Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.120.2.1
      1  1.120.2.1       jym /*	$NetBSD: ffs_alloc.c,v 1.120.2.1 2009/05/13 17:23:06 jym Exp $	*/
      2      1.111    simonb 
      3      1.111    simonb /*-
      4  1.120.2.1       jym  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.111    simonb  * All rights reserved.
      6      1.111    simonb  *
      7      1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8      1.111    simonb  * by Wasabi Systems, Inc.
      9      1.111    simonb  *
     10      1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11      1.111    simonb  * modification, are permitted provided that the following conditions
     12      1.111    simonb  * are met:
     13      1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14      1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15      1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17      1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18      1.111    simonb  *
     19      1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30      1.111    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.120.2.1       jym __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.120.2.1 2009/05/13 17:23:06 jym Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78       1.22    scottr #endif
     79        1.1   mycroft 
     80        1.1   mycroft #include <sys/param.h>
     81        1.1   mycroft #include <sys/systm.h>
     82        1.1   mycroft #include <sys/buf.h>
     83      1.111    simonb #include <sys/fstrans.h>
     84      1.111    simonb #include <sys/kauth.h>
     85      1.111    simonb #include <sys/kernel.h>
     86      1.111    simonb #include <sys/mount.h>
     87        1.1   mycroft #include <sys/proc.h>
     88      1.111    simonb #include <sys/syslog.h>
     89        1.1   mycroft #include <sys/vnode.h>
     90      1.111    simonb #include <sys/wapbl.h>
     91       1.29       mrg 
     92       1.76   hannken #include <miscfs/specfs/specdev.h>
     93        1.1   mycroft #include <ufs/ufs/quota.h>
     94       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95        1.1   mycroft #include <ufs/ufs/inode.h>
     96        1.9  christos #include <ufs/ufs/ufs_extern.h>
     97       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98      1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99        1.1   mycroft 
    100        1.1   mycroft #include <ufs/ffs/fs.h>
    101        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102        1.1   mycroft 
    103      1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104      1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107       1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108      1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109      1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110      1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112       1.85   thorpej 				      daddr_t, int);
    113      1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    114      1.116     joerg     daddr_t, long, bool);
    115      1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    116      1.119     joerg     int, bool);
    117       1.23  drochner 
    118       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    119       1.34  jdolecek int ffs_log_changeopt = 0;
    120       1.34  jdolecek 
    121       1.23  drochner /* in ffs_tables.c */
    122       1.40  jdolecek extern const int inside[], around[];
    123       1.40  jdolecek extern const u_char * const fragtbl[];
    124        1.1   mycroft 
    125      1.116     joerg /* Basic consistency check for block allocations */
    126      1.116     joerg static int
    127      1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    128      1.116     joerg     long size, dev_t dev, ino_t inum)
    129      1.116     joerg {
    130      1.116     joerg 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    131      1.116     joerg 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    132      1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    133      1.120  christos 		    "size = %ld, fs = %s\n",
    134      1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    135      1.116     joerg 		panic("%s: bad size", func);
    136      1.116     joerg 	}
    137      1.116     joerg 
    138      1.116     joerg 	if (bno >= fs->fs_size) {
    139      1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    140      1.116     joerg 		    (unsigned long long)inum);
    141      1.116     joerg 		ffs_fserr(fs, inum, "bad block");
    142      1.116     joerg 		return EINVAL;
    143      1.116     joerg 	}
    144      1.116     joerg 	return 0;
    145      1.116     joerg }
    146      1.116     joerg 
    147        1.1   mycroft /*
    148        1.1   mycroft  * Allocate a block in the file system.
    149       1.81     perry  *
    150        1.1   mycroft  * The size of the requested block is given, which must be some
    151        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    152        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    153        1.1   mycroft  * the following hierarchy is used to allocate a block:
    154        1.1   mycroft  *   1) allocate the requested block.
    155        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    156        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    157        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    158        1.1   mycroft  *      available block is located.
    159       1.47       wiz  * If no block preference is given the following hierarchy is used
    160        1.1   mycroft  * to allocate a block:
    161        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    162        1.1   mycroft  *      inode for the file.
    163        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    164        1.1   mycroft  *      available block is located.
    165      1.106     pooka  *
    166      1.106     pooka  * => called with um_lock held
    167      1.106     pooka  * => releases um_lock before returning
    168        1.1   mycroft  */
    169        1.9  christos int
    170      1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    171       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    172        1.1   mycroft {
    173      1.101        ad 	struct ufsmount *ump;
    174       1.62      fvdl 	struct fs *fs;
    175       1.58      fvdl 	daddr_t bno;
    176        1.9  christos 	int cg;
    177        1.9  christos #ifdef QUOTA
    178        1.9  christos 	int error;
    179        1.9  christos #endif
    180       1.81     perry 
    181       1.62      fvdl 	fs = ip->i_fs;
    182      1.101        ad 	ump = ip->i_ump;
    183      1.101        ad 
    184      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    185       1.62      fvdl 
    186       1.37       chs #ifdef UVM_PAGE_TRKOWN
    187       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    188       1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    189       1.37       chs 		struct vm_page *pg;
    190       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    191       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    192       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    193       1.37       chs 
    194      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    195       1.37       chs 		while (off < endoff) {
    196       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    197       1.37       chs 			KASSERT(pg != NULL);
    198       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    199       1.37       chs 			off += PAGE_SIZE;
    200       1.37       chs 		}
    201      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    202       1.37       chs 	}
    203       1.37       chs #endif
    204       1.37       chs 
    205        1.1   mycroft 	*bnp = 0;
    206        1.1   mycroft #ifdef DIAGNOSTIC
    207        1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    208      1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    209      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    210      1.120  christos 		    fs->fs_fsmnt);
    211        1.1   mycroft 		panic("ffs_alloc: bad size");
    212        1.1   mycroft 	}
    213        1.1   mycroft 	if (cred == NOCRED)
    214       1.56    provos 		panic("ffs_alloc: missing credential");
    215        1.1   mycroft #endif /* DIAGNOSTIC */
    216        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    217        1.1   mycroft 		goto nospace;
    218       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    219  1.120.2.1       jym 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    220  1.120.2.1       jym 	    NULL, NULL) != 0)
    221        1.1   mycroft 		goto nospace;
    222        1.1   mycroft #ifdef QUOTA
    223      1.101        ad 	mutex_exit(&ump->um_lock);
    224       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    225        1.1   mycroft 		return (error);
    226      1.101        ad 	mutex_enter(&ump->um_lock);
    227        1.1   mycroft #endif
    228      1.111    simonb 
    229        1.1   mycroft 	if (bpref >= fs->fs_size)
    230        1.1   mycroft 		bpref = 0;
    231        1.1   mycroft 	if (bpref == 0)
    232        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    233        1.1   mycroft 	else
    234        1.1   mycroft 		cg = dtog(fs, bpref);
    235      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    236        1.1   mycroft 	if (bno > 0) {
    237       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    238        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    239        1.1   mycroft 		*bnp = bno;
    240        1.1   mycroft 		return (0);
    241        1.1   mycroft 	}
    242        1.1   mycroft #ifdef QUOTA
    243        1.1   mycroft 	/*
    244        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    245        1.1   mycroft 	 */
    246       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    247        1.1   mycroft #endif
    248      1.111    simonb 	if (flags & B_CONTIG) {
    249      1.111    simonb 		/*
    250      1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    251      1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    252      1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    253      1.111    simonb 		 * already unlocked, so we can't release it again
    254      1.111    simonb 		 * like in the normal error path.  See kern/39206.
    255      1.111    simonb 		 *
    256      1.111    simonb 		 *
    257      1.111    simonb 		 * Fail silently - it's up to our caller to report
    258      1.111    simonb 		 * errors.
    259      1.111    simonb 		 */
    260      1.111    simonb 		return (ENOSPC);
    261      1.111    simonb 	}
    262        1.1   mycroft nospace:
    263      1.101        ad 	mutex_exit(&ump->um_lock);
    264       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    265        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    266        1.1   mycroft 	return (ENOSPC);
    267        1.1   mycroft }
    268        1.1   mycroft 
    269        1.1   mycroft /*
    270        1.1   mycroft  * Reallocate a fragment to a bigger size
    271        1.1   mycroft  *
    272        1.1   mycroft  * The number and size of the old block is given, and a preference
    273        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    274        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    275        1.1   mycroft  * invoked to get an appropriate block.
    276      1.106     pooka  *
    277      1.106     pooka  * => called with um_lock held
    278      1.106     pooka  * => return with um_lock released
    279        1.1   mycroft  */
    280        1.9  christos int
    281       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    282       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    283        1.1   mycroft {
    284      1.101        ad 	struct ufsmount *ump;
    285       1.62      fvdl 	struct fs *fs;
    286        1.1   mycroft 	struct buf *bp;
    287        1.1   mycroft 	int cg, request, error;
    288       1.58      fvdl 	daddr_t bprev, bno;
    289       1.25   thorpej 
    290       1.62      fvdl 	fs = ip->i_fs;
    291      1.101        ad 	ump = ip->i_ump;
    292      1.101        ad 
    293      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    294      1.101        ad 
    295       1.37       chs #ifdef UVM_PAGE_TRKOWN
    296       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    297       1.37       chs 		struct vm_page *pg;
    298       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    299       1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    300       1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    301       1.37       chs 
    302      1.105        ad 		mutex_enter(&uobj->vmobjlock);
    303       1.37       chs 		while (off < endoff) {
    304       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    305       1.37       chs 			KASSERT(pg != NULL);
    306       1.37       chs 			KASSERT(pg->owner == curproc->p_pid);
    307       1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    308       1.37       chs 			off += PAGE_SIZE;
    309       1.37       chs 		}
    310      1.105        ad 		mutex_exit(&uobj->vmobjlock);
    311       1.37       chs 	}
    312       1.37       chs #endif
    313       1.37       chs 
    314        1.1   mycroft #ifdef DIAGNOSTIC
    315        1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    316        1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    317       1.13  christos 		printf(
    318      1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    319      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    320      1.120  christos 		    fs->fs_fsmnt);
    321        1.1   mycroft 		panic("ffs_realloccg: bad size");
    322        1.1   mycroft 	}
    323        1.1   mycroft 	if (cred == NOCRED)
    324       1.56    provos 		panic("ffs_realloccg: missing credential");
    325        1.1   mycroft #endif /* DIAGNOSTIC */
    326       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    327  1.120.2.1       jym 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    328  1.120.2.1       jym 	    NULL, NULL) != 0) {
    329      1.101        ad 		mutex_exit(&ump->um_lock);
    330        1.1   mycroft 		goto nospace;
    331      1.101        ad 	}
    332       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    333       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    334       1.60      fvdl 	else
    335       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    336       1.60      fvdl 
    337       1.60      fvdl 	if (bprev == 0) {
    338      1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    339      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    340      1.120  christos 		    fs->fs_fsmnt);
    341        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    342        1.1   mycroft 	}
    343      1.101        ad 	mutex_exit(&ump->um_lock);
    344      1.101        ad 
    345        1.1   mycroft 	/*
    346        1.1   mycroft 	 * Allocate the extra space in the buffer.
    347        1.1   mycroft 	 */
    348       1.37       chs 	if (bpp != NULL &&
    349      1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    350      1.101        ad 		brelse(bp, 0);
    351        1.1   mycroft 		return (error);
    352        1.1   mycroft 	}
    353        1.1   mycroft #ifdef QUOTA
    354       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    355       1.44       chs 		if (bpp != NULL) {
    356      1.101        ad 			brelse(bp, 0);
    357       1.44       chs 		}
    358        1.1   mycroft 		return (error);
    359        1.1   mycroft 	}
    360        1.1   mycroft #endif
    361        1.1   mycroft 	/*
    362        1.1   mycroft 	 * Check for extension in the existing location.
    363        1.1   mycroft 	 */
    364        1.1   mycroft 	cg = dtog(fs, bprev);
    365      1.101        ad 	mutex_enter(&ump->um_lock);
    366       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    367       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    368        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    369       1.37       chs 
    370       1.37       chs 		if (bpp != NULL) {
    371       1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    372       1.37       chs 				panic("bad blockno");
    373       1.72        pk 			allocbuf(bp, nsize, 1);
    374       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    375      1.105        ad 			mutex_enter(bp->b_objlock);
    376      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    377      1.105        ad 			bp->b_oflags |= BO_DONE;
    378      1.105        ad 			mutex_exit(bp->b_objlock);
    379       1.37       chs 			*bpp = bp;
    380       1.37       chs 		}
    381       1.37       chs 		if (blknop != NULL) {
    382       1.37       chs 			*blknop = bno;
    383       1.37       chs 		}
    384        1.1   mycroft 		return (0);
    385        1.1   mycroft 	}
    386        1.1   mycroft 	/*
    387        1.1   mycroft 	 * Allocate a new disk location.
    388        1.1   mycroft 	 */
    389        1.1   mycroft 	if (bpref >= fs->fs_size)
    390        1.1   mycroft 		bpref = 0;
    391        1.1   mycroft 	switch ((int)fs->fs_optim) {
    392        1.1   mycroft 	case FS_OPTSPACE:
    393        1.1   mycroft 		/*
    394       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    395       1.81     perry 		 * best use of space, we will waste time relocating it if
    396        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    397        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    398        1.1   mycroft 		 * to begin optimizing for time.
    399        1.1   mycroft 		 */
    400        1.1   mycroft 		request = nsize;
    401        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    402        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    403        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    404        1.1   mycroft 			break;
    405       1.34  jdolecek 
    406       1.34  jdolecek 		if (ffs_log_changeopt) {
    407       1.34  jdolecek 			log(LOG_NOTICE,
    408       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    409       1.34  jdolecek 				fs->fs_fsmnt);
    410       1.34  jdolecek 		}
    411       1.34  jdolecek 
    412        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    413        1.1   mycroft 		break;
    414        1.1   mycroft 	case FS_OPTTIME:
    415        1.1   mycroft 		/*
    416        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    417        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    418        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    419        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    420        1.1   mycroft 		 * above will be able to grow it in place without further
    421        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    422        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    423        1.1   mycroft 		 * optimizing for space.
    424        1.1   mycroft 		 */
    425        1.1   mycroft 		request = fs->fs_bsize;
    426        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    427        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    428        1.1   mycroft 			break;
    429       1.34  jdolecek 
    430       1.34  jdolecek 		if (ffs_log_changeopt) {
    431       1.34  jdolecek 			log(LOG_NOTICE,
    432       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    433       1.34  jdolecek 				fs->fs_fsmnt);
    434       1.34  jdolecek 		}
    435       1.34  jdolecek 
    436        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    437        1.1   mycroft 		break;
    438        1.1   mycroft 	default:
    439      1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    440      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    441        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    442        1.1   mycroft 		/* NOTREACHED */
    443        1.1   mycroft 	}
    444      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    445        1.1   mycroft 	if (bno > 0) {
    446  1.120.2.1       jym 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    447  1.120.2.1       jym 		    (ITOV(ip)->v_type != VREG)) {
    448  1.120.2.1       jym 			UFS_WAPBL_REGISTER_DEALLOCATION(
    449  1.120.2.1       jym 			    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    450  1.120.2.1       jym 			    osize);
    451  1.120.2.1       jym 		} else {
    452  1.120.2.1       jym 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    453  1.120.2.1       jym 			    ip->i_number);
    454      1.111    simonb 		}
    455      1.111    simonb 		if (nsize < request) {
    456      1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    457      1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    458      1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    459      1.111    simonb 				    ip->i_ump->um_mountp,
    460      1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    461      1.111    simonb 				    request - nsize);
    462      1.111    simonb 			} else
    463      1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    464      1.111    simonb 				    bno + numfrags(fs, nsize),
    465      1.111    simonb 				    (long)(request - nsize), ip->i_number);
    466      1.111    simonb 		}
    467       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    468        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    469       1.37       chs 		if (bpp != NULL) {
    470       1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    471       1.72        pk 			allocbuf(bp, nsize, 1);
    472       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    473      1.105        ad 			mutex_enter(bp->b_objlock);
    474      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    475      1.105        ad 			bp->b_oflags |= BO_DONE;
    476      1.105        ad 			mutex_exit(bp->b_objlock);
    477       1.37       chs 			*bpp = bp;
    478       1.37       chs 		}
    479       1.37       chs 		if (blknop != NULL) {
    480       1.37       chs 			*blknop = bno;
    481       1.37       chs 		}
    482        1.1   mycroft 		return (0);
    483        1.1   mycroft 	}
    484      1.101        ad 	mutex_exit(&ump->um_lock);
    485      1.101        ad 
    486        1.1   mycroft #ifdef QUOTA
    487        1.1   mycroft 	/*
    488        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    489        1.1   mycroft 	 */
    490       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    491        1.1   mycroft #endif
    492       1.37       chs 	if (bpp != NULL) {
    493      1.101        ad 		brelse(bp, 0);
    494       1.37       chs 	}
    495       1.37       chs 
    496        1.1   mycroft nospace:
    497        1.1   mycroft 	/*
    498        1.1   mycroft 	 * no space available
    499        1.1   mycroft 	 */
    500       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    501        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    502        1.1   mycroft 	return (ENOSPC);
    503        1.1   mycroft }
    504        1.1   mycroft 
    505        1.1   mycroft /*
    506        1.1   mycroft  * Allocate an inode in the file system.
    507       1.81     perry  *
    508        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    509        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    510        1.1   mycroft  *   1) allocate the preferred inode.
    511        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    512        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    513        1.1   mycroft  *      available inode is located.
    514       1.47       wiz  * If no inode preference is given the following hierarchy is used
    515        1.1   mycroft  * to allocate an inode:
    516        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    517        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    518        1.1   mycroft  *      available inode is located.
    519      1.106     pooka  *
    520      1.106     pooka  * => um_lock not held upon entry or return
    521        1.1   mycroft  */
    522        1.9  christos int
    523       1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    524       1.88      yamt     struct vnode **vpp)
    525        1.9  christos {
    526      1.101        ad 	struct ufsmount *ump;
    527       1.33  augustss 	struct inode *pip;
    528       1.33  augustss 	struct fs *fs;
    529       1.33  augustss 	struct inode *ip;
    530       1.60      fvdl 	struct timespec ts;
    531        1.1   mycroft 	ino_t ino, ipref;
    532        1.1   mycroft 	int cg, error;
    533       1.81     perry 
    534      1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    535      1.111    simonb 
    536       1.88      yamt 	*vpp = NULL;
    537        1.1   mycroft 	pip = VTOI(pvp);
    538        1.1   mycroft 	fs = pip->i_fs;
    539      1.101        ad 	ump = pip->i_ump;
    540      1.101        ad 
    541      1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    542      1.111    simonb 	if (error) {
    543      1.111    simonb 		return error;
    544      1.111    simonb 	}
    545      1.101        ad 	mutex_enter(&ump->um_lock);
    546        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    547        1.1   mycroft 		goto noinodes;
    548        1.1   mycroft 
    549        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    550       1.50     lukem 		ipref = ffs_dirpref(pip);
    551       1.50     lukem 	else
    552       1.50     lukem 		ipref = pip->i_number;
    553        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    554        1.1   mycroft 		ipref = 0;
    555        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    556       1.50     lukem 	/*
    557       1.50     lukem 	 * Track number of dirs created one after another
    558       1.50     lukem 	 * in a same cg without intervening by files.
    559       1.50     lukem 	 */
    560       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    561       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    562       1.50     lukem 			fs->fs_contigdirs[cg]++;
    563       1.50     lukem 	} else {
    564       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    565       1.50     lukem 			fs->fs_contigdirs[cg]--;
    566       1.50     lukem 	}
    567      1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    568        1.1   mycroft 	if (ino == 0)
    569        1.1   mycroft 		goto noinodes;
    570      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    571       1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    572        1.1   mycroft 	if (error) {
    573      1.111    simonb 		int err;
    574      1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    575      1.111    simonb 		if (err == 0)
    576      1.111    simonb 			ffs_vfree(pvp, ino, mode);
    577      1.111    simonb 		if (err == 0)
    578      1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    579        1.1   mycroft 		return (error);
    580        1.1   mycroft 	}
    581       1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    582       1.88      yamt 	ip = VTOI(*vpp);
    583       1.60      fvdl 	if (ip->i_mode) {
    584       1.60      fvdl #if 0
    585       1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    586       1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    587       1.60      fvdl #else
    588       1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    589       1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    590       1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    591       1.60      fvdl 		printf("size %llx blocks %llx\n",
    592       1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    593       1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    594       1.86  christos 		    (unsigned long long)ipref);
    595       1.60      fvdl #if 0
    596       1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    597      1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    598       1.60      fvdl #endif
    599       1.60      fvdl 
    600       1.60      fvdl #endif
    601        1.1   mycroft 		panic("ffs_valloc: dup alloc");
    602        1.1   mycroft 	}
    603       1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    604       1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    605       1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    606       1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    607        1.1   mycroft 	}
    608       1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    609       1.61      fvdl 	ip->i_flags = 0;
    610       1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    611        1.1   mycroft 	/*
    612        1.1   mycroft 	 * Set up a new generation number for this inode.
    613        1.1   mycroft 	 */
    614       1.60      fvdl 	ip->i_gen++;
    615       1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    616       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    617       1.93      yamt 		vfs_timestamp(&ts);
    618       1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    619       1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    620       1.60      fvdl 	}
    621        1.1   mycroft 	return (0);
    622        1.1   mycroft noinodes:
    623      1.101        ad 	mutex_exit(&ump->um_lock);
    624      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    625       1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    626        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    627        1.1   mycroft 	return (ENOSPC);
    628        1.1   mycroft }
    629        1.1   mycroft 
    630        1.1   mycroft /*
    631       1.50     lukem  * Find a cylinder group in which to place a directory.
    632       1.42  sommerfe  *
    633       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    634       1.50     lukem  * directory inode in the same cylinder group as its parent
    635       1.50     lukem  * directory, but also to reserve space for its files inodes
    636       1.50     lukem  * and data. Restrict the number of directories which may be
    637       1.50     lukem  * allocated one after another in the same cylinder group
    638       1.50     lukem  * without intervening allocation of files.
    639       1.42  sommerfe  *
    640       1.50     lukem  * If we allocate a first level directory then force allocation
    641       1.50     lukem  * in another cylinder group.
    642        1.1   mycroft  */
    643        1.1   mycroft static ino_t
    644       1.85   thorpej ffs_dirpref(struct inode *pip)
    645        1.1   mycroft {
    646       1.50     lukem 	register struct fs *fs;
    647       1.74     soren 	int cg, prefcg;
    648       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    649       1.89       dsl 	int avgifree, avgbfree, avgndir;
    650       1.50     lukem 	int minifree, minbfree, maxndir;
    651       1.50     lukem 	int mincg, minndir;
    652       1.50     lukem 	int maxcontigdirs;
    653       1.50     lukem 
    654      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    655      1.101        ad 
    656       1.50     lukem 	fs = pip->i_fs;
    657        1.1   mycroft 
    658        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    659       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    660       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    661       1.50     lukem 
    662       1.50     lukem 	/*
    663       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    664       1.50     lukem 	 */
    665      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    666       1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    667       1.50     lukem 		mincg = prefcg;
    668       1.50     lukem 		minndir = fs->fs_ipg;
    669       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    670       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    671       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    672       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    673       1.42  sommerfe 				mincg = cg;
    674       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    675       1.42  sommerfe 			}
    676       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    677       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    678       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    679       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    680       1.50     lukem 				mincg = cg;
    681       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    682       1.42  sommerfe 			}
    683       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    684       1.42  sommerfe 	}
    685       1.50     lukem 
    686       1.50     lukem 	/*
    687       1.50     lukem 	 * Count various limits which used for
    688       1.50     lukem 	 * optimal allocation of a directory inode.
    689       1.50     lukem 	 */
    690       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    691       1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    692       1.50     lukem 	if (minifree < 0)
    693       1.50     lukem 		minifree = 0;
    694       1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    695       1.50     lukem 	if (minbfree < 0)
    696       1.50     lukem 		minbfree = 0;
    697       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    698       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    699       1.89       dsl 	if (avgndir != 0) {
    700       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    701       1.89       dsl 		if (dirsize < curdsz)
    702       1.89       dsl 			dirsize = curdsz;
    703       1.89       dsl 	}
    704       1.89       dsl 	if (cgsize < dirsize * 255)
    705       1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    706       1.89       dsl 	else
    707       1.89       dsl 		maxcontigdirs = 255;
    708       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    709       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    710       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    711       1.50     lukem 	if (maxcontigdirs == 0)
    712       1.50     lukem 		maxcontigdirs = 1;
    713       1.50     lukem 
    714       1.50     lukem 	/*
    715       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    716       1.50     lukem 	 * regular files, but only if we have no deficit in
    717       1.50     lukem 	 * inodes or space.
    718       1.50     lukem 	 */
    719       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    720       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    721       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    722       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    723       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    724       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    725       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    726       1.50     lukem 		}
    727       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    728       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    729       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    730       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    731       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    732       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    733       1.50     lukem 		}
    734       1.50     lukem 	/*
    735       1.50     lukem 	 * This is a backstop when we are deficient in space.
    736       1.50     lukem 	 */
    737       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    738       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    739       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    740       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    741       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    742       1.50     lukem 			break;
    743       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    744        1.1   mycroft }
    745        1.1   mycroft 
    746        1.1   mycroft /*
    747        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    748        1.1   mycroft  * logically divided into sections. The first section is composed of the
    749        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    750       1.81     perry  *
    751        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    752        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    753        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    754        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    755        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    756        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    757        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    758        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    759        1.1   mycroft  * continues until a cylinder group with greater than the average number
    760        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    761        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    762        1.1   mycroft  * here a best guess is made based upon the logical block number being
    763        1.1   mycroft  * allocated.
    764       1.81     perry  *
    765        1.1   mycroft  * If a section is already partially allocated, the policy is to
    766        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    767       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    768       1.60      fvdl  * contigously if possible.
    769      1.106     pooka  *
    770      1.106     pooka  * => um_lock held on entry and exit
    771        1.1   mycroft  */
    772       1.58      fvdl daddr_t
    773      1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    774       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    775        1.1   mycroft {
    776       1.33  augustss 	struct fs *fs;
    777       1.33  augustss 	int cg;
    778        1.1   mycroft 	int avgbfree, startcg;
    779        1.1   mycroft 
    780      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    781      1.101        ad 
    782        1.1   mycroft 	fs = ip->i_fs;
    783      1.111    simonb 
    784      1.111    simonb 	/*
    785      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    786      1.111    simonb 	 * in the inode extentions to return the desired block.
    787      1.111    simonb 	 *
    788      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    789      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    790      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    791      1.111    simonb 	 * block.  For data, return the address of the actual block
    792      1.111    simonb 	 * relative to the address of the first data block.
    793      1.111    simonb 	 */
    794      1.111    simonb 	if (flags & B_CONTIG) {
    795      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    796      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    797      1.111    simonb 		if (flags & B_METAONLY)
    798      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    799      1.111    simonb 		else
    800      1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    801      1.111    simonb 	}
    802      1.111    simonb 
    803        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    804       1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    805        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    806      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    807        1.1   mycroft 		}
    808        1.1   mycroft 		/*
    809        1.1   mycroft 		 * Find a cylinder with greater than average number of
    810        1.1   mycroft 		 * unused data blocks.
    811        1.1   mycroft 		 */
    812        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    813        1.1   mycroft 			startcg =
    814        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    815        1.1   mycroft 		else
    816       1.19    bouyer 			startcg = dtog(fs,
    817       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    818        1.1   mycroft 		startcg %= fs->fs_ncg;
    819        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    820        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    821        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    822      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    823        1.1   mycroft 			}
    824       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    825        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    826      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    827        1.1   mycroft 			}
    828       1.35   thorpej 		return (0);
    829        1.1   mycroft 	}
    830        1.1   mycroft 	/*
    831       1.60      fvdl 	 * We just always try to lay things out contiguously.
    832       1.60      fvdl 	 */
    833       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    834       1.60      fvdl }
    835       1.60      fvdl 
    836       1.60      fvdl daddr_t
    837      1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    838      1.111    simonb     int64_t *bap)
    839       1.60      fvdl {
    840       1.60      fvdl 	struct fs *fs;
    841       1.60      fvdl 	int cg;
    842       1.60      fvdl 	int avgbfree, startcg;
    843       1.60      fvdl 
    844      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    845      1.101        ad 
    846       1.60      fvdl 	fs = ip->i_fs;
    847      1.111    simonb 
    848      1.111    simonb 	/*
    849      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    850      1.111    simonb 	 * in the inode extentions to return the desired block.
    851      1.111    simonb 	 *
    852      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    853      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    854      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    855      1.111    simonb 	 * block.  For data, return the address of the actual block
    856      1.111    simonb 	 * relative to the address of the first data block.
    857      1.111    simonb 	 */
    858      1.111    simonb 	if (flags & B_CONTIG) {
    859      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    860      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    861      1.111    simonb 		if (flags & B_METAONLY)
    862      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    863      1.111    simonb 		else
    864      1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    865      1.111    simonb 	}
    866      1.111    simonb 
    867       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    868       1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    869       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    870      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    871       1.60      fvdl 		}
    872        1.1   mycroft 		/*
    873       1.60      fvdl 		 * Find a cylinder with greater than average number of
    874       1.60      fvdl 		 * unused data blocks.
    875        1.1   mycroft 		 */
    876       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    877       1.60      fvdl 			startcg =
    878       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    879       1.60      fvdl 		else
    880       1.60      fvdl 			startcg = dtog(fs,
    881       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    882       1.60      fvdl 		startcg %= fs->fs_ncg;
    883       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    884       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    885       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    886      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    887       1.60      fvdl 			}
    888       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    889       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    890      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    891       1.60      fvdl 			}
    892       1.60      fvdl 		return (0);
    893       1.60      fvdl 	}
    894       1.60      fvdl 	/*
    895       1.60      fvdl 	 * We just always try to lay things out contiguously.
    896       1.60      fvdl 	 */
    897       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    898        1.1   mycroft }
    899        1.1   mycroft 
    900       1.60      fvdl 
    901        1.1   mycroft /*
    902        1.1   mycroft  * Implement the cylinder overflow algorithm.
    903        1.1   mycroft  *
    904        1.1   mycroft  * The policy implemented by this algorithm is:
    905        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    906        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    907        1.1   mycroft  *   3) brute force search for a free block.
    908      1.106     pooka  *
    909      1.106     pooka  * => called with um_lock held
    910      1.106     pooka  * => returns with um_lock released on success, held on failure
    911      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    912        1.1   mycroft  */
    913        1.1   mycroft /*VARARGS5*/
    914       1.58      fvdl static daddr_t
    915       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    916       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    917      1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    918        1.1   mycroft {
    919       1.33  augustss 	struct fs *fs;
    920       1.58      fvdl 	daddr_t result;
    921        1.1   mycroft 	int i, icg = cg;
    922        1.1   mycroft 
    923        1.1   mycroft 	fs = ip->i_fs;
    924        1.1   mycroft 	/*
    925        1.1   mycroft 	 * 1: preferred cylinder group
    926        1.1   mycroft 	 */
    927      1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    928        1.1   mycroft 	if (result)
    929        1.1   mycroft 		return (result);
    930      1.111    simonb 
    931      1.111    simonb 	if (flags & B_CONTIG)
    932      1.111    simonb 		return (result);
    933        1.1   mycroft 	/*
    934        1.1   mycroft 	 * 2: quadratic rehash
    935        1.1   mycroft 	 */
    936        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    937        1.1   mycroft 		cg += i;
    938        1.1   mycroft 		if (cg >= fs->fs_ncg)
    939        1.1   mycroft 			cg -= fs->fs_ncg;
    940      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    941        1.1   mycroft 		if (result)
    942        1.1   mycroft 			return (result);
    943        1.1   mycroft 	}
    944        1.1   mycroft 	/*
    945        1.1   mycroft 	 * 3: brute force search
    946        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    947        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    948        1.1   mycroft 	 */
    949        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    950        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    951      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    952        1.1   mycroft 		if (result)
    953        1.1   mycroft 			return (result);
    954        1.1   mycroft 		cg++;
    955        1.1   mycroft 		if (cg == fs->fs_ncg)
    956        1.1   mycroft 			cg = 0;
    957        1.1   mycroft 	}
    958       1.35   thorpej 	return (0);
    959        1.1   mycroft }
    960        1.1   mycroft 
    961        1.1   mycroft /*
    962        1.1   mycroft  * Determine whether a fragment can be extended.
    963        1.1   mycroft  *
    964       1.81     perry  * Check to see if the necessary fragments are available, and
    965        1.1   mycroft  * if they are, allocate them.
    966      1.106     pooka  *
    967      1.106     pooka  * => called with um_lock held
    968      1.106     pooka  * => returns with um_lock released on success, held on failure
    969        1.1   mycroft  */
    970       1.58      fvdl static daddr_t
    971       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    972        1.1   mycroft {
    973      1.101        ad 	struct ufsmount *ump;
    974       1.33  augustss 	struct fs *fs;
    975       1.33  augustss 	struct cg *cgp;
    976        1.1   mycroft 	struct buf *bp;
    977       1.58      fvdl 	daddr_t bno;
    978        1.1   mycroft 	int frags, bbase;
    979        1.1   mycroft 	int i, error;
    980       1.62      fvdl 	u_int8_t *blksfree;
    981        1.1   mycroft 
    982        1.1   mycroft 	fs = ip->i_fs;
    983      1.101        ad 	ump = ip->i_ump;
    984      1.101        ad 
    985      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    986      1.101        ad 
    987        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    988       1.35   thorpej 		return (0);
    989        1.1   mycroft 	frags = numfrags(fs, nsize);
    990        1.1   mycroft 	bbase = fragnum(fs, bprev);
    991        1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    992        1.1   mycroft 		/* cannot extend across a block boundary */
    993       1.35   thorpej 		return (0);
    994        1.1   mycroft 	}
    995      1.101        ad 	mutex_exit(&ump->um_lock);
    996        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    997      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    998      1.101        ad 	if (error)
    999      1.101        ad 		goto fail;
   1000        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1001      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1002      1.101        ad 		goto fail;
   1003       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1004       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1005       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1006       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1007        1.1   mycroft 	bno = dtogd(fs, bprev);
   1008       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1009        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1010      1.101        ad 		if (isclr(blksfree, bno + i))
   1011      1.101        ad 			goto fail;
   1012        1.1   mycroft 	/*
   1013        1.1   mycroft 	 * the current fragment can be extended
   1014        1.1   mycroft 	 * deduct the count on fragment being extended into
   1015        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1016        1.1   mycroft 	 * allocate the extended piece
   1017        1.1   mycroft 	 */
   1018        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1019       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1020        1.1   mycroft 			break;
   1021       1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1022        1.1   mycroft 	if (i != frags)
   1023       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1024      1.101        ad 	mutex_enter(&ump->um_lock);
   1025        1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1026       1.62      fvdl 		clrbit(blksfree, bno + i);
   1027       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1028        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1029        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1030        1.1   mycroft 	}
   1031        1.1   mycroft 	fs->fs_fmod = 1;
   1032      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1033      1.101        ad 	mutex_exit(&ump->um_lock);
   1034        1.1   mycroft 	bdwrite(bp);
   1035        1.1   mycroft 	return (bprev);
   1036      1.101        ad 
   1037      1.101        ad  fail:
   1038      1.101        ad  	brelse(bp, 0);
   1039      1.101        ad  	mutex_enter(&ump->um_lock);
   1040      1.101        ad  	return (0);
   1041        1.1   mycroft }
   1042        1.1   mycroft 
   1043        1.1   mycroft /*
   1044        1.1   mycroft  * Determine whether a block can be allocated.
   1045        1.1   mycroft  *
   1046        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1047        1.1   mycroft  * and if it is, allocate it.
   1048        1.1   mycroft  */
   1049       1.58      fvdl static daddr_t
   1050      1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1051        1.1   mycroft {
   1052      1.101        ad 	struct ufsmount *ump;
   1053       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1054       1.30      fvdl 	struct cg *cgp;
   1055        1.1   mycroft 	struct buf *bp;
   1056       1.60      fvdl 	int32_t bno;
   1057       1.60      fvdl 	daddr_t blkno;
   1058       1.30      fvdl 	int error, frags, allocsiz, i;
   1059       1.62      fvdl 	u_int8_t *blksfree;
   1060       1.30      fvdl #ifdef FFS_EI
   1061       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1062       1.30      fvdl #endif
   1063        1.1   mycroft 
   1064      1.101        ad 	ump = ip->i_ump;
   1065      1.101        ad 
   1066      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1067      1.101        ad 
   1068        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1069       1.35   thorpej 		return (0);
   1070      1.101        ad 	mutex_exit(&ump->um_lock);
   1071        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1072      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1073      1.101        ad 	if (error)
   1074      1.101        ad 		goto fail;
   1075        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1076       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1077      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1078      1.101        ad 		goto fail;
   1079       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1080       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1081       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1082       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1083        1.1   mycroft 	if (size == fs->fs_bsize) {
   1084      1.101        ad 		mutex_enter(&ump->um_lock);
   1085      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1086       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1087      1.101        ad 		mutex_exit(&ump->um_lock);
   1088        1.1   mycroft 		bdwrite(bp);
   1089       1.60      fvdl 		return (blkno);
   1090        1.1   mycroft 	}
   1091        1.1   mycroft 	/*
   1092        1.1   mycroft 	 * check to see if any fragments are already available
   1093        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1094        1.1   mycroft 	 * it down to a smaller size if necessary
   1095        1.1   mycroft 	 */
   1096       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1097        1.1   mycroft 	frags = numfrags(fs, size);
   1098        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1099        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1100        1.1   mycroft 			break;
   1101        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1102        1.1   mycroft 		/*
   1103       1.81     perry 		 * no fragments were available, so a block will be
   1104        1.1   mycroft 		 * allocated, and hacked up
   1105        1.1   mycroft 		 */
   1106      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1107      1.101        ad 			goto fail;
   1108      1.101        ad 		mutex_enter(&ump->um_lock);
   1109      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1110       1.60      fvdl 		bno = dtogd(fs, blkno);
   1111        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1112       1.62      fvdl 			setbit(blksfree, bno + i);
   1113        1.1   mycroft 		i = fs->fs_frag - frags;
   1114       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1115        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1116       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1117        1.1   mycroft 		fs->fs_fmod = 1;
   1118       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1119       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1120      1.101        ad 		mutex_exit(&ump->um_lock);
   1121        1.1   mycroft 		bdwrite(bp);
   1122       1.60      fvdl 		return (blkno);
   1123        1.1   mycroft 	}
   1124       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1125       1.30      fvdl #if 0
   1126       1.30      fvdl 	/*
   1127       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1128       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1129       1.30      fvdl 	 */
   1130      1.101        ad 	if (bno < 0)
   1131      1.101        ad 		goto fail;
   1132       1.30      fvdl #endif
   1133        1.1   mycroft 	for (i = 0; i < frags; i++)
   1134       1.62      fvdl 		clrbit(blksfree, bno + i);
   1135      1.101        ad 	mutex_enter(&ump->um_lock);
   1136       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1137        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1138        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1139        1.1   mycroft 	fs->fs_fmod = 1;
   1140       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1141        1.1   mycroft 	if (frags != allocsiz)
   1142       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1143  1.120.2.1       jym 	blkno = cgbase(fs, cg) + bno;
   1144      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1145      1.101        ad 	mutex_exit(&ump->um_lock);
   1146        1.1   mycroft 	bdwrite(bp);
   1147       1.30      fvdl 	return blkno;
   1148      1.101        ad 
   1149      1.101        ad  fail:
   1150      1.101        ad  	brelse(bp, 0);
   1151      1.101        ad  	mutex_enter(&ump->um_lock);
   1152      1.101        ad  	return (0);
   1153        1.1   mycroft }
   1154        1.1   mycroft 
   1155        1.1   mycroft /*
   1156        1.1   mycroft  * Allocate a block in a cylinder group.
   1157        1.1   mycroft  *
   1158        1.1   mycroft  * This algorithm implements the following policy:
   1159        1.1   mycroft  *   1) allocate the requested block.
   1160        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1161        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1162        1.1   mycroft  *      specified cylinder group.
   1163        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1164        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1165        1.1   mycroft  */
   1166       1.58      fvdl static daddr_t
   1167      1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1168        1.1   mycroft {
   1169      1.101        ad 	struct ufsmount *ump;
   1170       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1171       1.30      fvdl 	struct cg *cgp;
   1172  1.120.2.1       jym 	int cg;
   1173       1.60      fvdl 	daddr_t blkno;
   1174       1.60      fvdl 	int32_t bno;
   1175       1.60      fvdl 	u_int8_t *blksfree;
   1176       1.30      fvdl #ifdef FFS_EI
   1177       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1178       1.30      fvdl #endif
   1179        1.1   mycroft 
   1180      1.101        ad 	ump = ip->i_ump;
   1181      1.101        ad 
   1182      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1183      1.101        ad 
   1184       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1185       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1186       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1187       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1188       1.60      fvdl 	} else {
   1189       1.60      fvdl 		bpref = blknum(fs, bpref);
   1190       1.60      fvdl 		bno = dtogd(fs, bpref);
   1191        1.1   mycroft 		/*
   1192       1.60      fvdl 		 * if the requested block is available, use it
   1193        1.1   mycroft 		 */
   1194       1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1195       1.60      fvdl 			goto gotit;
   1196      1.111    simonb 		/*
   1197      1.111    simonb 		 * if the requested data block isn't available and we are
   1198      1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1199      1.111    simonb 		 */
   1200      1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1201      1.111    simonb 			return (0);
   1202        1.1   mycroft 	}
   1203      1.111    simonb 
   1204        1.1   mycroft 	/*
   1205       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1206        1.1   mycroft 	 */
   1207       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1208        1.1   mycroft 	if (bno < 0)
   1209       1.35   thorpej 		return (0);
   1210       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1211        1.1   mycroft gotit:
   1212        1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1213       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1214       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1215       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1216        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1217       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1218       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1219       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1220       1.73       dbj 		int cylno;
   1221       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1222       1.75       dbj 		KASSERT(cylno >= 0);
   1223       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1224       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1225       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1226       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1227       1.73       dbj 		    needswap);
   1228       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1229       1.73       dbj 	}
   1230        1.1   mycroft 	fs->fs_fmod = 1;
   1231  1.120.2.1       jym 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1232  1.120.2.1       jym 	blkno = cgbase(fs, cg) + bno;
   1233       1.30      fvdl 	return (blkno);
   1234        1.1   mycroft }
   1235        1.1   mycroft 
   1236        1.1   mycroft /*
   1237        1.1   mycroft  * Determine whether an inode can be allocated.
   1238        1.1   mycroft  *
   1239        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1240        1.1   mycroft  * allocate it using the following policy:
   1241        1.1   mycroft  *   1) allocate the requested inode.
   1242        1.1   mycroft  *   2) allocate the next available inode after the requested
   1243        1.1   mycroft  *      inode in the specified cylinder group.
   1244        1.1   mycroft  */
   1245       1.58      fvdl static daddr_t
   1246      1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1247        1.1   mycroft {
   1248      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1249       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1250       1.33  augustss 	struct cg *cgp;
   1251       1.60      fvdl 	struct buf *bp, *ibp;
   1252       1.60      fvdl 	u_int8_t *inosused;
   1253        1.1   mycroft 	int error, start, len, loc, map, i;
   1254       1.60      fvdl 	int32_t initediblk;
   1255      1.112   hannken 	daddr_t nalloc;
   1256       1.60      fvdl 	struct ufs2_dinode *dp2;
   1257       1.19    bouyer #ifdef FFS_EI
   1258       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1259       1.19    bouyer #endif
   1260        1.1   mycroft 
   1261      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1262      1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1263      1.101        ad 
   1264        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1265       1.35   thorpej 		return (0);
   1266      1.101        ad 	mutex_exit(&ump->um_lock);
   1267      1.112   hannken 	ibp = NULL;
   1268      1.112   hannken 	initediblk = -1;
   1269      1.112   hannken retry:
   1270        1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1271      1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1272      1.101        ad 	if (error)
   1273      1.101        ad 		goto fail;
   1274        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1275      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1276      1.101        ad 		goto fail;
   1277      1.112   hannken 
   1278      1.112   hannken 	if (ibp != NULL &&
   1279      1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1280      1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1281  1.120.2.1       jym 		brelse(ibp, 0);
   1282      1.112   hannken 		ibp = NULL;
   1283      1.112   hannken 	}
   1284      1.112   hannken 	/*
   1285      1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1286      1.112   hannken 	 */
   1287      1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1288      1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1289      1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1290      1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1291      1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1292      1.112   hannken 			/*
   1293      1.112   hannken 			 * We have to release the cg buffer here to prevent
   1294      1.112   hannken 			 * a deadlock when reading the inode block will
   1295      1.112   hannken 			 * run a copy-on-write that might use this cg.
   1296      1.112   hannken 			 */
   1297      1.112   hannken 			brelse(bp, 0);
   1298      1.112   hannken 			bp = NULL;
   1299      1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1300      1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1301      1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1302      1.112   hannken 			if (error)
   1303      1.112   hannken 				goto fail;
   1304      1.112   hannken 			goto retry;
   1305      1.112   hannken 		}
   1306      1.112   hannken 	}
   1307      1.112   hannken 
   1308       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1309       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1310       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1311       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1312       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1313        1.1   mycroft 	if (ipref) {
   1314        1.1   mycroft 		ipref %= fs->fs_ipg;
   1315       1.60      fvdl 		if (isclr(inosused, ipref))
   1316        1.1   mycroft 			goto gotit;
   1317        1.1   mycroft 	}
   1318       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1319       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1320       1.19    bouyer 		NBBY);
   1321       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1322        1.1   mycroft 	if (loc == 0) {
   1323        1.1   mycroft 		len = start + 1;
   1324        1.1   mycroft 		start = 0;
   1325       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1326        1.1   mycroft 		if (loc == 0) {
   1327       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1328       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1329       1.19    bouyer 				fs->fs_fsmnt);
   1330        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1331        1.1   mycroft 			/* NOTREACHED */
   1332        1.1   mycroft 		}
   1333        1.1   mycroft 	}
   1334        1.1   mycroft 	i = start + len - loc;
   1335       1.60      fvdl 	map = inosused[i];
   1336        1.1   mycroft 	ipref = i * NBBY;
   1337        1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1338        1.1   mycroft 		if ((map & i) == 0) {
   1339       1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1340        1.1   mycroft 			goto gotit;
   1341        1.1   mycroft 		}
   1342        1.1   mycroft 	}
   1343       1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1344        1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1345        1.1   mycroft 	/* NOTREACHED */
   1346        1.1   mycroft gotit:
   1347      1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1348      1.111    simonb 	    mode);
   1349       1.60      fvdl 	/*
   1350       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1351       1.60      fvdl 	 */
   1352      1.112   hannken 	if (ibp != NULL) {
   1353      1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1354      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1355      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1356      1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1357       1.60      fvdl 			/*
   1358       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1359       1.60      fvdl 			 * random, after all.
   1360       1.60      fvdl 			 */
   1361       1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1362       1.60      fvdl 			dp2++;
   1363       1.60      fvdl 		}
   1364       1.60      fvdl 		initediblk += INOPB(fs);
   1365       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1366       1.60      fvdl 	}
   1367       1.60      fvdl 
   1368      1.101        ad 	mutex_enter(&ump->um_lock);
   1369       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1370      1.101        ad 	setbit(inosused, ipref);
   1371      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1372      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1373      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1374      1.101        ad 	fs->fs_fmod = 1;
   1375      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1376      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1377      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1378      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1379      1.101        ad 	}
   1380      1.101        ad 	mutex_exit(&ump->um_lock);
   1381      1.112   hannken 	if (ibp != NULL) {
   1382      1.112   hannken 		bwrite(bp);
   1383      1.104   hannken 		bawrite(ibp);
   1384      1.112   hannken 	} else
   1385      1.112   hannken 		bdwrite(bp);
   1386        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1387      1.101        ad  fail:
   1388      1.112   hannken 	if (bp != NULL)
   1389      1.112   hannken 		brelse(bp, 0);
   1390      1.112   hannken 	if (ibp != NULL)
   1391  1.120.2.1       jym 		brelse(ibp, 0);
   1392      1.101        ad 	mutex_enter(&ump->um_lock);
   1393      1.101        ad 	return (0);
   1394        1.1   mycroft }
   1395        1.1   mycroft 
   1396        1.1   mycroft /*
   1397      1.111    simonb  * Allocate a block or fragment.
   1398      1.111    simonb  *
   1399      1.111    simonb  * The specified block or fragment is removed from the
   1400      1.111    simonb  * free map, possibly fragmenting a block in the process.
   1401      1.111    simonb  *
   1402      1.111    simonb  * This implementation should mirror fs_blkfree
   1403      1.111    simonb  *
   1404      1.111    simonb  * => um_lock not held on entry or exit
   1405      1.111    simonb  */
   1406      1.111    simonb int
   1407      1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1408      1.111    simonb {
   1409      1.116     joerg 	int error;
   1410      1.111    simonb 
   1411      1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1412      1.116     joerg 	    ip->i_dev, ip->i_uid);
   1413      1.116     joerg 	if (error)
   1414      1.116     joerg 		return error;
   1415      1.115     joerg 
   1416      1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1417      1.115     joerg }
   1418      1.115     joerg 
   1419      1.115     joerg int
   1420      1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1421      1.115     joerg {
   1422      1.115     joerg 	struct fs *fs = ump->um_fs;
   1423      1.115     joerg 	struct cg *cgp;
   1424      1.115     joerg 	struct buf *bp;
   1425      1.115     joerg 	int32_t fragno, cgbno;
   1426      1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1427      1.115     joerg 	u_int8_t *blksfree;
   1428      1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1429      1.115     joerg 
   1430      1.115     joerg 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1431      1.115     joerg 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1432      1.115     joerg 	KASSERT(bno < fs->fs_size);
   1433      1.115     joerg 
   1434      1.115     joerg 	cg = dtog(fs, bno);
   1435      1.115     joerg 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1436      1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1437      1.111    simonb 	if (error) {
   1438      1.111    simonb 		brelse(bp, 0);
   1439      1.111    simonb 		return error;
   1440      1.111    simonb 	}
   1441      1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1442      1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1443      1.111    simonb 		brelse(bp, 0);
   1444      1.111    simonb 		return EIO;
   1445      1.111    simonb 	}
   1446      1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1447      1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1448      1.111    simonb 	cgbno = dtogd(fs, bno);
   1449      1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1450      1.111    simonb 
   1451      1.111    simonb 	mutex_enter(&ump->um_lock);
   1452      1.111    simonb 	if (size == fs->fs_bsize) {
   1453      1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1454      1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1455      1.111    simonb 			mutex_exit(&ump->um_lock);
   1456      1.111    simonb 			brelse(bp, 0);
   1457      1.111    simonb 			return EBUSY;
   1458      1.111    simonb 		}
   1459      1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1460      1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1461      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1462      1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1463      1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1464      1.111    simonb 	} else {
   1465      1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1466      1.111    simonb 
   1467      1.111    simonb 		frags = numfrags(fs, size);
   1468      1.111    simonb 		for (i = 0; i < frags; i++) {
   1469      1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1470      1.111    simonb 				mutex_exit(&ump->um_lock);
   1471      1.111    simonb 				brelse(bp, 0);
   1472      1.111    simonb 				return EBUSY;
   1473      1.111    simonb 			}
   1474      1.111    simonb 		}
   1475      1.111    simonb 		/*
   1476      1.111    simonb 		 * if a complete block is being split, account for it
   1477      1.111    simonb 		 */
   1478      1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1479      1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1480      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1481      1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1482      1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1483      1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1484      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1485      1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1486      1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1487      1.111    simonb 		}
   1488      1.111    simonb 		/*
   1489      1.111    simonb 		 * decrement the counts associated with the old frags
   1490      1.111    simonb 		 */
   1491      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1492      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1493      1.111    simonb 		/*
   1494      1.111    simonb 		 * allocate the fragment
   1495      1.111    simonb 		 */
   1496      1.111    simonb 		for (i = 0; i < frags; i++) {
   1497      1.111    simonb 			clrbit(blksfree, cgbno + i);
   1498      1.111    simonb 		}
   1499      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1500      1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1501      1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1502      1.111    simonb 		/*
   1503      1.111    simonb 		 * add back in counts associated with the new frags
   1504      1.111    simonb 		 */
   1505      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1506      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1507      1.111    simonb 	}
   1508      1.111    simonb 	fs->fs_fmod = 1;
   1509      1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1510      1.111    simonb 	mutex_exit(&ump->um_lock);
   1511      1.111    simonb 	bdwrite(bp);
   1512      1.111    simonb 	return 0;
   1513      1.111    simonb }
   1514      1.111    simonb 
   1515      1.111    simonb /*
   1516        1.1   mycroft  * Free a block or fragment.
   1517        1.1   mycroft  *
   1518        1.1   mycroft  * The specified block or fragment is placed back in the
   1519       1.81     perry  * free map. If a fragment is deallocated, a possible
   1520        1.1   mycroft  * block reassembly is checked.
   1521      1.106     pooka  *
   1522      1.106     pooka  * => um_lock not held on entry or exit
   1523        1.1   mycroft  */
   1524        1.9  christos void
   1525       1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1526       1.85   thorpej     ino_t inum)
   1527        1.1   mycroft {
   1528       1.33  augustss 	struct cg *cgp;
   1529        1.1   mycroft 	struct buf *bp;
   1530       1.76   hannken 	struct ufsmount *ump;
   1531       1.76   hannken 	daddr_t cgblkno;
   1532      1.116     joerg 	int error, cg;
   1533       1.76   hannken 	dev_t dev;
   1534      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1535      1.118     joerg #ifdef FFS_EI
   1536      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1537      1.118     joerg #endif
   1538        1.1   mycroft 
   1539      1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1540      1.116     joerg 
   1541       1.76   hannken 	cg = dtog(fs, bno);
   1542      1.116     joerg 	dev = devvp->v_rdev;
   1543      1.116     joerg 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1544      1.119     joerg 	KASSERT(fs == ump->um_fs);
   1545      1.116     joerg 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1546      1.116     joerg 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1547      1.116     joerg 		return;
   1548      1.116     joerg 
   1549      1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1550      1.116     joerg 	if (error)
   1551      1.116     joerg 		return;
   1552      1.116     joerg 
   1553      1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1554      1.116     joerg 	    NOCRED, B_MODIFY, &bp);
   1555      1.116     joerg 	if (error) {
   1556      1.116     joerg 		brelse(bp, 0);
   1557      1.116     joerg 		return;
   1558       1.76   hannken 	}
   1559      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1560      1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1561      1.116     joerg 		brelse(bp, 0);
   1562      1.116     joerg 		return;
   1563        1.1   mycroft 	}
   1564       1.76   hannken 
   1565      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1566      1.119     joerg 
   1567      1.119     joerg 	bdwrite(bp);
   1568      1.116     joerg }
   1569      1.116     joerg 
   1570      1.116     joerg /*
   1571      1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1572      1.116     joerg  *
   1573      1.116     joerg  * The specified block or fragment is placed back in the
   1574      1.116     joerg  * free map. If a fragment is deallocated, a possible
   1575      1.116     joerg  * block reassembly is checked.
   1576      1.116     joerg  *
   1577      1.116     joerg  * => um_lock not held on entry or exit
   1578      1.116     joerg  */
   1579      1.116     joerg void
   1580      1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1581      1.116     joerg     ino_t inum)
   1582      1.116     joerg {
   1583      1.116     joerg 	struct cg *cgp;
   1584      1.116     joerg 	struct buf *bp;
   1585      1.116     joerg 	struct ufsmount *ump;
   1586      1.116     joerg 	daddr_t cgblkno;
   1587      1.116     joerg 	int error, cg;
   1588      1.116     joerg 	dev_t dev;
   1589      1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1590      1.118     joerg #ifdef FFS_EI
   1591      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1592      1.118     joerg #endif
   1593      1.116     joerg 
   1594      1.116     joerg 	KASSERT(devvp_is_snapshot);
   1595      1.116     joerg 
   1596      1.116     joerg 	cg = dtog(fs, bno);
   1597      1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1598      1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1599      1.116     joerg 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1600      1.116     joerg 
   1601      1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1602      1.116     joerg 	if (error)
   1603        1.1   mycroft 		return;
   1604      1.116     joerg 
   1605      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1606      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1607        1.1   mycroft 	if (error) {
   1608      1.101        ad 		brelse(bp, 0);
   1609        1.1   mycroft 		return;
   1610        1.1   mycroft 	}
   1611        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1612       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1613      1.101        ad 		brelse(bp, 0);
   1614        1.1   mycroft 		return;
   1615        1.1   mycroft 	}
   1616      1.116     joerg 
   1617      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1618      1.119     joerg 
   1619      1.119     joerg 	bdwrite(bp);
   1620      1.116     joerg }
   1621      1.116     joerg 
   1622      1.116     joerg static void
   1623      1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1624      1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1625      1.116     joerg {
   1626      1.116     joerg 	struct cg *cgp;
   1627      1.116     joerg 	int32_t fragno, cgbno;
   1628      1.116     joerg 	int i, cg, blk, frags, bbase;
   1629      1.116     joerg 	u_int8_t *blksfree;
   1630      1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1631      1.116     joerg 
   1632      1.116     joerg 	cg = dtog(fs, bno);
   1633      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1634       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1635       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1636       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1637       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1638       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1639       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1640      1.101        ad 	mutex_enter(&ump->um_lock);
   1641        1.1   mycroft 	if (size == fs->fs_bsize) {
   1642       1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1643       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1644      1.113   hannken 			if (devvp_is_snapshot) {
   1645      1.101        ad 				mutex_exit(&ump->um_lock);
   1646       1.76   hannken 				return;
   1647       1.76   hannken 			}
   1648      1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1649      1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1650        1.1   mycroft 			panic("blkfree: freeing free block");
   1651        1.1   mycroft 		}
   1652       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1653       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1654       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1655        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1656        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1657       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1658       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1659       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1660       1.75       dbj 			KASSERT(i >= 0);
   1661       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1662       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1663       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1664       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1665       1.73       dbj 			    needswap);
   1666       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1667       1.73       dbj 		}
   1668        1.1   mycroft 	} else {
   1669       1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1670        1.1   mycroft 		/*
   1671        1.1   mycroft 		 * decrement the counts associated with the old frags
   1672        1.1   mycroft 		 */
   1673       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1674       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1675        1.1   mycroft 		/*
   1676        1.1   mycroft 		 * deallocate the fragment
   1677        1.1   mycroft 		 */
   1678        1.1   mycroft 		frags = numfrags(fs, size);
   1679        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1680       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1681      1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1682       1.59   tsutsui 				       ", fs = %s\n",
   1683      1.120  christos 				    (unsigned long long)dev, bno + i,
   1684      1.120  christos 				    fs->fs_fsmnt);
   1685        1.1   mycroft 				panic("blkfree: freeing free frag");
   1686        1.1   mycroft 			}
   1687       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1688        1.1   mycroft 		}
   1689       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1690        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1691       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1692        1.1   mycroft 		/*
   1693        1.1   mycroft 		 * add back in counts associated with the new frags
   1694        1.1   mycroft 		 */
   1695       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1696       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1697        1.1   mycroft 		/*
   1698        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1699        1.1   mycroft 		 */
   1700       1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1701       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1702       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1703        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1704        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1705       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1706       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1707        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1708        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1709       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1710       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1711       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1712       1.75       dbj 				KASSERT(i >= 0);
   1713       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1714       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1715       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1716       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1717       1.73       dbj 				    bbase)], 1, needswap);
   1718       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1719       1.73       dbj 			}
   1720        1.1   mycroft 		}
   1721        1.1   mycroft 	}
   1722        1.1   mycroft 	fs->fs_fmod = 1;
   1723       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1724      1.101        ad 	mutex_exit(&ump->um_lock);
   1725        1.1   mycroft }
   1726        1.1   mycroft 
   1727        1.1   mycroft /*
   1728        1.1   mycroft  * Free an inode.
   1729       1.30      fvdl  */
   1730       1.30      fvdl int
   1731       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1732       1.30      fvdl {
   1733       1.30      fvdl 
   1734      1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1735       1.30      fvdl }
   1736       1.30      fvdl 
   1737       1.30      fvdl /*
   1738       1.30      fvdl  * Do the actual free operation.
   1739        1.1   mycroft  * The specified inode is placed back in the free map.
   1740      1.111    simonb  *
   1741      1.111    simonb  * => um_lock not held on entry or exit
   1742        1.1   mycroft  */
   1743        1.1   mycroft int
   1744      1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1745      1.119     joerg {
   1746      1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1747      1.119     joerg 	struct fs *fs = ump->um_fs;
   1748      1.119     joerg 	struct vnode *devvp;
   1749      1.119     joerg 	struct cg *cgp;
   1750      1.119     joerg 	struct buf *bp;
   1751      1.119     joerg 	int error, cg;
   1752      1.119     joerg 	daddr_t cgbno;
   1753      1.119     joerg 	dev_t dev;
   1754      1.119     joerg #ifdef FFS_EI
   1755      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1756      1.119     joerg #endif
   1757      1.119     joerg 
   1758      1.119     joerg 	cg = ino_to_cg(fs, ino);
   1759      1.119     joerg 	devvp = ump->um_devvp;
   1760      1.119     joerg 	dev = devvp->v_rdev;
   1761      1.119     joerg 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1762      1.119     joerg 
   1763      1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1764      1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1765      1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1766      1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1767      1.119     joerg 	    NOCRED, B_MODIFY, &bp);
   1768      1.119     joerg 	if (error) {
   1769      1.119     joerg 		brelse(bp, 0);
   1770      1.119     joerg 		return (error);
   1771      1.119     joerg 	}
   1772      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1773      1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1774      1.119     joerg 		brelse(bp, 0);
   1775      1.119     joerg 		return (0);
   1776      1.119     joerg 	}
   1777      1.119     joerg 
   1778      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1779      1.119     joerg 
   1780      1.119     joerg 	bdwrite(bp);
   1781      1.119     joerg 
   1782      1.119     joerg 	return 0;
   1783      1.119     joerg }
   1784      1.119     joerg 
   1785      1.119     joerg int
   1786      1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1787        1.9  christos {
   1788      1.101        ad 	struct ufsmount *ump;
   1789       1.33  augustss 	struct cg *cgp;
   1790        1.1   mycroft 	struct buf *bp;
   1791        1.1   mycroft 	int error, cg;
   1792       1.76   hannken 	daddr_t cgbno;
   1793       1.78   hannken 	dev_t dev;
   1794       1.19    bouyer #ifdef FFS_EI
   1795       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1796       1.19    bouyer #endif
   1797        1.1   mycroft 
   1798      1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   1799      1.111    simonb 
   1800       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1801      1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1802      1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1803      1.119     joerg 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1804        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1805      1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1806      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   1807      1.120  christos 		    fs->fs_fsmnt);
   1808      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1809      1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1810        1.1   mycroft 	if (error) {
   1811      1.101        ad 		brelse(bp, 0);
   1812       1.30      fvdl 		return (error);
   1813        1.1   mycroft 	}
   1814        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1815       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1816      1.101        ad 		brelse(bp, 0);
   1817        1.1   mycroft 		return (0);
   1818        1.1   mycroft 	}
   1819      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1820      1.119     joerg 
   1821      1.119     joerg 	bdwrite(bp);
   1822      1.119     joerg 
   1823      1.119     joerg 	return 0;
   1824      1.119     joerg }
   1825      1.119     joerg 
   1826      1.119     joerg static void
   1827      1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1828      1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1829      1.119     joerg {
   1830      1.119     joerg 	int cg;
   1831      1.119     joerg 	struct cg *cgp;
   1832      1.119     joerg 	u_int8_t *inosused;
   1833      1.119     joerg #ifdef FFS_EI
   1834      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1835      1.119     joerg #endif
   1836      1.119     joerg 
   1837      1.119     joerg 	cg = ino_to_cg(fs, ino);
   1838      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1839       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1840       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1841       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1842       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1843       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1844        1.1   mycroft 	ino %= fs->fs_ipg;
   1845       1.62      fvdl 	if (isclr(inosused, ino)) {
   1846      1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   1847      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   1848      1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   1849        1.1   mycroft 		if (fs->fs_ronly == 0)
   1850        1.1   mycroft 			panic("ifree: freeing free inode");
   1851        1.1   mycroft 	}
   1852       1.62      fvdl 	clrbit(inosused, ino);
   1853      1.113   hannken 	if (!devvp_is_snapshot)
   1854      1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1855      1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1856       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1857       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1858       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1859      1.101        ad 	mutex_enter(&ump->um_lock);
   1860        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1861        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1862       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1863       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1864        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1865        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1866        1.1   mycroft 	}
   1867        1.1   mycroft 	fs->fs_fmod = 1;
   1868       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1869      1.101        ad 	mutex_exit(&ump->um_lock);
   1870        1.1   mycroft }
   1871        1.1   mycroft 
   1872        1.1   mycroft /*
   1873       1.76   hannken  * Check to see if a file is free.
   1874       1.76   hannken  */
   1875       1.76   hannken int
   1876       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1877       1.76   hannken {
   1878       1.76   hannken 	struct cg *cgp;
   1879       1.76   hannken 	struct buf *bp;
   1880       1.76   hannken 	daddr_t cgbno;
   1881       1.76   hannken 	int ret, cg;
   1882       1.76   hannken 	u_int8_t *inosused;
   1883      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1884       1.76   hannken 
   1885      1.119     joerg 	KASSERT(devvp_is_snapshot);
   1886      1.119     joerg 
   1887       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1888      1.113   hannken 	if (devvp_is_snapshot)
   1889       1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1890      1.113   hannken 	else
   1891       1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1892       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1893       1.76   hannken 		return 1;
   1894      1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1895      1.101        ad 		brelse(bp, 0);
   1896       1.76   hannken 		return 1;
   1897       1.76   hannken 	}
   1898       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1899       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1900      1.101        ad 		brelse(bp, 0);
   1901       1.76   hannken 		return 1;
   1902       1.76   hannken 	}
   1903       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1904       1.76   hannken 	ino %= fs->fs_ipg;
   1905       1.76   hannken 	ret = isclr(inosused, ino);
   1906      1.101        ad 	brelse(bp, 0);
   1907       1.76   hannken 	return ret;
   1908       1.76   hannken }
   1909       1.76   hannken 
   1910       1.76   hannken /*
   1911        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1912        1.1   mycroft  *
   1913        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1914        1.1   mycroft  * available.
   1915        1.1   mycroft  */
   1916       1.60      fvdl static int32_t
   1917       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1918        1.1   mycroft {
   1919       1.60      fvdl 	int32_t bno;
   1920        1.1   mycroft 	int start, len, loc, i;
   1921        1.1   mycroft 	int blk, field, subfield, pos;
   1922       1.19    bouyer 	int ostart, olen;
   1923       1.62      fvdl 	u_int8_t *blksfree;
   1924       1.30      fvdl #ifdef FFS_EI
   1925       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1926       1.30      fvdl #endif
   1927        1.1   mycroft 
   1928      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1929      1.101        ad 
   1930        1.1   mycroft 	/*
   1931        1.1   mycroft 	 * find the fragment by searching through the free block
   1932        1.1   mycroft 	 * map for an appropriate bit pattern
   1933        1.1   mycroft 	 */
   1934        1.1   mycroft 	if (bpref)
   1935        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1936        1.1   mycroft 	else
   1937       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1938       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1939        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1940       1.19    bouyer 	ostart = start;
   1941       1.19    bouyer 	olen = len;
   1942       1.45     lukem 	loc = scanc((u_int)len,
   1943       1.62      fvdl 		(const u_char *)&blksfree[start],
   1944       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1945       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1946        1.1   mycroft 	if (loc == 0) {
   1947        1.1   mycroft 		len = start + 1;
   1948        1.1   mycroft 		start = 0;
   1949       1.45     lukem 		loc = scanc((u_int)len,
   1950       1.62      fvdl 			(const u_char *)&blksfree[0],
   1951       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1952       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1953        1.1   mycroft 		if (loc == 0) {
   1954       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1955       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1956       1.20      ross 			printf("offset=%d %ld\n",
   1957       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1958       1.62      fvdl 				(long)blksfree - (long)cgp);
   1959       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1960        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1961        1.1   mycroft 			/* NOTREACHED */
   1962        1.1   mycroft 		}
   1963        1.1   mycroft 	}
   1964        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1965       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1966        1.1   mycroft 	/*
   1967        1.1   mycroft 	 * found the byte in the map
   1968        1.1   mycroft 	 * sift through the bits to find the selected frag
   1969        1.1   mycroft 	 */
   1970        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1971       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1972        1.1   mycroft 		blk <<= 1;
   1973        1.1   mycroft 		field = around[allocsiz];
   1974        1.1   mycroft 		subfield = inside[allocsiz];
   1975        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1976        1.1   mycroft 			if ((blk & field) == subfield)
   1977        1.1   mycroft 				return (bno + pos);
   1978        1.1   mycroft 			field <<= 1;
   1979        1.1   mycroft 			subfield <<= 1;
   1980        1.1   mycroft 		}
   1981        1.1   mycroft 	}
   1982       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1983        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1984       1.58      fvdl 	/* return (-1); */
   1985        1.1   mycroft }
   1986        1.1   mycroft 
   1987        1.1   mycroft /*
   1988        1.1   mycroft  * Update the cluster map because of an allocation or free.
   1989        1.1   mycroft  *
   1990        1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1991        1.1   mycroft  */
   1992        1.9  christos void
   1993       1.85   thorpej ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
   1994        1.1   mycroft {
   1995        1.4       cgd 	int32_t *sump;
   1996        1.5   mycroft 	int32_t *lp;
   1997        1.1   mycroft 	u_char *freemapp, *mapp;
   1998        1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1999       1.30      fvdl #ifdef FFS_EI
   2000       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2001       1.30      fvdl #endif
   2002        1.1   mycroft 
   2003      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2004      1.101        ad 
   2005        1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   2006        1.1   mycroft 		return;
   2007       1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   2008       1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   2009        1.1   mycroft 	/*
   2010        1.1   mycroft 	 * Allocate or clear the actual block.
   2011        1.1   mycroft 	 */
   2012        1.1   mycroft 	if (cnt > 0)
   2013        1.1   mycroft 		setbit(freemapp, blkno);
   2014        1.1   mycroft 	else
   2015        1.1   mycroft 		clrbit(freemapp, blkno);
   2016        1.1   mycroft 	/*
   2017        1.1   mycroft 	 * Find the size of the cluster going forward.
   2018        1.1   mycroft 	 */
   2019        1.1   mycroft 	start = blkno + 1;
   2020        1.1   mycroft 	end = start + fs->fs_contigsumsize;
   2021       1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   2022       1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   2023        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2024        1.1   mycroft 	map = *mapp++;
   2025        1.1   mycroft 	bit = 1 << (start % NBBY);
   2026        1.1   mycroft 	for (i = start; i < end; i++) {
   2027        1.1   mycroft 		if ((map & bit) == 0)
   2028        1.1   mycroft 			break;
   2029        1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   2030        1.1   mycroft 			bit <<= 1;
   2031        1.1   mycroft 		} else {
   2032        1.1   mycroft 			map = *mapp++;
   2033        1.1   mycroft 			bit = 1;
   2034        1.1   mycroft 		}
   2035        1.1   mycroft 	}
   2036        1.1   mycroft 	forw = i - start;
   2037        1.1   mycroft 	/*
   2038        1.1   mycroft 	 * Find the size of the cluster going backward.
   2039        1.1   mycroft 	 */
   2040        1.1   mycroft 	start = blkno - 1;
   2041        1.1   mycroft 	end = start - fs->fs_contigsumsize;
   2042        1.1   mycroft 	if (end < 0)
   2043        1.1   mycroft 		end = -1;
   2044        1.1   mycroft 	mapp = &freemapp[start / NBBY];
   2045        1.1   mycroft 	map = *mapp--;
   2046        1.1   mycroft 	bit = 1 << (start % NBBY);
   2047        1.1   mycroft 	for (i = start; i > end; i--) {
   2048        1.1   mycroft 		if ((map & bit) == 0)
   2049        1.1   mycroft 			break;
   2050        1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   2051        1.1   mycroft 			bit >>= 1;
   2052        1.1   mycroft 		} else {
   2053        1.1   mycroft 			map = *mapp--;
   2054        1.1   mycroft 			bit = 1 << (NBBY - 1);
   2055        1.1   mycroft 		}
   2056        1.1   mycroft 	}
   2057        1.1   mycroft 	back = start - i;
   2058        1.1   mycroft 	/*
   2059        1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   2060        1.1   mycroft 	 * back clusters.
   2061        1.1   mycroft 	 */
   2062        1.1   mycroft 	i = back + forw + 1;
   2063        1.1   mycroft 	if (i > fs->fs_contigsumsize)
   2064        1.1   mycroft 		i = fs->fs_contigsumsize;
   2065       1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   2066        1.1   mycroft 	if (back > 0)
   2067       1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   2068        1.1   mycroft 	if (forw > 0)
   2069       1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   2070       1.19    bouyer 
   2071        1.5   mycroft 	/*
   2072        1.5   mycroft 	 * Update cluster summary information.
   2073        1.5   mycroft 	 */
   2074        1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   2075        1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   2076       1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   2077        1.5   mycroft 			break;
   2078       1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   2079        1.1   mycroft }
   2080        1.1   mycroft 
   2081        1.1   mycroft /*
   2082        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2083       1.81     perry  *
   2084        1.1   mycroft  * The form of the error message is:
   2085        1.1   mycroft  *	fs: error message
   2086        1.1   mycroft  */
   2087        1.1   mycroft static void
   2088       1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2089        1.1   mycroft {
   2090        1.1   mycroft 
   2091       1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2092       1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2093        1.1   mycroft }
   2094