ffs_alloc.c revision 1.129 1 1.129 chs /* $NetBSD: ffs_alloc.c,v 1.129 2011/09/20 14:01:32 chs Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.122 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.129 chs __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.129 2011/09/20 14:01:32 chs Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.129 chs #include "opt_uvm_page_trkown.h"
79 1.22 scottr #endif
80 1.1 mycroft
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/buf.h>
84 1.111 simonb #include <sys/fstrans.h>
85 1.111 simonb #include <sys/kauth.h>
86 1.111 simonb #include <sys/kernel.h>
87 1.111 simonb #include <sys/mount.h>
88 1.1 mycroft #include <sys/proc.h>
89 1.111 simonb #include <sys/syslog.h>
90 1.1 mycroft #include <sys/vnode.h>
91 1.111 simonb #include <sys/wapbl.h>
92 1.29 mrg
93 1.76 hannken #include <miscfs/specfs/specdev.h>
94 1.1 mycroft #include <ufs/ufs/quota.h>
95 1.19 bouyer #include <ufs/ufs/ufsmount.h>
96 1.1 mycroft #include <ufs/ufs/inode.h>
97 1.9 christos #include <ufs/ufs/ufs_extern.h>
98 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
99 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
100 1.1 mycroft
101 1.1 mycroft #include <ufs/ffs/fs.h>
102 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
103 1.1 mycroft
104 1.129 chs #ifdef UVM_PAGE_TRKOWN
105 1.129 chs #include <uvm/uvm.h>
106 1.129 chs #endif
107 1.129 chs
108 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
109 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
110 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
111 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
112 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
113 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
114 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
115 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
116 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
117 1.85 thorpej daddr_t, int);
118 1.119 joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
119 1.116 joerg daddr_t, long, bool);
120 1.119 joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
121 1.119 joerg int, bool);
122 1.23 drochner
123 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
124 1.34 jdolecek int ffs_log_changeopt = 0;
125 1.34 jdolecek
126 1.23 drochner /* in ffs_tables.c */
127 1.40 jdolecek extern const int inside[], around[];
128 1.40 jdolecek extern const u_char * const fragtbl[];
129 1.1 mycroft
130 1.116 joerg /* Basic consistency check for block allocations */
131 1.116 joerg static int
132 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
133 1.116 joerg long size, dev_t dev, ino_t inum)
134 1.116 joerg {
135 1.116 joerg if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
136 1.116 joerg fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
137 1.120 christos printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
138 1.120 christos "size = %ld, fs = %s\n",
139 1.120 christos (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
140 1.116 joerg panic("%s: bad size", func);
141 1.116 joerg }
142 1.116 joerg
143 1.116 joerg if (bno >= fs->fs_size) {
144 1.116 joerg printf("bad block %" PRId64 ", ino %llu\n", bno,
145 1.116 joerg (unsigned long long)inum);
146 1.116 joerg ffs_fserr(fs, inum, "bad block");
147 1.116 joerg return EINVAL;
148 1.116 joerg }
149 1.116 joerg return 0;
150 1.116 joerg }
151 1.116 joerg
152 1.1 mycroft /*
153 1.1 mycroft * Allocate a block in the file system.
154 1.81 perry *
155 1.1 mycroft * The size of the requested block is given, which must be some
156 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
157 1.1 mycroft * A preference may be optionally specified. If a preference is given
158 1.1 mycroft * the following hierarchy is used to allocate a block:
159 1.1 mycroft * 1) allocate the requested block.
160 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
161 1.1 mycroft * 3) allocate a block in the same cylinder group.
162 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
163 1.1 mycroft * available block is located.
164 1.47 wiz * If no block preference is given the following hierarchy is used
165 1.1 mycroft * to allocate a block:
166 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
167 1.1 mycroft * inode for the file.
168 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
169 1.1 mycroft * available block is located.
170 1.106 pooka *
171 1.106 pooka * => called with um_lock held
172 1.106 pooka * => releases um_lock before returning
173 1.1 mycroft */
174 1.9 christos int
175 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
176 1.91 elad kauth_cred_t cred, daddr_t *bnp)
177 1.1 mycroft {
178 1.101 ad struct ufsmount *ump;
179 1.62 fvdl struct fs *fs;
180 1.58 fvdl daddr_t bno;
181 1.9 christos int cg;
182 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
183 1.9 christos int error;
184 1.9 christos #endif
185 1.81 perry
186 1.62 fvdl fs = ip->i_fs;
187 1.101 ad ump = ip->i_ump;
188 1.101 ad
189 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
190 1.62 fvdl
191 1.37 chs #ifdef UVM_PAGE_TRKOWN
192 1.129 chs
193 1.129 chs /*
194 1.129 chs * Sanity-check that allocations within the file size
195 1.129 chs * do not allow other threads to read the stale contents
196 1.129 chs * of newly allocated blocks.
197 1.129 chs * Usually pages will exist to cover the new allocation.
198 1.129 chs * There is an optimization in ffs_write() where we skip
199 1.129 chs * creating pages if several conditions are met:
200 1.129 chs * - the file must not be mapped (in any user address space).
201 1.129 chs * - the write must cover whole pages and whole blocks.
202 1.129 chs * If those conditions are not met then pages must exist and
203 1.129 chs * be locked by the current thread.
204 1.129 chs */
205 1.129 chs
206 1.51 chs if (ITOV(ip)->v_type == VREG &&
207 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
208 1.37 chs struct vm_page *pg;
209 1.129 chs struct vnode *vp = ITOV(ip);
210 1.129 chs struct uvm_object *uobj = &vp->v_uobj;
211 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
212 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
213 1.37 chs
214 1.128 rmind mutex_enter(uobj->vmobjlock);
215 1.37 chs while (off < endoff) {
216 1.37 chs pg = uvm_pagelookup(uobj, off);
217 1.129 chs KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
218 1.129 chs (size & PAGE_MASK) == 0 &&
219 1.129 chs blkoff(fs, size) == 0) ||
220 1.129 chs (pg != NULL && pg->owner == curproc->p_pid &&
221 1.129 chs pg->lowner == curlwp->l_lid));
222 1.37 chs off += PAGE_SIZE;
223 1.37 chs }
224 1.128 rmind mutex_exit(uobj->vmobjlock);
225 1.37 chs }
226 1.37 chs #endif
227 1.37 chs
228 1.1 mycroft *bnp = 0;
229 1.1 mycroft #ifdef DIAGNOSTIC
230 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
231 1.120 christos printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
232 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, size,
233 1.120 christos fs->fs_fsmnt);
234 1.1 mycroft panic("ffs_alloc: bad size");
235 1.1 mycroft }
236 1.1 mycroft if (cred == NOCRED)
237 1.56 provos panic("ffs_alloc: missing credential");
238 1.1 mycroft #endif /* DIAGNOSTIC */
239 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
240 1.1 mycroft goto nospace;
241 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
242 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
243 1.124 elad NULL, NULL) != 0)
244 1.1 mycroft goto nospace;
245 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
246 1.101 ad mutex_exit(&ump->um_lock);
247 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
248 1.1 mycroft return (error);
249 1.101 ad mutex_enter(&ump->um_lock);
250 1.1 mycroft #endif
251 1.111 simonb
252 1.1 mycroft if (bpref >= fs->fs_size)
253 1.1 mycroft bpref = 0;
254 1.1 mycroft if (bpref == 0)
255 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
256 1.1 mycroft else
257 1.1 mycroft cg = dtog(fs, bpref);
258 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
259 1.1 mycroft if (bno > 0) {
260 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
261 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
262 1.1 mycroft *bnp = bno;
263 1.1 mycroft return (0);
264 1.1 mycroft }
265 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
266 1.1 mycroft /*
267 1.1 mycroft * Restore user's disk quota because allocation failed.
268 1.1 mycroft */
269 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
270 1.1 mycroft #endif
271 1.111 simonb if (flags & B_CONTIG) {
272 1.111 simonb /*
273 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
274 1.111 simonb * For the case where ffs_hashalloc() fails early
275 1.111 simonb * in the B_CONTIG case we reach here with um_lock
276 1.111 simonb * already unlocked, so we can't release it again
277 1.111 simonb * like in the normal error path. See kern/39206.
278 1.111 simonb *
279 1.111 simonb *
280 1.111 simonb * Fail silently - it's up to our caller to report
281 1.111 simonb * errors.
282 1.111 simonb */
283 1.111 simonb return (ENOSPC);
284 1.111 simonb }
285 1.1 mycroft nospace:
286 1.101 ad mutex_exit(&ump->um_lock);
287 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
288 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
289 1.1 mycroft return (ENOSPC);
290 1.1 mycroft }
291 1.1 mycroft
292 1.1 mycroft /*
293 1.1 mycroft * Reallocate a fragment to a bigger size
294 1.1 mycroft *
295 1.1 mycroft * The number and size of the old block is given, and a preference
296 1.1 mycroft * and new size is also specified. The allocator attempts to extend
297 1.1 mycroft * the original block. Failing that, the regular block allocator is
298 1.1 mycroft * invoked to get an appropriate block.
299 1.106 pooka *
300 1.106 pooka * => called with um_lock held
301 1.106 pooka * => return with um_lock released
302 1.1 mycroft */
303 1.9 christos int
304 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
305 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
306 1.1 mycroft {
307 1.101 ad struct ufsmount *ump;
308 1.62 fvdl struct fs *fs;
309 1.1 mycroft struct buf *bp;
310 1.1 mycroft int cg, request, error;
311 1.58 fvdl daddr_t bprev, bno;
312 1.25 thorpej
313 1.62 fvdl fs = ip->i_fs;
314 1.101 ad ump = ip->i_ump;
315 1.101 ad
316 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
317 1.101 ad
318 1.37 chs #ifdef UVM_PAGE_TRKOWN
319 1.129 chs
320 1.129 chs /*
321 1.129 chs * Sanity-check that allocations within the file size
322 1.129 chs * do not allow other threads to read the stale contents
323 1.129 chs * of newly allocated blocks.
324 1.129 chs * Unlike in ffs_alloc(), here pages must always exist
325 1.129 chs * for such allocations, because only the last block of a file
326 1.129 chs * can be a fragment and ffs_write() will reallocate the
327 1.129 chs * fragment to the new size using ufs_balloc_range(),
328 1.129 chs * which always creates pages to cover blocks it allocates.
329 1.129 chs */
330 1.129 chs
331 1.37 chs if (ITOV(ip)->v_type == VREG) {
332 1.37 chs struct vm_page *pg;
333 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
334 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
335 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
336 1.37 chs
337 1.128 rmind mutex_enter(uobj->vmobjlock);
338 1.37 chs while (off < endoff) {
339 1.37 chs pg = uvm_pagelookup(uobj, off);
340 1.129 chs KASSERT(pg->owner == curproc->p_pid &&
341 1.129 chs pg->lowner == curlwp->l_lid);
342 1.37 chs off += PAGE_SIZE;
343 1.37 chs }
344 1.128 rmind mutex_exit(uobj->vmobjlock);
345 1.37 chs }
346 1.37 chs #endif
347 1.37 chs
348 1.1 mycroft #ifdef DIAGNOSTIC
349 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
350 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
351 1.13 christos printf(
352 1.120 christos "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
353 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
354 1.120 christos fs->fs_fsmnt);
355 1.1 mycroft panic("ffs_realloccg: bad size");
356 1.1 mycroft }
357 1.1 mycroft if (cred == NOCRED)
358 1.56 provos panic("ffs_realloccg: missing credential");
359 1.1 mycroft #endif /* DIAGNOSTIC */
360 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
361 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
362 1.124 elad NULL, NULL) != 0) {
363 1.101 ad mutex_exit(&ump->um_lock);
364 1.1 mycroft goto nospace;
365 1.101 ad }
366 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
367 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
368 1.60 fvdl else
369 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
370 1.60 fvdl
371 1.60 fvdl if (bprev == 0) {
372 1.120 christos printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
373 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
374 1.120 christos fs->fs_fsmnt);
375 1.1 mycroft panic("ffs_realloccg: bad bprev");
376 1.1 mycroft }
377 1.101 ad mutex_exit(&ump->um_lock);
378 1.101 ad
379 1.1 mycroft /*
380 1.1 mycroft * Allocate the extra space in the buffer.
381 1.1 mycroft */
382 1.37 chs if (bpp != NULL &&
383 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
384 1.101 ad brelse(bp, 0);
385 1.1 mycroft return (error);
386 1.1 mycroft }
387 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
388 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
389 1.44 chs if (bpp != NULL) {
390 1.101 ad brelse(bp, 0);
391 1.44 chs }
392 1.1 mycroft return (error);
393 1.1 mycroft }
394 1.1 mycroft #endif
395 1.1 mycroft /*
396 1.1 mycroft * Check for extension in the existing location.
397 1.1 mycroft */
398 1.1 mycroft cg = dtog(fs, bprev);
399 1.101 ad mutex_enter(&ump->um_lock);
400 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
401 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
402 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
403 1.37 chs
404 1.37 chs if (bpp != NULL) {
405 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
406 1.37 chs panic("bad blockno");
407 1.72 pk allocbuf(bp, nsize, 1);
408 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
409 1.105 ad mutex_enter(bp->b_objlock);
410 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
411 1.105 ad bp->b_oflags |= BO_DONE;
412 1.105 ad mutex_exit(bp->b_objlock);
413 1.37 chs *bpp = bp;
414 1.37 chs }
415 1.37 chs if (blknop != NULL) {
416 1.37 chs *blknop = bno;
417 1.37 chs }
418 1.1 mycroft return (0);
419 1.1 mycroft }
420 1.1 mycroft /*
421 1.1 mycroft * Allocate a new disk location.
422 1.1 mycroft */
423 1.1 mycroft if (bpref >= fs->fs_size)
424 1.1 mycroft bpref = 0;
425 1.1 mycroft switch ((int)fs->fs_optim) {
426 1.1 mycroft case FS_OPTSPACE:
427 1.1 mycroft /*
428 1.81 perry * Allocate an exact sized fragment. Although this makes
429 1.81 perry * best use of space, we will waste time relocating it if
430 1.1 mycroft * the file continues to grow. If the fragmentation is
431 1.1 mycroft * less than half of the minimum free reserve, we choose
432 1.1 mycroft * to begin optimizing for time.
433 1.1 mycroft */
434 1.1 mycroft request = nsize;
435 1.1 mycroft if (fs->fs_minfree < 5 ||
436 1.1 mycroft fs->fs_cstotal.cs_nffree >
437 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
438 1.1 mycroft break;
439 1.34 jdolecek
440 1.34 jdolecek if (ffs_log_changeopt) {
441 1.34 jdolecek log(LOG_NOTICE,
442 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
443 1.34 jdolecek fs->fs_fsmnt);
444 1.34 jdolecek }
445 1.34 jdolecek
446 1.1 mycroft fs->fs_optim = FS_OPTTIME;
447 1.1 mycroft break;
448 1.1 mycroft case FS_OPTTIME:
449 1.1 mycroft /*
450 1.1 mycroft * At this point we have discovered a file that is trying to
451 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
452 1.1 mycroft * we allocate a full sized block, then free the unused portion.
453 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
454 1.1 mycroft * above will be able to grow it in place without further
455 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
456 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
457 1.1 mycroft * optimizing for space.
458 1.1 mycroft */
459 1.1 mycroft request = fs->fs_bsize;
460 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
461 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
462 1.1 mycroft break;
463 1.34 jdolecek
464 1.34 jdolecek if (ffs_log_changeopt) {
465 1.34 jdolecek log(LOG_NOTICE,
466 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
467 1.34 jdolecek fs->fs_fsmnt);
468 1.34 jdolecek }
469 1.34 jdolecek
470 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
471 1.1 mycroft break;
472 1.1 mycroft default:
473 1.120 christos printf("dev = 0x%llx, optim = %d, fs = %s\n",
474 1.120 christos (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
475 1.1 mycroft panic("ffs_realloccg: bad optim");
476 1.1 mycroft /* NOTREACHED */
477 1.1 mycroft }
478 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
479 1.1 mycroft if (bno > 0) {
480 1.122 ad if ((ip->i_ump->um_mountp->mnt_wapbl) &&
481 1.122 ad (ITOV(ip)->v_type != VREG)) {
482 1.122 ad UFS_WAPBL_REGISTER_DEALLOCATION(
483 1.122 ad ip->i_ump->um_mountp, fsbtodb(fs, bprev),
484 1.122 ad osize);
485 1.122 ad } else {
486 1.122 ad ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
487 1.122 ad ip->i_number);
488 1.111 simonb }
489 1.111 simonb if (nsize < request) {
490 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
491 1.111 simonb (ITOV(ip)->v_type != VREG)) {
492 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
493 1.111 simonb ip->i_ump->um_mountp,
494 1.111 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
495 1.111 simonb request - nsize);
496 1.111 simonb } else
497 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
498 1.111 simonb bno + numfrags(fs, nsize),
499 1.111 simonb (long)(request - nsize), ip->i_number);
500 1.111 simonb }
501 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
502 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
503 1.37 chs if (bpp != NULL) {
504 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
505 1.72 pk allocbuf(bp, nsize, 1);
506 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
507 1.105 ad mutex_enter(bp->b_objlock);
508 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
509 1.105 ad bp->b_oflags |= BO_DONE;
510 1.105 ad mutex_exit(bp->b_objlock);
511 1.37 chs *bpp = bp;
512 1.37 chs }
513 1.37 chs if (blknop != NULL) {
514 1.37 chs *blknop = bno;
515 1.37 chs }
516 1.1 mycroft return (0);
517 1.1 mycroft }
518 1.101 ad mutex_exit(&ump->um_lock);
519 1.101 ad
520 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
521 1.1 mycroft /*
522 1.1 mycroft * Restore user's disk quota because allocation failed.
523 1.1 mycroft */
524 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
525 1.1 mycroft #endif
526 1.37 chs if (bpp != NULL) {
527 1.101 ad brelse(bp, 0);
528 1.37 chs }
529 1.37 chs
530 1.1 mycroft nospace:
531 1.1 mycroft /*
532 1.1 mycroft * no space available
533 1.1 mycroft */
534 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
535 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
536 1.1 mycroft return (ENOSPC);
537 1.1 mycroft }
538 1.1 mycroft
539 1.1 mycroft /*
540 1.1 mycroft * Allocate an inode in the file system.
541 1.81 perry *
542 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
543 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
544 1.1 mycroft * 1) allocate the preferred inode.
545 1.1 mycroft * 2) allocate an inode in the same cylinder group.
546 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
547 1.1 mycroft * available inode is located.
548 1.47 wiz * If no inode preference is given the following hierarchy is used
549 1.1 mycroft * to allocate an inode:
550 1.1 mycroft * 1) allocate an inode in cylinder group 0.
551 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
552 1.1 mycroft * available inode is located.
553 1.106 pooka *
554 1.106 pooka * => um_lock not held upon entry or return
555 1.1 mycroft */
556 1.9 christos int
557 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
558 1.88 yamt struct vnode **vpp)
559 1.9 christos {
560 1.101 ad struct ufsmount *ump;
561 1.33 augustss struct inode *pip;
562 1.33 augustss struct fs *fs;
563 1.33 augustss struct inode *ip;
564 1.60 fvdl struct timespec ts;
565 1.1 mycroft ino_t ino, ipref;
566 1.1 mycroft int cg, error;
567 1.81 perry
568 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
569 1.111 simonb
570 1.88 yamt *vpp = NULL;
571 1.1 mycroft pip = VTOI(pvp);
572 1.1 mycroft fs = pip->i_fs;
573 1.101 ad ump = pip->i_ump;
574 1.101 ad
575 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
576 1.111 simonb if (error) {
577 1.111 simonb return error;
578 1.111 simonb }
579 1.101 ad mutex_enter(&ump->um_lock);
580 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
581 1.1 mycroft goto noinodes;
582 1.1 mycroft
583 1.1 mycroft if ((mode & IFMT) == IFDIR)
584 1.50 lukem ipref = ffs_dirpref(pip);
585 1.50 lukem else
586 1.50 lukem ipref = pip->i_number;
587 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
588 1.1 mycroft ipref = 0;
589 1.1 mycroft cg = ino_to_cg(fs, ipref);
590 1.50 lukem /*
591 1.50 lukem * Track number of dirs created one after another
592 1.50 lukem * in a same cg without intervening by files.
593 1.50 lukem */
594 1.50 lukem if ((mode & IFMT) == IFDIR) {
595 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
596 1.50 lukem fs->fs_contigdirs[cg]++;
597 1.50 lukem } else {
598 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
599 1.50 lukem fs->fs_contigdirs[cg]--;
600 1.50 lukem }
601 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
602 1.1 mycroft if (ino == 0)
603 1.1 mycroft goto noinodes;
604 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
605 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
606 1.1 mycroft if (error) {
607 1.111 simonb int err;
608 1.111 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
609 1.111 simonb if (err == 0)
610 1.111 simonb ffs_vfree(pvp, ino, mode);
611 1.111 simonb if (err == 0)
612 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
613 1.1 mycroft return (error);
614 1.1 mycroft }
615 1.90 yamt KASSERT((*vpp)->v_type == VNON);
616 1.88 yamt ip = VTOI(*vpp);
617 1.60 fvdl if (ip->i_mode) {
618 1.60 fvdl #if 0
619 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
620 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
621 1.60 fvdl #else
622 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
623 1.60 fvdl DIP(ip, mode), ip->i_mode,
624 1.60 fvdl DIP(ip, gen), ip->i_gen);
625 1.60 fvdl printf("size %llx blocks %llx\n",
626 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
627 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
628 1.86 christos (unsigned long long)ipref);
629 1.60 fvdl #if 0
630 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
631 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
632 1.60 fvdl #endif
633 1.60 fvdl
634 1.60 fvdl #endif
635 1.1 mycroft panic("ffs_valloc: dup alloc");
636 1.1 mycroft }
637 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
638 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
639 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
640 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
641 1.1 mycroft }
642 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
643 1.61 fvdl ip->i_flags = 0;
644 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
645 1.1 mycroft /*
646 1.1 mycroft * Set up a new generation number for this inode.
647 1.1 mycroft */
648 1.60 fvdl ip->i_gen++;
649 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
650 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
651 1.93 yamt vfs_timestamp(&ts);
652 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
653 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
654 1.60 fvdl }
655 1.1 mycroft return (0);
656 1.1 mycroft noinodes:
657 1.101 ad mutex_exit(&ump->um_lock);
658 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
659 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
660 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
661 1.1 mycroft return (ENOSPC);
662 1.1 mycroft }
663 1.1 mycroft
664 1.1 mycroft /*
665 1.50 lukem * Find a cylinder group in which to place a directory.
666 1.42 sommerfe *
667 1.50 lukem * The policy implemented by this algorithm is to allocate a
668 1.50 lukem * directory inode in the same cylinder group as its parent
669 1.50 lukem * directory, but also to reserve space for its files inodes
670 1.50 lukem * and data. Restrict the number of directories which may be
671 1.50 lukem * allocated one after another in the same cylinder group
672 1.50 lukem * without intervening allocation of files.
673 1.42 sommerfe *
674 1.50 lukem * If we allocate a first level directory then force allocation
675 1.50 lukem * in another cylinder group.
676 1.1 mycroft */
677 1.1 mycroft static ino_t
678 1.85 thorpej ffs_dirpref(struct inode *pip)
679 1.1 mycroft {
680 1.50 lukem register struct fs *fs;
681 1.74 soren int cg, prefcg;
682 1.89 dsl int64_t dirsize, cgsize, curdsz;
683 1.89 dsl int avgifree, avgbfree, avgndir;
684 1.50 lukem int minifree, minbfree, maxndir;
685 1.50 lukem int mincg, minndir;
686 1.50 lukem int maxcontigdirs;
687 1.50 lukem
688 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
689 1.101 ad
690 1.50 lukem fs = pip->i_fs;
691 1.1 mycroft
692 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
693 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
694 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
695 1.50 lukem
696 1.50 lukem /*
697 1.50 lukem * Force allocation in another cg if creating a first level dir.
698 1.50 lukem */
699 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
700 1.71 mycroft prefcg = random() % fs->fs_ncg;
701 1.50 lukem mincg = prefcg;
702 1.50 lukem minndir = fs->fs_ipg;
703 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
704 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
705 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
706 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
707 1.42 sommerfe mincg = cg;
708 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
709 1.42 sommerfe }
710 1.50 lukem for (cg = 0; cg < prefcg; cg++)
711 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
712 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
713 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
714 1.50 lukem mincg = cg;
715 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
716 1.42 sommerfe }
717 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
718 1.42 sommerfe }
719 1.50 lukem
720 1.50 lukem /*
721 1.50 lukem * Count various limits which used for
722 1.50 lukem * optimal allocation of a directory inode.
723 1.50 lukem */
724 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
725 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
726 1.50 lukem if (minifree < 0)
727 1.50 lukem minifree = 0;
728 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
729 1.50 lukem if (minbfree < 0)
730 1.50 lukem minbfree = 0;
731 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
732 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
733 1.89 dsl if (avgndir != 0) {
734 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
735 1.89 dsl if (dirsize < curdsz)
736 1.89 dsl dirsize = curdsz;
737 1.89 dsl }
738 1.89 dsl if (cgsize < dirsize * 255)
739 1.89 dsl maxcontigdirs = cgsize / dirsize;
740 1.89 dsl else
741 1.89 dsl maxcontigdirs = 255;
742 1.50 lukem if (fs->fs_avgfpdir > 0)
743 1.50 lukem maxcontigdirs = min(maxcontigdirs,
744 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
745 1.50 lukem if (maxcontigdirs == 0)
746 1.50 lukem maxcontigdirs = 1;
747 1.50 lukem
748 1.50 lukem /*
749 1.81 perry * Limit number of dirs in one cg and reserve space for
750 1.50 lukem * regular files, but only if we have no deficit in
751 1.50 lukem * inodes or space.
752 1.50 lukem */
753 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
754 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
755 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
756 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
757 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
758 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
759 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
760 1.50 lukem }
761 1.50 lukem for (cg = 0; cg < prefcg; cg++)
762 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
763 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
764 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
765 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
766 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
767 1.50 lukem }
768 1.50 lukem /*
769 1.50 lukem * This is a backstop when we are deficient in space.
770 1.50 lukem */
771 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
772 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
773 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
774 1.50 lukem for (cg = 0; cg < prefcg; cg++)
775 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
776 1.50 lukem break;
777 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
778 1.1 mycroft }
779 1.1 mycroft
780 1.1 mycroft /*
781 1.1 mycroft * Select the desired position for the next block in a file. The file is
782 1.1 mycroft * logically divided into sections. The first section is composed of the
783 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
784 1.81 perry *
785 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
786 1.1 mycroft * request a block in the same cylinder group as the inode that describes
787 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
788 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
789 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
790 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
791 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
792 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
793 1.1 mycroft * continues until a cylinder group with greater than the average number
794 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
795 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
796 1.1 mycroft * here a best guess is made based upon the logical block number being
797 1.1 mycroft * allocated.
798 1.81 perry *
799 1.1 mycroft * If a section is already partially allocated, the policy is to
800 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
801 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
802 1.60 fvdl * contigously if possible.
803 1.106 pooka *
804 1.106 pooka * => um_lock held on entry and exit
805 1.1 mycroft */
806 1.58 fvdl daddr_t
807 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
808 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
809 1.1 mycroft {
810 1.33 augustss struct fs *fs;
811 1.33 augustss int cg;
812 1.1 mycroft int avgbfree, startcg;
813 1.1 mycroft
814 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
815 1.101 ad
816 1.1 mycroft fs = ip->i_fs;
817 1.111 simonb
818 1.111 simonb /*
819 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
820 1.111 simonb * in the inode extentions to return the desired block.
821 1.111 simonb *
822 1.111 simonb * For metadata (indirect blocks) return the address of where
823 1.111 simonb * the first indirect block resides - we'll scan for the next
824 1.111 simonb * available slot if we need to allocate more than one indirect
825 1.111 simonb * block. For data, return the address of the actual block
826 1.111 simonb * relative to the address of the first data block.
827 1.111 simonb */
828 1.111 simonb if (flags & B_CONTIG) {
829 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
830 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
831 1.111 simonb if (flags & B_METAONLY)
832 1.111 simonb return ip->i_ffs_first_indir_blk;
833 1.111 simonb else
834 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
835 1.111 simonb }
836 1.111 simonb
837 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
838 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
839 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
840 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
841 1.1 mycroft }
842 1.1 mycroft /*
843 1.1 mycroft * Find a cylinder with greater than average number of
844 1.1 mycroft * unused data blocks.
845 1.1 mycroft */
846 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
847 1.1 mycroft startcg =
848 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
849 1.1 mycroft else
850 1.19 bouyer startcg = dtog(fs,
851 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
852 1.1 mycroft startcg %= fs->fs_ncg;
853 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
854 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
855 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
856 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
857 1.1 mycroft }
858 1.52 lukem for (cg = 0; cg < startcg; cg++)
859 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
861 1.1 mycroft }
862 1.35 thorpej return (0);
863 1.1 mycroft }
864 1.1 mycroft /*
865 1.60 fvdl * We just always try to lay things out contiguously.
866 1.60 fvdl */
867 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
868 1.60 fvdl }
869 1.60 fvdl
870 1.60 fvdl daddr_t
871 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
872 1.111 simonb int64_t *bap)
873 1.60 fvdl {
874 1.60 fvdl struct fs *fs;
875 1.60 fvdl int cg;
876 1.60 fvdl int avgbfree, startcg;
877 1.60 fvdl
878 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
879 1.101 ad
880 1.60 fvdl fs = ip->i_fs;
881 1.111 simonb
882 1.111 simonb /*
883 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
884 1.111 simonb * in the inode extentions to return the desired block.
885 1.111 simonb *
886 1.111 simonb * For metadata (indirect blocks) return the address of where
887 1.111 simonb * the first indirect block resides - we'll scan for the next
888 1.111 simonb * available slot if we need to allocate more than one indirect
889 1.111 simonb * block. For data, return the address of the actual block
890 1.111 simonb * relative to the address of the first data block.
891 1.111 simonb */
892 1.111 simonb if (flags & B_CONTIG) {
893 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
894 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
895 1.111 simonb if (flags & B_METAONLY)
896 1.111 simonb return ip->i_ffs_first_indir_blk;
897 1.111 simonb else
898 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
899 1.111 simonb }
900 1.111 simonb
901 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
902 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
903 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
904 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
905 1.60 fvdl }
906 1.1 mycroft /*
907 1.60 fvdl * Find a cylinder with greater than average number of
908 1.60 fvdl * unused data blocks.
909 1.1 mycroft */
910 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
911 1.60 fvdl startcg =
912 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
913 1.60 fvdl else
914 1.60 fvdl startcg = dtog(fs,
915 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
916 1.60 fvdl startcg %= fs->fs_ncg;
917 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
918 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
919 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
920 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
921 1.60 fvdl }
922 1.60 fvdl for (cg = 0; cg < startcg; cg++)
923 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
924 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
925 1.60 fvdl }
926 1.60 fvdl return (0);
927 1.60 fvdl }
928 1.60 fvdl /*
929 1.60 fvdl * We just always try to lay things out contiguously.
930 1.60 fvdl */
931 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
932 1.1 mycroft }
933 1.1 mycroft
934 1.60 fvdl
935 1.1 mycroft /*
936 1.1 mycroft * Implement the cylinder overflow algorithm.
937 1.1 mycroft *
938 1.1 mycroft * The policy implemented by this algorithm is:
939 1.1 mycroft * 1) allocate the block in its requested cylinder group.
940 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
941 1.1 mycroft * 3) brute force search for a free block.
942 1.106 pooka *
943 1.106 pooka * => called with um_lock held
944 1.106 pooka * => returns with um_lock released on success, held on failure
945 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
946 1.1 mycroft */
947 1.1 mycroft /*VARARGS5*/
948 1.58 fvdl static daddr_t
949 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
950 1.85 thorpej int size /* size for data blocks, mode for inodes */,
951 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
952 1.1 mycroft {
953 1.33 augustss struct fs *fs;
954 1.58 fvdl daddr_t result;
955 1.1 mycroft int i, icg = cg;
956 1.1 mycroft
957 1.1 mycroft fs = ip->i_fs;
958 1.1 mycroft /*
959 1.1 mycroft * 1: preferred cylinder group
960 1.1 mycroft */
961 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
962 1.1 mycroft if (result)
963 1.1 mycroft return (result);
964 1.111 simonb
965 1.111 simonb if (flags & B_CONTIG)
966 1.111 simonb return (result);
967 1.1 mycroft /*
968 1.1 mycroft * 2: quadratic rehash
969 1.1 mycroft */
970 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
971 1.1 mycroft cg += i;
972 1.1 mycroft if (cg >= fs->fs_ncg)
973 1.1 mycroft cg -= fs->fs_ncg;
974 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
975 1.1 mycroft if (result)
976 1.1 mycroft return (result);
977 1.1 mycroft }
978 1.1 mycroft /*
979 1.1 mycroft * 3: brute force search
980 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
981 1.1 mycroft * and 1 is always checked in the quadratic rehash.
982 1.1 mycroft */
983 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
984 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
985 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
986 1.1 mycroft if (result)
987 1.1 mycroft return (result);
988 1.1 mycroft cg++;
989 1.1 mycroft if (cg == fs->fs_ncg)
990 1.1 mycroft cg = 0;
991 1.1 mycroft }
992 1.35 thorpej return (0);
993 1.1 mycroft }
994 1.1 mycroft
995 1.1 mycroft /*
996 1.1 mycroft * Determine whether a fragment can be extended.
997 1.1 mycroft *
998 1.81 perry * Check to see if the necessary fragments are available, and
999 1.1 mycroft * if they are, allocate them.
1000 1.106 pooka *
1001 1.106 pooka * => called with um_lock held
1002 1.106 pooka * => returns with um_lock released on success, held on failure
1003 1.1 mycroft */
1004 1.58 fvdl static daddr_t
1005 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1006 1.1 mycroft {
1007 1.101 ad struct ufsmount *ump;
1008 1.33 augustss struct fs *fs;
1009 1.33 augustss struct cg *cgp;
1010 1.1 mycroft struct buf *bp;
1011 1.58 fvdl daddr_t bno;
1012 1.1 mycroft int frags, bbase;
1013 1.1 mycroft int i, error;
1014 1.62 fvdl u_int8_t *blksfree;
1015 1.1 mycroft
1016 1.1 mycroft fs = ip->i_fs;
1017 1.101 ad ump = ip->i_ump;
1018 1.101 ad
1019 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1020 1.101 ad
1021 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1022 1.35 thorpej return (0);
1023 1.1 mycroft frags = numfrags(fs, nsize);
1024 1.1 mycroft bbase = fragnum(fs, bprev);
1025 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1026 1.1 mycroft /* cannot extend across a block boundary */
1027 1.35 thorpej return (0);
1028 1.1 mycroft }
1029 1.101 ad mutex_exit(&ump->um_lock);
1030 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1031 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1032 1.101 ad if (error)
1033 1.101 ad goto fail;
1034 1.1 mycroft cgp = (struct cg *)bp->b_data;
1035 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1036 1.101 ad goto fail;
1037 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1038 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1039 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1040 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1041 1.1 mycroft bno = dtogd(fs, bprev);
1042 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1043 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1044 1.101 ad if (isclr(blksfree, bno + i))
1045 1.101 ad goto fail;
1046 1.1 mycroft /*
1047 1.1 mycroft * the current fragment can be extended
1048 1.1 mycroft * deduct the count on fragment being extended into
1049 1.1 mycroft * increase the count on the remaining fragment (if any)
1050 1.1 mycroft * allocate the extended piece
1051 1.1 mycroft */
1052 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1053 1.62 fvdl if (isclr(blksfree, bno + i))
1054 1.1 mycroft break;
1055 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1056 1.1 mycroft if (i != frags)
1057 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1058 1.101 ad mutex_enter(&ump->um_lock);
1059 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1060 1.62 fvdl clrbit(blksfree, bno + i);
1061 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1062 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1063 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1064 1.1 mycroft }
1065 1.1 mycroft fs->fs_fmod = 1;
1066 1.101 ad ACTIVECG_CLR(fs, cg);
1067 1.101 ad mutex_exit(&ump->um_lock);
1068 1.1 mycroft bdwrite(bp);
1069 1.1 mycroft return (bprev);
1070 1.101 ad
1071 1.101 ad fail:
1072 1.101 ad brelse(bp, 0);
1073 1.101 ad mutex_enter(&ump->um_lock);
1074 1.101 ad return (0);
1075 1.1 mycroft }
1076 1.1 mycroft
1077 1.1 mycroft /*
1078 1.1 mycroft * Determine whether a block can be allocated.
1079 1.1 mycroft *
1080 1.1 mycroft * Check to see if a block of the appropriate size is available,
1081 1.1 mycroft * and if it is, allocate it.
1082 1.1 mycroft */
1083 1.58 fvdl static daddr_t
1084 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1085 1.1 mycroft {
1086 1.101 ad struct ufsmount *ump;
1087 1.62 fvdl struct fs *fs = ip->i_fs;
1088 1.30 fvdl struct cg *cgp;
1089 1.1 mycroft struct buf *bp;
1090 1.60 fvdl int32_t bno;
1091 1.60 fvdl daddr_t blkno;
1092 1.30 fvdl int error, frags, allocsiz, i;
1093 1.62 fvdl u_int8_t *blksfree;
1094 1.30 fvdl #ifdef FFS_EI
1095 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1096 1.30 fvdl #endif
1097 1.1 mycroft
1098 1.101 ad ump = ip->i_ump;
1099 1.101 ad
1100 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1101 1.101 ad
1102 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1103 1.35 thorpej return (0);
1104 1.101 ad mutex_exit(&ump->um_lock);
1105 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1106 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1107 1.101 ad if (error)
1108 1.101 ad goto fail;
1109 1.1 mycroft cgp = (struct cg *)bp->b_data;
1110 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1111 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1112 1.101 ad goto fail;
1113 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1114 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1115 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1116 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1117 1.1 mycroft if (size == fs->fs_bsize) {
1118 1.101 ad mutex_enter(&ump->um_lock);
1119 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1120 1.76 hannken ACTIVECG_CLR(fs, cg);
1121 1.101 ad mutex_exit(&ump->um_lock);
1122 1.1 mycroft bdwrite(bp);
1123 1.60 fvdl return (blkno);
1124 1.1 mycroft }
1125 1.1 mycroft /*
1126 1.1 mycroft * check to see if any fragments are already available
1127 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1128 1.1 mycroft * it down to a smaller size if necessary
1129 1.1 mycroft */
1130 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1131 1.1 mycroft frags = numfrags(fs, size);
1132 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1133 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1134 1.1 mycroft break;
1135 1.1 mycroft if (allocsiz == fs->fs_frag) {
1136 1.1 mycroft /*
1137 1.81 perry * no fragments were available, so a block will be
1138 1.1 mycroft * allocated, and hacked up
1139 1.1 mycroft */
1140 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1141 1.101 ad goto fail;
1142 1.101 ad mutex_enter(&ump->um_lock);
1143 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1144 1.60 fvdl bno = dtogd(fs, blkno);
1145 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1146 1.62 fvdl setbit(blksfree, bno + i);
1147 1.1 mycroft i = fs->fs_frag - frags;
1148 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1149 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1150 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1151 1.1 mycroft fs->fs_fmod = 1;
1152 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1153 1.76 hannken ACTIVECG_CLR(fs, cg);
1154 1.101 ad mutex_exit(&ump->um_lock);
1155 1.1 mycroft bdwrite(bp);
1156 1.60 fvdl return (blkno);
1157 1.1 mycroft }
1158 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1159 1.30 fvdl #if 0
1160 1.30 fvdl /*
1161 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1162 1.58 fvdl * also: returning NULL as daddr_t ?
1163 1.30 fvdl */
1164 1.101 ad if (bno < 0)
1165 1.101 ad goto fail;
1166 1.30 fvdl #endif
1167 1.1 mycroft for (i = 0; i < frags; i++)
1168 1.62 fvdl clrbit(blksfree, bno + i);
1169 1.101 ad mutex_enter(&ump->um_lock);
1170 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1171 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1172 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1173 1.1 mycroft fs->fs_fmod = 1;
1174 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1175 1.1 mycroft if (frags != allocsiz)
1176 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1177 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1178 1.101 ad ACTIVECG_CLR(fs, cg);
1179 1.101 ad mutex_exit(&ump->um_lock);
1180 1.1 mycroft bdwrite(bp);
1181 1.30 fvdl return blkno;
1182 1.101 ad
1183 1.101 ad fail:
1184 1.101 ad brelse(bp, 0);
1185 1.101 ad mutex_enter(&ump->um_lock);
1186 1.101 ad return (0);
1187 1.1 mycroft }
1188 1.1 mycroft
1189 1.1 mycroft /*
1190 1.1 mycroft * Allocate a block in a cylinder group.
1191 1.1 mycroft *
1192 1.1 mycroft * This algorithm implements the following policy:
1193 1.1 mycroft * 1) allocate the requested block.
1194 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1195 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1196 1.1 mycroft * specified cylinder group.
1197 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1198 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1199 1.1 mycroft */
1200 1.58 fvdl static daddr_t
1201 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1202 1.1 mycroft {
1203 1.101 ad struct ufsmount *ump;
1204 1.62 fvdl struct fs *fs = ip->i_fs;
1205 1.30 fvdl struct cg *cgp;
1206 1.123 sborrill int cg;
1207 1.60 fvdl daddr_t blkno;
1208 1.60 fvdl int32_t bno;
1209 1.60 fvdl u_int8_t *blksfree;
1210 1.30 fvdl #ifdef FFS_EI
1211 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1212 1.30 fvdl #endif
1213 1.1 mycroft
1214 1.101 ad ump = ip->i_ump;
1215 1.101 ad
1216 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1217 1.101 ad
1218 1.30 fvdl cgp = (struct cg *)bp->b_data;
1219 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1220 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1221 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1222 1.60 fvdl } else {
1223 1.60 fvdl bpref = blknum(fs, bpref);
1224 1.60 fvdl bno = dtogd(fs, bpref);
1225 1.1 mycroft /*
1226 1.60 fvdl * if the requested block is available, use it
1227 1.1 mycroft */
1228 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1229 1.60 fvdl goto gotit;
1230 1.111 simonb /*
1231 1.111 simonb * if the requested data block isn't available and we are
1232 1.111 simonb * trying to allocate a contiguous file, return an error.
1233 1.111 simonb */
1234 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1235 1.111 simonb return (0);
1236 1.1 mycroft }
1237 1.111 simonb
1238 1.1 mycroft /*
1239 1.60 fvdl * Take the next available block in this cylinder group.
1240 1.1 mycroft */
1241 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1242 1.1 mycroft if (bno < 0)
1243 1.35 thorpej return (0);
1244 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1245 1.1 mycroft gotit:
1246 1.1 mycroft blkno = fragstoblks(fs, bno);
1247 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1248 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1249 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1250 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1251 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1252 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1253 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1254 1.73 dbj int cylno;
1255 1.73 dbj cylno = old_cbtocylno(fs, bno);
1256 1.75 dbj KASSERT(cylno >= 0);
1257 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1258 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1259 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1260 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1261 1.73 dbj needswap);
1262 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1263 1.73 dbj }
1264 1.1 mycroft fs->fs_fmod = 1;
1265 1.123 sborrill cg = ufs_rw32(cgp->cg_cgx, needswap);
1266 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1267 1.30 fvdl return (blkno);
1268 1.1 mycroft }
1269 1.1 mycroft
1270 1.1 mycroft /*
1271 1.1 mycroft * Determine whether an inode can be allocated.
1272 1.1 mycroft *
1273 1.1 mycroft * Check to see if an inode is available, and if it is,
1274 1.1 mycroft * allocate it using the following policy:
1275 1.1 mycroft * 1) allocate the requested inode.
1276 1.1 mycroft * 2) allocate the next available inode after the requested
1277 1.1 mycroft * inode in the specified cylinder group.
1278 1.1 mycroft */
1279 1.58 fvdl static daddr_t
1280 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1281 1.1 mycroft {
1282 1.101 ad struct ufsmount *ump = ip->i_ump;
1283 1.62 fvdl struct fs *fs = ip->i_fs;
1284 1.33 augustss struct cg *cgp;
1285 1.60 fvdl struct buf *bp, *ibp;
1286 1.60 fvdl u_int8_t *inosused;
1287 1.1 mycroft int error, start, len, loc, map, i;
1288 1.60 fvdl int32_t initediblk;
1289 1.112 hannken daddr_t nalloc;
1290 1.60 fvdl struct ufs2_dinode *dp2;
1291 1.19 bouyer #ifdef FFS_EI
1292 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1293 1.19 bouyer #endif
1294 1.1 mycroft
1295 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1296 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1297 1.101 ad
1298 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1299 1.35 thorpej return (0);
1300 1.101 ad mutex_exit(&ump->um_lock);
1301 1.112 hannken ibp = NULL;
1302 1.112 hannken initediblk = -1;
1303 1.112 hannken retry:
1304 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1305 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1306 1.101 ad if (error)
1307 1.101 ad goto fail;
1308 1.1 mycroft cgp = (struct cg *)bp->b_data;
1309 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1310 1.101 ad goto fail;
1311 1.112 hannken
1312 1.112 hannken if (ibp != NULL &&
1313 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1314 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1315 1.121 ad brelse(ibp, 0);
1316 1.112 hannken ibp = NULL;
1317 1.112 hannken }
1318 1.112 hannken /*
1319 1.112 hannken * Check to see if we need to initialize more inodes.
1320 1.112 hannken */
1321 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1322 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1323 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1324 1.112 hannken if (nalloc + INOPB(fs) > initediblk &&
1325 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1326 1.112 hannken /*
1327 1.112 hannken * We have to release the cg buffer here to prevent
1328 1.112 hannken * a deadlock when reading the inode block will
1329 1.112 hannken * run a copy-on-write that might use this cg.
1330 1.112 hannken */
1331 1.112 hannken brelse(bp, 0);
1332 1.112 hannken bp = NULL;
1333 1.112 hannken error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1334 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1335 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1336 1.112 hannken if (error)
1337 1.112 hannken goto fail;
1338 1.112 hannken goto retry;
1339 1.112 hannken }
1340 1.112 hannken }
1341 1.112 hannken
1342 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1343 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1344 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1345 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1346 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1347 1.1 mycroft if (ipref) {
1348 1.1 mycroft ipref %= fs->fs_ipg;
1349 1.60 fvdl if (isclr(inosused, ipref))
1350 1.1 mycroft goto gotit;
1351 1.1 mycroft }
1352 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1353 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1354 1.19 bouyer NBBY);
1355 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1356 1.1 mycroft if (loc == 0) {
1357 1.1 mycroft len = start + 1;
1358 1.1 mycroft start = 0;
1359 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1360 1.1 mycroft if (loc == 0) {
1361 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1362 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1363 1.19 bouyer fs->fs_fsmnt);
1364 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1365 1.1 mycroft /* NOTREACHED */
1366 1.1 mycroft }
1367 1.1 mycroft }
1368 1.1 mycroft i = start + len - loc;
1369 1.126 rmind map = inosused[i] ^ 0xff;
1370 1.126 rmind if (map == 0) {
1371 1.126 rmind printf("fs = %s\n", fs->fs_fsmnt);
1372 1.126 rmind panic("ffs_nodealloccg: block not in map");
1373 1.1 mycroft }
1374 1.126 rmind ipref = i * NBBY + ffs(map) - 1;
1375 1.126 rmind cgp->cg_irotor = ufs_rw32(ipref, needswap);
1376 1.1 mycroft gotit:
1377 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1378 1.111 simonb mode);
1379 1.60 fvdl /*
1380 1.60 fvdl * Check to see if we need to initialize more inodes.
1381 1.60 fvdl */
1382 1.112 hannken if (ibp != NULL) {
1383 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1384 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1385 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1386 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1387 1.60 fvdl /*
1388 1.60 fvdl * Don't bother to swap, it's supposed to be
1389 1.60 fvdl * random, after all.
1390 1.60 fvdl */
1391 1.70 itojun dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1392 1.60 fvdl dp2++;
1393 1.60 fvdl }
1394 1.60 fvdl initediblk += INOPB(fs);
1395 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1396 1.60 fvdl }
1397 1.60 fvdl
1398 1.101 ad mutex_enter(&ump->um_lock);
1399 1.76 hannken ACTIVECG_CLR(fs, cg);
1400 1.101 ad setbit(inosused, ipref);
1401 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1402 1.101 ad fs->fs_cstotal.cs_nifree--;
1403 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1404 1.101 ad fs->fs_fmod = 1;
1405 1.101 ad if ((mode & IFMT) == IFDIR) {
1406 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1407 1.101 ad fs->fs_cstotal.cs_ndir++;
1408 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1409 1.101 ad }
1410 1.101 ad mutex_exit(&ump->um_lock);
1411 1.112 hannken if (ibp != NULL) {
1412 1.112 hannken bwrite(bp);
1413 1.104 hannken bawrite(ibp);
1414 1.112 hannken } else
1415 1.112 hannken bdwrite(bp);
1416 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1417 1.101 ad fail:
1418 1.112 hannken if (bp != NULL)
1419 1.112 hannken brelse(bp, 0);
1420 1.112 hannken if (ibp != NULL)
1421 1.121 ad brelse(ibp, 0);
1422 1.101 ad mutex_enter(&ump->um_lock);
1423 1.101 ad return (0);
1424 1.1 mycroft }
1425 1.1 mycroft
1426 1.1 mycroft /*
1427 1.111 simonb * Allocate a block or fragment.
1428 1.111 simonb *
1429 1.111 simonb * The specified block or fragment is removed from the
1430 1.111 simonb * free map, possibly fragmenting a block in the process.
1431 1.111 simonb *
1432 1.111 simonb * This implementation should mirror fs_blkfree
1433 1.111 simonb *
1434 1.111 simonb * => um_lock not held on entry or exit
1435 1.111 simonb */
1436 1.111 simonb int
1437 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1438 1.111 simonb {
1439 1.116 joerg int error;
1440 1.111 simonb
1441 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1442 1.116 joerg ip->i_dev, ip->i_uid);
1443 1.116 joerg if (error)
1444 1.116 joerg return error;
1445 1.115 joerg
1446 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1447 1.115 joerg }
1448 1.115 joerg
1449 1.115 joerg int
1450 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1451 1.115 joerg {
1452 1.115 joerg struct fs *fs = ump->um_fs;
1453 1.115 joerg struct cg *cgp;
1454 1.115 joerg struct buf *bp;
1455 1.115 joerg int32_t fragno, cgbno;
1456 1.115 joerg int i, error, cg, blk, frags, bbase;
1457 1.115 joerg u_int8_t *blksfree;
1458 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1459 1.115 joerg
1460 1.115 joerg KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1461 1.115 joerg fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1462 1.115 joerg KASSERT(bno < fs->fs_size);
1463 1.115 joerg
1464 1.115 joerg cg = dtog(fs, bno);
1465 1.115 joerg error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1466 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1467 1.111 simonb if (error) {
1468 1.111 simonb brelse(bp, 0);
1469 1.111 simonb return error;
1470 1.111 simonb }
1471 1.111 simonb cgp = (struct cg *)bp->b_data;
1472 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1473 1.111 simonb brelse(bp, 0);
1474 1.111 simonb return EIO;
1475 1.111 simonb }
1476 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1477 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1478 1.111 simonb cgbno = dtogd(fs, bno);
1479 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1480 1.111 simonb
1481 1.111 simonb mutex_enter(&ump->um_lock);
1482 1.111 simonb if (size == fs->fs_bsize) {
1483 1.111 simonb fragno = fragstoblks(fs, cgbno);
1484 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1485 1.111 simonb mutex_exit(&ump->um_lock);
1486 1.111 simonb brelse(bp, 0);
1487 1.111 simonb return EBUSY;
1488 1.111 simonb }
1489 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1490 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1491 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1492 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1493 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1494 1.111 simonb } else {
1495 1.111 simonb bbase = cgbno - fragnum(fs, cgbno);
1496 1.111 simonb
1497 1.111 simonb frags = numfrags(fs, size);
1498 1.111 simonb for (i = 0; i < frags; i++) {
1499 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1500 1.111 simonb mutex_exit(&ump->um_lock);
1501 1.111 simonb brelse(bp, 0);
1502 1.111 simonb return EBUSY;
1503 1.111 simonb }
1504 1.111 simonb }
1505 1.111 simonb /*
1506 1.111 simonb * if a complete block is being split, account for it
1507 1.111 simonb */
1508 1.111 simonb fragno = fragstoblks(fs, bbase);
1509 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1510 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1511 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1512 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1513 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1514 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1515 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1516 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1517 1.111 simonb }
1518 1.111 simonb /*
1519 1.111 simonb * decrement the counts associated with the old frags
1520 1.111 simonb */
1521 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1522 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1523 1.111 simonb /*
1524 1.111 simonb * allocate the fragment
1525 1.111 simonb */
1526 1.111 simonb for (i = 0; i < frags; i++) {
1527 1.111 simonb clrbit(blksfree, cgbno + i);
1528 1.111 simonb }
1529 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1530 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1531 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1532 1.111 simonb /*
1533 1.111 simonb * add back in counts associated with the new frags
1534 1.111 simonb */
1535 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1536 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1537 1.111 simonb }
1538 1.111 simonb fs->fs_fmod = 1;
1539 1.111 simonb ACTIVECG_CLR(fs, cg);
1540 1.111 simonb mutex_exit(&ump->um_lock);
1541 1.111 simonb bdwrite(bp);
1542 1.111 simonb return 0;
1543 1.111 simonb }
1544 1.111 simonb
1545 1.111 simonb /*
1546 1.1 mycroft * Free a block or fragment.
1547 1.1 mycroft *
1548 1.1 mycroft * The specified block or fragment is placed back in the
1549 1.81 perry * free map. If a fragment is deallocated, a possible
1550 1.1 mycroft * block reassembly is checked.
1551 1.106 pooka *
1552 1.106 pooka * => um_lock not held on entry or exit
1553 1.1 mycroft */
1554 1.9 christos void
1555 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1556 1.85 thorpej ino_t inum)
1557 1.1 mycroft {
1558 1.33 augustss struct cg *cgp;
1559 1.1 mycroft struct buf *bp;
1560 1.76 hannken struct ufsmount *ump;
1561 1.76 hannken daddr_t cgblkno;
1562 1.116 joerg int error, cg;
1563 1.76 hannken dev_t dev;
1564 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1565 1.118 joerg #ifdef FFS_EI
1566 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1567 1.118 joerg #endif
1568 1.1 mycroft
1569 1.116 joerg KASSERT(!devvp_is_snapshot);
1570 1.116 joerg
1571 1.76 hannken cg = dtog(fs, bno);
1572 1.116 joerg dev = devvp->v_rdev;
1573 1.116 joerg ump = VFSTOUFS(devvp->v_specmountpoint);
1574 1.119 joerg KASSERT(fs == ump->um_fs);
1575 1.116 joerg cgblkno = fsbtodb(fs, cgtod(fs, cg));
1576 1.116 joerg if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1577 1.116 joerg return;
1578 1.116 joerg
1579 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1580 1.116 joerg if (error)
1581 1.116 joerg return;
1582 1.116 joerg
1583 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1584 1.116 joerg NOCRED, B_MODIFY, &bp);
1585 1.116 joerg if (error) {
1586 1.116 joerg brelse(bp, 0);
1587 1.116 joerg return;
1588 1.76 hannken }
1589 1.116 joerg cgp = (struct cg *)bp->b_data;
1590 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1591 1.116 joerg brelse(bp, 0);
1592 1.116 joerg return;
1593 1.1 mycroft }
1594 1.76 hannken
1595 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1596 1.119 joerg
1597 1.119 joerg bdwrite(bp);
1598 1.116 joerg }
1599 1.116 joerg
1600 1.116 joerg /*
1601 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1602 1.116 joerg *
1603 1.116 joerg * The specified block or fragment is placed back in the
1604 1.116 joerg * free map. If a fragment is deallocated, a possible
1605 1.116 joerg * block reassembly is checked.
1606 1.116 joerg *
1607 1.116 joerg * => um_lock not held on entry or exit
1608 1.116 joerg */
1609 1.116 joerg void
1610 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1611 1.116 joerg ino_t inum)
1612 1.116 joerg {
1613 1.116 joerg struct cg *cgp;
1614 1.116 joerg struct buf *bp;
1615 1.116 joerg struct ufsmount *ump;
1616 1.116 joerg daddr_t cgblkno;
1617 1.116 joerg int error, cg;
1618 1.116 joerg dev_t dev;
1619 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1620 1.118 joerg #ifdef FFS_EI
1621 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1622 1.118 joerg #endif
1623 1.116 joerg
1624 1.116 joerg KASSERT(devvp_is_snapshot);
1625 1.116 joerg
1626 1.116 joerg cg = dtog(fs, bno);
1627 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1628 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1629 1.116 joerg cgblkno = fragstoblks(fs, cgtod(fs, cg));
1630 1.116 joerg
1631 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1632 1.116 joerg if (error)
1633 1.1 mycroft return;
1634 1.116 joerg
1635 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1636 1.107 hannken NOCRED, B_MODIFY, &bp);
1637 1.1 mycroft if (error) {
1638 1.101 ad brelse(bp, 0);
1639 1.1 mycroft return;
1640 1.1 mycroft }
1641 1.1 mycroft cgp = (struct cg *)bp->b_data;
1642 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1643 1.101 ad brelse(bp, 0);
1644 1.1 mycroft return;
1645 1.1 mycroft }
1646 1.116 joerg
1647 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1648 1.119 joerg
1649 1.119 joerg bdwrite(bp);
1650 1.116 joerg }
1651 1.116 joerg
1652 1.116 joerg static void
1653 1.119 joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1654 1.119 joerg struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1655 1.116 joerg {
1656 1.116 joerg struct cg *cgp;
1657 1.116 joerg int32_t fragno, cgbno;
1658 1.116 joerg int i, cg, blk, frags, bbase;
1659 1.116 joerg u_int8_t *blksfree;
1660 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1661 1.116 joerg
1662 1.116 joerg cg = dtog(fs, bno);
1663 1.116 joerg cgp = (struct cg *)bp->b_data;
1664 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1665 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1666 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1667 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1668 1.60 fvdl cgbno = dtogd(fs, bno);
1669 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1670 1.101 ad mutex_enter(&ump->um_lock);
1671 1.1 mycroft if (size == fs->fs_bsize) {
1672 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1673 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1674 1.113 hannken if (devvp_is_snapshot) {
1675 1.101 ad mutex_exit(&ump->um_lock);
1676 1.76 hannken return;
1677 1.76 hannken }
1678 1.120 christos printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1679 1.120 christos (unsigned long long)dev, bno, fs->fs_fsmnt);
1680 1.1 mycroft panic("blkfree: freeing free block");
1681 1.1 mycroft }
1682 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1683 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1684 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1685 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1686 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1687 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1688 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1689 1.73 dbj i = old_cbtocylno(fs, cgbno);
1690 1.75 dbj KASSERT(i >= 0);
1691 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1692 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1693 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1694 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1695 1.73 dbj needswap);
1696 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1697 1.73 dbj }
1698 1.1 mycroft } else {
1699 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1700 1.1 mycroft /*
1701 1.1 mycroft * decrement the counts associated with the old frags
1702 1.1 mycroft */
1703 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1704 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1705 1.1 mycroft /*
1706 1.1 mycroft * deallocate the fragment
1707 1.1 mycroft */
1708 1.1 mycroft frags = numfrags(fs, size);
1709 1.1 mycroft for (i = 0; i < frags; i++) {
1710 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1711 1.120 christos printf("dev = 0x%llx, block = %" PRId64
1712 1.59 tsutsui ", fs = %s\n",
1713 1.120 christos (unsigned long long)dev, bno + i,
1714 1.120 christos fs->fs_fsmnt);
1715 1.1 mycroft panic("blkfree: freeing free frag");
1716 1.1 mycroft }
1717 1.62 fvdl setbit(blksfree, cgbno + i);
1718 1.1 mycroft }
1719 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1720 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1721 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1722 1.1 mycroft /*
1723 1.1 mycroft * add back in counts associated with the new frags
1724 1.1 mycroft */
1725 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1726 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1727 1.1 mycroft /*
1728 1.1 mycroft * if a complete block has been reassembled, account for it
1729 1.1 mycroft */
1730 1.60 fvdl fragno = fragstoblks(fs, bbase);
1731 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1732 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1733 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1734 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1735 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1736 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1737 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1738 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1739 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1740 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1741 1.73 dbj i = old_cbtocylno(fs, bbase);
1742 1.75 dbj KASSERT(i >= 0);
1743 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1744 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1745 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1746 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1747 1.73 dbj bbase)], 1, needswap);
1748 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1749 1.73 dbj }
1750 1.1 mycroft }
1751 1.1 mycroft }
1752 1.1 mycroft fs->fs_fmod = 1;
1753 1.76 hannken ACTIVECG_CLR(fs, cg);
1754 1.101 ad mutex_exit(&ump->um_lock);
1755 1.1 mycroft }
1756 1.1 mycroft
1757 1.1 mycroft /*
1758 1.1 mycroft * Free an inode.
1759 1.30 fvdl */
1760 1.30 fvdl int
1761 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1762 1.30 fvdl {
1763 1.30 fvdl
1764 1.119 joerg return ffs_freefile(vp->v_mount, ino, mode);
1765 1.30 fvdl }
1766 1.30 fvdl
1767 1.30 fvdl /*
1768 1.30 fvdl * Do the actual free operation.
1769 1.1 mycroft * The specified inode is placed back in the free map.
1770 1.111 simonb *
1771 1.111 simonb * => um_lock not held on entry or exit
1772 1.1 mycroft */
1773 1.1 mycroft int
1774 1.119 joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
1775 1.119 joerg {
1776 1.119 joerg struct ufsmount *ump = VFSTOUFS(mp);
1777 1.119 joerg struct fs *fs = ump->um_fs;
1778 1.119 joerg struct vnode *devvp;
1779 1.119 joerg struct cg *cgp;
1780 1.119 joerg struct buf *bp;
1781 1.119 joerg int error, cg;
1782 1.119 joerg daddr_t cgbno;
1783 1.119 joerg dev_t dev;
1784 1.119 joerg #ifdef FFS_EI
1785 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1786 1.119 joerg #endif
1787 1.119 joerg
1788 1.119 joerg cg = ino_to_cg(fs, ino);
1789 1.119 joerg devvp = ump->um_devvp;
1790 1.119 joerg dev = devvp->v_rdev;
1791 1.119 joerg cgbno = fsbtodb(fs, cgtod(fs, cg));
1792 1.119 joerg
1793 1.119 joerg if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1794 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1795 1.120 christos (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1796 1.119 joerg error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1797 1.119 joerg NOCRED, B_MODIFY, &bp);
1798 1.119 joerg if (error) {
1799 1.119 joerg brelse(bp, 0);
1800 1.119 joerg return (error);
1801 1.119 joerg }
1802 1.119 joerg cgp = (struct cg *)bp->b_data;
1803 1.119 joerg if (!cg_chkmagic(cgp, needswap)) {
1804 1.119 joerg brelse(bp, 0);
1805 1.119 joerg return (0);
1806 1.119 joerg }
1807 1.119 joerg
1808 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1809 1.119 joerg
1810 1.119 joerg bdwrite(bp);
1811 1.119 joerg
1812 1.119 joerg return 0;
1813 1.119 joerg }
1814 1.119 joerg
1815 1.119 joerg int
1816 1.119 joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1817 1.9 christos {
1818 1.101 ad struct ufsmount *ump;
1819 1.33 augustss struct cg *cgp;
1820 1.1 mycroft struct buf *bp;
1821 1.1 mycroft int error, cg;
1822 1.76 hannken daddr_t cgbno;
1823 1.78 hannken dev_t dev;
1824 1.19 bouyer #ifdef FFS_EI
1825 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1826 1.19 bouyer #endif
1827 1.1 mycroft
1828 1.119 joerg KASSERT(devvp->v_type != VBLK);
1829 1.111 simonb
1830 1.76 hannken cg = ino_to_cg(fs, ino);
1831 1.119 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1832 1.119 joerg ump = VFSTOUFS(devvp->v_mount);
1833 1.119 joerg cgbno = fragstoblks(fs, cgtod(fs, cg));
1834 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1835 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1836 1.120 christos (unsigned long long)dev, (unsigned long long)ino,
1837 1.120 christos fs->fs_fsmnt);
1838 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1839 1.107 hannken NOCRED, B_MODIFY, &bp);
1840 1.1 mycroft if (error) {
1841 1.101 ad brelse(bp, 0);
1842 1.30 fvdl return (error);
1843 1.1 mycroft }
1844 1.1 mycroft cgp = (struct cg *)bp->b_data;
1845 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1846 1.101 ad brelse(bp, 0);
1847 1.1 mycroft return (0);
1848 1.1 mycroft }
1849 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1850 1.119 joerg
1851 1.119 joerg bdwrite(bp);
1852 1.119 joerg
1853 1.119 joerg return 0;
1854 1.119 joerg }
1855 1.119 joerg
1856 1.119 joerg static void
1857 1.119 joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1858 1.119 joerg struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
1859 1.119 joerg {
1860 1.119 joerg int cg;
1861 1.119 joerg struct cg *cgp;
1862 1.119 joerg u_int8_t *inosused;
1863 1.119 joerg #ifdef FFS_EI
1864 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1865 1.119 joerg #endif
1866 1.119 joerg
1867 1.119 joerg cg = ino_to_cg(fs, ino);
1868 1.119 joerg cgp = (struct cg *)bp->b_data;
1869 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1870 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1871 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1872 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1873 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1874 1.1 mycroft ino %= fs->fs_ipg;
1875 1.62 fvdl if (isclr(inosused, ino)) {
1876 1.120 christos printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
1877 1.120 christos (unsigned long long)dev, (unsigned long long)ino +
1878 1.120 christos cg * fs->fs_ipg, fs->fs_fsmnt);
1879 1.1 mycroft if (fs->fs_ronly == 0)
1880 1.1 mycroft panic("ifree: freeing free inode");
1881 1.1 mycroft }
1882 1.62 fvdl clrbit(inosused, ino);
1883 1.113 hannken if (!devvp_is_snapshot)
1884 1.119 joerg UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
1885 1.113 hannken ino + cg * fs->fs_ipg, mode);
1886 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1887 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1888 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1889 1.101 ad mutex_enter(&ump->um_lock);
1890 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1891 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1892 1.78 hannken if ((mode & IFMT) == IFDIR) {
1893 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1894 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1895 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1896 1.1 mycroft }
1897 1.1 mycroft fs->fs_fmod = 1;
1898 1.82 hannken ACTIVECG_CLR(fs, cg);
1899 1.101 ad mutex_exit(&ump->um_lock);
1900 1.1 mycroft }
1901 1.1 mycroft
1902 1.1 mycroft /*
1903 1.76 hannken * Check to see if a file is free.
1904 1.76 hannken */
1905 1.76 hannken int
1906 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1907 1.76 hannken {
1908 1.76 hannken struct cg *cgp;
1909 1.76 hannken struct buf *bp;
1910 1.76 hannken daddr_t cgbno;
1911 1.76 hannken int ret, cg;
1912 1.76 hannken u_int8_t *inosused;
1913 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1914 1.76 hannken
1915 1.119 joerg KASSERT(devvp_is_snapshot);
1916 1.119 joerg
1917 1.76 hannken cg = ino_to_cg(fs, ino);
1918 1.113 hannken if (devvp_is_snapshot)
1919 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1920 1.113 hannken else
1921 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1922 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1923 1.76 hannken return 1;
1924 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1925 1.101 ad brelse(bp, 0);
1926 1.76 hannken return 1;
1927 1.76 hannken }
1928 1.76 hannken cgp = (struct cg *)bp->b_data;
1929 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1930 1.101 ad brelse(bp, 0);
1931 1.76 hannken return 1;
1932 1.76 hannken }
1933 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1934 1.76 hannken ino %= fs->fs_ipg;
1935 1.76 hannken ret = isclr(inosused, ino);
1936 1.101 ad brelse(bp, 0);
1937 1.76 hannken return ret;
1938 1.76 hannken }
1939 1.76 hannken
1940 1.76 hannken /*
1941 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1942 1.1 mycroft *
1943 1.1 mycroft * It is a panic if a request is made to find a block if none are
1944 1.1 mycroft * available.
1945 1.1 mycroft */
1946 1.60 fvdl static int32_t
1947 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1948 1.1 mycroft {
1949 1.60 fvdl int32_t bno;
1950 1.1 mycroft int start, len, loc, i;
1951 1.1 mycroft int blk, field, subfield, pos;
1952 1.19 bouyer int ostart, olen;
1953 1.62 fvdl u_int8_t *blksfree;
1954 1.30 fvdl #ifdef FFS_EI
1955 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1956 1.30 fvdl #endif
1957 1.1 mycroft
1958 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1959 1.101 ad
1960 1.1 mycroft /*
1961 1.1 mycroft * find the fragment by searching through the free block
1962 1.1 mycroft * map for an appropriate bit pattern
1963 1.1 mycroft */
1964 1.1 mycroft if (bpref)
1965 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1966 1.1 mycroft else
1967 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1968 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1969 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1970 1.19 bouyer ostart = start;
1971 1.19 bouyer olen = len;
1972 1.45 lukem loc = scanc((u_int)len,
1973 1.62 fvdl (const u_char *)&blksfree[start],
1974 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1975 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1976 1.1 mycroft if (loc == 0) {
1977 1.1 mycroft len = start + 1;
1978 1.1 mycroft start = 0;
1979 1.45 lukem loc = scanc((u_int)len,
1980 1.62 fvdl (const u_char *)&blksfree[0],
1981 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1982 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1983 1.1 mycroft if (loc == 0) {
1984 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1985 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1986 1.20 ross printf("offset=%d %ld\n",
1987 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1988 1.62 fvdl (long)blksfree - (long)cgp);
1989 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1990 1.1 mycroft panic("ffs_alloccg: map corrupted");
1991 1.1 mycroft /* NOTREACHED */
1992 1.1 mycroft }
1993 1.1 mycroft }
1994 1.1 mycroft bno = (start + len - loc) * NBBY;
1995 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1996 1.1 mycroft /*
1997 1.1 mycroft * found the byte in the map
1998 1.1 mycroft * sift through the bits to find the selected frag
1999 1.1 mycroft */
2000 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2001 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2002 1.1 mycroft blk <<= 1;
2003 1.1 mycroft field = around[allocsiz];
2004 1.1 mycroft subfield = inside[allocsiz];
2005 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2006 1.1 mycroft if ((blk & field) == subfield)
2007 1.1 mycroft return (bno + pos);
2008 1.1 mycroft field <<= 1;
2009 1.1 mycroft subfield <<= 1;
2010 1.1 mycroft }
2011 1.1 mycroft }
2012 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2013 1.1 mycroft panic("ffs_alloccg: block not in map");
2014 1.58 fvdl /* return (-1); */
2015 1.1 mycroft }
2016 1.1 mycroft
2017 1.1 mycroft /*
2018 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2019 1.81 perry *
2020 1.1 mycroft * The form of the error message is:
2021 1.1 mycroft * fs: error message
2022 1.1 mycroft */
2023 1.1 mycroft static void
2024 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2025 1.1 mycroft {
2026 1.1 mycroft
2027 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2028 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2029 1.1 mycroft }
2030