Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.116
      1  1.116     joerg /*	$NetBSD: ffs_alloc.c,v 1.116 2008/12/01 13:22:06 joerg Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.116     joerg __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.116 2008/12/01 13:22:06 joerg Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78   1.22    scottr #endif
     79    1.1   mycroft 
     80    1.1   mycroft #include <sys/param.h>
     81    1.1   mycroft #include <sys/systm.h>
     82    1.1   mycroft #include <sys/buf.h>
     83  1.111    simonb #include <sys/fstrans.h>
     84  1.111    simonb #include <sys/kauth.h>
     85  1.111    simonb #include <sys/kernel.h>
     86  1.111    simonb #include <sys/mount.h>
     87    1.1   mycroft #include <sys/proc.h>
     88  1.111    simonb #include <sys/syslog.h>
     89    1.1   mycroft #include <sys/vnode.h>
     90  1.111    simonb #include <sys/wapbl.h>
     91   1.29       mrg 
     92   1.76   hannken #include <miscfs/specfs/specdev.h>
     93    1.1   mycroft #include <ufs/ufs/quota.h>
     94   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95    1.1   mycroft #include <ufs/ufs/inode.h>
     96    1.9  christos #include <ufs/ufs/ufs_extern.h>
     97   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99    1.1   mycroft 
    100    1.1   mycroft #include <ufs/ffs/fs.h>
    101    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102    1.1   mycroft 
    103  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112   1.85   thorpej 				      daddr_t, int);
    113  1.116     joerg static void ffs_blkfree_common(struct ufsmount *, dev_t, struct buf *,
    114  1.116     joerg     daddr_t, long, bool);
    115   1.23  drochner 
    116   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    117   1.34  jdolecek int ffs_log_changeopt = 0;
    118   1.34  jdolecek 
    119   1.23  drochner /* in ffs_tables.c */
    120   1.40  jdolecek extern const int inside[], around[];
    121   1.40  jdolecek extern const u_char * const fragtbl[];
    122    1.1   mycroft 
    123  1.116     joerg /* Basic consistency check for block allocations */
    124  1.116     joerg static int
    125  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    126  1.116     joerg     long size, dev_t dev, ino_t inum)
    127  1.116     joerg {
    128  1.116     joerg 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    129  1.116     joerg 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    130  1.116     joerg 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
    131  1.116     joerg 		       "size = %ld, fs = %s\n",
    132  1.116     joerg 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    133  1.116     joerg 		panic("%s: bad size", func);
    134  1.116     joerg 	}
    135  1.116     joerg 
    136  1.116     joerg 	if (bno >= fs->fs_size) {
    137  1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    138  1.116     joerg 		    (unsigned long long)inum);
    139  1.116     joerg 		ffs_fserr(fs, inum, "bad block");
    140  1.116     joerg 		return EINVAL;
    141  1.116     joerg 	}
    142  1.116     joerg 	return 0;
    143  1.116     joerg }
    144  1.116     joerg 
    145    1.1   mycroft /*
    146    1.1   mycroft  * Allocate a block in the file system.
    147   1.81     perry  *
    148    1.1   mycroft  * The size of the requested block is given, which must be some
    149    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    150    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    151    1.1   mycroft  * the following hierarchy is used to allocate a block:
    152    1.1   mycroft  *   1) allocate the requested block.
    153    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    154    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    155    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    156    1.1   mycroft  *      available block is located.
    157   1.47       wiz  * If no block preference is given the following hierarchy is used
    158    1.1   mycroft  * to allocate a block:
    159    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    160    1.1   mycroft  *      inode for the file.
    161    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    162    1.1   mycroft  *      available block is located.
    163  1.106     pooka  *
    164  1.106     pooka  * => called with um_lock held
    165  1.106     pooka  * => releases um_lock before returning
    166    1.1   mycroft  */
    167    1.9  christos int
    168  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    169   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    170    1.1   mycroft {
    171  1.101        ad 	struct ufsmount *ump;
    172   1.62      fvdl 	struct fs *fs;
    173   1.58      fvdl 	daddr_t bno;
    174    1.9  christos 	int cg;
    175    1.9  christos #ifdef QUOTA
    176    1.9  christos 	int error;
    177    1.9  christos #endif
    178   1.81     perry 
    179   1.62      fvdl 	fs = ip->i_fs;
    180  1.101        ad 	ump = ip->i_ump;
    181  1.101        ad 
    182  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    183   1.62      fvdl 
    184   1.37       chs #ifdef UVM_PAGE_TRKOWN
    185   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    186   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    187   1.37       chs 		struct vm_page *pg;
    188   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    189   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    190   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    191   1.37       chs 
    192  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    193   1.37       chs 		while (off < endoff) {
    194   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    195   1.37       chs 			KASSERT(pg != NULL);
    196   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    197   1.37       chs 			off += PAGE_SIZE;
    198   1.37       chs 		}
    199  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    200   1.37       chs 	}
    201   1.37       chs #endif
    202   1.37       chs 
    203    1.1   mycroft 	*bnp = 0;
    204    1.1   mycroft #ifdef DIAGNOSTIC
    205    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    206   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    207    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    208    1.1   mycroft 		panic("ffs_alloc: bad size");
    209    1.1   mycroft 	}
    210    1.1   mycroft 	if (cred == NOCRED)
    211   1.56    provos 		panic("ffs_alloc: missing credential");
    212    1.1   mycroft #endif /* DIAGNOSTIC */
    213    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    214    1.1   mycroft 		goto nospace;
    215   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    216   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    217    1.1   mycroft 		goto nospace;
    218    1.1   mycroft #ifdef QUOTA
    219  1.101        ad 	mutex_exit(&ump->um_lock);
    220   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    221    1.1   mycroft 		return (error);
    222  1.101        ad 	mutex_enter(&ump->um_lock);
    223    1.1   mycroft #endif
    224  1.111    simonb 
    225    1.1   mycroft 	if (bpref >= fs->fs_size)
    226    1.1   mycroft 		bpref = 0;
    227    1.1   mycroft 	if (bpref == 0)
    228    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    229    1.1   mycroft 	else
    230    1.1   mycroft 		cg = dtog(fs, bpref);
    231  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    232    1.1   mycroft 	if (bno > 0) {
    233   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    234    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    235    1.1   mycroft 		*bnp = bno;
    236    1.1   mycroft 		return (0);
    237    1.1   mycroft 	}
    238    1.1   mycroft #ifdef QUOTA
    239    1.1   mycroft 	/*
    240    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    241    1.1   mycroft 	 */
    242   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    243    1.1   mycroft #endif
    244  1.111    simonb 	if (flags & B_CONTIG) {
    245  1.111    simonb 		/*
    246  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    247  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    248  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    249  1.111    simonb 		 * already unlocked, so we can't release it again
    250  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    251  1.111    simonb 		 *
    252  1.111    simonb 		 *
    253  1.111    simonb 		 * Fail silently - it's up to our caller to report
    254  1.111    simonb 		 * errors.
    255  1.111    simonb 		 */
    256  1.111    simonb 		return (ENOSPC);
    257  1.111    simonb 	}
    258    1.1   mycroft nospace:
    259  1.101        ad 	mutex_exit(&ump->um_lock);
    260   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    261    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    262    1.1   mycroft 	return (ENOSPC);
    263    1.1   mycroft }
    264    1.1   mycroft 
    265    1.1   mycroft /*
    266    1.1   mycroft  * Reallocate a fragment to a bigger size
    267    1.1   mycroft  *
    268    1.1   mycroft  * The number and size of the old block is given, and a preference
    269    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    270    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    271    1.1   mycroft  * invoked to get an appropriate block.
    272  1.106     pooka  *
    273  1.106     pooka  * => called with um_lock held
    274  1.106     pooka  * => return with um_lock released
    275    1.1   mycroft  */
    276    1.9  christos int
    277   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    278   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    279    1.1   mycroft {
    280  1.101        ad 	struct ufsmount *ump;
    281   1.62      fvdl 	struct fs *fs;
    282    1.1   mycroft 	struct buf *bp;
    283    1.1   mycroft 	int cg, request, error;
    284   1.58      fvdl 	daddr_t bprev, bno;
    285   1.25   thorpej 
    286   1.62      fvdl 	fs = ip->i_fs;
    287  1.101        ad 	ump = ip->i_ump;
    288  1.101        ad 
    289  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    290  1.101        ad 
    291   1.37       chs #ifdef UVM_PAGE_TRKOWN
    292   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    293   1.37       chs 		struct vm_page *pg;
    294   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    295   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    296   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    297   1.37       chs 
    298  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    299   1.37       chs 		while (off < endoff) {
    300   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    301   1.37       chs 			KASSERT(pg != NULL);
    302   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    303   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    304   1.37       chs 			off += PAGE_SIZE;
    305   1.37       chs 		}
    306  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    307   1.37       chs 	}
    308   1.37       chs #endif
    309   1.37       chs 
    310    1.1   mycroft #ifdef DIAGNOSTIC
    311    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    312    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    313   1.13  christos 		printf(
    314    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    315    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    316    1.1   mycroft 		panic("ffs_realloccg: bad size");
    317    1.1   mycroft 	}
    318    1.1   mycroft 	if (cred == NOCRED)
    319   1.56    provos 		panic("ffs_realloccg: missing credential");
    320    1.1   mycroft #endif /* DIAGNOSTIC */
    321   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    322  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    323  1.101        ad 		mutex_exit(&ump->um_lock);
    324    1.1   mycroft 		goto nospace;
    325  1.101        ad 	}
    326   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    327   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    328   1.60      fvdl 	else
    329   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    330   1.60      fvdl 
    331   1.60      fvdl 	if (bprev == 0) {
    332   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    333   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    334    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    335    1.1   mycroft 	}
    336  1.101        ad 	mutex_exit(&ump->um_lock);
    337  1.101        ad 
    338    1.1   mycroft 	/*
    339    1.1   mycroft 	 * Allocate the extra space in the buffer.
    340    1.1   mycroft 	 */
    341   1.37       chs 	if (bpp != NULL &&
    342  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    343  1.101        ad 		brelse(bp, 0);
    344    1.1   mycroft 		return (error);
    345    1.1   mycroft 	}
    346    1.1   mycroft #ifdef QUOTA
    347   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    348   1.44       chs 		if (bpp != NULL) {
    349  1.101        ad 			brelse(bp, 0);
    350   1.44       chs 		}
    351    1.1   mycroft 		return (error);
    352    1.1   mycroft 	}
    353    1.1   mycroft #endif
    354    1.1   mycroft 	/*
    355    1.1   mycroft 	 * Check for extension in the existing location.
    356    1.1   mycroft 	 */
    357    1.1   mycroft 	cg = dtog(fs, bprev);
    358  1.101        ad 	mutex_enter(&ump->um_lock);
    359   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    360   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    361    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    362   1.37       chs 
    363   1.37       chs 		if (bpp != NULL) {
    364   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    365   1.37       chs 				panic("bad blockno");
    366   1.72        pk 			allocbuf(bp, nsize, 1);
    367   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    368  1.105        ad 			mutex_enter(bp->b_objlock);
    369  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    370  1.105        ad 			bp->b_oflags |= BO_DONE;
    371  1.105        ad 			mutex_exit(bp->b_objlock);
    372   1.37       chs 			*bpp = bp;
    373   1.37       chs 		}
    374   1.37       chs 		if (blknop != NULL) {
    375   1.37       chs 			*blknop = bno;
    376   1.37       chs 		}
    377    1.1   mycroft 		return (0);
    378    1.1   mycroft 	}
    379    1.1   mycroft 	/*
    380    1.1   mycroft 	 * Allocate a new disk location.
    381    1.1   mycroft 	 */
    382    1.1   mycroft 	if (bpref >= fs->fs_size)
    383    1.1   mycroft 		bpref = 0;
    384    1.1   mycroft 	switch ((int)fs->fs_optim) {
    385    1.1   mycroft 	case FS_OPTSPACE:
    386    1.1   mycroft 		/*
    387   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    388   1.81     perry 		 * best use of space, we will waste time relocating it if
    389    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    390    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    391    1.1   mycroft 		 * to begin optimizing for time.
    392    1.1   mycroft 		 */
    393    1.1   mycroft 		request = nsize;
    394    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    395    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    396    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    397    1.1   mycroft 			break;
    398   1.34  jdolecek 
    399   1.34  jdolecek 		if (ffs_log_changeopt) {
    400   1.34  jdolecek 			log(LOG_NOTICE,
    401   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    402   1.34  jdolecek 				fs->fs_fsmnt);
    403   1.34  jdolecek 		}
    404   1.34  jdolecek 
    405    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    406    1.1   mycroft 		break;
    407    1.1   mycroft 	case FS_OPTTIME:
    408    1.1   mycroft 		/*
    409    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    410    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    411    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    412    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    413    1.1   mycroft 		 * above will be able to grow it in place without further
    414    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    415    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    416    1.1   mycroft 		 * optimizing for space.
    417    1.1   mycroft 		 */
    418    1.1   mycroft 		request = fs->fs_bsize;
    419    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    420    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    421    1.1   mycroft 			break;
    422   1.34  jdolecek 
    423   1.34  jdolecek 		if (ffs_log_changeopt) {
    424   1.34  jdolecek 			log(LOG_NOTICE,
    425   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    426   1.34  jdolecek 				fs->fs_fsmnt);
    427   1.34  jdolecek 		}
    428   1.34  jdolecek 
    429    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    430    1.1   mycroft 		break;
    431    1.1   mycroft 	default:
    432   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    433    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    434    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    435    1.1   mycroft 		/* NOTREACHED */
    436    1.1   mycroft 	}
    437  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    438    1.1   mycroft 	if (bno > 0) {
    439  1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    440  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    441  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    442  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    443  1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    444  1.111    simonb 				    osize);
    445  1.111    simonb 			} else
    446  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    447  1.111    simonb 				    ip->i_number);
    448  1.111    simonb 		}
    449  1.111    simonb 		if (nsize < request) {
    450  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    451  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    452  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    453  1.111    simonb 				    ip->i_ump->um_mountp,
    454  1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    455  1.111    simonb 				    request - nsize);
    456  1.111    simonb 			} else
    457  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    458  1.111    simonb 				    bno + numfrags(fs, nsize),
    459  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    460  1.111    simonb 		}
    461   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    462    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    463   1.37       chs 		if (bpp != NULL) {
    464   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    465   1.72        pk 			allocbuf(bp, nsize, 1);
    466   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    467  1.105        ad 			mutex_enter(bp->b_objlock);
    468  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    469  1.105        ad 			bp->b_oflags |= BO_DONE;
    470  1.105        ad 			mutex_exit(bp->b_objlock);
    471   1.37       chs 			*bpp = bp;
    472   1.37       chs 		}
    473   1.37       chs 		if (blknop != NULL) {
    474   1.37       chs 			*blknop = bno;
    475   1.37       chs 		}
    476    1.1   mycroft 		return (0);
    477    1.1   mycroft 	}
    478  1.101        ad 	mutex_exit(&ump->um_lock);
    479  1.101        ad 
    480    1.1   mycroft #ifdef QUOTA
    481    1.1   mycroft 	/*
    482    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    483    1.1   mycroft 	 */
    484   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    485    1.1   mycroft #endif
    486   1.37       chs 	if (bpp != NULL) {
    487  1.101        ad 		brelse(bp, 0);
    488   1.37       chs 	}
    489   1.37       chs 
    490    1.1   mycroft nospace:
    491    1.1   mycroft 	/*
    492    1.1   mycroft 	 * no space available
    493    1.1   mycroft 	 */
    494   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    495    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    496    1.1   mycroft 	return (ENOSPC);
    497    1.1   mycroft }
    498    1.1   mycroft 
    499    1.1   mycroft /*
    500    1.1   mycroft  * Allocate an inode in the file system.
    501   1.81     perry  *
    502    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    503    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    504    1.1   mycroft  *   1) allocate the preferred inode.
    505    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    506    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    507    1.1   mycroft  *      available inode is located.
    508   1.47       wiz  * If no inode preference is given the following hierarchy is used
    509    1.1   mycroft  * to allocate an inode:
    510    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    511    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    512    1.1   mycroft  *      available inode is located.
    513  1.106     pooka  *
    514  1.106     pooka  * => um_lock not held upon entry or return
    515    1.1   mycroft  */
    516    1.9  christos int
    517   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    518   1.88      yamt     struct vnode **vpp)
    519    1.9  christos {
    520  1.101        ad 	struct ufsmount *ump;
    521   1.33  augustss 	struct inode *pip;
    522   1.33  augustss 	struct fs *fs;
    523   1.33  augustss 	struct inode *ip;
    524   1.60      fvdl 	struct timespec ts;
    525    1.1   mycroft 	ino_t ino, ipref;
    526    1.1   mycroft 	int cg, error;
    527   1.81     perry 
    528  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    529  1.111    simonb 
    530   1.88      yamt 	*vpp = NULL;
    531    1.1   mycroft 	pip = VTOI(pvp);
    532    1.1   mycroft 	fs = pip->i_fs;
    533  1.101        ad 	ump = pip->i_ump;
    534  1.101        ad 
    535  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    536  1.111    simonb 	if (error) {
    537  1.111    simonb 		return error;
    538  1.111    simonb 	}
    539  1.101        ad 	mutex_enter(&ump->um_lock);
    540    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    541    1.1   mycroft 		goto noinodes;
    542    1.1   mycroft 
    543    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    544   1.50     lukem 		ipref = ffs_dirpref(pip);
    545   1.50     lukem 	else
    546   1.50     lukem 		ipref = pip->i_number;
    547    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    548    1.1   mycroft 		ipref = 0;
    549    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    550   1.50     lukem 	/*
    551   1.50     lukem 	 * Track number of dirs created one after another
    552   1.50     lukem 	 * in a same cg without intervening by files.
    553   1.50     lukem 	 */
    554   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    555   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    556   1.50     lukem 			fs->fs_contigdirs[cg]++;
    557   1.50     lukem 	} else {
    558   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    559   1.50     lukem 			fs->fs_contigdirs[cg]--;
    560   1.50     lukem 	}
    561  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    562    1.1   mycroft 	if (ino == 0)
    563    1.1   mycroft 		goto noinodes;
    564  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    565   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    566    1.1   mycroft 	if (error) {
    567  1.111    simonb 		int err;
    568  1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    569  1.111    simonb 		if (err == 0)
    570  1.111    simonb 			ffs_vfree(pvp, ino, mode);
    571  1.111    simonb 		if (err == 0)
    572  1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    573    1.1   mycroft 		return (error);
    574    1.1   mycroft 	}
    575   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    576   1.88      yamt 	ip = VTOI(*vpp);
    577   1.60      fvdl 	if (ip->i_mode) {
    578   1.60      fvdl #if 0
    579   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    580   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    581   1.60      fvdl #else
    582   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    583   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    584   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    585   1.60      fvdl 		printf("size %llx blocks %llx\n",
    586   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    587   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    588   1.86  christos 		    (unsigned long long)ipref);
    589   1.60      fvdl #if 0
    590   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    591  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    592   1.60      fvdl #endif
    593   1.60      fvdl 
    594   1.60      fvdl #endif
    595    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    596    1.1   mycroft 	}
    597   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    598   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    599   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    600   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    601    1.1   mycroft 	}
    602   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    603   1.61      fvdl 	ip->i_flags = 0;
    604   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    605    1.1   mycroft 	/*
    606    1.1   mycroft 	 * Set up a new generation number for this inode.
    607    1.1   mycroft 	 */
    608   1.60      fvdl 	ip->i_gen++;
    609   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    610   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    611   1.93      yamt 		vfs_timestamp(&ts);
    612   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    613   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    614   1.60      fvdl 	}
    615    1.1   mycroft 	return (0);
    616    1.1   mycroft noinodes:
    617  1.101        ad 	mutex_exit(&ump->um_lock);
    618  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    619   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    620    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    621    1.1   mycroft 	return (ENOSPC);
    622    1.1   mycroft }
    623    1.1   mycroft 
    624    1.1   mycroft /*
    625   1.50     lukem  * Find a cylinder group in which to place a directory.
    626   1.42  sommerfe  *
    627   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    628   1.50     lukem  * directory inode in the same cylinder group as its parent
    629   1.50     lukem  * directory, but also to reserve space for its files inodes
    630   1.50     lukem  * and data. Restrict the number of directories which may be
    631   1.50     lukem  * allocated one after another in the same cylinder group
    632   1.50     lukem  * without intervening allocation of files.
    633   1.42  sommerfe  *
    634   1.50     lukem  * If we allocate a first level directory then force allocation
    635   1.50     lukem  * in another cylinder group.
    636    1.1   mycroft  */
    637    1.1   mycroft static ino_t
    638   1.85   thorpej ffs_dirpref(struct inode *pip)
    639    1.1   mycroft {
    640   1.50     lukem 	register struct fs *fs;
    641   1.74     soren 	int cg, prefcg;
    642   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    643   1.89       dsl 	int avgifree, avgbfree, avgndir;
    644   1.50     lukem 	int minifree, minbfree, maxndir;
    645   1.50     lukem 	int mincg, minndir;
    646   1.50     lukem 	int maxcontigdirs;
    647   1.50     lukem 
    648  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    649  1.101        ad 
    650   1.50     lukem 	fs = pip->i_fs;
    651    1.1   mycroft 
    652    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    653   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    654   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    655   1.50     lukem 
    656   1.50     lukem 	/*
    657   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    658   1.50     lukem 	 */
    659  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    660   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    661   1.50     lukem 		mincg = prefcg;
    662   1.50     lukem 		minndir = fs->fs_ipg;
    663   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    664   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    665   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    666   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    667   1.42  sommerfe 				mincg = cg;
    668   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    669   1.42  sommerfe 			}
    670   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    671   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    672   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    673   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    674   1.50     lukem 				mincg = cg;
    675   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    676   1.42  sommerfe 			}
    677   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    678   1.42  sommerfe 	}
    679   1.50     lukem 
    680   1.50     lukem 	/*
    681   1.50     lukem 	 * Count various limits which used for
    682   1.50     lukem 	 * optimal allocation of a directory inode.
    683   1.50     lukem 	 */
    684   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    685   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    686   1.50     lukem 	if (minifree < 0)
    687   1.50     lukem 		minifree = 0;
    688   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    689   1.50     lukem 	if (minbfree < 0)
    690   1.50     lukem 		minbfree = 0;
    691   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    692   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    693   1.89       dsl 	if (avgndir != 0) {
    694   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    695   1.89       dsl 		if (dirsize < curdsz)
    696   1.89       dsl 			dirsize = curdsz;
    697   1.89       dsl 	}
    698   1.89       dsl 	if (cgsize < dirsize * 255)
    699   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    700   1.89       dsl 	else
    701   1.89       dsl 		maxcontigdirs = 255;
    702   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    703   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    704   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    705   1.50     lukem 	if (maxcontigdirs == 0)
    706   1.50     lukem 		maxcontigdirs = 1;
    707   1.50     lukem 
    708   1.50     lukem 	/*
    709   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    710   1.50     lukem 	 * regular files, but only if we have no deficit in
    711   1.50     lukem 	 * inodes or space.
    712   1.50     lukem 	 */
    713   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    714   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    715   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    716   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    717   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    718   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    719   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    720   1.50     lukem 		}
    721   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    722   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    723   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    724   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    725   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    726   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    727   1.50     lukem 		}
    728   1.50     lukem 	/*
    729   1.50     lukem 	 * This is a backstop when we are deficient in space.
    730   1.50     lukem 	 */
    731   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    732   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    733   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    734   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    735   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    736   1.50     lukem 			break;
    737   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    738    1.1   mycroft }
    739    1.1   mycroft 
    740    1.1   mycroft /*
    741    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    742    1.1   mycroft  * logically divided into sections. The first section is composed of the
    743    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    744   1.81     perry  *
    745    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    746    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    747    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    748    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    749    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    750    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    751    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    752    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    753    1.1   mycroft  * continues until a cylinder group with greater than the average number
    754    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    755    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    756    1.1   mycroft  * here a best guess is made based upon the logical block number being
    757    1.1   mycroft  * allocated.
    758   1.81     perry  *
    759    1.1   mycroft  * If a section is already partially allocated, the policy is to
    760    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    761   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    762   1.60      fvdl  * contigously if possible.
    763  1.106     pooka  *
    764  1.106     pooka  * => um_lock held on entry and exit
    765    1.1   mycroft  */
    766   1.58      fvdl daddr_t
    767  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    768   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    769    1.1   mycroft {
    770   1.33  augustss 	struct fs *fs;
    771   1.33  augustss 	int cg;
    772    1.1   mycroft 	int avgbfree, startcg;
    773    1.1   mycroft 
    774  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    775  1.101        ad 
    776    1.1   mycroft 	fs = ip->i_fs;
    777  1.111    simonb 
    778  1.111    simonb 	/*
    779  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    780  1.111    simonb 	 * in the inode extentions to return the desired block.
    781  1.111    simonb 	 *
    782  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    783  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    784  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    785  1.111    simonb 	 * block.  For data, return the address of the actual block
    786  1.111    simonb 	 * relative to the address of the first data block.
    787  1.111    simonb 	 */
    788  1.111    simonb 	if (flags & B_CONTIG) {
    789  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    790  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    791  1.111    simonb 		if (flags & B_METAONLY)
    792  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    793  1.111    simonb 		else
    794  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    795  1.111    simonb 	}
    796  1.111    simonb 
    797    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    798   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    799    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    800  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    801    1.1   mycroft 		}
    802    1.1   mycroft 		/*
    803    1.1   mycroft 		 * Find a cylinder with greater than average number of
    804    1.1   mycroft 		 * unused data blocks.
    805    1.1   mycroft 		 */
    806    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    807    1.1   mycroft 			startcg =
    808    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    809    1.1   mycroft 		else
    810   1.19    bouyer 			startcg = dtog(fs,
    811   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    812    1.1   mycroft 		startcg %= fs->fs_ncg;
    813    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    814    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    815    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    816  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    817    1.1   mycroft 			}
    818   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    819    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    821    1.1   mycroft 			}
    822   1.35   thorpej 		return (0);
    823    1.1   mycroft 	}
    824    1.1   mycroft 	/*
    825   1.60      fvdl 	 * We just always try to lay things out contiguously.
    826   1.60      fvdl 	 */
    827   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    828   1.60      fvdl }
    829   1.60      fvdl 
    830   1.60      fvdl daddr_t
    831  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    832  1.111    simonb     int64_t *bap)
    833   1.60      fvdl {
    834   1.60      fvdl 	struct fs *fs;
    835   1.60      fvdl 	int cg;
    836   1.60      fvdl 	int avgbfree, startcg;
    837   1.60      fvdl 
    838  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    839  1.101        ad 
    840   1.60      fvdl 	fs = ip->i_fs;
    841  1.111    simonb 
    842  1.111    simonb 	/*
    843  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    844  1.111    simonb 	 * in the inode extentions to return the desired block.
    845  1.111    simonb 	 *
    846  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    847  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    848  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    849  1.111    simonb 	 * block.  For data, return the address of the actual block
    850  1.111    simonb 	 * relative to the address of the first data block.
    851  1.111    simonb 	 */
    852  1.111    simonb 	if (flags & B_CONTIG) {
    853  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    854  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    855  1.111    simonb 		if (flags & B_METAONLY)
    856  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    857  1.111    simonb 		else
    858  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    859  1.111    simonb 	}
    860  1.111    simonb 
    861   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    862   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    863   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    864  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    865   1.60      fvdl 		}
    866    1.1   mycroft 		/*
    867   1.60      fvdl 		 * Find a cylinder with greater than average number of
    868   1.60      fvdl 		 * unused data blocks.
    869    1.1   mycroft 		 */
    870   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    871   1.60      fvdl 			startcg =
    872   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    873   1.60      fvdl 		else
    874   1.60      fvdl 			startcg = dtog(fs,
    875   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    876   1.60      fvdl 		startcg %= fs->fs_ncg;
    877   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    878   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    879   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    880  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    881   1.60      fvdl 			}
    882   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    883   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    884  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    885   1.60      fvdl 			}
    886   1.60      fvdl 		return (0);
    887   1.60      fvdl 	}
    888   1.60      fvdl 	/*
    889   1.60      fvdl 	 * We just always try to lay things out contiguously.
    890   1.60      fvdl 	 */
    891   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    892    1.1   mycroft }
    893    1.1   mycroft 
    894   1.60      fvdl 
    895    1.1   mycroft /*
    896    1.1   mycroft  * Implement the cylinder overflow algorithm.
    897    1.1   mycroft  *
    898    1.1   mycroft  * The policy implemented by this algorithm is:
    899    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    900    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    901    1.1   mycroft  *   3) brute force search for a free block.
    902  1.106     pooka  *
    903  1.106     pooka  * => called with um_lock held
    904  1.106     pooka  * => returns with um_lock released on success, held on failure
    905  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    906    1.1   mycroft  */
    907    1.1   mycroft /*VARARGS5*/
    908   1.58      fvdl static daddr_t
    909   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    910   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    911  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    912    1.1   mycroft {
    913   1.33  augustss 	struct fs *fs;
    914   1.58      fvdl 	daddr_t result;
    915    1.1   mycroft 	int i, icg = cg;
    916    1.1   mycroft 
    917    1.1   mycroft 	fs = ip->i_fs;
    918    1.1   mycroft 	/*
    919    1.1   mycroft 	 * 1: preferred cylinder group
    920    1.1   mycroft 	 */
    921  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    922    1.1   mycroft 	if (result)
    923    1.1   mycroft 		return (result);
    924  1.111    simonb 
    925  1.111    simonb 	if (flags & B_CONTIG)
    926  1.111    simonb 		return (result);
    927    1.1   mycroft 	/*
    928    1.1   mycroft 	 * 2: quadratic rehash
    929    1.1   mycroft 	 */
    930    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    931    1.1   mycroft 		cg += i;
    932    1.1   mycroft 		if (cg >= fs->fs_ncg)
    933    1.1   mycroft 			cg -= fs->fs_ncg;
    934  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    935    1.1   mycroft 		if (result)
    936    1.1   mycroft 			return (result);
    937    1.1   mycroft 	}
    938    1.1   mycroft 	/*
    939    1.1   mycroft 	 * 3: brute force search
    940    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    941    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    942    1.1   mycroft 	 */
    943    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    944    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    945  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    946    1.1   mycroft 		if (result)
    947    1.1   mycroft 			return (result);
    948    1.1   mycroft 		cg++;
    949    1.1   mycroft 		if (cg == fs->fs_ncg)
    950    1.1   mycroft 			cg = 0;
    951    1.1   mycroft 	}
    952   1.35   thorpej 	return (0);
    953    1.1   mycroft }
    954    1.1   mycroft 
    955    1.1   mycroft /*
    956    1.1   mycroft  * Determine whether a fragment can be extended.
    957    1.1   mycroft  *
    958   1.81     perry  * Check to see if the necessary fragments are available, and
    959    1.1   mycroft  * if they are, allocate them.
    960  1.106     pooka  *
    961  1.106     pooka  * => called with um_lock held
    962  1.106     pooka  * => returns with um_lock released on success, held on failure
    963    1.1   mycroft  */
    964   1.58      fvdl static daddr_t
    965   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    966    1.1   mycroft {
    967  1.101        ad 	struct ufsmount *ump;
    968   1.33  augustss 	struct fs *fs;
    969   1.33  augustss 	struct cg *cgp;
    970    1.1   mycroft 	struct buf *bp;
    971   1.58      fvdl 	daddr_t bno;
    972    1.1   mycroft 	int frags, bbase;
    973    1.1   mycroft 	int i, error;
    974   1.62      fvdl 	u_int8_t *blksfree;
    975    1.1   mycroft 
    976    1.1   mycroft 	fs = ip->i_fs;
    977  1.101        ad 	ump = ip->i_ump;
    978  1.101        ad 
    979  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    980  1.101        ad 
    981    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    982   1.35   thorpej 		return (0);
    983    1.1   mycroft 	frags = numfrags(fs, nsize);
    984    1.1   mycroft 	bbase = fragnum(fs, bprev);
    985    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    986    1.1   mycroft 		/* cannot extend across a block boundary */
    987   1.35   thorpej 		return (0);
    988    1.1   mycroft 	}
    989  1.101        ad 	mutex_exit(&ump->um_lock);
    990    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    991  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    992  1.101        ad 	if (error)
    993  1.101        ad 		goto fail;
    994    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    995  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    996  1.101        ad 		goto fail;
    997   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    998   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    999   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1000   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1001    1.1   mycroft 	bno = dtogd(fs, bprev);
   1002   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1003    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1004  1.101        ad 		if (isclr(blksfree, bno + i))
   1005  1.101        ad 			goto fail;
   1006    1.1   mycroft 	/*
   1007    1.1   mycroft 	 * the current fragment can be extended
   1008    1.1   mycroft 	 * deduct the count on fragment being extended into
   1009    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1010    1.1   mycroft 	 * allocate the extended piece
   1011    1.1   mycroft 	 */
   1012    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1013   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1014    1.1   mycroft 			break;
   1015   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1016    1.1   mycroft 	if (i != frags)
   1017   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1018  1.101        ad 	mutex_enter(&ump->um_lock);
   1019    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1020   1.62      fvdl 		clrbit(blksfree, bno + i);
   1021   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1022    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1023    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1024    1.1   mycroft 	}
   1025    1.1   mycroft 	fs->fs_fmod = 1;
   1026  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1027  1.101        ad 	mutex_exit(&ump->um_lock);
   1028   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1029   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1030    1.1   mycroft 	bdwrite(bp);
   1031    1.1   mycroft 	return (bprev);
   1032  1.101        ad 
   1033  1.101        ad  fail:
   1034  1.101        ad  	brelse(bp, 0);
   1035  1.101        ad  	mutex_enter(&ump->um_lock);
   1036  1.101        ad  	return (0);
   1037    1.1   mycroft }
   1038    1.1   mycroft 
   1039    1.1   mycroft /*
   1040    1.1   mycroft  * Determine whether a block can be allocated.
   1041    1.1   mycroft  *
   1042    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1043    1.1   mycroft  * and if it is, allocate it.
   1044    1.1   mycroft  */
   1045   1.58      fvdl static daddr_t
   1046  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1047    1.1   mycroft {
   1048  1.101        ad 	struct ufsmount *ump;
   1049   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1050   1.30      fvdl 	struct cg *cgp;
   1051    1.1   mycroft 	struct buf *bp;
   1052   1.60      fvdl 	int32_t bno;
   1053   1.60      fvdl 	daddr_t blkno;
   1054   1.30      fvdl 	int error, frags, allocsiz, i;
   1055   1.62      fvdl 	u_int8_t *blksfree;
   1056   1.30      fvdl #ifdef FFS_EI
   1057   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1058   1.30      fvdl #endif
   1059    1.1   mycroft 
   1060  1.101        ad 	ump = ip->i_ump;
   1061  1.101        ad 
   1062  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1063  1.101        ad 
   1064    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1065   1.35   thorpej 		return (0);
   1066  1.101        ad 	mutex_exit(&ump->um_lock);
   1067    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1068  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1069  1.101        ad 	if (error)
   1070  1.101        ad 		goto fail;
   1071    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1072   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1073  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1074  1.101        ad 		goto fail;
   1075   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1076   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1077   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1078   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1079    1.1   mycroft 	if (size == fs->fs_bsize) {
   1080  1.101        ad 		mutex_enter(&ump->um_lock);
   1081  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1082   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1083  1.101        ad 		mutex_exit(&ump->um_lock);
   1084    1.1   mycroft 		bdwrite(bp);
   1085   1.60      fvdl 		return (blkno);
   1086    1.1   mycroft 	}
   1087    1.1   mycroft 	/*
   1088    1.1   mycroft 	 * check to see if any fragments are already available
   1089    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1090    1.1   mycroft 	 * it down to a smaller size if necessary
   1091    1.1   mycroft 	 */
   1092   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1093    1.1   mycroft 	frags = numfrags(fs, size);
   1094    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1095    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1096    1.1   mycroft 			break;
   1097    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1098    1.1   mycroft 		/*
   1099   1.81     perry 		 * no fragments were available, so a block will be
   1100    1.1   mycroft 		 * allocated, and hacked up
   1101    1.1   mycroft 		 */
   1102  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1103  1.101        ad 			goto fail;
   1104  1.101        ad 		mutex_enter(&ump->um_lock);
   1105  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1106   1.60      fvdl 		bno = dtogd(fs, blkno);
   1107    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1108   1.62      fvdl 			setbit(blksfree, bno + i);
   1109    1.1   mycroft 		i = fs->fs_frag - frags;
   1110   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1111    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1112   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1113    1.1   mycroft 		fs->fs_fmod = 1;
   1114   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1115   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1116  1.101        ad 		mutex_exit(&ump->um_lock);
   1117    1.1   mycroft 		bdwrite(bp);
   1118   1.60      fvdl 		return (blkno);
   1119    1.1   mycroft 	}
   1120   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1121   1.30      fvdl #if 0
   1122   1.30      fvdl 	/*
   1123   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1124   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1125   1.30      fvdl 	 */
   1126  1.101        ad 	if (bno < 0)
   1127  1.101        ad 		goto fail;
   1128   1.30      fvdl #endif
   1129    1.1   mycroft 	for (i = 0; i < frags; i++)
   1130   1.62      fvdl 		clrbit(blksfree, bno + i);
   1131  1.101        ad 	mutex_enter(&ump->um_lock);
   1132   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1133    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1134    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1135    1.1   mycroft 	fs->fs_fmod = 1;
   1136   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1137    1.1   mycroft 	if (frags != allocsiz)
   1138   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1139   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1140  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1141  1.101        ad 	mutex_exit(&ump->um_lock);
   1142   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1143   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1144    1.1   mycroft 	bdwrite(bp);
   1145   1.30      fvdl 	return blkno;
   1146  1.101        ad 
   1147  1.101        ad  fail:
   1148  1.101        ad  	brelse(bp, 0);
   1149  1.101        ad  	mutex_enter(&ump->um_lock);
   1150  1.101        ad  	return (0);
   1151    1.1   mycroft }
   1152    1.1   mycroft 
   1153    1.1   mycroft /*
   1154    1.1   mycroft  * Allocate a block in a cylinder group.
   1155    1.1   mycroft  *
   1156    1.1   mycroft  * This algorithm implements the following policy:
   1157    1.1   mycroft  *   1) allocate the requested block.
   1158    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1159    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1160    1.1   mycroft  *      specified cylinder group.
   1161    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1162    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1163    1.1   mycroft  */
   1164   1.58      fvdl static daddr_t
   1165  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1166    1.1   mycroft {
   1167  1.101        ad 	struct ufsmount *ump;
   1168   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1169   1.30      fvdl 	struct cg *cgp;
   1170   1.60      fvdl 	daddr_t blkno;
   1171   1.60      fvdl 	int32_t bno;
   1172   1.60      fvdl 	u_int8_t *blksfree;
   1173   1.30      fvdl #ifdef FFS_EI
   1174   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1175   1.30      fvdl #endif
   1176    1.1   mycroft 
   1177  1.101        ad 	ump = ip->i_ump;
   1178  1.101        ad 
   1179  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1180  1.101        ad 
   1181   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1182   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1183   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1184   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1185   1.60      fvdl 	} else {
   1186   1.60      fvdl 		bpref = blknum(fs, bpref);
   1187   1.60      fvdl 		bno = dtogd(fs, bpref);
   1188    1.1   mycroft 		/*
   1189   1.60      fvdl 		 * if the requested block is available, use it
   1190    1.1   mycroft 		 */
   1191   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1192   1.60      fvdl 			goto gotit;
   1193  1.111    simonb 		/*
   1194  1.111    simonb 		 * if the requested data block isn't available and we are
   1195  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1196  1.111    simonb 		 */
   1197  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1198  1.111    simonb 			return (0);
   1199    1.1   mycroft 	}
   1200  1.111    simonb 
   1201    1.1   mycroft 	/*
   1202   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1203    1.1   mycroft 	 */
   1204   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1205    1.1   mycroft 	if (bno < 0)
   1206   1.35   thorpej 		return (0);
   1207   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1208    1.1   mycroft gotit:
   1209    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1210   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1211   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1212   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1213    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1214   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1215   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1216   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1217   1.73       dbj 		int cylno;
   1218   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1219   1.75       dbj 		KASSERT(cylno >= 0);
   1220   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1221   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1222   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1223   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1224   1.73       dbj 		    needswap);
   1225   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1226   1.73       dbj 	}
   1227    1.1   mycroft 	fs->fs_fmod = 1;
   1228   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1229  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1230  1.101        ad 		mutex_exit(&ump->um_lock);
   1231   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1232  1.101        ad 		mutex_enter(&ump->um_lock);
   1233  1.101        ad 	}
   1234   1.30      fvdl 	return (blkno);
   1235    1.1   mycroft }
   1236    1.1   mycroft 
   1237    1.1   mycroft /*
   1238    1.1   mycroft  * Determine whether an inode can be allocated.
   1239    1.1   mycroft  *
   1240    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1241    1.1   mycroft  * allocate it using the following policy:
   1242    1.1   mycroft  *   1) allocate the requested inode.
   1243    1.1   mycroft  *   2) allocate the next available inode after the requested
   1244    1.1   mycroft  *      inode in the specified cylinder group.
   1245    1.1   mycroft  */
   1246   1.58      fvdl static daddr_t
   1247  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1248    1.1   mycroft {
   1249  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1250   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1251   1.33  augustss 	struct cg *cgp;
   1252   1.60      fvdl 	struct buf *bp, *ibp;
   1253   1.60      fvdl 	u_int8_t *inosused;
   1254    1.1   mycroft 	int error, start, len, loc, map, i;
   1255   1.60      fvdl 	int32_t initediblk;
   1256  1.112   hannken 	daddr_t nalloc;
   1257   1.60      fvdl 	struct ufs2_dinode *dp2;
   1258   1.19    bouyer #ifdef FFS_EI
   1259   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1260   1.19    bouyer #endif
   1261    1.1   mycroft 
   1262  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1263  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1264  1.101        ad 
   1265    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1266   1.35   thorpej 		return (0);
   1267  1.101        ad 	mutex_exit(&ump->um_lock);
   1268  1.112   hannken 	ibp = NULL;
   1269  1.112   hannken 	initediblk = -1;
   1270  1.112   hannken retry:
   1271    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1272  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1273  1.101        ad 	if (error)
   1274  1.101        ad 		goto fail;
   1275    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1276  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1277  1.101        ad 		goto fail;
   1278  1.112   hannken 
   1279  1.112   hannken 	if (ibp != NULL &&
   1280  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1281  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1282  1.112   hannken 		brelse(ibp, BC_INVAL);
   1283  1.112   hannken 		ibp = NULL;
   1284  1.112   hannken 	}
   1285  1.112   hannken 	/*
   1286  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1287  1.112   hannken 	 */
   1288  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1289  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1290  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1291  1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1292  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1293  1.112   hannken 			/*
   1294  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1295  1.112   hannken 			 * a deadlock when reading the inode block will
   1296  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1297  1.112   hannken 			 */
   1298  1.112   hannken 			brelse(bp, 0);
   1299  1.112   hannken 			bp = NULL;
   1300  1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1301  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1302  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1303  1.112   hannken 			if (error)
   1304  1.112   hannken 				goto fail;
   1305  1.112   hannken 			goto retry;
   1306  1.112   hannken 		}
   1307  1.112   hannken 	}
   1308  1.112   hannken 
   1309   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1310   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1311   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1312   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1313   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1314    1.1   mycroft 	if (ipref) {
   1315    1.1   mycroft 		ipref %= fs->fs_ipg;
   1316   1.60      fvdl 		if (isclr(inosused, ipref))
   1317    1.1   mycroft 			goto gotit;
   1318    1.1   mycroft 	}
   1319   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1320   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1321   1.19    bouyer 		NBBY);
   1322   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1323    1.1   mycroft 	if (loc == 0) {
   1324    1.1   mycroft 		len = start + 1;
   1325    1.1   mycroft 		start = 0;
   1326   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1327    1.1   mycroft 		if (loc == 0) {
   1328   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1329   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1330   1.19    bouyer 				fs->fs_fsmnt);
   1331    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1332    1.1   mycroft 			/* NOTREACHED */
   1333    1.1   mycroft 		}
   1334    1.1   mycroft 	}
   1335    1.1   mycroft 	i = start + len - loc;
   1336   1.60      fvdl 	map = inosused[i];
   1337    1.1   mycroft 	ipref = i * NBBY;
   1338    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1339    1.1   mycroft 		if ((map & i) == 0) {
   1340   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1341    1.1   mycroft 			goto gotit;
   1342    1.1   mycroft 		}
   1343    1.1   mycroft 	}
   1344   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1345    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1346    1.1   mycroft 	/* NOTREACHED */
   1347    1.1   mycroft gotit:
   1348  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1349  1.111    simonb 	    mode);
   1350   1.60      fvdl 	/*
   1351   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1352   1.60      fvdl 	 */
   1353  1.112   hannken 	if (ibp != NULL) {
   1354  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1355  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1356  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1357  1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1358   1.60      fvdl 			/*
   1359   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1360   1.60      fvdl 			 * random, after all.
   1361   1.60      fvdl 			 */
   1362   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1363   1.60      fvdl 			dp2++;
   1364   1.60      fvdl 		}
   1365   1.60      fvdl 		initediblk += INOPB(fs);
   1366   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1367   1.60      fvdl 	}
   1368   1.60      fvdl 
   1369  1.101        ad 	mutex_enter(&ump->um_lock);
   1370   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1371  1.101        ad 	setbit(inosused, ipref);
   1372  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1373  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1374  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1375  1.101        ad 	fs->fs_fmod = 1;
   1376  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1377  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1378  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1379  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1380  1.101        ad 	}
   1381  1.101        ad 	mutex_exit(&ump->um_lock);
   1382  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1383  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1384  1.112   hannken 	if (ibp != NULL) {
   1385  1.112   hannken 		bwrite(bp);
   1386  1.104   hannken 		bawrite(ibp);
   1387  1.112   hannken 	} else
   1388  1.112   hannken 		bdwrite(bp);
   1389    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1390  1.101        ad  fail:
   1391  1.112   hannken 	if (bp != NULL)
   1392  1.112   hannken 		brelse(bp, 0);
   1393  1.112   hannken 	if (ibp != NULL)
   1394  1.112   hannken 		brelse(ibp, BC_INVAL);
   1395  1.101        ad 	mutex_enter(&ump->um_lock);
   1396  1.101        ad 	return (0);
   1397    1.1   mycroft }
   1398    1.1   mycroft 
   1399    1.1   mycroft /*
   1400  1.111    simonb  * Allocate a block or fragment.
   1401  1.111    simonb  *
   1402  1.111    simonb  * The specified block or fragment is removed from the
   1403  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1404  1.111    simonb  *
   1405  1.111    simonb  * This implementation should mirror fs_blkfree
   1406  1.111    simonb  *
   1407  1.111    simonb  * => um_lock not held on entry or exit
   1408  1.111    simonb  */
   1409  1.111    simonb int
   1410  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1411  1.111    simonb {
   1412  1.116     joerg 	int error;
   1413  1.111    simonb 
   1414  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1415  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1416  1.116     joerg 	if (error)
   1417  1.116     joerg 		return error;
   1418  1.115     joerg 
   1419  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1420  1.115     joerg }
   1421  1.115     joerg 
   1422  1.115     joerg int
   1423  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1424  1.115     joerg {
   1425  1.115     joerg 	struct fs *fs = ump->um_fs;
   1426  1.115     joerg 	struct cg *cgp;
   1427  1.115     joerg 	struct buf *bp;
   1428  1.115     joerg 	int32_t fragno, cgbno;
   1429  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1430  1.115     joerg 	u_int8_t *blksfree;
   1431  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1432  1.115     joerg 
   1433  1.115     joerg 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1434  1.115     joerg 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1435  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1436  1.115     joerg 
   1437  1.115     joerg 	cg = dtog(fs, bno);
   1438  1.115     joerg 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1439  1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1440  1.111    simonb 	if (error) {
   1441  1.111    simonb 		brelse(bp, 0);
   1442  1.111    simonb 		return error;
   1443  1.111    simonb 	}
   1444  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1445  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1446  1.111    simonb 		brelse(bp, 0);
   1447  1.111    simonb 		return EIO;
   1448  1.111    simonb 	}
   1449  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1450  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1451  1.111    simonb 	cgbno = dtogd(fs, bno);
   1452  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1453  1.111    simonb 
   1454  1.111    simonb 	mutex_enter(&ump->um_lock);
   1455  1.111    simonb 	if (size == fs->fs_bsize) {
   1456  1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1457  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1458  1.111    simonb 			mutex_exit(&ump->um_lock);
   1459  1.111    simonb 			brelse(bp, 0);
   1460  1.111    simonb 			return EBUSY;
   1461  1.111    simonb 		}
   1462  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1463  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1464  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1465  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1466  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1467  1.111    simonb 	} else {
   1468  1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1469  1.111    simonb 
   1470  1.111    simonb 		frags = numfrags(fs, size);
   1471  1.111    simonb 		for (i = 0; i < frags; i++) {
   1472  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1473  1.111    simonb 				mutex_exit(&ump->um_lock);
   1474  1.111    simonb 				brelse(bp, 0);
   1475  1.111    simonb 				return EBUSY;
   1476  1.111    simonb 			}
   1477  1.111    simonb 		}
   1478  1.111    simonb 		/*
   1479  1.111    simonb 		 * if a complete block is being split, account for it
   1480  1.111    simonb 		 */
   1481  1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1482  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1483  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1484  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1485  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1486  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1487  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1488  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1489  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1490  1.111    simonb 		}
   1491  1.111    simonb 		/*
   1492  1.111    simonb 		 * decrement the counts associated with the old frags
   1493  1.111    simonb 		 */
   1494  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1495  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1496  1.111    simonb 		/*
   1497  1.111    simonb 		 * allocate the fragment
   1498  1.111    simonb 		 */
   1499  1.111    simonb 		for (i = 0; i < frags; i++) {
   1500  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1501  1.111    simonb 		}
   1502  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1503  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1504  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1505  1.111    simonb 		/*
   1506  1.111    simonb 		 * add back in counts associated with the new frags
   1507  1.111    simonb 		 */
   1508  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1509  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1510  1.111    simonb 	}
   1511  1.111    simonb 	fs->fs_fmod = 1;
   1512  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1513  1.111    simonb 	mutex_exit(&ump->um_lock);
   1514  1.111    simonb 	bdwrite(bp);
   1515  1.111    simonb 	return 0;
   1516  1.111    simonb }
   1517  1.111    simonb 
   1518  1.111    simonb /*
   1519    1.1   mycroft  * Free a block or fragment.
   1520    1.1   mycroft  *
   1521    1.1   mycroft  * The specified block or fragment is placed back in the
   1522   1.81     perry  * free map. If a fragment is deallocated, a possible
   1523    1.1   mycroft  * block reassembly is checked.
   1524  1.106     pooka  *
   1525  1.106     pooka  * => um_lock not held on entry or exit
   1526    1.1   mycroft  */
   1527    1.9  christos void
   1528   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1529   1.85   thorpej     ino_t inum)
   1530    1.1   mycroft {
   1531   1.33  augustss 	struct cg *cgp;
   1532    1.1   mycroft 	struct buf *bp;
   1533   1.76   hannken 	struct ufsmount *ump;
   1534   1.76   hannken 	daddr_t cgblkno;
   1535  1.116     joerg 	int error, cg;
   1536   1.76   hannken 	dev_t dev;
   1537  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1538   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1539    1.1   mycroft 
   1540  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1541  1.116     joerg 
   1542   1.76   hannken 	cg = dtog(fs, bno);
   1543  1.116     joerg 	dev = devvp->v_rdev;
   1544  1.116     joerg 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1545  1.116     joerg 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1546  1.116     joerg 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1547  1.116     joerg 		return;
   1548  1.116     joerg 
   1549  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1550  1.116     joerg 	if (error)
   1551  1.116     joerg 		return;
   1552  1.116     joerg 
   1553  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1554  1.116     joerg 	    NOCRED, B_MODIFY, &bp);
   1555  1.116     joerg 	if (error) {
   1556  1.116     joerg 		brelse(bp, 0);
   1557  1.116     joerg 		return;
   1558   1.76   hannken 	}
   1559  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1560  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1561  1.116     joerg 		brelse(bp, 0);
   1562  1.116     joerg 		return;
   1563    1.1   mycroft 	}
   1564   1.76   hannken 
   1565  1.116     joerg 	ffs_blkfree_common(ump, dev, bp, bno, size, devvp_is_snapshot);
   1566  1.116     joerg }
   1567  1.116     joerg 
   1568  1.116     joerg /*
   1569  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1570  1.116     joerg  *
   1571  1.116     joerg  * The specified block or fragment is placed back in the
   1572  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1573  1.116     joerg  * block reassembly is checked.
   1574  1.116     joerg  *
   1575  1.116     joerg  * => um_lock not held on entry or exit
   1576  1.116     joerg  */
   1577  1.116     joerg void
   1578  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1579  1.116     joerg     ino_t inum)
   1580  1.116     joerg {
   1581  1.116     joerg 	struct cg *cgp;
   1582  1.116     joerg 	struct buf *bp;
   1583  1.116     joerg 	struct ufsmount *ump;
   1584  1.116     joerg 	daddr_t cgblkno;
   1585  1.116     joerg 	int error, cg;
   1586  1.116     joerg 	dev_t dev;
   1587  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1588  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1589  1.116     joerg 
   1590  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1591  1.116     joerg 
   1592  1.116     joerg 	cg = dtog(fs, bno);
   1593  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1594  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1595  1.116     joerg 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1596  1.116     joerg 
   1597  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1598  1.116     joerg 	if (error)
   1599    1.1   mycroft 		return;
   1600  1.116     joerg 
   1601  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1602  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1603    1.1   mycroft 	if (error) {
   1604  1.101        ad 		brelse(bp, 0);
   1605    1.1   mycroft 		return;
   1606    1.1   mycroft 	}
   1607    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1608   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1609  1.101        ad 		brelse(bp, 0);
   1610    1.1   mycroft 		return;
   1611    1.1   mycroft 	}
   1612  1.116     joerg 
   1613  1.116     joerg 	ffs_blkfree_common(ump, dev, bp, bno, size, devvp_is_snapshot);
   1614  1.116     joerg }
   1615  1.116     joerg 
   1616  1.116     joerg static void
   1617  1.116     joerg ffs_blkfree_common(struct ufsmount *ump, dev_t dev, struct buf *bp,
   1618  1.116     joerg     daddr_t bno, long size, bool devvp_is_snapshot)
   1619  1.116     joerg {
   1620  1.116     joerg 	struct fs *fs = ump->um_fs;
   1621  1.116     joerg 	struct cg *cgp;
   1622  1.116     joerg 	int32_t fragno, cgbno;
   1623  1.116     joerg 	int i, cg, blk, frags, bbase;
   1624  1.116     joerg 	u_int8_t *blksfree;
   1625  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1626  1.116     joerg 
   1627  1.116     joerg 	cg = dtog(fs, bno);
   1628  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1629   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1630   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1631   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1632   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1633   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1634   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1635  1.101        ad 	mutex_enter(&ump->um_lock);
   1636    1.1   mycroft 	if (size == fs->fs_bsize) {
   1637   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1638   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1639  1.113   hannken 			if (devvp_is_snapshot) {
   1640  1.101        ad 				mutex_exit(&ump->um_lock);
   1641  1.101        ad 				brelse(bp, 0);
   1642   1.76   hannken 				return;
   1643   1.76   hannken 			}
   1644   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1645   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1646    1.1   mycroft 			panic("blkfree: freeing free block");
   1647    1.1   mycroft 		}
   1648   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1649   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1650   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1651    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1652    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1653   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1654   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1655   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1656   1.75       dbj 			KASSERT(i >= 0);
   1657   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1658   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1659   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1660   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1661   1.73       dbj 			    needswap);
   1662   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1663   1.73       dbj 		}
   1664    1.1   mycroft 	} else {
   1665   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1666    1.1   mycroft 		/*
   1667    1.1   mycroft 		 * decrement the counts associated with the old frags
   1668    1.1   mycroft 		 */
   1669   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1670   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1671    1.1   mycroft 		/*
   1672    1.1   mycroft 		 * deallocate the fragment
   1673    1.1   mycroft 		 */
   1674    1.1   mycroft 		frags = numfrags(fs, size);
   1675    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1676   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1677   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1678   1.59   tsutsui 				       ", fs = %s\n",
   1679   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1680    1.1   mycroft 				panic("blkfree: freeing free frag");
   1681    1.1   mycroft 			}
   1682   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1683    1.1   mycroft 		}
   1684   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1685    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1686   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1687    1.1   mycroft 		/*
   1688    1.1   mycroft 		 * add back in counts associated with the new frags
   1689    1.1   mycroft 		 */
   1690   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1691   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1692    1.1   mycroft 		/*
   1693    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1694    1.1   mycroft 		 */
   1695   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1696   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1697   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1698    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1699    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1700   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1701   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1702    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1703    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1704   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1705   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1706   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1707   1.75       dbj 				KASSERT(i >= 0);
   1708   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1709   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1710   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1711   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1712   1.73       dbj 				    bbase)], 1, needswap);
   1713   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1714   1.73       dbj 			}
   1715    1.1   mycroft 		}
   1716    1.1   mycroft 	}
   1717    1.1   mycroft 	fs->fs_fmod = 1;
   1718   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1719  1.101        ad 	mutex_exit(&ump->um_lock);
   1720    1.1   mycroft 	bdwrite(bp);
   1721    1.1   mycroft }
   1722    1.1   mycroft 
   1723    1.1   mycroft /*
   1724    1.1   mycroft  * Free an inode.
   1725   1.30      fvdl  */
   1726   1.30      fvdl int
   1727   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1728   1.30      fvdl {
   1729   1.30      fvdl 
   1730   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1731   1.88      yamt 		softdep_freefile(vp, ino, mode);
   1732   1.30      fvdl 		return (0);
   1733   1.30      fvdl 	}
   1734   1.88      yamt 	return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
   1735   1.30      fvdl }
   1736   1.30      fvdl 
   1737   1.30      fvdl /*
   1738   1.30      fvdl  * Do the actual free operation.
   1739    1.1   mycroft  * The specified inode is placed back in the free map.
   1740  1.111    simonb  *
   1741  1.111    simonb  * => um_lock not held on entry or exit
   1742    1.1   mycroft  */
   1743    1.1   mycroft int
   1744   1.85   thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1745    1.9  christos {
   1746  1.101        ad 	struct ufsmount *ump;
   1747   1.33  augustss 	struct cg *cgp;
   1748    1.1   mycroft 	struct buf *bp;
   1749    1.1   mycroft 	int error, cg;
   1750   1.76   hannken 	daddr_t cgbno;
   1751   1.62      fvdl 	u_int8_t *inosused;
   1752   1.78   hannken 	dev_t dev;
   1753  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1754   1.19    bouyer #ifdef FFS_EI
   1755   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1756   1.19    bouyer #endif
   1757    1.1   mycroft 
   1758  1.113   hannken 	if (!devvp_is_snapshot) {
   1759  1.113   hannken 		UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
   1760  1.113   hannken 	}
   1761  1.111    simonb 
   1762   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1763  1.113   hannken 	if (devvp_is_snapshot) {
   1764   1.78   hannken 		dev = VTOI(devvp)->i_devvp->v_rdev;
   1765  1.103   hannken 		ump = VFSTOUFS(devvp->v_mount);
   1766   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1767   1.76   hannken 	} else {
   1768   1.78   hannken 		dev = devvp->v_rdev;
   1769  1.103   hannken 		ump = VFSTOUFS(devvp->v_specmountpoint);
   1770   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1771   1.76   hannken 	}
   1772    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1773   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1774   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1775  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1776  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1777    1.1   mycroft 	if (error) {
   1778  1.101        ad 		brelse(bp, 0);
   1779   1.30      fvdl 		return (error);
   1780    1.1   mycroft 	}
   1781    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1782   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1783  1.101        ad 		brelse(bp, 0);
   1784    1.1   mycroft 		return (0);
   1785    1.1   mycroft 	}
   1786   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1787   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1788   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1789   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1790   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1791    1.1   mycroft 	ino %= fs->fs_ipg;
   1792   1.62      fvdl 	if (isclr(inosused, ino)) {
   1793   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1794   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1795   1.86  christos 		    fs->fs_fsmnt);
   1796    1.1   mycroft 		if (fs->fs_ronly == 0)
   1797    1.1   mycroft 			panic("ifree: freeing free inode");
   1798    1.1   mycroft 	}
   1799   1.62      fvdl 	clrbit(inosused, ino);
   1800  1.113   hannken 	if (!devvp_is_snapshot)
   1801  1.113   hannken 		UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
   1802  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1803   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1804   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1805   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1806  1.101        ad 	mutex_enter(&ump->um_lock);
   1807    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1808    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1809   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1810   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1811    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1812    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1813    1.1   mycroft 	}
   1814    1.1   mycroft 	fs->fs_fmod = 1;
   1815   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1816  1.101        ad 	mutex_exit(&ump->um_lock);
   1817    1.1   mycroft 	bdwrite(bp);
   1818    1.1   mycroft 	return (0);
   1819    1.1   mycroft }
   1820    1.1   mycroft 
   1821    1.1   mycroft /*
   1822   1.76   hannken  * Check to see if a file is free.
   1823   1.76   hannken  */
   1824   1.76   hannken int
   1825   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1826   1.76   hannken {
   1827   1.76   hannken 	struct cg *cgp;
   1828   1.76   hannken 	struct buf *bp;
   1829   1.76   hannken 	daddr_t cgbno;
   1830   1.76   hannken 	int ret, cg;
   1831   1.76   hannken 	u_int8_t *inosused;
   1832  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1833   1.76   hannken 
   1834   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1835  1.113   hannken 	if (devvp_is_snapshot)
   1836   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1837  1.113   hannken 	else
   1838   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1839   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1840   1.76   hannken 		return 1;
   1841  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1842  1.101        ad 		brelse(bp, 0);
   1843   1.76   hannken 		return 1;
   1844   1.76   hannken 	}
   1845   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1846   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1847  1.101        ad 		brelse(bp, 0);
   1848   1.76   hannken 		return 1;
   1849   1.76   hannken 	}
   1850   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1851   1.76   hannken 	ino %= fs->fs_ipg;
   1852   1.76   hannken 	ret = isclr(inosused, ino);
   1853  1.101        ad 	brelse(bp, 0);
   1854   1.76   hannken 	return ret;
   1855   1.76   hannken }
   1856   1.76   hannken 
   1857   1.76   hannken /*
   1858    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1859    1.1   mycroft  *
   1860    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1861    1.1   mycroft  * available.
   1862    1.1   mycroft  */
   1863   1.60      fvdl static int32_t
   1864   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1865    1.1   mycroft {
   1866   1.60      fvdl 	int32_t bno;
   1867    1.1   mycroft 	int start, len, loc, i;
   1868    1.1   mycroft 	int blk, field, subfield, pos;
   1869   1.19    bouyer 	int ostart, olen;
   1870   1.62      fvdl 	u_int8_t *blksfree;
   1871   1.30      fvdl #ifdef FFS_EI
   1872   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1873   1.30      fvdl #endif
   1874    1.1   mycroft 
   1875  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1876  1.101        ad 
   1877    1.1   mycroft 	/*
   1878    1.1   mycroft 	 * find the fragment by searching through the free block
   1879    1.1   mycroft 	 * map for an appropriate bit pattern
   1880    1.1   mycroft 	 */
   1881    1.1   mycroft 	if (bpref)
   1882    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1883    1.1   mycroft 	else
   1884   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1885   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1886    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1887   1.19    bouyer 	ostart = start;
   1888   1.19    bouyer 	olen = len;
   1889   1.45     lukem 	loc = scanc((u_int)len,
   1890   1.62      fvdl 		(const u_char *)&blksfree[start],
   1891   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1892   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1893    1.1   mycroft 	if (loc == 0) {
   1894    1.1   mycroft 		len = start + 1;
   1895    1.1   mycroft 		start = 0;
   1896   1.45     lukem 		loc = scanc((u_int)len,
   1897   1.62      fvdl 			(const u_char *)&blksfree[0],
   1898   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1899   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1900    1.1   mycroft 		if (loc == 0) {
   1901   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1902   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1903   1.20      ross 			printf("offset=%d %ld\n",
   1904   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1905   1.62      fvdl 				(long)blksfree - (long)cgp);
   1906   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1907    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1908    1.1   mycroft 			/* NOTREACHED */
   1909    1.1   mycroft 		}
   1910    1.1   mycroft 	}
   1911    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1912   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1913    1.1   mycroft 	/*
   1914    1.1   mycroft 	 * found the byte in the map
   1915    1.1   mycroft 	 * sift through the bits to find the selected frag
   1916    1.1   mycroft 	 */
   1917    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1918   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1919    1.1   mycroft 		blk <<= 1;
   1920    1.1   mycroft 		field = around[allocsiz];
   1921    1.1   mycroft 		subfield = inside[allocsiz];
   1922    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1923    1.1   mycroft 			if ((blk & field) == subfield)
   1924    1.1   mycroft 				return (bno + pos);
   1925    1.1   mycroft 			field <<= 1;
   1926    1.1   mycroft 			subfield <<= 1;
   1927    1.1   mycroft 		}
   1928    1.1   mycroft 	}
   1929   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1930    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1931   1.58      fvdl 	/* return (-1); */
   1932    1.1   mycroft }
   1933    1.1   mycroft 
   1934    1.1   mycroft /*
   1935    1.1   mycroft  * Update the cluster map because of an allocation or free.
   1936    1.1   mycroft  *
   1937    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1938    1.1   mycroft  */
   1939    1.9  christos void
   1940   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1941    1.1   mycroft {
   1942    1.4       cgd 	int32_t *sump;
   1943    1.5   mycroft 	int32_t *lp;
   1944    1.1   mycroft 	u_char *freemapp, *mapp;
   1945    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1946   1.30      fvdl #ifdef FFS_EI
   1947   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1948   1.30      fvdl #endif
   1949    1.1   mycroft 
   1950  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1951  1.101        ad 
   1952    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1953    1.1   mycroft 		return;
   1954   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1955   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1956    1.1   mycroft 	/*
   1957    1.1   mycroft 	 * Allocate or clear the actual block.
   1958    1.1   mycroft 	 */
   1959    1.1   mycroft 	if (cnt > 0)
   1960    1.1   mycroft 		setbit(freemapp, blkno);
   1961    1.1   mycroft 	else
   1962    1.1   mycroft 		clrbit(freemapp, blkno);
   1963    1.1   mycroft 	/*
   1964    1.1   mycroft 	 * Find the size of the cluster going forward.
   1965    1.1   mycroft 	 */
   1966    1.1   mycroft 	start = blkno + 1;
   1967    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1968   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1969   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1970    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1971    1.1   mycroft 	map = *mapp++;
   1972    1.1   mycroft 	bit = 1 << (start % NBBY);
   1973    1.1   mycroft 	for (i = start; i < end; i++) {
   1974    1.1   mycroft 		if ((map & bit) == 0)
   1975    1.1   mycroft 			break;
   1976    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1977    1.1   mycroft 			bit <<= 1;
   1978    1.1   mycroft 		} else {
   1979    1.1   mycroft 			map = *mapp++;
   1980    1.1   mycroft 			bit = 1;
   1981    1.1   mycroft 		}
   1982    1.1   mycroft 	}
   1983    1.1   mycroft 	forw = i - start;
   1984    1.1   mycroft 	/*
   1985    1.1   mycroft 	 * Find the size of the cluster going backward.
   1986    1.1   mycroft 	 */
   1987    1.1   mycroft 	start = blkno - 1;
   1988    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1989    1.1   mycroft 	if (end < 0)
   1990    1.1   mycroft 		end = -1;
   1991    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1992    1.1   mycroft 	map = *mapp--;
   1993    1.1   mycroft 	bit = 1 << (start % NBBY);
   1994    1.1   mycroft 	for (i = start; i > end; i--) {
   1995    1.1   mycroft 		if ((map & bit) == 0)
   1996    1.1   mycroft 			break;
   1997    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1998    1.1   mycroft 			bit >>= 1;
   1999    1.1   mycroft 		} else {
   2000    1.1   mycroft 			map = *mapp--;
   2001    1.1   mycroft 			bit = 1 << (NBBY - 1);
   2002    1.1   mycroft 		}
   2003    1.1   mycroft 	}
   2004    1.1   mycroft 	back = start - i;
   2005    1.1   mycroft 	/*
   2006    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2007    1.1   mycroft 	 * back clusters.
   2008    1.1   mycroft 	 */
   2009    1.1   mycroft 	i = back + forw + 1;
   2010    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2011    1.1   mycroft 		i = fs->fs_contigsumsize;
   2012   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2013    1.1   mycroft 	if (back > 0)
   2014   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2015    1.1   mycroft 	if (forw > 0)
   2016   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2017   1.19    bouyer 
   2018    1.5   mycroft 	/*
   2019    1.5   mycroft 	 * Update cluster summary information.
   2020    1.5   mycroft 	 */
   2021    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2022    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2023   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2024    1.5   mycroft 			break;
   2025   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2026    1.1   mycroft }
   2027    1.1   mycroft 
   2028    1.1   mycroft /*
   2029    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2030   1.81     perry  *
   2031    1.1   mycroft  * The form of the error message is:
   2032    1.1   mycroft  *	fs: error message
   2033    1.1   mycroft  */
   2034    1.1   mycroft static void
   2035   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2036    1.1   mycroft {
   2037    1.1   mycroft 
   2038   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2039   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2040    1.1   mycroft }
   2041