Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.115
      1  1.115     joerg /*	$NetBSD: ffs_alloc.c,v 1.115 2008/11/30 16:20:44 joerg Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.115     joerg __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.115 2008/11/30 16:20:44 joerg Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78   1.22    scottr #endif
     79    1.1   mycroft 
     80    1.1   mycroft #include <sys/param.h>
     81    1.1   mycroft #include <sys/systm.h>
     82    1.1   mycroft #include <sys/buf.h>
     83  1.111    simonb #include <sys/fstrans.h>
     84  1.111    simonb #include <sys/kauth.h>
     85  1.111    simonb #include <sys/kernel.h>
     86  1.111    simonb #include <sys/mount.h>
     87    1.1   mycroft #include <sys/proc.h>
     88  1.111    simonb #include <sys/syslog.h>
     89    1.1   mycroft #include <sys/vnode.h>
     90  1.111    simonb #include <sys/wapbl.h>
     91   1.29       mrg 
     92   1.76   hannken #include <miscfs/specfs/specdev.h>
     93    1.1   mycroft #include <ufs/ufs/quota.h>
     94   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95    1.1   mycroft #include <ufs/ufs/inode.h>
     96    1.9  christos #include <ufs/ufs/ufs_extern.h>
     97   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99    1.1   mycroft 
    100    1.1   mycroft #include <ufs/ffs/fs.h>
    101    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102    1.1   mycroft 
    103  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112   1.85   thorpej 				      daddr_t, int);
    113   1.23  drochner 
    114   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    115   1.34  jdolecek int ffs_log_changeopt = 0;
    116   1.34  jdolecek 
    117   1.23  drochner /* in ffs_tables.c */
    118   1.40  jdolecek extern const int inside[], around[];
    119   1.40  jdolecek extern const u_char * const fragtbl[];
    120    1.1   mycroft 
    121    1.1   mycroft /*
    122    1.1   mycroft  * Allocate a block in the file system.
    123   1.81     perry  *
    124    1.1   mycroft  * The size of the requested block is given, which must be some
    125    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    126    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    127    1.1   mycroft  * the following hierarchy is used to allocate a block:
    128    1.1   mycroft  *   1) allocate the requested block.
    129    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    130    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    131    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    132    1.1   mycroft  *      available block is located.
    133   1.47       wiz  * If no block preference is given the following hierarchy is used
    134    1.1   mycroft  * to allocate a block:
    135    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    136    1.1   mycroft  *      inode for the file.
    137    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    138    1.1   mycroft  *      available block is located.
    139  1.106     pooka  *
    140  1.106     pooka  * => called with um_lock held
    141  1.106     pooka  * => releases um_lock before returning
    142    1.1   mycroft  */
    143    1.9  christos int
    144  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    145   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    146    1.1   mycroft {
    147  1.101        ad 	struct ufsmount *ump;
    148   1.62      fvdl 	struct fs *fs;
    149   1.58      fvdl 	daddr_t bno;
    150    1.9  christos 	int cg;
    151    1.9  christos #ifdef QUOTA
    152    1.9  christos 	int error;
    153    1.9  christos #endif
    154   1.81     perry 
    155   1.62      fvdl 	fs = ip->i_fs;
    156  1.101        ad 	ump = ip->i_ump;
    157  1.101        ad 
    158  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    159   1.62      fvdl 
    160   1.37       chs #ifdef UVM_PAGE_TRKOWN
    161   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    162   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    163   1.37       chs 		struct vm_page *pg;
    164   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    165   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    166   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    167   1.37       chs 
    168  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    169   1.37       chs 		while (off < endoff) {
    170   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    171   1.37       chs 			KASSERT(pg != NULL);
    172   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    173   1.37       chs 			off += PAGE_SIZE;
    174   1.37       chs 		}
    175  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    176   1.37       chs 	}
    177   1.37       chs #endif
    178   1.37       chs 
    179    1.1   mycroft 	*bnp = 0;
    180    1.1   mycroft #ifdef DIAGNOSTIC
    181    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    182   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    183    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    184    1.1   mycroft 		panic("ffs_alloc: bad size");
    185    1.1   mycroft 	}
    186    1.1   mycroft 	if (cred == NOCRED)
    187   1.56    provos 		panic("ffs_alloc: missing credential");
    188    1.1   mycroft #endif /* DIAGNOSTIC */
    189    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    190    1.1   mycroft 		goto nospace;
    191   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    192   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    193    1.1   mycroft 		goto nospace;
    194    1.1   mycroft #ifdef QUOTA
    195  1.101        ad 	mutex_exit(&ump->um_lock);
    196   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    197    1.1   mycroft 		return (error);
    198  1.101        ad 	mutex_enter(&ump->um_lock);
    199    1.1   mycroft #endif
    200  1.111    simonb 
    201    1.1   mycroft 	if (bpref >= fs->fs_size)
    202    1.1   mycroft 		bpref = 0;
    203    1.1   mycroft 	if (bpref == 0)
    204    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    205    1.1   mycroft 	else
    206    1.1   mycroft 		cg = dtog(fs, bpref);
    207  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    208    1.1   mycroft 	if (bno > 0) {
    209   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    210    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    211    1.1   mycroft 		*bnp = bno;
    212    1.1   mycroft 		return (0);
    213    1.1   mycroft 	}
    214    1.1   mycroft #ifdef QUOTA
    215    1.1   mycroft 	/*
    216    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    217    1.1   mycroft 	 */
    218   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    219    1.1   mycroft #endif
    220  1.111    simonb 	if (flags & B_CONTIG) {
    221  1.111    simonb 		/*
    222  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    223  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    224  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    225  1.111    simonb 		 * already unlocked, so we can't release it again
    226  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    227  1.111    simonb 		 *
    228  1.111    simonb 		 *
    229  1.111    simonb 		 * Fail silently - it's up to our caller to report
    230  1.111    simonb 		 * errors.
    231  1.111    simonb 		 */
    232  1.111    simonb 		return (ENOSPC);
    233  1.111    simonb 	}
    234    1.1   mycroft nospace:
    235  1.101        ad 	mutex_exit(&ump->um_lock);
    236   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    237    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    238    1.1   mycroft 	return (ENOSPC);
    239    1.1   mycroft }
    240    1.1   mycroft 
    241    1.1   mycroft /*
    242    1.1   mycroft  * Reallocate a fragment to a bigger size
    243    1.1   mycroft  *
    244    1.1   mycroft  * The number and size of the old block is given, and a preference
    245    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    246    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    247    1.1   mycroft  * invoked to get an appropriate block.
    248  1.106     pooka  *
    249  1.106     pooka  * => called with um_lock held
    250  1.106     pooka  * => return with um_lock released
    251    1.1   mycroft  */
    252    1.9  christos int
    253   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    254   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    255    1.1   mycroft {
    256  1.101        ad 	struct ufsmount *ump;
    257   1.62      fvdl 	struct fs *fs;
    258    1.1   mycroft 	struct buf *bp;
    259    1.1   mycroft 	int cg, request, error;
    260   1.58      fvdl 	daddr_t bprev, bno;
    261   1.25   thorpej 
    262   1.62      fvdl 	fs = ip->i_fs;
    263  1.101        ad 	ump = ip->i_ump;
    264  1.101        ad 
    265  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    266  1.101        ad 
    267   1.37       chs #ifdef UVM_PAGE_TRKOWN
    268   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    269   1.37       chs 		struct vm_page *pg;
    270   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    271   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    272   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    273   1.37       chs 
    274  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    275   1.37       chs 		while (off < endoff) {
    276   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    277   1.37       chs 			KASSERT(pg != NULL);
    278   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    279   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    280   1.37       chs 			off += PAGE_SIZE;
    281   1.37       chs 		}
    282  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    283   1.37       chs 	}
    284   1.37       chs #endif
    285   1.37       chs 
    286    1.1   mycroft #ifdef DIAGNOSTIC
    287    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    288    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    289   1.13  christos 		printf(
    290    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    291    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    292    1.1   mycroft 		panic("ffs_realloccg: bad size");
    293    1.1   mycroft 	}
    294    1.1   mycroft 	if (cred == NOCRED)
    295   1.56    provos 		panic("ffs_realloccg: missing credential");
    296    1.1   mycroft #endif /* DIAGNOSTIC */
    297   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    298  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    299  1.101        ad 		mutex_exit(&ump->um_lock);
    300    1.1   mycroft 		goto nospace;
    301  1.101        ad 	}
    302   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    303   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    304   1.60      fvdl 	else
    305   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    306   1.60      fvdl 
    307   1.60      fvdl 	if (bprev == 0) {
    308   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    309   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    310    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    311    1.1   mycroft 	}
    312  1.101        ad 	mutex_exit(&ump->um_lock);
    313  1.101        ad 
    314    1.1   mycroft 	/*
    315    1.1   mycroft 	 * Allocate the extra space in the buffer.
    316    1.1   mycroft 	 */
    317   1.37       chs 	if (bpp != NULL &&
    318  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    319  1.101        ad 		brelse(bp, 0);
    320    1.1   mycroft 		return (error);
    321    1.1   mycroft 	}
    322    1.1   mycroft #ifdef QUOTA
    323   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    324   1.44       chs 		if (bpp != NULL) {
    325  1.101        ad 			brelse(bp, 0);
    326   1.44       chs 		}
    327    1.1   mycroft 		return (error);
    328    1.1   mycroft 	}
    329    1.1   mycroft #endif
    330    1.1   mycroft 	/*
    331    1.1   mycroft 	 * Check for extension in the existing location.
    332    1.1   mycroft 	 */
    333    1.1   mycroft 	cg = dtog(fs, bprev);
    334  1.101        ad 	mutex_enter(&ump->um_lock);
    335   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    336   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    337    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    338   1.37       chs 
    339   1.37       chs 		if (bpp != NULL) {
    340   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    341   1.37       chs 				panic("bad blockno");
    342   1.72        pk 			allocbuf(bp, nsize, 1);
    343   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    344  1.105        ad 			mutex_enter(bp->b_objlock);
    345  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    346  1.105        ad 			bp->b_oflags |= BO_DONE;
    347  1.105        ad 			mutex_exit(bp->b_objlock);
    348   1.37       chs 			*bpp = bp;
    349   1.37       chs 		}
    350   1.37       chs 		if (blknop != NULL) {
    351   1.37       chs 			*blknop = bno;
    352   1.37       chs 		}
    353    1.1   mycroft 		return (0);
    354    1.1   mycroft 	}
    355    1.1   mycroft 	/*
    356    1.1   mycroft 	 * Allocate a new disk location.
    357    1.1   mycroft 	 */
    358    1.1   mycroft 	if (bpref >= fs->fs_size)
    359    1.1   mycroft 		bpref = 0;
    360    1.1   mycroft 	switch ((int)fs->fs_optim) {
    361    1.1   mycroft 	case FS_OPTSPACE:
    362    1.1   mycroft 		/*
    363   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    364   1.81     perry 		 * best use of space, we will waste time relocating it if
    365    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    366    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    367    1.1   mycroft 		 * to begin optimizing for time.
    368    1.1   mycroft 		 */
    369    1.1   mycroft 		request = nsize;
    370    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    371    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    372    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    373    1.1   mycroft 			break;
    374   1.34  jdolecek 
    375   1.34  jdolecek 		if (ffs_log_changeopt) {
    376   1.34  jdolecek 			log(LOG_NOTICE,
    377   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    378   1.34  jdolecek 				fs->fs_fsmnt);
    379   1.34  jdolecek 		}
    380   1.34  jdolecek 
    381    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    382    1.1   mycroft 		break;
    383    1.1   mycroft 	case FS_OPTTIME:
    384    1.1   mycroft 		/*
    385    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    386    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    387    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    388    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    389    1.1   mycroft 		 * above will be able to grow it in place without further
    390    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    391    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    392    1.1   mycroft 		 * optimizing for space.
    393    1.1   mycroft 		 */
    394    1.1   mycroft 		request = fs->fs_bsize;
    395    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    396    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    397    1.1   mycroft 			break;
    398   1.34  jdolecek 
    399   1.34  jdolecek 		if (ffs_log_changeopt) {
    400   1.34  jdolecek 			log(LOG_NOTICE,
    401   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    402   1.34  jdolecek 				fs->fs_fsmnt);
    403   1.34  jdolecek 		}
    404   1.34  jdolecek 
    405    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    406    1.1   mycroft 		break;
    407    1.1   mycroft 	default:
    408   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    409    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    410    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    411    1.1   mycroft 		/* NOTREACHED */
    412    1.1   mycroft 	}
    413  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    414    1.1   mycroft 	if (bno > 0) {
    415  1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    416  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    417  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    418  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    419  1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    420  1.111    simonb 				    osize);
    421  1.111    simonb 			} else
    422  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    423  1.111    simonb 				    ip->i_number);
    424  1.111    simonb 		}
    425  1.111    simonb 		if (nsize < request) {
    426  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    427  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    428  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    429  1.111    simonb 				    ip->i_ump->um_mountp,
    430  1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    431  1.111    simonb 				    request - nsize);
    432  1.111    simonb 			} else
    433  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    434  1.111    simonb 				    bno + numfrags(fs, nsize),
    435  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    436  1.111    simonb 		}
    437   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    438    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    439   1.37       chs 		if (bpp != NULL) {
    440   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    441   1.72        pk 			allocbuf(bp, nsize, 1);
    442   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    443  1.105        ad 			mutex_enter(bp->b_objlock);
    444  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    445  1.105        ad 			bp->b_oflags |= BO_DONE;
    446  1.105        ad 			mutex_exit(bp->b_objlock);
    447   1.37       chs 			*bpp = bp;
    448   1.37       chs 		}
    449   1.37       chs 		if (blknop != NULL) {
    450   1.37       chs 			*blknop = bno;
    451   1.37       chs 		}
    452    1.1   mycroft 		return (0);
    453    1.1   mycroft 	}
    454  1.101        ad 	mutex_exit(&ump->um_lock);
    455  1.101        ad 
    456    1.1   mycroft #ifdef QUOTA
    457    1.1   mycroft 	/*
    458    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    459    1.1   mycroft 	 */
    460   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    461    1.1   mycroft #endif
    462   1.37       chs 	if (bpp != NULL) {
    463  1.101        ad 		brelse(bp, 0);
    464   1.37       chs 	}
    465   1.37       chs 
    466    1.1   mycroft nospace:
    467    1.1   mycroft 	/*
    468    1.1   mycroft 	 * no space available
    469    1.1   mycroft 	 */
    470   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    471    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    472    1.1   mycroft 	return (ENOSPC);
    473    1.1   mycroft }
    474    1.1   mycroft 
    475    1.1   mycroft /*
    476    1.1   mycroft  * Allocate an inode in the file system.
    477   1.81     perry  *
    478    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    479    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    480    1.1   mycroft  *   1) allocate the preferred inode.
    481    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    482    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    483    1.1   mycroft  *      available inode is located.
    484   1.47       wiz  * If no inode preference is given the following hierarchy is used
    485    1.1   mycroft  * to allocate an inode:
    486    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    487    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    488    1.1   mycroft  *      available inode is located.
    489  1.106     pooka  *
    490  1.106     pooka  * => um_lock not held upon entry or return
    491    1.1   mycroft  */
    492    1.9  christos int
    493   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    494   1.88      yamt     struct vnode **vpp)
    495    1.9  christos {
    496  1.101        ad 	struct ufsmount *ump;
    497   1.33  augustss 	struct inode *pip;
    498   1.33  augustss 	struct fs *fs;
    499   1.33  augustss 	struct inode *ip;
    500   1.60      fvdl 	struct timespec ts;
    501    1.1   mycroft 	ino_t ino, ipref;
    502    1.1   mycroft 	int cg, error;
    503   1.81     perry 
    504  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    505  1.111    simonb 
    506   1.88      yamt 	*vpp = NULL;
    507    1.1   mycroft 	pip = VTOI(pvp);
    508    1.1   mycroft 	fs = pip->i_fs;
    509  1.101        ad 	ump = pip->i_ump;
    510  1.101        ad 
    511  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    512  1.111    simonb 	if (error) {
    513  1.111    simonb 		return error;
    514  1.111    simonb 	}
    515  1.101        ad 	mutex_enter(&ump->um_lock);
    516    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    517    1.1   mycroft 		goto noinodes;
    518    1.1   mycroft 
    519    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    520   1.50     lukem 		ipref = ffs_dirpref(pip);
    521   1.50     lukem 	else
    522   1.50     lukem 		ipref = pip->i_number;
    523    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    524    1.1   mycroft 		ipref = 0;
    525    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    526   1.50     lukem 	/*
    527   1.50     lukem 	 * Track number of dirs created one after another
    528   1.50     lukem 	 * in a same cg without intervening by files.
    529   1.50     lukem 	 */
    530   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    531   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    532   1.50     lukem 			fs->fs_contigdirs[cg]++;
    533   1.50     lukem 	} else {
    534   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    535   1.50     lukem 			fs->fs_contigdirs[cg]--;
    536   1.50     lukem 	}
    537  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    538    1.1   mycroft 	if (ino == 0)
    539    1.1   mycroft 		goto noinodes;
    540  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    541   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    542    1.1   mycroft 	if (error) {
    543  1.111    simonb 		int err;
    544  1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    545  1.111    simonb 		if (err == 0)
    546  1.111    simonb 			ffs_vfree(pvp, ino, mode);
    547  1.111    simonb 		if (err == 0)
    548  1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    549    1.1   mycroft 		return (error);
    550    1.1   mycroft 	}
    551   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    552   1.88      yamt 	ip = VTOI(*vpp);
    553   1.60      fvdl 	if (ip->i_mode) {
    554   1.60      fvdl #if 0
    555   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    556   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    557   1.60      fvdl #else
    558   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    559   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    560   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    561   1.60      fvdl 		printf("size %llx blocks %llx\n",
    562   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    563   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    564   1.86  christos 		    (unsigned long long)ipref);
    565   1.60      fvdl #if 0
    566   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    567  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    568   1.60      fvdl #endif
    569   1.60      fvdl 
    570   1.60      fvdl #endif
    571    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    572    1.1   mycroft 	}
    573   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    574   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    575   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    576   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    577    1.1   mycroft 	}
    578   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    579   1.61      fvdl 	ip->i_flags = 0;
    580   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    581    1.1   mycroft 	/*
    582    1.1   mycroft 	 * Set up a new generation number for this inode.
    583    1.1   mycroft 	 */
    584   1.60      fvdl 	ip->i_gen++;
    585   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    586   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    587   1.93      yamt 		vfs_timestamp(&ts);
    588   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    589   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    590   1.60      fvdl 	}
    591    1.1   mycroft 	return (0);
    592    1.1   mycroft noinodes:
    593  1.101        ad 	mutex_exit(&ump->um_lock);
    594  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    595   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    596    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    597    1.1   mycroft 	return (ENOSPC);
    598    1.1   mycroft }
    599    1.1   mycroft 
    600    1.1   mycroft /*
    601   1.50     lukem  * Find a cylinder group in which to place a directory.
    602   1.42  sommerfe  *
    603   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    604   1.50     lukem  * directory inode in the same cylinder group as its parent
    605   1.50     lukem  * directory, but also to reserve space for its files inodes
    606   1.50     lukem  * and data. Restrict the number of directories which may be
    607   1.50     lukem  * allocated one after another in the same cylinder group
    608   1.50     lukem  * without intervening allocation of files.
    609   1.42  sommerfe  *
    610   1.50     lukem  * If we allocate a first level directory then force allocation
    611   1.50     lukem  * in another cylinder group.
    612    1.1   mycroft  */
    613    1.1   mycroft static ino_t
    614   1.85   thorpej ffs_dirpref(struct inode *pip)
    615    1.1   mycroft {
    616   1.50     lukem 	register struct fs *fs;
    617   1.74     soren 	int cg, prefcg;
    618   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    619   1.89       dsl 	int avgifree, avgbfree, avgndir;
    620   1.50     lukem 	int minifree, minbfree, maxndir;
    621   1.50     lukem 	int mincg, minndir;
    622   1.50     lukem 	int maxcontigdirs;
    623   1.50     lukem 
    624  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    625  1.101        ad 
    626   1.50     lukem 	fs = pip->i_fs;
    627    1.1   mycroft 
    628    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    629   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    630   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    631   1.50     lukem 
    632   1.50     lukem 	/*
    633   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    634   1.50     lukem 	 */
    635  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    636   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    637   1.50     lukem 		mincg = prefcg;
    638   1.50     lukem 		minndir = fs->fs_ipg;
    639   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    640   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    641   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    642   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    643   1.42  sommerfe 				mincg = cg;
    644   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    645   1.42  sommerfe 			}
    646   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    647   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    648   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    649   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    650   1.50     lukem 				mincg = cg;
    651   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    652   1.42  sommerfe 			}
    653   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    654   1.42  sommerfe 	}
    655   1.50     lukem 
    656   1.50     lukem 	/*
    657   1.50     lukem 	 * Count various limits which used for
    658   1.50     lukem 	 * optimal allocation of a directory inode.
    659   1.50     lukem 	 */
    660   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    661   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    662   1.50     lukem 	if (minifree < 0)
    663   1.50     lukem 		minifree = 0;
    664   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    665   1.50     lukem 	if (minbfree < 0)
    666   1.50     lukem 		minbfree = 0;
    667   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    668   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    669   1.89       dsl 	if (avgndir != 0) {
    670   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    671   1.89       dsl 		if (dirsize < curdsz)
    672   1.89       dsl 			dirsize = curdsz;
    673   1.89       dsl 	}
    674   1.89       dsl 	if (cgsize < dirsize * 255)
    675   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    676   1.89       dsl 	else
    677   1.89       dsl 		maxcontigdirs = 255;
    678   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    679   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    680   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    681   1.50     lukem 	if (maxcontigdirs == 0)
    682   1.50     lukem 		maxcontigdirs = 1;
    683   1.50     lukem 
    684   1.50     lukem 	/*
    685   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    686   1.50     lukem 	 * regular files, but only if we have no deficit in
    687   1.50     lukem 	 * inodes or space.
    688   1.50     lukem 	 */
    689   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    690   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    691   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    692   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    693   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    694   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    695   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    696   1.50     lukem 		}
    697   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    698   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    699   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    700   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    701   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    702   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    703   1.50     lukem 		}
    704   1.50     lukem 	/*
    705   1.50     lukem 	 * This is a backstop when we are deficient in space.
    706   1.50     lukem 	 */
    707   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    708   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    709   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    710   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    711   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    712   1.50     lukem 			break;
    713   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    714    1.1   mycroft }
    715    1.1   mycroft 
    716    1.1   mycroft /*
    717    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    718    1.1   mycroft  * logically divided into sections. The first section is composed of the
    719    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    720   1.81     perry  *
    721    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    722    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    723    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    724    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    725    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    726    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    727    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    728    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    729    1.1   mycroft  * continues until a cylinder group with greater than the average number
    730    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    731    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    732    1.1   mycroft  * here a best guess is made based upon the logical block number being
    733    1.1   mycroft  * allocated.
    734   1.81     perry  *
    735    1.1   mycroft  * If a section is already partially allocated, the policy is to
    736    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    737   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    738   1.60      fvdl  * contigously if possible.
    739  1.106     pooka  *
    740  1.106     pooka  * => um_lock held on entry and exit
    741    1.1   mycroft  */
    742   1.58      fvdl daddr_t
    743  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    744   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    745    1.1   mycroft {
    746   1.33  augustss 	struct fs *fs;
    747   1.33  augustss 	int cg;
    748    1.1   mycroft 	int avgbfree, startcg;
    749    1.1   mycroft 
    750  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    751  1.101        ad 
    752    1.1   mycroft 	fs = ip->i_fs;
    753  1.111    simonb 
    754  1.111    simonb 	/*
    755  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    756  1.111    simonb 	 * in the inode extentions to return the desired block.
    757  1.111    simonb 	 *
    758  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    759  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    760  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    761  1.111    simonb 	 * block.  For data, return the address of the actual block
    762  1.111    simonb 	 * relative to the address of the first data block.
    763  1.111    simonb 	 */
    764  1.111    simonb 	if (flags & B_CONTIG) {
    765  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    766  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    767  1.111    simonb 		if (flags & B_METAONLY)
    768  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    769  1.111    simonb 		else
    770  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    771  1.111    simonb 	}
    772  1.111    simonb 
    773    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    774   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    775    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    776  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    777    1.1   mycroft 		}
    778    1.1   mycroft 		/*
    779    1.1   mycroft 		 * Find a cylinder with greater than average number of
    780    1.1   mycroft 		 * unused data blocks.
    781    1.1   mycroft 		 */
    782    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    783    1.1   mycroft 			startcg =
    784    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    785    1.1   mycroft 		else
    786   1.19    bouyer 			startcg = dtog(fs,
    787   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    788    1.1   mycroft 		startcg %= fs->fs_ncg;
    789    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    790    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    791    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    792  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    793    1.1   mycroft 			}
    794   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    795    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    796  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    797    1.1   mycroft 			}
    798   1.35   thorpej 		return (0);
    799    1.1   mycroft 	}
    800    1.1   mycroft 	/*
    801   1.60      fvdl 	 * We just always try to lay things out contiguously.
    802   1.60      fvdl 	 */
    803   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    804   1.60      fvdl }
    805   1.60      fvdl 
    806   1.60      fvdl daddr_t
    807  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    808  1.111    simonb     int64_t *bap)
    809   1.60      fvdl {
    810   1.60      fvdl 	struct fs *fs;
    811   1.60      fvdl 	int cg;
    812   1.60      fvdl 	int avgbfree, startcg;
    813   1.60      fvdl 
    814  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    815  1.101        ad 
    816   1.60      fvdl 	fs = ip->i_fs;
    817  1.111    simonb 
    818  1.111    simonb 	/*
    819  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    820  1.111    simonb 	 * in the inode extentions to return the desired block.
    821  1.111    simonb 	 *
    822  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    823  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    824  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    825  1.111    simonb 	 * block.  For data, return the address of the actual block
    826  1.111    simonb 	 * relative to the address of the first data block.
    827  1.111    simonb 	 */
    828  1.111    simonb 	if (flags & B_CONTIG) {
    829  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    830  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    831  1.111    simonb 		if (flags & B_METAONLY)
    832  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    833  1.111    simonb 		else
    834  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    835  1.111    simonb 	}
    836  1.111    simonb 
    837   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    838   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    839   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    840  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    841   1.60      fvdl 		}
    842    1.1   mycroft 		/*
    843   1.60      fvdl 		 * Find a cylinder with greater than average number of
    844   1.60      fvdl 		 * unused data blocks.
    845    1.1   mycroft 		 */
    846   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    847   1.60      fvdl 			startcg =
    848   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    849   1.60      fvdl 		else
    850   1.60      fvdl 			startcg = dtog(fs,
    851   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    852   1.60      fvdl 		startcg %= fs->fs_ncg;
    853   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    854   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    855   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    856  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    857   1.60      fvdl 			}
    858   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    859   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    860  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    861   1.60      fvdl 			}
    862   1.60      fvdl 		return (0);
    863   1.60      fvdl 	}
    864   1.60      fvdl 	/*
    865   1.60      fvdl 	 * We just always try to lay things out contiguously.
    866   1.60      fvdl 	 */
    867   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    868    1.1   mycroft }
    869    1.1   mycroft 
    870   1.60      fvdl 
    871    1.1   mycroft /*
    872    1.1   mycroft  * Implement the cylinder overflow algorithm.
    873    1.1   mycroft  *
    874    1.1   mycroft  * The policy implemented by this algorithm is:
    875    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    876    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    877    1.1   mycroft  *   3) brute force search for a free block.
    878  1.106     pooka  *
    879  1.106     pooka  * => called with um_lock held
    880  1.106     pooka  * => returns with um_lock released on success, held on failure
    881  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    882    1.1   mycroft  */
    883    1.1   mycroft /*VARARGS5*/
    884   1.58      fvdl static daddr_t
    885   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    886   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    887  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    888    1.1   mycroft {
    889   1.33  augustss 	struct fs *fs;
    890   1.58      fvdl 	daddr_t result;
    891    1.1   mycroft 	int i, icg = cg;
    892    1.1   mycroft 
    893    1.1   mycroft 	fs = ip->i_fs;
    894    1.1   mycroft 	/*
    895    1.1   mycroft 	 * 1: preferred cylinder group
    896    1.1   mycroft 	 */
    897  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    898    1.1   mycroft 	if (result)
    899    1.1   mycroft 		return (result);
    900  1.111    simonb 
    901  1.111    simonb 	if (flags & B_CONTIG)
    902  1.111    simonb 		return (result);
    903    1.1   mycroft 	/*
    904    1.1   mycroft 	 * 2: quadratic rehash
    905    1.1   mycroft 	 */
    906    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    907    1.1   mycroft 		cg += i;
    908    1.1   mycroft 		if (cg >= fs->fs_ncg)
    909    1.1   mycroft 			cg -= fs->fs_ncg;
    910  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    911    1.1   mycroft 		if (result)
    912    1.1   mycroft 			return (result);
    913    1.1   mycroft 	}
    914    1.1   mycroft 	/*
    915    1.1   mycroft 	 * 3: brute force search
    916    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    917    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    918    1.1   mycroft 	 */
    919    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    920    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    921  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    922    1.1   mycroft 		if (result)
    923    1.1   mycroft 			return (result);
    924    1.1   mycroft 		cg++;
    925    1.1   mycroft 		if (cg == fs->fs_ncg)
    926    1.1   mycroft 			cg = 0;
    927    1.1   mycroft 	}
    928   1.35   thorpej 	return (0);
    929    1.1   mycroft }
    930    1.1   mycroft 
    931    1.1   mycroft /*
    932    1.1   mycroft  * Determine whether a fragment can be extended.
    933    1.1   mycroft  *
    934   1.81     perry  * Check to see if the necessary fragments are available, and
    935    1.1   mycroft  * if they are, allocate them.
    936  1.106     pooka  *
    937  1.106     pooka  * => called with um_lock held
    938  1.106     pooka  * => returns with um_lock released on success, held on failure
    939    1.1   mycroft  */
    940   1.58      fvdl static daddr_t
    941   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    942    1.1   mycroft {
    943  1.101        ad 	struct ufsmount *ump;
    944   1.33  augustss 	struct fs *fs;
    945   1.33  augustss 	struct cg *cgp;
    946    1.1   mycroft 	struct buf *bp;
    947   1.58      fvdl 	daddr_t bno;
    948    1.1   mycroft 	int frags, bbase;
    949    1.1   mycroft 	int i, error;
    950   1.62      fvdl 	u_int8_t *blksfree;
    951    1.1   mycroft 
    952    1.1   mycroft 	fs = ip->i_fs;
    953  1.101        ad 	ump = ip->i_ump;
    954  1.101        ad 
    955  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    956  1.101        ad 
    957    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    958   1.35   thorpej 		return (0);
    959    1.1   mycroft 	frags = numfrags(fs, nsize);
    960    1.1   mycroft 	bbase = fragnum(fs, bprev);
    961    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    962    1.1   mycroft 		/* cannot extend across a block boundary */
    963   1.35   thorpej 		return (0);
    964    1.1   mycroft 	}
    965  1.101        ad 	mutex_exit(&ump->um_lock);
    966    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    967  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    968  1.101        ad 	if (error)
    969  1.101        ad 		goto fail;
    970    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    971  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    972  1.101        ad 		goto fail;
    973   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    974   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    975   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
    976   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
    977    1.1   mycroft 	bno = dtogd(fs, bprev);
    978   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
    979    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    980  1.101        ad 		if (isclr(blksfree, bno + i))
    981  1.101        ad 			goto fail;
    982    1.1   mycroft 	/*
    983    1.1   mycroft 	 * the current fragment can be extended
    984    1.1   mycroft 	 * deduct the count on fragment being extended into
    985    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    986    1.1   mycroft 	 * allocate the extended piece
    987    1.1   mycroft 	 */
    988    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    989   1.62      fvdl 		if (isclr(blksfree, bno + i))
    990    1.1   mycroft 			break;
    991   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    992    1.1   mycroft 	if (i != frags)
    993   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
    994  1.101        ad 	mutex_enter(&ump->um_lock);
    995    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    996   1.62      fvdl 		clrbit(blksfree, bno + i);
    997   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
    998    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    999    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1000    1.1   mycroft 	}
   1001    1.1   mycroft 	fs->fs_fmod = 1;
   1002  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1003  1.101        ad 	mutex_exit(&ump->um_lock);
   1004   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1005   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1006    1.1   mycroft 	bdwrite(bp);
   1007    1.1   mycroft 	return (bprev);
   1008  1.101        ad 
   1009  1.101        ad  fail:
   1010  1.101        ad  	brelse(bp, 0);
   1011  1.101        ad  	mutex_enter(&ump->um_lock);
   1012  1.101        ad  	return (0);
   1013    1.1   mycroft }
   1014    1.1   mycroft 
   1015    1.1   mycroft /*
   1016    1.1   mycroft  * Determine whether a block can be allocated.
   1017    1.1   mycroft  *
   1018    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1019    1.1   mycroft  * and if it is, allocate it.
   1020    1.1   mycroft  */
   1021   1.58      fvdl static daddr_t
   1022  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1023    1.1   mycroft {
   1024  1.101        ad 	struct ufsmount *ump;
   1025   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1026   1.30      fvdl 	struct cg *cgp;
   1027    1.1   mycroft 	struct buf *bp;
   1028   1.60      fvdl 	int32_t bno;
   1029   1.60      fvdl 	daddr_t blkno;
   1030   1.30      fvdl 	int error, frags, allocsiz, i;
   1031   1.62      fvdl 	u_int8_t *blksfree;
   1032   1.30      fvdl #ifdef FFS_EI
   1033   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1034   1.30      fvdl #endif
   1035    1.1   mycroft 
   1036  1.101        ad 	ump = ip->i_ump;
   1037  1.101        ad 
   1038  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1039  1.101        ad 
   1040    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1041   1.35   thorpej 		return (0);
   1042  1.101        ad 	mutex_exit(&ump->um_lock);
   1043    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1044  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1045  1.101        ad 	if (error)
   1046  1.101        ad 		goto fail;
   1047    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1048   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1049  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1050  1.101        ad 		goto fail;
   1051   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1052   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1053   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1054   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1055    1.1   mycroft 	if (size == fs->fs_bsize) {
   1056  1.101        ad 		mutex_enter(&ump->um_lock);
   1057  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1058   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1059  1.101        ad 		mutex_exit(&ump->um_lock);
   1060    1.1   mycroft 		bdwrite(bp);
   1061   1.60      fvdl 		return (blkno);
   1062    1.1   mycroft 	}
   1063    1.1   mycroft 	/*
   1064    1.1   mycroft 	 * check to see if any fragments are already available
   1065    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1066    1.1   mycroft 	 * it down to a smaller size if necessary
   1067    1.1   mycroft 	 */
   1068   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1069    1.1   mycroft 	frags = numfrags(fs, size);
   1070    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1071    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1072    1.1   mycroft 			break;
   1073    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1074    1.1   mycroft 		/*
   1075   1.81     perry 		 * no fragments were available, so a block will be
   1076    1.1   mycroft 		 * allocated, and hacked up
   1077    1.1   mycroft 		 */
   1078  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1079  1.101        ad 			goto fail;
   1080  1.101        ad 		mutex_enter(&ump->um_lock);
   1081  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1082   1.60      fvdl 		bno = dtogd(fs, blkno);
   1083    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1084   1.62      fvdl 			setbit(blksfree, bno + i);
   1085    1.1   mycroft 		i = fs->fs_frag - frags;
   1086   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1087    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1088   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1089    1.1   mycroft 		fs->fs_fmod = 1;
   1090   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1091   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1092  1.101        ad 		mutex_exit(&ump->um_lock);
   1093    1.1   mycroft 		bdwrite(bp);
   1094   1.60      fvdl 		return (blkno);
   1095    1.1   mycroft 	}
   1096   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1097   1.30      fvdl #if 0
   1098   1.30      fvdl 	/*
   1099   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1100   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1101   1.30      fvdl 	 */
   1102  1.101        ad 	if (bno < 0)
   1103  1.101        ad 		goto fail;
   1104   1.30      fvdl #endif
   1105    1.1   mycroft 	for (i = 0; i < frags; i++)
   1106   1.62      fvdl 		clrbit(blksfree, bno + i);
   1107  1.101        ad 	mutex_enter(&ump->um_lock);
   1108   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1109    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1110    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1111    1.1   mycroft 	fs->fs_fmod = 1;
   1112   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1113    1.1   mycroft 	if (frags != allocsiz)
   1114   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1115   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1116  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1117  1.101        ad 	mutex_exit(&ump->um_lock);
   1118   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1119   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1120    1.1   mycroft 	bdwrite(bp);
   1121   1.30      fvdl 	return blkno;
   1122  1.101        ad 
   1123  1.101        ad  fail:
   1124  1.101        ad  	brelse(bp, 0);
   1125  1.101        ad  	mutex_enter(&ump->um_lock);
   1126  1.101        ad  	return (0);
   1127    1.1   mycroft }
   1128    1.1   mycroft 
   1129    1.1   mycroft /*
   1130    1.1   mycroft  * Allocate a block in a cylinder group.
   1131    1.1   mycroft  *
   1132    1.1   mycroft  * This algorithm implements the following policy:
   1133    1.1   mycroft  *   1) allocate the requested block.
   1134    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1135    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1136    1.1   mycroft  *      specified cylinder group.
   1137    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1138    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1139    1.1   mycroft  */
   1140   1.58      fvdl static daddr_t
   1141  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1142    1.1   mycroft {
   1143  1.101        ad 	struct ufsmount *ump;
   1144   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1145   1.30      fvdl 	struct cg *cgp;
   1146   1.60      fvdl 	daddr_t blkno;
   1147   1.60      fvdl 	int32_t bno;
   1148   1.60      fvdl 	u_int8_t *blksfree;
   1149   1.30      fvdl #ifdef FFS_EI
   1150   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1151   1.30      fvdl #endif
   1152    1.1   mycroft 
   1153  1.101        ad 	ump = ip->i_ump;
   1154  1.101        ad 
   1155  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1156  1.101        ad 
   1157   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1158   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1159   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1160   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1161   1.60      fvdl 	} else {
   1162   1.60      fvdl 		bpref = blknum(fs, bpref);
   1163   1.60      fvdl 		bno = dtogd(fs, bpref);
   1164    1.1   mycroft 		/*
   1165   1.60      fvdl 		 * if the requested block is available, use it
   1166    1.1   mycroft 		 */
   1167   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1168   1.60      fvdl 			goto gotit;
   1169  1.111    simonb 		/*
   1170  1.111    simonb 		 * if the requested data block isn't available and we are
   1171  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1172  1.111    simonb 		 */
   1173  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1174  1.111    simonb 			return (0);
   1175    1.1   mycroft 	}
   1176  1.111    simonb 
   1177    1.1   mycroft 	/*
   1178   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1179    1.1   mycroft 	 */
   1180   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1181    1.1   mycroft 	if (bno < 0)
   1182   1.35   thorpej 		return (0);
   1183   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1184    1.1   mycroft gotit:
   1185    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1186   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1187   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1188   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1189    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1190   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1191   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1192   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1193   1.73       dbj 		int cylno;
   1194   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1195   1.75       dbj 		KASSERT(cylno >= 0);
   1196   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1197   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1198   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1199   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1200   1.73       dbj 		    needswap);
   1201   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1202   1.73       dbj 	}
   1203    1.1   mycroft 	fs->fs_fmod = 1;
   1204   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1205  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1206  1.101        ad 		mutex_exit(&ump->um_lock);
   1207   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1208  1.101        ad 		mutex_enter(&ump->um_lock);
   1209  1.101        ad 	}
   1210   1.30      fvdl 	return (blkno);
   1211    1.1   mycroft }
   1212    1.1   mycroft 
   1213    1.1   mycroft /*
   1214    1.1   mycroft  * Determine whether an inode can be allocated.
   1215    1.1   mycroft  *
   1216    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1217    1.1   mycroft  * allocate it using the following policy:
   1218    1.1   mycroft  *   1) allocate the requested inode.
   1219    1.1   mycroft  *   2) allocate the next available inode after the requested
   1220    1.1   mycroft  *      inode in the specified cylinder group.
   1221    1.1   mycroft  */
   1222   1.58      fvdl static daddr_t
   1223  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1224    1.1   mycroft {
   1225  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1226   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1227   1.33  augustss 	struct cg *cgp;
   1228   1.60      fvdl 	struct buf *bp, *ibp;
   1229   1.60      fvdl 	u_int8_t *inosused;
   1230    1.1   mycroft 	int error, start, len, loc, map, i;
   1231   1.60      fvdl 	int32_t initediblk;
   1232  1.112   hannken 	daddr_t nalloc;
   1233   1.60      fvdl 	struct ufs2_dinode *dp2;
   1234   1.19    bouyer #ifdef FFS_EI
   1235   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1236   1.19    bouyer #endif
   1237    1.1   mycroft 
   1238  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1239  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1240  1.101        ad 
   1241    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1242   1.35   thorpej 		return (0);
   1243  1.101        ad 	mutex_exit(&ump->um_lock);
   1244  1.112   hannken 	ibp = NULL;
   1245  1.112   hannken 	initediblk = -1;
   1246  1.112   hannken retry:
   1247    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1248  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1249  1.101        ad 	if (error)
   1250  1.101        ad 		goto fail;
   1251    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1252  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1253  1.101        ad 		goto fail;
   1254  1.112   hannken 
   1255  1.112   hannken 	if (ibp != NULL &&
   1256  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1257  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1258  1.112   hannken 		brelse(ibp, BC_INVAL);
   1259  1.112   hannken 		ibp = NULL;
   1260  1.112   hannken 	}
   1261  1.112   hannken 	/*
   1262  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1263  1.112   hannken 	 */
   1264  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1265  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1266  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1267  1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1268  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1269  1.112   hannken 			/*
   1270  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1271  1.112   hannken 			 * a deadlock when reading the inode block will
   1272  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1273  1.112   hannken 			 */
   1274  1.112   hannken 			brelse(bp, 0);
   1275  1.112   hannken 			bp = NULL;
   1276  1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1277  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1278  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1279  1.112   hannken 			if (error)
   1280  1.112   hannken 				goto fail;
   1281  1.112   hannken 			goto retry;
   1282  1.112   hannken 		}
   1283  1.112   hannken 	}
   1284  1.112   hannken 
   1285   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1286   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1287   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1288   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1289   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1290    1.1   mycroft 	if (ipref) {
   1291    1.1   mycroft 		ipref %= fs->fs_ipg;
   1292   1.60      fvdl 		if (isclr(inosused, ipref))
   1293    1.1   mycroft 			goto gotit;
   1294    1.1   mycroft 	}
   1295   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1296   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1297   1.19    bouyer 		NBBY);
   1298   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1299    1.1   mycroft 	if (loc == 0) {
   1300    1.1   mycroft 		len = start + 1;
   1301    1.1   mycroft 		start = 0;
   1302   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1303    1.1   mycroft 		if (loc == 0) {
   1304   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1305   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1306   1.19    bouyer 				fs->fs_fsmnt);
   1307    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1308    1.1   mycroft 			/* NOTREACHED */
   1309    1.1   mycroft 		}
   1310    1.1   mycroft 	}
   1311    1.1   mycroft 	i = start + len - loc;
   1312   1.60      fvdl 	map = inosused[i];
   1313    1.1   mycroft 	ipref = i * NBBY;
   1314    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1315    1.1   mycroft 		if ((map & i) == 0) {
   1316   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1317    1.1   mycroft 			goto gotit;
   1318    1.1   mycroft 		}
   1319    1.1   mycroft 	}
   1320   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1321    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1322    1.1   mycroft 	/* NOTREACHED */
   1323    1.1   mycroft gotit:
   1324  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1325  1.111    simonb 	    mode);
   1326   1.60      fvdl 	/*
   1327   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1328   1.60      fvdl 	 */
   1329  1.112   hannken 	if (ibp != NULL) {
   1330  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1331  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1332  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1333  1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1334   1.60      fvdl 			/*
   1335   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1336   1.60      fvdl 			 * random, after all.
   1337   1.60      fvdl 			 */
   1338   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1339   1.60      fvdl 			dp2++;
   1340   1.60      fvdl 		}
   1341   1.60      fvdl 		initediblk += INOPB(fs);
   1342   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1343   1.60      fvdl 	}
   1344   1.60      fvdl 
   1345  1.101        ad 	mutex_enter(&ump->um_lock);
   1346   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1347  1.101        ad 	setbit(inosused, ipref);
   1348  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1349  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1350  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1351  1.101        ad 	fs->fs_fmod = 1;
   1352  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1353  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1354  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1355  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1356  1.101        ad 	}
   1357  1.101        ad 	mutex_exit(&ump->um_lock);
   1358  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1359  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1360  1.112   hannken 	if (ibp != NULL) {
   1361  1.112   hannken 		bwrite(bp);
   1362  1.104   hannken 		bawrite(ibp);
   1363  1.112   hannken 	} else
   1364  1.112   hannken 		bdwrite(bp);
   1365    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1366  1.101        ad  fail:
   1367  1.112   hannken 	if (bp != NULL)
   1368  1.112   hannken 		brelse(bp, 0);
   1369  1.112   hannken 	if (ibp != NULL)
   1370  1.112   hannken 		brelse(ibp, BC_INVAL);
   1371  1.101        ad 	mutex_enter(&ump->um_lock);
   1372  1.101        ad 	return (0);
   1373    1.1   mycroft }
   1374    1.1   mycroft 
   1375    1.1   mycroft /*
   1376  1.111    simonb  * Allocate a block or fragment.
   1377  1.111    simonb  *
   1378  1.111    simonb  * The specified block or fragment is removed from the
   1379  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1380  1.111    simonb  *
   1381  1.111    simonb  * This implementation should mirror fs_blkfree
   1382  1.111    simonb  *
   1383  1.111    simonb  * => um_lock not held on entry or exit
   1384  1.111    simonb  */
   1385  1.111    simonb int
   1386  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1387  1.111    simonb {
   1388  1.111    simonb 	struct fs *fs = ip->i_fs;
   1389  1.111    simonb 
   1390  1.111    simonb 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1391  1.111    simonb 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1392  1.111    simonb 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1393  1.111    simonb 		       "size = %ld, fs = %s\n",
   1394  1.111    simonb 		    ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1395  1.111    simonb 		panic("blkalloc: bad size");
   1396  1.111    simonb 	}
   1397  1.111    simonb 	if (bno >= fs->fs_size) {
   1398  1.111    simonb 		printf("bad block %" PRId64 ", ino %" PRId64 "\n", bno,
   1399  1.111    simonb 		    ip->i_number);
   1400  1.111    simonb 		ffs_fserr(fs, ip->i_uid, "bad block");
   1401  1.111    simonb 		return EINVAL;
   1402  1.111    simonb 	}
   1403  1.115     joerg 
   1404  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1405  1.115     joerg }
   1406  1.115     joerg 
   1407  1.115     joerg int
   1408  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1409  1.115     joerg {
   1410  1.115     joerg 	struct fs *fs = ump->um_fs;
   1411  1.115     joerg 	struct cg *cgp;
   1412  1.115     joerg 	struct buf *bp;
   1413  1.115     joerg 	int32_t fragno, cgbno;
   1414  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1415  1.115     joerg 	u_int8_t *blksfree;
   1416  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1417  1.115     joerg 
   1418  1.115     joerg 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1419  1.115     joerg 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1420  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1421  1.115     joerg 
   1422  1.115     joerg 	cg = dtog(fs, bno);
   1423  1.115     joerg 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1424  1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1425  1.111    simonb 	if (error) {
   1426  1.111    simonb 		brelse(bp, 0);
   1427  1.111    simonb 		return error;
   1428  1.111    simonb 	}
   1429  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1430  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1431  1.111    simonb 		brelse(bp, 0);
   1432  1.111    simonb 		return EIO;
   1433  1.111    simonb 	}
   1434  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1435  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1436  1.111    simonb 	cgbno = dtogd(fs, bno);
   1437  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1438  1.111    simonb 
   1439  1.111    simonb 	mutex_enter(&ump->um_lock);
   1440  1.111    simonb 	if (size == fs->fs_bsize) {
   1441  1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1442  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1443  1.111    simonb 			mutex_exit(&ump->um_lock);
   1444  1.111    simonb 			brelse(bp, 0);
   1445  1.111    simonb 			return EBUSY;
   1446  1.111    simonb 		}
   1447  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1448  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1449  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1450  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1451  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1452  1.111    simonb 	} else {
   1453  1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1454  1.111    simonb 
   1455  1.111    simonb 		frags = numfrags(fs, size);
   1456  1.111    simonb 		for (i = 0; i < frags; i++) {
   1457  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1458  1.111    simonb 				mutex_exit(&ump->um_lock);
   1459  1.111    simonb 				brelse(bp, 0);
   1460  1.111    simonb 				return EBUSY;
   1461  1.111    simonb 			}
   1462  1.111    simonb 		}
   1463  1.111    simonb 		/*
   1464  1.111    simonb 		 * if a complete block is being split, account for it
   1465  1.111    simonb 		 */
   1466  1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1467  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1468  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1469  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1470  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1471  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1472  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1473  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1474  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1475  1.111    simonb 		}
   1476  1.111    simonb 		/*
   1477  1.111    simonb 		 * decrement the counts associated with the old frags
   1478  1.111    simonb 		 */
   1479  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1480  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1481  1.111    simonb 		/*
   1482  1.111    simonb 		 * allocate the fragment
   1483  1.111    simonb 		 */
   1484  1.111    simonb 		for (i = 0; i < frags; i++) {
   1485  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1486  1.111    simonb 		}
   1487  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1488  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1489  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1490  1.111    simonb 		/*
   1491  1.111    simonb 		 * add back in counts associated with the new frags
   1492  1.111    simonb 		 */
   1493  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1494  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1495  1.111    simonb 	}
   1496  1.111    simonb 	fs->fs_fmod = 1;
   1497  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1498  1.111    simonb 	mutex_exit(&ump->um_lock);
   1499  1.111    simonb 	bdwrite(bp);
   1500  1.111    simonb 	return 0;
   1501  1.111    simonb }
   1502  1.111    simonb 
   1503  1.111    simonb /*
   1504    1.1   mycroft  * Free a block or fragment.
   1505    1.1   mycroft  *
   1506    1.1   mycroft  * The specified block or fragment is placed back in the
   1507   1.81     perry  * free map. If a fragment is deallocated, a possible
   1508    1.1   mycroft  * block reassembly is checked.
   1509  1.106     pooka  *
   1510  1.106     pooka  * => um_lock not held on entry or exit
   1511    1.1   mycroft  */
   1512    1.9  christos void
   1513   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1514   1.85   thorpej     ino_t inum)
   1515    1.1   mycroft {
   1516   1.33  augustss 	struct cg *cgp;
   1517    1.1   mycroft 	struct buf *bp;
   1518   1.76   hannken 	struct ufsmount *ump;
   1519   1.60      fvdl 	int32_t fragno, cgbno;
   1520   1.76   hannken 	daddr_t cgblkno;
   1521    1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1522   1.62      fvdl 	u_int8_t *blksfree;
   1523   1.76   hannken 	dev_t dev;
   1524  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1525   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1526    1.1   mycroft 
   1527   1.76   hannken 	cg = dtog(fs, bno);
   1528  1.113   hannken 	if (devvp_is_snapshot) {
   1529   1.76   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1530  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1531   1.76   hannken 		cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1532   1.76   hannken 	} else {
   1533   1.76   hannken 		dev = devvp->v_rdev;
   1534  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1535   1.76   hannken 		cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1536  1.100   hannken 		if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1537   1.76   hannken 			return;
   1538   1.76   hannken 	}
   1539   1.30      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
   1540   1.30      fvdl 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
   1541   1.59   tsutsui 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
   1542   1.58      fvdl 		       "size = %ld, fs = %s\n",
   1543   1.76   hannken 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
   1544    1.1   mycroft 		panic("blkfree: bad size");
   1545    1.1   mycroft 	}
   1546   1.76   hannken 
   1547   1.60      fvdl 	if (bno >= fs->fs_size) {
   1548   1.86  christos 		printf("bad block %" PRId64 ", ino %llu\n", bno,
   1549   1.86  christos 		    (unsigned long long)inum);
   1550   1.76   hannken 		ffs_fserr(fs, inum, "bad block");
   1551    1.1   mycroft 		return;
   1552    1.1   mycroft 	}
   1553  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1554  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1555    1.1   mycroft 	if (error) {
   1556  1.101        ad 		brelse(bp, 0);
   1557    1.1   mycroft 		return;
   1558    1.1   mycroft 	}
   1559    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1560   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1561  1.101        ad 		brelse(bp, 0);
   1562    1.1   mycroft 		return;
   1563    1.1   mycroft 	}
   1564   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1565   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1566   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1567   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1568   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1569   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1570  1.101        ad 	mutex_enter(&ump->um_lock);
   1571    1.1   mycroft 	if (size == fs->fs_bsize) {
   1572   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1573   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1574  1.113   hannken 			if (devvp_is_snapshot) {
   1575  1.101        ad 				mutex_exit(&ump->um_lock);
   1576  1.101        ad 				brelse(bp, 0);
   1577   1.76   hannken 				return;
   1578   1.76   hannken 			}
   1579   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1580   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1581    1.1   mycroft 			panic("blkfree: freeing free block");
   1582    1.1   mycroft 		}
   1583   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1584   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1585   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1586    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1587    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1588   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1589   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1590   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1591   1.75       dbj 			KASSERT(i >= 0);
   1592   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1593   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1594   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1595   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1596   1.73       dbj 			    needswap);
   1597   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1598   1.73       dbj 		}
   1599    1.1   mycroft 	} else {
   1600   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1601    1.1   mycroft 		/*
   1602    1.1   mycroft 		 * decrement the counts associated with the old frags
   1603    1.1   mycroft 		 */
   1604   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1605   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1606    1.1   mycroft 		/*
   1607    1.1   mycroft 		 * deallocate the fragment
   1608    1.1   mycroft 		 */
   1609    1.1   mycroft 		frags = numfrags(fs, size);
   1610    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1611   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1612   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1613   1.59   tsutsui 				       ", fs = %s\n",
   1614   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1615    1.1   mycroft 				panic("blkfree: freeing free frag");
   1616    1.1   mycroft 			}
   1617   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1618    1.1   mycroft 		}
   1619   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1620    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1621   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1622    1.1   mycroft 		/*
   1623    1.1   mycroft 		 * add back in counts associated with the new frags
   1624    1.1   mycroft 		 */
   1625   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1626   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1627    1.1   mycroft 		/*
   1628    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1629    1.1   mycroft 		 */
   1630   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1631   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1632   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1633    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1634    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1635   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1636   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1637    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1638    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1639   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1640   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1641   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1642   1.75       dbj 				KASSERT(i >= 0);
   1643   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1644   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1645   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1646   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1647   1.73       dbj 				    bbase)], 1, needswap);
   1648   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1649   1.73       dbj 			}
   1650    1.1   mycroft 		}
   1651    1.1   mycroft 	}
   1652    1.1   mycroft 	fs->fs_fmod = 1;
   1653   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1654  1.101        ad 	mutex_exit(&ump->um_lock);
   1655    1.1   mycroft 	bdwrite(bp);
   1656    1.1   mycroft }
   1657    1.1   mycroft 
   1658    1.1   mycroft /*
   1659    1.1   mycroft  * Free an inode.
   1660   1.30      fvdl  */
   1661   1.30      fvdl int
   1662   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1663   1.30      fvdl {
   1664   1.30      fvdl 
   1665   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1666   1.88      yamt 		softdep_freefile(vp, ino, mode);
   1667   1.30      fvdl 		return (0);
   1668   1.30      fvdl 	}
   1669   1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1670   1.30      fvdl }
   1671   1.30      fvdl 
   1672   1.30      fvdl /*
   1673   1.30      fvdl  * Do the actual free operation.
   1674    1.1   mycroft  * The specified inode is placed back in the free map.
   1675  1.111    simonb  *
   1676  1.111    simonb  * => um_lock not held on entry or exit
   1677    1.1   mycroft  */
   1678    1.1   mycroft int
   1679   1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1680    1.9  christos {
   1681  1.101        ad 	struct ufsmount *ump;
   1682   1.33  augustss 	struct cg *cgp;
   1683    1.1   mycroft 	struct buf *bp;
   1684    1.1   mycroft 	int error, cg;
   1685   1.76   hannken 	daddr_t cgbno;
   1686   1.62      fvdl 	u_int8_t *inosused;
   1687   1.78   hannken 	dev_t dev;
   1688  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1689   1.19    bouyer #ifdef FFS_EI
   1690   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1691   1.19    bouyer #endif
   1692    1.1   mycroft 
   1693  1.113   hannken 	if (!devvp_is_snapshot) {
   1694  1.113   hannken 		UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   1695  1.113   hannken 	}
   1696  1.111    simonb 
   1697   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1698  1.113   hannken 	if (devvp_is_snapshot) {
   1699   1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1700  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1701   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1702   1.76   hannken 	} else {
   1703   1.78   hannken 		dev = devvp->v_rdev;
   1704  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1705   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1706   1.76   hannken 	}
   1707    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1708   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1709   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1710  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1711  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1712    1.1   mycroft 	if (error) {
   1713  1.101        ad 		brelse(bp, 0);
   1714   1.30      fvdl 		return (error);
   1715    1.1   mycroft 	}
   1716    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1717   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1718  1.101        ad 		brelse(bp, 0);
   1719    1.1   mycroft 		return (0);
   1720    1.1   mycroft 	}
   1721   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1722   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1723   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1724   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1725   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1726    1.1   mycroft 	ino %= fs->fs_ipg;
   1727   1.62      fvdl 	if (isclr(inosused, ino)) {
   1728   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1729   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1730   1.86  christos 		    fs->fs_fsmnt);
   1731    1.1   mycroft 		if (fs->fs_ronly == 0)
   1732    1.1   mycroft 			panic("ifree: freeing free inode");
   1733    1.1   mycroft 	}
   1734   1.62      fvdl 	clrbit(inosused, ino);
   1735  1.113   hannken 	if (!devvp_is_snapshot)
   1736  1.113   hannken 		UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   1737  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1738   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1739   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1740   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1741  1.101        ad 	mutex_enter(&ump->um_lock);
   1742    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1743    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1744   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1745   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1746    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1747    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1748    1.1   mycroft 	}
   1749    1.1   mycroft 	fs->fs_fmod = 1;
   1750   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1751  1.101        ad 	mutex_exit(&ump->um_lock);
   1752    1.1   mycroft 	bdwrite(bp);
   1753    1.1   mycroft 	return (0);
   1754    1.1   mycroft }
   1755    1.1   mycroft 
   1756    1.1   mycroft /*
   1757   1.76   hannken  * Check to see if a file is free.
   1758   1.76   hannken  */
   1759   1.76   hannken int
   1760   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1761   1.76   hannken {
   1762   1.76   hannken 	struct cg *cgp;
   1763   1.76   hannken 	struct buf *bp;
   1764   1.76   hannken 	daddr_t cgbno;
   1765   1.76   hannken 	int ret, cg;
   1766   1.76   hannken 	u_int8_t *inosused;
   1767  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1768   1.76   hannken 
   1769   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1770  1.113   hannken 	if (devvp_is_snapshot)
   1771   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1772  1.113   hannken 	else
   1773   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1774   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1775   1.76   hannken 		return 1;
   1776  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1777  1.101        ad 		brelse(bp, 0);
   1778   1.76   hannken 		return 1;
   1779   1.76   hannken 	}
   1780   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1781   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1782  1.101        ad 		brelse(bp, 0);
   1783   1.76   hannken 		return 1;
   1784   1.76   hannken 	}
   1785   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1786   1.76   hannken 	ino %= fs->fs_ipg;
   1787   1.76   hannken 	ret = isclr(inosused, ino);
   1788  1.101        ad 	brelse(bp, 0);
   1789   1.76   hannken 	return ret;
   1790   1.76   hannken }
   1791   1.76   hannken 
   1792   1.76   hannken /*
   1793    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1794    1.1   mycroft  *
   1795    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1796    1.1   mycroft  * available.
   1797    1.1   mycroft  */
   1798   1.60      fvdl static int32_t
   1799   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1800    1.1   mycroft {
   1801   1.60      fvdl 	int32_t bno;
   1802    1.1   mycroft 	int start, len, loc, i;
   1803    1.1   mycroft 	int blk, field, subfield, pos;
   1804   1.19    bouyer 	int ostart, olen;
   1805   1.62      fvdl 	u_int8_t *blksfree;
   1806   1.30      fvdl #ifdef FFS_EI
   1807   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1808   1.30      fvdl #endif
   1809    1.1   mycroft 
   1810  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1811  1.101        ad 
   1812    1.1   mycroft 	/*
   1813    1.1   mycroft 	 * find the fragment by searching through the free block
   1814    1.1   mycroft 	 * map for an appropriate bit pattern
   1815    1.1   mycroft 	 */
   1816    1.1   mycroft 	if (bpref)
   1817    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1818    1.1   mycroft 	else
   1819   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1820   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1821    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1822   1.19    bouyer 	ostart = start;
   1823   1.19    bouyer 	olen = len;
   1824   1.45     lukem 	loc = scanc((u_int)len,
   1825   1.62      fvdl 		(const u_char *)&blksfree[start],
   1826   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1827   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1828    1.1   mycroft 	if (loc == 0) {
   1829    1.1   mycroft 		len = start + 1;
   1830    1.1   mycroft 		start = 0;
   1831   1.45     lukem 		loc = scanc((u_int)len,
   1832   1.62      fvdl 			(const u_char *)&blksfree[0],
   1833   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1834   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1835    1.1   mycroft 		if (loc == 0) {
   1836   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1837   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1838   1.20      ross 			printf("offset=%d %ld\n",
   1839   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1840   1.62      fvdl 				(long)blksfree - (long)cgp);
   1841   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1842    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1843    1.1   mycroft 			/* NOTREACHED */
   1844    1.1   mycroft 		}
   1845    1.1   mycroft 	}
   1846    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1847   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1848    1.1   mycroft 	/*
   1849    1.1   mycroft 	 * found the byte in the map
   1850    1.1   mycroft 	 * sift through the bits to find the selected frag
   1851    1.1   mycroft 	 */
   1852    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1853   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1854    1.1   mycroft 		blk <<= 1;
   1855    1.1   mycroft 		field = around[allocsiz];
   1856    1.1   mycroft 		subfield = inside[allocsiz];
   1857    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1858    1.1   mycroft 			if ((blk & field) == subfield)
   1859    1.1   mycroft 				return (bno + pos);
   1860    1.1   mycroft 			field <<= 1;
   1861    1.1   mycroft 			subfield <<= 1;
   1862    1.1   mycroft 		}
   1863    1.1   mycroft 	}
   1864   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1865    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1866   1.58      fvdl 	/* return (-1); */
   1867    1.1   mycroft }
   1868    1.1   mycroft 
   1869    1.1   mycroft /*
   1870    1.1   mycroft  * Update the cluster map because of an allocation or free.
   1871    1.1   mycroft  *
   1872    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1873    1.1   mycroft  */
   1874    1.9  christos void
   1875   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1876    1.1   mycroft {
   1877    1.4       cgd 	int32_t *sump;
   1878    1.5   mycroft 	int32_t *lp;
   1879    1.1   mycroft 	u_char *freemapp, *mapp;
   1880    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1881   1.30      fvdl #ifdef FFS_EI
   1882   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1883   1.30      fvdl #endif
   1884    1.1   mycroft 
   1885  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1886  1.101        ad 
   1887    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1888    1.1   mycroft 		return;
   1889   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1890   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1891    1.1   mycroft 	/*
   1892    1.1   mycroft 	 * Allocate or clear the actual block.
   1893    1.1   mycroft 	 */
   1894    1.1   mycroft 	if (cnt > 0)
   1895    1.1   mycroft 		setbit(freemapp, blkno);
   1896    1.1   mycroft 	else
   1897    1.1   mycroft 		clrbit(freemapp, blkno);
   1898    1.1   mycroft 	/*
   1899    1.1   mycroft 	 * Find the size of the cluster going forward.
   1900    1.1   mycroft 	 */
   1901    1.1   mycroft 	start = blkno + 1;
   1902    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1903   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1904   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1905    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1906    1.1   mycroft 	map = *mapp++;
   1907    1.1   mycroft 	bit = 1 << (start % NBBY);
   1908    1.1   mycroft 	for (i = start; i < end; i++) {
   1909    1.1   mycroft 		if ((map & bit) == 0)
   1910    1.1   mycroft 			break;
   1911    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1912    1.1   mycroft 			bit <<= 1;
   1913    1.1   mycroft 		} else {
   1914    1.1   mycroft 			map = *mapp++;
   1915    1.1   mycroft 			bit = 1;
   1916    1.1   mycroft 		}
   1917    1.1   mycroft 	}
   1918    1.1   mycroft 	forw = i - start;
   1919    1.1   mycroft 	/*
   1920    1.1   mycroft 	 * Find the size of the cluster going backward.
   1921    1.1   mycroft 	 */
   1922    1.1   mycroft 	start = blkno - 1;
   1923    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1924    1.1   mycroft 	if (end < 0)
   1925    1.1   mycroft 		end = -1;
   1926    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1927    1.1   mycroft 	map = *mapp--;
   1928    1.1   mycroft 	bit = 1 << (start % NBBY);
   1929    1.1   mycroft 	for (i = start; i > end; i--) {
   1930    1.1   mycroft 		if ((map & bit) == 0)
   1931    1.1   mycroft 			break;
   1932    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1933    1.1   mycroft 			bit >>= 1;
   1934    1.1   mycroft 		} else {
   1935    1.1   mycroft 			map = *mapp--;
   1936    1.1   mycroft 			bit = 1 << (NBBY - 1);
   1937    1.1   mycroft 		}
   1938    1.1   mycroft 	}
   1939    1.1   mycroft 	back = start - i;
   1940    1.1   mycroft 	/*
   1941    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1942    1.1   mycroft 	 * back clusters.
   1943    1.1   mycroft 	 */
   1944    1.1   mycroft 	i = back + forw + 1;
   1945    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1946    1.1   mycroft 		i = fs->fs_contigsumsize;
   1947   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1948    1.1   mycroft 	if (back > 0)
   1949   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1950    1.1   mycroft 	if (forw > 0)
   1951   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1952   1.19    bouyer 
   1953    1.5   mycroft 	/*
   1954    1.5   mycroft 	 * Update cluster summary information.
   1955    1.5   mycroft 	 */
   1956    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1957    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1958   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1959    1.5   mycroft 			break;
   1960   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1961    1.1   mycroft }
   1962    1.1   mycroft 
   1963    1.1   mycroft /*
   1964    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1965   1.81     perry  *
   1966    1.1   mycroft  * The form of the error message is:
   1967    1.1   mycroft  *	fs: error message
   1968    1.1   mycroft  */
   1969    1.1   mycroft static void
   1970   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   1971    1.1   mycroft {
   1972    1.1   mycroft 
   1973   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1974   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1975    1.1   mycroft }
   1976