ffs_alloc.c revision 1.116 1 1.116 joerg /* $NetBSD: ffs_alloc.c,v 1.116 2008/12/01 13:22:06 joerg Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.111 simonb * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.116 joerg __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.116 2008/12/01 13:22:06 joerg Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.22 scottr #endif
79 1.1 mycroft
80 1.1 mycroft #include <sys/param.h>
81 1.1 mycroft #include <sys/systm.h>
82 1.1 mycroft #include <sys/buf.h>
83 1.111 simonb #include <sys/fstrans.h>
84 1.111 simonb #include <sys/kauth.h>
85 1.111 simonb #include <sys/kernel.h>
86 1.111 simonb #include <sys/mount.h>
87 1.1 mycroft #include <sys/proc.h>
88 1.111 simonb #include <sys/syslog.h>
89 1.1 mycroft #include <sys/vnode.h>
90 1.111 simonb #include <sys/wapbl.h>
91 1.29 mrg
92 1.76 hannken #include <miscfs/specfs/specdev.h>
93 1.1 mycroft #include <ufs/ufs/quota.h>
94 1.19 bouyer #include <ufs/ufs/ufsmount.h>
95 1.1 mycroft #include <ufs/ufs/inode.h>
96 1.9 christos #include <ufs/ufs/ufs_extern.h>
97 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
98 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
99 1.1 mycroft
100 1.1 mycroft #include <ufs/ffs/fs.h>
101 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
102 1.1 mycroft
103 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
106 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
107 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
108 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
109 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
110 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
111 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
112 1.85 thorpej daddr_t, int);
113 1.116 joerg static void ffs_blkfree_common(struct ufsmount *, dev_t, struct buf *,
114 1.116 joerg daddr_t, long, bool);
115 1.23 drochner
116 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
117 1.34 jdolecek int ffs_log_changeopt = 0;
118 1.34 jdolecek
119 1.23 drochner /* in ffs_tables.c */
120 1.40 jdolecek extern const int inside[], around[];
121 1.40 jdolecek extern const u_char * const fragtbl[];
122 1.1 mycroft
123 1.116 joerg /* Basic consistency check for block allocations */
124 1.116 joerg static int
125 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
126 1.116 joerg long size, dev_t dev, ino_t inum)
127 1.116 joerg {
128 1.116 joerg if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
129 1.116 joerg fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
130 1.116 joerg printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
131 1.116 joerg "size = %ld, fs = %s\n",
132 1.116 joerg dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
133 1.116 joerg panic("%s: bad size", func);
134 1.116 joerg }
135 1.116 joerg
136 1.116 joerg if (bno >= fs->fs_size) {
137 1.116 joerg printf("bad block %" PRId64 ", ino %llu\n", bno,
138 1.116 joerg (unsigned long long)inum);
139 1.116 joerg ffs_fserr(fs, inum, "bad block");
140 1.116 joerg return EINVAL;
141 1.116 joerg }
142 1.116 joerg return 0;
143 1.116 joerg }
144 1.116 joerg
145 1.1 mycroft /*
146 1.1 mycroft * Allocate a block in the file system.
147 1.81 perry *
148 1.1 mycroft * The size of the requested block is given, which must be some
149 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
150 1.1 mycroft * A preference may be optionally specified. If a preference is given
151 1.1 mycroft * the following hierarchy is used to allocate a block:
152 1.1 mycroft * 1) allocate the requested block.
153 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
154 1.1 mycroft * 3) allocate a block in the same cylinder group.
155 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
156 1.1 mycroft * available block is located.
157 1.47 wiz * If no block preference is given the following hierarchy is used
158 1.1 mycroft * to allocate a block:
159 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
160 1.1 mycroft * inode for the file.
161 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
162 1.1 mycroft * available block is located.
163 1.106 pooka *
164 1.106 pooka * => called with um_lock held
165 1.106 pooka * => releases um_lock before returning
166 1.1 mycroft */
167 1.9 christos int
168 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
169 1.91 elad kauth_cred_t cred, daddr_t *bnp)
170 1.1 mycroft {
171 1.101 ad struct ufsmount *ump;
172 1.62 fvdl struct fs *fs;
173 1.58 fvdl daddr_t bno;
174 1.9 christos int cg;
175 1.9 christos #ifdef QUOTA
176 1.9 christos int error;
177 1.9 christos #endif
178 1.81 perry
179 1.62 fvdl fs = ip->i_fs;
180 1.101 ad ump = ip->i_ump;
181 1.101 ad
182 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
183 1.62 fvdl
184 1.37 chs #ifdef UVM_PAGE_TRKOWN
185 1.51 chs if (ITOV(ip)->v_type == VREG &&
186 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
187 1.37 chs struct vm_page *pg;
188 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
189 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
190 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
191 1.37 chs
192 1.105 ad mutex_enter(&uobj->vmobjlock);
193 1.37 chs while (off < endoff) {
194 1.37 chs pg = uvm_pagelookup(uobj, off);
195 1.37 chs KASSERT(pg != NULL);
196 1.37 chs KASSERT(pg->owner == curproc->p_pid);
197 1.37 chs off += PAGE_SIZE;
198 1.37 chs }
199 1.105 ad mutex_exit(&uobj->vmobjlock);
200 1.37 chs }
201 1.37 chs #endif
202 1.37 chs
203 1.1 mycroft *bnp = 0;
204 1.1 mycroft #ifdef DIAGNOSTIC
205 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
206 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
207 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
208 1.1 mycroft panic("ffs_alloc: bad size");
209 1.1 mycroft }
210 1.1 mycroft if (cred == NOCRED)
211 1.56 provos panic("ffs_alloc: missing credential");
212 1.1 mycroft #endif /* DIAGNOSTIC */
213 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
214 1.1 mycroft goto nospace;
215 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
216 1.99 pooka kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
217 1.1 mycroft goto nospace;
218 1.1 mycroft #ifdef QUOTA
219 1.101 ad mutex_exit(&ump->um_lock);
220 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
221 1.1 mycroft return (error);
222 1.101 ad mutex_enter(&ump->um_lock);
223 1.1 mycroft #endif
224 1.111 simonb
225 1.1 mycroft if (bpref >= fs->fs_size)
226 1.1 mycroft bpref = 0;
227 1.1 mycroft if (bpref == 0)
228 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
229 1.1 mycroft else
230 1.1 mycroft cg = dtog(fs, bpref);
231 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
232 1.1 mycroft if (bno > 0) {
233 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
234 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
235 1.1 mycroft *bnp = bno;
236 1.1 mycroft return (0);
237 1.1 mycroft }
238 1.1 mycroft #ifdef QUOTA
239 1.1 mycroft /*
240 1.1 mycroft * Restore user's disk quota because allocation failed.
241 1.1 mycroft */
242 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
243 1.1 mycroft #endif
244 1.111 simonb if (flags & B_CONTIG) {
245 1.111 simonb /*
246 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
247 1.111 simonb * For the case where ffs_hashalloc() fails early
248 1.111 simonb * in the B_CONTIG case we reach here with um_lock
249 1.111 simonb * already unlocked, so we can't release it again
250 1.111 simonb * like in the normal error path. See kern/39206.
251 1.111 simonb *
252 1.111 simonb *
253 1.111 simonb * Fail silently - it's up to our caller to report
254 1.111 simonb * errors.
255 1.111 simonb */
256 1.111 simonb return (ENOSPC);
257 1.111 simonb }
258 1.1 mycroft nospace:
259 1.101 ad mutex_exit(&ump->um_lock);
260 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
261 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
262 1.1 mycroft return (ENOSPC);
263 1.1 mycroft }
264 1.1 mycroft
265 1.1 mycroft /*
266 1.1 mycroft * Reallocate a fragment to a bigger size
267 1.1 mycroft *
268 1.1 mycroft * The number and size of the old block is given, and a preference
269 1.1 mycroft * and new size is also specified. The allocator attempts to extend
270 1.1 mycroft * the original block. Failing that, the regular block allocator is
271 1.1 mycroft * invoked to get an appropriate block.
272 1.106 pooka *
273 1.106 pooka * => called with um_lock held
274 1.106 pooka * => return with um_lock released
275 1.1 mycroft */
276 1.9 christos int
277 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
278 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
279 1.1 mycroft {
280 1.101 ad struct ufsmount *ump;
281 1.62 fvdl struct fs *fs;
282 1.1 mycroft struct buf *bp;
283 1.1 mycroft int cg, request, error;
284 1.58 fvdl daddr_t bprev, bno;
285 1.25 thorpej
286 1.62 fvdl fs = ip->i_fs;
287 1.101 ad ump = ip->i_ump;
288 1.101 ad
289 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
290 1.101 ad
291 1.37 chs #ifdef UVM_PAGE_TRKOWN
292 1.37 chs if (ITOV(ip)->v_type == VREG) {
293 1.37 chs struct vm_page *pg;
294 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
295 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
296 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
297 1.37 chs
298 1.105 ad mutex_enter(&uobj->vmobjlock);
299 1.37 chs while (off < endoff) {
300 1.37 chs pg = uvm_pagelookup(uobj, off);
301 1.37 chs KASSERT(pg != NULL);
302 1.37 chs KASSERT(pg->owner == curproc->p_pid);
303 1.37 chs KASSERT((pg->flags & PG_CLEAN) == 0);
304 1.37 chs off += PAGE_SIZE;
305 1.37 chs }
306 1.105 ad mutex_exit(&uobj->vmobjlock);
307 1.37 chs }
308 1.37 chs #endif
309 1.37 chs
310 1.1 mycroft #ifdef DIAGNOSTIC
311 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
312 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
313 1.13 christos printf(
314 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
315 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
316 1.1 mycroft panic("ffs_realloccg: bad size");
317 1.1 mycroft }
318 1.1 mycroft if (cred == NOCRED)
319 1.56 provos panic("ffs_realloccg: missing credential");
320 1.1 mycroft #endif /* DIAGNOSTIC */
321 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
322 1.101 ad kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
323 1.101 ad mutex_exit(&ump->um_lock);
324 1.1 mycroft goto nospace;
325 1.101 ad }
326 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
327 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
328 1.60 fvdl else
329 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
330 1.60 fvdl
331 1.60 fvdl if (bprev == 0) {
332 1.59 tsutsui printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
333 1.59 tsutsui ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
334 1.1 mycroft panic("ffs_realloccg: bad bprev");
335 1.1 mycroft }
336 1.101 ad mutex_exit(&ump->um_lock);
337 1.101 ad
338 1.1 mycroft /*
339 1.1 mycroft * Allocate the extra space in the buffer.
340 1.1 mycroft */
341 1.37 chs if (bpp != NULL &&
342 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
343 1.101 ad brelse(bp, 0);
344 1.1 mycroft return (error);
345 1.1 mycroft }
346 1.1 mycroft #ifdef QUOTA
347 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
348 1.44 chs if (bpp != NULL) {
349 1.101 ad brelse(bp, 0);
350 1.44 chs }
351 1.1 mycroft return (error);
352 1.1 mycroft }
353 1.1 mycroft #endif
354 1.1 mycroft /*
355 1.1 mycroft * Check for extension in the existing location.
356 1.1 mycroft */
357 1.1 mycroft cg = dtog(fs, bprev);
358 1.101 ad mutex_enter(&ump->um_lock);
359 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
360 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
361 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
362 1.37 chs
363 1.37 chs if (bpp != NULL) {
364 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
365 1.37 chs panic("bad blockno");
366 1.72 pk allocbuf(bp, nsize, 1);
367 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
368 1.105 ad mutex_enter(bp->b_objlock);
369 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
370 1.105 ad bp->b_oflags |= BO_DONE;
371 1.105 ad mutex_exit(bp->b_objlock);
372 1.37 chs *bpp = bp;
373 1.37 chs }
374 1.37 chs if (blknop != NULL) {
375 1.37 chs *blknop = bno;
376 1.37 chs }
377 1.1 mycroft return (0);
378 1.1 mycroft }
379 1.1 mycroft /*
380 1.1 mycroft * Allocate a new disk location.
381 1.1 mycroft */
382 1.1 mycroft if (bpref >= fs->fs_size)
383 1.1 mycroft bpref = 0;
384 1.1 mycroft switch ((int)fs->fs_optim) {
385 1.1 mycroft case FS_OPTSPACE:
386 1.1 mycroft /*
387 1.81 perry * Allocate an exact sized fragment. Although this makes
388 1.81 perry * best use of space, we will waste time relocating it if
389 1.1 mycroft * the file continues to grow. If the fragmentation is
390 1.1 mycroft * less than half of the minimum free reserve, we choose
391 1.1 mycroft * to begin optimizing for time.
392 1.1 mycroft */
393 1.1 mycroft request = nsize;
394 1.1 mycroft if (fs->fs_minfree < 5 ||
395 1.1 mycroft fs->fs_cstotal.cs_nffree >
396 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
397 1.1 mycroft break;
398 1.34 jdolecek
399 1.34 jdolecek if (ffs_log_changeopt) {
400 1.34 jdolecek log(LOG_NOTICE,
401 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
402 1.34 jdolecek fs->fs_fsmnt);
403 1.34 jdolecek }
404 1.34 jdolecek
405 1.1 mycroft fs->fs_optim = FS_OPTTIME;
406 1.1 mycroft break;
407 1.1 mycroft case FS_OPTTIME:
408 1.1 mycroft /*
409 1.1 mycroft * At this point we have discovered a file that is trying to
410 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
411 1.1 mycroft * we allocate a full sized block, then free the unused portion.
412 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
413 1.1 mycroft * above will be able to grow it in place without further
414 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
415 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
416 1.1 mycroft * optimizing for space.
417 1.1 mycroft */
418 1.1 mycroft request = fs->fs_bsize;
419 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
420 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
421 1.1 mycroft break;
422 1.34 jdolecek
423 1.34 jdolecek if (ffs_log_changeopt) {
424 1.34 jdolecek log(LOG_NOTICE,
425 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
426 1.34 jdolecek fs->fs_fsmnt);
427 1.34 jdolecek }
428 1.34 jdolecek
429 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
430 1.1 mycroft break;
431 1.1 mycroft default:
432 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
433 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
434 1.1 mycroft panic("ffs_realloccg: bad optim");
435 1.1 mycroft /* NOTREACHED */
436 1.1 mycroft }
437 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
438 1.1 mycroft if (bno > 0) {
439 1.111 simonb if (!DOINGSOFTDEP(ITOV(ip))) {
440 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
441 1.111 simonb (ITOV(ip)->v_type != VREG)) {
442 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
443 1.111 simonb ip->i_ump->um_mountp, fsbtodb(fs, bprev),
444 1.111 simonb osize);
445 1.111 simonb } else
446 1.111 simonb ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
447 1.111 simonb ip->i_number);
448 1.111 simonb }
449 1.111 simonb if (nsize < request) {
450 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
451 1.111 simonb (ITOV(ip)->v_type != VREG)) {
452 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
453 1.111 simonb ip->i_ump->um_mountp,
454 1.111 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
455 1.111 simonb request - nsize);
456 1.111 simonb } else
457 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
458 1.111 simonb bno + numfrags(fs, nsize),
459 1.111 simonb (long)(request - nsize), ip->i_number);
460 1.111 simonb }
461 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
462 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
463 1.37 chs if (bpp != NULL) {
464 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
465 1.72 pk allocbuf(bp, nsize, 1);
466 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
467 1.105 ad mutex_enter(bp->b_objlock);
468 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
469 1.105 ad bp->b_oflags |= BO_DONE;
470 1.105 ad mutex_exit(bp->b_objlock);
471 1.37 chs *bpp = bp;
472 1.37 chs }
473 1.37 chs if (blknop != NULL) {
474 1.37 chs *blknop = bno;
475 1.37 chs }
476 1.1 mycroft return (0);
477 1.1 mycroft }
478 1.101 ad mutex_exit(&ump->um_lock);
479 1.101 ad
480 1.1 mycroft #ifdef QUOTA
481 1.1 mycroft /*
482 1.1 mycroft * Restore user's disk quota because allocation failed.
483 1.1 mycroft */
484 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
485 1.1 mycroft #endif
486 1.37 chs if (bpp != NULL) {
487 1.101 ad brelse(bp, 0);
488 1.37 chs }
489 1.37 chs
490 1.1 mycroft nospace:
491 1.1 mycroft /*
492 1.1 mycroft * no space available
493 1.1 mycroft */
494 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
495 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
496 1.1 mycroft return (ENOSPC);
497 1.1 mycroft }
498 1.1 mycroft
499 1.1 mycroft /*
500 1.1 mycroft * Allocate an inode in the file system.
501 1.81 perry *
502 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
503 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
504 1.1 mycroft * 1) allocate the preferred inode.
505 1.1 mycroft * 2) allocate an inode in the same cylinder group.
506 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
507 1.1 mycroft * available inode is located.
508 1.47 wiz * If no inode preference is given the following hierarchy is used
509 1.1 mycroft * to allocate an inode:
510 1.1 mycroft * 1) allocate an inode in cylinder group 0.
511 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
512 1.1 mycroft * available inode is located.
513 1.106 pooka *
514 1.106 pooka * => um_lock not held upon entry or return
515 1.1 mycroft */
516 1.9 christos int
517 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
518 1.88 yamt struct vnode **vpp)
519 1.9 christos {
520 1.101 ad struct ufsmount *ump;
521 1.33 augustss struct inode *pip;
522 1.33 augustss struct fs *fs;
523 1.33 augustss struct inode *ip;
524 1.60 fvdl struct timespec ts;
525 1.1 mycroft ino_t ino, ipref;
526 1.1 mycroft int cg, error;
527 1.81 perry
528 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
529 1.111 simonb
530 1.88 yamt *vpp = NULL;
531 1.1 mycroft pip = VTOI(pvp);
532 1.1 mycroft fs = pip->i_fs;
533 1.101 ad ump = pip->i_ump;
534 1.101 ad
535 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
536 1.111 simonb if (error) {
537 1.111 simonb return error;
538 1.111 simonb }
539 1.101 ad mutex_enter(&ump->um_lock);
540 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
541 1.1 mycroft goto noinodes;
542 1.1 mycroft
543 1.1 mycroft if ((mode & IFMT) == IFDIR)
544 1.50 lukem ipref = ffs_dirpref(pip);
545 1.50 lukem else
546 1.50 lukem ipref = pip->i_number;
547 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
548 1.1 mycroft ipref = 0;
549 1.1 mycroft cg = ino_to_cg(fs, ipref);
550 1.50 lukem /*
551 1.50 lukem * Track number of dirs created one after another
552 1.50 lukem * in a same cg without intervening by files.
553 1.50 lukem */
554 1.50 lukem if ((mode & IFMT) == IFDIR) {
555 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
556 1.50 lukem fs->fs_contigdirs[cg]++;
557 1.50 lukem } else {
558 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
559 1.50 lukem fs->fs_contigdirs[cg]--;
560 1.50 lukem }
561 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
562 1.1 mycroft if (ino == 0)
563 1.1 mycroft goto noinodes;
564 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
565 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
566 1.1 mycroft if (error) {
567 1.111 simonb int err;
568 1.111 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
569 1.111 simonb if (err == 0)
570 1.111 simonb ffs_vfree(pvp, ino, mode);
571 1.111 simonb if (err == 0)
572 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
573 1.1 mycroft return (error);
574 1.1 mycroft }
575 1.90 yamt KASSERT((*vpp)->v_type == VNON);
576 1.88 yamt ip = VTOI(*vpp);
577 1.60 fvdl if (ip->i_mode) {
578 1.60 fvdl #if 0
579 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
580 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
581 1.60 fvdl #else
582 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
583 1.60 fvdl DIP(ip, mode), ip->i_mode,
584 1.60 fvdl DIP(ip, gen), ip->i_gen);
585 1.60 fvdl printf("size %llx blocks %llx\n",
586 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
587 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
588 1.86 christos (unsigned long long)ipref);
589 1.60 fvdl #if 0
590 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
591 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
592 1.60 fvdl #endif
593 1.60 fvdl
594 1.60 fvdl #endif
595 1.1 mycroft panic("ffs_valloc: dup alloc");
596 1.1 mycroft }
597 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
598 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
599 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
600 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
601 1.1 mycroft }
602 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
603 1.61 fvdl ip->i_flags = 0;
604 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
605 1.1 mycroft /*
606 1.1 mycroft * Set up a new generation number for this inode.
607 1.1 mycroft */
608 1.60 fvdl ip->i_gen++;
609 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
610 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
611 1.93 yamt vfs_timestamp(&ts);
612 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
613 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
614 1.60 fvdl }
615 1.1 mycroft return (0);
616 1.1 mycroft noinodes:
617 1.101 ad mutex_exit(&ump->um_lock);
618 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
619 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
620 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
621 1.1 mycroft return (ENOSPC);
622 1.1 mycroft }
623 1.1 mycroft
624 1.1 mycroft /*
625 1.50 lukem * Find a cylinder group in which to place a directory.
626 1.42 sommerfe *
627 1.50 lukem * The policy implemented by this algorithm is to allocate a
628 1.50 lukem * directory inode in the same cylinder group as its parent
629 1.50 lukem * directory, but also to reserve space for its files inodes
630 1.50 lukem * and data. Restrict the number of directories which may be
631 1.50 lukem * allocated one after another in the same cylinder group
632 1.50 lukem * without intervening allocation of files.
633 1.42 sommerfe *
634 1.50 lukem * If we allocate a first level directory then force allocation
635 1.50 lukem * in another cylinder group.
636 1.1 mycroft */
637 1.1 mycroft static ino_t
638 1.85 thorpej ffs_dirpref(struct inode *pip)
639 1.1 mycroft {
640 1.50 lukem register struct fs *fs;
641 1.74 soren int cg, prefcg;
642 1.89 dsl int64_t dirsize, cgsize, curdsz;
643 1.89 dsl int avgifree, avgbfree, avgndir;
644 1.50 lukem int minifree, minbfree, maxndir;
645 1.50 lukem int mincg, minndir;
646 1.50 lukem int maxcontigdirs;
647 1.50 lukem
648 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
649 1.101 ad
650 1.50 lukem fs = pip->i_fs;
651 1.1 mycroft
652 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
653 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
654 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
655 1.50 lukem
656 1.50 lukem /*
657 1.50 lukem * Force allocation in another cg if creating a first level dir.
658 1.50 lukem */
659 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
660 1.71 mycroft prefcg = random() % fs->fs_ncg;
661 1.50 lukem mincg = prefcg;
662 1.50 lukem minndir = fs->fs_ipg;
663 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
664 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
665 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
666 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
667 1.42 sommerfe mincg = cg;
668 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
669 1.42 sommerfe }
670 1.50 lukem for (cg = 0; cg < prefcg; cg++)
671 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
672 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
673 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
674 1.50 lukem mincg = cg;
675 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
676 1.42 sommerfe }
677 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
678 1.42 sommerfe }
679 1.50 lukem
680 1.50 lukem /*
681 1.50 lukem * Count various limits which used for
682 1.50 lukem * optimal allocation of a directory inode.
683 1.50 lukem */
684 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
685 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
686 1.50 lukem if (minifree < 0)
687 1.50 lukem minifree = 0;
688 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
689 1.50 lukem if (minbfree < 0)
690 1.50 lukem minbfree = 0;
691 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
692 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
693 1.89 dsl if (avgndir != 0) {
694 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
695 1.89 dsl if (dirsize < curdsz)
696 1.89 dsl dirsize = curdsz;
697 1.89 dsl }
698 1.89 dsl if (cgsize < dirsize * 255)
699 1.89 dsl maxcontigdirs = cgsize / dirsize;
700 1.89 dsl else
701 1.89 dsl maxcontigdirs = 255;
702 1.50 lukem if (fs->fs_avgfpdir > 0)
703 1.50 lukem maxcontigdirs = min(maxcontigdirs,
704 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
705 1.50 lukem if (maxcontigdirs == 0)
706 1.50 lukem maxcontigdirs = 1;
707 1.50 lukem
708 1.50 lukem /*
709 1.81 perry * Limit number of dirs in one cg and reserve space for
710 1.50 lukem * regular files, but only if we have no deficit in
711 1.50 lukem * inodes or space.
712 1.50 lukem */
713 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
714 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
715 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
716 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
717 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
718 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
719 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
720 1.50 lukem }
721 1.50 lukem for (cg = 0; cg < prefcg; cg++)
722 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
723 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
724 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
725 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
726 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
727 1.50 lukem }
728 1.50 lukem /*
729 1.50 lukem * This is a backstop when we are deficient in space.
730 1.50 lukem */
731 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
732 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
733 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
734 1.50 lukem for (cg = 0; cg < prefcg; cg++)
735 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
736 1.50 lukem break;
737 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
738 1.1 mycroft }
739 1.1 mycroft
740 1.1 mycroft /*
741 1.1 mycroft * Select the desired position for the next block in a file. The file is
742 1.1 mycroft * logically divided into sections. The first section is composed of the
743 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
744 1.81 perry *
745 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
746 1.1 mycroft * request a block in the same cylinder group as the inode that describes
747 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
748 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
749 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
750 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
751 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
752 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
753 1.1 mycroft * continues until a cylinder group with greater than the average number
754 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
755 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
756 1.1 mycroft * here a best guess is made based upon the logical block number being
757 1.1 mycroft * allocated.
758 1.81 perry *
759 1.1 mycroft * If a section is already partially allocated, the policy is to
760 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
761 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
762 1.60 fvdl * contigously if possible.
763 1.106 pooka *
764 1.106 pooka * => um_lock held on entry and exit
765 1.1 mycroft */
766 1.58 fvdl daddr_t
767 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
768 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
769 1.1 mycroft {
770 1.33 augustss struct fs *fs;
771 1.33 augustss int cg;
772 1.1 mycroft int avgbfree, startcg;
773 1.1 mycroft
774 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
775 1.101 ad
776 1.1 mycroft fs = ip->i_fs;
777 1.111 simonb
778 1.111 simonb /*
779 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
780 1.111 simonb * in the inode extentions to return the desired block.
781 1.111 simonb *
782 1.111 simonb * For metadata (indirect blocks) return the address of where
783 1.111 simonb * the first indirect block resides - we'll scan for the next
784 1.111 simonb * available slot if we need to allocate more than one indirect
785 1.111 simonb * block. For data, return the address of the actual block
786 1.111 simonb * relative to the address of the first data block.
787 1.111 simonb */
788 1.111 simonb if (flags & B_CONTIG) {
789 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
790 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
791 1.111 simonb if (flags & B_METAONLY)
792 1.111 simonb return ip->i_ffs_first_indir_blk;
793 1.111 simonb else
794 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
795 1.111 simonb }
796 1.111 simonb
797 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
798 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
799 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
800 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
801 1.1 mycroft }
802 1.1 mycroft /*
803 1.1 mycroft * Find a cylinder with greater than average number of
804 1.1 mycroft * unused data blocks.
805 1.1 mycroft */
806 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
807 1.1 mycroft startcg =
808 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
809 1.1 mycroft else
810 1.19 bouyer startcg = dtog(fs,
811 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
812 1.1 mycroft startcg %= fs->fs_ncg;
813 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
814 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
815 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
816 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
817 1.1 mycroft }
818 1.52 lukem for (cg = 0; cg < startcg; cg++)
819 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
820 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
821 1.1 mycroft }
822 1.35 thorpej return (0);
823 1.1 mycroft }
824 1.1 mycroft /*
825 1.60 fvdl * We just always try to lay things out contiguously.
826 1.60 fvdl */
827 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
828 1.60 fvdl }
829 1.60 fvdl
830 1.60 fvdl daddr_t
831 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
832 1.111 simonb int64_t *bap)
833 1.60 fvdl {
834 1.60 fvdl struct fs *fs;
835 1.60 fvdl int cg;
836 1.60 fvdl int avgbfree, startcg;
837 1.60 fvdl
838 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
839 1.101 ad
840 1.60 fvdl fs = ip->i_fs;
841 1.111 simonb
842 1.111 simonb /*
843 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
844 1.111 simonb * in the inode extentions to return the desired block.
845 1.111 simonb *
846 1.111 simonb * For metadata (indirect blocks) return the address of where
847 1.111 simonb * the first indirect block resides - we'll scan for the next
848 1.111 simonb * available slot if we need to allocate more than one indirect
849 1.111 simonb * block. For data, return the address of the actual block
850 1.111 simonb * relative to the address of the first data block.
851 1.111 simonb */
852 1.111 simonb if (flags & B_CONTIG) {
853 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
854 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
855 1.111 simonb if (flags & B_METAONLY)
856 1.111 simonb return ip->i_ffs_first_indir_blk;
857 1.111 simonb else
858 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
859 1.111 simonb }
860 1.111 simonb
861 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
862 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
863 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
864 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
865 1.60 fvdl }
866 1.1 mycroft /*
867 1.60 fvdl * Find a cylinder with greater than average number of
868 1.60 fvdl * unused data blocks.
869 1.1 mycroft */
870 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
871 1.60 fvdl startcg =
872 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
873 1.60 fvdl else
874 1.60 fvdl startcg = dtog(fs,
875 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
876 1.60 fvdl startcg %= fs->fs_ncg;
877 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
878 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
879 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
880 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
881 1.60 fvdl }
882 1.60 fvdl for (cg = 0; cg < startcg; cg++)
883 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
884 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
885 1.60 fvdl }
886 1.60 fvdl return (0);
887 1.60 fvdl }
888 1.60 fvdl /*
889 1.60 fvdl * We just always try to lay things out contiguously.
890 1.60 fvdl */
891 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
892 1.1 mycroft }
893 1.1 mycroft
894 1.60 fvdl
895 1.1 mycroft /*
896 1.1 mycroft * Implement the cylinder overflow algorithm.
897 1.1 mycroft *
898 1.1 mycroft * The policy implemented by this algorithm is:
899 1.1 mycroft * 1) allocate the block in its requested cylinder group.
900 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
901 1.1 mycroft * 3) brute force search for a free block.
902 1.106 pooka *
903 1.106 pooka * => called with um_lock held
904 1.106 pooka * => returns with um_lock released on success, held on failure
905 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
906 1.1 mycroft */
907 1.1 mycroft /*VARARGS5*/
908 1.58 fvdl static daddr_t
909 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
910 1.85 thorpej int size /* size for data blocks, mode for inodes */,
911 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
912 1.1 mycroft {
913 1.33 augustss struct fs *fs;
914 1.58 fvdl daddr_t result;
915 1.1 mycroft int i, icg = cg;
916 1.1 mycroft
917 1.1 mycroft fs = ip->i_fs;
918 1.1 mycroft /*
919 1.1 mycroft * 1: preferred cylinder group
920 1.1 mycroft */
921 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
922 1.1 mycroft if (result)
923 1.1 mycroft return (result);
924 1.111 simonb
925 1.111 simonb if (flags & B_CONTIG)
926 1.111 simonb return (result);
927 1.1 mycroft /*
928 1.1 mycroft * 2: quadratic rehash
929 1.1 mycroft */
930 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
931 1.1 mycroft cg += i;
932 1.1 mycroft if (cg >= fs->fs_ncg)
933 1.1 mycroft cg -= fs->fs_ncg;
934 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
935 1.1 mycroft if (result)
936 1.1 mycroft return (result);
937 1.1 mycroft }
938 1.1 mycroft /*
939 1.1 mycroft * 3: brute force search
940 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
941 1.1 mycroft * and 1 is always checked in the quadratic rehash.
942 1.1 mycroft */
943 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
944 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
945 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
946 1.1 mycroft if (result)
947 1.1 mycroft return (result);
948 1.1 mycroft cg++;
949 1.1 mycroft if (cg == fs->fs_ncg)
950 1.1 mycroft cg = 0;
951 1.1 mycroft }
952 1.35 thorpej return (0);
953 1.1 mycroft }
954 1.1 mycroft
955 1.1 mycroft /*
956 1.1 mycroft * Determine whether a fragment can be extended.
957 1.1 mycroft *
958 1.81 perry * Check to see if the necessary fragments are available, and
959 1.1 mycroft * if they are, allocate them.
960 1.106 pooka *
961 1.106 pooka * => called with um_lock held
962 1.106 pooka * => returns with um_lock released on success, held on failure
963 1.1 mycroft */
964 1.58 fvdl static daddr_t
965 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
966 1.1 mycroft {
967 1.101 ad struct ufsmount *ump;
968 1.33 augustss struct fs *fs;
969 1.33 augustss struct cg *cgp;
970 1.1 mycroft struct buf *bp;
971 1.58 fvdl daddr_t bno;
972 1.1 mycroft int frags, bbase;
973 1.1 mycroft int i, error;
974 1.62 fvdl u_int8_t *blksfree;
975 1.1 mycroft
976 1.1 mycroft fs = ip->i_fs;
977 1.101 ad ump = ip->i_ump;
978 1.101 ad
979 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
980 1.101 ad
981 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
982 1.35 thorpej return (0);
983 1.1 mycroft frags = numfrags(fs, nsize);
984 1.1 mycroft bbase = fragnum(fs, bprev);
985 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
986 1.1 mycroft /* cannot extend across a block boundary */
987 1.35 thorpej return (0);
988 1.1 mycroft }
989 1.101 ad mutex_exit(&ump->um_lock);
990 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
991 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
992 1.101 ad if (error)
993 1.101 ad goto fail;
994 1.1 mycroft cgp = (struct cg *)bp->b_data;
995 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
996 1.101 ad goto fail;
997 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
998 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
999 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1000 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1001 1.1 mycroft bno = dtogd(fs, bprev);
1002 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1003 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1004 1.101 ad if (isclr(blksfree, bno + i))
1005 1.101 ad goto fail;
1006 1.1 mycroft /*
1007 1.1 mycroft * the current fragment can be extended
1008 1.1 mycroft * deduct the count on fragment being extended into
1009 1.1 mycroft * increase the count on the remaining fragment (if any)
1010 1.1 mycroft * allocate the extended piece
1011 1.1 mycroft */
1012 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1013 1.62 fvdl if (isclr(blksfree, bno + i))
1014 1.1 mycroft break;
1015 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1016 1.1 mycroft if (i != frags)
1017 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1018 1.101 ad mutex_enter(&ump->um_lock);
1019 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1020 1.62 fvdl clrbit(blksfree, bno + i);
1021 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1022 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1023 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1024 1.1 mycroft }
1025 1.1 mycroft fs->fs_fmod = 1;
1026 1.101 ad ACTIVECG_CLR(fs, cg);
1027 1.101 ad mutex_exit(&ump->um_lock);
1028 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1029 1.30 fvdl softdep_setup_blkmapdep(bp, fs, bprev);
1030 1.1 mycroft bdwrite(bp);
1031 1.1 mycroft return (bprev);
1032 1.101 ad
1033 1.101 ad fail:
1034 1.101 ad brelse(bp, 0);
1035 1.101 ad mutex_enter(&ump->um_lock);
1036 1.101 ad return (0);
1037 1.1 mycroft }
1038 1.1 mycroft
1039 1.1 mycroft /*
1040 1.1 mycroft * Determine whether a block can be allocated.
1041 1.1 mycroft *
1042 1.1 mycroft * Check to see if a block of the appropriate size is available,
1043 1.1 mycroft * and if it is, allocate it.
1044 1.1 mycroft */
1045 1.58 fvdl static daddr_t
1046 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1047 1.1 mycroft {
1048 1.101 ad struct ufsmount *ump;
1049 1.62 fvdl struct fs *fs = ip->i_fs;
1050 1.30 fvdl struct cg *cgp;
1051 1.1 mycroft struct buf *bp;
1052 1.60 fvdl int32_t bno;
1053 1.60 fvdl daddr_t blkno;
1054 1.30 fvdl int error, frags, allocsiz, i;
1055 1.62 fvdl u_int8_t *blksfree;
1056 1.30 fvdl #ifdef FFS_EI
1057 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1058 1.30 fvdl #endif
1059 1.1 mycroft
1060 1.101 ad ump = ip->i_ump;
1061 1.101 ad
1062 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1063 1.101 ad
1064 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1065 1.35 thorpej return (0);
1066 1.101 ad mutex_exit(&ump->um_lock);
1067 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1068 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1069 1.101 ad if (error)
1070 1.101 ad goto fail;
1071 1.1 mycroft cgp = (struct cg *)bp->b_data;
1072 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1073 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1074 1.101 ad goto fail;
1075 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1076 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1077 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1078 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1079 1.1 mycroft if (size == fs->fs_bsize) {
1080 1.101 ad mutex_enter(&ump->um_lock);
1081 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1082 1.76 hannken ACTIVECG_CLR(fs, cg);
1083 1.101 ad mutex_exit(&ump->um_lock);
1084 1.1 mycroft bdwrite(bp);
1085 1.60 fvdl return (blkno);
1086 1.1 mycroft }
1087 1.1 mycroft /*
1088 1.1 mycroft * check to see if any fragments are already available
1089 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1090 1.1 mycroft * it down to a smaller size if necessary
1091 1.1 mycroft */
1092 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1093 1.1 mycroft frags = numfrags(fs, size);
1094 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1095 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1096 1.1 mycroft break;
1097 1.1 mycroft if (allocsiz == fs->fs_frag) {
1098 1.1 mycroft /*
1099 1.81 perry * no fragments were available, so a block will be
1100 1.1 mycroft * allocated, and hacked up
1101 1.1 mycroft */
1102 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1103 1.101 ad goto fail;
1104 1.101 ad mutex_enter(&ump->um_lock);
1105 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1106 1.60 fvdl bno = dtogd(fs, blkno);
1107 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1108 1.62 fvdl setbit(blksfree, bno + i);
1109 1.1 mycroft i = fs->fs_frag - frags;
1110 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1111 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1112 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1113 1.1 mycroft fs->fs_fmod = 1;
1114 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1115 1.76 hannken ACTIVECG_CLR(fs, cg);
1116 1.101 ad mutex_exit(&ump->um_lock);
1117 1.1 mycroft bdwrite(bp);
1118 1.60 fvdl return (blkno);
1119 1.1 mycroft }
1120 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1121 1.30 fvdl #if 0
1122 1.30 fvdl /*
1123 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1124 1.58 fvdl * also: returning NULL as daddr_t ?
1125 1.30 fvdl */
1126 1.101 ad if (bno < 0)
1127 1.101 ad goto fail;
1128 1.30 fvdl #endif
1129 1.1 mycroft for (i = 0; i < frags; i++)
1130 1.62 fvdl clrbit(blksfree, bno + i);
1131 1.101 ad mutex_enter(&ump->um_lock);
1132 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1133 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1134 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1135 1.1 mycroft fs->fs_fmod = 1;
1136 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1137 1.1 mycroft if (frags != allocsiz)
1138 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1139 1.30 fvdl blkno = cg * fs->fs_fpg + bno;
1140 1.101 ad ACTIVECG_CLR(fs, cg);
1141 1.101 ad mutex_exit(&ump->um_lock);
1142 1.30 fvdl if (DOINGSOFTDEP(ITOV(ip)))
1143 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1144 1.1 mycroft bdwrite(bp);
1145 1.30 fvdl return blkno;
1146 1.101 ad
1147 1.101 ad fail:
1148 1.101 ad brelse(bp, 0);
1149 1.101 ad mutex_enter(&ump->um_lock);
1150 1.101 ad return (0);
1151 1.1 mycroft }
1152 1.1 mycroft
1153 1.1 mycroft /*
1154 1.1 mycroft * Allocate a block in a cylinder group.
1155 1.1 mycroft *
1156 1.1 mycroft * This algorithm implements the following policy:
1157 1.1 mycroft * 1) allocate the requested block.
1158 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1159 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1160 1.1 mycroft * specified cylinder group.
1161 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1162 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1163 1.1 mycroft */
1164 1.58 fvdl static daddr_t
1165 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1166 1.1 mycroft {
1167 1.101 ad struct ufsmount *ump;
1168 1.62 fvdl struct fs *fs = ip->i_fs;
1169 1.30 fvdl struct cg *cgp;
1170 1.60 fvdl daddr_t blkno;
1171 1.60 fvdl int32_t bno;
1172 1.60 fvdl u_int8_t *blksfree;
1173 1.30 fvdl #ifdef FFS_EI
1174 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1175 1.30 fvdl #endif
1176 1.1 mycroft
1177 1.101 ad ump = ip->i_ump;
1178 1.101 ad
1179 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1180 1.101 ad
1181 1.30 fvdl cgp = (struct cg *)bp->b_data;
1182 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1183 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1184 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1185 1.60 fvdl } else {
1186 1.60 fvdl bpref = blknum(fs, bpref);
1187 1.60 fvdl bno = dtogd(fs, bpref);
1188 1.1 mycroft /*
1189 1.60 fvdl * if the requested block is available, use it
1190 1.1 mycroft */
1191 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1192 1.60 fvdl goto gotit;
1193 1.111 simonb /*
1194 1.111 simonb * if the requested data block isn't available and we are
1195 1.111 simonb * trying to allocate a contiguous file, return an error.
1196 1.111 simonb */
1197 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1198 1.111 simonb return (0);
1199 1.1 mycroft }
1200 1.111 simonb
1201 1.1 mycroft /*
1202 1.60 fvdl * Take the next available block in this cylinder group.
1203 1.1 mycroft */
1204 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1205 1.1 mycroft if (bno < 0)
1206 1.35 thorpej return (0);
1207 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1208 1.1 mycroft gotit:
1209 1.1 mycroft blkno = fragstoblks(fs, bno);
1210 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1211 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1212 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1213 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1214 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1215 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1216 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1217 1.73 dbj int cylno;
1218 1.73 dbj cylno = old_cbtocylno(fs, bno);
1219 1.75 dbj KASSERT(cylno >= 0);
1220 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1221 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1222 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1223 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1224 1.73 dbj needswap);
1225 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1226 1.73 dbj }
1227 1.1 mycroft fs->fs_fmod = 1;
1228 1.30 fvdl blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
1229 1.101 ad if (DOINGSOFTDEP(ITOV(ip))) {
1230 1.101 ad mutex_exit(&ump->um_lock);
1231 1.30 fvdl softdep_setup_blkmapdep(bp, fs, blkno);
1232 1.101 ad mutex_enter(&ump->um_lock);
1233 1.101 ad }
1234 1.30 fvdl return (blkno);
1235 1.1 mycroft }
1236 1.1 mycroft
1237 1.1 mycroft /*
1238 1.1 mycroft * Determine whether an inode can be allocated.
1239 1.1 mycroft *
1240 1.1 mycroft * Check to see if an inode is available, and if it is,
1241 1.1 mycroft * allocate it using the following policy:
1242 1.1 mycroft * 1) allocate the requested inode.
1243 1.1 mycroft * 2) allocate the next available inode after the requested
1244 1.1 mycroft * inode in the specified cylinder group.
1245 1.1 mycroft */
1246 1.58 fvdl static daddr_t
1247 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1248 1.1 mycroft {
1249 1.101 ad struct ufsmount *ump = ip->i_ump;
1250 1.62 fvdl struct fs *fs = ip->i_fs;
1251 1.33 augustss struct cg *cgp;
1252 1.60 fvdl struct buf *bp, *ibp;
1253 1.60 fvdl u_int8_t *inosused;
1254 1.1 mycroft int error, start, len, loc, map, i;
1255 1.60 fvdl int32_t initediblk;
1256 1.112 hannken daddr_t nalloc;
1257 1.60 fvdl struct ufs2_dinode *dp2;
1258 1.19 bouyer #ifdef FFS_EI
1259 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1260 1.19 bouyer #endif
1261 1.1 mycroft
1262 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1263 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1264 1.101 ad
1265 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1266 1.35 thorpej return (0);
1267 1.101 ad mutex_exit(&ump->um_lock);
1268 1.112 hannken ibp = NULL;
1269 1.112 hannken initediblk = -1;
1270 1.112 hannken retry:
1271 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1272 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1273 1.101 ad if (error)
1274 1.101 ad goto fail;
1275 1.1 mycroft cgp = (struct cg *)bp->b_data;
1276 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1277 1.101 ad goto fail;
1278 1.112 hannken
1279 1.112 hannken if (ibp != NULL &&
1280 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1281 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1282 1.112 hannken brelse(ibp, BC_INVAL);
1283 1.112 hannken ibp = NULL;
1284 1.112 hannken }
1285 1.112 hannken /*
1286 1.112 hannken * Check to see if we need to initialize more inodes.
1287 1.112 hannken */
1288 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1289 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1290 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1291 1.112 hannken if (nalloc + INOPB(fs) > initediblk &&
1292 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1293 1.112 hannken /*
1294 1.112 hannken * We have to release the cg buffer here to prevent
1295 1.112 hannken * a deadlock when reading the inode block will
1296 1.112 hannken * run a copy-on-write that might use this cg.
1297 1.112 hannken */
1298 1.112 hannken brelse(bp, 0);
1299 1.112 hannken bp = NULL;
1300 1.112 hannken error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1301 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1302 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1303 1.112 hannken if (error)
1304 1.112 hannken goto fail;
1305 1.112 hannken goto retry;
1306 1.112 hannken }
1307 1.112 hannken }
1308 1.112 hannken
1309 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1310 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1311 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1312 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1313 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1314 1.1 mycroft if (ipref) {
1315 1.1 mycroft ipref %= fs->fs_ipg;
1316 1.60 fvdl if (isclr(inosused, ipref))
1317 1.1 mycroft goto gotit;
1318 1.1 mycroft }
1319 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1320 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1321 1.19 bouyer NBBY);
1322 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1323 1.1 mycroft if (loc == 0) {
1324 1.1 mycroft len = start + 1;
1325 1.1 mycroft start = 0;
1326 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1327 1.1 mycroft if (loc == 0) {
1328 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1329 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1330 1.19 bouyer fs->fs_fsmnt);
1331 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1332 1.1 mycroft /* NOTREACHED */
1333 1.1 mycroft }
1334 1.1 mycroft }
1335 1.1 mycroft i = start + len - loc;
1336 1.60 fvdl map = inosused[i];
1337 1.1 mycroft ipref = i * NBBY;
1338 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1339 1.1 mycroft if ((map & i) == 0) {
1340 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1341 1.1 mycroft goto gotit;
1342 1.1 mycroft }
1343 1.1 mycroft }
1344 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1345 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1346 1.1 mycroft /* NOTREACHED */
1347 1.1 mycroft gotit:
1348 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1349 1.111 simonb mode);
1350 1.60 fvdl /*
1351 1.60 fvdl * Check to see if we need to initialize more inodes.
1352 1.60 fvdl */
1353 1.112 hannken if (ibp != NULL) {
1354 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1355 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1356 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1357 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1358 1.60 fvdl /*
1359 1.60 fvdl * Don't bother to swap, it's supposed to be
1360 1.60 fvdl * random, after all.
1361 1.60 fvdl */
1362 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1363 1.60 fvdl dp2++;
1364 1.60 fvdl }
1365 1.60 fvdl initediblk += INOPB(fs);
1366 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1367 1.60 fvdl }
1368 1.60 fvdl
1369 1.101 ad mutex_enter(&ump->um_lock);
1370 1.76 hannken ACTIVECG_CLR(fs, cg);
1371 1.101 ad setbit(inosused, ipref);
1372 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1373 1.101 ad fs->fs_cstotal.cs_nifree--;
1374 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1375 1.101 ad fs->fs_fmod = 1;
1376 1.101 ad if ((mode & IFMT) == IFDIR) {
1377 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1378 1.101 ad fs->fs_cstotal.cs_ndir++;
1379 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1380 1.101 ad }
1381 1.101 ad mutex_exit(&ump->um_lock);
1382 1.101 ad if (DOINGSOFTDEP(ITOV(ip)))
1383 1.101 ad softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1384 1.112 hannken if (ibp != NULL) {
1385 1.112 hannken bwrite(bp);
1386 1.104 hannken bawrite(ibp);
1387 1.112 hannken } else
1388 1.112 hannken bdwrite(bp);
1389 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1390 1.101 ad fail:
1391 1.112 hannken if (bp != NULL)
1392 1.112 hannken brelse(bp, 0);
1393 1.112 hannken if (ibp != NULL)
1394 1.112 hannken brelse(ibp, BC_INVAL);
1395 1.101 ad mutex_enter(&ump->um_lock);
1396 1.101 ad return (0);
1397 1.1 mycroft }
1398 1.1 mycroft
1399 1.1 mycroft /*
1400 1.111 simonb * Allocate a block or fragment.
1401 1.111 simonb *
1402 1.111 simonb * The specified block or fragment is removed from the
1403 1.111 simonb * free map, possibly fragmenting a block in the process.
1404 1.111 simonb *
1405 1.111 simonb * This implementation should mirror fs_blkfree
1406 1.111 simonb *
1407 1.111 simonb * => um_lock not held on entry or exit
1408 1.111 simonb */
1409 1.111 simonb int
1410 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1411 1.111 simonb {
1412 1.116 joerg int error;
1413 1.111 simonb
1414 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1415 1.116 joerg ip->i_dev, ip->i_uid);
1416 1.116 joerg if (error)
1417 1.116 joerg return error;
1418 1.115 joerg
1419 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1420 1.115 joerg }
1421 1.115 joerg
1422 1.115 joerg int
1423 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1424 1.115 joerg {
1425 1.115 joerg struct fs *fs = ump->um_fs;
1426 1.115 joerg struct cg *cgp;
1427 1.115 joerg struct buf *bp;
1428 1.115 joerg int32_t fragno, cgbno;
1429 1.115 joerg int i, error, cg, blk, frags, bbase;
1430 1.115 joerg u_int8_t *blksfree;
1431 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1432 1.115 joerg
1433 1.115 joerg KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1434 1.115 joerg fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1435 1.115 joerg KASSERT(bno < fs->fs_size);
1436 1.115 joerg
1437 1.115 joerg cg = dtog(fs, bno);
1438 1.115 joerg error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1439 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1440 1.111 simonb if (error) {
1441 1.111 simonb brelse(bp, 0);
1442 1.111 simonb return error;
1443 1.111 simonb }
1444 1.111 simonb cgp = (struct cg *)bp->b_data;
1445 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1446 1.111 simonb brelse(bp, 0);
1447 1.111 simonb return EIO;
1448 1.111 simonb }
1449 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1450 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1451 1.111 simonb cgbno = dtogd(fs, bno);
1452 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1453 1.111 simonb
1454 1.111 simonb mutex_enter(&ump->um_lock);
1455 1.111 simonb if (size == fs->fs_bsize) {
1456 1.111 simonb fragno = fragstoblks(fs, cgbno);
1457 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1458 1.111 simonb mutex_exit(&ump->um_lock);
1459 1.111 simonb brelse(bp, 0);
1460 1.111 simonb return EBUSY;
1461 1.111 simonb }
1462 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1463 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1464 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1465 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1466 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1467 1.111 simonb } else {
1468 1.111 simonb bbase = cgbno - fragnum(fs, cgbno);
1469 1.111 simonb
1470 1.111 simonb frags = numfrags(fs, size);
1471 1.111 simonb for (i = 0; i < frags; i++) {
1472 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1473 1.111 simonb mutex_exit(&ump->um_lock);
1474 1.111 simonb brelse(bp, 0);
1475 1.111 simonb return EBUSY;
1476 1.111 simonb }
1477 1.111 simonb }
1478 1.111 simonb /*
1479 1.111 simonb * if a complete block is being split, account for it
1480 1.111 simonb */
1481 1.111 simonb fragno = fragstoblks(fs, bbase);
1482 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1483 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1484 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1485 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1486 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1487 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1488 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1489 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1490 1.111 simonb }
1491 1.111 simonb /*
1492 1.111 simonb * decrement the counts associated with the old frags
1493 1.111 simonb */
1494 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1495 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1496 1.111 simonb /*
1497 1.111 simonb * allocate the fragment
1498 1.111 simonb */
1499 1.111 simonb for (i = 0; i < frags; i++) {
1500 1.111 simonb clrbit(blksfree, cgbno + i);
1501 1.111 simonb }
1502 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1503 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1504 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1505 1.111 simonb /*
1506 1.111 simonb * add back in counts associated with the new frags
1507 1.111 simonb */
1508 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1509 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1510 1.111 simonb }
1511 1.111 simonb fs->fs_fmod = 1;
1512 1.111 simonb ACTIVECG_CLR(fs, cg);
1513 1.111 simonb mutex_exit(&ump->um_lock);
1514 1.111 simonb bdwrite(bp);
1515 1.111 simonb return 0;
1516 1.111 simonb }
1517 1.111 simonb
1518 1.111 simonb /*
1519 1.1 mycroft * Free a block or fragment.
1520 1.1 mycroft *
1521 1.1 mycroft * The specified block or fragment is placed back in the
1522 1.81 perry * free map. If a fragment is deallocated, a possible
1523 1.1 mycroft * block reassembly is checked.
1524 1.106 pooka *
1525 1.106 pooka * => um_lock not held on entry or exit
1526 1.1 mycroft */
1527 1.9 christos void
1528 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1529 1.85 thorpej ino_t inum)
1530 1.1 mycroft {
1531 1.33 augustss struct cg *cgp;
1532 1.1 mycroft struct buf *bp;
1533 1.76 hannken struct ufsmount *ump;
1534 1.76 hannken daddr_t cgblkno;
1535 1.116 joerg int error, cg;
1536 1.76 hannken dev_t dev;
1537 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1538 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1539 1.1 mycroft
1540 1.116 joerg KASSERT(!devvp_is_snapshot);
1541 1.116 joerg
1542 1.76 hannken cg = dtog(fs, bno);
1543 1.116 joerg dev = devvp->v_rdev;
1544 1.116 joerg ump = VFSTOUFS(devvp->v_specmountpoint);
1545 1.116 joerg cgblkno = fsbtodb(fs, cgtod(fs, cg));
1546 1.116 joerg if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1547 1.116 joerg return;
1548 1.116 joerg
1549 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1550 1.116 joerg if (error)
1551 1.116 joerg return;
1552 1.116 joerg
1553 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1554 1.116 joerg NOCRED, B_MODIFY, &bp);
1555 1.116 joerg if (error) {
1556 1.116 joerg brelse(bp, 0);
1557 1.116 joerg return;
1558 1.76 hannken }
1559 1.116 joerg cgp = (struct cg *)bp->b_data;
1560 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1561 1.116 joerg brelse(bp, 0);
1562 1.116 joerg return;
1563 1.1 mycroft }
1564 1.76 hannken
1565 1.116 joerg ffs_blkfree_common(ump, dev, bp, bno, size, devvp_is_snapshot);
1566 1.116 joerg }
1567 1.116 joerg
1568 1.116 joerg /*
1569 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1570 1.116 joerg *
1571 1.116 joerg * The specified block or fragment is placed back in the
1572 1.116 joerg * free map. If a fragment is deallocated, a possible
1573 1.116 joerg * block reassembly is checked.
1574 1.116 joerg *
1575 1.116 joerg * => um_lock not held on entry or exit
1576 1.116 joerg */
1577 1.116 joerg void
1578 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1579 1.116 joerg ino_t inum)
1580 1.116 joerg {
1581 1.116 joerg struct cg *cgp;
1582 1.116 joerg struct buf *bp;
1583 1.116 joerg struct ufsmount *ump;
1584 1.116 joerg daddr_t cgblkno;
1585 1.116 joerg int error, cg;
1586 1.116 joerg dev_t dev;
1587 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1588 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1589 1.116 joerg
1590 1.116 joerg KASSERT(devvp_is_snapshot);
1591 1.116 joerg
1592 1.116 joerg cg = dtog(fs, bno);
1593 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1594 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1595 1.116 joerg cgblkno = fragstoblks(fs, cgtod(fs, cg));
1596 1.116 joerg
1597 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1598 1.116 joerg if (error)
1599 1.1 mycroft return;
1600 1.116 joerg
1601 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1602 1.107 hannken NOCRED, B_MODIFY, &bp);
1603 1.1 mycroft if (error) {
1604 1.101 ad brelse(bp, 0);
1605 1.1 mycroft return;
1606 1.1 mycroft }
1607 1.1 mycroft cgp = (struct cg *)bp->b_data;
1608 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1609 1.101 ad brelse(bp, 0);
1610 1.1 mycroft return;
1611 1.1 mycroft }
1612 1.116 joerg
1613 1.116 joerg ffs_blkfree_common(ump, dev, bp, bno, size, devvp_is_snapshot);
1614 1.116 joerg }
1615 1.116 joerg
1616 1.116 joerg static void
1617 1.116 joerg ffs_blkfree_common(struct ufsmount *ump, dev_t dev, struct buf *bp,
1618 1.116 joerg daddr_t bno, long size, bool devvp_is_snapshot)
1619 1.116 joerg {
1620 1.116 joerg struct fs *fs = ump->um_fs;
1621 1.116 joerg struct cg *cgp;
1622 1.116 joerg int32_t fragno, cgbno;
1623 1.116 joerg int i, cg, blk, frags, bbase;
1624 1.116 joerg u_int8_t *blksfree;
1625 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1626 1.116 joerg
1627 1.116 joerg cg = dtog(fs, bno);
1628 1.116 joerg cgp = (struct cg *)bp->b_data;
1629 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1630 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1631 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1632 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1633 1.60 fvdl cgbno = dtogd(fs, bno);
1634 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1635 1.101 ad mutex_enter(&ump->um_lock);
1636 1.1 mycroft if (size == fs->fs_bsize) {
1637 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1638 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1639 1.113 hannken if (devvp_is_snapshot) {
1640 1.101 ad mutex_exit(&ump->um_lock);
1641 1.101 ad brelse(bp, 0);
1642 1.76 hannken return;
1643 1.76 hannken }
1644 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
1645 1.76 hannken dev, bno, fs->fs_fsmnt);
1646 1.1 mycroft panic("blkfree: freeing free block");
1647 1.1 mycroft }
1648 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1649 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1650 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1651 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1652 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1653 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1654 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1655 1.73 dbj i = old_cbtocylno(fs, cgbno);
1656 1.75 dbj KASSERT(i >= 0);
1657 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1658 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1659 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1660 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1661 1.73 dbj needswap);
1662 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1663 1.73 dbj }
1664 1.1 mycroft } else {
1665 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1666 1.1 mycroft /*
1667 1.1 mycroft * decrement the counts associated with the old frags
1668 1.1 mycroft */
1669 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1670 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1671 1.1 mycroft /*
1672 1.1 mycroft * deallocate the fragment
1673 1.1 mycroft */
1674 1.1 mycroft frags = numfrags(fs, size);
1675 1.1 mycroft for (i = 0; i < frags; i++) {
1676 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1677 1.59 tsutsui printf("dev = 0x%x, block = %" PRId64
1678 1.59 tsutsui ", fs = %s\n",
1679 1.76 hannken dev, bno + i, fs->fs_fsmnt);
1680 1.1 mycroft panic("blkfree: freeing free frag");
1681 1.1 mycroft }
1682 1.62 fvdl setbit(blksfree, cgbno + i);
1683 1.1 mycroft }
1684 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1685 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1686 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1687 1.1 mycroft /*
1688 1.1 mycroft * add back in counts associated with the new frags
1689 1.1 mycroft */
1690 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1691 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1692 1.1 mycroft /*
1693 1.1 mycroft * if a complete block has been reassembled, account for it
1694 1.1 mycroft */
1695 1.60 fvdl fragno = fragstoblks(fs, bbase);
1696 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1697 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1698 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1699 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1700 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1701 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1702 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1703 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1704 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1705 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1706 1.73 dbj i = old_cbtocylno(fs, bbase);
1707 1.75 dbj KASSERT(i >= 0);
1708 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1709 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1710 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1711 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1712 1.73 dbj bbase)], 1, needswap);
1713 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1714 1.73 dbj }
1715 1.1 mycroft }
1716 1.1 mycroft }
1717 1.1 mycroft fs->fs_fmod = 1;
1718 1.76 hannken ACTIVECG_CLR(fs, cg);
1719 1.101 ad mutex_exit(&ump->um_lock);
1720 1.1 mycroft bdwrite(bp);
1721 1.1 mycroft }
1722 1.1 mycroft
1723 1.1 mycroft /*
1724 1.1 mycroft * Free an inode.
1725 1.30 fvdl */
1726 1.30 fvdl int
1727 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1728 1.30 fvdl {
1729 1.30 fvdl
1730 1.88 yamt if (DOINGSOFTDEP(vp)) {
1731 1.88 yamt softdep_freefile(vp, ino, mode);
1732 1.30 fvdl return (0);
1733 1.30 fvdl }
1734 1.88 yamt return ffs_freefile(VTOI(vp)->i_fs, VTOI(vp)->i_devvp, ino, mode);
1735 1.30 fvdl }
1736 1.30 fvdl
1737 1.30 fvdl /*
1738 1.30 fvdl * Do the actual free operation.
1739 1.1 mycroft * The specified inode is placed back in the free map.
1740 1.111 simonb *
1741 1.111 simonb * => um_lock not held on entry or exit
1742 1.1 mycroft */
1743 1.1 mycroft int
1744 1.85 thorpej ffs_freefile(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1745 1.9 christos {
1746 1.101 ad struct ufsmount *ump;
1747 1.33 augustss struct cg *cgp;
1748 1.1 mycroft struct buf *bp;
1749 1.1 mycroft int error, cg;
1750 1.76 hannken daddr_t cgbno;
1751 1.62 fvdl u_int8_t *inosused;
1752 1.78 hannken dev_t dev;
1753 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1754 1.19 bouyer #ifdef FFS_EI
1755 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1756 1.19 bouyer #endif
1757 1.1 mycroft
1758 1.113 hannken if (!devvp_is_snapshot) {
1759 1.113 hannken UFS_WAPBL_JLOCK_ASSERT(devvp->v_specinfo->si_mountpoint);
1760 1.113 hannken }
1761 1.111 simonb
1762 1.76 hannken cg = ino_to_cg(fs, ino);
1763 1.113 hannken if (devvp_is_snapshot) {
1764 1.78 hannken dev = VTOI(devvp)->i_devvp->v_rdev;
1765 1.103 hannken ump = VFSTOUFS(devvp->v_mount);
1766 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1767 1.76 hannken } else {
1768 1.78 hannken dev = devvp->v_rdev;
1769 1.103 hannken ump = VFSTOUFS(devvp->v_specmountpoint);
1770 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1771 1.76 hannken }
1772 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1773 1.86 christos panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
1774 1.86 christos dev, (unsigned long long)ino, fs->fs_fsmnt);
1775 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1776 1.107 hannken NOCRED, B_MODIFY, &bp);
1777 1.1 mycroft if (error) {
1778 1.101 ad brelse(bp, 0);
1779 1.30 fvdl return (error);
1780 1.1 mycroft }
1781 1.1 mycroft cgp = (struct cg *)bp->b_data;
1782 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1783 1.101 ad brelse(bp, 0);
1784 1.1 mycroft return (0);
1785 1.1 mycroft }
1786 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1787 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1788 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1789 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1790 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1791 1.1 mycroft ino %= fs->fs_ipg;
1792 1.62 fvdl if (isclr(inosused, ino)) {
1793 1.86 christos printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
1794 1.86 christos dev, (unsigned long long)ino + cg * fs->fs_ipg,
1795 1.86 christos fs->fs_fsmnt);
1796 1.1 mycroft if (fs->fs_ronly == 0)
1797 1.1 mycroft panic("ifree: freeing free inode");
1798 1.1 mycroft }
1799 1.62 fvdl clrbit(inosused, ino);
1800 1.113 hannken if (!devvp_is_snapshot)
1801 1.113 hannken UFS_WAPBL_UNREGISTER_INODE(devvp->v_specmountpoint,
1802 1.113 hannken ino + cg * fs->fs_ipg, mode);
1803 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1804 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1805 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1806 1.101 ad mutex_enter(&ump->um_lock);
1807 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1808 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1809 1.78 hannken if ((mode & IFMT) == IFDIR) {
1810 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1811 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1812 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1813 1.1 mycroft }
1814 1.1 mycroft fs->fs_fmod = 1;
1815 1.82 hannken ACTIVECG_CLR(fs, cg);
1816 1.101 ad mutex_exit(&ump->um_lock);
1817 1.1 mycroft bdwrite(bp);
1818 1.1 mycroft return (0);
1819 1.1 mycroft }
1820 1.1 mycroft
1821 1.1 mycroft /*
1822 1.76 hannken * Check to see if a file is free.
1823 1.76 hannken */
1824 1.76 hannken int
1825 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1826 1.76 hannken {
1827 1.76 hannken struct cg *cgp;
1828 1.76 hannken struct buf *bp;
1829 1.76 hannken daddr_t cgbno;
1830 1.76 hannken int ret, cg;
1831 1.76 hannken u_int8_t *inosused;
1832 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1833 1.76 hannken
1834 1.76 hannken cg = ino_to_cg(fs, ino);
1835 1.113 hannken if (devvp_is_snapshot)
1836 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1837 1.113 hannken else
1838 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1839 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1840 1.76 hannken return 1;
1841 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1842 1.101 ad brelse(bp, 0);
1843 1.76 hannken return 1;
1844 1.76 hannken }
1845 1.76 hannken cgp = (struct cg *)bp->b_data;
1846 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1847 1.101 ad brelse(bp, 0);
1848 1.76 hannken return 1;
1849 1.76 hannken }
1850 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1851 1.76 hannken ino %= fs->fs_ipg;
1852 1.76 hannken ret = isclr(inosused, ino);
1853 1.101 ad brelse(bp, 0);
1854 1.76 hannken return ret;
1855 1.76 hannken }
1856 1.76 hannken
1857 1.76 hannken /*
1858 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1859 1.1 mycroft *
1860 1.1 mycroft * It is a panic if a request is made to find a block if none are
1861 1.1 mycroft * available.
1862 1.1 mycroft */
1863 1.60 fvdl static int32_t
1864 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1865 1.1 mycroft {
1866 1.60 fvdl int32_t bno;
1867 1.1 mycroft int start, len, loc, i;
1868 1.1 mycroft int blk, field, subfield, pos;
1869 1.19 bouyer int ostart, olen;
1870 1.62 fvdl u_int8_t *blksfree;
1871 1.30 fvdl #ifdef FFS_EI
1872 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1873 1.30 fvdl #endif
1874 1.1 mycroft
1875 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1876 1.101 ad
1877 1.1 mycroft /*
1878 1.1 mycroft * find the fragment by searching through the free block
1879 1.1 mycroft * map for an appropriate bit pattern
1880 1.1 mycroft */
1881 1.1 mycroft if (bpref)
1882 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1883 1.1 mycroft else
1884 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1885 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1886 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1887 1.19 bouyer ostart = start;
1888 1.19 bouyer olen = len;
1889 1.45 lukem loc = scanc((u_int)len,
1890 1.62 fvdl (const u_char *)&blksfree[start],
1891 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1892 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1893 1.1 mycroft if (loc == 0) {
1894 1.1 mycroft len = start + 1;
1895 1.1 mycroft start = 0;
1896 1.45 lukem loc = scanc((u_int)len,
1897 1.62 fvdl (const u_char *)&blksfree[0],
1898 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1899 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1900 1.1 mycroft if (loc == 0) {
1901 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1902 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1903 1.20 ross printf("offset=%d %ld\n",
1904 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1905 1.62 fvdl (long)blksfree - (long)cgp);
1906 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1907 1.1 mycroft panic("ffs_alloccg: map corrupted");
1908 1.1 mycroft /* NOTREACHED */
1909 1.1 mycroft }
1910 1.1 mycroft }
1911 1.1 mycroft bno = (start + len - loc) * NBBY;
1912 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1913 1.1 mycroft /*
1914 1.1 mycroft * found the byte in the map
1915 1.1 mycroft * sift through the bits to find the selected frag
1916 1.1 mycroft */
1917 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1918 1.62 fvdl blk = blkmap(fs, blksfree, bno);
1919 1.1 mycroft blk <<= 1;
1920 1.1 mycroft field = around[allocsiz];
1921 1.1 mycroft subfield = inside[allocsiz];
1922 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1923 1.1 mycroft if ((blk & field) == subfield)
1924 1.1 mycroft return (bno + pos);
1925 1.1 mycroft field <<= 1;
1926 1.1 mycroft subfield <<= 1;
1927 1.1 mycroft }
1928 1.1 mycroft }
1929 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1930 1.1 mycroft panic("ffs_alloccg: block not in map");
1931 1.58 fvdl /* return (-1); */
1932 1.1 mycroft }
1933 1.1 mycroft
1934 1.1 mycroft /*
1935 1.1 mycroft * Update the cluster map because of an allocation or free.
1936 1.1 mycroft *
1937 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1938 1.1 mycroft */
1939 1.9 christos void
1940 1.85 thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1941 1.1 mycroft {
1942 1.4 cgd int32_t *sump;
1943 1.5 mycroft int32_t *lp;
1944 1.1 mycroft u_char *freemapp, *mapp;
1945 1.1 mycroft int i, start, end, forw, back, map, bit;
1946 1.30 fvdl #ifdef FFS_EI
1947 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1948 1.30 fvdl #endif
1949 1.1 mycroft
1950 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1951 1.101 ad
1952 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1953 1.1 mycroft return;
1954 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1955 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1956 1.1 mycroft /*
1957 1.1 mycroft * Allocate or clear the actual block.
1958 1.1 mycroft */
1959 1.1 mycroft if (cnt > 0)
1960 1.1 mycroft setbit(freemapp, blkno);
1961 1.1 mycroft else
1962 1.1 mycroft clrbit(freemapp, blkno);
1963 1.1 mycroft /*
1964 1.1 mycroft * Find the size of the cluster going forward.
1965 1.1 mycroft */
1966 1.1 mycroft start = blkno + 1;
1967 1.1 mycroft end = start + fs->fs_contigsumsize;
1968 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1969 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1970 1.1 mycroft mapp = &freemapp[start / NBBY];
1971 1.1 mycroft map = *mapp++;
1972 1.1 mycroft bit = 1 << (start % NBBY);
1973 1.1 mycroft for (i = start; i < end; i++) {
1974 1.1 mycroft if ((map & bit) == 0)
1975 1.1 mycroft break;
1976 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1977 1.1 mycroft bit <<= 1;
1978 1.1 mycroft } else {
1979 1.1 mycroft map = *mapp++;
1980 1.1 mycroft bit = 1;
1981 1.1 mycroft }
1982 1.1 mycroft }
1983 1.1 mycroft forw = i - start;
1984 1.1 mycroft /*
1985 1.1 mycroft * Find the size of the cluster going backward.
1986 1.1 mycroft */
1987 1.1 mycroft start = blkno - 1;
1988 1.1 mycroft end = start - fs->fs_contigsumsize;
1989 1.1 mycroft if (end < 0)
1990 1.1 mycroft end = -1;
1991 1.1 mycroft mapp = &freemapp[start / NBBY];
1992 1.1 mycroft map = *mapp--;
1993 1.1 mycroft bit = 1 << (start % NBBY);
1994 1.1 mycroft for (i = start; i > end; i--) {
1995 1.1 mycroft if ((map & bit) == 0)
1996 1.1 mycroft break;
1997 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1998 1.1 mycroft bit >>= 1;
1999 1.1 mycroft } else {
2000 1.1 mycroft map = *mapp--;
2001 1.1 mycroft bit = 1 << (NBBY - 1);
2002 1.1 mycroft }
2003 1.1 mycroft }
2004 1.1 mycroft back = start - i;
2005 1.1 mycroft /*
2006 1.1 mycroft * Account for old cluster and the possibly new forward and
2007 1.1 mycroft * back clusters.
2008 1.1 mycroft */
2009 1.1 mycroft i = back + forw + 1;
2010 1.1 mycroft if (i > fs->fs_contigsumsize)
2011 1.1 mycroft i = fs->fs_contigsumsize;
2012 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
2013 1.1 mycroft if (back > 0)
2014 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
2015 1.1 mycroft if (forw > 0)
2016 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
2017 1.19 bouyer
2018 1.5 mycroft /*
2019 1.5 mycroft * Update cluster summary information.
2020 1.5 mycroft */
2021 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
2022 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
2023 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
2024 1.5 mycroft break;
2025 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2026 1.1 mycroft }
2027 1.1 mycroft
2028 1.1 mycroft /*
2029 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2030 1.81 perry *
2031 1.1 mycroft * The form of the error message is:
2032 1.1 mycroft * fs: error message
2033 1.1 mycroft */
2034 1.1 mycroft static void
2035 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2036 1.1 mycroft {
2037 1.1 mycroft
2038 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2039 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2040 1.1 mycroft }
2041