Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.128
      1  1.127    bouyer /*	$NetBSD: ffs_alloc.c,v 1.128 2011/06/12 03:36:00 rmind Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.127    bouyer __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.128 2011/06/12 03:36:00 rmind Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78   1.22    scottr #endif
     79    1.1   mycroft 
     80    1.1   mycroft #include <sys/param.h>
     81    1.1   mycroft #include <sys/systm.h>
     82    1.1   mycroft #include <sys/buf.h>
     83  1.111    simonb #include <sys/fstrans.h>
     84  1.111    simonb #include <sys/kauth.h>
     85  1.111    simonb #include <sys/kernel.h>
     86  1.111    simonb #include <sys/mount.h>
     87    1.1   mycroft #include <sys/proc.h>
     88  1.111    simonb #include <sys/syslog.h>
     89    1.1   mycroft #include <sys/vnode.h>
     90  1.111    simonb #include <sys/wapbl.h>
     91   1.29       mrg 
     92   1.76   hannken #include <miscfs/specfs/specdev.h>
     93    1.1   mycroft #include <ufs/ufs/quota.h>
     94   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     95    1.1   mycroft #include <ufs/ufs/inode.h>
     96    1.9  christos #include <ufs/ufs/ufs_extern.h>
     97   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     98  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
     99    1.1   mycroft 
    100    1.1   mycroft #include <ufs/ffs/fs.h>
    101    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    102    1.1   mycroft 
    103  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    104  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    105   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    106   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    107   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    108  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    109  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    110  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    111   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    112   1.85   thorpej 				      daddr_t, int);
    113  1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    114  1.116     joerg     daddr_t, long, bool);
    115  1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    116  1.119     joerg     int, bool);
    117   1.23  drochner 
    118   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    119   1.34  jdolecek int ffs_log_changeopt = 0;
    120   1.34  jdolecek 
    121   1.23  drochner /* in ffs_tables.c */
    122   1.40  jdolecek extern const int inside[], around[];
    123   1.40  jdolecek extern const u_char * const fragtbl[];
    124    1.1   mycroft 
    125  1.116     joerg /* Basic consistency check for block allocations */
    126  1.116     joerg static int
    127  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    128  1.116     joerg     long size, dev_t dev, ino_t inum)
    129  1.116     joerg {
    130  1.116     joerg 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    131  1.116     joerg 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    132  1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    133  1.120  christos 		    "size = %ld, fs = %s\n",
    134  1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    135  1.116     joerg 		panic("%s: bad size", func);
    136  1.116     joerg 	}
    137  1.116     joerg 
    138  1.116     joerg 	if (bno >= fs->fs_size) {
    139  1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    140  1.116     joerg 		    (unsigned long long)inum);
    141  1.116     joerg 		ffs_fserr(fs, inum, "bad block");
    142  1.116     joerg 		return EINVAL;
    143  1.116     joerg 	}
    144  1.116     joerg 	return 0;
    145  1.116     joerg }
    146  1.116     joerg 
    147    1.1   mycroft /*
    148    1.1   mycroft  * Allocate a block in the file system.
    149   1.81     perry  *
    150    1.1   mycroft  * The size of the requested block is given, which must be some
    151    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    152    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    153    1.1   mycroft  * the following hierarchy is used to allocate a block:
    154    1.1   mycroft  *   1) allocate the requested block.
    155    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    156    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    157    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    158    1.1   mycroft  *      available block is located.
    159   1.47       wiz  * If no block preference is given the following hierarchy is used
    160    1.1   mycroft  * to allocate a block:
    161    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    162    1.1   mycroft  *      inode for the file.
    163    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    164    1.1   mycroft  *      available block is located.
    165  1.106     pooka  *
    166  1.106     pooka  * => called with um_lock held
    167  1.106     pooka  * => releases um_lock before returning
    168    1.1   mycroft  */
    169    1.9  christos int
    170  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    171   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    172    1.1   mycroft {
    173  1.101        ad 	struct ufsmount *ump;
    174   1.62      fvdl 	struct fs *fs;
    175   1.58      fvdl 	daddr_t bno;
    176    1.9  christos 	int cg;
    177  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    178    1.9  christos 	int error;
    179    1.9  christos #endif
    180   1.81     perry 
    181   1.62      fvdl 	fs = ip->i_fs;
    182  1.101        ad 	ump = ip->i_ump;
    183  1.101        ad 
    184  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    185   1.62      fvdl 
    186   1.37       chs #ifdef UVM_PAGE_TRKOWN
    187   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    188   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    189   1.37       chs 		struct vm_page *pg;
    190   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    191   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    192   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    193   1.37       chs 
    194  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    195   1.37       chs 		while (off < endoff) {
    196   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    197  1.125   mlelstv 			KASSERT(pg == NULL || pg->owner == curproc->p_pid);
    198   1.37       chs 			off += PAGE_SIZE;
    199   1.37       chs 		}
    200  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    201   1.37       chs 	}
    202   1.37       chs #endif
    203   1.37       chs 
    204    1.1   mycroft 	*bnp = 0;
    205    1.1   mycroft #ifdef DIAGNOSTIC
    206    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    207  1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    208  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    209  1.120  christos 		    fs->fs_fsmnt);
    210    1.1   mycroft 		panic("ffs_alloc: bad size");
    211    1.1   mycroft 	}
    212    1.1   mycroft 	if (cred == NOCRED)
    213   1.56    provos 		panic("ffs_alloc: missing credential");
    214    1.1   mycroft #endif /* DIAGNOSTIC */
    215    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    216    1.1   mycroft 		goto nospace;
    217   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    218  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    219  1.124      elad 	    NULL, NULL) != 0)
    220    1.1   mycroft 		goto nospace;
    221  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    222  1.101        ad 	mutex_exit(&ump->um_lock);
    223   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    224    1.1   mycroft 		return (error);
    225  1.101        ad 	mutex_enter(&ump->um_lock);
    226    1.1   mycroft #endif
    227  1.111    simonb 
    228    1.1   mycroft 	if (bpref >= fs->fs_size)
    229    1.1   mycroft 		bpref = 0;
    230    1.1   mycroft 	if (bpref == 0)
    231    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    232    1.1   mycroft 	else
    233    1.1   mycroft 		cg = dtog(fs, bpref);
    234  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    235    1.1   mycroft 	if (bno > 0) {
    236   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    237    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    238    1.1   mycroft 		*bnp = bno;
    239    1.1   mycroft 		return (0);
    240    1.1   mycroft 	}
    241  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    242    1.1   mycroft 	/*
    243    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    244    1.1   mycroft 	 */
    245   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    246    1.1   mycroft #endif
    247  1.111    simonb 	if (flags & B_CONTIG) {
    248  1.111    simonb 		/*
    249  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    250  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    251  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    252  1.111    simonb 		 * already unlocked, so we can't release it again
    253  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    254  1.111    simonb 		 *
    255  1.111    simonb 		 *
    256  1.111    simonb 		 * Fail silently - it's up to our caller to report
    257  1.111    simonb 		 * errors.
    258  1.111    simonb 		 */
    259  1.111    simonb 		return (ENOSPC);
    260  1.111    simonb 	}
    261    1.1   mycroft nospace:
    262  1.101        ad 	mutex_exit(&ump->um_lock);
    263   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    264    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    265    1.1   mycroft 	return (ENOSPC);
    266    1.1   mycroft }
    267    1.1   mycroft 
    268    1.1   mycroft /*
    269    1.1   mycroft  * Reallocate a fragment to a bigger size
    270    1.1   mycroft  *
    271    1.1   mycroft  * The number and size of the old block is given, and a preference
    272    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    273    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    274    1.1   mycroft  * invoked to get an appropriate block.
    275  1.106     pooka  *
    276  1.106     pooka  * => called with um_lock held
    277  1.106     pooka  * => return with um_lock released
    278    1.1   mycroft  */
    279    1.9  christos int
    280   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    281   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    282    1.1   mycroft {
    283  1.101        ad 	struct ufsmount *ump;
    284   1.62      fvdl 	struct fs *fs;
    285    1.1   mycroft 	struct buf *bp;
    286    1.1   mycroft 	int cg, request, error;
    287   1.58      fvdl 	daddr_t bprev, bno;
    288   1.25   thorpej 
    289   1.62      fvdl 	fs = ip->i_fs;
    290  1.101        ad 	ump = ip->i_ump;
    291  1.101        ad 
    292  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    293  1.101        ad 
    294   1.37       chs #ifdef UVM_PAGE_TRKOWN
    295   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    296   1.37       chs 		struct vm_page *pg;
    297   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    298   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    299   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    300   1.37       chs 
    301  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    302   1.37       chs 		while (off < endoff) {
    303   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    304  1.125   mlelstv 			KASSERT(pg == NULL || pg->owner == curproc->p_pid);
    305   1.37       chs 			KASSERT((pg->flags & PG_CLEAN) == 0);
    306   1.37       chs 			off += PAGE_SIZE;
    307   1.37       chs 		}
    308  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    309   1.37       chs 	}
    310   1.37       chs #endif
    311   1.37       chs 
    312    1.1   mycroft #ifdef DIAGNOSTIC
    313    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    314    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    315   1.13  christos 		printf(
    316  1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    317  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    318  1.120  christos 		    fs->fs_fsmnt);
    319    1.1   mycroft 		panic("ffs_realloccg: bad size");
    320    1.1   mycroft 	}
    321    1.1   mycroft 	if (cred == NOCRED)
    322   1.56    provos 		panic("ffs_realloccg: missing credential");
    323    1.1   mycroft #endif /* DIAGNOSTIC */
    324   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    325  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    326  1.124      elad 	    NULL, NULL) != 0) {
    327  1.101        ad 		mutex_exit(&ump->um_lock);
    328    1.1   mycroft 		goto nospace;
    329  1.101        ad 	}
    330   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    331   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    332   1.60      fvdl 	else
    333   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    334   1.60      fvdl 
    335   1.60      fvdl 	if (bprev == 0) {
    336  1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    337  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    338  1.120  christos 		    fs->fs_fsmnt);
    339    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    340    1.1   mycroft 	}
    341  1.101        ad 	mutex_exit(&ump->um_lock);
    342  1.101        ad 
    343    1.1   mycroft 	/*
    344    1.1   mycroft 	 * Allocate the extra space in the buffer.
    345    1.1   mycroft 	 */
    346   1.37       chs 	if (bpp != NULL &&
    347  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    348  1.101        ad 		brelse(bp, 0);
    349    1.1   mycroft 		return (error);
    350    1.1   mycroft 	}
    351  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    352   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    353   1.44       chs 		if (bpp != NULL) {
    354  1.101        ad 			brelse(bp, 0);
    355   1.44       chs 		}
    356    1.1   mycroft 		return (error);
    357    1.1   mycroft 	}
    358    1.1   mycroft #endif
    359    1.1   mycroft 	/*
    360    1.1   mycroft 	 * Check for extension in the existing location.
    361    1.1   mycroft 	 */
    362    1.1   mycroft 	cg = dtog(fs, bprev);
    363  1.101        ad 	mutex_enter(&ump->um_lock);
    364   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    365   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    366    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    367   1.37       chs 
    368   1.37       chs 		if (bpp != NULL) {
    369   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    370   1.37       chs 				panic("bad blockno");
    371   1.72        pk 			allocbuf(bp, nsize, 1);
    372   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    373  1.105        ad 			mutex_enter(bp->b_objlock);
    374  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    375  1.105        ad 			bp->b_oflags |= BO_DONE;
    376  1.105        ad 			mutex_exit(bp->b_objlock);
    377   1.37       chs 			*bpp = bp;
    378   1.37       chs 		}
    379   1.37       chs 		if (blknop != NULL) {
    380   1.37       chs 			*blknop = bno;
    381   1.37       chs 		}
    382    1.1   mycroft 		return (0);
    383    1.1   mycroft 	}
    384    1.1   mycroft 	/*
    385    1.1   mycroft 	 * Allocate a new disk location.
    386    1.1   mycroft 	 */
    387    1.1   mycroft 	if (bpref >= fs->fs_size)
    388    1.1   mycroft 		bpref = 0;
    389    1.1   mycroft 	switch ((int)fs->fs_optim) {
    390    1.1   mycroft 	case FS_OPTSPACE:
    391    1.1   mycroft 		/*
    392   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    393   1.81     perry 		 * best use of space, we will waste time relocating it if
    394    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    395    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    396    1.1   mycroft 		 * to begin optimizing for time.
    397    1.1   mycroft 		 */
    398    1.1   mycroft 		request = nsize;
    399    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    400    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    401    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    402    1.1   mycroft 			break;
    403   1.34  jdolecek 
    404   1.34  jdolecek 		if (ffs_log_changeopt) {
    405   1.34  jdolecek 			log(LOG_NOTICE,
    406   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    407   1.34  jdolecek 				fs->fs_fsmnt);
    408   1.34  jdolecek 		}
    409   1.34  jdolecek 
    410    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    411    1.1   mycroft 		break;
    412    1.1   mycroft 	case FS_OPTTIME:
    413    1.1   mycroft 		/*
    414    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    415    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    416    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    417    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    418    1.1   mycroft 		 * above will be able to grow it in place without further
    419    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    420    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    421    1.1   mycroft 		 * optimizing for space.
    422    1.1   mycroft 		 */
    423    1.1   mycroft 		request = fs->fs_bsize;
    424    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    425    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    426    1.1   mycroft 			break;
    427   1.34  jdolecek 
    428   1.34  jdolecek 		if (ffs_log_changeopt) {
    429   1.34  jdolecek 			log(LOG_NOTICE,
    430   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    431   1.34  jdolecek 				fs->fs_fsmnt);
    432   1.34  jdolecek 		}
    433   1.34  jdolecek 
    434    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    435    1.1   mycroft 		break;
    436    1.1   mycroft 	default:
    437  1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    438  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    439    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    440    1.1   mycroft 		/* NOTREACHED */
    441    1.1   mycroft 	}
    442  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    443    1.1   mycroft 	if (bno > 0) {
    444  1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    445  1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    446  1.122        ad 			UFS_WAPBL_REGISTER_DEALLOCATION(
    447  1.122        ad 			    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    448  1.122        ad 			    osize);
    449  1.122        ad 		} else {
    450  1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    451  1.122        ad 			    ip->i_number);
    452  1.111    simonb 		}
    453  1.111    simonb 		if (nsize < request) {
    454  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    455  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    456  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    457  1.111    simonb 				    ip->i_ump->um_mountp,
    458  1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    459  1.111    simonb 				    request - nsize);
    460  1.111    simonb 			} else
    461  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    462  1.111    simonb 				    bno + numfrags(fs, nsize),
    463  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    464  1.111    simonb 		}
    465   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    466    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    467   1.37       chs 		if (bpp != NULL) {
    468   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    469   1.72        pk 			allocbuf(bp, nsize, 1);
    470   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    471  1.105        ad 			mutex_enter(bp->b_objlock);
    472  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    473  1.105        ad 			bp->b_oflags |= BO_DONE;
    474  1.105        ad 			mutex_exit(bp->b_objlock);
    475   1.37       chs 			*bpp = bp;
    476   1.37       chs 		}
    477   1.37       chs 		if (blknop != NULL) {
    478   1.37       chs 			*blknop = bno;
    479   1.37       chs 		}
    480    1.1   mycroft 		return (0);
    481    1.1   mycroft 	}
    482  1.101        ad 	mutex_exit(&ump->um_lock);
    483  1.101        ad 
    484  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    485    1.1   mycroft 	/*
    486    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    487    1.1   mycroft 	 */
    488   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    489    1.1   mycroft #endif
    490   1.37       chs 	if (bpp != NULL) {
    491  1.101        ad 		brelse(bp, 0);
    492   1.37       chs 	}
    493   1.37       chs 
    494    1.1   mycroft nospace:
    495    1.1   mycroft 	/*
    496    1.1   mycroft 	 * no space available
    497    1.1   mycroft 	 */
    498   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    499    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    500    1.1   mycroft 	return (ENOSPC);
    501    1.1   mycroft }
    502    1.1   mycroft 
    503    1.1   mycroft /*
    504    1.1   mycroft  * Allocate an inode in the file system.
    505   1.81     perry  *
    506    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    507    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    508    1.1   mycroft  *   1) allocate the preferred inode.
    509    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    510    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    511    1.1   mycroft  *      available inode is located.
    512   1.47       wiz  * If no inode preference is given the following hierarchy is used
    513    1.1   mycroft  * to allocate an inode:
    514    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    515    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    516    1.1   mycroft  *      available inode is located.
    517  1.106     pooka  *
    518  1.106     pooka  * => um_lock not held upon entry or return
    519    1.1   mycroft  */
    520    1.9  christos int
    521   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    522   1.88      yamt     struct vnode **vpp)
    523    1.9  christos {
    524  1.101        ad 	struct ufsmount *ump;
    525   1.33  augustss 	struct inode *pip;
    526   1.33  augustss 	struct fs *fs;
    527   1.33  augustss 	struct inode *ip;
    528   1.60      fvdl 	struct timespec ts;
    529    1.1   mycroft 	ino_t ino, ipref;
    530    1.1   mycroft 	int cg, error;
    531   1.81     perry 
    532  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    533  1.111    simonb 
    534   1.88      yamt 	*vpp = NULL;
    535    1.1   mycroft 	pip = VTOI(pvp);
    536    1.1   mycroft 	fs = pip->i_fs;
    537  1.101        ad 	ump = pip->i_ump;
    538  1.101        ad 
    539  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    540  1.111    simonb 	if (error) {
    541  1.111    simonb 		return error;
    542  1.111    simonb 	}
    543  1.101        ad 	mutex_enter(&ump->um_lock);
    544    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    545    1.1   mycroft 		goto noinodes;
    546    1.1   mycroft 
    547    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    548   1.50     lukem 		ipref = ffs_dirpref(pip);
    549   1.50     lukem 	else
    550   1.50     lukem 		ipref = pip->i_number;
    551    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    552    1.1   mycroft 		ipref = 0;
    553    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    554   1.50     lukem 	/*
    555   1.50     lukem 	 * Track number of dirs created one after another
    556   1.50     lukem 	 * in a same cg without intervening by files.
    557   1.50     lukem 	 */
    558   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    559   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    560   1.50     lukem 			fs->fs_contigdirs[cg]++;
    561   1.50     lukem 	} else {
    562   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    563   1.50     lukem 			fs->fs_contigdirs[cg]--;
    564   1.50     lukem 	}
    565  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    566    1.1   mycroft 	if (ino == 0)
    567    1.1   mycroft 		goto noinodes;
    568  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    569   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    570    1.1   mycroft 	if (error) {
    571  1.111    simonb 		int err;
    572  1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    573  1.111    simonb 		if (err == 0)
    574  1.111    simonb 			ffs_vfree(pvp, ino, mode);
    575  1.111    simonb 		if (err == 0)
    576  1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    577    1.1   mycroft 		return (error);
    578    1.1   mycroft 	}
    579   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    580   1.88      yamt 	ip = VTOI(*vpp);
    581   1.60      fvdl 	if (ip->i_mode) {
    582   1.60      fvdl #if 0
    583   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    584   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    585   1.60      fvdl #else
    586   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    587   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    588   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    589   1.60      fvdl 		printf("size %llx blocks %llx\n",
    590   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    591   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    592   1.86  christos 		    (unsigned long long)ipref);
    593   1.60      fvdl #if 0
    594   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    595  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    596   1.60      fvdl #endif
    597   1.60      fvdl 
    598   1.60      fvdl #endif
    599    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    600    1.1   mycroft 	}
    601   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    602   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    603   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    604   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    605    1.1   mycroft 	}
    606   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    607   1.61      fvdl 	ip->i_flags = 0;
    608   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    609    1.1   mycroft 	/*
    610    1.1   mycroft 	 * Set up a new generation number for this inode.
    611    1.1   mycroft 	 */
    612   1.60      fvdl 	ip->i_gen++;
    613   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    614   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    615   1.93      yamt 		vfs_timestamp(&ts);
    616   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    617   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    618   1.60      fvdl 	}
    619    1.1   mycroft 	return (0);
    620    1.1   mycroft noinodes:
    621  1.101        ad 	mutex_exit(&ump->um_lock);
    622  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    623   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    624    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    625    1.1   mycroft 	return (ENOSPC);
    626    1.1   mycroft }
    627    1.1   mycroft 
    628    1.1   mycroft /*
    629   1.50     lukem  * Find a cylinder group in which to place a directory.
    630   1.42  sommerfe  *
    631   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    632   1.50     lukem  * directory inode in the same cylinder group as its parent
    633   1.50     lukem  * directory, but also to reserve space for its files inodes
    634   1.50     lukem  * and data. Restrict the number of directories which may be
    635   1.50     lukem  * allocated one after another in the same cylinder group
    636   1.50     lukem  * without intervening allocation of files.
    637   1.42  sommerfe  *
    638   1.50     lukem  * If we allocate a first level directory then force allocation
    639   1.50     lukem  * in another cylinder group.
    640    1.1   mycroft  */
    641    1.1   mycroft static ino_t
    642   1.85   thorpej ffs_dirpref(struct inode *pip)
    643    1.1   mycroft {
    644   1.50     lukem 	register struct fs *fs;
    645   1.74     soren 	int cg, prefcg;
    646   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    647   1.89       dsl 	int avgifree, avgbfree, avgndir;
    648   1.50     lukem 	int minifree, minbfree, maxndir;
    649   1.50     lukem 	int mincg, minndir;
    650   1.50     lukem 	int maxcontigdirs;
    651   1.50     lukem 
    652  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    653  1.101        ad 
    654   1.50     lukem 	fs = pip->i_fs;
    655    1.1   mycroft 
    656    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    657   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    658   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    659   1.50     lukem 
    660   1.50     lukem 	/*
    661   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    662   1.50     lukem 	 */
    663  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    664   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    665   1.50     lukem 		mincg = prefcg;
    666   1.50     lukem 		minndir = fs->fs_ipg;
    667   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    668   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    669   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    670   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    671   1.42  sommerfe 				mincg = cg;
    672   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    673   1.42  sommerfe 			}
    674   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    675   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    676   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    677   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    678   1.50     lukem 				mincg = cg;
    679   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    680   1.42  sommerfe 			}
    681   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    682   1.42  sommerfe 	}
    683   1.50     lukem 
    684   1.50     lukem 	/*
    685   1.50     lukem 	 * Count various limits which used for
    686   1.50     lukem 	 * optimal allocation of a directory inode.
    687   1.50     lukem 	 */
    688   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    689   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    690   1.50     lukem 	if (minifree < 0)
    691   1.50     lukem 		minifree = 0;
    692   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    693   1.50     lukem 	if (minbfree < 0)
    694   1.50     lukem 		minbfree = 0;
    695   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    696   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    697   1.89       dsl 	if (avgndir != 0) {
    698   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    699   1.89       dsl 		if (dirsize < curdsz)
    700   1.89       dsl 			dirsize = curdsz;
    701   1.89       dsl 	}
    702   1.89       dsl 	if (cgsize < dirsize * 255)
    703   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    704   1.89       dsl 	else
    705   1.89       dsl 		maxcontigdirs = 255;
    706   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    707   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    708   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    709   1.50     lukem 	if (maxcontigdirs == 0)
    710   1.50     lukem 		maxcontigdirs = 1;
    711   1.50     lukem 
    712   1.50     lukem 	/*
    713   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    714   1.50     lukem 	 * regular files, but only if we have no deficit in
    715   1.50     lukem 	 * inodes or space.
    716   1.50     lukem 	 */
    717   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    718   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    719   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    720   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    721   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    722   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    723   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    724   1.50     lukem 		}
    725   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    726   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    727   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    728   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    729   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    730   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    731   1.50     lukem 		}
    732   1.50     lukem 	/*
    733   1.50     lukem 	 * This is a backstop when we are deficient in space.
    734   1.50     lukem 	 */
    735   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    736   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    737   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    738   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    739   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    740   1.50     lukem 			break;
    741   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    742    1.1   mycroft }
    743    1.1   mycroft 
    744    1.1   mycroft /*
    745    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    746    1.1   mycroft  * logically divided into sections. The first section is composed of the
    747    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    748   1.81     perry  *
    749    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    750    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    751    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    752    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    753    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    754    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    755    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    756    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    757    1.1   mycroft  * continues until a cylinder group with greater than the average number
    758    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    759    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    760    1.1   mycroft  * here a best guess is made based upon the logical block number being
    761    1.1   mycroft  * allocated.
    762   1.81     perry  *
    763    1.1   mycroft  * If a section is already partially allocated, the policy is to
    764    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    765   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    766   1.60      fvdl  * contigously if possible.
    767  1.106     pooka  *
    768  1.106     pooka  * => um_lock held on entry and exit
    769    1.1   mycroft  */
    770   1.58      fvdl daddr_t
    771  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    772   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    773    1.1   mycroft {
    774   1.33  augustss 	struct fs *fs;
    775   1.33  augustss 	int cg;
    776    1.1   mycroft 	int avgbfree, startcg;
    777    1.1   mycroft 
    778  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    779  1.101        ad 
    780    1.1   mycroft 	fs = ip->i_fs;
    781  1.111    simonb 
    782  1.111    simonb 	/*
    783  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    784  1.111    simonb 	 * in the inode extentions to return the desired block.
    785  1.111    simonb 	 *
    786  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    787  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    788  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    789  1.111    simonb 	 * block.  For data, return the address of the actual block
    790  1.111    simonb 	 * relative to the address of the first data block.
    791  1.111    simonb 	 */
    792  1.111    simonb 	if (flags & B_CONTIG) {
    793  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    794  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    795  1.111    simonb 		if (flags & B_METAONLY)
    796  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    797  1.111    simonb 		else
    798  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    799  1.111    simonb 	}
    800  1.111    simonb 
    801    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    802   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    803    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    804  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    805    1.1   mycroft 		}
    806    1.1   mycroft 		/*
    807    1.1   mycroft 		 * Find a cylinder with greater than average number of
    808    1.1   mycroft 		 * unused data blocks.
    809    1.1   mycroft 		 */
    810    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    811    1.1   mycroft 			startcg =
    812    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    813    1.1   mycroft 		else
    814   1.19    bouyer 			startcg = dtog(fs,
    815   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    816    1.1   mycroft 		startcg %= fs->fs_ncg;
    817    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    818    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    819    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    821    1.1   mycroft 			}
    822   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    823    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    824  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    825    1.1   mycroft 			}
    826   1.35   thorpej 		return (0);
    827    1.1   mycroft 	}
    828    1.1   mycroft 	/*
    829   1.60      fvdl 	 * We just always try to lay things out contiguously.
    830   1.60      fvdl 	 */
    831   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    832   1.60      fvdl }
    833   1.60      fvdl 
    834   1.60      fvdl daddr_t
    835  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    836  1.111    simonb     int64_t *bap)
    837   1.60      fvdl {
    838   1.60      fvdl 	struct fs *fs;
    839   1.60      fvdl 	int cg;
    840   1.60      fvdl 	int avgbfree, startcg;
    841   1.60      fvdl 
    842  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    843  1.101        ad 
    844   1.60      fvdl 	fs = ip->i_fs;
    845  1.111    simonb 
    846  1.111    simonb 	/*
    847  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    848  1.111    simonb 	 * in the inode extentions to return the desired block.
    849  1.111    simonb 	 *
    850  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    851  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    852  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    853  1.111    simonb 	 * block.  For data, return the address of the actual block
    854  1.111    simonb 	 * relative to the address of the first data block.
    855  1.111    simonb 	 */
    856  1.111    simonb 	if (flags & B_CONTIG) {
    857  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    858  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    859  1.111    simonb 		if (flags & B_METAONLY)
    860  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    861  1.111    simonb 		else
    862  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    863  1.111    simonb 	}
    864  1.111    simonb 
    865   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    866   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    867   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    868  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    869   1.60      fvdl 		}
    870    1.1   mycroft 		/*
    871   1.60      fvdl 		 * Find a cylinder with greater than average number of
    872   1.60      fvdl 		 * unused data blocks.
    873    1.1   mycroft 		 */
    874   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    875   1.60      fvdl 			startcg =
    876   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    877   1.60      fvdl 		else
    878   1.60      fvdl 			startcg = dtog(fs,
    879   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    880   1.60      fvdl 		startcg %= fs->fs_ncg;
    881   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    882   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    883   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    884  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    885   1.60      fvdl 			}
    886   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    887   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    888  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    889   1.60      fvdl 			}
    890   1.60      fvdl 		return (0);
    891   1.60      fvdl 	}
    892   1.60      fvdl 	/*
    893   1.60      fvdl 	 * We just always try to lay things out contiguously.
    894   1.60      fvdl 	 */
    895   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    896    1.1   mycroft }
    897    1.1   mycroft 
    898   1.60      fvdl 
    899    1.1   mycroft /*
    900    1.1   mycroft  * Implement the cylinder overflow algorithm.
    901    1.1   mycroft  *
    902    1.1   mycroft  * The policy implemented by this algorithm is:
    903    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    904    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    905    1.1   mycroft  *   3) brute force search for a free block.
    906  1.106     pooka  *
    907  1.106     pooka  * => called with um_lock held
    908  1.106     pooka  * => returns with um_lock released on success, held on failure
    909  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    910    1.1   mycroft  */
    911    1.1   mycroft /*VARARGS5*/
    912   1.58      fvdl static daddr_t
    913   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    914   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    915  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    916    1.1   mycroft {
    917   1.33  augustss 	struct fs *fs;
    918   1.58      fvdl 	daddr_t result;
    919    1.1   mycroft 	int i, icg = cg;
    920    1.1   mycroft 
    921    1.1   mycroft 	fs = ip->i_fs;
    922    1.1   mycroft 	/*
    923    1.1   mycroft 	 * 1: preferred cylinder group
    924    1.1   mycroft 	 */
    925  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    926    1.1   mycroft 	if (result)
    927    1.1   mycroft 		return (result);
    928  1.111    simonb 
    929  1.111    simonb 	if (flags & B_CONTIG)
    930  1.111    simonb 		return (result);
    931    1.1   mycroft 	/*
    932    1.1   mycroft 	 * 2: quadratic rehash
    933    1.1   mycroft 	 */
    934    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    935    1.1   mycroft 		cg += i;
    936    1.1   mycroft 		if (cg >= fs->fs_ncg)
    937    1.1   mycroft 			cg -= fs->fs_ncg;
    938  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    939    1.1   mycroft 		if (result)
    940    1.1   mycroft 			return (result);
    941    1.1   mycroft 	}
    942    1.1   mycroft 	/*
    943    1.1   mycroft 	 * 3: brute force search
    944    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    945    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    946    1.1   mycroft 	 */
    947    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    948    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    949  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    950    1.1   mycroft 		if (result)
    951    1.1   mycroft 			return (result);
    952    1.1   mycroft 		cg++;
    953    1.1   mycroft 		if (cg == fs->fs_ncg)
    954    1.1   mycroft 			cg = 0;
    955    1.1   mycroft 	}
    956   1.35   thorpej 	return (0);
    957    1.1   mycroft }
    958    1.1   mycroft 
    959    1.1   mycroft /*
    960    1.1   mycroft  * Determine whether a fragment can be extended.
    961    1.1   mycroft  *
    962   1.81     perry  * Check to see if the necessary fragments are available, and
    963    1.1   mycroft  * if they are, allocate them.
    964  1.106     pooka  *
    965  1.106     pooka  * => called with um_lock held
    966  1.106     pooka  * => returns with um_lock released on success, held on failure
    967    1.1   mycroft  */
    968   1.58      fvdl static daddr_t
    969   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    970    1.1   mycroft {
    971  1.101        ad 	struct ufsmount *ump;
    972   1.33  augustss 	struct fs *fs;
    973   1.33  augustss 	struct cg *cgp;
    974    1.1   mycroft 	struct buf *bp;
    975   1.58      fvdl 	daddr_t bno;
    976    1.1   mycroft 	int frags, bbase;
    977    1.1   mycroft 	int i, error;
    978   1.62      fvdl 	u_int8_t *blksfree;
    979    1.1   mycroft 
    980    1.1   mycroft 	fs = ip->i_fs;
    981  1.101        ad 	ump = ip->i_ump;
    982  1.101        ad 
    983  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    984  1.101        ad 
    985    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    986   1.35   thorpej 		return (0);
    987    1.1   mycroft 	frags = numfrags(fs, nsize);
    988    1.1   mycroft 	bbase = fragnum(fs, bprev);
    989    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    990    1.1   mycroft 		/* cannot extend across a block boundary */
    991   1.35   thorpej 		return (0);
    992    1.1   mycroft 	}
    993  1.101        ad 	mutex_exit(&ump->um_lock);
    994    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    995  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
    996  1.101        ad 	if (error)
    997  1.101        ad 		goto fail;
    998    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    999  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1000  1.101        ad 		goto fail;
   1001   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1002   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1003   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1004   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1005    1.1   mycroft 	bno = dtogd(fs, bprev);
   1006   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1007    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1008  1.101        ad 		if (isclr(blksfree, bno + i))
   1009  1.101        ad 			goto fail;
   1010    1.1   mycroft 	/*
   1011    1.1   mycroft 	 * the current fragment can be extended
   1012    1.1   mycroft 	 * deduct the count on fragment being extended into
   1013    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1014    1.1   mycroft 	 * allocate the extended piece
   1015    1.1   mycroft 	 */
   1016    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1017   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1018    1.1   mycroft 			break;
   1019   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1020    1.1   mycroft 	if (i != frags)
   1021   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1022  1.101        ad 	mutex_enter(&ump->um_lock);
   1023    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1024   1.62      fvdl 		clrbit(blksfree, bno + i);
   1025   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1026    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1027    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1028    1.1   mycroft 	}
   1029    1.1   mycroft 	fs->fs_fmod = 1;
   1030  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1031  1.101        ad 	mutex_exit(&ump->um_lock);
   1032    1.1   mycroft 	bdwrite(bp);
   1033    1.1   mycroft 	return (bprev);
   1034  1.101        ad 
   1035  1.101        ad  fail:
   1036  1.101        ad  	brelse(bp, 0);
   1037  1.101        ad  	mutex_enter(&ump->um_lock);
   1038  1.101        ad  	return (0);
   1039    1.1   mycroft }
   1040    1.1   mycroft 
   1041    1.1   mycroft /*
   1042    1.1   mycroft  * Determine whether a block can be allocated.
   1043    1.1   mycroft  *
   1044    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1045    1.1   mycroft  * and if it is, allocate it.
   1046    1.1   mycroft  */
   1047   1.58      fvdl static daddr_t
   1048  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1049    1.1   mycroft {
   1050  1.101        ad 	struct ufsmount *ump;
   1051   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1052   1.30      fvdl 	struct cg *cgp;
   1053    1.1   mycroft 	struct buf *bp;
   1054   1.60      fvdl 	int32_t bno;
   1055   1.60      fvdl 	daddr_t blkno;
   1056   1.30      fvdl 	int error, frags, allocsiz, i;
   1057   1.62      fvdl 	u_int8_t *blksfree;
   1058   1.30      fvdl #ifdef FFS_EI
   1059   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1060   1.30      fvdl #endif
   1061    1.1   mycroft 
   1062  1.101        ad 	ump = ip->i_ump;
   1063  1.101        ad 
   1064  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1065  1.101        ad 
   1066    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1067   1.35   thorpej 		return (0);
   1068  1.101        ad 	mutex_exit(&ump->um_lock);
   1069    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1070  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1071  1.101        ad 	if (error)
   1072  1.101        ad 		goto fail;
   1073    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1074   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1075  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1076  1.101        ad 		goto fail;
   1077   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1078   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1079   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1080   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1081    1.1   mycroft 	if (size == fs->fs_bsize) {
   1082  1.101        ad 		mutex_enter(&ump->um_lock);
   1083  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1084   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1085  1.101        ad 		mutex_exit(&ump->um_lock);
   1086    1.1   mycroft 		bdwrite(bp);
   1087   1.60      fvdl 		return (blkno);
   1088    1.1   mycroft 	}
   1089    1.1   mycroft 	/*
   1090    1.1   mycroft 	 * check to see if any fragments are already available
   1091    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1092    1.1   mycroft 	 * it down to a smaller size if necessary
   1093    1.1   mycroft 	 */
   1094   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1095    1.1   mycroft 	frags = numfrags(fs, size);
   1096    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1097    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1098    1.1   mycroft 			break;
   1099    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1100    1.1   mycroft 		/*
   1101   1.81     perry 		 * no fragments were available, so a block will be
   1102    1.1   mycroft 		 * allocated, and hacked up
   1103    1.1   mycroft 		 */
   1104  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1105  1.101        ad 			goto fail;
   1106  1.101        ad 		mutex_enter(&ump->um_lock);
   1107  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1108   1.60      fvdl 		bno = dtogd(fs, blkno);
   1109    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1110   1.62      fvdl 			setbit(blksfree, bno + i);
   1111    1.1   mycroft 		i = fs->fs_frag - frags;
   1112   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1113    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1114   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1115    1.1   mycroft 		fs->fs_fmod = 1;
   1116   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1117   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1118  1.101        ad 		mutex_exit(&ump->um_lock);
   1119    1.1   mycroft 		bdwrite(bp);
   1120   1.60      fvdl 		return (blkno);
   1121    1.1   mycroft 	}
   1122   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1123   1.30      fvdl #if 0
   1124   1.30      fvdl 	/*
   1125   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1126   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1127   1.30      fvdl 	 */
   1128  1.101        ad 	if (bno < 0)
   1129  1.101        ad 		goto fail;
   1130   1.30      fvdl #endif
   1131    1.1   mycroft 	for (i = 0; i < frags; i++)
   1132   1.62      fvdl 		clrbit(blksfree, bno + i);
   1133  1.101        ad 	mutex_enter(&ump->um_lock);
   1134   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1135    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1136    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1137    1.1   mycroft 	fs->fs_fmod = 1;
   1138   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1139    1.1   mycroft 	if (frags != allocsiz)
   1140   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1141  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1142  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1143  1.101        ad 	mutex_exit(&ump->um_lock);
   1144    1.1   mycroft 	bdwrite(bp);
   1145   1.30      fvdl 	return blkno;
   1146  1.101        ad 
   1147  1.101        ad  fail:
   1148  1.101        ad  	brelse(bp, 0);
   1149  1.101        ad  	mutex_enter(&ump->um_lock);
   1150  1.101        ad  	return (0);
   1151    1.1   mycroft }
   1152    1.1   mycroft 
   1153    1.1   mycroft /*
   1154    1.1   mycroft  * Allocate a block in a cylinder group.
   1155    1.1   mycroft  *
   1156    1.1   mycroft  * This algorithm implements the following policy:
   1157    1.1   mycroft  *   1) allocate the requested block.
   1158    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1159    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1160    1.1   mycroft  *      specified cylinder group.
   1161    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1162    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1163    1.1   mycroft  */
   1164   1.58      fvdl static daddr_t
   1165  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1166    1.1   mycroft {
   1167  1.101        ad 	struct ufsmount *ump;
   1168   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1169   1.30      fvdl 	struct cg *cgp;
   1170  1.123  sborrill 	int cg;
   1171   1.60      fvdl 	daddr_t blkno;
   1172   1.60      fvdl 	int32_t bno;
   1173   1.60      fvdl 	u_int8_t *blksfree;
   1174   1.30      fvdl #ifdef FFS_EI
   1175   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1176   1.30      fvdl #endif
   1177    1.1   mycroft 
   1178  1.101        ad 	ump = ip->i_ump;
   1179  1.101        ad 
   1180  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1181  1.101        ad 
   1182   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1183   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1184   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1185   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1186   1.60      fvdl 	} else {
   1187   1.60      fvdl 		bpref = blknum(fs, bpref);
   1188   1.60      fvdl 		bno = dtogd(fs, bpref);
   1189    1.1   mycroft 		/*
   1190   1.60      fvdl 		 * if the requested block is available, use it
   1191    1.1   mycroft 		 */
   1192   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1193   1.60      fvdl 			goto gotit;
   1194  1.111    simonb 		/*
   1195  1.111    simonb 		 * if the requested data block isn't available and we are
   1196  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1197  1.111    simonb 		 */
   1198  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1199  1.111    simonb 			return (0);
   1200    1.1   mycroft 	}
   1201  1.111    simonb 
   1202    1.1   mycroft 	/*
   1203   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1204    1.1   mycroft 	 */
   1205   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1206    1.1   mycroft 	if (bno < 0)
   1207   1.35   thorpej 		return (0);
   1208   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1209    1.1   mycroft gotit:
   1210    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1211   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1212   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1213   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1214    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1215   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1216   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1217   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1218   1.73       dbj 		int cylno;
   1219   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1220   1.75       dbj 		KASSERT(cylno >= 0);
   1221   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1222   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1223   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1224   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1225   1.73       dbj 		    needswap);
   1226   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1227   1.73       dbj 	}
   1228    1.1   mycroft 	fs->fs_fmod = 1;
   1229  1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1230  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1231   1.30      fvdl 	return (blkno);
   1232    1.1   mycroft }
   1233    1.1   mycroft 
   1234    1.1   mycroft /*
   1235    1.1   mycroft  * Determine whether an inode can be allocated.
   1236    1.1   mycroft  *
   1237    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1238    1.1   mycroft  * allocate it using the following policy:
   1239    1.1   mycroft  *   1) allocate the requested inode.
   1240    1.1   mycroft  *   2) allocate the next available inode after the requested
   1241    1.1   mycroft  *      inode in the specified cylinder group.
   1242    1.1   mycroft  */
   1243   1.58      fvdl static daddr_t
   1244  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1245    1.1   mycroft {
   1246  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1247   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1248   1.33  augustss 	struct cg *cgp;
   1249   1.60      fvdl 	struct buf *bp, *ibp;
   1250   1.60      fvdl 	u_int8_t *inosused;
   1251    1.1   mycroft 	int error, start, len, loc, map, i;
   1252   1.60      fvdl 	int32_t initediblk;
   1253  1.112   hannken 	daddr_t nalloc;
   1254   1.60      fvdl 	struct ufs2_dinode *dp2;
   1255   1.19    bouyer #ifdef FFS_EI
   1256   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1257   1.19    bouyer #endif
   1258    1.1   mycroft 
   1259  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1260  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1261  1.101        ad 
   1262    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1263   1.35   thorpej 		return (0);
   1264  1.101        ad 	mutex_exit(&ump->um_lock);
   1265  1.112   hannken 	ibp = NULL;
   1266  1.112   hannken 	initediblk = -1;
   1267  1.112   hannken retry:
   1268    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1269  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1270  1.101        ad 	if (error)
   1271  1.101        ad 		goto fail;
   1272    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1273  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1274  1.101        ad 		goto fail;
   1275  1.112   hannken 
   1276  1.112   hannken 	if (ibp != NULL &&
   1277  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1278  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1279  1.121        ad 		brelse(ibp, 0);
   1280  1.112   hannken 		ibp = NULL;
   1281  1.112   hannken 	}
   1282  1.112   hannken 	/*
   1283  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1284  1.112   hannken 	 */
   1285  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1286  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1287  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1288  1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1289  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1290  1.112   hannken 			/*
   1291  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1292  1.112   hannken 			 * a deadlock when reading the inode block will
   1293  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1294  1.112   hannken 			 */
   1295  1.112   hannken 			brelse(bp, 0);
   1296  1.112   hannken 			bp = NULL;
   1297  1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1298  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1299  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1300  1.112   hannken 			if (error)
   1301  1.112   hannken 				goto fail;
   1302  1.112   hannken 			goto retry;
   1303  1.112   hannken 		}
   1304  1.112   hannken 	}
   1305  1.112   hannken 
   1306   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1307   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1308   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1309   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1310   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1311    1.1   mycroft 	if (ipref) {
   1312    1.1   mycroft 		ipref %= fs->fs_ipg;
   1313   1.60      fvdl 		if (isclr(inosused, ipref))
   1314    1.1   mycroft 			goto gotit;
   1315    1.1   mycroft 	}
   1316   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1317   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1318   1.19    bouyer 		NBBY);
   1319   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1320    1.1   mycroft 	if (loc == 0) {
   1321    1.1   mycroft 		len = start + 1;
   1322    1.1   mycroft 		start = 0;
   1323   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1324    1.1   mycroft 		if (loc == 0) {
   1325   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1326   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1327   1.19    bouyer 				fs->fs_fsmnt);
   1328    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1329    1.1   mycroft 			/* NOTREACHED */
   1330    1.1   mycroft 		}
   1331    1.1   mycroft 	}
   1332    1.1   mycroft 	i = start + len - loc;
   1333  1.126     rmind 	map = inosused[i] ^ 0xff;
   1334  1.126     rmind 	if (map == 0) {
   1335  1.126     rmind 		printf("fs = %s\n", fs->fs_fsmnt);
   1336  1.126     rmind 		panic("ffs_nodealloccg: block not in map");
   1337    1.1   mycroft 	}
   1338  1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1339  1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1340    1.1   mycroft gotit:
   1341  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1342  1.111    simonb 	    mode);
   1343   1.60      fvdl 	/*
   1344   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1345   1.60      fvdl 	 */
   1346  1.112   hannken 	if (ibp != NULL) {
   1347  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1348  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1349  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1350  1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1351   1.60      fvdl 			/*
   1352   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1353   1.60      fvdl 			 * random, after all.
   1354   1.60      fvdl 			 */
   1355   1.70    itojun 			dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
   1356   1.60      fvdl 			dp2++;
   1357   1.60      fvdl 		}
   1358   1.60      fvdl 		initediblk += INOPB(fs);
   1359   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1360   1.60      fvdl 	}
   1361   1.60      fvdl 
   1362  1.101        ad 	mutex_enter(&ump->um_lock);
   1363   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1364  1.101        ad 	setbit(inosused, ipref);
   1365  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1366  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1367  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1368  1.101        ad 	fs->fs_fmod = 1;
   1369  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1370  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1371  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1372  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1373  1.101        ad 	}
   1374  1.101        ad 	mutex_exit(&ump->um_lock);
   1375  1.112   hannken 	if (ibp != NULL) {
   1376  1.112   hannken 		bwrite(bp);
   1377  1.104   hannken 		bawrite(ibp);
   1378  1.112   hannken 	} else
   1379  1.112   hannken 		bdwrite(bp);
   1380    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1381  1.101        ad  fail:
   1382  1.112   hannken 	if (bp != NULL)
   1383  1.112   hannken 		brelse(bp, 0);
   1384  1.112   hannken 	if (ibp != NULL)
   1385  1.121        ad 		brelse(ibp, 0);
   1386  1.101        ad 	mutex_enter(&ump->um_lock);
   1387  1.101        ad 	return (0);
   1388    1.1   mycroft }
   1389    1.1   mycroft 
   1390    1.1   mycroft /*
   1391  1.111    simonb  * Allocate a block or fragment.
   1392  1.111    simonb  *
   1393  1.111    simonb  * The specified block or fragment is removed from the
   1394  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1395  1.111    simonb  *
   1396  1.111    simonb  * This implementation should mirror fs_blkfree
   1397  1.111    simonb  *
   1398  1.111    simonb  * => um_lock not held on entry or exit
   1399  1.111    simonb  */
   1400  1.111    simonb int
   1401  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1402  1.111    simonb {
   1403  1.116     joerg 	int error;
   1404  1.111    simonb 
   1405  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1406  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1407  1.116     joerg 	if (error)
   1408  1.116     joerg 		return error;
   1409  1.115     joerg 
   1410  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1411  1.115     joerg }
   1412  1.115     joerg 
   1413  1.115     joerg int
   1414  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1415  1.115     joerg {
   1416  1.115     joerg 	struct fs *fs = ump->um_fs;
   1417  1.115     joerg 	struct cg *cgp;
   1418  1.115     joerg 	struct buf *bp;
   1419  1.115     joerg 	int32_t fragno, cgbno;
   1420  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1421  1.115     joerg 	u_int8_t *blksfree;
   1422  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1423  1.115     joerg 
   1424  1.115     joerg 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1425  1.115     joerg 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1426  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1427  1.115     joerg 
   1428  1.115     joerg 	cg = dtog(fs, bno);
   1429  1.115     joerg 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1430  1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1431  1.111    simonb 	if (error) {
   1432  1.111    simonb 		brelse(bp, 0);
   1433  1.111    simonb 		return error;
   1434  1.111    simonb 	}
   1435  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1436  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1437  1.111    simonb 		brelse(bp, 0);
   1438  1.111    simonb 		return EIO;
   1439  1.111    simonb 	}
   1440  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1441  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1442  1.111    simonb 	cgbno = dtogd(fs, bno);
   1443  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1444  1.111    simonb 
   1445  1.111    simonb 	mutex_enter(&ump->um_lock);
   1446  1.111    simonb 	if (size == fs->fs_bsize) {
   1447  1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1448  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1449  1.111    simonb 			mutex_exit(&ump->um_lock);
   1450  1.111    simonb 			brelse(bp, 0);
   1451  1.111    simonb 			return EBUSY;
   1452  1.111    simonb 		}
   1453  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1454  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1455  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1456  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1457  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1458  1.111    simonb 	} else {
   1459  1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1460  1.111    simonb 
   1461  1.111    simonb 		frags = numfrags(fs, size);
   1462  1.111    simonb 		for (i = 0; i < frags; i++) {
   1463  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1464  1.111    simonb 				mutex_exit(&ump->um_lock);
   1465  1.111    simonb 				brelse(bp, 0);
   1466  1.111    simonb 				return EBUSY;
   1467  1.111    simonb 			}
   1468  1.111    simonb 		}
   1469  1.111    simonb 		/*
   1470  1.111    simonb 		 * if a complete block is being split, account for it
   1471  1.111    simonb 		 */
   1472  1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1473  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1474  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1475  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1476  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1477  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1478  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1479  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1480  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1481  1.111    simonb 		}
   1482  1.111    simonb 		/*
   1483  1.111    simonb 		 * decrement the counts associated with the old frags
   1484  1.111    simonb 		 */
   1485  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1486  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1487  1.111    simonb 		/*
   1488  1.111    simonb 		 * allocate the fragment
   1489  1.111    simonb 		 */
   1490  1.111    simonb 		for (i = 0; i < frags; i++) {
   1491  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1492  1.111    simonb 		}
   1493  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1494  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1495  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1496  1.111    simonb 		/*
   1497  1.111    simonb 		 * add back in counts associated with the new frags
   1498  1.111    simonb 		 */
   1499  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1500  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1501  1.111    simonb 	}
   1502  1.111    simonb 	fs->fs_fmod = 1;
   1503  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1504  1.111    simonb 	mutex_exit(&ump->um_lock);
   1505  1.111    simonb 	bdwrite(bp);
   1506  1.111    simonb 	return 0;
   1507  1.111    simonb }
   1508  1.111    simonb 
   1509  1.111    simonb /*
   1510    1.1   mycroft  * Free a block or fragment.
   1511    1.1   mycroft  *
   1512    1.1   mycroft  * The specified block or fragment is placed back in the
   1513   1.81     perry  * free map. If a fragment is deallocated, a possible
   1514    1.1   mycroft  * block reassembly is checked.
   1515  1.106     pooka  *
   1516  1.106     pooka  * => um_lock not held on entry or exit
   1517    1.1   mycroft  */
   1518    1.9  christos void
   1519   1.85   thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1520   1.85   thorpej     ino_t inum)
   1521    1.1   mycroft {
   1522   1.33  augustss 	struct cg *cgp;
   1523    1.1   mycroft 	struct buf *bp;
   1524   1.76   hannken 	struct ufsmount *ump;
   1525   1.76   hannken 	daddr_t cgblkno;
   1526  1.116     joerg 	int error, cg;
   1527   1.76   hannken 	dev_t dev;
   1528  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1529  1.118     joerg #ifdef FFS_EI
   1530  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1531  1.118     joerg #endif
   1532    1.1   mycroft 
   1533  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1534  1.116     joerg 
   1535   1.76   hannken 	cg = dtog(fs, bno);
   1536  1.116     joerg 	dev = devvp->v_rdev;
   1537  1.116     joerg 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1538  1.119     joerg 	KASSERT(fs == ump->um_fs);
   1539  1.116     joerg 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1540  1.116     joerg 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1541  1.116     joerg 		return;
   1542  1.116     joerg 
   1543  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1544  1.116     joerg 	if (error)
   1545  1.116     joerg 		return;
   1546  1.116     joerg 
   1547  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1548  1.116     joerg 	    NOCRED, B_MODIFY, &bp);
   1549  1.116     joerg 	if (error) {
   1550  1.116     joerg 		brelse(bp, 0);
   1551  1.116     joerg 		return;
   1552   1.76   hannken 	}
   1553  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1554  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1555  1.116     joerg 		brelse(bp, 0);
   1556  1.116     joerg 		return;
   1557    1.1   mycroft 	}
   1558   1.76   hannken 
   1559  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1560  1.119     joerg 
   1561  1.119     joerg 	bdwrite(bp);
   1562  1.116     joerg }
   1563  1.116     joerg 
   1564  1.116     joerg /*
   1565  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1566  1.116     joerg  *
   1567  1.116     joerg  * The specified block or fragment is placed back in the
   1568  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1569  1.116     joerg  * block reassembly is checked.
   1570  1.116     joerg  *
   1571  1.116     joerg  * => um_lock not held on entry or exit
   1572  1.116     joerg  */
   1573  1.116     joerg void
   1574  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1575  1.116     joerg     ino_t inum)
   1576  1.116     joerg {
   1577  1.116     joerg 	struct cg *cgp;
   1578  1.116     joerg 	struct buf *bp;
   1579  1.116     joerg 	struct ufsmount *ump;
   1580  1.116     joerg 	daddr_t cgblkno;
   1581  1.116     joerg 	int error, cg;
   1582  1.116     joerg 	dev_t dev;
   1583  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1584  1.118     joerg #ifdef FFS_EI
   1585  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1586  1.118     joerg #endif
   1587  1.116     joerg 
   1588  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1589  1.116     joerg 
   1590  1.116     joerg 	cg = dtog(fs, bno);
   1591  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1592  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1593  1.116     joerg 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1594  1.116     joerg 
   1595  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1596  1.116     joerg 	if (error)
   1597    1.1   mycroft 		return;
   1598  1.116     joerg 
   1599  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1600  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1601    1.1   mycroft 	if (error) {
   1602  1.101        ad 		brelse(bp, 0);
   1603    1.1   mycroft 		return;
   1604    1.1   mycroft 	}
   1605    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1606   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1607  1.101        ad 		brelse(bp, 0);
   1608    1.1   mycroft 		return;
   1609    1.1   mycroft 	}
   1610  1.116     joerg 
   1611  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1612  1.119     joerg 
   1613  1.119     joerg 	bdwrite(bp);
   1614  1.116     joerg }
   1615  1.116     joerg 
   1616  1.116     joerg static void
   1617  1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1618  1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1619  1.116     joerg {
   1620  1.116     joerg 	struct cg *cgp;
   1621  1.116     joerg 	int32_t fragno, cgbno;
   1622  1.116     joerg 	int i, cg, blk, frags, bbase;
   1623  1.116     joerg 	u_int8_t *blksfree;
   1624  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1625  1.116     joerg 
   1626  1.116     joerg 	cg = dtog(fs, bno);
   1627  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1628   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1629   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1630   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1631   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1632   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1633   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1634  1.101        ad 	mutex_enter(&ump->um_lock);
   1635    1.1   mycroft 	if (size == fs->fs_bsize) {
   1636   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1637   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1638  1.113   hannken 			if (devvp_is_snapshot) {
   1639  1.101        ad 				mutex_exit(&ump->um_lock);
   1640   1.76   hannken 				return;
   1641   1.76   hannken 			}
   1642  1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1643  1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1644    1.1   mycroft 			panic("blkfree: freeing free block");
   1645    1.1   mycroft 		}
   1646   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1647   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1648   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1649    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1650    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1651   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1652   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1653   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1654   1.75       dbj 			KASSERT(i >= 0);
   1655   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1656   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1657   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1658   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1659   1.73       dbj 			    needswap);
   1660   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1661   1.73       dbj 		}
   1662    1.1   mycroft 	} else {
   1663   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1664    1.1   mycroft 		/*
   1665    1.1   mycroft 		 * decrement the counts associated with the old frags
   1666    1.1   mycroft 		 */
   1667   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1668   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1669    1.1   mycroft 		/*
   1670    1.1   mycroft 		 * deallocate the fragment
   1671    1.1   mycroft 		 */
   1672    1.1   mycroft 		frags = numfrags(fs, size);
   1673    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1674   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1675  1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1676   1.59   tsutsui 				       ", fs = %s\n",
   1677  1.120  christos 				    (unsigned long long)dev, bno + i,
   1678  1.120  christos 				    fs->fs_fsmnt);
   1679    1.1   mycroft 				panic("blkfree: freeing free frag");
   1680    1.1   mycroft 			}
   1681   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1682    1.1   mycroft 		}
   1683   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1684    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1685   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1686    1.1   mycroft 		/*
   1687    1.1   mycroft 		 * add back in counts associated with the new frags
   1688    1.1   mycroft 		 */
   1689   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1690   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1691    1.1   mycroft 		/*
   1692    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1693    1.1   mycroft 		 */
   1694   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1695   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1696   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1697    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1698    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1699   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1700   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1701    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1702    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1703   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1704   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1705   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1706   1.75       dbj 				KASSERT(i >= 0);
   1707   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1708   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1709   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1710   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1711   1.73       dbj 				    bbase)], 1, needswap);
   1712   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1713   1.73       dbj 			}
   1714    1.1   mycroft 		}
   1715    1.1   mycroft 	}
   1716    1.1   mycroft 	fs->fs_fmod = 1;
   1717   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1718  1.101        ad 	mutex_exit(&ump->um_lock);
   1719    1.1   mycroft }
   1720    1.1   mycroft 
   1721    1.1   mycroft /*
   1722    1.1   mycroft  * Free an inode.
   1723   1.30      fvdl  */
   1724   1.30      fvdl int
   1725   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1726   1.30      fvdl {
   1727   1.30      fvdl 
   1728  1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1729   1.30      fvdl }
   1730   1.30      fvdl 
   1731   1.30      fvdl /*
   1732   1.30      fvdl  * Do the actual free operation.
   1733    1.1   mycroft  * The specified inode is placed back in the free map.
   1734  1.111    simonb  *
   1735  1.111    simonb  * => um_lock not held on entry or exit
   1736    1.1   mycroft  */
   1737    1.1   mycroft int
   1738  1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1739  1.119     joerg {
   1740  1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1741  1.119     joerg 	struct fs *fs = ump->um_fs;
   1742  1.119     joerg 	struct vnode *devvp;
   1743  1.119     joerg 	struct cg *cgp;
   1744  1.119     joerg 	struct buf *bp;
   1745  1.119     joerg 	int error, cg;
   1746  1.119     joerg 	daddr_t cgbno;
   1747  1.119     joerg 	dev_t dev;
   1748  1.119     joerg #ifdef FFS_EI
   1749  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1750  1.119     joerg #endif
   1751  1.119     joerg 
   1752  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1753  1.119     joerg 	devvp = ump->um_devvp;
   1754  1.119     joerg 	dev = devvp->v_rdev;
   1755  1.119     joerg 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   1756  1.119     joerg 
   1757  1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1758  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1759  1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1760  1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1761  1.119     joerg 	    NOCRED, B_MODIFY, &bp);
   1762  1.119     joerg 	if (error) {
   1763  1.119     joerg 		brelse(bp, 0);
   1764  1.119     joerg 		return (error);
   1765  1.119     joerg 	}
   1766  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1767  1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1768  1.119     joerg 		brelse(bp, 0);
   1769  1.119     joerg 		return (0);
   1770  1.119     joerg 	}
   1771  1.119     joerg 
   1772  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1773  1.119     joerg 
   1774  1.119     joerg 	bdwrite(bp);
   1775  1.119     joerg 
   1776  1.119     joerg 	return 0;
   1777  1.119     joerg }
   1778  1.119     joerg 
   1779  1.119     joerg int
   1780  1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1781    1.9  christos {
   1782  1.101        ad 	struct ufsmount *ump;
   1783   1.33  augustss 	struct cg *cgp;
   1784    1.1   mycroft 	struct buf *bp;
   1785    1.1   mycroft 	int error, cg;
   1786   1.76   hannken 	daddr_t cgbno;
   1787   1.78   hannken 	dev_t dev;
   1788   1.19    bouyer #ifdef FFS_EI
   1789   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1790   1.19    bouyer #endif
   1791    1.1   mycroft 
   1792  1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   1793  1.111    simonb 
   1794   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1795  1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1796  1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1797  1.119     joerg 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   1798    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1799  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1800  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   1801  1.120  christos 		    fs->fs_fsmnt);
   1802  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1803  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1804    1.1   mycroft 	if (error) {
   1805  1.101        ad 		brelse(bp, 0);
   1806   1.30      fvdl 		return (error);
   1807    1.1   mycroft 	}
   1808    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1809   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1810  1.101        ad 		brelse(bp, 0);
   1811    1.1   mycroft 		return (0);
   1812    1.1   mycroft 	}
   1813  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1814  1.119     joerg 
   1815  1.119     joerg 	bdwrite(bp);
   1816  1.119     joerg 
   1817  1.119     joerg 	return 0;
   1818  1.119     joerg }
   1819  1.119     joerg 
   1820  1.119     joerg static void
   1821  1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1822  1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   1823  1.119     joerg {
   1824  1.119     joerg 	int cg;
   1825  1.119     joerg 	struct cg *cgp;
   1826  1.119     joerg 	u_int8_t *inosused;
   1827  1.119     joerg #ifdef FFS_EI
   1828  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1829  1.119     joerg #endif
   1830  1.119     joerg 
   1831  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1832  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1833   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1834   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1835   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1836   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1837   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   1838    1.1   mycroft 	ino %= fs->fs_ipg;
   1839   1.62      fvdl 	if (isclr(inosused, ino)) {
   1840  1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   1841  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   1842  1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   1843    1.1   mycroft 		if (fs->fs_ronly == 0)
   1844    1.1   mycroft 			panic("ifree: freeing free inode");
   1845    1.1   mycroft 	}
   1846   1.62      fvdl 	clrbit(inosused, ino);
   1847  1.113   hannken 	if (!devvp_is_snapshot)
   1848  1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   1849  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   1850   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1851   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1852   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1853  1.101        ad 	mutex_enter(&ump->um_lock);
   1854    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1855    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1856   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   1857   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1858    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1859    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1860    1.1   mycroft 	}
   1861    1.1   mycroft 	fs->fs_fmod = 1;
   1862   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   1863  1.101        ad 	mutex_exit(&ump->um_lock);
   1864    1.1   mycroft }
   1865    1.1   mycroft 
   1866    1.1   mycroft /*
   1867   1.76   hannken  * Check to see if a file is free.
   1868   1.76   hannken  */
   1869   1.76   hannken int
   1870   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   1871   1.76   hannken {
   1872   1.76   hannken 	struct cg *cgp;
   1873   1.76   hannken 	struct buf *bp;
   1874   1.76   hannken 	daddr_t cgbno;
   1875   1.76   hannken 	int ret, cg;
   1876   1.76   hannken 	u_int8_t *inosused;
   1877  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1878   1.76   hannken 
   1879  1.119     joerg 	KASSERT(devvp_is_snapshot);
   1880  1.119     joerg 
   1881   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1882  1.113   hannken 	if (devvp_is_snapshot)
   1883   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   1884  1.113   hannken 	else
   1885   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   1886   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1887   1.76   hannken 		return 1;
   1888  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   1889  1.101        ad 		brelse(bp, 0);
   1890   1.76   hannken 		return 1;
   1891   1.76   hannken 	}
   1892   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   1893   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   1894  1.101        ad 		brelse(bp, 0);
   1895   1.76   hannken 		return 1;
   1896   1.76   hannken 	}
   1897   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   1898   1.76   hannken 	ino %= fs->fs_ipg;
   1899   1.76   hannken 	ret = isclr(inosused, ino);
   1900  1.101        ad 	brelse(bp, 0);
   1901   1.76   hannken 	return ret;
   1902   1.76   hannken }
   1903   1.76   hannken 
   1904   1.76   hannken /*
   1905    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1906    1.1   mycroft  *
   1907    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1908    1.1   mycroft  * available.
   1909    1.1   mycroft  */
   1910   1.60      fvdl static int32_t
   1911   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   1912    1.1   mycroft {
   1913   1.60      fvdl 	int32_t bno;
   1914    1.1   mycroft 	int start, len, loc, i;
   1915    1.1   mycroft 	int blk, field, subfield, pos;
   1916   1.19    bouyer 	int ostart, olen;
   1917   1.62      fvdl 	u_int8_t *blksfree;
   1918   1.30      fvdl #ifdef FFS_EI
   1919   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1920   1.30      fvdl #endif
   1921    1.1   mycroft 
   1922  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   1923  1.101        ad 
   1924    1.1   mycroft 	/*
   1925    1.1   mycroft 	 * find the fragment by searching through the free block
   1926    1.1   mycroft 	 * map for an appropriate bit pattern
   1927    1.1   mycroft 	 */
   1928    1.1   mycroft 	if (bpref)
   1929    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1930    1.1   mycroft 	else
   1931   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1932   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1933    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1934   1.19    bouyer 	ostart = start;
   1935   1.19    bouyer 	olen = len;
   1936   1.45     lukem 	loc = scanc((u_int)len,
   1937   1.62      fvdl 		(const u_char *)&blksfree[start],
   1938   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   1939   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1940    1.1   mycroft 	if (loc == 0) {
   1941    1.1   mycroft 		len = start + 1;
   1942    1.1   mycroft 		start = 0;
   1943   1.45     lukem 		loc = scanc((u_int)len,
   1944   1.62      fvdl 			(const u_char *)&blksfree[0],
   1945   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   1946   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   1947    1.1   mycroft 		if (loc == 0) {
   1948   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1949   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1950   1.20      ross 			printf("offset=%d %ld\n",
   1951   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1952   1.62      fvdl 				(long)blksfree - (long)cgp);
   1953   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   1954    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1955    1.1   mycroft 			/* NOTREACHED */
   1956    1.1   mycroft 		}
   1957    1.1   mycroft 	}
   1958    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1959   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1960    1.1   mycroft 	/*
   1961    1.1   mycroft 	 * found the byte in the map
   1962    1.1   mycroft 	 * sift through the bits to find the selected frag
   1963    1.1   mycroft 	 */
   1964    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1965   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   1966    1.1   mycroft 		blk <<= 1;
   1967    1.1   mycroft 		field = around[allocsiz];
   1968    1.1   mycroft 		subfield = inside[allocsiz];
   1969    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1970    1.1   mycroft 			if ((blk & field) == subfield)
   1971    1.1   mycroft 				return (bno + pos);
   1972    1.1   mycroft 			field <<= 1;
   1973    1.1   mycroft 			subfield <<= 1;
   1974    1.1   mycroft 		}
   1975    1.1   mycroft 	}
   1976   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1977    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1978   1.58      fvdl 	/* return (-1); */
   1979    1.1   mycroft }
   1980    1.1   mycroft 
   1981    1.1   mycroft /*
   1982    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1983   1.81     perry  *
   1984    1.1   mycroft  * The form of the error message is:
   1985    1.1   mycroft  *	fs: error message
   1986    1.1   mycroft  */
   1987    1.1   mycroft static void
   1988   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   1989    1.1   mycroft {
   1990    1.1   mycroft 
   1991   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   1992   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   1993    1.1   mycroft }
   1994