs_ncg;
853 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
854 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
855 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
856 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
857 1.60 fvdl }
858 1.60 fvdl for (cg = 0; cg < startcg; cg++)
859 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
861 1.60 fvdl }
862 1.60 fvdl return (0);
863 1.60 fvdl }
864 1.60 fvdl /*
865 1.60 fvdl * We just always try to lay things out contiguously.
866 1.60 fvdl */
867 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
868 1.1 mycroft }
869 1.1 mycroft
870 1.60 fvdl
871 1.1 mycroft /*
872 1.1 mycroft * Implement the cylinder overflow algorithm.
873 1.1 mycroft *
874 1.1 mycroft * The policy implemented by this algorithm is:
875 1.1 mycroft * 1) allocate the block in its requested cylinder group.
876 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
877 1.1 mycroft * 3) brute force search for a free block.
878 1.106 pooka *
879 1.106 pooka * => called with um_lock held
880 1.106 pooka * => returns with um_lock released on success, held on failure
881 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
882 1.1 mycroft */
883 1.1 mycroft /*VARARGS5*/
884 1.58 fvdl static daddr_t
885 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
886 1.85 thorpej int size /* size for data blocks, mode for inodes */,
887 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
888 1.1 mycroft {
889 1.33 augustss struct fs *fs;
890 1.58 fvdl daddr_t result;
891 1.1 mycroft int i, icg = cg;
892 1.1 mycroft
893 1.1 mycroft fs = ip->i_fs;
894 1.1 mycroft /*
895 1.1 mycroft * 1: preferred cylinder group
896 1.1 mycroft */
897 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
898 1.1 mycroft if (result)
899 1.1 mycroft return (result);
900 1.111 simonb
901 1.111 simonb if (flags & B_CONTIG)
902 1.111 simonb return (result);
903 1.1 mycroft /*
904 1.1 mycroft * 2: quadratic rehash
905 1.1 mycroft */
906 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
907 1.1 mycroft cg += i;
908 1.1 mycroft if (cg >= fs->fs_ncg)
909 1.1 mycroft cg -= fs->fs_ncg;
910 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
911 1.1 mycroft if (result)
912 1.1 mycroft return (result);
913 1.1 mycroft }
914 1.1 mycroft /*
915 1.1 mycroft * 3: brute force search
916 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
917 1.1 mycroft * and 1 is always checked in the quadratic rehash.
918 1.1 mycroft */
919 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
920 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
921 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
922 1.1 mycroft if (result)
923 1.1 mycroft return (result);
924 1.1 mycroft cg++;
925 1.1 mycroft if (cg == fs->fs_ncg)
926 1.1 mycroft cg = 0;
927 1.1 mycroft }
928 1.35 thorpej return (0);
929 1.1 mycroft }
930 1.1 mycroft
931 1.1 mycroft /*
932 1.1 mycroft * Determine whether a fragment can be extended.
933 1.1 mycroft *
934 1.81 perry * Check to see if the necessary fragments are available, and
935 1.1 mycroft * if they are, allocate them.
936 1.106 pooka *
937 1.106 pooka * => called with um_lock held
938 1.106 pooka * => returns with um_lock released on success, held on failure
939 1.1 mycroft */
940 1.58 fvdl static daddr_t
941 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
942 1.1 mycroft {
943 1.101 ad struct ufsmount *ump;
944 1.33 augustss struct fs *fs;
945 1.33 augustss struct cg *cgp;
946 1.1 mycroft struct buf *bp;
947 1.58 fvdl daddr_t bno;
948 1.1 mycroft int frags, bbase;
949 1.1 mycroft int i, error;
950 1.62 fvdl u_int8_t *blksfree;
951 1.1 mycroft
952 1.1 mycroft fs = ip->i_fs;
953 1.101 ad ump = ip->i_ump;
954 1.101 ad
955 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
956 1.101 ad
957 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
958 1.35 thorpej return (0);
959 1.1 mycroft frags = numfrags(fs, nsize);
960 1.1 mycroft bbase = fragnum(fs, bprev);
961 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
962 1.1 mycroft /* cannot extend across a block boundary */
963 1.35 thorpej return (0);
964 1.1 mycroft }
965 1.101 ad mutex_exit(&ump->um_lock);
966 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
967 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
968 1.101 ad if (error)
969 1.101 ad goto fail;
970 1.1 mycroft cgp = (struct cg *)bp->b_data;
971 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
972 1.101 ad goto fail;
973 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
974 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
975 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
976 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
977 1.1 mycroft bno = dtogd(fs, bprev);
978 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
979 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
980 1.101 ad if (isclr(blksfree, bno + i))
981 1.101 ad goto fail;
982 1.1 mycroft /*
983 1.1 mycroft * the current fragment can be extended
984 1.1 mycroft * deduct the count on fragment being extended into
985 1.1 mycroft * increase the count on the remaining fragment (if any)
986 1.1 mycroft * allocate the extended piece
987 1.1 mycroft */
988 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
989 1.62 fvdl if (isclr(blksfree, bno + i))
990 1.1 mycroft break;
991 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
992 1.1 mycroft if (i != frags)
993 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
994 1.101 ad mutex_enter(&ump->um_lock);
995 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
996 1.62 fvdl clrbit(blksfree, bno + i);
997 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
998 1.1 mycroft fs->fs_cstotal.cs_nffree--;
999 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1000 1.1 mycroft }
1001 1.1 mycroft fs->fs_fmod = 1;
1002 1.101 ad ACTIVECG_CLR(fs, cg);
1003 1.101 ad mutex_exit(&ump->um_lock);
1004 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1005 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1006 1.1 mycroft bdwrite(bp);
1007 1.1 mycroft return (bprev);
1008 1.101 ad
1009 1.101 ad fail:
1010 1.101 ad brelse(bp, 0);
1011 1.101 ad mutex_enter(&ump->um_lock);
1012 1.101 ad return (0);
1013 1.1 mycroft }
1014 1.1 mycroft
1015 1.1 mycroft /*
1016 1.1 mycroft * Determine whether a block can be allocated.
1017 1.1 mycroft *
1018 1.1 mycroft * Check to see if a block of the appropriate size is available,
1019 1.1 mycroft * and if it is, allocate it.
1020 1.1 mycroft */
1021 1.58 fvdl static daddr_t
1022 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1023 1.1 mycroft {
1024 1.101 ad struct ufsmount *ump;
1025 1.62 fvdl struct fs *fs = ip->i_fs;
1026 1.30 fvdl struct cg *cgp;
1027 1.1 mycroft struct buf *bp;
1028 1.60 fvdl int32_t bno;
1029 1.60 fvdl daddr_t blkno;
1030 1.30 fvdl int error, frags, allocsiz, i;
1031 1.62 fvdl u_int8_t *blksfree;
1032 1.30 fvdl #ifdef FFS_EI
1033 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1034 1.30 fvdl #endif
1035 1.1 mycroft
1036 1.101 ad ump = ip->i_ump;
1037 1.101 ad
1038 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1039 1.101 ad
1040 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1041 1.35 thorpej return (0);
1042 1.101 ad mutex_exit(&ump->um_lock);
1043 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1044 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1045 1.101 ad if (error)
1046 1.101 ad goto fail;
1047 1.1 mycroft cgp = (struct cg *)bp->b_data;
1048 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1049 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1050 1.101 ad goto fail;
1051 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1052 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1053 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1054 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1055 1.1 mycroft if (size == fs->fs_bsize) {
1056 1.101 ad mutex_enter(&ump->um_lock);
1057 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1058 1.76 hannken ACTIVECG_CLR(fs, cg);
1059 1.101 ad mutex_exit(&ump->um_lock);
1060 1.1 mycroft bdwrite(bp);
1061 1.60 fvdl return (blkno);
1062 1.1 mycroft }
1063 1.1 mycroft /*
1064 1.1 mycroft * check to see if any fragments are already available
1065 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1066 1.1 mycroft * it down to a smaller size if necessary
1067 1.1 mycroft */
1068 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1069 1.1 mycroft frags = numfrags(fs, size);
1070 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1071 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1072 1.1 mycroft break;
1073 1.1 mycroft if (allocsiz == fs->fs_frag) {
1074 1.1 mycroft /*
1075 1.81 perry * no fragments were available, so a block will be
1076 1.1 mycroft * allocated, and hacked up
1077 1.1 mycroft */
1078 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1079 1.101 ad goto fail;
1080 1.101 ad mutex_enter(&ump->um_lock);
1081 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1082 1.60 fvdl bno = dtogd(fs, blkno);
1083 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1084 1.62 fvdl setbit(blksfree, bno + i);
1085 1.1 mycroft i = fs->fs_frag - frags;
1086 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1087 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1088 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1089 1.1 mycroft fs->fs_fmod = 1;
1090 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1091 1.76 hannken ACTIVECG_CLR(fs, cg);
1092 1.101 ad mutex_exit(&ump->um_lock);
1093 1.1 mycroft bdwrite(bp);
1094 1.60 fvdl return (blkno);
1095 1.1 mycroft }
1096 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1097 1.30 fvdl #if 0
1098 1.30 fvdl /*
1099 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1100 1.58 fvdl * also: returning NULL as daddr_t ?
1101 1.30 fvdl */
1102 1.101 ad if (bno < 0)
1103 1.101 ad goto fail;
1104 1.30 fvdl #endif
1105 1.1 mycroft for (i = 0; i < frags; i++)
1106 1.62 fvdl clrbit(blksfree, bno + i);
1107 1.101 ad mutex_enter(&ump->um_lock);
1108 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1109 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1110 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1111 1.1 mycroft fs->fs_fmod = 1;
1112 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1113 1.1 mycroft if (frags != allocsiz)
1114 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1115 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1116 1.101 ad ACTIVECG_CLR(fs, cg);
1117 1.101 ad mutex_exit(&ump->um_lock);
1118 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1119 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1120 1.1 mycroft bdwrite(bp);
1121 1.30 fvdl return blkno;
1122 1.101 ad
1123 1.101 ad fail:
1124 1.101 ad brelse(bp, 0);
1125 1.101 ad mutex_enter(&ump->um_lock);
1126 1.101 ad return (0);
1127 1.1 mycroft }
1128 1.1 mycroft
1129 1.1 mycroft /*
1130 1.1 mycroft * Allocate a block in a cylinder group.
1131 1.1 mycroft *
1132 1.1 mycroft * This algorithm implements the following policy:
1133 1.1 mycroft * 1) allocate the requested block.
1134 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1135 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1136 1.1 mycroft * specified cylinder group.
1137 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1138 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1139 1.1 mycroft */
1140 1.58 fvdl static daddr_t
1141 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1142 1.1 mycroft {
1143 1.101 ad struct ufsmount *ump;
1144 1.62 fvdl struct fs *fs = ip->i_fs;
1145 1.30 fvdl struct cg *cgp;
1146 1.60 fvdl daddr_t blkno;
1147 1.60 fvdl int32_t bno;
1148 1.60 fvdl u_int8_t *blksfree;
1149 1.30 fvdl #ifdef FFS_EI
1150 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1151 1.30 fvdl #endif
1152 1.1 mycroft
1153 1.101 ad ump = ip->i_ump;
1154 1.101 ad
1155 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1156 1.101 ad
1157 1.30 fvdl cgp = (struct cg *)bp->b_data;
1158 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1159 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1160 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1161 1.60 fvdl } else {
1162 1.60 fvdl bpref = blknum(fs, bpref);
1163 1.60 fvdl bno = dtogd(fs, bpref);
1164 1.1 mycroft /*
1165 1.60 fvdl * if the requested block is available, use it
1166 1.1 mycroft */
1167 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1168 1.60 fvdl goto gotit;
1169 1.111 simonb /*
1170 1.111 simonb * if the requested data block isn't available and we are
1171 1.111 simonb * trying to allocate a contiguous file, return an error.
1172 1.111 simonb */
1173 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1174 1.111 simonb return (0);
1175 1.1 mycroft }
1176 1.111 simonb
1177 1.1 mycroft /*
1178 1.60 fvdl * Take the next available block in this cylinder group.
1179 1.1 mycroft */
1180 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1181 1.1 mycroft if (bno < 0)
1182 1.35 thorpej return (0);
1183 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1184 1.1 mycroft gotit:
1185 1.1 mycroft blkno = fragstoblks(fs, bno);
1186 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1187 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1188 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1189 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1190 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1191 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1192 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1193 1.73 dbj int cylno;
1194 1.73 dbj cylno = old_cbtocylno(fs, bno);
1195 1.75 dbj KASSERT(cylno >= 0);
1196 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1197 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1198 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1199 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1200 1.73 dbj needswap);
1201 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1202 1.73 dbj }
1203 1.1 mycroft fs->fs_fmod = 1;
1204 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1205 1.101 ad if (DOINGSOFTDEP(ITOV(ip))) {
1206 1.101 ad mutex_exit(&ump->um_lock);
1207 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1208 1.101 ad mutex_enter(&ump->um_lock);
1209 1.101 ad }
1210 1.30 fvdl return (blkno);
1211 1.1 mycroft }
1212 1.1 mycroft
1213 1.1 mycroft /*
1214 1.1 mycroft * Determine whether an inode can be allocated.
1215 1.1 mycroft *
1216 1.1 mycroft * Check to see if an inode is available, and if it is,
1217 1.1 mycroft * allocate it using the following policy:
1218 1.1 mycroft * 1) allocate the requested inode.
1219 1.1 mycroft * 2) allocate the next available inode after the requested
1220 1.1 mycroft * inode in the specified cylinder group.
1221 1.1 mycroft */
1222 1.58 fvdl static daddr_t
1223 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1224 1.1 mycroft {
1225 1.101 ad struct ufsmount *ump = ip->i_ump;
1226 1.62 fvdl struct fs *fs = ip->i_fs;
1227 1.33 augustss struct cg *cgp;
1228 1.60 fvdl struct buf *bp, *ibp;
1229 1.60 fvdl u_int8_t *inosused;
1230 1.1 mycroft int error, start, len, loc, map, i;
1231 1.60 fvdl int32_t initediblk;
1232 1.112 hannken daddr_t nalloc;
1233 1.60 fvdl struct ufs2_dinode *dp2;
1234 1.19 bouyer #ifdef FFS_EI
1235 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1236 1.19 bouyer #endif
1237 1.1 mycroft
1238 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1239 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1240 1.101 ad
1241 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1242 1.35 thorpej return (0);
1243 1.101 ad mutex_exit(&ump->um_lock);
1244 1.112 hannken ibp = NULL;
1245 1.112 hannken initediblk = -1;
1246 1.112 hannken retry:
1247 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1248 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1249 1.101 ad if (error)
1250 1.101 ad goto fail;
1251 1.1 mycroft cgp = (struct cg *)bp->b_data;
1252 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1253 1.101 ad goto fail;
1254 1.112 hannken
1255 1.112 hannken if (ibp != NULL &&
1256 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1257 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1258 1.112 hannken brelse(ibp, BC_INVAL);
1259 1.112 hannken ibp = NULL;
1260 1.112 hannken }
1261 1.112 hannken /*
1262 1.112 hannken * Check to see if we need to initialize more inodes.
1263 1.112 hannken */
1264 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1265 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1266 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1267 1.112 hannken if (nalloc + INOPB(fs) > initediblk &&
1268 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1269 1.112 hannken /*
1270 1.112 hannken * We have to release the cg buffer here to prevent
1271 1.112 hannken * a deadlock when reading the inode block will
1272 1.112 hannken * run a copy-on-write that might use this cg.
1273 1.112 hannken */
1274 1.112 hannken brelse(bp, 0);
1275 1.112 hannken bp = NULL;
1276 1.112 hannken error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1277 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1278 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1279 1.112 hannken if (error)
1280 1.112 hannken goto fail;
1281 1.112 hannken goto retry;
1282 1.112 hannken }
1283 1.112 hannken }
1284 1.112 hannken
1285 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1286 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1287 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1288 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1289 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1290 1.1 mycroft if (ipref) {
1291 1.1 mycroft ipref %= fs->fs_ipg;
1292 1.60 fvdl if (isclr(inosused, ipref))
1293 1.1 mycroft goto gotit;
1294 1.1 mycroft }
1295 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1296 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1297 1.19 bouyer NBBY);
1298 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1299 1.1 mycroft if (loc == 0) {
1300 1.1 mycroft len = start + 1;
1301 1.1 mycroft start = 0;
1302 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1303 1.1 mycroft if (loc == 0) {
1304 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1305 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1306 1.19 bouyer fs->fs_fsmnt);
1307 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1308 1.1 mycroft /* NOTREACHED */
1309 1.1 mycroft }
1310 1.1 mycroft }
1311 1.1 mycroft i = start + len - loc;
1312 1.60 fvdl map = inosused[i];
1313 1.1 mycroft ipref = i * NBBY;
1314 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1315 1.1 mycroft if ((map & i) == 0) {
1316 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1317 1.1 mycroft goto gotit;
1318 1.1 mycroft }
1319 1.1 mycroft }
1320 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1321 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1322 1.1 mycroft /* NOTREACHED */
1323 1.1 mycroft gotit:
1324 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1325 1.111 simonb mode);
1326 1.60 fvdl /*
1327 1.60 fvdl * Check to see if we need to initialize more inodes.
1328 1.60 fvdl */
1329 1.112 hannken if (ibp != NULL) {
1330 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1331 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1332 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1333 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1334 1.60 fvdl /*
1335 1.60 fvdl * Don't bother to swap, it's supposed to be
1336 1.60 fvdl * random, after all.
1337 1.60 fvdl */
1338 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1339 1.60 fvdl dp2++;
1340 1.60 fvdl }
1341 1.60 fvdl initediblk += INOPB(fs);
1342 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1343 1.60 fvdl }
1344 1.60 fvdl
1345 1.101 ad mutex_enter(&ump->um_lock);
1346 1.76 hannken ACTIVECG_CLR(fs, cg);
1347 1.101 ad setbit(inosused, ipref);
1348 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1349 1.101 ad fs->fs_cstotal.cs_nifree--;
1350 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1351 1.101 ad fs->fs_fmod = 1;
1352 1.101 ad if ((mode & IFMT) == IFDIR) {
1353 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1354 1.101 ad fs->fs_cstotal.cs_ndir++;
1355 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1356 1.101 ad }
1357 1.101 ad mutex_exit(&ump->um_lock);
1358 1.101 ad if (DOINGSOFTDEP(ITOV(ip)))
1359 1.101 ad softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1360 1.112 hannken if (ibp != NULL) {
1361 1.112 hannken bwrite(bp);
1362 1.104 hannken bawrite(ibp);
1363 1.112 hannken } else
1364 1.112 hannken bdwrite(bp);
1365 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1366 1.101 ad fail:
1367 1.112 hannken if (bp != NULL)
1368 1.112 hannken brelse(bp, 0);
1369 1.112 hannken if (ibp != NULL)
1370 1.112 hannken brelse(ibp, BC_INVAL);
1371 1.101 ad mutex_enter(&ump->um_lock);
1372 1.101 ad return (0);
1373 1.1 mycroft }
1374 1.1 mycroft
1375 1.1 mycroft /*
1376 1.111 simonb * Allocate a block or fragment.
1377 1.111 simonb *
1378 1.111 simonb * The specified block or fragment is removed from the
1379 1.111 simonb * free map, possibly fragmenting a block in the process.
1380 1.111 simonb *
1381 1.111 simonb * This implementation should mirror fs_blkfree
1382 1.111 simonb *
1383 1.111 simonb * => um_lock not held on entry or exit
1384 1.111 simonb */
1385 1.111 simonb int
1386 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1387 1.111 simonb {
1388 1.111 simonb struct fs *fs = ip->i_fs;
1389 1.111 simonb
1390 1.111 simonb if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1391 1.111 simonb fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1392 1.111 simonb printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1393 1.111 simonb "size = %ld, fs = %s\n",
1394 1.111 simonb ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1395 1.111 simonb panic("blkalloc: bad size");
1396 1.111 simonb }
1397 1.111 simonb if (bno >= fs->fs_size) {
1398 1.111 simonb printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
1399 1.111 simonb ip->i_number);
1400 1.111 simonb ffs_fserr(fs, ip->i_uid, "bad block");
1401 1.111 simonb return EINVAL;
1402 1.111 simonb }
1403 1.115 joerg
1404 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1405 1.115 joerg }
1406 1.115 joerg
1407 1.115 joerg int
1408 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1409 1.115 joerg {
1410 1.115 joerg struct fs *fs = ump->um_fs;
1411 1.115 joerg struct cg *cgp;
1412 1.115 joerg struct buf *bp;
1413 1.115 joerg int32_t fragno, cgbno;
1414 1.115 joerg int i, error, cg, blk, frags, bbase;
1415 1.115 joerg u_int8_t *blksfree;
1416 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1417 1.115 joerg
1418 1.115 joerg KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1419 1.115 joerg fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1420 1.115 joerg KASSERT(bno < fs->fs_size);
1421 1.115 joerg
1422 1.115 joerg cg = dtog(fs, bno);
1423 1.115 joerg error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1424 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1425 1.111 simonb if (error) {
1426 1.111 simonb brelse(bp, 0);
1427 1.111 simonb return error;
1428 1.111 simonb }
1429 1.111 simonb cgp = (struct cg *)bp->b_data;
1430 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1431 1.111 simonb brelse(bp, 0);
1432 1.111 simonb return EIO;
1433 1.111 simonb }
1434 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1435 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1436 1.111 simonb cgbno = dtogd(fs, bno);
1437 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1438 1.111 simonb
1439 1.111 simonb mutex_enter(&ump->um_lock);
1440 1.111 simonb if (size == fs->fs_bsize) {
1441 1.111 simonb fragno = fragstoblks(fs, cgbno);
1442 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1443 1.111 simonb mutex_exit(&ump->um_lock);
1444 1.111 simonb brelse(bp, 0);
1445 1.111 simonb return EBUSY;
1446 1.111 simonb }
1447 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1448 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1449 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1450 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1451 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1452 1.111 simonb } else {
1453 1.111 simonb bbase = cgbno - fragnum(fs, cgbno);
1454 1.111 simonb
1455 1.111 simonb frags = numfrags(fs, size);
1456 1.111 simonb for (i = 0; i < frags; i++) {
1457 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1458 1.111 simonb mutex_exit(&ump->um_lock);
1459 1.111 simonb brelse(bp, 0);
1460 1.111 simonb return EBUSY;
1461 1.111 simonb }
1462 1.111 simonb }
1463 1.111 simonb /*
1464 1.111 simonb * if a complete block is being split, account for it
1465 1.111 simonb */
1466 1.111 simonb fragno = fragstoblks(fs, bbase);
1467 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1468 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1469 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1470 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1471 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1472 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1473 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1474 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1475 1.111 simonb }
1476 1.111 simonb /*
1477 1.111 simonb * decrement the counts associated with the old frags
1478 1.111 simonb */
1479 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1480 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1481 1.111 simonb /*
1482 1.111 simonb * allocate the fragment
1483 1.111 simonb */
1484 1.111 simonb for (i = 0; i < frags; i++) {
1485 1.111 simonb clrbit(blksfree, cgbno + i);
1486 1.111 simonb }
1487 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1488 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1489 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1490 1.111 simonb /*
1491 1.111 simonb * add back in counts associated with the new frags
1492 1.111 simonb */
1493 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1494 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1495 1.111 simonb }
1496 1.111 simonb fs->fs_fmod = 1;
1497 1.111 simonb ACTIVECG_CLR(fs, cg);
1498 1.111 simonb mutex_exit(&ump->um_lock);
1499 1.111 simonb bdwrite(bp);
1500 1.111 simonb return 0;
1501 1.111 simonb }
1502 1.111 simonb
1503 1.111 simonb /*
1504 1.1 mycroft * Free a block or fragment.
1505 1.1 mycroft *
1506 1.1 mycroft * The specified block or fragment is placed back in the
1507 1.81 perry * free map. If a fragment is deallocated, a possible
1508 1.1 mycroft * block reassembly is checked.
1509 1.106 pooka *
1510 1.106 pooka * => um_lock not held on entry or exit
1511 1.1 mycroft */
1512 1.9 christos void
1513 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1514 1.85 thorpej ino_t inum)
1515 1.1 mycroft {
1516 1.33 augustss struct cg *cgp;
1517 1.1 mycroft struct buf *bp;
1518 1.76 hannken struct ufsmount *ump;
1519 1.60 fvdl int32_t fragno, cgbno;
1520 1.76 hannken daddr_t cgblkno;
1521 1.1 mycroft int i, error, cg, blk, frags, bbase;
1522 1.62 fvdl u_int8_t *blksfree;
1523 1.76 hannken dev_t dev;
1524 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1525 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1526 1.1 mycroft
1527 1.76 hannken cg = dtog(fs, bno);
1528 1.113 hannken if (devvp_is_snapshot) {
1529 1.76 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1530 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1531 1.76 hannken cgblkno = fragstoblks(fs, cgtod(fs, cg));
1532 1.76 hannken } else {
1533 1.76 hannken dev = devvp->v_rdev;
1534 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1535 1.76 hannken cgblkno = fsbtodb(fs, cgtod(fs, cg));
1536 1.100 hannken if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1537 1.76 hannken return;
1538 1.76 hannken }
1539 1.30 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1540 1.30 fvdl fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1541 1.59 tsutsui printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
1542 1.58 fvdl "size = %ld, fs = %s\n",
1543 1.76 hannken dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1544 1.1 mycroft panic("blkfree: bad size");
1545 1.1 mycroft }
1546 1.76 hannken
1547 1.60 fvdl if (bno >= fs->fs_size) {
1548 1.86 christos printf("bad block %" PRId64 ", ino %llu\n", bno,
1549 1.86 christos (unsigned long long)inum);
1550 1.76 hannken ffs_fserr(fs, inum, "bad block");
1551 1.1 mycroft return;
1552 1.1 mycroft }
1553 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1554 1.107 hannken NOCRED, B_MODIFY, &bp);
1555 1.1 mycroft if (error) {
1556 1.101 ad brelse(bp, 0);
1557 1.1 mycroft return;
1558 1.1 mycroft }
1559 1.1 mycroft cgp = (struct cg *)bp->b_data;
1560 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1561 1.101 ad brelse(bp, 0);
1562 1.1 mycroft return;
1563 1.1 mycroft }
1564 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1565 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1566 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1567 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1568 1.60 fvdl cgbno = dtogd(fs, bno);
1569 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1570 1.101 ad mutex_enter(&ump->um_lock);
1571 1.1 mycroft if (size == fs->fs_bsize) {
1572 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1573 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1574 1.113 hannken if (devvp_is_snapshot) {
1575 1.101 ad mutex_exit(&ump->um_lock);
1576 1.101 ad brelse(bp, 0);
1577 1.76 hannken return;
1578 1.76 hannken }
1579 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1580 1.76 hannken dev, bno, fs->fs_fsmnt);
1581 1.1 mycroft panic("blkfree: freeing free block");
1582 1.1 mycroft }
1583 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1584 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1585 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1586 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1587 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1588 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1589 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1590 1.73 dbj i = old_cbtocylno(fs, cgbno);
1591 1.75 dbj KASSERT(i >= 0);
1592 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1593 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1594 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1595 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1596 1.73 dbj needswap);
1597 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1598 1.73 dbj }
1599 1.1 mycroft } else {
1600 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1601 1.1 mycroft /*
1602 1.1 mycroft * decrement the counts associated with the old frags
1603 1.1 mycroft */
1604 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1605 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1606 1.1 mycroft /*
1607 1.1 mycroft * deallocate the fragment
1608 1.1 mycroft */
1609 1.1 mycroft frags = numfrags(fs, size);
1610 1.1 mycroft for (i = 0; i < frags; i++) {
1611 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1612 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1613 1.59 tsutsui ", fs = %s\n",
1614 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1615 1.1 mycroft panic("blkfree: freeing free frag");
1616 1.1 mycroft }
1617 1.62 fvdl setbit(blksfree, cgbno + i);
1618 1.1 mycroft }
1619 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1620 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1621 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1622 1.1 mycroft /*
1623 1.1 mycroft * add back in counts associated with the new frags
1624 1.1 mycroft */
1625 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1626 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1627 1.1 mycroft /*
1628 1.1 mycroft * if a complete block has been reassembled, account for it
1629 1.1 mycroft */
1630 1.60 fvdl fragno = fragstoblks(fs, bbase);
1631 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1632 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1633 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1634 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1635 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1636 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1637 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1638 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1639 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1640 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1641 1.73 dbj i = old_cbtocylno(fs, bbase);
1642 1.75 dbj KASSERT(i >= 0);
1643 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1644 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1645 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1646 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1647 1.73 dbj bbase)], 1, needswap);
1648 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1649 1.73 dbj }
1650 1.1 mycroft }
1651 1.1 mycroft }
1652 1.1 mycroft fs->fs_fmod = 1;
1653 1.76 hannken ACTIVECG_CLR(fs, cg);
1654 1.101 ad mutex_exit(&ump->um_lock);
1655 1.1 mycroft bdwrite(bp);
1656 1.1 mycroft }
1657 1.1 mycroft
1658 1.1 mycroft /*
1659 1.1 mycroft * Free an inode.
1660 1.30 fvdl */
1661 1.30 fvdl int
1662 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1663 1.30 fvdl {
1664 1.30 fvdl
1665 1.88 yamt if (DOINGSOFTDEP(vp)) {
1666 1.88 yamt softdep_freefile(vp, ino, mode);
1667 1.30 fvdl return (0);
1668 1.30 fvdl }
1669 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1670 1.30 fvdl }
1671 1.30 fvdl
1672 1.30 fvdl /*
1673 1.30 fvdl * Do the actual free operation.
1674 1.1 mycroft * The specified inode is placed back in the free map.
1675 1.111 simonb *
1676 1.111 simonb * => um_lock not held on entry or exit
1677 1.1 mycroft */
1678 1.1 mycroft int
1679 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1680 1.9 christos {
1681 1.101 ad struct ufsmount *ump;
1682 1.33 augustss struct cg *cgp;
1683 1.1 mycroft struct buf *bp;
1684 1.1 mycroft int error, cg;
1685 1.76 hannken daddr_t cgbno;
1686 1.62 fvdl u_int8_t *inosused;
1687 1.78 hannken dev_t dev;
1688 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1689 1.19 bouyer #ifdef FFS_EI
1690 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1691 1.19 bouyer #endif
1692 1.1 mycroft
1693 1.113 hannken if (!devvp_is_snapshot) {
1694 1.113 hannken UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
1695 1.113 hannken }
1696 1.111 simonb
1697 1.76 hannken cg = ino_to_cg(fs, ino);
1698 1.113 hannken if (devvp_is_snapshot) {
1699 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1700 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1701 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1702 1.76 hannken } else {
1703 1.78 hannken dev = devvp->v_rdev;
1704 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1705 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1706 1.76 hannken }
1707 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1708 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1709 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
1710 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1711 1.107 hannken NOCRED, B_MODIFY, &bp);
1712 1.1 mycroft if (error) {
1713 1.101 ad brelse(bp, 0);
1714 1.30 fvdl return (error);
1715 1.1 mycroft }
1716 1.1 mycroft cgp = (struct cg *)bp->b_data;
1717 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1718 1.101 ad brelse(bp, 0);
1719 1.1 mycroft return (0);
1720 1.1 mycroft }
1721 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1722 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1723 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1724 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1725 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1726 1.1 mycroft ino %= fs->fs_ipg;
1727 1.62 fvdl if (isclr(inosused, ino)) {
1728 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1729 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
1730 1.86 christos fs->fs_fsmnt);
1731 1.1 mycroft if (fs->fs_ronly == 0)
1732 1.1 mycroft panic("ifree: freeing free inode");
1733 1.1 mycroft }
1734 1.62 fvdl clrbit(inosused, ino);
1735 1.113 hannken if (!devvp_is_snapshot)
1736 1.113 hannken UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
1737 1.113 hannken ino + cg * fs->fs_ipg, mode);
1738 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1739 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1740 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1741 1.101 ad mutex_enter(&ump->um_lock);
1742 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1743 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1744 1.78 hannken if ((mode & IFMT) == IFDIR) {
1745 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1746 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1747 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1748 1.1 mycroft }
1749 1.1 mycroft fs->fs_fmod = 1;
1750 1.82 hannken ACTIVECG_CLR(fs, cg);
1751 1.101 ad mutex_exit(&ump->um_lock);
1752 1.1 mycroft bdwrite(bp);
1753 1.1 mycroft return (0);
1754 1.1 mycroft }
1755 1.1 mycroft
1756 1.1 mycroft /*
1757 1.76 hannken * Check to see if a file is free.
1758 1.76 hannken */
1759 1.76 hannken int
1760 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1761 1.76 hannken {
1762 1.76 hannken struct cg *cgp;
1763 1.76 hannken struct buf *bp;
1764 1.76 hannken daddr_t cgbno;
1765 1.76 hannken int ret, cg;
1766 1.76 hannken u_int8_t *inosused;
1767 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1768 1.76 hannken
1769 1.76 hannken cg = ino_to_cg(fs, ino);
1770 1.113 hannken if (devvp_is_snapshot)
1771 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1772 1.113 hannken else
1773 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1774 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1775 1.76 hannken return 1;
1776 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1777 1.101 ad brelse(bp, 0);
1778 1.76 hannken return 1;
1779 1.76 hannken }
1780 1.76 hannken cgp = (struct cg *)bp->b_data;
1781 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1782 1.101 ad brelse(bp, 0);
1783 1.76 hannken return 1;
1784 1.76 hannken }
1785 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1786 1.76 hannken ino %= fs->fs_ipg;
1787 1.76 hannken ret = isclr(inosused, ino);
1788 1.101 ad brelse(bp, 0);
1789 1.76 hannken return ret;
1790 1.76 hannken }
1791 1.76 hannken
1792 1.76 hannken /*
1793 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1794 1.1 mycroft *
1795 1.1 mycroft * It is a panic if a request is made to find a block if none are
1796 1.1 mycroft * available.
1797 1.1 mycroft */
1798 1.60 fvdl static int32_t
1799 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1800 1.1 mycroft {
1801 1.60 fvdl int32_t bno;
1802 1.1 mycroft int start, len, loc, i;
1803 1.1 mycroft int blk, field, subfield, pos;
1804 1.19 bouyer int ostart, olen;
1805 1.62 fvdl u_int8_t *blksfree;
1806 1.30 fvdl #ifdef FFS_EI
1807 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1808 1.30 fvdl #endif
1809 1.1 mycroft
1810 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1811 1.101 ad
1812 1.1 mycroft /*
1813 1.1 mycroft * find the fragment by searching through the free block
1814 1.1 mycroft * map for an appropriate bit pattern
1815 1.1 mycroft */
1816 1.1 mycroft if (bpref)
1817 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1818 1.1 mycroft else
1819 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1820 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1821 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1822 1.19 bouyer ostart = start;
1823 1.19 bouyer olen = len;
1824 1.45 lukem loc = scanc((u_int)len,
1825 1.62 fvdl (const u_char *)&blksfree[start],
1826 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1827 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1828 1.1 mycroft if (loc == 0) {
1829 1.1 mycroft len = start + 1;
1830 1.1 mycroft start = 0;
1831 1.45 lukem loc = scanc((u_int)len,
1832 1.62 fvdl (const u_char *)&blksfree[0],
1833 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1834 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1835 1.1 mycroft if (loc == 0) {
1836 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1837 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1838 1.20 ross printf("offset=%d %ld\n",
1839 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1840 1.62 fvdl (long)blksfree - (long)cgp);
1841 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1842 1.1 mycroft panic("ffs_alloccg: map corrupted");
1843 1.1 mycroft /* NOTREACHED */
1844 1.1 mycroft }
1845 1.1 mycroft }
1846 1.1 mycroft bno = (start + len - loc) * NBBY;
1847 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1848 1.1 mycroft /*
1849 1.1 mycroft * found the byte in the map
1850 1.1 mycroft * sift through the bits to find the selected frag
1851 1.1 mycroft */
1852 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1853 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1854 1.1 mycroft blk <<= 1;
1855 1.1 mycroft field = around[allocsiz];
1856 1.1 mycroft subfield = inside[allocsiz];
1857 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1858 1.1 mycroft if ((blk & field) == subfield)
1859 1.1 mycroft return (bno + pos);
1860 1.1 mycroft field <<= 1;
1861 1.1 mycroft subfield <<= 1;
1862 1.1 mycroft }
1863 1.1 mycroft }
1864 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1865 1.1 mycroft panic("ffs_alloccg: block not in map");
1866 1.58 fvdl /* return (-1); */
1867 1.1 mycroft }
1868 1.1 mycroft
1869 1.1 mycroft /*
1870 1.1 mycroft * Update the cluster map because of an allocation or free.
1871 1.1 mycroft *
1872 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1873 1.1 mycroft */
1874 1.9 christos void
1875 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1876 1.1 mycroft {
1877 1.4 cgd int32_t *sump;
1878 1.5 mycroft int32_t *lp;
1879 1.1 mycroft u_char *freemapp, *mapp;
1880 1.1 mycroft int i, start, end, forw, back, map, bit;
1881 1.30 fvdl #ifdef FFS_EI
1882 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1883 1.30 fvdl #endif
1884 1.1 mycroft
1885 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1886 1.101 ad
1887 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1888 1.1 mycroft return;
1889 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1890 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1891 1.1 mycroft /*
1892 1.1 mycroft * Allocate or clear the actual block.
1893 1.1 mycroft */
1894 1.1 mycroft if (cnt > 0)
1895 1.1 mycroft setbit(freemapp, blkno);
1896 1.1 mycroft else
1897 1.1 mycroft clrbit(freemapp, blkno);
1898 1.1 mycroft /*
1899 1.1 mycroft * Find the size of the cluster going forward.
1900 1.1 mycroft */
1901 1.1 mycroft start = blkno + 1;
1902 1.1 mycroft end = start + fs->fs_contigsumsize;
1903 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1904 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1905 1.1 mycroft mapp = &freemapp[start / NBBY];
1906 1.1 mycroft map = *mapp++;
1907 1.1 mycroft bit = 1 << (start % NBBY);
1908 1.1 mycroft for (i = start; i < end; i++) {
1909 1.1 mycroft if ((map & bit) == 0)
1910 1.1 mycroft break;
1911 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1912 1.1 mycroft bit <<= 1;
1913 1.1 mycroft } else {
1914 1.1 mycroft map = *mapp++;
1915 1.1 mycroft bit = 1;
1916 1.1 mycroft }
1917 1.1 mycroft }
1918 1.1 mycroft forw = i - start;
1919 1.1 mycroft /*
1920 1.1 mycroft * Find the size of the cluster going backward.
1921 1.1 mycroft */
1922 1.1 mycroft start = blkno - 1;
1923 1.1 mycroft end = start - fs->fs_contigsumsize;
1924 1.1 mycroft if (end < 0)
1925 1.1 mycroft end = -1;
1926 1.1 mycroft mapp = &freemapp[start / NBBY];
1927 1.1 mycroft map = *mapp--;
1928 1.1 mycroft bit = 1 << (start % NBBY);
1929 1.1 mycroft for (i = start; i > end; i--) {
1930 1.1 mycroft if ((map & bit) == 0)
1931 1.1 mycroft break;
1932 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1933 1.1 mycroft bit >>= 1;
1934 1.1 mycroft } else {
1935 1.1 mycroft map = *mapp--;
1936 1.1 mycroft bit = 1 << (NBBY - 1);
1937 1.1 mycroft }
1938 1.1 mycroft }
1939 1.1 mycroft back = start - i;
1940 1.1 mycroft /*
1941 1.1 mycroft * Account for old cluster and the possibly new forward and
1942 1.1 mycroft * back clusters.
1943 1.1 mycroft */
1944 1.1 mycroft i = back + forw + 1;
1945 1.1 mycroft if (i > fs->fs_contigsumsize)
1946 1.1 mycroft i = fs->fs_contigsumsize;
1947 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1948 1.1 mycroft if (back > 0)
1949 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1950 1.1 mycroft if (forw > 0)
1951 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1952 1.19 bouyer
1953 1.5 mycroft /*
1954 1.5 mycroft * Update cluster summary information.
1955 1.5 mycroft */
1956 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1957 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1958 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1959 1.5 mycroft break;
1960 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1961 1.1 mycroft }
1962 1.1 mycroft
1963 1.1 mycroft /*
1964 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1965 1.81 perry *
1966 1.1 mycroft * The form of the error message is:
1967 1.1 mycroft * fs: error message
1968 1.1 mycroft */
1969 1.1 mycroft static void
1970 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
1971 1.1 mycroft {
1972 1.1 mycroft
1973 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
1974 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
1975 1.1 mycroft }
1976