ffs_alloc.c revision 1.13.6.1 1 1.13.6.1 is /* $NetBSD: ffs_alloc.c,v 1.13.6.1 1997/03/12 21:26:22 is Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.5 mycroft * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94
36 1.1 mycroft */
37 1.1 mycroft
38 1.1 mycroft #include <sys/param.h>
39 1.1 mycroft #include <sys/systm.h>
40 1.1 mycroft #include <sys/buf.h>
41 1.1 mycroft #include <sys/proc.h>
42 1.1 mycroft #include <sys/vnode.h>
43 1.1 mycroft #include <sys/mount.h>
44 1.1 mycroft #include <sys/kernel.h>
45 1.1 mycroft #include <sys/syslog.h>
46 1.1 mycroft
47 1.1 mycroft #include <vm/vm.h>
48 1.1 mycroft
49 1.1 mycroft #include <ufs/ufs/quota.h>
50 1.1 mycroft #include <ufs/ufs/inode.h>
51 1.9 christos #include <ufs/ufs/ufs_extern.h>
52 1.1 mycroft
53 1.1 mycroft #include <ufs/ffs/fs.h>
54 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
55 1.1 mycroft
56 1.1 mycroft static daddr_t ffs_alloccg __P((struct inode *, int, daddr_t, int));
57 1.1 mycroft static daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
58 1.1 mycroft static daddr_t ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
59 1.1 mycroft static ino_t ffs_dirpref __P((struct fs *));
60 1.1 mycroft static daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
61 1.1 mycroft static void ffs_fserr __P((struct fs *, u_int, char *));
62 1.9 christos static u_long ffs_hashalloc __P((struct inode *, int, long, int,
63 1.9 christos daddr_t (*)(struct inode *, int, daddr_t,
64 1.9 christos int)));
65 1.9 christos static daddr_t ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
66 1.1 mycroft static daddr_t ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
67 1.1 mycroft
68 1.1 mycroft /*
69 1.1 mycroft * Allocate a block in the file system.
70 1.1 mycroft *
71 1.1 mycroft * The size of the requested block is given, which must be some
72 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
73 1.1 mycroft * A preference may be optionally specified. If a preference is given
74 1.1 mycroft * the following hierarchy is used to allocate a block:
75 1.1 mycroft * 1) allocate the requested block.
76 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
77 1.1 mycroft * 3) allocate a block in the same cylinder group.
78 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
79 1.1 mycroft * available block is located.
80 1.1 mycroft * If no block preference is given the following heirarchy is used
81 1.1 mycroft * to allocate a block:
82 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
83 1.1 mycroft * inode for the file.
84 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
85 1.1 mycroft * available block is located.
86 1.1 mycroft */
87 1.9 christos int
88 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
89 1.1 mycroft register struct inode *ip;
90 1.1 mycroft daddr_t lbn, bpref;
91 1.1 mycroft int size;
92 1.1 mycroft struct ucred *cred;
93 1.1 mycroft daddr_t *bnp;
94 1.1 mycroft {
95 1.1 mycroft register struct fs *fs;
96 1.1 mycroft daddr_t bno;
97 1.9 christos int cg;
98 1.9 christos #ifdef QUOTA
99 1.9 christos int error;
100 1.9 christos #endif
101 1.1 mycroft
102 1.1 mycroft *bnp = 0;
103 1.1 mycroft fs = ip->i_fs;
104 1.1 mycroft #ifdef DIAGNOSTIC
105 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
106 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
107 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
108 1.1 mycroft panic("ffs_alloc: bad size");
109 1.1 mycroft }
110 1.1 mycroft if (cred == NOCRED)
111 1.1 mycroft panic("ffs_alloc: missing credential\n");
112 1.1 mycroft #endif /* DIAGNOSTIC */
113 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
114 1.1 mycroft goto nospace;
115 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
116 1.1 mycroft goto nospace;
117 1.1 mycroft #ifdef QUOTA
118 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
119 1.1 mycroft return (error);
120 1.1 mycroft #endif
121 1.1 mycroft if (bpref >= fs->fs_size)
122 1.1 mycroft bpref = 0;
123 1.1 mycroft if (bpref == 0)
124 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
125 1.1 mycroft else
126 1.1 mycroft cg = dtog(fs, bpref);
127 1.1 mycroft bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
128 1.9 christos ffs_alloccg);
129 1.1 mycroft if (bno > 0) {
130 1.1 mycroft ip->i_blocks += btodb(size);
131 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
132 1.1 mycroft *bnp = bno;
133 1.1 mycroft return (0);
134 1.1 mycroft }
135 1.1 mycroft #ifdef QUOTA
136 1.1 mycroft /*
137 1.1 mycroft * Restore user's disk quota because allocation failed.
138 1.1 mycroft */
139 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
140 1.1 mycroft #endif
141 1.1 mycroft nospace:
142 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
143 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
144 1.1 mycroft return (ENOSPC);
145 1.1 mycroft }
146 1.1 mycroft
147 1.1 mycroft /*
148 1.1 mycroft * Reallocate a fragment to a bigger size
149 1.1 mycroft *
150 1.1 mycroft * The number and size of the old block is given, and a preference
151 1.1 mycroft * and new size is also specified. The allocator attempts to extend
152 1.1 mycroft * the original block. Failing that, the regular block allocator is
153 1.1 mycroft * invoked to get an appropriate block.
154 1.1 mycroft */
155 1.9 christos int
156 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
157 1.1 mycroft register struct inode *ip;
158 1.1 mycroft daddr_t lbprev;
159 1.1 mycroft daddr_t bpref;
160 1.1 mycroft int osize, nsize;
161 1.1 mycroft struct ucred *cred;
162 1.1 mycroft struct buf **bpp;
163 1.1 mycroft {
164 1.1 mycroft register struct fs *fs;
165 1.1 mycroft struct buf *bp;
166 1.1 mycroft int cg, request, error;
167 1.1 mycroft daddr_t bprev, bno;
168 1.1 mycroft
169 1.1 mycroft *bpp = 0;
170 1.1 mycroft fs = ip->i_fs;
171 1.1 mycroft #ifdef DIAGNOSTIC
172 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
173 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
174 1.13 christos printf(
175 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
176 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
177 1.1 mycroft panic("ffs_realloccg: bad size");
178 1.1 mycroft }
179 1.1 mycroft if (cred == NOCRED)
180 1.1 mycroft panic("ffs_realloccg: missing credential\n");
181 1.1 mycroft #endif /* DIAGNOSTIC */
182 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
183 1.1 mycroft goto nospace;
184 1.1 mycroft if ((bprev = ip->i_db[lbprev]) == 0) {
185 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
186 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
187 1.1 mycroft panic("ffs_realloccg: bad bprev");
188 1.1 mycroft }
189 1.1 mycroft /*
190 1.1 mycroft * Allocate the extra space in the buffer.
191 1.1 mycroft */
192 1.9 christos if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
193 1.1 mycroft brelse(bp);
194 1.1 mycroft return (error);
195 1.1 mycroft }
196 1.1 mycroft #ifdef QUOTA
197 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
198 1.1 mycroft brelse(bp);
199 1.1 mycroft return (error);
200 1.1 mycroft }
201 1.1 mycroft #endif
202 1.1 mycroft /*
203 1.1 mycroft * Check for extension in the existing location.
204 1.1 mycroft */
205 1.1 mycroft cg = dtog(fs, bprev);
206 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
207 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
208 1.1 mycroft panic("bad blockno");
209 1.1 mycroft ip->i_blocks += btodb(nsize - osize);
210 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
211 1.1 mycroft allocbuf(bp, nsize);
212 1.1 mycroft bp->b_flags |= B_DONE;
213 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
214 1.1 mycroft *bpp = bp;
215 1.1 mycroft return (0);
216 1.1 mycroft }
217 1.1 mycroft /*
218 1.1 mycroft * Allocate a new disk location.
219 1.1 mycroft */
220 1.1 mycroft if (bpref >= fs->fs_size)
221 1.1 mycroft bpref = 0;
222 1.1 mycroft switch ((int)fs->fs_optim) {
223 1.1 mycroft case FS_OPTSPACE:
224 1.1 mycroft /*
225 1.1 mycroft * Allocate an exact sized fragment. Although this makes
226 1.1 mycroft * best use of space, we will waste time relocating it if
227 1.1 mycroft * the file continues to grow. If the fragmentation is
228 1.1 mycroft * less than half of the minimum free reserve, we choose
229 1.1 mycroft * to begin optimizing for time.
230 1.1 mycroft */
231 1.1 mycroft request = nsize;
232 1.1 mycroft if (fs->fs_minfree < 5 ||
233 1.1 mycroft fs->fs_cstotal.cs_nffree >
234 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
235 1.1 mycroft break;
236 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
237 1.1 mycroft fs->fs_fsmnt);
238 1.1 mycroft fs->fs_optim = FS_OPTTIME;
239 1.1 mycroft break;
240 1.1 mycroft case FS_OPTTIME:
241 1.1 mycroft /*
242 1.1 mycroft * At this point we have discovered a file that is trying to
243 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
244 1.1 mycroft * we allocate a full sized block, then free the unused portion.
245 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
246 1.1 mycroft * above will be able to grow it in place without further
247 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
248 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
249 1.1 mycroft * optimizing for space.
250 1.1 mycroft */
251 1.1 mycroft request = fs->fs_bsize;
252 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
253 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
254 1.1 mycroft break;
255 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
256 1.1 mycroft fs->fs_fsmnt);
257 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
258 1.1 mycroft break;
259 1.1 mycroft default:
260 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
261 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
262 1.1 mycroft panic("ffs_realloccg: bad optim");
263 1.1 mycroft /* NOTREACHED */
264 1.1 mycroft }
265 1.1 mycroft bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
266 1.9 christos ffs_alloccg);
267 1.1 mycroft if (bno > 0) {
268 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
269 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
270 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
271 1.1 mycroft if (nsize < request)
272 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
273 1.1 mycroft (long)(request - nsize));
274 1.1 mycroft ip->i_blocks += btodb(nsize - osize);
275 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
276 1.1 mycroft allocbuf(bp, nsize);
277 1.1 mycroft bp->b_flags |= B_DONE;
278 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
279 1.1 mycroft *bpp = bp;
280 1.1 mycroft return (0);
281 1.1 mycroft }
282 1.1 mycroft #ifdef QUOTA
283 1.1 mycroft /*
284 1.1 mycroft * Restore user's disk quota because allocation failed.
285 1.1 mycroft */
286 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
287 1.1 mycroft #endif
288 1.1 mycroft brelse(bp);
289 1.1 mycroft nospace:
290 1.1 mycroft /*
291 1.1 mycroft * no space available
292 1.1 mycroft */
293 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
294 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
295 1.1 mycroft return (ENOSPC);
296 1.1 mycroft }
297 1.1 mycroft
298 1.1 mycroft /*
299 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
300 1.1 mycroft *
301 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
302 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
303 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
304 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
305 1.1 mycroft * block immediately preceeding the current range. If successful, the
306 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
307 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
308 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
309 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
310 1.1 mycroft * the previous block allocation will be used.
311 1.1 mycroft */
312 1.3 mycroft #ifdef DEBUG
313 1.1 mycroft #include <sys/sysctl.h>
314 1.1 mycroft int doasyncfree = 1;
315 1.1 mycroft struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
316 1.5 mycroft int prtrealloc = 0;
317 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
318 1.3 mycroft #else
319 1.3 mycroft #define doasyncfree 1
320 1.1 mycroft #endif
321 1.1 mycroft
322 1.1 mycroft int
323 1.9 christos ffs_reallocblks(v)
324 1.9 christos void *v;
325 1.9 christos {
326 1.1 mycroft struct vop_reallocblks_args /* {
327 1.1 mycroft struct vnode *a_vp;
328 1.1 mycroft struct cluster_save *a_buflist;
329 1.9 christos } */ *ap = v;
330 1.1 mycroft struct fs *fs;
331 1.1 mycroft struct inode *ip;
332 1.1 mycroft struct vnode *vp;
333 1.1 mycroft struct buf *sbp, *ebp;
334 1.9 christos daddr_t *bap, *sbap, *ebap = NULL;
335 1.1 mycroft struct cluster_save *buflist;
336 1.9 christos daddr_t start_lbn, end_lbn, soff, newblk, blkno;
337 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
338 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
339 1.11 mycroft struct timespec ts;
340 1.1 mycroft
341 1.1 mycroft vp = ap->a_vp;
342 1.1 mycroft ip = VTOI(vp);
343 1.1 mycroft fs = ip->i_fs;
344 1.1 mycroft if (fs->fs_contigsumsize <= 0)
345 1.1 mycroft return (ENOSPC);
346 1.1 mycroft buflist = ap->a_buflist;
347 1.1 mycroft len = buflist->bs_nchildren;
348 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
349 1.1 mycroft end_lbn = start_lbn + len - 1;
350 1.1 mycroft #ifdef DIAGNOSTIC
351 1.1 mycroft for (i = 1; i < len; i++)
352 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
353 1.1 mycroft panic("ffs_reallocblks: non-cluster");
354 1.1 mycroft #endif
355 1.1 mycroft /*
356 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
357 1.1 mycroft * the filesystem has decided to move and do not force it back to
358 1.1 mycroft * the previous cylinder group.
359 1.1 mycroft */
360 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
361 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
362 1.1 mycroft return (ENOSPC);
363 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
364 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
365 1.1 mycroft return (ENOSPC);
366 1.1 mycroft /*
367 1.1 mycroft * Get the starting offset and block map for the first block.
368 1.1 mycroft */
369 1.1 mycroft if (start_lvl == 0) {
370 1.1 mycroft sbap = &ip->i_db[0];
371 1.1 mycroft soff = start_lbn;
372 1.1 mycroft } else {
373 1.1 mycroft idp = &start_ap[start_lvl - 1];
374 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
375 1.1 mycroft brelse(sbp);
376 1.1 mycroft return (ENOSPC);
377 1.1 mycroft }
378 1.1 mycroft sbap = (daddr_t *)sbp->b_data;
379 1.1 mycroft soff = idp->in_off;
380 1.1 mycroft }
381 1.1 mycroft /*
382 1.1 mycroft * Find the preferred location for the cluster.
383 1.1 mycroft */
384 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
385 1.1 mycroft /*
386 1.1 mycroft * If the block range spans two block maps, get the second map.
387 1.1 mycroft */
388 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
389 1.1 mycroft ssize = len;
390 1.1 mycroft } else {
391 1.1 mycroft #ifdef DIAGNOSTIC
392 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
393 1.1 mycroft panic("ffs_reallocblk: start == end");
394 1.1 mycroft #endif
395 1.1 mycroft ssize = len - (idp->in_off + 1);
396 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
397 1.1 mycroft goto fail;
398 1.1 mycroft ebap = (daddr_t *)ebp->b_data;
399 1.1 mycroft }
400 1.1 mycroft /*
401 1.1 mycroft * Search the block map looking for an allocation of the desired size.
402 1.1 mycroft */
403 1.1 mycroft if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
404 1.9 christos len, ffs_clusteralloc)) == 0)
405 1.1 mycroft goto fail;
406 1.1 mycroft /*
407 1.1 mycroft * We have found a new contiguous block.
408 1.1 mycroft *
409 1.1 mycroft * First we have to replace the old block pointers with the new
410 1.1 mycroft * block pointers in the inode and indirect blocks associated
411 1.1 mycroft * with the file.
412 1.1 mycroft */
413 1.5 mycroft #ifdef DEBUG
414 1.5 mycroft if (prtrealloc)
415 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
416 1.5 mycroft start_lbn, end_lbn);
417 1.5 mycroft #endif
418 1.1 mycroft blkno = newblk;
419 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
420 1.1 mycroft if (i == ssize)
421 1.1 mycroft bap = ebap;
422 1.1 mycroft #ifdef DIAGNOSTIC
423 1.5 mycroft if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
424 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
425 1.1 mycroft #endif
426 1.5 mycroft #ifdef DEBUG
427 1.5 mycroft if (prtrealloc)
428 1.13 christos printf(" %d,", *bap);
429 1.5 mycroft #endif
430 1.1 mycroft *bap++ = blkno;
431 1.1 mycroft }
432 1.1 mycroft /*
433 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
434 1.1 mycroft * For strict correctness, the writes should be synchronous since
435 1.1 mycroft * the old block values may have been written to disk. In practise
436 1.1 mycroft * they are almost never written, but if we are concerned about
437 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
438 1.1 mycroft *
439 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
440 1.1 mycroft * that shows whether the associated buffers and inodes have
441 1.1 mycroft * been written. The flag should be set when the cluster is
442 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
443 1.1 mycroft * We can then check below to see if it is set, and do the
444 1.1 mycroft * synchronous write only when it has been cleared.
445 1.1 mycroft */
446 1.1 mycroft if (sbap != &ip->i_db[0]) {
447 1.1 mycroft if (doasyncfree)
448 1.1 mycroft bdwrite(sbp);
449 1.1 mycroft else
450 1.1 mycroft bwrite(sbp);
451 1.1 mycroft } else {
452 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
453 1.11 mycroft if (!doasyncfree) {
454 1.11 mycroft TIMEVAL_TO_TIMESPEC(&time, &ts);
455 1.11 mycroft VOP_UPDATE(vp, &ts, &ts, 1);
456 1.11 mycroft }
457 1.1 mycroft }
458 1.1 mycroft if (ssize < len)
459 1.1 mycroft if (doasyncfree)
460 1.1 mycroft bdwrite(ebp);
461 1.1 mycroft else
462 1.1 mycroft bwrite(ebp);
463 1.1 mycroft /*
464 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
465 1.1 mycroft */
466 1.5 mycroft #ifdef DEBUG
467 1.5 mycroft if (prtrealloc)
468 1.13 christos printf("\n\tnew:");
469 1.5 mycroft #endif
470 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
471 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
472 1.1 mycroft fs->fs_bsize);
473 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
474 1.5 mycroft #ifdef DEBUG
475 1.5 mycroft if (prtrealloc)
476 1.13 christos printf(" %d,", blkno);
477 1.5 mycroft #endif
478 1.5 mycroft }
479 1.5 mycroft #ifdef DEBUG
480 1.5 mycroft if (prtrealloc) {
481 1.5 mycroft prtrealloc--;
482 1.13 christos printf("\n");
483 1.1 mycroft }
484 1.5 mycroft #endif
485 1.1 mycroft return (0);
486 1.1 mycroft
487 1.1 mycroft fail:
488 1.1 mycroft if (ssize < len)
489 1.1 mycroft brelse(ebp);
490 1.1 mycroft if (sbap != &ip->i_db[0])
491 1.1 mycroft brelse(sbp);
492 1.1 mycroft return (ENOSPC);
493 1.1 mycroft }
494 1.1 mycroft
495 1.1 mycroft /*
496 1.1 mycroft * Allocate an inode in the file system.
497 1.1 mycroft *
498 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
499 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
500 1.1 mycroft * 1) allocate the preferred inode.
501 1.1 mycroft * 2) allocate an inode in the same cylinder group.
502 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
503 1.1 mycroft * available inode is located.
504 1.1 mycroft * If no inode preference is given the following heirarchy is used
505 1.1 mycroft * to allocate an inode:
506 1.1 mycroft * 1) allocate an inode in cylinder group 0.
507 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
508 1.1 mycroft * available inode is located.
509 1.1 mycroft */
510 1.9 christos int
511 1.9 christos ffs_valloc(v)
512 1.9 christos void *v;
513 1.9 christos {
514 1.1 mycroft struct vop_valloc_args /* {
515 1.1 mycroft struct vnode *a_pvp;
516 1.1 mycroft int a_mode;
517 1.1 mycroft struct ucred *a_cred;
518 1.1 mycroft struct vnode **a_vpp;
519 1.9 christos } */ *ap = v;
520 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
521 1.1 mycroft register struct inode *pip;
522 1.1 mycroft register struct fs *fs;
523 1.1 mycroft register struct inode *ip;
524 1.1 mycroft mode_t mode = ap->a_mode;
525 1.1 mycroft ino_t ino, ipref;
526 1.1 mycroft int cg, error;
527 1.1 mycroft
528 1.1 mycroft *ap->a_vpp = NULL;
529 1.1 mycroft pip = VTOI(pvp);
530 1.1 mycroft fs = pip->i_fs;
531 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
532 1.1 mycroft goto noinodes;
533 1.1 mycroft
534 1.1 mycroft if ((mode & IFMT) == IFDIR)
535 1.1 mycroft ipref = ffs_dirpref(fs);
536 1.1 mycroft else
537 1.1 mycroft ipref = pip->i_number;
538 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
539 1.1 mycroft ipref = 0;
540 1.1 mycroft cg = ino_to_cg(fs, ipref);
541 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
542 1.1 mycroft if (ino == 0)
543 1.1 mycroft goto noinodes;
544 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
545 1.1 mycroft if (error) {
546 1.1 mycroft VOP_VFREE(pvp, ino, mode);
547 1.1 mycroft return (error);
548 1.1 mycroft }
549 1.1 mycroft ip = VTOI(*ap->a_vpp);
550 1.1 mycroft if (ip->i_mode) {
551 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
552 1.1 mycroft ip->i_mode, ip->i_number, fs->fs_fsmnt);
553 1.1 mycroft panic("ffs_valloc: dup alloc");
554 1.1 mycroft }
555 1.1 mycroft if (ip->i_blocks) { /* XXX */
556 1.13 christos printf("free inode %s/%d had %d blocks\n",
557 1.1 mycroft fs->fs_fsmnt, ino, ip->i_blocks);
558 1.1 mycroft ip->i_blocks = 0;
559 1.1 mycroft }
560 1.1 mycroft ip->i_flags = 0;
561 1.1 mycroft /*
562 1.1 mycroft * Set up a new generation number for this inode.
563 1.1 mycroft */
564 1.13.6.1 is ip->i_gen++;
565 1.1 mycroft return (0);
566 1.1 mycroft noinodes:
567 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
568 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
569 1.1 mycroft return (ENOSPC);
570 1.1 mycroft }
571 1.1 mycroft
572 1.1 mycroft /*
573 1.1 mycroft * Find a cylinder to place a directory.
574 1.1 mycroft *
575 1.1 mycroft * The policy implemented by this algorithm is to select from
576 1.1 mycroft * among those cylinder groups with above the average number of
577 1.1 mycroft * free inodes, the one with the smallest number of directories.
578 1.1 mycroft */
579 1.1 mycroft static ino_t
580 1.1 mycroft ffs_dirpref(fs)
581 1.1 mycroft register struct fs *fs;
582 1.1 mycroft {
583 1.1 mycroft int cg, minndir, mincg, avgifree;
584 1.1 mycroft
585 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
586 1.1 mycroft minndir = fs->fs_ipg;
587 1.1 mycroft mincg = 0;
588 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
589 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
590 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
591 1.1 mycroft mincg = cg;
592 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
593 1.1 mycroft }
594 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
595 1.1 mycroft }
596 1.1 mycroft
597 1.1 mycroft /*
598 1.1 mycroft * Select the desired position for the next block in a file. The file is
599 1.1 mycroft * logically divided into sections. The first section is composed of the
600 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
601 1.1 mycroft *
602 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
603 1.1 mycroft * request a block in the same cylinder group as the inode that describes
604 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
605 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
606 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
607 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
608 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
609 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
610 1.1 mycroft * continues until a cylinder group with greater than the average number
611 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
612 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
613 1.1 mycroft * here a best guess is made based upon the logical block number being
614 1.1 mycroft * allocated.
615 1.1 mycroft *
616 1.1 mycroft * If a section is already partially allocated, the policy is to
617 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
618 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
619 1.1 mycroft * so that the disk head will be in transit between them for at least
620 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
621 1.1 mycroft * schedule another I/O transfer.
622 1.1 mycroft */
623 1.1 mycroft daddr_t
624 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
625 1.1 mycroft struct inode *ip;
626 1.1 mycroft daddr_t lbn;
627 1.1 mycroft int indx;
628 1.1 mycroft daddr_t *bap;
629 1.1 mycroft {
630 1.1 mycroft register struct fs *fs;
631 1.1 mycroft register int cg;
632 1.1 mycroft int avgbfree, startcg;
633 1.1 mycroft daddr_t nextblk;
634 1.1 mycroft
635 1.1 mycroft fs = ip->i_fs;
636 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
637 1.1 mycroft if (lbn < NDADDR) {
638 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
639 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
640 1.1 mycroft }
641 1.1 mycroft /*
642 1.1 mycroft * Find a cylinder with greater than average number of
643 1.1 mycroft * unused data blocks.
644 1.1 mycroft */
645 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
646 1.1 mycroft startcg =
647 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
648 1.1 mycroft else
649 1.1 mycroft startcg = dtog(fs, bap[indx - 1]) + 1;
650 1.1 mycroft startcg %= fs->fs_ncg;
651 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
652 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
653 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
654 1.1 mycroft fs->fs_cgrotor = cg;
655 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
656 1.1 mycroft }
657 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
658 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
659 1.1 mycroft fs->fs_cgrotor = cg;
660 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
661 1.1 mycroft }
662 1.1 mycroft return (NULL);
663 1.1 mycroft }
664 1.1 mycroft /*
665 1.1 mycroft * One or more previous blocks have been laid out. If less
666 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
667 1.1 mycroft * next block is requested contiguously, otherwise it is
668 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
669 1.1 mycroft */
670 1.1 mycroft nextblk = bap[indx - 1] + fs->fs_frag;
671 1.1 mycroft if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
672 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
673 1.1 mycroft return (nextblk);
674 1.1 mycroft if (fs->fs_rotdelay != 0)
675 1.1 mycroft /*
676 1.1 mycroft * Here we convert ms of delay to frags as:
677 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
678 1.1 mycroft * ((sect/frag) * (ms/sec))
679 1.1 mycroft * then round up to the next block.
680 1.1 mycroft */
681 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
682 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
683 1.1 mycroft return (nextblk);
684 1.1 mycroft }
685 1.1 mycroft
686 1.1 mycroft /*
687 1.1 mycroft * Implement the cylinder overflow algorithm.
688 1.1 mycroft *
689 1.1 mycroft * The policy implemented by this algorithm is:
690 1.1 mycroft * 1) allocate the block in its requested cylinder group.
691 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
692 1.1 mycroft * 3) brute force search for a free block.
693 1.1 mycroft */
694 1.1 mycroft /*VARARGS5*/
695 1.1 mycroft static u_long
696 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
697 1.1 mycroft struct inode *ip;
698 1.1 mycroft int cg;
699 1.1 mycroft long pref;
700 1.1 mycroft int size; /* size for data blocks, mode for inodes */
701 1.9 christos daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
702 1.1 mycroft {
703 1.1 mycroft register struct fs *fs;
704 1.1 mycroft long result;
705 1.1 mycroft int i, icg = cg;
706 1.1 mycroft
707 1.1 mycroft fs = ip->i_fs;
708 1.1 mycroft /*
709 1.1 mycroft * 1: preferred cylinder group
710 1.1 mycroft */
711 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
712 1.1 mycroft if (result)
713 1.1 mycroft return (result);
714 1.1 mycroft /*
715 1.1 mycroft * 2: quadratic rehash
716 1.1 mycroft */
717 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
718 1.1 mycroft cg += i;
719 1.1 mycroft if (cg >= fs->fs_ncg)
720 1.1 mycroft cg -= fs->fs_ncg;
721 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
722 1.1 mycroft if (result)
723 1.1 mycroft return (result);
724 1.1 mycroft }
725 1.1 mycroft /*
726 1.1 mycroft * 3: brute force search
727 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
728 1.1 mycroft * and 1 is always checked in the quadratic rehash.
729 1.1 mycroft */
730 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
731 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
732 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
733 1.1 mycroft if (result)
734 1.1 mycroft return (result);
735 1.1 mycroft cg++;
736 1.1 mycroft if (cg == fs->fs_ncg)
737 1.1 mycroft cg = 0;
738 1.1 mycroft }
739 1.1 mycroft return (NULL);
740 1.1 mycroft }
741 1.1 mycroft
742 1.1 mycroft /*
743 1.1 mycroft * Determine whether a fragment can be extended.
744 1.1 mycroft *
745 1.1 mycroft * Check to see if the necessary fragments are available, and
746 1.1 mycroft * if they are, allocate them.
747 1.1 mycroft */
748 1.1 mycroft static daddr_t
749 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
750 1.1 mycroft struct inode *ip;
751 1.1 mycroft int cg;
752 1.1 mycroft long bprev;
753 1.1 mycroft int osize, nsize;
754 1.1 mycroft {
755 1.1 mycroft register struct fs *fs;
756 1.1 mycroft register struct cg *cgp;
757 1.1 mycroft struct buf *bp;
758 1.1 mycroft long bno;
759 1.1 mycroft int frags, bbase;
760 1.1 mycroft int i, error;
761 1.1 mycroft
762 1.1 mycroft fs = ip->i_fs;
763 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
764 1.1 mycroft return (NULL);
765 1.1 mycroft frags = numfrags(fs, nsize);
766 1.1 mycroft bbase = fragnum(fs, bprev);
767 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
768 1.1 mycroft /* cannot extend across a block boundary */
769 1.1 mycroft return (NULL);
770 1.1 mycroft }
771 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
772 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
773 1.1 mycroft if (error) {
774 1.1 mycroft brelse(bp);
775 1.1 mycroft return (NULL);
776 1.1 mycroft }
777 1.1 mycroft cgp = (struct cg *)bp->b_data;
778 1.1 mycroft if (!cg_chkmagic(cgp)) {
779 1.1 mycroft brelse(bp);
780 1.1 mycroft return (NULL);
781 1.1 mycroft }
782 1.1 mycroft cgp->cg_time = time.tv_sec;
783 1.1 mycroft bno = dtogd(fs, bprev);
784 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
785 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i)) {
786 1.1 mycroft brelse(bp);
787 1.1 mycroft return (NULL);
788 1.1 mycroft }
789 1.1 mycroft /*
790 1.1 mycroft * the current fragment can be extended
791 1.1 mycroft * deduct the count on fragment being extended into
792 1.1 mycroft * increase the count on the remaining fragment (if any)
793 1.1 mycroft * allocate the extended piece
794 1.1 mycroft */
795 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
796 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i))
797 1.1 mycroft break;
798 1.1 mycroft cgp->cg_frsum[i - numfrags(fs, osize)]--;
799 1.1 mycroft if (i != frags)
800 1.1 mycroft cgp->cg_frsum[i - frags]++;
801 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
802 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
803 1.1 mycroft cgp->cg_cs.cs_nffree--;
804 1.1 mycroft fs->fs_cstotal.cs_nffree--;
805 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
806 1.1 mycroft }
807 1.1 mycroft fs->fs_fmod = 1;
808 1.1 mycroft bdwrite(bp);
809 1.1 mycroft return (bprev);
810 1.1 mycroft }
811 1.1 mycroft
812 1.1 mycroft /*
813 1.1 mycroft * Determine whether a block can be allocated.
814 1.1 mycroft *
815 1.1 mycroft * Check to see if a block of the appropriate size is available,
816 1.1 mycroft * and if it is, allocate it.
817 1.1 mycroft */
818 1.1 mycroft static daddr_t
819 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
820 1.1 mycroft struct inode *ip;
821 1.1 mycroft int cg;
822 1.1 mycroft daddr_t bpref;
823 1.1 mycroft int size;
824 1.1 mycroft {
825 1.1 mycroft register struct fs *fs;
826 1.1 mycroft register struct cg *cgp;
827 1.1 mycroft struct buf *bp;
828 1.1 mycroft register int i;
829 1.1 mycroft int error, bno, frags, allocsiz;
830 1.1 mycroft
831 1.1 mycroft fs = ip->i_fs;
832 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
833 1.1 mycroft return (NULL);
834 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
835 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
836 1.1 mycroft if (error) {
837 1.1 mycroft brelse(bp);
838 1.1 mycroft return (NULL);
839 1.1 mycroft }
840 1.1 mycroft cgp = (struct cg *)bp->b_data;
841 1.1 mycroft if (!cg_chkmagic(cgp) ||
842 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
843 1.1 mycroft brelse(bp);
844 1.1 mycroft return (NULL);
845 1.1 mycroft }
846 1.1 mycroft cgp->cg_time = time.tv_sec;
847 1.1 mycroft if (size == fs->fs_bsize) {
848 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
849 1.1 mycroft bdwrite(bp);
850 1.1 mycroft return (bno);
851 1.1 mycroft }
852 1.1 mycroft /*
853 1.1 mycroft * check to see if any fragments are already available
854 1.1 mycroft * allocsiz is the size which will be allocated, hacking
855 1.1 mycroft * it down to a smaller size if necessary
856 1.1 mycroft */
857 1.1 mycroft frags = numfrags(fs, size);
858 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
859 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
860 1.1 mycroft break;
861 1.1 mycroft if (allocsiz == fs->fs_frag) {
862 1.1 mycroft /*
863 1.1 mycroft * no fragments were available, so a block will be
864 1.1 mycroft * allocated, and hacked up
865 1.1 mycroft */
866 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
867 1.1 mycroft brelse(bp);
868 1.1 mycroft return (NULL);
869 1.1 mycroft }
870 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
871 1.1 mycroft bpref = dtogd(fs, bno);
872 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
873 1.1 mycroft setbit(cg_blksfree(cgp), bpref + i);
874 1.1 mycroft i = fs->fs_frag - frags;
875 1.1 mycroft cgp->cg_cs.cs_nffree += i;
876 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
877 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
878 1.1 mycroft fs->fs_fmod = 1;
879 1.1 mycroft cgp->cg_frsum[i]++;
880 1.1 mycroft bdwrite(bp);
881 1.1 mycroft return (bno);
882 1.1 mycroft }
883 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
884 1.1 mycroft if (bno < 0) {
885 1.1 mycroft brelse(bp);
886 1.1 mycroft return (NULL);
887 1.1 mycroft }
888 1.1 mycroft for (i = 0; i < frags; i++)
889 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
890 1.1 mycroft cgp->cg_cs.cs_nffree -= frags;
891 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
892 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
893 1.1 mycroft fs->fs_fmod = 1;
894 1.1 mycroft cgp->cg_frsum[allocsiz]--;
895 1.1 mycroft if (frags != allocsiz)
896 1.1 mycroft cgp->cg_frsum[allocsiz - frags]++;
897 1.1 mycroft bdwrite(bp);
898 1.1 mycroft return (cg * fs->fs_fpg + bno);
899 1.1 mycroft }
900 1.1 mycroft
901 1.1 mycroft /*
902 1.1 mycroft * Allocate a block in a cylinder group.
903 1.1 mycroft *
904 1.1 mycroft * This algorithm implements the following policy:
905 1.1 mycroft * 1) allocate the requested block.
906 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
907 1.1 mycroft * 3) allocate the next available block on the block rotor for the
908 1.1 mycroft * specified cylinder group.
909 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
910 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
911 1.1 mycroft */
912 1.1 mycroft static daddr_t
913 1.1 mycroft ffs_alloccgblk(fs, cgp, bpref)
914 1.1 mycroft register struct fs *fs;
915 1.1 mycroft register struct cg *cgp;
916 1.1 mycroft daddr_t bpref;
917 1.1 mycroft {
918 1.1 mycroft daddr_t bno, blkno;
919 1.1 mycroft int cylno, pos, delta;
920 1.1 mycroft short *cylbp;
921 1.1 mycroft register int i;
922 1.1 mycroft
923 1.1 mycroft if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
924 1.1 mycroft bpref = cgp->cg_rotor;
925 1.1 mycroft goto norot;
926 1.1 mycroft }
927 1.1 mycroft bpref = blknum(fs, bpref);
928 1.1 mycroft bpref = dtogd(fs, bpref);
929 1.1 mycroft /*
930 1.1 mycroft * if the requested block is available, use it
931 1.1 mycroft */
932 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
933 1.1 mycroft bno = bpref;
934 1.1 mycroft goto gotit;
935 1.1 mycroft }
936 1.6 mycroft if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
937 1.1 mycroft /*
938 1.1 mycroft * Block layout information is not available.
939 1.1 mycroft * Leaving bpref unchanged means we take the
940 1.1 mycroft * next available free block following the one
941 1.1 mycroft * we just allocated. Hopefully this will at
942 1.1 mycroft * least hit a track cache on drives of unknown
943 1.1 mycroft * geometry (e.g. SCSI).
944 1.1 mycroft */
945 1.1 mycroft goto norot;
946 1.1 mycroft }
947 1.6 mycroft /*
948 1.6 mycroft * check for a block available on the same cylinder
949 1.6 mycroft */
950 1.6 mycroft cylno = cbtocylno(fs, bpref);
951 1.6 mycroft if (cg_blktot(cgp)[cylno] == 0)
952 1.6 mycroft goto norot;
953 1.1 mycroft /*
954 1.1 mycroft * check the summary information to see if a block is
955 1.1 mycroft * available in the requested cylinder starting at the
956 1.1 mycroft * requested rotational position and proceeding around.
957 1.1 mycroft */
958 1.1 mycroft cylbp = cg_blks(fs, cgp, cylno);
959 1.1 mycroft pos = cbtorpos(fs, bpref);
960 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
961 1.1 mycroft if (cylbp[i] > 0)
962 1.1 mycroft break;
963 1.1 mycroft if (i == fs->fs_nrpos)
964 1.1 mycroft for (i = 0; i < pos; i++)
965 1.1 mycroft if (cylbp[i] > 0)
966 1.1 mycroft break;
967 1.1 mycroft if (cylbp[i] > 0) {
968 1.1 mycroft /*
969 1.1 mycroft * found a rotational position, now find the actual
970 1.1 mycroft * block. A panic if none is actually there.
971 1.1 mycroft */
972 1.1 mycroft pos = cylno % fs->fs_cpc;
973 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
974 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
975 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
976 1.1 mycroft pos, i, fs->fs_fsmnt);
977 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
978 1.1 mycroft }
979 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
980 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
981 1.1 mycroft bno = blkstofrags(fs, (bno + i));
982 1.1 mycroft goto gotit;
983 1.1 mycroft }
984 1.1 mycroft delta = fs_rotbl(fs)[i];
985 1.1 mycroft if (delta <= 0 ||
986 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
987 1.1 mycroft break;
988 1.1 mycroft i += delta;
989 1.1 mycroft }
990 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
991 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
992 1.1 mycroft }
993 1.1 mycroft norot:
994 1.1 mycroft /*
995 1.1 mycroft * no blocks in the requested cylinder, so take next
996 1.1 mycroft * available one in this cylinder group.
997 1.1 mycroft */
998 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
999 1.1 mycroft if (bno < 0)
1000 1.1 mycroft return (NULL);
1001 1.1 mycroft cgp->cg_rotor = bno;
1002 1.1 mycroft gotit:
1003 1.1 mycroft blkno = fragstoblks(fs, bno);
1004 1.1 mycroft ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1005 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, -1);
1006 1.1 mycroft cgp->cg_cs.cs_nbfree--;
1007 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1008 1.1 mycroft fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1009 1.1 mycroft cylno = cbtocylno(fs, bno);
1010 1.1 mycroft cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1011 1.1 mycroft cg_blktot(cgp)[cylno]--;
1012 1.1 mycroft fs->fs_fmod = 1;
1013 1.1 mycroft return (cgp->cg_cgx * fs->fs_fpg + bno);
1014 1.1 mycroft }
1015 1.1 mycroft
1016 1.1 mycroft /*
1017 1.1 mycroft * Determine whether a cluster can be allocated.
1018 1.1 mycroft *
1019 1.1 mycroft * We do not currently check for optimal rotational layout if there
1020 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1021 1.1 mycroft * take the first one that we find following bpref.
1022 1.1 mycroft */
1023 1.1 mycroft static daddr_t
1024 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1025 1.1 mycroft struct inode *ip;
1026 1.1 mycroft int cg;
1027 1.1 mycroft daddr_t bpref;
1028 1.1 mycroft int len;
1029 1.1 mycroft {
1030 1.1 mycroft register struct fs *fs;
1031 1.1 mycroft register struct cg *cgp;
1032 1.1 mycroft struct buf *bp;
1033 1.1 mycroft int i, run, bno, bit, map;
1034 1.1 mycroft u_char *mapp;
1035 1.5 mycroft int32_t *lp;
1036 1.1 mycroft
1037 1.1 mycroft fs = ip->i_fs;
1038 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1039 1.1 mycroft return (NULL);
1040 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1041 1.1 mycroft NOCRED, &bp))
1042 1.1 mycroft goto fail;
1043 1.1 mycroft cgp = (struct cg *)bp->b_data;
1044 1.1 mycroft if (!cg_chkmagic(cgp))
1045 1.1 mycroft goto fail;
1046 1.1 mycroft /*
1047 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1048 1.1 mycroft * available in this cylinder group.
1049 1.1 mycroft */
1050 1.5 mycroft lp = &cg_clustersum(cgp)[len];
1051 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1052 1.5 mycroft if (*lp++ > 0)
1053 1.1 mycroft break;
1054 1.5 mycroft if (i > fs->fs_contigsumsize) {
1055 1.5 mycroft /*
1056 1.5 mycroft * This is the first time looking for a cluster in this
1057 1.5 mycroft * cylinder group. Update the cluster summary information
1058 1.5 mycroft * to reflect the true maximum sized cluster so that
1059 1.5 mycroft * future cluster allocation requests can avoid reading
1060 1.5 mycroft * the cylinder group map only to find no clusters.
1061 1.5 mycroft */
1062 1.5 mycroft lp = &cg_clustersum(cgp)[len - 1];
1063 1.5 mycroft for (i = len - 1; i > 0; i--)
1064 1.5 mycroft if (*lp-- > 0)
1065 1.5 mycroft break;
1066 1.5 mycroft fs->fs_maxcluster[cg] = i;
1067 1.1 mycroft goto fail;
1068 1.5 mycroft }
1069 1.1 mycroft /*
1070 1.1 mycroft * Search the cluster map to find a big enough cluster.
1071 1.1 mycroft * We take the first one that we find, even if it is larger
1072 1.1 mycroft * than we need as we prefer to get one close to the previous
1073 1.1 mycroft * block allocation. We do not search before the current
1074 1.1 mycroft * preference point as we do not want to allocate a block
1075 1.1 mycroft * that is allocated before the previous one (as we will
1076 1.1 mycroft * then have to wait for another pass of the elevator
1077 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1078 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1079 1.1 mycroft */
1080 1.1 mycroft if (dtog(fs, bpref) != cg)
1081 1.1 mycroft bpref = 0;
1082 1.1 mycroft else
1083 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1084 1.1 mycroft mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1085 1.1 mycroft map = *mapp++;
1086 1.1 mycroft bit = 1 << (bpref % NBBY);
1087 1.1 mycroft for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
1088 1.1 mycroft if ((map & bit) == 0) {
1089 1.1 mycroft run = 0;
1090 1.1 mycroft } else {
1091 1.1 mycroft run++;
1092 1.1 mycroft if (run == len)
1093 1.1 mycroft break;
1094 1.1 mycroft }
1095 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1096 1.1 mycroft bit <<= 1;
1097 1.1 mycroft } else {
1098 1.1 mycroft map = *mapp++;
1099 1.1 mycroft bit = 1;
1100 1.1 mycroft }
1101 1.1 mycroft }
1102 1.1 mycroft if (i == cgp->cg_nclusterblks)
1103 1.1 mycroft goto fail;
1104 1.1 mycroft /*
1105 1.1 mycroft * Allocate the cluster that we have found.
1106 1.1 mycroft */
1107 1.1 mycroft bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
1108 1.1 mycroft len = blkstofrags(fs, len);
1109 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1110 1.1 mycroft if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
1111 1.1 mycroft panic("ffs_clusteralloc: lost block");
1112 1.8 cgd bdwrite(bp);
1113 1.1 mycroft return (bno);
1114 1.1 mycroft
1115 1.1 mycroft fail:
1116 1.1 mycroft brelse(bp);
1117 1.1 mycroft return (0);
1118 1.1 mycroft }
1119 1.1 mycroft
1120 1.1 mycroft /*
1121 1.1 mycroft * Determine whether an inode can be allocated.
1122 1.1 mycroft *
1123 1.1 mycroft * Check to see if an inode is available, and if it is,
1124 1.1 mycroft * allocate it using the following policy:
1125 1.1 mycroft * 1) allocate the requested inode.
1126 1.1 mycroft * 2) allocate the next available inode after the requested
1127 1.1 mycroft * inode in the specified cylinder group.
1128 1.1 mycroft */
1129 1.9 christos static daddr_t
1130 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1131 1.1 mycroft struct inode *ip;
1132 1.1 mycroft int cg;
1133 1.1 mycroft daddr_t ipref;
1134 1.1 mycroft int mode;
1135 1.1 mycroft {
1136 1.1 mycroft register struct fs *fs;
1137 1.1 mycroft register struct cg *cgp;
1138 1.1 mycroft struct buf *bp;
1139 1.1 mycroft int error, start, len, loc, map, i;
1140 1.1 mycroft
1141 1.1 mycroft fs = ip->i_fs;
1142 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1143 1.1 mycroft return (NULL);
1144 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1145 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1146 1.1 mycroft if (error) {
1147 1.1 mycroft brelse(bp);
1148 1.1 mycroft return (NULL);
1149 1.1 mycroft }
1150 1.1 mycroft cgp = (struct cg *)bp->b_data;
1151 1.1 mycroft if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1152 1.1 mycroft brelse(bp);
1153 1.1 mycroft return (NULL);
1154 1.1 mycroft }
1155 1.1 mycroft cgp->cg_time = time.tv_sec;
1156 1.1 mycroft if (ipref) {
1157 1.1 mycroft ipref %= fs->fs_ipg;
1158 1.1 mycroft if (isclr(cg_inosused(cgp), ipref))
1159 1.1 mycroft goto gotit;
1160 1.1 mycroft }
1161 1.1 mycroft start = cgp->cg_irotor / NBBY;
1162 1.1 mycroft len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1163 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1164 1.1 mycroft if (loc == 0) {
1165 1.1 mycroft len = start + 1;
1166 1.1 mycroft start = 0;
1167 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1168 1.1 mycroft if (loc == 0) {
1169 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1170 1.1 mycroft cg, cgp->cg_irotor, fs->fs_fsmnt);
1171 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1172 1.1 mycroft /* NOTREACHED */
1173 1.1 mycroft }
1174 1.1 mycroft }
1175 1.1 mycroft i = start + len - loc;
1176 1.1 mycroft map = cg_inosused(cgp)[i];
1177 1.1 mycroft ipref = i * NBBY;
1178 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1179 1.1 mycroft if ((map & i) == 0) {
1180 1.1 mycroft cgp->cg_irotor = ipref;
1181 1.1 mycroft goto gotit;
1182 1.1 mycroft }
1183 1.1 mycroft }
1184 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1185 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1186 1.1 mycroft /* NOTREACHED */
1187 1.1 mycroft gotit:
1188 1.1 mycroft setbit(cg_inosused(cgp), ipref);
1189 1.1 mycroft cgp->cg_cs.cs_nifree--;
1190 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1191 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree--;
1192 1.1 mycroft fs->fs_fmod = 1;
1193 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1194 1.1 mycroft cgp->cg_cs.cs_ndir++;
1195 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1196 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1197 1.1 mycroft }
1198 1.1 mycroft bdwrite(bp);
1199 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1200 1.1 mycroft }
1201 1.1 mycroft
1202 1.1 mycroft /*
1203 1.1 mycroft * Free a block or fragment.
1204 1.1 mycroft *
1205 1.1 mycroft * The specified block or fragment is placed back in the
1206 1.1 mycroft * free map. If a fragment is deallocated, a possible
1207 1.1 mycroft * block reassembly is checked.
1208 1.1 mycroft */
1209 1.9 christos void
1210 1.1 mycroft ffs_blkfree(ip, bno, size)
1211 1.1 mycroft register struct inode *ip;
1212 1.1 mycroft daddr_t bno;
1213 1.1 mycroft long size;
1214 1.1 mycroft {
1215 1.1 mycroft register struct fs *fs;
1216 1.1 mycroft register struct cg *cgp;
1217 1.1 mycroft struct buf *bp;
1218 1.1 mycroft daddr_t blkno;
1219 1.1 mycroft int i, error, cg, blk, frags, bbase;
1220 1.1 mycroft
1221 1.1 mycroft fs = ip->i_fs;
1222 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1223 1.13 christos printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1224 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1225 1.1 mycroft panic("blkfree: bad size");
1226 1.1 mycroft }
1227 1.1 mycroft cg = dtog(fs, bno);
1228 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1229 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1230 1.1 mycroft ffs_fserr(fs, ip->i_uid, "bad block");
1231 1.1 mycroft return;
1232 1.1 mycroft }
1233 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1234 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1235 1.1 mycroft if (error) {
1236 1.1 mycroft brelse(bp);
1237 1.1 mycroft return;
1238 1.1 mycroft }
1239 1.1 mycroft cgp = (struct cg *)bp->b_data;
1240 1.1 mycroft if (!cg_chkmagic(cgp)) {
1241 1.1 mycroft brelse(bp);
1242 1.1 mycroft return;
1243 1.1 mycroft }
1244 1.1 mycroft cgp->cg_time = time.tv_sec;
1245 1.1 mycroft bno = dtogd(fs, bno);
1246 1.1 mycroft if (size == fs->fs_bsize) {
1247 1.1 mycroft blkno = fragstoblks(fs, bno);
1248 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1249 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1250 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1251 1.1 mycroft panic("blkfree: freeing free block");
1252 1.1 mycroft }
1253 1.1 mycroft ffs_setblock(fs, cg_blksfree(cgp), blkno);
1254 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1255 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1256 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1257 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1258 1.1 mycroft i = cbtocylno(fs, bno);
1259 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1260 1.1 mycroft cg_blktot(cgp)[i]++;
1261 1.1 mycroft } else {
1262 1.1 mycroft bbase = bno - fragnum(fs, bno);
1263 1.1 mycroft /*
1264 1.1 mycroft * decrement the counts associated with the old frags
1265 1.1 mycroft */
1266 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1267 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1268 1.1 mycroft /*
1269 1.1 mycroft * deallocate the fragment
1270 1.1 mycroft */
1271 1.1 mycroft frags = numfrags(fs, size);
1272 1.1 mycroft for (i = 0; i < frags; i++) {
1273 1.1 mycroft if (isset(cg_blksfree(cgp), bno + i)) {
1274 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1275 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1276 1.1 mycroft panic("blkfree: freeing free frag");
1277 1.1 mycroft }
1278 1.1 mycroft setbit(cg_blksfree(cgp), bno + i);
1279 1.1 mycroft }
1280 1.1 mycroft cgp->cg_cs.cs_nffree += i;
1281 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1282 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
1283 1.1 mycroft /*
1284 1.1 mycroft * add back in counts associated with the new frags
1285 1.1 mycroft */
1286 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1287 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1288 1.1 mycroft /*
1289 1.1 mycroft * if a complete block has been reassembled, account for it
1290 1.1 mycroft */
1291 1.1 mycroft blkno = fragstoblks(fs, bbase);
1292 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1293 1.1 mycroft cgp->cg_cs.cs_nffree -= fs->fs_frag;
1294 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1295 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1296 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1297 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1298 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1299 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1300 1.1 mycroft i = cbtocylno(fs, bbase);
1301 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1302 1.1 mycroft cg_blktot(cgp)[i]++;
1303 1.1 mycroft }
1304 1.1 mycroft }
1305 1.1 mycroft fs->fs_fmod = 1;
1306 1.1 mycroft bdwrite(bp);
1307 1.1 mycroft }
1308 1.1 mycroft
1309 1.1 mycroft /*
1310 1.1 mycroft * Free an inode.
1311 1.1 mycroft *
1312 1.1 mycroft * The specified inode is placed back in the free map.
1313 1.1 mycroft */
1314 1.1 mycroft int
1315 1.9 christos ffs_vfree(v)
1316 1.9 christos void *v;
1317 1.9 christos {
1318 1.1 mycroft struct vop_vfree_args /* {
1319 1.1 mycroft struct vnode *a_pvp;
1320 1.1 mycroft ino_t a_ino;
1321 1.1 mycroft int a_mode;
1322 1.9 christos } */ *ap = v;
1323 1.1 mycroft register struct fs *fs;
1324 1.1 mycroft register struct cg *cgp;
1325 1.1 mycroft register struct inode *pip;
1326 1.1 mycroft ino_t ino = ap->a_ino;
1327 1.1 mycroft struct buf *bp;
1328 1.1 mycroft int error, cg;
1329 1.1 mycroft
1330 1.1 mycroft pip = VTOI(ap->a_pvp);
1331 1.1 mycroft fs = pip->i_fs;
1332 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1333 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1334 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1335 1.1 mycroft cg = ino_to_cg(fs, ino);
1336 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1337 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1338 1.1 mycroft if (error) {
1339 1.1 mycroft brelse(bp);
1340 1.1 mycroft return (0);
1341 1.1 mycroft }
1342 1.1 mycroft cgp = (struct cg *)bp->b_data;
1343 1.1 mycroft if (!cg_chkmagic(cgp)) {
1344 1.1 mycroft brelse(bp);
1345 1.1 mycroft return (0);
1346 1.1 mycroft }
1347 1.1 mycroft cgp->cg_time = time.tv_sec;
1348 1.1 mycroft ino %= fs->fs_ipg;
1349 1.1 mycroft if (isclr(cg_inosused(cgp), ino)) {
1350 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1351 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1352 1.1 mycroft if (fs->fs_ronly == 0)
1353 1.1 mycroft panic("ifree: freeing free inode");
1354 1.1 mycroft }
1355 1.1 mycroft clrbit(cg_inosused(cgp), ino);
1356 1.1 mycroft if (ino < cgp->cg_irotor)
1357 1.1 mycroft cgp->cg_irotor = ino;
1358 1.1 mycroft cgp->cg_cs.cs_nifree++;
1359 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1360 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1361 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1362 1.1 mycroft cgp->cg_cs.cs_ndir--;
1363 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1364 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1365 1.1 mycroft }
1366 1.1 mycroft fs->fs_fmod = 1;
1367 1.1 mycroft bdwrite(bp);
1368 1.1 mycroft return (0);
1369 1.1 mycroft }
1370 1.1 mycroft
1371 1.1 mycroft /*
1372 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1373 1.1 mycroft *
1374 1.1 mycroft * It is a panic if a request is made to find a block if none are
1375 1.1 mycroft * available.
1376 1.1 mycroft */
1377 1.1 mycroft static daddr_t
1378 1.1 mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
1379 1.1 mycroft register struct fs *fs;
1380 1.1 mycroft register struct cg *cgp;
1381 1.1 mycroft daddr_t bpref;
1382 1.1 mycroft int allocsiz;
1383 1.1 mycroft {
1384 1.1 mycroft daddr_t bno;
1385 1.1 mycroft int start, len, loc, i;
1386 1.1 mycroft int blk, field, subfield, pos;
1387 1.1 mycroft
1388 1.1 mycroft /*
1389 1.1 mycroft * find the fragment by searching through the free block
1390 1.1 mycroft * map for an appropriate bit pattern
1391 1.1 mycroft */
1392 1.1 mycroft if (bpref)
1393 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1394 1.1 mycroft else
1395 1.1 mycroft start = cgp->cg_frotor / NBBY;
1396 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1397 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1398 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1399 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1400 1.1 mycroft if (loc == 0) {
1401 1.1 mycroft len = start + 1;
1402 1.1 mycroft start = 0;
1403 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1404 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1405 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1406 1.1 mycroft if (loc == 0) {
1407 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1408 1.1 mycroft start, len, fs->fs_fsmnt);
1409 1.1 mycroft panic("ffs_alloccg: map corrupted");
1410 1.1 mycroft /* NOTREACHED */
1411 1.1 mycroft }
1412 1.1 mycroft }
1413 1.1 mycroft bno = (start + len - loc) * NBBY;
1414 1.1 mycroft cgp->cg_frotor = bno;
1415 1.1 mycroft /*
1416 1.1 mycroft * found the byte in the map
1417 1.1 mycroft * sift through the bits to find the selected frag
1418 1.1 mycroft */
1419 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1420 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bno);
1421 1.1 mycroft blk <<= 1;
1422 1.1 mycroft field = around[allocsiz];
1423 1.1 mycroft subfield = inside[allocsiz];
1424 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1425 1.1 mycroft if ((blk & field) == subfield)
1426 1.1 mycroft return (bno + pos);
1427 1.1 mycroft field <<= 1;
1428 1.1 mycroft subfield <<= 1;
1429 1.1 mycroft }
1430 1.1 mycroft }
1431 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1432 1.1 mycroft panic("ffs_alloccg: block not in map");
1433 1.1 mycroft return (-1);
1434 1.1 mycroft }
1435 1.1 mycroft
1436 1.1 mycroft /*
1437 1.1 mycroft * Update the cluster map because of an allocation or free.
1438 1.1 mycroft *
1439 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1440 1.1 mycroft */
1441 1.9 christos void
1442 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
1443 1.1 mycroft struct fs *fs;
1444 1.1 mycroft struct cg *cgp;
1445 1.1 mycroft daddr_t blkno;
1446 1.1 mycroft int cnt;
1447 1.1 mycroft {
1448 1.4 cgd int32_t *sump;
1449 1.5 mycroft int32_t *lp;
1450 1.1 mycroft u_char *freemapp, *mapp;
1451 1.1 mycroft int i, start, end, forw, back, map, bit;
1452 1.1 mycroft
1453 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1454 1.1 mycroft return;
1455 1.1 mycroft freemapp = cg_clustersfree(cgp);
1456 1.1 mycroft sump = cg_clustersum(cgp);
1457 1.1 mycroft /*
1458 1.1 mycroft * Allocate or clear the actual block.
1459 1.1 mycroft */
1460 1.1 mycroft if (cnt > 0)
1461 1.1 mycroft setbit(freemapp, blkno);
1462 1.1 mycroft else
1463 1.1 mycroft clrbit(freemapp, blkno);
1464 1.1 mycroft /*
1465 1.1 mycroft * Find the size of the cluster going forward.
1466 1.1 mycroft */
1467 1.1 mycroft start = blkno + 1;
1468 1.1 mycroft end = start + fs->fs_contigsumsize;
1469 1.1 mycroft if (end >= cgp->cg_nclusterblks)
1470 1.1 mycroft end = cgp->cg_nclusterblks;
1471 1.1 mycroft mapp = &freemapp[start / NBBY];
1472 1.1 mycroft map = *mapp++;
1473 1.1 mycroft bit = 1 << (start % NBBY);
1474 1.1 mycroft for (i = start; i < end; i++) {
1475 1.1 mycroft if ((map & bit) == 0)
1476 1.1 mycroft break;
1477 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1478 1.1 mycroft bit <<= 1;
1479 1.1 mycroft } else {
1480 1.1 mycroft map = *mapp++;
1481 1.1 mycroft bit = 1;
1482 1.1 mycroft }
1483 1.1 mycroft }
1484 1.1 mycroft forw = i - start;
1485 1.1 mycroft /*
1486 1.1 mycroft * Find the size of the cluster going backward.
1487 1.1 mycroft */
1488 1.1 mycroft start = blkno - 1;
1489 1.1 mycroft end = start - fs->fs_contigsumsize;
1490 1.1 mycroft if (end < 0)
1491 1.1 mycroft end = -1;
1492 1.1 mycroft mapp = &freemapp[start / NBBY];
1493 1.1 mycroft map = *mapp--;
1494 1.1 mycroft bit = 1 << (start % NBBY);
1495 1.1 mycroft for (i = start; i > end; i--) {
1496 1.1 mycroft if ((map & bit) == 0)
1497 1.1 mycroft break;
1498 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1499 1.1 mycroft bit >>= 1;
1500 1.1 mycroft } else {
1501 1.1 mycroft map = *mapp--;
1502 1.1 mycroft bit = 1 << (NBBY - 1);
1503 1.1 mycroft }
1504 1.1 mycroft }
1505 1.1 mycroft back = start - i;
1506 1.1 mycroft /*
1507 1.1 mycroft * Account for old cluster and the possibly new forward and
1508 1.1 mycroft * back clusters.
1509 1.1 mycroft */
1510 1.1 mycroft i = back + forw + 1;
1511 1.1 mycroft if (i > fs->fs_contigsumsize)
1512 1.1 mycroft i = fs->fs_contigsumsize;
1513 1.1 mycroft sump[i] += cnt;
1514 1.1 mycroft if (back > 0)
1515 1.1 mycroft sump[back] -= cnt;
1516 1.1 mycroft if (forw > 0)
1517 1.1 mycroft sump[forw] -= cnt;
1518 1.5 mycroft /*
1519 1.5 mycroft * Update cluster summary information.
1520 1.5 mycroft */
1521 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1522 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1523 1.5 mycroft if (*lp-- > 0)
1524 1.5 mycroft break;
1525 1.5 mycroft fs->fs_maxcluster[cgp->cg_cgx] = i;
1526 1.1 mycroft }
1527 1.1 mycroft
1528 1.1 mycroft /*
1529 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1530 1.1 mycroft *
1531 1.1 mycroft * The form of the error message is:
1532 1.1 mycroft * fs: error message
1533 1.1 mycroft */
1534 1.1 mycroft static void
1535 1.1 mycroft ffs_fserr(fs, uid, cp)
1536 1.1 mycroft struct fs *fs;
1537 1.1 mycroft u_int uid;
1538 1.1 mycroft char *cp;
1539 1.1 mycroft {
1540 1.1 mycroft
1541 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1542 1.1 mycroft }
1543