Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.119
      1  1.119     joerg /*	$NetBSD: ffs_alloc.c,v 1.119 2008/12/06 20:05:55 joerg Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.111    simonb  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.119     joerg __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.119 2008/12/06 20:05:55 joerg Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78   1.22    scottr #endif
     79    1.1   mycroft 
     80    1.1   mycroft #include <sys/param.h>
     81    1.1   mycroft #include <sys/systm.h>
     82    1.1   mycroft #include <sys/buf.h>
     83  1.111    simonb #include <sys/fstrans.h>
     84  1.111    simonb #include <sys/kauth.h>
     85  1.111    simonb #include <sys/kernel.h>
     86  1.111    simonb #include <sys/mount.h>
     87    1.1   mycroft #include <sys/proc.h>
     88  1.111    simonb #include <sys/syslog.h>
     89    1.1   mycroft #include <sys/vnode.h>
     90  1.111    simonb #include <sys/wapbl.h>
     91   1.29       mrg 
     92   1.76   hannken #include <miscfs/specfs/specdev.h>
     93    1.1   mycroft #include <ufs/ufs/quota.h>
     94   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95    1.1   mycroft #include <ufs/ufs/inode.h>
     96    1.9  christos #include <ufs/ufs/ufs_extern.h>
     97   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99    1.1   mycroft 
    100    1.1   mycroft #include <ufs/ffs/fs.h>
    101    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102    1.1   mycroft 
    103  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112   1.85   thorpej 				      daddr_t, int);
    113  1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    114  1.116     joerg     daddr_t, long, bool);
    115  1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    116  1.119     joerg     int, bool);
    117   1.23  drochner 
    118   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    119   1.34  jdolecek int ffs_log_changeopt = 0;
    120   1.34  jdolecek 
    121   1.23  drochner /* in ffs_tables.c */
    122   1.40  jdolecek extern const int inside[], around[];
    123   1.40  jdolecek extern const u_char * const fragtbl[];
    124    1.1   mycroft 
    125  1.116     joerg /* Basic consistency check for block allocations */
    126  1.116     joerg static int
    127  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    128  1.116     joerg     long size, dev_t dev, ino_t inum)
    129  1.116     joerg {
    130  1.116     joerg 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    131  1.116     joerg 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    132  1.116     joerg 		printf("dev = 0x%x, bno = %" PRId64 " bsize = %d, "
    133  1.116     joerg 		       "size = %ld, fs = %s\n",
    134  1.116     joerg 		    dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    135  1.116     joerg 		panic("%s: bad size", func);
    136  1.116     joerg 	}
    137  1.116     joerg 
    138  1.116     joerg 	if (bno >= fs->fs_size) {
    139  1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    140  1.116     joerg 		    (unsigned long long)inum);
    141  1.116     joerg 		ffs_fserr(fs, inum, "bad block");
    142  1.116     joerg 		return EINVAL;
    143  1.116     joerg 	}
    144  1.116     joerg 	return 0;
    145  1.116     joerg }
    146  1.116     joerg 
    147    1.1   mycroft /*
    148    1.1   mycroft  * Allocate a block in the file system.
    149   1.81     perry  *
    150    1.1   mycroft  * The size of the requested block is given, which must be some
    151    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    152    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    153    1.1   mycroft  * the following hierarchy is used to allocate a block:
    154    1.1   mycroft  *   1) allocate the requested block.
    155    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    156    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    157    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    158    1.1   mycroft  *      available block is located.
    159   1.47       wiz  * If no block preference is given the following hierarchy is used
    160    1.1   mycroft  * to allocate a block:
    161    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    162    1.1   mycroft  *      inode for the file.
    163    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    164    1.1   mycroft  *      available block is located.
    165  1.106     pooka  *
    166  1.106     pooka  * => called with um_lock held
    167  1.106     pooka  * => releases um_lock before returning
    168    1.1   mycroft  */
    169    1.9  christos int
    170  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    171   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    172    1.1   mycroft {
    173  1.101        ad 	struct ufsmount *ump;
    174   1.62      fvdl 	struct fs *fs;
    175   1.58      fvdl 	daddr_t bno;
    176    1.9  christos 	int cg;
    177    1.9  christos #ifdef QUOTA
    178    1.9  christos 	int error;
    179    1.9  christos #endif
    180   1.81     perry 
    181   1.62      fvdl 	fs = ip->i_fs;
    182  1.101        ad 	ump = ip->i_ump;
    183  1.101        ad 
    184  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    185   1.62      fvdl 
    186   1.37       chs #ifdef UVM_PAGE_TRKOWN
    187   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    188   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    189   1.37       chs 		struct vm_page *pg;
    190   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    191   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    192   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    193   1.37       chs 
    194  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    195   1.37       chs 		while (off < endoff) {
    196   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    197   1.37       chs 			KASSERT(pg != NULL);
    198   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    199   1.37       chs 			off += PAGE_SIZE;
    200   1.37       chs 		}
    201  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    202   1.37       chs 	}
    203   1.37       chs #endif
    204   1.37       chs 
    205    1.1   mycroft 	*bnp = 0;
    206    1.1   mycroft #ifdef DIAGNOSTIC
    207    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    208   1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    209    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    210    1.1   mycroft 		panic("ffs_alloc: bad size");
    211    1.1   mycroft 	}
    212    1.1   mycroft 	if (cred == NOCRED)
    213   1.56    provos 		panic("ffs_alloc: missing credential");
    214    1.1   mycroft #endif /* DIAGNOSTIC */
    215    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    216    1.1   mycroft 		goto nospace;
    217   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    218   1.99     pooka 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0)
    219    1.1   mycroft 		goto nospace;
    220    1.1   mycroft #ifdef QUOTA
    221  1.101        ad 	mutex_exit(&ump->um_lock);
    222   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    223    1.1   mycroft 		return (error);
    224  1.101        ad 	mutex_enter(&ump->um_lock);
    225    1.1   mycroft #endif
    226  1.111    simonb 
    227    1.1   mycroft 	if (bpref >= fs->fs_size)
    228    1.1   mycroft 		bpref = 0;
    229    1.1   mycroft 	if (bpref == 0)
    230    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    231    1.1   mycroft 	else
    232    1.1   mycroft 		cg = dtog(fs, bpref);
    233  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    234    1.1   mycroft 	if (bno > 0) {
    235   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    236    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    237    1.1   mycroft 		*bnp = bno;
    238    1.1   mycroft 		return (0);
    239    1.1   mycroft 	}
    240    1.1   mycroft #ifdef QUOTA
    241    1.1   mycroft 	/*
    242    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    243    1.1   mycroft 	 */
    244   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    245    1.1   mycroft #endif
    246  1.111    simonb 	if (flags & B_CONTIG) {
    247  1.111    simonb 		/*
    248  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    249  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    250  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    251  1.111    simonb 		 * already unlocked, so we can't release it again
    252  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    253  1.111    simonb 		 *
    254  1.111    simonb 		 *
    255  1.111    simonb 		 * Fail silently - it's up to our caller to report
    256  1.111    simonb 		 * errors.
    257  1.111    simonb 		 */
    258  1.111    simonb 		return (ENOSPC);
    259  1.111    simonb 	}
    260    1.1   mycroft nospace:
    261  1.101        ad 	mutex_exit(&ump->um_lock);
    262   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    263    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    264    1.1   mycroft 	return (ENOSPC);
    265    1.1   mycroft }
    266    1.1   mycroft 
    267    1.1   mycroft /*
    268    1.1   mycroft  * Reallocate a fragment to a bigger size
    269    1.1   mycroft  *
    270    1.1   mycroft  * The number and size of the old block is given, and a preference
    271    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    272    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    273    1.1   mycroft  * invoked to get an appropriate block.
    274  1.106     pooka  *
    275  1.106     pooka  * => called with um_lock held
    276  1.106     pooka  * => return with um_lock released
    277    1.1   mycroft  */
    278    1.9  christos int
    279   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    280   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    281    1.1   mycroft {
    282  1.101        ad 	struct ufsmount *ump;
    283   1.62      fvdl 	struct fs *fs;
    284    1.1   mycroft 	struct buf *bp;
    285    1.1   mycroft 	int cg, request, error;
    286   1.58      fvdl 	daddr_t bprev, bno;
    287   1.25   thorpej 
    288   1.62      fvdl 	fs = ip->i_fs;
    289  1.101        ad 	ump = ip->i_ump;
    290  1.101        ad 
    291  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    292  1.101        ad 
    293   1.37       chs #ifdef UVM_PAGE_TRKOWN
    294   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    295   1.37       chs 		struct vm_page *pg;
    296   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    297   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    298   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    299   1.37       chs 
    300  1.105        ad 		mutex_enter(&uobj->vmobjlock);
    301   1.37       chs 		while (off < endoff) {
    302   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    303   1.37       chs 			KASSERT(pg != NULL);
    304   1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    305   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    306   1.37       chs 			off += PAGE_SIZE;
    307   1.37       chs 		}
    308  1.105        ad 		mutex_exit(&uobj->vmobjlock);
    309   1.37       chs 	}
    310   1.37       chs #endif
    311   1.37       chs 
    312    1.1   mycroft #ifdef DIAGNOSTIC
    313    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    314    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    315   1.13  christos 		printf(
    316    1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    317    1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    318    1.1   mycroft 		panic("ffs_realloccg: bad size");
    319    1.1   mycroft 	}
    320    1.1   mycroft 	if (cred == NOCRED)
    321   1.56    provos 		panic("ffs_realloccg: missing credential");
    322    1.1   mycroft #endif /* DIAGNOSTIC */
    323   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    324  1.101        ad 	    kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) != 0) {
    325  1.101        ad 		mutex_exit(&ump->um_lock);
    326    1.1   mycroft 		goto nospace;
    327  1.101        ad 	}
    328   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    329   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    330   1.60      fvdl 	else
    331   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    332   1.60      fvdl 
    333   1.60      fvdl 	if (bprev == 0) {
    334   1.59   tsutsui 		printf("dev = 0x%x, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    335   1.59   tsutsui 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    336    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    337    1.1   mycroft 	}
    338  1.101        ad 	mutex_exit(&ump->um_lock);
    339  1.101        ad 
    340    1.1   mycroft 	/*
    341    1.1   mycroft 	 * Allocate the extra space in the buffer.
    342    1.1   mycroft 	 */
    343   1.37       chs 	if (bpp != NULL &&
    344  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    345  1.101        ad 		brelse(bp, 0);
    346    1.1   mycroft 		return (error);
    347    1.1   mycroft 	}
    348    1.1   mycroft #ifdef QUOTA
    349   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    350   1.44       chs 		if (bpp != NULL) {
    351  1.101        ad 			brelse(bp, 0);
    352   1.44       chs 		}
    353    1.1   mycroft 		return (error);
    354    1.1   mycroft 	}
    355    1.1   mycroft #endif
    356    1.1   mycroft 	/*
    357    1.1   mycroft 	 * Check for extension in the existing location.
    358    1.1   mycroft 	 */
    359    1.1   mycroft 	cg = dtog(fs, bprev);
    360  1.101        ad 	mutex_enter(&ump->um_lock);
    361   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    362   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    363    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    364   1.37       chs 
    365   1.37       chs 		if (bpp != NULL) {
    366   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    367   1.37       chs 				panic("bad blockno");
    368   1.72        pk 			allocbuf(bp, nsize, 1);
    369   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    370  1.105        ad 			mutex_enter(bp->b_objlock);
    371  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    372  1.105        ad 			bp->b_oflags |= BO_DONE;
    373  1.105        ad 			mutex_exit(bp->b_objlock);
    374   1.37       chs 			*bpp = bp;
    375   1.37       chs 		}
    376   1.37       chs 		if (blknop != NULL) {
    377   1.37       chs 			*blknop = bno;
    378   1.37       chs 		}
    379    1.1   mycroft 		return (0);
    380    1.1   mycroft 	}
    381    1.1   mycroft 	/*
    382    1.1   mycroft 	 * Allocate a new disk location.
    383    1.1   mycroft 	 */
    384    1.1   mycroft 	if (bpref >= fs->fs_size)
    385    1.1   mycroft 		bpref = 0;
    386    1.1   mycroft 	switch ((int)fs->fs_optim) {
    387    1.1   mycroft 	case FS_OPTSPACE:
    388    1.1   mycroft 		/*
    389   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    390   1.81     perry 		 * best use of space, we will waste time relocating it if
    391    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    392    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    393    1.1   mycroft 		 * to begin optimizing for time.
    394    1.1   mycroft 		 */
    395    1.1   mycroft 		request = nsize;
    396    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    397    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    398    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    399    1.1   mycroft 			break;
    400   1.34  jdolecek 
    401   1.34  jdolecek 		if (ffs_log_changeopt) {
    402   1.34  jdolecek 			log(LOG_NOTICE,
    403   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    404   1.34  jdolecek 				fs->fs_fsmnt);
    405   1.34  jdolecek 		}
    406   1.34  jdolecek 
    407    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    408    1.1   mycroft 		break;
    409    1.1   mycroft 	case FS_OPTTIME:
    410    1.1   mycroft 		/*
    411    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    412    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    413    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    414    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    415    1.1   mycroft 		 * above will be able to grow it in place without further
    416    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    417    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    418    1.1   mycroft 		 * optimizing for space.
    419    1.1   mycroft 		 */
    420    1.1   mycroft 		request = fs->fs_bsize;
    421    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    422    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    423    1.1   mycroft 			break;
    424   1.34  jdolecek 
    425   1.34  jdolecek 		if (ffs_log_changeopt) {
    426   1.34  jdolecek 			log(LOG_NOTICE,
    427   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    428   1.34  jdolecek 				fs->fs_fsmnt);
    429   1.34  jdolecek 		}
    430   1.34  jdolecek 
    431    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    432    1.1   mycroft 		break;
    433    1.1   mycroft 	default:
    434   1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    435    1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    436    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    437    1.1   mycroft 		/* NOTREACHED */
    438    1.1   mycroft 	}
    439  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    440    1.1   mycroft 	if (bno > 0) {
    441  1.111    simonb 		if (!DOINGSOFTDEP(ITOV(ip))) {
    442  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    443  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    444  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    445  1.111    simonb 				    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    446  1.111    simonb 				    osize);
    447  1.111    simonb 			} else
    448  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    449  1.111    simonb 				    ip->i_number);
    450  1.111    simonb 		}
    451  1.111    simonb 		if (nsize < request) {
    452  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    453  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    454  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    455  1.111    simonb 				    ip->i_ump->um_mountp,
    456  1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    457  1.111    simonb 				    request - nsize);
    458  1.111    simonb 			} else
    459  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    460  1.111    simonb 				    bno + numfrags(fs, nsize),
    461  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    462  1.111    simonb 		}
    463   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    464    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    465   1.37       chs 		if (bpp != NULL) {
    466   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    467   1.72        pk 			allocbuf(bp, nsize, 1);
    468   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    469  1.105        ad 			mutex_enter(bp->b_objlock);
    470  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    471  1.105        ad 			bp->b_oflags |= BO_DONE;
    472  1.105        ad 			mutex_exit(bp->b_objlock);
    473   1.37       chs 			*bpp = bp;
    474   1.37       chs 		}
    475   1.37       chs 		if (blknop != NULL) {
    476   1.37       chs 			*blknop = bno;
    477   1.37       chs 		}
    478    1.1   mycroft 		return (0);
    479    1.1   mycroft 	}
    480  1.101        ad 	mutex_exit(&ump->um_lock);
    481  1.101        ad 
    482    1.1   mycroft #ifdef QUOTA
    483    1.1   mycroft 	/*
    484    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    485    1.1   mycroft 	 */
    486   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    487    1.1   mycroft #endif
    488   1.37       chs 	if (bpp != NULL) {
    489  1.101        ad 		brelse(bp, 0);
    490   1.37       chs 	}
    491   1.37       chs 
    492    1.1   mycroft nospace:
    493    1.1   mycroft 	/*
    494    1.1   mycroft 	 * no space available
    495    1.1   mycroft 	 */
    496   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    497    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    498    1.1   mycroft 	return (ENOSPC);
    499    1.1   mycroft }
    500    1.1   mycroft 
    501    1.1   mycroft /*
    502    1.1   mycroft  * Allocate an inode in the file system.
    503   1.81     perry  *
    504    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    505    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    506    1.1   mycroft  *   1) allocate the preferred inode.
    507    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    508    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    509    1.1   mycroft  *      available inode is located.
    510   1.47       wiz  * If no inode preference is given the following hierarchy is used
    511    1.1   mycroft  * to allocate an inode:
    512    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    513    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    514    1.1   mycroft  *      available inode is located.
    515  1.106     pooka  *
    516  1.106     pooka  * => um_lock not held upon entry or return
    517    1.1   mycroft  */
    518    1.9  christos int
    519   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    520   1.88      yamt     struct vnode **vpp)
    521    1.9  christos {
    522  1.101        ad 	struct ufsmount *ump;
    523   1.33  augustss 	struct inode *pip;
    524   1.33  augustss 	struct fs *fs;
    525   1.33  augustss 	struct inode *ip;
    526   1.60      fvdl 	struct timespec ts;
    527    1.1   mycroft 	ino_t ino, ipref;
    528    1.1   mycroft 	int cg, error;
    529   1.81     perry 
    530  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    531  1.111    simonb 
    532   1.88      yamt 	*vpp = NULL;
    533    1.1   mycroft 	pip = VTOI(pvp);
    534    1.1   mycroft 	fs = pip->i_fs;
    535  1.101        ad 	ump = pip->i_ump;
    536  1.101        ad 
    537  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    538  1.111    simonb 	if (error) {
    539  1.111    simonb 		return error;
    540  1.111    simonb 	}
    541  1.101        ad 	mutex_enter(&ump->um_lock);
    542    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    543    1.1   mycroft 		goto noinodes;
    544    1.1   mycroft 
    545    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    546   1.50     lukem 		ipref = ffs_dirpref(pip);
    547   1.50     lukem 	else
    548   1.50     lukem 		ipref = pip->i_number;
    549    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    550    1.1   mycroft 		ipref = 0;
    551    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    552   1.50     lukem 	/*
    553   1.50     lukem 	 * Track number of dirs created one after another
    554   1.50     lukem 	 * in a same cg without intervening by files.
    555   1.50     lukem 	 */
    556   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    557   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    558   1.50     lukem 			fs->fs_contigdirs[cg]++;
    559   1.50     lukem 	} else {
    560   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    561   1.50     lukem 			fs->fs_contigdirs[cg]--;
    562   1.50     lukem 	}
    563  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    564    1.1   mycroft 	if (ino == 0)
    565    1.1   mycroft 		goto noinodes;
    566  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    567   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    568    1.1   mycroft 	if (error) {
    569  1.111    simonb 		int err;
    570  1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    571  1.111    simonb 		if (err == 0)
    572  1.111    simonb 			ffs_vfree(pvp, ino, mode);
    573  1.111    simonb 		if (err == 0)
    574  1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    575    1.1   mycroft 		return (error);
    576    1.1   mycroft 	}
    577   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    578   1.88      yamt 	ip = VTOI(*vpp);
    579   1.60      fvdl 	if (ip->i_mode) {
    580   1.60      fvdl #if 0
    581   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    582   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    583   1.60      fvdl #else
    584   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    585   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    586   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    587   1.60      fvdl 		printf("size %llx blocks %llx\n",
    588   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    589   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    590   1.86  christos 		    (unsigned long long)ipref);
    591   1.60      fvdl #if 0
    592   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    593  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    594   1.60      fvdl #endif
    595   1.60      fvdl 
    596   1.60      fvdl #endif
    597    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    598    1.1   mycroft 	}
    599   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    600   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    601   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    602   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    603    1.1   mycroft 	}
    604   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    605   1.61      fvdl 	ip->i_flags = 0;
    606   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    607    1.1   mycroft 	/*
    608    1.1   mycroft 	 * Set up a new generation number for this inode.
    609    1.1   mycroft 	 */
    610   1.60      fvdl 	ip->i_gen++;
    611   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    612   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    613   1.93      yamt 		vfs_timestamp(&ts);
    614   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    615   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    616   1.60      fvdl 	}
    617    1.1   mycroft 	return (0);
    618    1.1   mycroft noinodes:
    619  1.101        ad 	mutex_exit(&ump->um_lock);
    620  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    621   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    622    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    623    1.1   mycroft 	return (ENOSPC);
    624    1.1   mycroft }
    625    1.1   mycroft 
    626    1.1   mycroft /*
    627   1.50     lukem  * Find a cylinder group in which to place a directory.
    628   1.42  sommerfe  *
    629   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    630   1.50     lukem  * directory inode in the same cylinder group as its parent
    631   1.50     lukem  * directory, but also to reserve space for its files inodes
    632   1.50     lukem  * and data. Restrict the number of directories which may be
    633   1.50     lukem  * allocated one after another in the same cylinder group
    634   1.50     lukem  * without intervening allocation of files.
    635   1.42  sommerfe  *
    636   1.50     lukem  * If we allocate a first level directory then force allocation
    637   1.50     lukem  * in another cylinder group.
    638    1.1   mycroft  */
    639    1.1   mycroft static ino_t
    640   1.85   thorpej ffs_dirpref(struct inode *pip)
    641    1.1   mycroft {
    642   1.50     lukem 	register struct fs *fs;
    643   1.74     soren 	int cg, prefcg;
    644   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    645   1.89       dsl 	int avgifree, avgbfree, avgndir;
    646   1.50     lukem 	int minifree, minbfree, maxndir;
    647   1.50     lukem 	int mincg, minndir;
    648   1.50     lukem 	int maxcontigdirs;
    649   1.50     lukem 
    650  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    651  1.101        ad 
    652   1.50     lukem 	fs = pip->i_fs;
    653    1.1   mycroft 
    654    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    655   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    656   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    657   1.50     lukem 
    658   1.50     lukem 	/*
    659   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    660   1.50     lukem 	 */
    661  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    662   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    663   1.50     lukem 		mincg = prefcg;
    664   1.50     lukem 		minndir = fs->fs_ipg;
    665   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    666   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    667   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    668   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    669   1.42  sommerfe 				mincg = cg;
    670   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    671   1.42  sommerfe 			}
    672   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    673   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    674   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    675   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    676   1.50     lukem 				mincg = cg;
    677   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    678   1.42  sommerfe 			}
    679   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    680   1.42  sommerfe 	}
    681   1.50     lukem 
    682   1.50     lukem 	/*
    683   1.50     lukem 	 * Count various limits which used for
    684   1.50     lukem 	 * optimal allocation of a directory inode.
    685   1.50     lukem 	 */
    686   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    687   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    688   1.50     lukem 	if (minifree < 0)
    689   1.50     lukem 		minifree = 0;
    690   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    691   1.50     lukem 	if (minbfree < 0)
    692   1.50     lukem 		minbfree = 0;
    693   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    694   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    695   1.89       dsl 	if (avgndir != 0) {
    696   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    697   1.89       dsl 		if (dirsize < curdsz)
    698   1.89       dsl 			dirsize = curdsz;
    699   1.89       dsl 	}
    700   1.89       dsl 	if (cgsize < dirsize * 255)
    701   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    702   1.89       dsl 	else
    703   1.89       dsl 		maxcontigdirs = 255;
    704   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    705   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    706   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    707   1.50     lukem 	if (maxcontigdirs == 0)
    708   1.50     lukem 		maxcontigdirs = 1;
    709   1.50     lukem 
    710   1.50     lukem 	/*
    711   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    712   1.50     lukem 	 * regular files, but only if we have no deficit in
    713   1.50     lukem 	 * inodes or space.
    714   1.50     lukem 	 */
    715   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    716   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    717   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    718   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    719   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    720   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    721   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    722   1.50     lukem 		}
    723   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    724   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    725   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    726   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    727   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    728   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    729   1.50     lukem 		}
    730   1.50     lukem 	/*
    731   1.50     lukem 	 * This is a backstop when we are deficient in space.
    732   1.50     lukem 	 */
    733   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    734   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    735   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    736   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    737   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    738   1.50     lukem 			break;
    739   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    740    1.1   mycroft }
    741    1.1   mycroft 
    742    1.1   mycroft /*
    743    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    744    1.1   mycroft  * logically divided into sections. The first section is composed of the
    745    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    746   1.81     perry  *
    747    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    748    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    749    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    750    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    751    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    752    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    753    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    754    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    755    1.1   mycroft  * continues until a cylinder group with greater than the average number
    756    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    757    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    758    1.1   mycroft  * here a best guess is made based upon the logical block number being
    759    1.1   mycroft  * allocated.
    760   1.81     perry  *
    761    1.1   mycroft  * If a section is already partially allocated, the policy is to
    762    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    763   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    764   1.60      fvdl  * contigously if possible.
    765  1.106     pooka  *
    766  1.106     pooka  * => um_lock held on entry and exit
    767    1.1   mycroft  */
    768   1.58      fvdl daddr_t
    769  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    770   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    771    1.1   mycroft {
    772   1.33  augustss 	struct fs *fs;
    773   1.33  augustss 	int cg;
    774    1.1   mycroft 	int avgbfree, startcg;
    775    1.1   mycroft 
    776  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    777  1.101        ad 
    778    1.1   mycroft 	fs = ip->i_fs;
    779  1.111    simonb 
    780  1.111    simonb 	/*
    781  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    782  1.111    simonb 	 * in the inode extentions to return the desired block.
    783  1.111    simonb 	 *
    784  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    785  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    786  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    787  1.111    simonb 	 * block.  For data, return the address of the actual block
    788  1.111    simonb 	 * relative to the address of the first data block.
    789  1.111    simonb 	 */
    790  1.111    simonb 	if (flags & B_CONTIG) {
    791  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    792  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    793  1.111    simonb 		if (flags & B_METAONLY)
    794  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    795  1.111    simonb 		else
    796  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    797  1.111    simonb 	}
    798  1.111    simonb 
    799    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    800   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    801    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    802  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    803    1.1   mycroft 		}
    804    1.1   mycroft 		/*
    805    1.1   mycroft 		 * Find a cylinder with greater than average number of
    806    1.1   mycroft 		 * unused data blocks.
    807    1.1   mycroft 		 */
    808    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    809    1.1   mycroft 			startcg =
    810    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    811    1.1   mycroft 		else
    812   1.19    bouyer 			startcg = dtog(fs,
    813   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    814    1.1   mycroft 		startcg %= fs->fs_ncg;
    815    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    816    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    817    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    818  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    819    1.1   mycroft 			}
    820   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    821    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    822  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    823    1.1   mycroft 			}
    824   1.35   thorpej 		return (0);
    825    1.1   mycroft 	}
    826    1.1   mycroft 	/*
    827   1.60      fvdl 	 * We just always try to lay things out contiguously.
    828   1.60      fvdl 	 */
    829   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    830   1.60      fvdl }
    831   1.60      fvdl 
    832   1.60      fvdl daddr_t
    833  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    834  1.111    simonb     int64_t *bap)
    835   1.60      fvdl {
    836   1.60      fvdl 	struct fs *fs;
    837   1.60      fvdl 	int cg;
    838   1.60      fvdl 	int avgbfree, startcg;
    839   1.60      fvdl 
    840  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    841  1.101        ad 
    842   1.60      fvdl 	fs = ip->i_fs;
    843  1.111    simonb 
    844  1.111    simonb 	/*
    845  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    846  1.111    simonb 	 * in the inode extentions to return the desired block.
    847  1.111    simonb 	 *
    848  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    849  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    850  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    851  1.111    simonb 	 * block.  For data, return the address of the actual block
    852  1.111    simonb 	 * relative to the address of the first data block.
    853  1.111    simonb 	 */
    854  1.111    simonb 	if (flags & B_CONTIG) {
    855  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    856  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    857  1.111    simonb 		if (flags & B_METAONLY)
    858  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    859  1.111    simonb 		else
    860  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    861  1.111    simonb 	}
    862  1.111    simonb 
    863   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    864   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    865   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    866  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    867   1.60      fvdl 		}
    868    1.1   mycroft 		/*
    869   1.60      fvdl 		 * Find a cylinder with greater than average number of
    870   1.60      fvdl 		 * unused data blocks.
    871    1.1   mycroft 		 */
    872   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    873   1.60      fvdl 			startcg =
    874   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    875   1.60      fvdl 		else
    876   1.60      fvdl 			startcg = dtog(fs,
    877   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    878   1.60      fvdl 		startcg %= fs->fs_ncg;
    879   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    880   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    881   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    882  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    883   1.60      fvdl 			}
    884   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    885   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    886  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    887   1.60      fvdl 			}
    888   1.60      fvdl 		return (0);
    889   1.60      fvdl 	}
    890   1.60      fvdl 	/*
    891   1.60      fvdl 	 * We just always try to lay things out contiguously.
    892   1.60      fvdl 	 */
    893   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    894    1.1   mycroft }
    895    1.1   mycroft 
    896   1.60      fvdl 
    897    1.1   mycroft /*
    898    1.1   mycroft  * Implement the cylinder overflow algorithm.
    899    1.1   mycroft  *
    900    1.1   mycroft  * The policy implemented by this algorithm is:
    901    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    902    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    903    1.1   mycroft  *   3) brute force search for a free block.
    904  1.106     pooka  *
    905  1.106     pooka  * => called with um_lock held
    906  1.106     pooka  * => returns with um_lock released on success, held on failure
    907  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    908    1.1   mycroft  */
    909    1.1   mycroft /*VARARGS5*/
    910   1.58      fvdl static daddr_t
    911   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    912   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    913  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    914    1.1   mycroft {
    915   1.33  augustss 	struct fs *fs;
    916   1.58      fvdl 	daddr_t result;
    917    1.1   mycroft 	int i, icg = cg;
    918    1.1   mycroft 
    919    1.1   mycroft 	fs = ip->i_fs;
    920    1.1   mycroft 	/*
    921    1.1   mycroft 	 * 1: preferred cylinder group
    922    1.1   mycroft 	 */
    923  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    924    1.1   mycroft 	if (result)
    925    1.1   mycroft 		return (result);
    926  1.111    simonb 
    927  1.111    simonb 	if (flags & B_CONTIG)
    928  1.111    simonb 		return (result);
    929    1.1   mycroft 	/*
    930    1.1   mycroft 	 * 2: quadratic rehash
    931    1.1   mycroft 	 */
    932    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    933    1.1   mycroft 		cg += i;
    934    1.1   mycroft 		if (cg >= fs->fs_ncg)
    935    1.1   mycroft 			cg -= fs->fs_ncg;
    936  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    937    1.1   mycroft 		if (result)
    938    1.1   mycroft 			return (result);
    939    1.1   mycroft 	}
    940    1.1   mycroft 	/*
    941    1.1   mycroft 	 * 3: brute force search
    942    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    943    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    944    1.1   mycroft 	 */
    945    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    946    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    947  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    948    1.1   mycroft 		if (result)
    949    1.1   mycroft 			return (result);
    950    1.1   mycroft 		cg++;
    951    1.1   mycroft 		if (cg == fs->fs_ncg)
    952    1.1   mycroft 			cg = 0;
    953    1.1   mycroft 	}
    954   1.35   thorpej 	return (0);
    955    1.1   mycroft }
    956    1.1   mycroft 
    957    1.1   mycroft /*
    958    1.1   mycroft  * Determine whether a fragment can be extended.
    959    1.1   mycroft  *
    960   1.81     perry  * Check to see if the necessary fragments are available, and
    961    1.1   mycroft  * if they are, allocate them.
    962  1.106     pooka  *
    963  1.106     pooka  * => called with um_lock held
    964  1.106     pooka  * => returns with um_lock released on success, held on failure
    965    1.1   mycroft  */
    966   1.58      fvdl static daddr_t
    967   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    968    1.1   mycroft {
    969  1.101        ad 	struct ufsmount *ump;
    970   1.33  augustss 	struct fs *fs;
    971   1.33  augustss 	struct cg *cgp;
    972    1.1   mycroft 	struct buf *bp;
    973   1.58      fvdl 	daddr_t bno;
    974    1.1   mycroft 	int frags, bbase;
    975    1.1   mycroft 	int i, error;
    976   1.62      fvdl 	u_int8_t *blksfree;
    977    1.1   mycroft 
    978    1.1   mycroft 	fs = ip->i_fs;
    979  1.101        ad 	ump = ip->i_ump;
    980  1.101        ad 
    981  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    982  1.101        ad 
    983    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    984   1.35   thorpej 		return (0);
    985    1.1   mycroft 	frags = numfrags(fs, nsize);
    986    1.1   mycroft 	bbase = fragnum(fs, bprev);
    987    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    988    1.1   mycroft 		/* cannot extend across a block boundary */
    989   1.35   thorpej 		return (0);
    990    1.1   mycroft 	}
    991  1.101        ad 	mutex_exit(&ump->um_lock);
    992    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    993  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    994  1.101        ad 	if (error)
    995  1.101        ad 		goto fail;
    996    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    997  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    998  1.101        ad 		goto fail;
    999   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1000   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1001   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1002   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1003    1.1   mycroft 	bno = dtogd(fs, bprev);
   1004   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1005    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1006  1.101        ad 		if (isclr(blksfree, bno + i))
   1007  1.101        ad 			goto fail;
   1008    1.1   mycroft 	/*
   1009    1.1   mycroft 	 * the current fragment can be extended
   1010    1.1   mycroft 	 * deduct the count on fragment being extended into
   1011    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1012    1.1   mycroft 	 * allocate the extended piece
   1013    1.1   mycroft 	 */
   1014    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1015   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1016    1.1   mycroft 			break;
   1017   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1018    1.1   mycroft 	if (i != frags)
   1019   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1020  1.101        ad 	mutex_enter(&ump->um_lock);
   1021    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1022   1.62      fvdl 		clrbit(blksfree, bno + i);
   1023   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1024    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1025    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1026    1.1   mycroft 	}
   1027    1.1   mycroft 	fs->fs_fmod = 1;
   1028  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1029  1.101        ad 	mutex_exit(&ump->um_lock);
   1030   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1031   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, bprev);
   1032    1.1   mycroft 	bdwrite(bp);
   1033    1.1   mycroft 	return (bprev);
   1034  1.101        ad 
   1035  1.101        ad  fail:
   1036  1.101        ad  	brelse(bp, 0);
   1037  1.101        ad  	mutex_enter(&ump->um_lock);
   1038  1.101        ad  	return (0);
   1039    1.1   mycroft }
   1040    1.1   mycroft 
   1041    1.1   mycroft /*
   1042    1.1   mycroft  * Determine whether a block can be allocated.
   1043    1.1   mycroft  *
   1044    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1045    1.1   mycroft  * and if it is, allocate it.
   1046    1.1   mycroft  */
   1047   1.58      fvdl static daddr_t
   1048  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1049    1.1   mycroft {
   1050  1.101        ad 	struct ufsmount *ump;
   1051   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1052   1.30      fvdl 	struct cg *cgp;
   1053    1.1   mycroft 	struct buf *bp;
   1054   1.60      fvdl 	int32_t bno;
   1055   1.60      fvdl 	daddr_t blkno;
   1056   1.30      fvdl 	int error, frags, allocsiz, i;
   1057   1.62      fvdl 	u_int8_t *blksfree;
   1058   1.30      fvdl #ifdef FFS_EI
   1059   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1060   1.30      fvdl #endif
   1061    1.1   mycroft 
   1062  1.101        ad 	ump = ip->i_ump;
   1063  1.101        ad 
   1064  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1065  1.101        ad 
   1066    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1067   1.35   thorpej 		return (0);
   1068  1.101        ad 	mutex_exit(&ump->um_lock);
   1069    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1070  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1071  1.101        ad 	if (error)
   1072  1.101        ad 		goto fail;
   1073    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1074   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1075  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1076  1.101        ad 		goto fail;
   1077   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1078   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1079   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1080   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1081    1.1   mycroft 	if (size == fs->fs_bsize) {
   1082  1.101        ad 		mutex_enter(&ump->um_lock);
   1083  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1084   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1085  1.101        ad 		mutex_exit(&ump->um_lock);
   1086    1.1   mycroft 		bdwrite(bp);
   1087   1.60      fvdl 		return (blkno);
   1088    1.1   mycroft 	}
   1089    1.1   mycroft 	/*
   1090    1.1   mycroft 	 * check to see if any fragments are already available
   1091    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1092    1.1   mycroft 	 * it down to a smaller size if necessary
   1093    1.1   mycroft 	 */
   1094   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1095    1.1   mycroft 	frags = numfrags(fs, size);
   1096    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1097    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1098    1.1   mycroft 			break;
   1099    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1100    1.1   mycroft 		/*
   1101   1.81     perry 		 * no fragments were available, so a block will be
   1102    1.1   mycroft 		 * allocated, and hacked up
   1103    1.1   mycroft 		 */
   1104  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1105  1.101        ad 			goto fail;
   1106  1.101        ad 		mutex_enter(&ump->um_lock);
   1107  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1108   1.60      fvdl 		bno = dtogd(fs, blkno);
   1109    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1110   1.62      fvdl 			setbit(blksfree, bno + i);
   1111    1.1   mycroft 		i = fs->fs_frag - frags;
   1112   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1113    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1114   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1115    1.1   mycroft 		fs->fs_fmod = 1;
   1116   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1117   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1118  1.101        ad 		mutex_exit(&ump->um_lock);
   1119    1.1   mycroft 		bdwrite(bp);
   1120   1.60      fvdl 		return (blkno);
   1121    1.1   mycroft 	}
   1122   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1123   1.30      fvdl #if 0
   1124   1.30      fvdl 	/*
   1125   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1126   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1127   1.30      fvdl 	 */
   1128  1.101        ad 	if (bno < 0)
   1129  1.101        ad 		goto fail;
   1130   1.30      fvdl #endif
   1131    1.1   mycroft 	for (i = 0; i < frags; i++)
   1132   1.62      fvdl 		clrbit(blksfree, bno + i);
   1133  1.101        ad 	mutex_enter(&ump->um_lock);
   1134   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1135    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1136    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1137    1.1   mycroft 	fs->fs_fmod = 1;
   1138   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1139    1.1   mycroft 	if (frags != allocsiz)
   1140   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1141   1.30      fvdl 	blkno = cg * fs->fs_fpg + bno;
   1142  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1143  1.101        ad 	mutex_exit(&ump->um_lock);
   1144   1.30      fvdl 	if (DOINGSOFTDEP(ITOV(ip)))
   1145   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1146    1.1   mycroft 	bdwrite(bp);
   1147   1.30      fvdl 	return blkno;
   1148  1.101        ad 
   1149  1.101        ad  fail:
   1150  1.101        ad  	brelse(bp, 0);
   1151  1.101        ad  	mutex_enter(&ump->um_lock);
   1152  1.101        ad  	return (0);
   1153    1.1   mycroft }
   1154    1.1   mycroft 
   1155    1.1   mycroft /*
   1156    1.1   mycroft  * Allocate a block in a cylinder group.
   1157    1.1   mycroft  *
   1158    1.1   mycroft  * This algorithm implements the following policy:
   1159    1.1   mycroft  *   1) allocate the requested block.
   1160    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1161    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1162    1.1   mycroft  *      specified cylinder group.
   1163    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1164    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1165    1.1   mycroft  */
   1166   1.58      fvdl static daddr_t
   1167  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1168    1.1   mycroft {
   1169  1.101        ad 	struct ufsmount *ump;
   1170   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1171   1.30      fvdl 	struct cg *cgp;
   1172   1.60      fvdl 	daddr_t blkno;
   1173   1.60      fvdl 	int32_t bno;
   1174   1.60      fvdl 	u_int8_t *blksfree;
   1175   1.30      fvdl #ifdef FFS_EI
   1176   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1177   1.30      fvdl #endif
   1178    1.1   mycroft 
   1179  1.101        ad 	ump = ip->i_ump;
   1180  1.101        ad 
   1181  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1182  1.101        ad 
   1183   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1184   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1185   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1186   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1187   1.60      fvdl 	} else {
   1188   1.60      fvdl 		bpref = blknum(fs, bpref);
   1189   1.60      fvdl 		bno = dtogd(fs, bpref);
   1190    1.1   mycroft 		/*
   1191   1.60      fvdl 		 * if the requested block is available, use it
   1192    1.1   mycroft 		 */
   1193   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1194   1.60      fvdl 			goto gotit;
   1195  1.111    simonb 		/*
   1196  1.111    simonb 		 * if the requested data block isn't available and we are
   1197  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1198  1.111    simonb 		 */
   1199  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1200  1.111    simonb 			return (0);
   1201    1.1   mycroft 	}
   1202  1.111    simonb 
   1203    1.1   mycroft 	/*
   1204   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1205    1.1   mycroft 	 */
   1206   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1207    1.1   mycroft 	if (bno < 0)
   1208   1.35   thorpej 		return (0);
   1209   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1210    1.1   mycroft gotit:
   1211    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1212   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1213   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1214   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1215    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1216   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1217   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1218   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1219   1.73       dbj 		int cylno;
   1220   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1221   1.75       dbj 		KASSERT(cylno >= 0);
   1222   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1223   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1224   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1225   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1226   1.73       dbj 		    needswap);
   1227   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1228   1.73       dbj 	}
   1229    1.1   mycroft 	fs->fs_fmod = 1;
   1230   1.30      fvdl 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
   1231  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip))) {
   1232  1.101        ad 		mutex_exit(&ump->um_lock);
   1233   1.30      fvdl 		softdep_setup_blkmapdep(bp, fs, blkno);
   1234  1.101        ad 		mutex_enter(&ump->um_lock);
   1235  1.101        ad 	}
   1236   1.30      fvdl 	return (blkno);
   1237    1.1   mycroft }
   1238    1.1   mycroft 
   1239    1.1   mycroft /*
   1240    1.1   mycroft  * Determine whether an inode can be allocated.
   1241    1.1   mycroft  *
   1242    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1243    1.1   mycroft  * allocate it using the following policy:
   1244    1.1   mycroft  *   1) allocate the requested inode.
   1245    1.1   mycroft  *   2) allocate the next available inode after the requested
   1246    1.1   mycroft  *      inode in the specified cylinder group.
   1247    1.1   mycroft  */
   1248   1.58      fvdl static daddr_t
   1249  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1250    1.1   mycroft {
   1251  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1252   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1253   1.33  augustss 	struct cg *cgp;
   1254   1.60      fvdl 	struct buf *bp, *ibp;
   1255   1.60      fvdl 	u_int8_t *inosused;
   1256    1.1   mycroft 	int error, start, len, loc, map, i;
   1257   1.60      fvdl 	int32_t initediblk;
   1258  1.112   hannken 	daddr_t nalloc;
   1259   1.60      fvdl 	struct ufs2_dinode *dp2;
   1260   1.19    bouyer #ifdef FFS_EI
   1261   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1262   1.19    bouyer #endif
   1263    1.1   mycroft 
   1264  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1265  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1266  1.101        ad 
   1267    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1268   1.35   thorpej 		return (0);
   1269  1.101        ad 	mutex_exit(&ump->um_lock);
   1270  1.112   hannken 	ibp = NULL;
   1271  1.112   hannken 	initediblk = -1;
   1272  1.112   hannken retry:
   1273    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1274  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1275  1.101        ad 	if (error)
   1276  1.101        ad 		goto fail;
   1277    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1278  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1279  1.101        ad 		goto fail;
   1280  1.112   hannken 
   1281  1.112   hannken 	if (ibp != NULL &&
   1282  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1283  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1284  1.112   hannken 		brelse(ibp, BC_INVAL);
   1285  1.112   hannken 		ibp = NULL;
   1286  1.112   hannken 	}
   1287  1.112   hannken 	/*
   1288  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1289  1.112   hannken 	 */
   1290  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1291  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1292  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1293  1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1294  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1295  1.112   hannken 			/*
   1296  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1297  1.112   hannken 			 * a deadlock when reading the inode block will
   1298  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1299  1.112   hannken 			 */
   1300  1.112   hannken 			brelse(bp, 0);
   1301  1.112   hannken 			bp = NULL;
   1302  1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1303  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1304  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1305  1.112   hannken 			if (error)
   1306  1.112   hannken 				goto fail;
   1307  1.112   hannken 			goto retry;
   1308  1.112   hannken 		}
   1309  1.112   hannken 	}
   1310  1.112   hannken 
   1311   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1312   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1313   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1314   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1315   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1316    1.1   mycroft 	if (ipref) {
   1317    1.1   mycroft 		ipref %= fs->fs_ipg;
   1318   1.60      fvdl 		if (isclr(inosused, ipref))
   1319    1.1   mycroft 			goto gotit;
   1320    1.1   mycroft 	}
   1321   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1322   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1323   1.19    bouyer 		NBBY);
   1324   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1325    1.1   mycroft 	if (loc == 0) {
   1326    1.1   mycroft 		len = start + 1;
   1327    1.1   mycroft 		start = 0;
   1328   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1329    1.1   mycroft 		if (loc == 0) {
   1330   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1331   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1332   1.19    bouyer 				fs->fs_fsmnt);
   1333    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1334    1.1   mycroft 			/* NOTREACHED */
   1335    1.1   mycroft 		}
   1336    1.1   mycroft 	}
   1337    1.1   mycroft 	i = start + len - loc;
   1338   1.60      fvdl 	map = inosused[i];
   1339    1.1   mycroft 	ipref = i * NBBY;
   1340    1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1341    1.1   mycroft 		if ((map & i) == 0) {
   1342   1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1343    1.1   mycroft 			goto gotit;
   1344    1.1   mycroft 		}
   1345    1.1   mycroft 	}
   1346   1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1347    1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1348    1.1   mycroft 	/* NOTREACHED */
   1349    1.1   mycroft gotit:
   1350  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1351  1.111    simonb 	    mode);
   1352   1.60      fvdl 	/*
   1353   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1354   1.60      fvdl 	 */
   1355  1.112   hannken 	if (ibp != NULL) {
   1356  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1357  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1358  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1359  1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1360   1.60      fvdl 			/*
   1361   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1362   1.60      fvdl 			 * random, after all.
   1363   1.60      fvdl 			 */
   1364   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1365   1.60      fvdl 			dp2++;
   1366   1.60      fvdl 		}
   1367   1.60      fvdl 		initediblk += INOPB(fs);
   1368   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1369   1.60      fvdl 	}
   1370   1.60      fvdl 
   1371  1.101        ad 	mutex_enter(&ump->um_lock);
   1372   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1373  1.101        ad 	setbit(inosused, ipref);
   1374  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1375  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1376  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1377  1.101        ad 	fs->fs_fmod = 1;
   1378  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1379  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1380  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1381  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1382  1.101        ad 	}
   1383  1.101        ad 	mutex_exit(&ump->um_lock);
   1384  1.101        ad 	if (DOINGSOFTDEP(ITOV(ip)))
   1385  1.101        ad 		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
   1386  1.112   hannken 	if (ibp != NULL) {
   1387  1.112   hannken 		bwrite(bp);
   1388  1.104   hannken 		bawrite(ibp);
   1389  1.112   hannken 	} else
   1390  1.112   hannken 		bdwrite(bp);
   1391    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1392  1.101        ad  fail:
   1393  1.112   hannken 	if (bp != NULL)
   1394  1.112   hannken 		brelse(bp, 0);
   1395  1.112   hannken 	if (ibp != NULL)
   1396  1.112   hannken 		brelse(ibp, BC_INVAL);
   1397  1.101        ad 	mutex_enter(&ump->um_lock);
   1398  1.101        ad 	return (0);
   1399    1.1   mycroft }
   1400    1.1   mycroft 
   1401    1.1   mycroft /*
   1402  1.111    simonb  * Allocate a block or fragment.
   1403  1.111    simonb  *
   1404  1.111    simonb  * The specified block or fragment is removed from the
   1405  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1406  1.111    simonb  *
   1407  1.111    simonb  * This implementation should mirror fs_blkfree
   1408  1.111    simonb  *
   1409  1.111    simonb  * => um_lock not held on entry or exit
   1410  1.111    simonb  */
   1411  1.111    simonb int
   1412  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1413  1.111    simonb {
   1414  1.116     joerg 	int error;
   1415  1.111    simonb 
   1416  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1417  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1418  1.116     joerg 	if (error)
   1419  1.116     joerg 		return error;
   1420  1.115     joerg 
   1421  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1422  1.115     joerg }
   1423  1.115     joerg 
   1424  1.115     joerg int
   1425  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1426  1.115     joerg {
   1427  1.115     joerg 	struct fs *fs = ump->um_fs;
   1428  1.115     joerg 	struct cg *cgp;
   1429  1.115     joerg 	struct buf *bp;
   1430  1.115     joerg 	int32_t fragno, cgbno;
   1431  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1432  1.115     joerg 	u_int8_t *blksfree;
   1433  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1434  1.115     joerg 
   1435  1.115     joerg 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1436  1.115     joerg 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1437  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1438  1.115     joerg 
   1439  1.115     joerg 	cg = dtog(fs, bno);
   1440  1.115     joerg 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1441  1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1442  1.111    simonb 	if (error) {
   1443  1.111    simonb 		brelse(bp, 0);
   1444  1.111    simonb 		return error;
   1445  1.111    simonb 	}
   1446  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1447  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1448  1.111    simonb 		brelse(bp, 0);
   1449  1.111    simonb 		return EIO;
   1450  1.111    simonb 	}
   1451  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1452  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1453  1.111    simonb 	cgbno = dtogd(fs, bno);
   1454  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1455  1.111    simonb 
   1456  1.111    simonb 	mutex_enter(&ump->um_lock);
   1457  1.111    simonb 	if (size == fs->fs_bsize) {
   1458  1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1459  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1460  1.111    simonb 			mutex_exit(&ump->um_lock);
   1461  1.111    simonb 			brelse(bp, 0);
   1462  1.111    simonb 			return EBUSY;
   1463  1.111    simonb 		}
   1464  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1465  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1466  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1467  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1468  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1469  1.111    simonb 	} else {
   1470  1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1471  1.111    simonb 
   1472  1.111    simonb 		frags = numfrags(fs, size);
   1473  1.111    simonb 		for (i = 0; i < frags; i++) {
   1474  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1475  1.111    simonb 				mutex_exit(&ump->um_lock);
   1476  1.111    simonb 				brelse(bp, 0);
   1477  1.111    simonb 				return EBUSY;
   1478  1.111    simonb 			}
   1479  1.111    simonb 		}
   1480  1.111    simonb 		/*
   1481  1.111    simonb 		 * if a complete block is being split, account for it
   1482  1.111    simonb 		 */
   1483  1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1484  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1485  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1486  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1487  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1488  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1489  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1490  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1491  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1492  1.111    simonb 		}
   1493  1.111    simonb 		/*
   1494  1.111    simonb 		 * decrement the counts associated with the old frags
   1495  1.111    simonb 		 */
   1496  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1497  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1498  1.111    simonb 		/*
   1499  1.111    simonb 		 * allocate the fragment
   1500  1.111    simonb 		 */
   1501  1.111    simonb 		for (i = 0; i < frags; i++) {
   1502  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1503  1.111    simonb 		}
   1504  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1505  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1506  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1507  1.111    simonb 		/*
   1508  1.111    simonb 		 * add back in counts associated with the new frags
   1509  1.111    simonb 		 */
   1510  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1511  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1512  1.111    simonb 	}
   1513  1.111    simonb 	fs->fs_fmod = 1;
   1514  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1515  1.111    simonb 	mutex_exit(&ump->um_lock);
   1516  1.111    simonb 	bdwrite(bp);
   1517  1.111    simonb 	return 0;
   1518  1.111    simonb }
   1519  1.111    simonb 
   1520  1.111    simonb /*
   1521    1.1   mycroft  * Free a block or fragment.
   1522    1.1   mycroft  *
   1523    1.1   mycroft  * The specified block or fragment is placed back in the
   1524   1.81     perry  * free map. If a fragment is deallocated, a possible
   1525    1.1   mycroft  * block reassembly is checked.
   1526  1.106     pooka  *
   1527  1.106     pooka  * => um_lock not held on entry or exit
   1528    1.1   mycroft  */
   1529    1.9  christos void
   1530   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1531   1.85   thorpej     ino_t inum)
   1532    1.1   mycroft {
   1533   1.33  augustss 	struct cg *cgp;
   1534    1.1   mycroft 	struct buf *bp;
   1535   1.76   hannken 	struct ufsmount *ump;
   1536   1.76   hannken 	daddr_t cgblkno;
   1537  1.116     joerg 	int error, cg;
   1538   1.76   hannken 	dev_t dev;
   1539  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1540  1.118     joerg #ifdef FFS_EI
   1541  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1542  1.118     joerg #endif
   1543    1.1   mycroft 
   1544  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1545  1.116     joerg 
   1546   1.76   hannken 	cg = dtog(fs, bno);
   1547  1.116     joerg 	dev = devvp->v_rdev;
   1548  1.116     joerg 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1549  1.119     joerg 	KASSERT(fs == ump->um_fs);
   1550  1.116     joerg 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1551  1.116     joerg 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1552  1.116     joerg 		return;
   1553  1.116     joerg 
   1554  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1555  1.116     joerg 	if (error)
   1556  1.116     joerg 		return;
   1557  1.116     joerg 
   1558  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1559  1.116     joerg 	    NOCRED, B_MODIFY, &bp);
   1560  1.116     joerg 	if (error) {
   1561  1.116     joerg 		brelse(bp, 0);
   1562  1.116     joerg 		return;
   1563   1.76   hannken 	}
   1564  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1565  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1566  1.116     joerg 		brelse(bp, 0);
   1567  1.116     joerg 		return;
   1568    1.1   mycroft 	}
   1569   1.76   hannken 
   1570  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1571  1.119     joerg 
   1572  1.119     joerg 	bdwrite(bp);
   1573  1.116     joerg }
   1574  1.116     joerg 
   1575  1.116     joerg /*
   1576  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1577  1.116     joerg  *
   1578  1.116     joerg  * The specified block or fragment is placed back in the
   1579  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1580  1.116     joerg  * block reassembly is checked.
   1581  1.116     joerg  *
   1582  1.116     joerg  * => um_lock not held on entry or exit
   1583  1.116     joerg  */
   1584  1.116     joerg void
   1585  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1586  1.116     joerg     ino_t inum)
   1587  1.116     joerg {
   1588  1.116     joerg 	struct cg *cgp;
   1589  1.116     joerg 	struct buf *bp;
   1590  1.116     joerg 	struct ufsmount *ump;
   1591  1.116     joerg 	daddr_t cgblkno;
   1592  1.116     joerg 	int error, cg;
   1593  1.116     joerg 	dev_t dev;
   1594  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1595  1.118     joerg #ifdef FFS_EI
   1596  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1597  1.118     joerg #endif
   1598  1.116     joerg 
   1599  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1600  1.116     joerg 
   1601  1.116     joerg 	cg = dtog(fs, bno);
   1602  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1603  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1604  1.116     joerg 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1605  1.116     joerg 
   1606  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1607  1.116     joerg 	if (error)
   1608    1.1   mycroft 		return;
   1609  1.116     joerg 
   1610  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1611  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1612    1.1   mycroft 	if (error) {
   1613  1.101        ad 		brelse(bp, 0);
   1614    1.1   mycroft 		return;
   1615    1.1   mycroft 	}
   1616    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1617   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1618  1.101        ad 		brelse(bp, 0);
   1619    1.1   mycroft 		return;
   1620    1.1   mycroft 	}
   1621  1.116     joerg 
   1622  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1623  1.119     joerg 
   1624  1.119     joerg 	bdwrite(bp);
   1625  1.116     joerg }
   1626  1.116     joerg 
   1627  1.116     joerg static void
   1628  1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1629  1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1630  1.116     joerg {
   1631  1.116     joerg 	struct cg *cgp;
   1632  1.116     joerg 	int32_t fragno, cgbno;
   1633  1.116     joerg 	int i, cg, blk, frags, bbase;
   1634  1.116     joerg 	u_int8_t *blksfree;
   1635  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1636  1.116     joerg 
   1637  1.116     joerg 	cg = dtog(fs, bno);
   1638  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1639   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1640   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1641   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1642   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1643   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1644   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1645  1.101        ad 	mutex_enter(&ump->um_lock);
   1646    1.1   mycroft 	if (size == fs->fs_bsize) {
   1647   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1648   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1649  1.113   hannken 			if (devvp_is_snapshot) {
   1650  1.101        ad 				mutex_exit(&ump->um_lock);
   1651   1.76   hannken 				return;
   1652   1.76   hannken 			}
   1653   1.59   tsutsui 			printf("dev = 0x%x, block = %" PRId64 ", fs = %s\n",
   1654   1.76   hannken 			    dev, bno, fs->fs_fsmnt);
   1655    1.1   mycroft 			panic("blkfree: freeing free block");
   1656    1.1   mycroft 		}
   1657   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1658   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1659   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1660    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1661    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1662   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1663   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1664   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1665   1.75       dbj 			KASSERT(i >= 0);
   1666   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1667   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1668   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1669   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1670   1.73       dbj 			    needswap);
   1671   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1672   1.73       dbj 		}
   1673    1.1   mycroft 	} else {
   1674   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1675    1.1   mycroft 		/*
   1676    1.1   mycroft 		 * decrement the counts associated with the old frags
   1677    1.1   mycroft 		 */
   1678   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1679   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1680    1.1   mycroft 		/*
   1681    1.1   mycroft 		 * deallocate the fragment
   1682    1.1   mycroft 		 */
   1683    1.1   mycroft 		frags = numfrags(fs, size);
   1684    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1685   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1686   1.59   tsutsui 				printf("dev = 0x%x, block = %" PRId64
   1687   1.59   tsutsui 				       ", fs = %s\n",
   1688   1.76   hannken 				    dev, bno + i, fs->fs_fsmnt);
   1689    1.1   mycroft 				panic("blkfree: freeing free frag");
   1690    1.1   mycroft 			}
   1691   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1692    1.1   mycroft 		}
   1693   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1694    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1695   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1696    1.1   mycroft 		/*
   1697    1.1   mycroft 		 * add back in counts associated with the new frags
   1698    1.1   mycroft 		 */
   1699   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1700   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1701    1.1   mycroft 		/*
   1702    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1703    1.1   mycroft 		 */
   1704   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1705   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1706   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1707    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1708    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1709   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1710   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1711    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1712    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1713   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1714   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1715   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1716   1.75       dbj 				KASSERT(i >= 0);
   1717   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1718   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1719   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1720   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1721   1.73       dbj 				    bbase)], 1, needswap);
   1722   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1723   1.73       dbj 			}
   1724    1.1   mycroft 		}
   1725    1.1   mycroft 	}
   1726    1.1   mycroft 	fs->fs_fmod = 1;
   1727   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1728  1.101        ad 	mutex_exit(&ump->um_lock);
   1729    1.1   mycroft }
   1730    1.1   mycroft 
   1731    1.1   mycroft /*
   1732    1.1   mycroft  * Free an inode.
   1733   1.30      fvdl  */
   1734   1.30      fvdl int
   1735   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1736   1.30      fvdl {
   1737   1.30      fvdl 
   1738   1.88      yamt 	if (DOINGSOFTDEP(vp)) {
   1739   1.88      yamt 		softdep_freefile(vp, ino, mode);
   1740   1.30      fvdl 		return (0);
   1741   1.30      fvdl 	}
   1742  1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1743   1.30      fvdl }
   1744   1.30      fvdl 
   1745   1.30      fvdl /*
   1746   1.30      fvdl  * Do the actual free operation.
   1747    1.1   mycroft  * The specified inode is placed back in the free map.
   1748  1.111    simonb  *
   1749  1.111    simonb  * => um_lock not held on entry or exit
   1750    1.1   mycroft  */
   1751    1.1   mycroft int
   1752  1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1753  1.119     joerg {
   1754  1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1755  1.119     joerg 	struct fs *fs = ump->um_fs;
   1756  1.119     joerg 	struct vnode *devvp;
   1757  1.119     joerg 	struct cg *cgp;
   1758  1.119     joerg 	struct buf *bp;
   1759  1.119     joerg 	int error, cg;
   1760  1.119     joerg 	daddr_t cgbno;
   1761  1.119     joerg 	dev_t dev;
   1762  1.119     joerg #ifdef FFS_EI
   1763  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1764  1.119     joerg #endif
   1765  1.119     joerg 
   1766  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1767  1.119     joerg 	devvp = ump->um_devvp;
   1768  1.119     joerg 	dev = devvp->v_rdev;
   1769  1.119     joerg 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1770  1.119     joerg 
   1771  1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1772  1.119     joerg 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1773  1.119     joerg 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1774  1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1775  1.119     joerg 	    NOCRED, B_MODIFY, &bp);
   1776  1.119     joerg 	if (error) {
   1777  1.119     joerg 		brelse(bp, 0);
   1778  1.119     joerg 		return (error);
   1779  1.119     joerg 	}
   1780  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1781  1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1782  1.119     joerg 		brelse(bp, 0);
   1783  1.119     joerg 		return (0);
   1784  1.119     joerg 	}
   1785  1.119     joerg 
   1786  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1787  1.119     joerg 
   1788  1.119     joerg 	bdwrite(bp);
   1789  1.119     joerg 
   1790  1.119     joerg 	return 0;
   1791  1.119     joerg }
   1792  1.119     joerg 
   1793  1.119     joerg int
   1794  1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1795    1.9  christos {
   1796  1.101        ad 	struct ufsmount *ump;
   1797   1.33  augustss 	struct cg *cgp;
   1798    1.1   mycroft 	struct buf *bp;
   1799    1.1   mycroft 	int error, cg;
   1800   1.76   hannken 	daddr_t cgbno;
   1801   1.78   hannken 	dev_t dev;
   1802   1.19    bouyer #ifdef FFS_EI
   1803   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1804   1.19    bouyer #endif
   1805    1.1   mycroft 
   1806  1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   1807  1.111    simonb 
   1808   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1809  1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1810  1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1811  1.119     joerg 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1812    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1813   1.86  christos 		panic("ifree: range: dev = 0x%x, ino = %llu, fs = %s",
   1814   1.86  christos 		    dev, (unsigned long long)ino, fs->fs_fsmnt);
   1815  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1816  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1817    1.1   mycroft 	if (error) {
   1818  1.101        ad 		brelse(bp, 0);
   1819   1.30      fvdl 		return (error);
   1820    1.1   mycroft 	}
   1821    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1822   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1823  1.101        ad 		brelse(bp, 0);
   1824    1.1   mycroft 		return (0);
   1825    1.1   mycroft 	}
   1826  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1827  1.119     joerg 
   1828  1.119     joerg 	bdwrite(bp);
   1829  1.119     joerg 
   1830  1.119     joerg 	return 0;
   1831  1.119     joerg }
   1832  1.119     joerg 
   1833  1.119     joerg static void
   1834  1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1835  1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1836  1.119     joerg {
   1837  1.119     joerg 	int cg;
   1838  1.119     joerg 	struct cg *cgp;
   1839  1.119     joerg 	u_int8_t *inosused;
   1840  1.119     joerg #ifdef FFS_EI
   1841  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1842  1.119     joerg #endif
   1843  1.119     joerg 
   1844  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1845  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1846   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1847   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1848   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1849   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1850   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1851    1.1   mycroft 	ino %= fs->fs_ipg;
   1852   1.62      fvdl 	if (isclr(inosused, ino)) {
   1853   1.86  christos 		printf("ifree: dev = 0x%x, ino = %llu, fs = %s\n",
   1854   1.86  christos 		    dev, (unsigned long long)ino + cg * fs->fs_ipg,
   1855   1.86  christos 		    fs->fs_fsmnt);
   1856    1.1   mycroft 		if (fs->fs_ronly == 0)
   1857    1.1   mycroft 			panic("ifree: freeing free inode");
   1858    1.1   mycroft 	}
   1859   1.62      fvdl 	clrbit(inosused, ino);
   1860  1.113   hannken 	if (!devvp_is_snapshot)
   1861  1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1862  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1863   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1864   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1865   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1866  1.101        ad 	mutex_enter(&ump->um_lock);
   1867    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1868    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1869   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1870   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1871    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1872    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1873    1.1   mycroft 	}
   1874    1.1   mycroft 	fs->fs_fmod = 1;
   1875   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1876  1.101        ad 	mutex_exit(&ump->um_lock);
   1877    1.1   mycroft }
   1878    1.1   mycroft 
   1879    1.1   mycroft /*
   1880   1.76   hannken  * Check to see if a file is free.
   1881   1.76   hannken  */
   1882   1.76   hannken int
   1883   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1884   1.76   hannken {
   1885   1.76   hannken 	struct cg *cgp;
   1886   1.76   hannken 	struct buf *bp;
   1887   1.76   hannken 	daddr_t cgbno;
   1888   1.76   hannken 	int ret, cg;
   1889   1.76   hannken 	u_int8_t *inosused;
   1890  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1891   1.76   hannken 
   1892  1.119     joerg 	KASSERT(devvp_is_snapshot);
   1893  1.119     joerg 
   1894   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1895  1.113   hannken 	if (devvp_is_snapshot)
   1896   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1897  1.113   hannken 	else
   1898   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1899   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1900   1.76   hannken 		return 1;
   1901  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1902  1.101        ad 		brelse(bp, 0);
   1903   1.76   hannken 		return 1;
   1904   1.76   hannken 	}
   1905   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1906   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1907  1.101        ad 		brelse(bp, 0);
   1908   1.76   hannken 		return 1;
   1909   1.76   hannken 	}
   1910   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1911   1.76   hannken 	ino %= fs->fs_ipg;
   1912   1.76   hannken 	ret = isclr(inosused, ino);
   1913  1.101        ad 	brelse(bp, 0);
   1914   1.76   hannken 	return ret;
   1915   1.76   hannken }
   1916   1.76   hannken 
   1917   1.76   hannken /*
   1918    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1919    1.1   mycroft  *
   1920    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1921    1.1   mycroft  * available.
   1922    1.1   mycroft  */
   1923   1.60      fvdl static int32_t
   1924   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1925    1.1   mycroft {
   1926   1.60      fvdl 	int32_t bno;
   1927    1.1   mycroft 	int start, len, loc, i;
   1928    1.1   mycroft 	int blk, field, subfield, pos;
   1929   1.19    bouyer 	int ostart, olen;
   1930   1.62      fvdl 	u_int8_t *blksfree;
   1931   1.30      fvdl #ifdef FFS_EI
   1932   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1933   1.30      fvdl #endif
   1934    1.1   mycroft 
   1935  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1936  1.101        ad 
   1937    1.1   mycroft 	/*
   1938    1.1   mycroft 	 * find the fragment by searching through the free block
   1939    1.1   mycroft 	 * map for an appropriate bit pattern
   1940    1.1   mycroft 	 */
   1941    1.1   mycroft 	if (bpref)
   1942    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1943    1.1   mycroft 	else
   1944   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1945   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1946    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1947   1.19    bouyer 	ostart = start;
   1948   1.19    bouyer 	olen = len;
   1949   1.45     lukem 	loc = scanc((u_int)len,
   1950   1.62      fvdl 		(const u_char *)&blksfree[start],
   1951   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1952   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1953    1.1   mycroft 	if (loc == 0) {
   1954    1.1   mycroft 		len = start + 1;
   1955    1.1   mycroft 		start = 0;
   1956   1.45     lukem 		loc = scanc((u_int)len,
   1957   1.62      fvdl 			(const u_char *)&blksfree[0],
   1958   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1959   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1960    1.1   mycroft 		if (loc == 0) {
   1961   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1962   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1963   1.20      ross 			printf("offset=%d %ld\n",
   1964   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1965   1.62      fvdl 				(long)blksfree - (long)cgp);
   1966   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1967    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1968    1.1   mycroft 			/* NOTREACHED */
   1969    1.1   mycroft 		}
   1970    1.1   mycroft 	}
   1971    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1972   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1973    1.1   mycroft 	/*
   1974    1.1   mycroft 	 * found the byte in the map
   1975    1.1   mycroft 	 * sift through the bits to find the selected frag
   1976    1.1   mycroft 	 */
   1977    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1978   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1979    1.1   mycroft 		blk <<= 1;
   1980    1.1   mycroft 		field = around[allocsiz];
   1981    1.1   mycroft 		subfield = inside[allocsiz];
   1982    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1983    1.1   mycroft 			if ((blk & field) == subfield)
   1984    1.1   mycroft 				return (bno + pos);
   1985    1.1   mycroft 			field <<= 1;
   1986    1.1   mycroft 			subfield <<= 1;
   1987    1.1   mycroft 		}
   1988    1.1   mycroft 	}
   1989   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1990    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1991   1.58      fvdl 	/* return (-1); */
   1992    1.1   mycroft }
   1993    1.1   mycroft 
   1994    1.1   mycroft /*
   1995    1.1   mycroft  * Update the cluster map because of an allocation or free.
   1996    1.1   mycroft  *
   1997    1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1998    1.1   mycroft  */
   1999    1.9  christos void
   2000   1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   2001    1.1   mycroft {
   2002    1.4       cgd 	int32_t *sump;
   2003    1.5   mycroft 	int32_t *lp;
   2004    1.1   mycroft 	u_char *freemapp, *mapp;
   2005    1.1   mycroft 	int i, start, end, forw, back, map, bit;
   2006   1.30      fvdl #ifdef FFS_EI
   2007   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2008   1.30      fvdl #endif
   2009    1.1   mycroft 
   2010  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2011  1.101        ad 
   2012    1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2013    1.1   mycroft 		return;
   2014   1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2015   1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2016    1.1   mycroft 	/*
   2017    1.1   mycroft 	 * Allocate or clear the actual block.
   2018    1.1   mycroft 	 */
   2019    1.1   mycroft 	if (cnt > 0)
   2020    1.1   mycroft 		setbit(freemapp, blkno);
   2021    1.1   mycroft 	else
   2022    1.1   mycroft 		clrbit(freemapp, blkno);
   2023    1.1   mycroft 	/*
   2024    1.1   mycroft 	 * Find the size of the cluster going forward.
   2025    1.1   mycroft 	 */
   2026    1.1   mycroft 	start = blkno + 1;
   2027    1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2028   1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2029   1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2030    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2031    1.1   mycroft 	map = *mapp++;
   2032    1.1   mycroft 	bit = 1 << (start % NBBY);
   2033    1.1   mycroft 	for (i = start; i < end; i++) {
   2034    1.1   mycroft 		if ((map & bit) == 0)
   2035    1.1   mycroft 			break;
   2036    1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2037    1.1   mycroft 			bit <<= 1;
   2038    1.1   mycroft 		} else {
   2039    1.1   mycroft 			map = *mapp++;
   2040    1.1   mycroft 			bit = 1;
   2041    1.1   mycroft 		}
   2042    1.1   mycroft 	}
   2043    1.1   mycroft 	forw = i - start;
   2044    1.1   mycroft 	/*
   2045    1.1   mycroft 	 * Find the size of the cluster going backward.
   2046    1.1   mycroft 	 */
   2047    1.1   mycroft 	start = blkno - 1;
   2048    1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2049    1.1   mycroft 	if (end < 0)
   2050    1.1   mycroft 		end = -1;
   2051    1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2052    1.1   mycroft 	map = *mapp--;
   2053    1.1   mycroft 	bit = 1 << (start % NBBY);
   2054    1.1   mycroft 	for (i = start; i > end; i--) {
   2055    1.1   mycroft 		if ((map & bit) == 0)
   2056    1.1   mycroft 			break;
   2057    1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2058    1.1   mycroft 			bit >>= 1;
   2059    1.1   mycroft 		} else {
   2060    1.1   mycroft 			map = *mapp--;
   2061    1.1   mycroft 			bit = 1 << (NBBY - 1);
   2062    1.1   mycroft 		}
   2063    1.1   mycroft 	}
   2064    1.1   mycroft 	back = start - i;
   2065    1.1   mycroft 	/*
   2066    1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2067    1.1   mycroft 	 * back clusters.
   2068    1.1   mycroft 	 */
   2069    1.1   mycroft 	i = back + forw + 1;
   2070    1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2071    1.1   mycroft 		i = fs->fs_contigsumsize;
   2072   1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2073    1.1   mycroft 	if (back > 0)
   2074   1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2075    1.1   mycroft 	if (forw > 0)
   2076   1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2077   1.19    bouyer 
   2078    1.5   mycroft 	/*
   2079    1.5   mycroft 	 * Update cluster summary information.
   2080    1.5   mycroft 	 */
   2081    1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2082    1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2083   1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2084    1.5   mycroft 			break;
   2085   1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2086    1.1   mycroft }
   2087    1.1   mycroft 
   2088    1.1   mycroft /*
   2089    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2090   1.81     perry  *
   2091    1.1   mycroft  * The form of the error message is:
   2092    1.1   mycroft  *	fs: error message
   2093    1.1   mycroft  */
   2094    1.1   mycroft static void
   2095   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2096    1.1   mycroft {
   2097    1.1   mycroft 
   2098   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2099   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2100    1.1   mycroft }
   2101