Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.13
      1  1.13  christos /*	$NetBSD: ffs_alloc.c,v 1.13 1996/10/12 21:58:44 christos Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4   1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1   mycroft  *
      7   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8   1.1   mycroft  * modification, are permitted provided that the following conditions
      9   1.1   mycroft  * are met:
     10   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15   1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16   1.1   mycroft  *    must display the following acknowledgement:
     17   1.1   mycroft  *	This product includes software developed by the University of
     18   1.1   mycroft  *	California, Berkeley and its contributors.
     19   1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21   1.1   mycroft  *    without specific prior written permission.
     22   1.1   mycroft  *
     23   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1   mycroft  * SUCH DAMAGE.
     34   1.1   mycroft  *
     35   1.5   mycroft  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
     36   1.1   mycroft  */
     37   1.1   mycroft 
     38   1.1   mycroft #include <sys/param.h>
     39   1.1   mycroft #include <sys/systm.h>
     40   1.1   mycroft #include <sys/buf.h>
     41   1.1   mycroft #include <sys/proc.h>
     42   1.1   mycroft #include <sys/vnode.h>
     43   1.1   mycroft #include <sys/mount.h>
     44   1.1   mycroft #include <sys/kernel.h>
     45   1.1   mycroft #include <sys/syslog.h>
     46   1.1   mycroft 
     47   1.1   mycroft #include <vm/vm.h>
     48   1.1   mycroft 
     49   1.1   mycroft #include <ufs/ufs/quota.h>
     50   1.1   mycroft #include <ufs/ufs/inode.h>
     51   1.9  christos #include <ufs/ufs/ufs_extern.h>
     52   1.1   mycroft 
     53   1.1   mycroft #include <ufs/ffs/fs.h>
     54   1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     55   1.1   mycroft 
     56   1.1   mycroft extern u_long nextgennumber;
     57   1.1   mycroft 
     58   1.1   mycroft static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     59   1.1   mycroft static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     60   1.1   mycroft static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     61   1.1   mycroft static ino_t	ffs_dirpref __P((struct fs *));
     62   1.1   mycroft static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     63   1.1   mycroft static void	ffs_fserr __P((struct fs *, u_int, char *));
     64   1.9  christos static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     65   1.9  christos 				   daddr_t (*)(struct inode *, int, daddr_t,
     66   1.9  christos 					       int)));
     67   1.9  christos static daddr_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     68   1.1   mycroft static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     69   1.1   mycroft 
     70   1.1   mycroft /*
     71   1.1   mycroft  * Allocate a block in the file system.
     72   1.1   mycroft  *
     73   1.1   mycroft  * The size of the requested block is given, which must be some
     74   1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     75   1.1   mycroft  * A preference may be optionally specified. If a preference is given
     76   1.1   mycroft  * the following hierarchy is used to allocate a block:
     77   1.1   mycroft  *   1) allocate the requested block.
     78   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     79   1.1   mycroft  *   3) allocate a block in the same cylinder group.
     80   1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     81   1.1   mycroft  *      available block is located.
     82   1.1   mycroft  * If no block preference is given the following heirarchy is used
     83   1.1   mycroft  * to allocate a block:
     84   1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
     85   1.1   mycroft  *      inode for the file.
     86   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
     87   1.1   mycroft  *      available block is located.
     88   1.1   mycroft  */
     89   1.9  christos int
     90   1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     91   1.1   mycroft 	register struct inode *ip;
     92   1.1   mycroft 	daddr_t lbn, bpref;
     93   1.1   mycroft 	int size;
     94   1.1   mycroft 	struct ucred *cred;
     95   1.1   mycroft 	daddr_t *bnp;
     96   1.1   mycroft {
     97   1.1   mycroft 	register struct fs *fs;
     98   1.1   mycroft 	daddr_t bno;
     99   1.9  christos 	int cg;
    100   1.9  christos #ifdef QUOTA
    101   1.9  christos 	int error;
    102   1.9  christos #endif
    103   1.1   mycroft 
    104   1.1   mycroft 	*bnp = 0;
    105   1.1   mycroft 	fs = ip->i_fs;
    106   1.1   mycroft #ifdef DIAGNOSTIC
    107   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    108  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    109   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    110   1.1   mycroft 		panic("ffs_alloc: bad size");
    111   1.1   mycroft 	}
    112   1.1   mycroft 	if (cred == NOCRED)
    113   1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    114   1.1   mycroft #endif /* DIAGNOSTIC */
    115   1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    116   1.1   mycroft 		goto nospace;
    117   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    118   1.1   mycroft 		goto nospace;
    119   1.1   mycroft #ifdef QUOTA
    120   1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    121   1.1   mycroft 		return (error);
    122   1.1   mycroft #endif
    123   1.1   mycroft 	if (bpref >= fs->fs_size)
    124   1.1   mycroft 		bpref = 0;
    125   1.1   mycroft 	if (bpref == 0)
    126   1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    127   1.1   mycroft 	else
    128   1.1   mycroft 		cg = dtog(fs, bpref);
    129   1.1   mycroft 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    130   1.9  christos 	    			     ffs_alloccg);
    131   1.1   mycroft 	if (bno > 0) {
    132   1.1   mycroft 		ip->i_blocks += btodb(size);
    133   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    134   1.1   mycroft 		*bnp = bno;
    135   1.1   mycroft 		return (0);
    136   1.1   mycroft 	}
    137   1.1   mycroft #ifdef QUOTA
    138   1.1   mycroft 	/*
    139   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    140   1.1   mycroft 	 */
    141   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    142   1.1   mycroft #endif
    143   1.1   mycroft nospace:
    144   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    145   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    146   1.1   mycroft 	return (ENOSPC);
    147   1.1   mycroft }
    148   1.1   mycroft 
    149   1.1   mycroft /*
    150   1.1   mycroft  * Reallocate a fragment to a bigger size
    151   1.1   mycroft  *
    152   1.1   mycroft  * The number and size of the old block is given, and a preference
    153   1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    154   1.1   mycroft  * the original block. Failing that, the regular block allocator is
    155   1.1   mycroft  * invoked to get an appropriate block.
    156   1.1   mycroft  */
    157   1.9  christos int
    158   1.1   mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    159   1.1   mycroft 	register struct inode *ip;
    160   1.1   mycroft 	daddr_t lbprev;
    161   1.1   mycroft 	daddr_t bpref;
    162   1.1   mycroft 	int osize, nsize;
    163   1.1   mycroft 	struct ucred *cred;
    164   1.1   mycroft 	struct buf **bpp;
    165   1.1   mycroft {
    166   1.1   mycroft 	register struct fs *fs;
    167   1.1   mycroft 	struct buf *bp;
    168   1.1   mycroft 	int cg, request, error;
    169   1.1   mycroft 	daddr_t bprev, bno;
    170   1.1   mycroft 
    171   1.1   mycroft 	*bpp = 0;
    172   1.1   mycroft 	fs = ip->i_fs;
    173   1.1   mycroft #ifdef DIAGNOSTIC
    174   1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    175   1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    176  1.13  christos 		printf(
    177   1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    178   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    179   1.1   mycroft 		panic("ffs_realloccg: bad size");
    180   1.1   mycroft 	}
    181   1.1   mycroft 	if (cred == NOCRED)
    182   1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    183   1.1   mycroft #endif /* DIAGNOSTIC */
    184   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    185   1.1   mycroft 		goto nospace;
    186   1.1   mycroft 	if ((bprev = ip->i_db[lbprev]) == 0) {
    187  1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    188   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    189   1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    190   1.1   mycroft 	}
    191   1.1   mycroft 	/*
    192   1.1   mycroft 	 * Allocate the extra space in the buffer.
    193   1.1   mycroft 	 */
    194   1.9  christos 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    195   1.1   mycroft 		brelse(bp);
    196   1.1   mycroft 		return (error);
    197   1.1   mycroft 	}
    198   1.1   mycroft #ifdef QUOTA
    199   1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    200   1.1   mycroft 		brelse(bp);
    201   1.1   mycroft 		return (error);
    202   1.1   mycroft 	}
    203   1.1   mycroft #endif
    204   1.1   mycroft 	/*
    205   1.1   mycroft 	 * Check for extension in the existing location.
    206   1.1   mycroft 	 */
    207   1.1   mycroft 	cg = dtog(fs, bprev);
    208   1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    209   1.1   mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    210   1.1   mycroft 			panic("bad blockno");
    211   1.1   mycroft 		ip->i_blocks += btodb(nsize - osize);
    212   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    213   1.1   mycroft 		allocbuf(bp, nsize);
    214   1.1   mycroft 		bp->b_flags |= B_DONE;
    215   1.1   mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    216   1.1   mycroft 		*bpp = bp;
    217   1.1   mycroft 		return (0);
    218   1.1   mycroft 	}
    219   1.1   mycroft 	/*
    220   1.1   mycroft 	 * Allocate a new disk location.
    221   1.1   mycroft 	 */
    222   1.1   mycroft 	if (bpref >= fs->fs_size)
    223   1.1   mycroft 		bpref = 0;
    224   1.1   mycroft 	switch ((int)fs->fs_optim) {
    225   1.1   mycroft 	case FS_OPTSPACE:
    226   1.1   mycroft 		/*
    227   1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    228   1.1   mycroft 		 * best use of space, we will waste time relocating it if
    229   1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    230   1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    231   1.1   mycroft 		 * to begin optimizing for time.
    232   1.1   mycroft 		 */
    233   1.1   mycroft 		request = nsize;
    234   1.1   mycroft 		if (fs->fs_minfree < 5 ||
    235   1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    236   1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    237   1.1   mycroft 			break;
    238   1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    239   1.1   mycroft 			fs->fs_fsmnt);
    240   1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    241   1.1   mycroft 		break;
    242   1.1   mycroft 	case FS_OPTTIME:
    243   1.1   mycroft 		/*
    244   1.1   mycroft 		 * At this point we have discovered a file that is trying to
    245   1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    246   1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    247   1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    248   1.1   mycroft 		 * above will be able to grow it in place without further
    249   1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    250   1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    251   1.1   mycroft 		 * optimizing for space.
    252   1.1   mycroft 		 */
    253   1.1   mycroft 		request = fs->fs_bsize;
    254   1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    255   1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    256   1.1   mycroft 			break;
    257   1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    258   1.1   mycroft 			fs->fs_fsmnt);
    259   1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    260   1.1   mycroft 		break;
    261   1.1   mycroft 	default:
    262  1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    263   1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    264   1.1   mycroft 		panic("ffs_realloccg: bad optim");
    265   1.1   mycroft 		/* NOTREACHED */
    266   1.1   mycroft 	}
    267   1.1   mycroft 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    268   1.9  christos 	    			     ffs_alloccg);
    269   1.1   mycroft 	if (bno > 0) {
    270   1.1   mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    271   1.1   mycroft 		(void) vnode_pager_uncache(ITOV(ip));
    272   1.1   mycroft 		ffs_blkfree(ip, bprev, (long)osize);
    273   1.1   mycroft 		if (nsize < request)
    274   1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    275   1.1   mycroft 			    (long)(request - nsize));
    276   1.1   mycroft 		ip->i_blocks += btodb(nsize - osize);
    277   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    278   1.1   mycroft 		allocbuf(bp, nsize);
    279   1.1   mycroft 		bp->b_flags |= B_DONE;
    280   1.1   mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    281   1.1   mycroft 		*bpp = bp;
    282   1.1   mycroft 		return (0);
    283   1.1   mycroft 	}
    284   1.1   mycroft #ifdef QUOTA
    285   1.1   mycroft 	/*
    286   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    287   1.1   mycroft 	 */
    288   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    289   1.1   mycroft #endif
    290   1.1   mycroft 	brelse(bp);
    291   1.1   mycroft nospace:
    292   1.1   mycroft 	/*
    293   1.1   mycroft 	 * no space available
    294   1.1   mycroft 	 */
    295   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    296   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    297   1.1   mycroft 	return (ENOSPC);
    298   1.1   mycroft }
    299   1.1   mycroft 
    300   1.1   mycroft /*
    301   1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    302   1.1   mycroft  *
    303   1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    304   1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    305   1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    306   1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    307   1.1   mycroft  * block immediately preceeding the current range. If successful, the
    308   1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    309   1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    310   1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    311   1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    312   1.1   mycroft  * the previous block allocation will be used.
    313   1.1   mycroft  */
    314   1.3   mycroft #ifdef DEBUG
    315   1.1   mycroft #include <sys/sysctl.h>
    316   1.1   mycroft int doasyncfree = 1;
    317   1.1   mycroft struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    318   1.5   mycroft int prtrealloc = 0;
    319   1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    320   1.3   mycroft #else
    321   1.3   mycroft #define doasyncfree 1
    322   1.1   mycroft #endif
    323   1.1   mycroft 
    324   1.1   mycroft int
    325   1.9  christos ffs_reallocblks(v)
    326   1.9  christos 	void *v;
    327   1.9  christos {
    328   1.1   mycroft 	struct vop_reallocblks_args /* {
    329   1.1   mycroft 		struct vnode *a_vp;
    330   1.1   mycroft 		struct cluster_save *a_buflist;
    331   1.9  christos 	} */ *ap = v;
    332   1.1   mycroft 	struct fs *fs;
    333   1.1   mycroft 	struct inode *ip;
    334   1.1   mycroft 	struct vnode *vp;
    335   1.1   mycroft 	struct buf *sbp, *ebp;
    336   1.9  christos 	daddr_t *bap, *sbap, *ebap = NULL;
    337   1.1   mycroft 	struct cluster_save *buflist;
    338   1.9  christos 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    339   1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    340   1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    341  1.11   mycroft 	struct timespec ts;
    342   1.1   mycroft 
    343   1.1   mycroft 	vp = ap->a_vp;
    344   1.1   mycroft 	ip = VTOI(vp);
    345   1.1   mycroft 	fs = ip->i_fs;
    346   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    347   1.1   mycroft 		return (ENOSPC);
    348   1.1   mycroft 	buflist = ap->a_buflist;
    349   1.1   mycroft 	len = buflist->bs_nchildren;
    350   1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    351   1.1   mycroft 	end_lbn = start_lbn + len - 1;
    352   1.1   mycroft #ifdef DIAGNOSTIC
    353   1.1   mycroft 	for (i = 1; i < len; i++)
    354   1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    355   1.1   mycroft 			panic("ffs_reallocblks: non-cluster");
    356   1.1   mycroft #endif
    357   1.1   mycroft 	/*
    358   1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    359   1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    360   1.1   mycroft 	 * the previous cylinder group.
    361   1.1   mycroft 	 */
    362   1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    363   1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    364   1.1   mycroft 		return (ENOSPC);
    365   1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    366   1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    367   1.1   mycroft 		return (ENOSPC);
    368   1.1   mycroft 	/*
    369   1.1   mycroft 	 * Get the starting offset and block map for the first block.
    370   1.1   mycroft 	 */
    371   1.1   mycroft 	if (start_lvl == 0) {
    372   1.1   mycroft 		sbap = &ip->i_db[0];
    373   1.1   mycroft 		soff = start_lbn;
    374   1.1   mycroft 	} else {
    375   1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    376   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    377   1.1   mycroft 			brelse(sbp);
    378   1.1   mycroft 			return (ENOSPC);
    379   1.1   mycroft 		}
    380   1.1   mycroft 		sbap = (daddr_t *)sbp->b_data;
    381   1.1   mycroft 		soff = idp->in_off;
    382   1.1   mycroft 	}
    383   1.1   mycroft 	/*
    384   1.1   mycroft 	 * Find the preferred location for the cluster.
    385   1.1   mycroft 	 */
    386   1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    387   1.1   mycroft 	/*
    388   1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    389   1.1   mycroft 	 */
    390   1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    391   1.1   mycroft 		ssize = len;
    392   1.1   mycroft 	} else {
    393   1.1   mycroft #ifdef DIAGNOSTIC
    394   1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    395   1.1   mycroft 			panic("ffs_reallocblk: start == end");
    396   1.1   mycroft #endif
    397   1.1   mycroft 		ssize = len - (idp->in_off + 1);
    398   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    399   1.1   mycroft 			goto fail;
    400   1.1   mycroft 		ebap = (daddr_t *)ebp->b_data;
    401   1.1   mycroft 	}
    402   1.1   mycroft 	/*
    403   1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    404   1.1   mycroft 	 */
    405   1.1   mycroft 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    406   1.9  christos 	    len, ffs_clusteralloc)) == 0)
    407   1.1   mycroft 		goto fail;
    408   1.1   mycroft 	/*
    409   1.1   mycroft 	 * We have found a new contiguous block.
    410   1.1   mycroft 	 *
    411   1.1   mycroft 	 * First we have to replace the old block pointers with the new
    412   1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    413   1.1   mycroft 	 * with the file.
    414   1.1   mycroft 	 */
    415   1.5   mycroft #ifdef DEBUG
    416   1.5   mycroft 	if (prtrealloc)
    417  1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    418   1.5   mycroft 		    start_lbn, end_lbn);
    419   1.5   mycroft #endif
    420   1.1   mycroft 	blkno = newblk;
    421   1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    422   1.1   mycroft 		if (i == ssize)
    423   1.1   mycroft 			bap = ebap;
    424   1.1   mycroft #ifdef DIAGNOSTIC
    425   1.5   mycroft 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    426   1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    427   1.1   mycroft #endif
    428   1.5   mycroft #ifdef DEBUG
    429   1.5   mycroft 		if (prtrealloc)
    430  1.13  christos 			printf(" %d,", *bap);
    431   1.5   mycroft #endif
    432   1.1   mycroft 		*bap++ = blkno;
    433   1.1   mycroft 	}
    434   1.1   mycroft 	/*
    435   1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    436   1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    437   1.1   mycroft 	 * the old block values may have been written to disk. In practise
    438   1.1   mycroft 	 * they are almost never written, but if we are concerned about
    439   1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    440   1.1   mycroft 	 *
    441   1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    442   1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    443   1.1   mycroft 	 * been written. The flag should be set when the cluster is
    444   1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    445   1.1   mycroft 	 * We can then check below to see if it is set, and do the
    446   1.1   mycroft 	 * synchronous write only when it has been cleared.
    447   1.1   mycroft 	 */
    448   1.1   mycroft 	if (sbap != &ip->i_db[0]) {
    449   1.1   mycroft 		if (doasyncfree)
    450   1.1   mycroft 			bdwrite(sbp);
    451   1.1   mycroft 		else
    452   1.1   mycroft 			bwrite(sbp);
    453   1.1   mycroft 	} else {
    454   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    455  1.11   mycroft 		if (!doasyncfree) {
    456  1.11   mycroft 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    457  1.11   mycroft 			VOP_UPDATE(vp, &ts, &ts, 1);
    458  1.11   mycroft 		}
    459   1.1   mycroft 	}
    460   1.1   mycroft 	if (ssize < len)
    461   1.1   mycroft 		if (doasyncfree)
    462   1.1   mycroft 			bdwrite(ebp);
    463   1.1   mycroft 		else
    464   1.1   mycroft 			bwrite(ebp);
    465   1.1   mycroft 	/*
    466   1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    467   1.1   mycroft 	 */
    468   1.5   mycroft #ifdef DEBUG
    469   1.5   mycroft 	if (prtrealloc)
    470  1.13  christos 		printf("\n\tnew:");
    471   1.5   mycroft #endif
    472   1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    473   1.1   mycroft 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    474   1.1   mycroft 		    fs->fs_bsize);
    475   1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    476   1.5   mycroft #ifdef DEBUG
    477   1.5   mycroft 		if (prtrealloc)
    478  1.13  christos 			printf(" %d,", blkno);
    479   1.5   mycroft #endif
    480   1.5   mycroft 	}
    481   1.5   mycroft #ifdef DEBUG
    482   1.5   mycroft 	if (prtrealloc) {
    483   1.5   mycroft 		prtrealloc--;
    484  1.13  christos 		printf("\n");
    485   1.1   mycroft 	}
    486   1.5   mycroft #endif
    487   1.1   mycroft 	return (0);
    488   1.1   mycroft 
    489   1.1   mycroft fail:
    490   1.1   mycroft 	if (ssize < len)
    491   1.1   mycroft 		brelse(ebp);
    492   1.1   mycroft 	if (sbap != &ip->i_db[0])
    493   1.1   mycroft 		brelse(sbp);
    494   1.1   mycroft 	return (ENOSPC);
    495   1.1   mycroft }
    496   1.1   mycroft 
    497   1.1   mycroft /*
    498   1.1   mycroft  * Allocate an inode in the file system.
    499   1.1   mycroft  *
    500   1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    501   1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    502   1.1   mycroft  *   1) allocate the preferred inode.
    503   1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    504   1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    505   1.1   mycroft  *      available inode is located.
    506   1.1   mycroft  * If no inode preference is given the following heirarchy is used
    507   1.1   mycroft  * to allocate an inode:
    508   1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    509   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    510   1.1   mycroft  *      available inode is located.
    511   1.1   mycroft  */
    512   1.9  christos int
    513   1.9  christos ffs_valloc(v)
    514   1.9  christos 	void *v;
    515   1.9  christos {
    516   1.1   mycroft 	struct vop_valloc_args /* {
    517   1.1   mycroft 		struct vnode *a_pvp;
    518   1.1   mycroft 		int a_mode;
    519   1.1   mycroft 		struct ucred *a_cred;
    520   1.1   mycroft 		struct vnode **a_vpp;
    521   1.9  christos 	} */ *ap = v;
    522   1.1   mycroft 	register struct vnode *pvp = ap->a_pvp;
    523   1.1   mycroft 	register struct inode *pip;
    524   1.1   mycroft 	register struct fs *fs;
    525   1.1   mycroft 	register struct inode *ip;
    526   1.1   mycroft 	mode_t mode = ap->a_mode;
    527   1.1   mycroft 	ino_t ino, ipref;
    528   1.1   mycroft 	int cg, error;
    529   1.1   mycroft 
    530   1.1   mycroft 	*ap->a_vpp = NULL;
    531   1.1   mycroft 	pip = VTOI(pvp);
    532   1.1   mycroft 	fs = pip->i_fs;
    533   1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    534   1.1   mycroft 		goto noinodes;
    535   1.1   mycroft 
    536   1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    537   1.1   mycroft 		ipref = ffs_dirpref(fs);
    538   1.1   mycroft 	else
    539   1.1   mycroft 		ipref = pip->i_number;
    540   1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    541   1.1   mycroft 		ipref = 0;
    542   1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    543   1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    544   1.1   mycroft 	if (ino == 0)
    545   1.1   mycroft 		goto noinodes;
    546   1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    547   1.1   mycroft 	if (error) {
    548   1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    549   1.1   mycroft 		return (error);
    550   1.1   mycroft 	}
    551   1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    552   1.1   mycroft 	if (ip->i_mode) {
    553  1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    554   1.1   mycroft 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    555   1.1   mycroft 		panic("ffs_valloc: dup alloc");
    556   1.1   mycroft 	}
    557   1.1   mycroft 	if (ip->i_blocks) {				/* XXX */
    558  1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    559   1.1   mycroft 		    fs->fs_fsmnt, ino, ip->i_blocks);
    560   1.1   mycroft 		ip->i_blocks = 0;
    561   1.1   mycroft 	}
    562   1.1   mycroft 	ip->i_flags = 0;
    563   1.1   mycroft 	/*
    564   1.1   mycroft 	 * Set up a new generation number for this inode.
    565   1.1   mycroft 	 */
    566   1.1   mycroft 	if (++nextgennumber < (u_long)time.tv_sec)
    567   1.1   mycroft 		nextgennumber = time.tv_sec;
    568   1.1   mycroft 	ip->i_gen = nextgennumber;
    569   1.1   mycroft 	return (0);
    570   1.1   mycroft noinodes:
    571   1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    572   1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    573   1.1   mycroft 	return (ENOSPC);
    574   1.1   mycroft }
    575   1.1   mycroft 
    576   1.1   mycroft /*
    577   1.1   mycroft  * Find a cylinder to place a directory.
    578   1.1   mycroft  *
    579   1.1   mycroft  * The policy implemented by this algorithm is to select from
    580   1.1   mycroft  * among those cylinder groups with above the average number of
    581   1.1   mycroft  * free inodes, the one with the smallest number of directories.
    582   1.1   mycroft  */
    583   1.1   mycroft static ino_t
    584   1.1   mycroft ffs_dirpref(fs)
    585   1.1   mycroft 	register struct fs *fs;
    586   1.1   mycroft {
    587   1.1   mycroft 	int cg, minndir, mincg, avgifree;
    588   1.1   mycroft 
    589   1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    590   1.1   mycroft 	minndir = fs->fs_ipg;
    591   1.1   mycroft 	mincg = 0;
    592   1.1   mycroft 	for (cg = 0; cg < fs->fs_ncg; cg++)
    593   1.1   mycroft 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    594   1.1   mycroft 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    595   1.1   mycroft 			mincg = cg;
    596   1.1   mycroft 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    597   1.1   mycroft 		}
    598   1.1   mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    599   1.1   mycroft }
    600   1.1   mycroft 
    601   1.1   mycroft /*
    602   1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    603   1.1   mycroft  * logically divided into sections. The first section is composed of the
    604   1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    605   1.1   mycroft  *
    606   1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    607   1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    608   1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    609   1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    610   1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    611   1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    612   1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    613   1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    614   1.1   mycroft  * continues until a cylinder group with greater than the average number
    615   1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    616   1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    617   1.1   mycroft  * here a best guess is made based upon the logical block number being
    618   1.1   mycroft  * allocated.
    619   1.1   mycroft  *
    620   1.1   mycroft  * If a section is already partially allocated, the policy is to
    621   1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    622   1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    623   1.1   mycroft  * so that the disk head will be in transit between them for at least
    624   1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    625   1.1   mycroft  * schedule another I/O transfer.
    626   1.1   mycroft  */
    627   1.1   mycroft daddr_t
    628   1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    629   1.1   mycroft 	struct inode *ip;
    630   1.1   mycroft 	daddr_t lbn;
    631   1.1   mycroft 	int indx;
    632   1.1   mycroft 	daddr_t *bap;
    633   1.1   mycroft {
    634   1.1   mycroft 	register struct fs *fs;
    635   1.1   mycroft 	register int cg;
    636   1.1   mycroft 	int avgbfree, startcg;
    637   1.1   mycroft 	daddr_t nextblk;
    638   1.1   mycroft 
    639   1.1   mycroft 	fs = ip->i_fs;
    640   1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    641   1.1   mycroft 		if (lbn < NDADDR) {
    642   1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    643   1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    644   1.1   mycroft 		}
    645   1.1   mycroft 		/*
    646   1.1   mycroft 		 * Find a cylinder with greater than average number of
    647   1.1   mycroft 		 * unused data blocks.
    648   1.1   mycroft 		 */
    649   1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    650   1.1   mycroft 			startcg =
    651   1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    652   1.1   mycroft 		else
    653   1.1   mycroft 			startcg = dtog(fs, bap[indx - 1]) + 1;
    654   1.1   mycroft 		startcg %= fs->fs_ncg;
    655   1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    656   1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    657   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    658   1.1   mycroft 				fs->fs_cgrotor = cg;
    659   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    660   1.1   mycroft 			}
    661   1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    662   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    663   1.1   mycroft 				fs->fs_cgrotor = cg;
    664   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    665   1.1   mycroft 			}
    666   1.1   mycroft 		return (NULL);
    667   1.1   mycroft 	}
    668   1.1   mycroft 	/*
    669   1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    670   1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    671   1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    672   1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    673   1.1   mycroft 	 */
    674   1.1   mycroft 	nextblk = bap[indx - 1] + fs->fs_frag;
    675   1.1   mycroft 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    676   1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    677   1.1   mycroft 		return (nextblk);
    678   1.1   mycroft 	if (fs->fs_rotdelay != 0)
    679   1.1   mycroft 		/*
    680   1.1   mycroft 		 * Here we convert ms of delay to frags as:
    681   1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    682   1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    683   1.1   mycroft 		 * then round up to the next block.
    684   1.1   mycroft 		 */
    685   1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    686   1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    687   1.1   mycroft 	return (nextblk);
    688   1.1   mycroft }
    689   1.1   mycroft 
    690   1.1   mycroft /*
    691   1.1   mycroft  * Implement the cylinder overflow algorithm.
    692   1.1   mycroft  *
    693   1.1   mycroft  * The policy implemented by this algorithm is:
    694   1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    695   1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    696   1.1   mycroft  *   3) brute force search for a free block.
    697   1.1   mycroft  */
    698   1.1   mycroft /*VARARGS5*/
    699   1.1   mycroft static u_long
    700   1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    701   1.1   mycroft 	struct inode *ip;
    702   1.1   mycroft 	int cg;
    703   1.1   mycroft 	long pref;
    704   1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    705   1.9  christos 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
    706   1.1   mycroft {
    707   1.1   mycroft 	register struct fs *fs;
    708   1.1   mycroft 	long result;
    709   1.1   mycroft 	int i, icg = cg;
    710   1.1   mycroft 
    711   1.1   mycroft 	fs = ip->i_fs;
    712   1.1   mycroft 	/*
    713   1.1   mycroft 	 * 1: preferred cylinder group
    714   1.1   mycroft 	 */
    715   1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    716   1.1   mycroft 	if (result)
    717   1.1   mycroft 		return (result);
    718   1.1   mycroft 	/*
    719   1.1   mycroft 	 * 2: quadratic rehash
    720   1.1   mycroft 	 */
    721   1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    722   1.1   mycroft 		cg += i;
    723   1.1   mycroft 		if (cg >= fs->fs_ncg)
    724   1.1   mycroft 			cg -= fs->fs_ncg;
    725   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    726   1.1   mycroft 		if (result)
    727   1.1   mycroft 			return (result);
    728   1.1   mycroft 	}
    729   1.1   mycroft 	/*
    730   1.1   mycroft 	 * 3: brute force search
    731   1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    732   1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    733   1.1   mycroft 	 */
    734   1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    735   1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    736   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    737   1.1   mycroft 		if (result)
    738   1.1   mycroft 			return (result);
    739   1.1   mycroft 		cg++;
    740   1.1   mycroft 		if (cg == fs->fs_ncg)
    741   1.1   mycroft 			cg = 0;
    742   1.1   mycroft 	}
    743   1.1   mycroft 	return (NULL);
    744   1.1   mycroft }
    745   1.1   mycroft 
    746   1.1   mycroft /*
    747   1.1   mycroft  * Determine whether a fragment can be extended.
    748   1.1   mycroft  *
    749   1.1   mycroft  * Check to see if the necessary fragments are available, and
    750   1.1   mycroft  * if they are, allocate them.
    751   1.1   mycroft  */
    752   1.1   mycroft static daddr_t
    753   1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    754   1.1   mycroft 	struct inode *ip;
    755   1.1   mycroft 	int cg;
    756   1.1   mycroft 	long bprev;
    757   1.1   mycroft 	int osize, nsize;
    758   1.1   mycroft {
    759   1.1   mycroft 	register struct fs *fs;
    760   1.1   mycroft 	register struct cg *cgp;
    761   1.1   mycroft 	struct buf *bp;
    762   1.1   mycroft 	long bno;
    763   1.1   mycroft 	int frags, bbase;
    764   1.1   mycroft 	int i, error;
    765   1.1   mycroft 
    766   1.1   mycroft 	fs = ip->i_fs;
    767   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    768   1.1   mycroft 		return (NULL);
    769   1.1   mycroft 	frags = numfrags(fs, nsize);
    770   1.1   mycroft 	bbase = fragnum(fs, bprev);
    771   1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    772   1.1   mycroft 		/* cannot extend across a block boundary */
    773   1.1   mycroft 		return (NULL);
    774   1.1   mycroft 	}
    775   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    776   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    777   1.1   mycroft 	if (error) {
    778   1.1   mycroft 		brelse(bp);
    779   1.1   mycroft 		return (NULL);
    780   1.1   mycroft 	}
    781   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    782   1.1   mycroft 	if (!cg_chkmagic(cgp)) {
    783   1.1   mycroft 		brelse(bp);
    784   1.1   mycroft 		return (NULL);
    785   1.1   mycroft 	}
    786   1.1   mycroft 	cgp->cg_time = time.tv_sec;
    787   1.1   mycroft 	bno = dtogd(fs, bprev);
    788   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    789   1.1   mycroft 		if (isclr(cg_blksfree(cgp), bno + i)) {
    790   1.1   mycroft 			brelse(bp);
    791   1.1   mycroft 			return (NULL);
    792   1.1   mycroft 		}
    793   1.1   mycroft 	/*
    794   1.1   mycroft 	 * the current fragment can be extended
    795   1.1   mycroft 	 * deduct the count on fragment being extended into
    796   1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    797   1.1   mycroft 	 * allocate the extended piece
    798   1.1   mycroft 	 */
    799   1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    800   1.1   mycroft 		if (isclr(cg_blksfree(cgp), bno + i))
    801   1.1   mycroft 			break;
    802   1.1   mycroft 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    803   1.1   mycroft 	if (i != frags)
    804   1.1   mycroft 		cgp->cg_frsum[i - frags]++;
    805   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    806   1.1   mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    807   1.1   mycroft 		cgp->cg_cs.cs_nffree--;
    808   1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    809   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    810   1.1   mycroft 	}
    811   1.1   mycroft 	fs->fs_fmod = 1;
    812   1.1   mycroft 	bdwrite(bp);
    813   1.1   mycroft 	return (bprev);
    814   1.1   mycroft }
    815   1.1   mycroft 
    816   1.1   mycroft /*
    817   1.1   mycroft  * Determine whether a block can be allocated.
    818   1.1   mycroft  *
    819   1.1   mycroft  * Check to see if a block of the appropriate size is available,
    820   1.1   mycroft  * and if it is, allocate it.
    821   1.1   mycroft  */
    822   1.1   mycroft static daddr_t
    823   1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    824   1.1   mycroft 	struct inode *ip;
    825   1.1   mycroft 	int cg;
    826   1.1   mycroft 	daddr_t bpref;
    827   1.1   mycroft 	int size;
    828   1.1   mycroft {
    829   1.1   mycroft 	register struct fs *fs;
    830   1.1   mycroft 	register struct cg *cgp;
    831   1.1   mycroft 	struct buf *bp;
    832   1.1   mycroft 	register int i;
    833   1.1   mycroft 	int error, bno, frags, allocsiz;
    834   1.1   mycroft 
    835   1.1   mycroft 	fs = ip->i_fs;
    836   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    837   1.1   mycroft 		return (NULL);
    838   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    839   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    840   1.1   mycroft 	if (error) {
    841   1.1   mycroft 		brelse(bp);
    842   1.1   mycroft 		return (NULL);
    843   1.1   mycroft 	}
    844   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    845   1.1   mycroft 	if (!cg_chkmagic(cgp) ||
    846   1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    847   1.1   mycroft 		brelse(bp);
    848   1.1   mycroft 		return (NULL);
    849   1.1   mycroft 	}
    850   1.1   mycroft 	cgp->cg_time = time.tv_sec;
    851   1.1   mycroft 	if (size == fs->fs_bsize) {
    852   1.1   mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    853   1.1   mycroft 		bdwrite(bp);
    854   1.1   mycroft 		return (bno);
    855   1.1   mycroft 	}
    856   1.1   mycroft 	/*
    857   1.1   mycroft 	 * check to see if any fragments are already available
    858   1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
    859   1.1   mycroft 	 * it down to a smaller size if necessary
    860   1.1   mycroft 	 */
    861   1.1   mycroft 	frags = numfrags(fs, size);
    862   1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    863   1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
    864   1.1   mycroft 			break;
    865   1.1   mycroft 	if (allocsiz == fs->fs_frag) {
    866   1.1   mycroft 		/*
    867   1.1   mycroft 		 * no fragments were available, so a block will be
    868   1.1   mycroft 		 * allocated, and hacked up
    869   1.1   mycroft 		 */
    870   1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
    871   1.1   mycroft 			brelse(bp);
    872   1.1   mycroft 			return (NULL);
    873   1.1   mycroft 		}
    874   1.1   mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    875   1.1   mycroft 		bpref = dtogd(fs, bno);
    876   1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
    877   1.1   mycroft 			setbit(cg_blksfree(cgp), bpref + i);
    878   1.1   mycroft 		i = fs->fs_frag - frags;
    879   1.1   mycroft 		cgp->cg_cs.cs_nffree += i;
    880   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
    881   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
    882   1.1   mycroft 		fs->fs_fmod = 1;
    883   1.1   mycroft 		cgp->cg_frsum[i]++;
    884   1.1   mycroft 		bdwrite(bp);
    885   1.1   mycroft 		return (bno);
    886   1.1   mycroft 	}
    887   1.1   mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    888   1.1   mycroft 	if (bno < 0) {
    889   1.1   mycroft 		brelse(bp);
    890   1.1   mycroft 		return (NULL);
    891   1.1   mycroft 	}
    892   1.1   mycroft 	for (i = 0; i < frags; i++)
    893   1.1   mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    894   1.1   mycroft 	cgp->cg_cs.cs_nffree -= frags;
    895   1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
    896   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    897   1.1   mycroft 	fs->fs_fmod = 1;
    898   1.1   mycroft 	cgp->cg_frsum[allocsiz]--;
    899   1.1   mycroft 	if (frags != allocsiz)
    900   1.1   mycroft 		cgp->cg_frsum[allocsiz - frags]++;
    901   1.1   mycroft 	bdwrite(bp);
    902   1.1   mycroft 	return (cg * fs->fs_fpg + bno);
    903   1.1   mycroft }
    904   1.1   mycroft 
    905   1.1   mycroft /*
    906   1.1   mycroft  * Allocate a block in a cylinder group.
    907   1.1   mycroft  *
    908   1.1   mycroft  * This algorithm implements the following policy:
    909   1.1   mycroft  *   1) allocate the requested block.
    910   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    911   1.1   mycroft  *   3) allocate the next available block on the block rotor for the
    912   1.1   mycroft  *      specified cylinder group.
    913   1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
    914   1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
    915   1.1   mycroft  */
    916   1.1   mycroft static daddr_t
    917   1.1   mycroft ffs_alloccgblk(fs, cgp, bpref)
    918   1.1   mycroft 	register struct fs *fs;
    919   1.1   mycroft 	register struct cg *cgp;
    920   1.1   mycroft 	daddr_t bpref;
    921   1.1   mycroft {
    922   1.1   mycroft 	daddr_t bno, blkno;
    923   1.1   mycroft 	int cylno, pos, delta;
    924   1.1   mycroft 	short *cylbp;
    925   1.1   mycroft 	register int i;
    926   1.1   mycroft 
    927   1.1   mycroft 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    928   1.1   mycroft 		bpref = cgp->cg_rotor;
    929   1.1   mycroft 		goto norot;
    930   1.1   mycroft 	}
    931   1.1   mycroft 	bpref = blknum(fs, bpref);
    932   1.1   mycroft 	bpref = dtogd(fs, bpref);
    933   1.1   mycroft 	/*
    934   1.1   mycroft 	 * if the requested block is available, use it
    935   1.1   mycroft 	 */
    936   1.1   mycroft 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    937   1.1   mycroft 		bno = bpref;
    938   1.1   mycroft 		goto gotit;
    939   1.1   mycroft 	}
    940   1.6   mycroft 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
    941   1.1   mycroft 		/*
    942   1.1   mycroft 		 * Block layout information is not available.
    943   1.1   mycroft 		 * Leaving bpref unchanged means we take the
    944   1.1   mycroft 		 * next available free block following the one
    945   1.1   mycroft 		 * we just allocated. Hopefully this will at
    946   1.1   mycroft 		 * least hit a track cache on drives of unknown
    947   1.1   mycroft 		 * geometry (e.g. SCSI).
    948   1.1   mycroft 		 */
    949   1.1   mycroft 		goto norot;
    950   1.1   mycroft 	}
    951   1.6   mycroft 	/*
    952   1.6   mycroft 	 * check for a block available on the same cylinder
    953   1.6   mycroft 	 */
    954   1.6   mycroft 	cylno = cbtocylno(fs, bpref);
    955   1.6   mycroft 	if (cg_blktot(cgp)[cylno] == 0)
    956   1.6   mycroft 		goto norot;
    957   1.1   mycroft 	/*
    958   1.1   mycroft 	 * check the summary information to see if a block is
    959   1.1   mycroft 	 * available in the requested cylinder starting at the
    960   1.1   mycroft 	 * requested rotational position and proceeding around.
    961   1.1   mycroft 	 */
    962   1.1   mycroft 	cylbp = cg_blks(fs, cgp, cylno);
    963   1.1   mycroft 	pos = cbtorpos(fs, bpref);
    964   1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
    965   1.1   mycroft 		if (cylbp[i] > 0)
    966   1.1   mycroft 			break;
    967   1.1   mycroft 	if (i == fs->fs_nrpos)
    968   1.1   mycroft 		for (i = 0; i < pos; i++)
    969   1.1   mycroft 			if (cylbp[i] > 0)
    970   1.1   mycroft 				break;
    971   1.1   mycroft 	if (cylbp[i] > 0) {
    972   1.1   mycroft 		/*
    973   1.1   mycroft 		 * found a rotational position, now find the actual
    974   1.1   mycroft 		 * block. A panic if none is actually there.
    975   1.1   mycroft 		 */
    976   1.1   mycroft 		pos = cylno % fs->fs_cpc;
    977   1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    978   1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
    979  1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
    980   1.1   mycroft 			    pos, i, fs->fs_fsmnt);
    981   1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
    982   1.1   mycroft 		}
    983   1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
    984   1.1   mycroft 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    985   1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
    986   1.1   mycroft 				goto gotit;
    987   1.1   mycroft 			}
    988   1.1   mycroft 			delta = fs_rotbl(fs)[i];
    989   1.1   mycroft 			if (delta <= 0 ||
    990   1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    991   1.1   mycroft 				break;
    992   1.1   mycroft 			i += delta;
    993   1.1   mycroft 		}
    994  1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    995   1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
    996   1.1   mycroft 	}
    997   1.1   mycroft norot:
    998   1.1   mycroft 	/*
    999   1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1000   1.1   mycroft 	 * available one in this cylinder group.
   1001   1.1   mycroft 	 */
   1002   1.1   mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1003   1.1   mycroft 	if (bno < 0)
   1004   1.1   mycroft 		return (NULL);
   1005   1.1   mycroft 	cgp->cg_rotor = bno;
   1006   1.1   mycroft gotit:
   1007   1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1008   1.1   mycroft 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
   1009   1.1   mycroft 	ffs_clusteracct(fs, cgp, blkno, -1);
   1010   1.1   mycroft 	cgp->cg_cs.cs_nbfree--;
   1011   1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1012   1.1   mycroft 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1013   1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1014   1.1   mycroft 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1015   1.1   mycroft 	cg_blktot(cgp)[cylno]--;
   1016   1.1   mycroft 	fs->fs_fmod = 1;
   1017   1.1   mycroft 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1018   1.1   mycroft }
   1019   1.1   mycroft 
   1020   1.1   mycroft /*
   1021   1.1   mycroft  * Determine whether a cluster can be allocated.
   1022   1.1   mycroft  *
   1023   1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1024   1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1025   1.1   mycroft  * take the first one that we find following bpref.
   1026   1.1   mycroft  */
   1027   1.1   mycroft static daddr_t
   1028   1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1029   1.1   mycroft 	struct inode *ip;
   1030   1.1   mycroft 	int cg;
   1031   1.1   mycroft 	daddr_t bpref;
   1032   1.1   mycroft 	int len;
   1033   1.1   mycroft {
   1034   1.1   mycroft 	register struct fs *fs;
   1035   1.1   mycroft 	register struct cg *cgp;
   1036   1.1   mycroft 	struct buf *bp;
   1037   1.1   mycroft 	int i, run, bno, bit, map;
   1038   1.1   mycroft 	u_char *mapp;
   1039   1.5   mycroft 	int32_t *lp;
   1040   1.1   mycroft 
   1041   1.1   mycroft 	fs = ip->i_fs;
   1042   1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1043   1.1   mycroft 		return (NULL);
   1044   1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1045   1.1   mycroft 	    NOCRED, &bp))
   1046   1.1   mycroft 		goto fail;
   1047   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1048   1.1   mycroft 	if (!cg_chkmagic(cgp))
   1049   1.1   mycroft 		goto fail;
   1050   1.1   mycroft 	/*
   1051   1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1052   1.1   mycroft 	 * available in this cylinder group.
   1053   1.1   mycroft 	 */
   1054   1.5   mycroft 	lp = &cg_clustersum(cgp)[len];
   1055   1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1056   1.5   mycroft 		if (*lp++ > 0)
   1057   1.1   mycroft 			break;
   1058   1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1059   1.5   mycroft 		/*
   1060   1.5   mycroft 		 * This is the first time looking for a cluster in this
   1061   1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1062   1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1063   1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1064   1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1065   1.5   mycroft 		 */
   1066   1.5   mycroft 		lp = &cg_clustersum(cgp)[len - 1];
   1067   1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1068   1.5   mycroft 			if (*lp-- > 0)
   1069   1.5   mycroft 				break;
   1070   1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1071   1.1   mycroft 		goto fail;
   1072   1.5   mycroft 	}
   1073   1.1   mycroft 	/*
   1074   1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1075   1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1076   1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1077   1.1   mycroft 	 * block allocation. We do not search before the current
   1078   1.1   mycroft 	 * preference point as we do not want to allocate a block
   1079   1.1   mycroft 	 * that is allocated before the previous one (as we will
   1080   1.1   mycroft 	 * then have to wait for another pass of the elevator
   1081   1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1082   1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1083   1.1   mycroft 	 */
   1084   1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1085   1.1   mycroft 		bpref = 0;
   1086   1.1   mycroft 	else
   1087   1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1088   1.1   mycroft 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1089   1.1   mycroft 	map = *mapp++;
   1090   1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1091   1.1   mycroft 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1092   1.1   mycroft 		if ((map & bit) == 0) {
   1093   1.1   mycroft 			run = 0;
   1094   1.1   mycroft 		} else {
   1095   1.1   mycroft 			run++;
   1096   1.1   mycroft 			if (run == len)
   1097   1.1   mycroft 				break;
   1098   1.1   mycroft 		}
   1099   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1100   1.1   mycroft 			bit <<= 1;
   1101   1.1   mycroft 		} else {
   1102   1.1   mycroft 			map = *mapp++;
   1103   1.1   mycroft 			bit = 1;
   1104   1.1   mycroft 		}
   1105   1.1   mycroft 	}
   1106   1.1   mycroft 	if (i == cgp->cg_nclusterblks)
   1107   1.1   mycroft 		goto fail;
   1108   1.1   mycroft 	/*
   1109   1.1   mycroft 	 * Allocate the cluster that we have found.
   1110   1.1   mycroft 	 */
   1111   1.1   mycroft 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1112   1.1   mycroft 	len = blkstofrags(fs, len);
   1113   1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1114   1.1   mycroft 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1115   1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1116   1.8       cgd 	bdwrite(bp);
   1117   1.1   mycroft 	return (bno);
   1118   1.1   mycroft 
   1119   1.1   mycroft fail:
   1120   1.1   mycroft 	brelse(bp);
   1121   1.1   mycroft 	return (0);
   1122   1.1   mycroft }
   1123   1.1   mycroft 
   1124   1.1   mycroft /*
   1125   1.1   mycroft  * Determine whether an inode can be allocated.
   1126   1.1   mycroft  *
   1127   1.1   mycroft  * Check to see if an inode is available, and if it is,
   1128   1.1   mycroft  * allocate it using the following policy:
   1129   1.1   mycroft  *   1) allocate the requested inode.
   1130   1.1   mycroft  *   2) allocate the next available inode after the requested
   1131   1.1   mycroft  *      inode in the specified cylinder group.
   1132   1.1   mycroft  */
   1133   1.9  christos static daddr_t
   1134   1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1135   1.1   mycroft 	struct inode *ip;
   1136   1.1   mycroft 	int cg;
   1137   1.1   mycroft 	daddr_t ipref;
   1138   1.1   mycroft 	int mode;
   1139   1.1   mycroft {
   1140   1.1   mycroft 	register struct fs *fs;
   1141   1.1   mycroft 	register struct cg *cgp;
   1142   1.1   mycroft 	struct buf *bp;
   1143   1.1   mycroft 	int error, start, len, loc, map, i;
   1144   1.1   mycroft 
   1145   1.1   mycroft 	fs = ip->i_fs;
   1146   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1147   1.1   mycroft 		return (NULL);
   1148   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1149   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1150   1.1   mycroft 	if (error) {
   1151   1.1   mycroft 		brelse(bp);
   1152   1.1   mycroft 		return (NULL);
   1153   1.1   mycroft 	}
   1154   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1155   1.1   mycroft 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1156   1.1   mycroft 		brelse(bp);
   1157   1.1   mycroft 		return (NULL);
   1158   1.1   mycroft 	}
   1159   1.1   mycroft 	cgp->cg_time = time.tv_sec;
   1160   1.1   mycroft 	if (ipref) {
   1161   1.1   mycroft 		ipref %= fs->fs_ipg;
   1162   1.1   mycroft 		if (isclr(cg_inosused(cgp), ipref))
   1163   1.1   mycroft 			goto gotit;
   1164   1.1   mycroft 	}
   1165   1.1   mycroft 	start = cgp->cg_irotor / NBBY;
   1166   1.1   mycroft 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1167   1.1   mycroft 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1168   1.1   mycroft 	if (loc == 0) {
   1169   1.1   mycroft 		len = start + 1;
   1170   1.1   mycroft 		start = 0;
   1171   1.1   mycroft 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1172   1.1   mycroft 		if (loc == 0) {
   1173  1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1174   1.1   mycroft 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1175   1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1176   1.1   mycroft 			/* NOTREACHED */
   1177   1.1   mycroft 		}
   1178   1.1   mycroft 	}
   1179   1.1   mycroft 	i = start + len - loc;
   1180   1.1   mycroft 	map = cg_inosused(cgp)[i];
   1181   1.1   mycroft 	ipref = i * NBBY;
   1182   1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1183   1.1   mycroft 		if ((map & i) == 0) {
   1184   1.1   mycroft 			cgp->cg_irotor = ipref;
   1185   1.1   mycroft 			goto gotit;
   1186   1.1   mycroft 		}
   1187   1.1   mycroft 	}
   1188  1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1189   1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1190   1.1   mycroft 	/* NOTREACHED */
   1191   1.1   mycroft gotit:
   1192   1.1   mycroft 	setbit(cg_inosused(cgp), ipref);
   1193   1.1   mycroft 	cgp->cg_cs.cs_nifree--;
   1194   1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1195   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree--;
   1196   1.1   mycroft 	fs->fs_fmod = 1;
   1197   1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1198   1.1   mycroft 		cgp->cg_cs.cs_ndir++;
   1199   1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1200   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1201   1.1   mycroft 	}
   1202   1.1   mycroft 	bdwrite(bp);
   1203   1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1204   1.1   mycroft }
   1205   1.1   mycroft 
   1206   1.1   mycroft /*
   1207   1.1   mycroft  * Free a block or fragment.
   1208   1.1   mycroft  *
   1209   1.1   mycroft  * The specified block or fragment is placed back in the
   1210   1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1211   1.1   mycroft  * block reassembly is checked.
   1212   1.1   mycroft  */
   1213   1.9  christos void
   1214   1.1   mycroft ffs_blkfree(ip, bno, size)
   1215   1.1   mycroft 	register struct inode *ip;
   1216   1.1   mycroft 	daddr_t bno;
   1217   1.1   mycroft 	long size;
   1218   1.1   mycroft {
   1219   1.1   mycroft 	register struct fs *fs;
   1220   1.1   mycroft 	register struct cg *cgp;
   1221   1.1   mycroft 	struct buf *bp;
   1222   1.1   mycroft 	daddr_t blkno;
   1223   1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1224   1.1   mycroft 
   1225   1.1   mycroft 	fs = ip->i_fs;
   1226   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1227  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1228   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1229   1.1   mycroft 		panic("blkfree: bad size");
   1230   1.1   mycroft 	}
   1231   1.1   mycroft 	cg = dtog(fs, bno);
   1232   1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1233  1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1234   1.1   mycroft 		ffs_fserr(fs, ip->i_uid, "bad block");
   1235   1.1   mycroft 		return;
   1236   1.1   mycroft 	}
   1237   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1238   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1239   1.1   mycroft 	if (error) {
   1240   1.1   mycroft 		brelse(bp);
   1241   1.1   mycroft 		return;
   1242   1.1   mycroft 	}
   1243   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1244   1.1   mycroft 	if (!cg_chkmagic(cgp)) {
   1245   1.1   mycroft 		brelse(bp);
   1246   1.1   mycroft 		return;
   1247   1.1   mycroft 	}
   1248   1.1   mycroft 	cgp->cg_time = time.tv_sec;
   1249   1.1   mycroft 	bno = dtogd(fs, bno);
   1250   1.1   mycroft 	if (size == fs->fs_bsize) {
   1251   1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1252   1.1   mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1253  1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1254   1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1255   1.1   mycroft 			panic("blkfree: freeing free block");
   1256   1.1   mycroft 		}
   1257   1.1   mycroft 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1258   1.1   mycroft 		ffs_clusteracct(fs, cgp, blkno, 1);
   1259   1.1   mycroft 		cgp->cg_cs.cs_nbfree++;
   1260   1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1261   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1262   1.1   mycroft 		i = cbtocylno(fs, bno);
   1263   1.1   mycroft 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1264   1.1   mycroft 		cg_blktot(cgp)[i]++;
   1265   1.1   mycroft 	} else {
   1266   1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1267   1.1   mycroft 		/*
   1268   1.1   mycroft 		 * decrement the counts associated with the old frags
   1269   1.1   mycroft 		 */
   1270   1.1   mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1271   1.1   mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1272   1.1   mycroft 		/*
   1273   1.1   mycroft 		 * deallocate the fragment
   1274   1.1   mycroft 		 */
   1275   1.1   mycroft 		frags = numfrags(fs, size);
   1276   1.1   mycroft 		for (i = 0; i < frags; i++) {
   1277   1.1   mycroft 			if (isset(cg_blksfree(cgp), bno + i)) {
   1278  1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1279   1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1280   1.1   mycroft 				panic("blkfree: freeing free frag");
   1281   1.1   mycroft 			}
   1282   1.1   mycroft 			setbit(cg_blksfree(cgp), bno + i);
   1283   1.1   mycroft 		}
   1284   1.1   mycroft 		cgp->cg_cs.cs_nffree += i;
   1285   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1286   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
   1287   1.1   mycroft 		/*
   1288   1.1   mycroft 		 * add back in counts associated with the new frags
   1289   1.1   mycroft 		 */
   1290   1.1   mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1291   1.1   mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1292   1.1   mycroft 		/*
   1293   1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1294   1.1   mycroft 		 */
   1295   1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1296   1.1   mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1297   1.1   mycroft 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1298   1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1299   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1300   1.1   mycroft 			ffs_clusteracct(fs, cgp, blkno, 1);
   1301   1.1   mycroft 			cgp->cg_cs.cs_nbfree++;
   1302   1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1303   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1304   1.1   mycroft 			i = cbtocylno(fs, bbase);
   1305   1.1   mycroft 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1306   1.1   mycroft 			cg_blktot(cgp)[i]++;
   1307   1.1   mycroft 		}
   1308   1.1   mycroft 	}
   1309   1.1   mycroft 	fs->fs_fmod = 1;
   1310   1.1   mycroft 	bdwrite(bp);
   1311   1.1   mycroft }
   1312   1.1   mycroft 
   1313   1.1   mycroft /*
   1314   1.1   mycroft  * Free an inode.
   1315   1.1   mycroft  *
   1316   1.1   mycroft  * The specified inode is placed back in the free map.
   1317   1.1   mycroft  */
   1318   1.1   mycroft int
   1319   1.9  christos ffs_vfree(v)
   1320   1.9  christos 	void *v;
   1321   1.9  christos {
   1322   1.1   mycroft 	struct vop_vfree_args /* {
   1323   1.1   mycroft 		struct vnode *a_pvp;
   1324   1.1   mycroft 		ino_t a_ino;
   1325   1.1   mycroft 		int a_mode;
   1326   1.9  christos 	} */ *ap = v;
   1327   1.1   mycroft 	register struct fs *fs;
   1328   1.1   mycroft 	register struct cg *cgp;
   1329   1.1   mycroft 	register struct inode *pip;
   1330   1.1   mycroft 	ino_t ino = ap->a_ino;
   1331   1.1   mycroft 	struct buf *bp;
   1332   1.1   mycroft 	int error, cg;
   1333   1.1   mycroft 
   1334   1.1   mycroft 	pip = VTOI(ap->a_pvp);
   1335   1.1   mycroft 	fs = pip->i_fs;
   1336   1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1337   1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1338   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1339   1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1340   1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1341   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1342   1.1   mycroft 	if (error) {
   1343   1.1   mycroft 		brelse(bp);
   1344   1.1   mycroft 		return (0);
   1345   1.1   mycroft 	}
   1346   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1347   1.1   mycroft 	if (!cg_chkmagic(cgp)) {
   1348   1.1   mycroft 		brelse(bp);
   1349   1.1   mycroft 		return (0);
   1350   1.1   mycroft 	}
   1351   1.1   mycroft 	cgp->cg_time = time.tv_sec;
   1352   1.1   mycroft 	ino %= fs->fs_ipg;
   1353   1.1   mycroft 	if (isclr(cg_inosused(cgp), ino)) {
   1354  1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1355   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1356   1.1   mycroft 		if (fs->fs_ronly == 0)
   1357   1.1   mycroft 			panic("ifree: freeing free inode");
   1358   1.1   mycroft 	}
   1359   1.1   mycroft 	clrbit(cg_inosused(cgp), ino);
   1360   1.1   mycroft 	if (ino < cgp->cg_irotor)
   1361   1.1   mycroft 		cgp->cg_irotor = ino;
   1362   1.1   mycroft 	cgp->cg_cs.cs_nifree++;
   1363   1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1364   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1365   1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1366   1.1   mycroft 		cgp->cg_cs.cs_ndir--;
   1367   1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1368   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1369   1.1   mycroft 	}
   1370   1.1   mycroft 	fs->fs_fmod = 1;
   1371   1.1   mycroft 	bdwrite(bp);
   1372   1.1   mycroft 	return (0);
   1373   1.1   mycroft }
   1374   1.1   mycroft 
   1375   1.1   mycroft /*
   1376   1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1377   1.1   mycroft  *
   1378   1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1379   1.1   mycroft  * available.
   1380   1.1   mycroft  */
   1381   1.1   mycroft static daddr_t
   1382   1.1   mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1383   1.1   mycroft 	register struct fs *fs;
   1384   1.1   mycroft 	register struct cg *cgp;
   1385   1.1   mycroft 	daddr_t bpref;
   1386   1.1   mycroft 	int allocsiz;
   1387   1.1   mycroft {
   1388   1.1   mycroft 	daddr_t bno;
   1389   1.1   mycroft 	int start, len, loc, i;
   1390   1.1   mycroft 	int blk, field, subfield, pos;
   1391   1.1   mycroft 
   1392   1.1   mycroft 	/*
   1393   1.1   mycroft 	 * find the fragment by searching through the free block
   1394   1.1   mycroft 	 * map for an appropriate bit pattern
   1395   1.1   mycroft 	 */
   1396   1.1   mycroft 	if (bpref)
   1397   1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1398   1.1   mycroft 	else
   1399   1.1   mycroft 		start = cgp->cg_frotor / NBBY;
   1400   1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1401   1.1   mycroft 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1402   1.1   mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1403   1.1   mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1404   1.1   mycroft 	if (loc == 0) {
   1405   1.1   mycroft 		len = start + 1;
   1406   1.1   mycroft 		start = 0;
   1407   1.1   mycroft 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1408   1.1   mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1409   1.1   mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1410   1.1   mycroft 		if (loc == 0) {
   1411  1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1412   1.1   mycroft 			    start, len, fs->fs_fsmnt);
   1413   1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1414   1.1   mycroft 			/* NOTREACHED */
   1415   1.1   mycroft 		}
   1416   1.1   mycroft 	}
   1417   1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1418   1.1   mycroft 	cgp->cg_frotor = bno;
   1419   1.1   mycroft 	/*
   1420   1.1   mycroft 	 * found the byte in the map
   1421   1.1   mycroft 	 * sift through the bits to find the selected frag
   1422   1.1   mycroft 	 */
   1423   1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1424   1.1   mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1425   1.1   mycroft 		blk <<= 1;
   1426   1.1   mycroft 		field = around[allocsiz];
   1427   1.1   mycroft 		subfield = inside[allocsiz];
   1428   1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1429   1.1   mycroft 			if ((blk & field) == subfield)
   1430   1.1   mycroft 				return (bno + pos);
   1431   1.1   mycroft 			field <<= 1;
   1432   1.1   mycroft 			subfield <<= 1;
   1433   1.1   mycroft 		}
   1434   1.1   mycroft 	}
   1435  1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1436   1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1437   1.1   mycroft 	return (-1);
   1438   1.1   mycroft }
   1439   1.1   mycroft 
   1440   1.1   mycroft /*
   1441   1.1   mycroft  * Update the cluster map because of an allocation or free.
   1442   1.1   mycroft  *
   1443   1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1444   1.1   mycroft  */
   1445   1.9  christos void
   1446   1.1   mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
   1447   1.1   mycroft 	struct fs *fs;
   1448   1.1   mycroft 	struct cg *cgp;
   1449   1.1   mycroft 	daddr_t blkno;
   1450   1.1   mycroft 	int cnt;
   1451   1.1   mycroft {
   1452   1.4       cgd 	int32_t *sump;
   1453   1.5   mycroft 	int32_t *lp;
   1454   1.1   mycroft 	u_char *freemapp, *mapp;
   1455   1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1456   1.1   mycroft 
   1457   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1458   1.1   mycroft 		return;
   1459   1.1   mycroft 	freemapp = cg_clustersfree(cgp);
   1460   1.1   mycroft 	sump = cg_clustersum(cgp);
   1461   1.1   mycroft 	/*
   1462   1.1   mycroft 	 * Allocate or clear the actual block.
   1463   1.1   mycroft 	 */
   1464   1.1   mycroft 	if (cnt > 0)
   1465   1.1   mycroft 		setbit(freemapp, blkno);
   1466   1.1   mycroft 	else
   1467   1.1   mycroft 		clrbit(freemapp, blkno);
   1468   1.1   mycroft 	/*
   1469   1.1   mycroft 	 * Find the size of the cluster going forward.
   1470   1.1   mycroft 	 */
   1471   1.1   mycroft 	start = blkno + 1;
   1472   1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1473   1.1   mycroft 	if (end >= cgp->cg_nclusterblks)
   1474   1.1   mycroft 		end = cgp->cg_nclusterblks;
   1475   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1476   1.1   mycroft 	map = *mapp++;
   1477   1.1   mycroft 	bit = 1 << (start % NBBY);
   1478   1.1   mycroft 	for (i = start; i < end; i++) {
   1479   1.1   mycroft 		if ((map & bit) == 0)
   1480   1.1   mycroft 			break;
   1481   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1482   1.1   mycroft 			bit <<= 1;
   1483   1.1   mycroft 		} else {
   1484   1.1   mycroft 			map = *mapp++;
   1485   1.1   mycroft 			bit = 1;
   1486   1.1   mycroft 		}
   1487   1.1   mycroft 	}
   1488   1.1   mycroft 	forw = i - start;
   1489   1.1   mycroft 	/*
   1490   1.1   mycroft 	 * Find the size of the cluster going backward.
   1491   1.1   mycroft 	 */
   1492   1.1   mycroft 	start = blkno - 1;
   1493   1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1494   1.1   mycroft 	if (end < 0)
   1495   1.1   mycroft 		end = -1;
   1496   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1497   1.1   mycroft 	map = *mapp--;
   1498   1.1   mycroft 	bit = 1 << (start % NBBY);
   1499   1.1   mycroft 	for (i = start; i > end; i--) {
   1500   1.1   mycroft 		if ((map & bit) == 0)
   1501   1.1   mycroft 			break;
   1502   1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1503   1.1   mycroft 			bit >>= 1;
   1504   1.1   mycroft 		} else {
   1505   1.1   mycroft 			map = *mapp--;
   1506   1.1   mycroft 			bit = 1 << (NBBY - 1);
   1507   1.1   mycroft 		}
   1508   1.1   mycroft 	}
   1509   1.1   mycroft 	back = start - i;
   1510   1.1   mycroft 	/*
   1511   1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1512   1.1   mycroft 	 * back clusters.
   1513   1.1   mycroft 	 */
   1514   1.1   mycroft 	i = back + forw + 1;
   1515   1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1516   1.1   mycroft 		i = fs->fs_contigsumsize;
   1517   1.1   mycroft 	sump[i] += cnt;
   1518   1.1   mycroft 	if (back > 0)
   1519   1.1   mycroft 		sump[back] -= cnt;
   1520   1.1   mycroft 	if (forw > 0)
   1521   1.1   mycroft 		sump[forw] -= cnt;
   1522   1.5   mycroft 	/*
   1523   1.5   mycroft 	 * Update cluster summary information.
   1524   1.5   mycroft 	 */
   1525   1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1526   1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1527   1.5   mycroft 		if (*lp-- > 0)
   1528   1.5   mycroft 			break;
   1529   1.5   mycroft 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1530   1.1   mycroft }
   1531   1.1   mycroft 
   1532   1.1   mycroft /*
   1533   1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1534   1.1   mycroft  *
   1535   1.1   mycroft  * The form of the error message is:
   1536   1.1   mycroft  *	fs: error message
   1537   1.1   mycroft  */
   1538   1.1   mycroft static void
   1539   1.1   mycroft ffs_fserr(fs, uid, cp)
   1540   1.1   mycroft 	struct fs *fs;
   1541   1.1   mycroft 	u_int uid;
   1542   1.1   mycroft 	char *cp;
   1543   1.1   mycroft {
   1544   1.1   mycroft 
   1545   1.1   mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1546   1.1   mycroft }
   1547