Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.13.6.1
      1  1.13.6.1        is /*	$NetBSD: ffs_alloc.c,v 1.13.6.1 1997/03/12 21:26:22 is Exp $	*/
      2       1.2       cgd 
      3       1.1   mycroft /*
      4       1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1   mycroft  *
      7       1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8       1.1   mycroft  * modification, are permitted provided that the following conditions
      9       1.1   mycroft  * are met:
     10       1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11       1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12       1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14       1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15       1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16       1.1   mycroft  *    must display the following acknowledgement:
     17       1.1   mycroft  *	This product includes software developed by the University of
     18       1.1   mycroft  *	California, Berkeley and its contributors.
     19       1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20       1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21       1.1   mycroft  *    without specific prior written permission.
     22       1.1   mycroft  *
     23       1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24       1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25       1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26       1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27       1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28       1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29       1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30       1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31       1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32       1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33       1.1   mycroft  * SUCH DAMAGE.
     34       1.1   mycroft  *
     35       1.5   mycroft  *	@(#)ffs_alloc.c	8.11 (Berkeley) 10/27/94
     36       1.1   mycroft  */
     37       1.1   mycroft 
     38       1.1   mycroft #include <sys/param.h>
     39       1.1   mycroft #include <sys/systm.h>
     40       1.1   mycroft #include <sys/buf.h>
     41       1.1   mycroft #include <sys/proc.h>
     42       1.1   mycroft #include <sys/vnode.h>
     43       1.1   mycroft #include <sys/mount.h>
     44       1.1   mycroft #include <sys/kernel.h>
     45       1.1   mycroft #include <sys/syslog.h>
     46       1.1   mycroft 
     47       1.1   mycroft #include <vm/vm.h>
     48       1.1   mycroft 
     49       1.1   mycroft #include <ufs/ufs/quota.h>
     50       1.1   mycroft #include <ufs/ufs/inode.h>
     51       1.9  christos #include <ufs/ufs/ufs_extern.h>
     52       1.1   mycroft 
     53       1.1   mycroft #include <ufs/ffs/fs.h>
     54       1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     55       1.1   mycroft 
     56       1.1   mycroft static daddr_t	ffs_alloccg __P((struct inode *, int, daddr_t, int));
     57       1.1   mycroft static daddr_t	ffs_alloccgblk __P((struct fs *, struct cg *, daddr_t));
     58       1.1   mycroft static daddr_t	ffs_clusteralloc __P((struct inode *, int, daddr_t, int));
     59       1.1   mycroft static ino_t	ffs_dirpref __P((struct fs *));
     60       1.1   mycroft static daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     61       1.1   mycroft static void	ffs_fserr __P((struct fs *, u_int, char *));
     62       1.9  christos static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     63       1.9  christos 				   daddr_t (*)(struct inode *, int, daddr_t,
     64       1.9  christos 					       int)));
     65       1.9  christos static daddr_t	ffs_nodealloccg __P((struct inode *, int, daddr_t, int));
     66       1.1   mycroft static daddr_t	ffs_mapsearch __P((struct fs *, struct cg *, daddr_t, int));
     67       1.1   mycroft 
     68       1.1   mycroft /*
     69       1.1   mycroft  * Allocate a block in the file system.
     70       1.1   mycroft  *
     71       1.1   mycroft  * The size of the requested block is given, which must be some
     72       1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     73       1.1   mycroft  * A preference may be optionally specified. If a preference is given
     74       1.1   mycroft  * the following hierarchy is used to allocate a block:
     75       1.1   mycroft  *   1) allocate the requested block.
     76       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     77       1.1   mycroft  *   3) allocate a block in the same cylinder group.
     78       1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     79       1.1   mycroft  *      available block is located.
     80       1.1   mycroft  * If no block preference is given the following heirarchy is used
     81       1.1   mycroft  * to allocate a block:
     82       1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
     83       1.1   mycroft  *      inode for the file.
     84       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
     85       1.1   mycroft  *      available block is located.
     86       1.1   mycroft  */
     87       1.9  christos int
     88       1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
     89       1.1   mycroft 	register struct inode *ip;
     90       1.1   mycroft 	daddr_t lbn, bpref;
     91       1.1   mycroft 	int size;
     92       1.1   mycroft 	struct ucred *cred;
     93       1.1   mycroft 	daddr_t *bnp;
     94       1.1   mycroft {
     95       1.1   mycroft 	register struct fs *fs;
     96       1.1   mycroft 	daddr_t bno;
     97       1.9  christos 	int cg;
     98       1.9  christos #ifdef QUOTA
     99       1.9  christos 	int error;
    100       1.9  christos #endif
    101       1.1   mycroft 
    102       1.1   mycroft 	*bnp = 0;
    103       1.1   mycroft 	fs = ip->i_fs;
    104       1.1   mycroft #ifdef DIAGNOSTIC
    105       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    106      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    107       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    108       1.1   mycroft 		panic("ffs_alloc: bad size");
    109       1.1   mycroft 	}
    110       1.1   mycroft 	if (cred == NOCRED)
    111       1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    112       1.1   mycroft #endif /* DIAGNOSTIC */
    113       1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    114       1.1   mycroft 		goto nospace;
    115       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    116       1.1   mycroft 		goto nospace;
    117       1.1   mycroft #ifdef QUOTA
    118       1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    119       1.1   mycroft 		return (error);
    120       1.1   mycroft #endif
    121       1.1   mycroft 	if (bpref >= fs->fs_size)
    122       1.1   mycroft 		bpref = 0;
    123       1.1   mycroft 	if (bpref == 0)
    124       1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    125       1.1   mycroft 	else
    126       1.1   mycroft 		cg = dtog(fs, bpref);
    127       1.1   mycroft 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    128       1.9  christos 	    			     ffs_alloccg);
    129       1.1   mycroft 	if (bno > 0) {
    130       1.1   mycroft 		ip->i_blocks += btodb(size);
    131       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    132       1.1   mycroft 		*bnp = bno;
    133       1.1   mycroft 		return (0);
    134       1.1   mycroft 	}
    135       1.1   mycroft #ifdef QUOTA
    136       1.1   mycroft 	/*
    137       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    138       1.1   mycroft 	 */
    139       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    140       1.1   mycroft #endif
    141       1.1   mycroft nospace:
    142       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    143       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    144       1.1   mycroft 	return (ENOSPC);
    145       1.1   mycroft }
    146       1.1   mycroft 
    147       1.1   mycroft /*
    148       1.1   mycroft  * Reallocate a fragment to a bigger size
    149       1.1   mycroft  *
    150       1.1   mycroft  * The number and size of the old block is given, and a preference
    151       1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    152       1.1   mycroft  * the original block. Failing that, the regular block allocator is
    153       1.1   mycroft  * invoked to get an appropriate block.
    154       1.1   mycroft  */
    155       1.9  christos int
    156       1.1   mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    157       1.1   mycroft 	register struct inode *ip;
    158       1.1   mycroft 	daddr_t lbprev;
    159       1.1   mycroft 	daddr_t bpref;
    160       1.1   mycroft 	int osize, nsize;
    161       1.1   mycroft 	struct ucred *cred;
    162       1.1   mycroft 	struct buf **bpp;
    163       1.1   mycroft {
    164       1.1   mycroft 	register struct fs *fs;
    165       1.1   mycroft 	struct buf *bp;
    166       1.1   mycroft 	int cg, request, error;
    167       1.1   mycroft 	daddr_t bprev, bno;
    168       1.1   mycroft 
    169       1.1   mycroft 	*bpp = 0;
    170       1.1   mycroft 	fs = ip->i_fs;
    171       1.1   mycroft #ifdef DIAGNOSTIC
    172       1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    173       1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    174      1.13  christos 		printf(
    175       1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    176       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    177       1.1   mycroft 		panic("ffs_realloccg: bad size");
    178       1.1   mycroft 	}
    179       1.1   mycroft 	if (cred == NOCRED)
    180       1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    181       1.1   mycroft #endif /* DIAGNOSTIC */
    182       1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    183       1.1   mycroft 		goto nospace;
    184       1.1   mycroft 	if ((bprev = ip->i_db[lbprev]) == 0) {
    185      1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    186       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    187       1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    188       1.1   mycroft 	}
    189       1.1   mycroft 	/*
    190       1.1   mycroft 	 * Allocate the extra space in the buffer.
    191       1.1   mycroft 	 */
    192       1.9  christos 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    193       1.1   mycroft 		brelse(bp);
    194       1.1   mycroft 		return (error);
    195       1.1   mycroft 	}
    196       1.1   mycroft #ifdef QUOTA
    197       1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    198       1.1   mycroft 		brelse(bp);
    199       1.1   mycroft 		return (error);
    200       1.1   mycroft 	}
    201       1.1   mycroft #endif
    202       1.1   mycroft 	/*
    203       1.1   mycroft 	 * Check for extension in the existing location.
    204       1.1   mycroft 	 */
    205       1.1   mycroft 	cg = dtog(fs, bprev);
    206       1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    207       1.1   mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    208       1.1   mycroft 			panic("bad blockno");
    209       1.1   mycroft 		ip->i_blocks += btodb(nsize - osize);
    210       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    211       1.1   mycroft 		allocbuf(bp, nsize);
    212       1.1   mycroft 		bp->b_flags |= B_DONE;
    213       1.1   mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    214       1.1   mycroft 		*bpp = bp;
    215       1.1   mycroft 		return (0);
    216       1.1   mycroft 	}
    217       1.1   mycroft 	/*
    218       1.1   mycroft 	 * Allocate a new disk location.
    219       1.1   mycroft 	 */
    220       1.1   mycroft 	if (bpref >= fs->fs_size)
    221       1.1   mycroft 		bpref = 0;
    222       1.1   mycroft 	switch ((int)fs->fs_optim) {
    223       1.1   mycroft 	case FS_OPTSPACE:
    224       1.1   mycroft 		/*
    225       1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    226       1.1   mycroft 		 * best use of space, we will waste time relocating it if
    227       1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    228       1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    229       1.1   mycroft 		 * to begin optimizing for time.
    230       1.1   mycroft 		 */
    231       1.1   mycroft 		request = nsize;
    232       1.1   mycroft 		if (fs->fs_minfree < 5 ||
    233       1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    234       1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    235       1.1   mycroft 			break;
    236       1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    237       1.1   mycroft 			fs->fs_fsmnt);
    238       1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    239       1.1   mycroft 		break;
    240       1.1   mycroft 	case FS_OPTTIME:
    241       1.1   mycroft 		/*
    242       1.1   mycroft 		 * At this point we have discovered a file that is trying to
    243       1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    244       1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    245       1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    246       1.1   mycroft 		 * above will be able to grow it in place without further
    247       1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    248       1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    249       1.1   mycroft 		 * optimizing for space.
    250       1.1   mycroft 		 */
    251       1.1   mycroft 		request = fs->fs_bsize;
    252       1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    253       1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    254       1.1   mycroft 			break;
    255       1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    256       1.1   mycroft 			fs->fs_fsmnt);
    257       1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    258       1.1   mycroft 		break;
    259       1.1   mycroft 	default:
    260      1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    261       1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    262       1.1   mycroft 		panic("ffs_realloccg: bad optim");
    263       1.1   mycroft 		/* NOTREACHED */
    264       1.1   mycroft 	}
    265       1.1   mycroft 	bno = (daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    266       1.9  christos 	    			     ffs_alloccg);
    267       1.1   mycroft 	if (bno > 0) {
    268       1.1   mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    269       1.1   mycroft 		(void) vnode_pager_uncache(ITOV(ip));
    270       1.1   mycroft 		ffs_blkfree(ip, bprev, (long)osize);
    271       1.1   mycroft 		if (nsize < request)
    272       1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    273       1.1   mycroft 			    (long)(request - nsize));
    274       1.1   mycroft 		ip->i_blocks += btodb(nsize - osize);
    275       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    276       1.1   mycroft 		allocbuf(bp, nsize);
    277       1.1   mycroft 		bp->b_flags |= B_DONE;
    278       1.1   mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    279       1.1   mycroft 		*bpp = bp;
    280       1.1   mycroft 		return (0);
    281       1.1   mycroft 	}
    282       1.1   mycroft #ifdef QUOTA
    283       1.1   mycroft 	/*
    284       1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    285       1.1   mycroft 	 */
    286       1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    287       1.1   mycroft #endif
    288       1.1   mycroft 	brelse(bp);
    289       1.1   mycroft nospace:
    290       1.1   mycroft 	/*
    291       1.1   mycroft 	 * no space available
    292       1.1   mycroft 	 */
    293       1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    294       1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    295       1.1   mycroft 	return (ENOSPC);
    296       1.1   mycroft }
    297       1.1   mycroft 
    298       1.1   mycroft /*
    299       1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    300       1.1   mycroft  *
    301       1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    302       1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    303       1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    304       1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    305       1.1   mycroft  * block immediately preceeding the current range. If successful, the
    306       1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    307       1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    308       1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    309       1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    310       1.1   mycroft  * the previous block allocation will be used.
    311       1.1   mycroft  */
    312       1.3   mycroft #ifdef DEBUG
    313       1.1   mycroft #include <sys/sysctl.h>
    314       1.1   mycroft int doasyncfree = 1;
    315       1.1   mycroft struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
    316       1.5   mycroft int prtrealloc = 0;
    317       1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    318       1.3   mycroft #else
    319       1.3   mycroft #define doasyncfree 1
    320       1.1   mycroft #endif
    321       1.1   mycroft 
    322       1.1   mycroft int
    323       1.9  christos ffs_reallocblks(v)
    324       1.9  christos 	void *v;
    325       1.9  christos {
    326       1.1   mycroft 	struct vop_reallocblks_args /* {
    327       1.1   mycroft 		struct vnode *a_vp;
    328       1.1   mycroft 		struct cluster_save *a_buflist;
    329       1.9  christos 	} */ *ap = v;
    330       1.1   mycroft 	struct fs *fs;
    331       1.1   mycroft 	struct inode *ip;
    332       1.1   mycroft 	struct vnode *vp;
    333       1.1   mycroft 	struct buf *sbp, *ebp;
    334       1.9  christos 	daddr_t *bap, *sbap, *ebap = NULL;
    335       1.1   mycroft 	struct cluster_save *buflist;
    336       1.9  christos 	daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    337       1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    338       1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    339      1.11   mycroft 	struct timespec ts;
    340       1.1   mycroft 
    341       1.1   mycroft 	vp = ap->a_vp;
    342       1.1   mycroft 	ip = VTOI(vp);
    343       1.1   mycroft 	fs = ip->i_fs;
    344       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    345       1.1   mycroft 		return (ENOSPC);
    346       1.1   mycroft 	buflist = ap->a_buflist;
    347       1.1   mycroft 	len = buflist->bs_nchildren;
    348       1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    349       1.1   mycroft 	end_lbn = start_lbn + len - 1;
    350       1.1   mycroft #ifdef DIAGNOSTIC
    351       1.1   mycroft 	for (i = 1; i < len; i++)
    352       1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    353       1.1   mycroft 			panic("ffs_reallocblks: non-cluster");
    354       1.1   mycroft #endif
    355       1.1   mycroft 	/*
    356       1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    357       1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    358       1.1   mycroft 	 * the previous cylinder group.
    359       1.1   mycroft 	 */
    360       1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    361       1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    362       1.1   mycroft 		return (ENOSPC);
    363       1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    364       1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    365       1.1   mycroft 		return (ENOSPC);
    366       1.1   mycroft 	/*
    367       1.1   mycroft 	 * Get the starting offset and block map for the first block.
    368       1.1   mycroft 	 */
    369       1.1   mycroft 	if (start_lvl == 0) {
    370       1.1   mycroft 		sbap = &ip->i_db[0];
    371       1.1   mycroft 		soff = start_lbn;
    372       1.1   mycroft 	} else {
    373       1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    374       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    375       1.1   mycroft 			brelse(sbp);
    376       1.1   mycroft 			return (ENOSPC);
    377       1.1   mycroft 		}
    378       1.1   mycroft 		sbap = (daddr_t *)sbp->b_data;
    379       1.1   mycroft 		soff = idp->in_off;
    380       1.1   mycroft 	}
    381       1.1   mycroft 	/*
    382       1.1   mycroft 	 * Find the preferred location for the cluster.
    383       1.1   mycroft 	 */
    384       1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    385       1.1   mycroft 	/*
    386       1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    387       1.1   mycroft 	 */
    388       1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    389       1.1   mycroft 		ssize = len;
    390       1.1   mycroft 	} else {
    391       1.1   mycroft #ifdef DIAGNOSTIC
    392       1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    393       1.1   mycroft 			panic("ffs_reallocblk: start == end");
    394       1.1   mycroft #endif
    395       1.1   mycroft 		ssize = len - (idp->in_off + 1);
    396       1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    397       1.1   mycroft 			goto fail;
    398       1.1   mycroft 		ebap = (daddr_t *)ebp->b_data;
    399       1.1   mycroft 	}
    400       1.1   mycroft 	/*
    401       1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    402       1.1   mycroft 	 */
    403       1.1   mycroft 	if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    404       1.9  christos 	    len, ffs_clusteralloc)) == 0)
    405       1.1   mycroft 		goto fail;
    406       1.1   mycroft 	/*
    407       1.1   mycroft 	 * We have found a new contiguous block.
    408       1.1   mycroft 	 *
    409       1.1   mycroft 	 * First we have to replace the old block pointers with the new
    410       1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    411       1.1   mycroft 	 * with the file.
    412       1.1   mycroft 	 */
    413       1.5   mycroft #ifdef DEBUG
    414       1.5   mycroft 	if (prtrealloc)
    415      1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    416       1.5   mycroft 		    start_lbn, end_lbn);
    417       1.5   mycroft #endif
    418       1.1   mycroft 	blkno = newblk;
    419       1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    420       1.1   mycroft 		if (i == ssize)
    421       1.1   mycroft 			bap = ebap;
    422       1.1   mycroft #ifdef DIAGNOSTIC
    423       1.5   mycroft 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
    424       1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    425       1.1   mycroft #endif
    426       1.5   mycroft #ifdef DEBUG
    427       1.5   mycroft 		if (prtrealloc)
    428      1.13  christos 			printf(" %d,", *bap);
    429       1.5   mycroft #endif
    430       1.1   mycroft 		*bap++ = blkno;
    431       1.1   mycroft 	}
    432       1.1   mycroft 	/*
    433       1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    434       1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    435       1.1   mycroft 	 * the old block values may have been written to disk. In practise
    436       1.1   mycroft 	 * they are almost never written, but if we are concerned about
    437       1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    438       1.1   mycroft 	 *
    439       1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    440       1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    441       1.1   mycroft 	 * been written. The flag should be set when the cluster is
    442       1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    443       1.1   mycroft 	 * We can then check below to see if it is set, and do the
    444       1.1   mycroft 	 * synchronous write only when it has been cleared.
    445       1.1   mycroft 	 */
    446       1.1   mycroft 	if (sbap != &ip->i_db[0]) {
    447       1.1   mycroft 		if (doasyncfree)
    448       1.1   mycroft 			bdwrite(sbp);
    449       1.1   mycroft 		else
    450       1.1   mycroft 			bwrite(sbp);
    451       1.1   mycroft 	} else {
    452       1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    453      1.11   mycroft 		if (!doasyncfree) {
    454      1.11   mycroft 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    455      1.11   mycroft 			VOP_UPDATE(vp, &ts, &ts, 1);
    456      1.11   mycroft 		}
    457       1.1   mycroft 	}
    458       1.1   mycroft 	if (ssize < len)
    459       1.1   mycroft 		if (doasyncfree)
    460       1.1   mycroft 			bdwrite(ebp);
    461       1.1   mycroft 		else
    462       1.1   mycroft 			bwrite(ebp);
    463       1.1   mycroft 	/*
    464       1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    465       1.1   mycroft 	 */
    466       1.5   mycroft #ifdef DEBUG
    467       1.5   mycroft 	if (prtrealloc)
    468      1.13  christos 		printf("\n\tnew:");
    469       1.5   mycroft #endif
    470       1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    471       1.1   mycroft 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    472       1.1   mycroft 		    fs->fs_bsize);
    473       1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    474       1.5   mycroft #ifdef DEBUG
    475       1.5   mycroft 		if (prtrealloc)
    476      1.13  christos 			printf(" %d,", blkno);
    477       1.5   mycroft #endif
    478       1.5   mycroft 	}
    479       1.5   mycroft #ifdef DEBUG
    480       1.5   mycroft 	if (prtrealloc) {
    481       1.5   mycroft 		prtrealloc--;
    482      1.13  christos 		printf("\n");
    483       1.1   mycroft 	}
    484       1.5   mycroft #endif
    485       1.1   mycroft 	return (0);
    486       1.1   mycroft 
    487       1.1   mycroft fail:
    488       1.1   mycroft 	if (ssize < len)
    489       1.1   mycroft 		brelse(ebp);
    490       1.1   mycroft 	if (sbap != &ip->i_db[0])
    491       1.1   mycroft 		brelse(sbp);
    492       1.1   mycroft 	return (ENOSPC);
    493       1.1   mycroft }
    494       1.1   mycroft 
    495       1.1   mycroft /*
    496       1.1   mycroft  * Allocate an inode in the file system.
    497       1.1   mycroft  *
    498       1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    499       1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    500       1.1   mycroft  *   1) allocate the preferred inode.
    501       1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    502       1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    503       1.1   mycroft  *      available inode is located.
    504       1.1   mycroft  * If no inode preference is given the following heirarchy is used
    505       1.1   mycroft  * to allocate an inode:
    506       1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    507       1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    508       1.1   mycroft  *      available inode is located.
    509       1.1   mycroft  */
    510       1.9  christos int
    511       1.9  christos ffs_valloc(v)
    512       1.9  christos 	void *v;
    513       1.9  christos {
    514       1.1   mycroft 	struct vop_valloc_args /* {
    515       1.1   mycroft 		struct vnode *a_pvp;
    516       1.1   mycroft 		int a_mode;
    517       1.1   mycroft 		struct ucred *a_cred;
    518       1.1   mycroft 		struct vnode **a_vpp;
    519       1.9  christos 	} */ *ap = v;
    520       1.1   mycroft 	register struct vnode *pvp = ap->a_pvp;
    521       1.1   mycroft 	register struct inode *pip;
    522       1.1   mycroft 	register struct fs *fs;
    523       1.1   mycroft 	register struct inode *ip;
    524       1.1   mycroft 	mode_t mode = ap->a_mode;
    525       1.1   mycroft 	ino_t ino, ipref;
    526       1.1   mycroft 	int cg, error;
    527       1.1   mycroft 
    528       1.1   mycroft 	*ap->a_vpp = NULL;
    529       1.1   mycroft 	pip = VTOI(pvp);
    530       1.1   mycroft 	fs = pip->i_fs;
    531       1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    532       1.1   mycroft 		goto noinodes;
    533       1.1   mycroft 
    534       1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    535       1.1   mycroft 		ipref = ffs_dirpref(fs);
    536       1.1   mycroft 	else
    537       1.1   mycroft 		ipref = pip->i_number;
    538       1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    539       1.1   mycroft 		ipref = 0;
    540       1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    541       1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    542       1.1   mycroft 	if (ino == 0)
    543       1.1   mycroft 		goto noinodes;
    544       1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    545       1.1   mycroft 	if (error) {
    546       1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    547       1.1   mycroft 		return (error);
    548       1.1   mycroft 	}
    549       1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    550       1.1   mycroft 	if (ip->i_mode) {
    551      1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    552       1.1   mycroft 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    553       1.1   mycroft 		panic("ffs_valloc: dup alloc");
    554       1.1   mycroft 	}
    555       1.1   mycroft 	if (ip->i_blocks) {				/* XXX */
    556      1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    557       1.1   mycroft 		    fs->fs_fsmnt, ino, ip->i_blocks);
    558       1.1   mycroft 		ip->i_blocks = 0;
    559       1.1   mycroft 	}
    560       1.1   mycroft 	ip->i_flags = 0;
    561       1.1   mycroft 	/*
    562       1.1   mycroft 	 * Set up a new generation number for this inode.
    563       1.1   mycroft 	 */
    564  1.13.6.1        is 	ip->i_gen++;
    565       1.1   mycroft 	return (0);
    566       1.1   mycroft noinodes:
    567       1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    568       1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    569       1.1   mycroft 	return (ENOSPC);
    570       1.1   mycroft }
    571       1.1   mycroft 
    572       1.1   mycroft /*
    573       1.1   mycroft  * Find a cylinder to place a directory.
    574       1.1   mycroft  *
    575       1.1   mycroft  * The policy implemented by this algorithm is to select from
    576       1.1   mycroft  * among those cylinder groups with above the average number of
    577       1.1   mycroft  * free inodes, the one with the smallest number of directories.
    578       1.1   mycroft  */
    579       1.1   mycroft static ino_t
    580       1.1   mycroft ffs_dirpref(fs)
    581       1.1   mycroft 	register struct fs *fs;
    582       1.1   mycroft {
    583       1.1   mycroft 	int cg, minndir, mincg, avgifree;
    584       1.1   mycroft 
    585       1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    586       1.1   mycroft 	minndir = fs->fs_ipg;
    587       1.1   mycroft 	mincg = 0;
    588       1.1   mycroft 	for (cg = 0; cg < fs->fs_ncg; cg++)
    589       1.1   mycroft 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    590       1.1   mycroft 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    591       1.1   mycroft 			mincg = cg;
    592       1.1   mycroft 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    593       1.1   mycroft 		}
    594       1.1   mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    595       1.1   mycroft }
    596       1.1   mycroft 
    597       1.1   mycroft /*
    598       1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    599       1.1   mycroft  * logically divided into sections. The first section is composed of the
    600       1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    601       1.1   mycroft  *
    602       1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    603       1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    604       1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    605       1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    606       1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    607       1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    608       1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    609       1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    610       1.1   mycroft  * continues until a cylinder group with greater than the average number
    611       1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    612       1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    613       1.1   mycroft  * here a best guess is made based upon the logical block number being
    614       1.1   mycroft  * allocated.
    615       1.1   mycroft  *
    616       1.1   mycroft  * If a section is already partially allocated, the policy is to
    617       1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    618       1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    619       1.1   mycroft  * so that the disk head will be in transit between them for at least
    620       1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    621       1.1   mycroft  * schedule another I/O transfer.
    622       1.1   mycroft  */
    623       1.1   mycroft daddr_t
    624       1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    625       1.1   mycroft 	struct inode *ip;
    626       1.1   mycroft 	daddr_t lbn;
    627       1.1   mycroft 	int indx;
    628       1.1   mycroft 	daddr_t *bap;
    629       1.1   mycroft {
    630       1.1   mycroft 	register struct fs *fs;
    631       1.1   mycroft 	register int cg;
    632       1.1   mycroft 	int avgbfree, startcg;
    633       1.1   mycroft 	daddr_t nextblk;
    634       1.1   mycroft 
    635       1.1   mycroft 	fs = ip->i_fs;
    636       1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    637       1.1   mycroft 		if (lbn < NDADDR) {
    638       1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    639       1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    640       1.1   mycroft 		}
    641       1.1   mycroft 		/*
    642       1.1   mycroft 		 * Find a cylinder with greater than average number of
    643       1.1   mycroft 		 * unused data blocks.
    644       1.1   mycroft 		 */
    645       1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    646       1.1   mycroft 			startcg =
    647       1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    648       1.1   mycroft 		else
    649       1.1   mycroft 			startcg = dtog(fs, bap[indx - 1]) + 1;
    650       1.1   mycroft 		startcg %= fs->fs_ncg;
    651       1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    652       1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    653       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    654       1.1   mycroft 				fs->fs_cgrotor = cg;
    655       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    656       1.1   mycroft 			}
    657       1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    658       1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    659       1.1   mycroft 				fs->fs_cgrotor = cg;
    660       1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    661       1.1   mycroft 			}
    662       1.1   mycroft 		return (NULL);
    663       1.1   mycroft 	}
    664       1.1   mycroft 	/*
    665       1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    666       1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    667       1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    668       1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    669       1.1   mycroft 	 */
    670       1.1   mycroft 	nextblk = bap[indx - 1] + fs->fs_frag;
    671       1.1   mycroft 	if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
    672       1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    673       1.1   mycroft 		return (nextblk);
    674       1.1   mycroft 	if (fs->fs_rotdelay != 0)
    675       1.1   mycroft 		/*
    676       1.1   mycroft 		 * Here we convert ms of delay to frags as:
    677       1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    678       1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    679       1.1   mycroft 		 * then round up to the next block.
    680       1.1   mycroft 		 */
    681       1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    682       1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    683       1.1   mycroft 	return (nextblk);
    684       1.1   mycroft }
    685       1.1   mycroft 
    686       1.1   mycroft /*
    687       1.1   mycroft  * Implement the cylinder overflow algorithm.
    688       1.1   mycroft  *
    689       1.1   mycroft  * The policy implemented by this algorithm is:
    690       1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    691       1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    692       1.1   mycroft  *   3) brute force search for a free block.
    693       1.1   mycroft  */
    694       1.1   mycroft /*VARARGS5*/
    695       1.1   mycroft static u_long
    696       1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    697       1.1   mycroft 	struct inode *ip;
    698       1.1   mycroft 	int cg;
    699       1.1   mycroft 	long pref;
    700       1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    701       1.9  christos 	daddr_t (*allocator) __P((struct inode *, int, daddr_t, int));
    702       1.1   mycroft {
    703       1.1   mycroft 	register struct fs *fs;
    704       1.1   mycroft 	long result;
    705       1.1   mycroft 	int i, icg = cg;
    706       1.1   mycroft 
    707       1.1   mycroft 	fs = ip->i_fs;
    708       1.1   mycroft 	/*
    709       1.1   mycroft 	 * 1: preferred cylinder group
    710       1.1   mycroft 	 */
    711       1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    712       1.1   mycroft 	if (result)
    713       1.1   mycroft 		return (result);
    714       1.1   mycroft 	/*
    715       1.1   mycroft 	 * 2: quadratic rehash
    716       1.1   mycroft 	 */
    717       1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    718       1.1   mycroft 		cg += i;
    719       1.1   mycroft 		if (cg >= fs->fs_ncg)
    720       1.1   mycroft 			cg -= fs->fs_ncg;
    721       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    722       1.1   mycroft 		if (result)
    723       1.1   mycroft 			return (result);
    724       1.1   mycroft 	}
    725       1.1   mycroft 	/*
    726       1.1   mycroft 	 * 3: brute force search
    727       1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    728       1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    729       1.1   mycroft 	 */
    730       1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    731       1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    732       1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    733       1.1   mycroft 		if (result)
    734       1.1   mycroft 			return (result);
    735       1.1   mycroft 		cg++;
    736       1.1   mycroft 		if (cg == fs->fs_ncg)
    737       1.1   mycroft 			cg = 0;
    738       1.1   mycroft 	}
    739       1.1   mycroft 	return (NULL);
    740       1.1   mycroft }
    741       1.1   mycroft 
    742       1.1   mycroft /*
    743       1.1   mycroft  * Determine whether a fragment can be extended.
    744       1.1   mycroft  *
    745       1.1   mycroft  * Check to see if the necessary fragments are available, and
    746       1.1   mycroft  * if they are, allocate them.
    747       1.1   mycroft  */
    748       1.1   mycroft static daddr_t
    749       1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    750       1.1   mycroft 	struct inode *ip;
    751       1.1   mycroft 	int cg;
    752       1.1   mycroft 	long bprev;
    753       1.1   mycroft 	int osize, nsize;
    754       1.1   mycroft {
    755       1.1   mycroft 	register struct fs *fs;
    756       1.1   mycroft 	register struct cg *cgp;
    757       1.1   mycroft 	struct buf *bp;
    758       1.1   mycroft 	long bno;
    759       1.1   mycroft 	int frags, bbase;
    760       1.1   mycroft 	int i, error;
    761       1.1   mycroft 
    762       1.1   mycroft 	fs = ip->i_fs;
    763       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    764       1.1   mycroft 		return (NULL);
    765       1.1   mycroft 	frags = numfrags(fs, nsize);
    766       1.1   mycroft 	bbase = fragnum(fs, bprev);
    767       1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    768       1.1   mycroft 		/* cannot extend across a block boundary */
    769       1.1   mycroft 		return (NULL);
    770       1.1   mycroft 	}
    771       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    772       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    773       1.1   mycroft 	if (error) {
    774       1.1   mycroft 		brelse(bp);
    775       1.1   mycroft 		return (NULL);
    776       1.1   mycroft 	}
    777       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    778       1.1   mycroft 	if (!cg_chkmagic(cgp)) {
    779       1.1   mycroft 		brelse(bp);
    780       1.1   mycroft 		return (NULL);
    781       1.1   mycroft 	}
    782       1.1   mycroft 	cgp->cg_time = time.tv_sec;
    783       1.1   mycroft 	bno = dtogd(fs, bprev);
    784       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    785       1.1   mycroft 		if (isclr(cg_blksfree(cgp), bno + i)) {
    786       1.1   mycroft 			brelse(bp);
    787       1.1   mycroft 			return (NULL);
    788       1.1   mycroft 		}
    789       1.1   mycroft 	/*
    790       1.1   mycroft 	 * the current fragment can be extended
    791       1.1   mycroft 	 * deduct the count on fragment being extended into
    792       1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    793       1.1   mycroft 	 * allocate the extended piece
    794       1.1   mycroft 	 */
    795       1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    796       1.1   mycroft 		if (isclr(cg_blksfree(cgp), bno + i))
    797       1.1   mycroft 			break;
    798       1.1   mycroft 	cgp->cg_frsum[i - numfrags(fs, osize)]--;
    799       1.1   mycroft 	if (i != frags)
    800       1.1   mycroft 		cgp->cg_frsum[i - frags]++;
    801       1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    802       1.1   mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    803       1.1   mycroft 		cgp->cg_cs.cs_nffree--;
    804       1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    805       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    806       1.1   mycroft 	}
    807       1.1   mycroft 	fs->fs_fmod = 1;
    808       1.1   mycroft 	bdwrite(bp);
    809       1.1   mycroft 	return (bprev);
    810       1.1   mycroft }
    811       1.1   mycroft 
    812       1.1   mycroft /*
    813       1.1   mycroft  * Determine whether a block can be allocated.
    814       1.1   mycroft  *
    815       1.1   mycroft  * Check to see if a block of the appropriate size is available,
    816       1.1   mycroft  * and if it is, allocate it.
    817       1.1   mycroft  */
    818       1.1   mycroft static daddr_t
    819       1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    820       1.1   mycroft 	struct inode *ip;
    821       1.1   mycroft 	int cg;
    822       1.1   mycroft 	daddr_t bpref;
    823       1.1   mycroft 	int size;
    824       1.1   mycroft {
    825       1.1   mycroft 	register struct fs *fs;
    826       1.1   mycroft 	register struct cg *cgp;
    827       1.1   mycroft 	struct buf *bp;
    828       1.1   mycroft 	register int i;
    829       1.1   mycroft 	int error, bno, frags, allocsiz;
    830       1.1   mycroft 
    831       1.1   mycroft 	fs = ip->i_fs;
    832       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    833       1.1   mycroft 		return (NULL);
    834       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    835       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    836       1.1   mycroft 	if (error) {
    837       1.1   mycroft 		brelse(bp);
    838       1.1   mycroft 		return (NULL);
    839       1.1   mycroft 	}
    840       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    841       1.1   mycroft 	if (!cg_chkmagic(cgp) ||
    842       1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    843       1.1   mycroft 		brelse(bp);
    844       1.1   mycroft 		return (NULL);
    845       1.1   mycroft 	}
    846       1.1   mycroft 	cgp->cg_time = time.tv_sec;
    847       1.1   mycroft 	if (size == fs->fs_bsize) {
    848       1.1   mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    849       1.1   mycroft 		bdwrite(bp);
    850       1.1   mycroft 		return (bno);
    851       1.1   mycroft 	}
    852       1.1   mycroft 	/*
    853       1.1   mycroft 	 * check to see if any fragments are already available
    854       1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
    855       1.1   mycroft 	 * it down to a smaller size if necessary
    856       1.1   mycroft 	 */
    857       1.1   mycroft 	frags = numfrags(fs, size);
    858       1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    859       1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
    860       1.1   mycroft 			break;
    861       1.1   mycroft 	if (allocsiz == fs->fs_frag) {
    862       1.1   mycroft 		/*
    863       1.1   mycroft 		 * no fragments were available, so a block will be
    864       1.1   mycroft 		 * allocated, and hacked up
    865       1.1   mycroft 		 */
    866       1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
    867       1.1   mycroft 			brelse(bp);
    868       1.1   mycroft 			return (NULL);
    869       1.1   mycroft 		}
    870       1.1   mycroft 		bno = ffs_alloccgblk(fs, cgp, bpref);
    871       1.1   mycroft 		bpref = dtogd(fs, bno);
    872       1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
    873       1.1   mycroft 			setbit(cg_blksfree(cgp), bpref + i);
    874       1.1   mycroft 		i = fs->fs_frag - frags;
    875       1.1   mycroft 		cgp->cg_cs.cs_nffree += i;
    876       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
    877       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
    878       1.1   mycroft 		fs->fs_fmod = 1;
    879       1.1   mycroft 		cgp->cg_frsum[i]++;
    880       1.1   mycroft 		bdwrite(bp);
    881       1.1   mycroft 		return (bno);
    882       1.1   mycroft 	}
    883       1.1   mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
    884       1.1   mycroft 	if (bno < 0) {
    885       1.1   mycroft 		brelse(bp);
    886       1.1   mycroft 		return (NULL);
    887       1.1   mycroft 	}
    888       1.1   mycroft 	for (i = 0; i < frags; i++)
    889       1.1   mycroft 		clrbit(cg_blksfree(cgp), bno + i);
    890       1.1   mycroft 	cgp->cg_cs.cs_nffree -= frags;
    891       1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
    892       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    893       1.1   mycroft 	fs->fs_fmod = 1;
    894       1.1   mycroft 	cgp->cg_frsum[allocsiz]--;
    895       1.1   mycroft 	if (frags != allocsiz)
    896       1.1   mycroft 		cgp->cg_frsum[allocsiz - frags]++;
    897       1.1   mycroft 	bdwrite(bp);
    898       1.1   mycroft 	return (cg * fs->fs_fpg + bno);
    899       1.1   mycroft }
    900       1.1   mycroft 
    901       1.1   mycroft /*
    902       1.1   mycroft  * Allocate a block in a cylinder group.
    903       1.1   mycroft  *
    904       1.1   mycroft  * This algorithm implements the following policy:
    905       1.1   mycroft  *   1) allocate the requested block.
    906       1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    907       1.1   mycroft  *   3) allocate the next available block on the block rotor for the
    908       1.1   mycroft  *      specified cylinder group.
    909       1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
    910       1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
    911       1.1   mycroft  */
    912       1.1   mycroft static daddr_t
    913       1.1   mycroft ffs_alloccgblk(fs, cgp, bpref)
    914       1.1   mycroft 	register struct fs *fs;
    915       1.1   mycroft 	register struct cg *cgp;
    916       1.1   mycroft 	daddr_t bpref;
    917       1.1   mycroft {
    918       1.1   mycroft 	daddr_t bno, blkno;
    919       1.1   mycroft 	int cylno, pos, delta;
    920       1.1   mycroft 	short *cylbp;
    921       1.1   mycroft 	register int i;
    922       1.1   mycroft 
    923       1.1   mycroft 	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
    924       1.1   mycroft 		bpref = cgp->cg_rotor;
    925       1.1   mycroft 		goto norot;
    926       1.1   mycroft 	}
    927       1.1   mycroft 	bpref = blknum(fs, bpref);
    928       1.1   mycroft 	bpref = dtogd(fs, bpref);
    929       1.1   mycroft 	/*
    930       1.1   mycroft 	 * if the requested block is available, use it
    931       1.1   mycroft 	 */
    932       1.1   mycroft 	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
    933       1.1   mycroft 		bno = bpref;
    934       1.1   mycroft 		goto gotit;
    935       1.1   mycroft 	}
    936       1.6   mycroft 	if (fs->fs_cpc == 0 || fs->fs_nrpos <= 1) {
    937       1.1   mycroft 		/*
    938       1.1   mycroft 		 * Block layout information is not available.
    939       1.1   mycroft 		 * Leaving bpref unchanged means we take the
    940       1.1   mycroft 		 * next available free block following the one
    941       1.1   mycroft 		 * we just allocated. Hopefully this will at
    942       1.1   mycroft 		 * least hit a track cache on drives of unknown
    943       1.1   mycroft 		 * geometry (e.g. SCSI).
    944       1.1   mycroft 		 */
    945       1.1   mycroft 		goto norot;
    946       1.1   mycroft 	}
    947       1.6   mycroft 	/*
    948       1.6   mycroft 	 * check for a block available on the same cylinder
    949       1.6   mycroft 	 */
    950       1.6   mycroft 	cylno = cbtocylno(fs, bpref);
    951       1.6   mycroft 	if (cg_blktot(cgp)[cylno] == 0)
    952       1.6   mycroft 		goto norot;
    953       1.1   mycroft 	/*
    954       1.1   mycroft 	 * check the summary information to see if a block is
    955       1.1   mycroft 	 * available in the requested cylinder starting at the
    956       1.1   mycroft 	 * requested rotational position and proceeding around.
    957       1.1   mycroft 	 */
    958       1.1   mycroft 	cylbp = cg_blks(fs, cgp, cylno);
    959       1.1   mycroft 	pos = cbtorpos(fs, bpref);
    960       1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
    961       1.1   mycroft 		if (cylbp[i] > 0)
    962       1.1   mycroft 			break;
    963       1.1   mycroft 	if (i == fs->fs_nrpos)
    964       1.1   mycroft 		for (i = 0; i < pos; i++)
    965       1.1   mycroft 			if (cylbp[i] > 0)
    966       1.1   mycroft 				break;
    967       1.1   mycroft 	if (cylbp[i] > 0) {
    968       1.1   mycroft 		/*
    969       1.1   mycroft 		 * found a rotational position, now find the actual
    970       1.1   mycroft 		 * block. A panic if none is actually there.
    971       1.1   mycroft 		 */
    972       1.1   mycroft 		pos = cylno % fs->fs_cpc;
    973       1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
    974       1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
    975      1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
    976       1.1   mycroft 			    pos, i, fs->fs_fsmnt);
    977       1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
    978       1.1   mycroft 		}
    979       1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
    980       1.1   mycroft 			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
    981       1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
    982       1.1   mycroft 				goto gotit;
    983       1.1   mycroft 			}
    984       1.1   mycroft 			delta = fs_rotbl(fs)[i];
    985       1.1   mycroft 			if (delta <= 0 ||
    986       1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
    987       1.1   mycroft 				break;
    988       1.1   mycroft 			i += delta;
    989       1.1   mycroft 		}
    990      1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
    991       1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
    992       1.1   mycroft 	}
    993       1.1   mycroft norot:
    994       1.1   mycroft 	/*
    995       1.1   mycroft 	 * no blocks in the requested cylinder, so take next
    996       1.1   mycroft 	 * available one in this cylinder group.
    997       1.1   mycroft 	 */
    998       1.1   mycroft 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
    999       1.1   mycroft 	if (bno < 0)
   1000       1.1   mycroft 		return (NULL);
   1001       1.1   mycroft 	cgp->cg_rotor = bno;
   1002       1.1   mycroft gotit:
   1003       1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1004       1.1   mycroft 	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
   1005       1.1   mycroft 	ffs_clusteracct(fs, cgp, blkno, -1);
   1006       1.1   mycroft 	cgp->cg_cs.cs_nbfree--;
   1007       1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1008       1.1   mycroft 	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
   1009       1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1010       1.1   mycroft 	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
   1011       1.1   mycroft 	cg_blktot(cgp)[cylno]--;
   1012       1.1   mycroft 	fs->fs_fmod = 1;
   1013       1.1   mycroft 	return (cgp->cg_cgx * fs->fs_fpg + bno);
   1014       1.1   mycroft }
   1015       1.1   mycroft 
   1016       1.1   mycroft /*
   1017       1.1   mycroft  * Determine whether a cluster can be allocated.
   1018       1.1   mycroft  *
   1019       1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1020       1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1021       1.1   mycroft  * take the first one that we find following bpref.
   1022       1.1   mycroft  */
   1023       1.1   mycroft static daddr_t
   1024       1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1025       1.1   mycroft 	struct inode *ip;
   1026       1.1   mycroft 	int cg;
   1027       1.1   mycroft 	daddr_t bpref;
   1028       1.1   mycroft 	int len;
   1029       1.1   mycroft {
   1030       1.1   mycroft 	register struct fs *fs;
   1031       1.1   mycroft 	register struct cg *cgp;
   1032       1.1   mycroft 	struct buf *bp;
   1033       1.1   mycroft 	int i, run, bno, bit, map;
   1034       1.1   mycroft 	u_char *mapp;
   1035       1.5   mycroft 	int32_t *lp;
   1036       1.1   mycroft 
   1037       1.1   mycroft 	fs = ip->i_fs;
   1038       1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1039       1.1   mycroft 		return (NULL);
   1040       1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1041       1.1   mycroft 	    NOCRED, &bp))
   1042       1.1   mycroft 		goto fail;
   1043       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1044       1.1   mycroft 	if (!cg_chkmagic(cgp))
   1045       1.1   mycroft 		goto fail;
   1046       1.1   mycroft 	/*
   1047       1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1048       1.1   mycroft 	 * available in this cylinder group.
   1049       1.1   mycroft 	 */
   1050       1.5   mycroft 	lp = &cg_clustersum(cgp)[len];
   1051       1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1052       1.5   mycroft 		if (*lp++ > 0)
   1053       1.1   mycroft 			break;
   1054       1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1055       1.5   mycroft 		/*
   1056       1.5   mycroft 		 * This is the first time looking for a cluster in this
   1057       1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1058       1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1059       1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1060       1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1061       1.5   mycroft 		 */
   1062       1.5   mycroft 		lp = &cg_clustersum(cgp)[len - 1];
   1063       1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1064       1.5   mycroft 			if (*lp-- > 0)
   1065       1.5   mycroft 				break;
   1066       1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1067       1.1   mycroft 		goto fail;
   1068       1.5   mycroft 	}
   1069       1.1   mycroft 	/*
   1070       1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1071       1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1072       1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1073       1.1   mycroft 	 * block allocation. We do not search before the current
   1074       1.1   mycroft 	 * preference point as we do not want to allocate a block
   1075       1.1   mycroft 	 * that is allocated before the previous one (as we will
   1076       1.1   mycroft 	 * then have to wait for another pass of the elevator
   1077       1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1078       1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1079       1.1   mycroft 	 */
   1080       1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1081       1.1   mycroft 		bpref = 0;
   1082       1.1   mycroft 	else
   1083       1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1084       1.1   mycroft 	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
   1085       1.1   mycroft 	map = *mapp++;
   1086       1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1087       1.1   mycroft 	for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
   1088       1.1   mycroft 		if ((map & bit) == 0) {
   1089       1.1   mycroft 			run = 0;
   1090       1.1   mycroft 		} else {
   1091       1.1   mycroft 			run++;
   1092       1.1   mycroft 			if (run == len)
   1093       1.1   mycroft 				break;
   1094       1.1   mycroft 		}
   1095       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1096       1.1   mycroft 			bit <<= 1;
   1097       1.1   mycroft 		} else {
   1098       1.1   mycroft 			map = *mapp++;
   1099       1.1   mycroft 			bit = 1;
   1100       1.1   mycroft 		}
   1101       1.1   mycroft 	}
   1102       1.1   mycroft 	if (i == cgp->cg_nclusterblks)
   1103       1.1   mycroft 		goto fail;
   1104       1.1   mycroft 	/*
   1105       1.1   mycroft 	 * Allocate the cluster that we have found.
   1106       1.1   mycroft 	 */
   1107       1.1   mycroft 	bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
   1108       1.1   mycroft 	len = blkstofrags(fs, len);
   1109       1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1110       1.1   mycroft 		if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
   1111       1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1112       1.8       cgd 	bdwrite(bp);
   1113       1.1   mycroft 	return (bno);
   1114       1.1   mycroft 
   1115       1.1   mycroft fail:
   1116       1.1   mycroft 	brelse(bp);
   1117       1.1   mycroft 	return (0);
   1118       1.1   mycroft }
   1119       1.1   mycroft 
   1120       1.1   mycroft /*
   1121       1.1   mycroft  * Determine whether an inode can be allocated.
   1122       1.1   mycroft  *
   1123       1.1   mycroft  * Check to see if an inode is available, and if it is,
   1124       1.1   mycroft  * allocate it using the following policy:
   1125       1.1   mycroft  *   1) allocate the requested inode.
   1126       1.1   mycroft  *   2) allocate the next available inode after the requested
   1127       1.1   mycroft  *      inode in the specified cylinder group.
   1128       1.1   mycroft  */
   1129       1.9  christos static daddr_t
   1130       1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1131       1.1   mycroft 	struct inode *ip;
   1132       1.1   mycroft 	int cg;
   1133       1.1   mycroft 	daddr_t ipref;
   1134       1.1   mycroft 	int mode;
   1135       1.1   mycroft {
   1136       1.1   mycroft 	register struct fs *fs;
   1137       1.1   mycroft 	register struct cg *cgp;
   1138       1.1   mycroft 	struct buf *bp;
   1139       1.1   mycroft 	int error, start, len, loc, map, i;
   1140       1.1   mycroft 
   1141       1.1   mycroft 	fs = ip->i_fs;
   1142       1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1143       1.1   mycroft 		return (NULL);
   1144       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1145       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1146       1.1   mycroft 	if (error) {
   1147       1.1   mycroft 		brelse(bp);
   1148       1.1   mycroft 		return (NULL);
   1149       1.1   mycroft 	}
   1150       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1151       1.1   mycroft 	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
   1152       1.1   mycroft 		brelse(bp);
   1153       1.1   mycroft 		return (NULL);
   1154       1.1   mycroft 	}
   1155       1.1   mycroft 	cgp->cg_time = time.tv_sec;
   1156       1.1   mycroft 	if (ipref) {
   1157       1.1   mycroft 		ipref %= fs->fs_ipg;
   1158       1.1   mycroft 		if (isclr(cg_inosused(cgp), ipref))
   1159       1.1   mycroft 			goto gotit;
   1160       1.1   mycroft 	}
   1161       1.1   mycroft 	start = cgp->cg_irotor / NBBY;
   1162       1.1   mycroft 	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
   1163       1.1   mycroft 	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
   1164       1.1   mycroft 	if (loc == 0) {
   1165       1.1   mycroft 		len = start + 1;
   1166       1.1   mycroft 		start = 0;
   1167       1.1   mycroft 		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
   1168       1.1   mycroft 		if (loc == 0) {
   1169      1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1170       1.1   mycroft 			    cg, cgp->cg_irotor, fs->fs_fsmnt);
   1171       1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1172       1.1   mycroft 			/* NOTREACHED */
   1173       1.1   mycroft 		}
   1174       1.1   mycroft 	}
   1175       1.1   mycroft 	i = start + len - loc;
   1176       1.1   mycroft 	map = cg_inosused(cgp)[i];
   1177       1.1   mycroft 	ipref = i * NBBY;
   1178       1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1179       1.1   mycroft 		if ((map & i) == 0) {
   1180       1.1   mycroft 			cgp->cg_irotor = ipref;
   1181       1.1   mycroft 			goto gotit;
   1182       1.1   mycroft 		}
   1183       1.1   mycroft 	}
   1184      1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1185       1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1186       1.1   mycroft 	/* NOTREACHED */
   1187       1.1   mycroft gotit:
   1188       1.1   mycroft 	setbit(cg_inosused(cgp), ipref);
   1189       1.1   mycroft 	cgp->cg_cs.cs_nifree--;
   1190       1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1191       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree--;
   1192       1.1   mycroft 	fs->fs_fmod = 1;
   1193       1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1194       1.1   mycroft 		cgp->cg_cs.cs_ndir++;
   1195       1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1196       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1197       1.1   mycroft 	}
   1198       1.1   mycroft 	bdwrite(bp);
   1199       1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1200       1.1   mycroft }
   1201       1.1   mycroft 
   1202       1.1   mycroft /*
   1203       1.1   mycroft  * Free a block or fragment.
   1204       1.1   mycroft  *
   1205       1.1   mycroft  * The specified block or fragment is placed back in the
   1206       1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1207       1.1   mycroft  * block reassembly is checked.
   1208       1.1   mycroft  */
   1209       1.9  christos void
   1210       1.1   mycroft ffs_blkfree(ip, bno, size)
   1211       1.1   mycroft 	register struct inode *ip;
   1212       1.1   mycroft 	daddr_t bno;
   1213       1.1   mycroft 	long size;
   1214       1.1   mycroft {
   1215       1.1   mycroft 	register struct fs *fs;
   1216       1.1   mycroft 	register struct cg *cgp;
   1217       1.1   mycroft 	struct buf *bp;
   1218       1.1   mycroft 	daddr_t blkno;
   1219       1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1220       1.1   mycroft 
   1221       1.1   mycroft 	fs = ip->i_fs;
   1222       1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1223      1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1224       1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1225       1.1   mycroft 		panic("blkfree: bad size");
   1226       1.1   mycroft 	}
   1227       1.1   mycroft 	cg = dtog(fs, bno);
   1228       1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1229      1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1230       1.1   mycroft 		ffs_fserr(fs, ip->i_uid, "bad block");
   1231       1.1   mycroft 		return;
   1232       1.1   mycroft 	}
   1233       1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1234       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1235       1.1   mycroft 	if (error) {
   1236       1.1   mycroft 		brelse(bp);
   1237       1.1   mycroft 		return;
   1238       1.1   mycroft 	}
   1239       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1240       1.1   mycroft 	if (!cg_chkmagic(cgp)) {
   1241       1.1   mycroft 		brelse(bp);
   1242       1.1   mycroft 		return;
   1243       1.1   mycroft 	}
   1244       1.1   mycroft 	cgp->cg_time = time.tv_sec;
   1245       1.1   mycroft 	bno = dtogd(fs, bno);
   1246       1.1   mycroft 	if (size == fs->fs_bsize) {
   1247       1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1248       1.1   mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1249      1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1250       1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1251       1.1   mycroft 			panic("blkfree: freeing free block");
   1252       1.1   mycroft 		}
   1253       1.1   mycroft 		ffs_setblock(fs, cg_blksfree(cgp), blkno);
   1254       1.1   mycroft 		ffs_clusteracct(fs, cgp, blkno, 1);
   1255       1.1   mycroft 		cgp->cg_cs.cs_nbfree++;
   1256       1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1257       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1258       1.1   mycroft 		i = cbtocylno(fs, bno);
   1259       1.1   mycroft 		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
   1260       1.1   mycroft 		cg_blktot(cgp)[i]++;
   1261       1.1   mycroft 	} else {
   1262       1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1263       1.1   mycroft 		/*
   1264       1.1   mycroft 		 * decrement the counts associated with the old frags
   1265       1.1   mycroft 		 */
   1266       1.1   mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1267       1.1   mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
   1268       1.1   mycroft 		/*
   1269       1.1   mycroft 		 * deallocate the fragment
   1270       1.1   mycroft 		 */
   1271       1.1   mycroft 		frags = numfrags(fs, size);
   1272       1.1   mycroft 		for (i = 0; i < frags; i++) {
   1273       1.1   mycroft 			if (isset(cg_blksfree(cgp), bno + i)) {
   1274      1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1275       1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1276       1.1   mycroft 				panic("blkfree: freeing free frag");
   1277       1.1   mycroft 			}
   1278       1.1   mycroft 			setbit(cg_blksfree(cgp), bno + i);
   1279       1.1   mycroft 		}
   1280       1.1   mycroft 		cgp->cg_cs.cs_nffree += i;
   1281       1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1282       1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree += i;
   1283       1.1   mycroft 		/*
   1284       1.1   mycroft 		 * add back in counts associated with the new frags
   1285       1.1   mycroft 		 */
   1286       1.1   mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bbase);
   1287       1.1   mycroft 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
   1288       1.1   mycroft 		/*
   1289       1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1290       1.1   mycroft 		 */
   1291       1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1292       1.1   mycroft 		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
   1293       1.1   mycroft 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
   1294       1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1295       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1296       1.1   mycroft 			ffs_clusteracct(fs, cgp, blkno, 1);
   1297       1.1   mycroft 			cgp->cg_cs.cs_nbfree++;
   1298       1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1299       1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1300       1.1   mycroft 			i = cbtocylno(fs, bbase);
   1301       1.1   mycroft 			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
   1302       1.1   mycroft 			cg_blktot(cgp)[i]++;
   1303       1.1   mycroft 		}
   1304       1.1   mycroft 	}
   1305       1.1   mycroft 	fs->fs_fmod = 1;
   1306       1.1   mycroft 	bdwrite(bp);
   1307       1.1   mycroft }
   1308       1.1   mycroft 
   1309       1.1   mycroft /*
   1310       1.1   mycroft  * Free an inode.
   1311       1.1   mycroft  *
   1312       1.1   mycroft  * The specified inode is placed back in the free map.
   1313       1.1   mycroft  */
   1314       1.1   mycroft int
   1315       1.9  christos ffs_vfree(v)
   1316       1.9  christos 	void *v;
   1317       1.9  christos {
   1318       1.1   mycroft 	struct vop_vfree_args /* {
   1319       1.1   mycroft 		struct vnode *a_pvp;
   1320       1.1   mycroft 		ino_t a_ino;
   1321       1.1   mycroft 		int a_mode;
   1322       1.9  christos 	} */ *ap = v;
   1323       1.1   mycroft 	register struct fs *fs;
   1324       1.1   mycroft 	register struct cg *cgp;
   1325       1.1   mycroft 	register struct inode *pip;
   1326       1.1   mycroft 	ino_t ino = ap->a_ino;
   1327       1.1   mycroft 	struct buf *bp;
   1328       1.1   mycroft 	int error, cg;
   1329       1.1   mycroft 
   1330       1.1   mycroft 	pip = VTOI(ap->a_pvp);
   1331       1.1   mycroft 	fs = pip->i_fs;
   1332       1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1333       1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1334       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1335       1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1336       1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1337       1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1338       1.1   mycroft 	if (error) {
   1339       1.1   mycroft 		brelse(bp);
   1340       1.1   mycroft 		return (0);
   1341       1.1   mycroft 	}
   1342       1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1343       1.1   mycroft 	if (!cg_chkmagic(cgp)) {
   1344       1.1   mycroft 		brelse(bp);
   1345       1.1   mycroft 		return (0);
   1346       1.1   mycroft 	}
   1347       1.1   mycroft 	cgp->cg_time = time.tv_sec;
   1348       1.1   mycroft 	ino %= fs->fs_ipg;
   1349       1.1   mycroft 	if (isclr(cg_inosused(cgp), ino)) {
   1350      1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1351       1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1352       1.1   mycroft 		if (fs->fs_ronly == 0)
   1353       1.1   mycroft 			panic("ifree: freeing free inode");
   1354       1.1   mycroft 	}
   1355       1.1   mycroft 	clrbit(cg_inosused(cgp), ino);
   1356       1.1   mycroft 	if (ino < cgp->cg_irotor)
   1357       1.1   mycroft 		cgp->cg_irotor = ino;
   1358       1.1   mycroft 	cgp->cg_cs.cs_nifree++;
   1359       1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1360       1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1361       1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1362       1.1   mycroft 		cgp->cg_cs.cs_ndir--;
   1363       1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1364       1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1365       1.1   mycroft 	}
   1366       1.1   mycroft 	fs->fs_fmod = 1;
   1367       1.1   mycroft 	bdwrite(bp);
   1368       1.1   mycroft 	return (0);
   1369       1.1   mycroft }
   1370       1.1   mycroft 
   1371       1.1   mycroft /*
   1372       1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1373       1.1   mycroft  *
   1374       1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1375       1.1   mycroft  * available.
   1376       1.1   mycroft  */
   1377       1.1   mycroft static daddr_t
   1378       1.1   mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
   1379       1.1   mycroft 	register struct fs *fs;
   1380       1.1   mycroft 	register struct cg *cgp;
   1381       1.1   mycroft 	daddr_t bpref;
   1382       1.1   mycroft 	int allocsiz;
   1383       1.1   mycroft {
   1384       1.1   mycroft 	daddr_t bno;
   1385       1.1   mycroft 	int start, len, loc, i;
   1386       1.1   mycroft 	int blk, field, subfield, pos;
   1387       1.1   mycroft 
   1388       1.1   mycroft 	/*
   1389       1.1   mycroft 	 * find the fragment by searching through the free block
   1390       1.1   mycroft 	 * map for an appropriate bit pattern
   1391       1.1   mycroft 	 */
   1392       1.1   mycroft 	if (bpref)
   1393       1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1394       1.1   mycroft 	else
   1395       1.1   mycroft 		start = cgp->cg_frotor / NBBY;
   1396       1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1397       1.1   mycroft 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
   1398       1.1   mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1399       1.1   mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1400       1.1   mycroft 	if (loc == 0) {
   1401       1.1   mycroft 		len = start + 1;
   1402       1.1   mycroft 		start = 0;
   1403       1.1   mycroft 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
   1404       1.1   mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1405       1.1   mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1406       1.1   mycroft 		if (loc == 0) {
   1407      1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1408       1.1   mycroft 			    start, len, fs->fs_fsmnt);
   1409       1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1410       1.1   mycroft 			/* NOTREACHED */
   1411       1.1   mycroft 		}
   1412       1.1   mycroft 	}
   1413       1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1414       1.1   mycroft 	cgp->cg_frotor = bno;
   1415       1.1   mycroft 	/*
   1416       1.1   mycroft 	 * found the byte in the map
   1417       1.1   mycroft 	 * sift through the bits to find the selected frag
   1418       1.1   mycroft 	 */
   1419       1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1420       1.1   mycroft 		blk = blkmap(fs, cg_blksfree(cgp), bno);
   1421       1.1   mycroft 		blk <<= 1;
   1422       1.1   mycroft 		field = around[allocsiz];
   1423       1.1   mycroft 		subfield = inside[allocsiz];
   1424       1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1425       1.1   mycroft 			if ((blk & field) == subfield)
   1426       1.1   mycroft 				return (bno + pos);
   1427       1.1   mycroft 			field <<= 1;
   1428       1.1   mycroft 			subfield <<= 1;
   1429       1.1   mycroft 		}
   1430       1.1   mycroft 	}
   1431      1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1432       1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1433       1.1   mycroft 	return (-1);
   1434       1.1   mycroft }
   1435       1.1   mycroft 
   1436       1.1   mycroft /*
   1437       1.1   mycroft  * Update the cluster map because of an allocation or free.
   1438       1.1   mycroft  *
   1439       1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1440       1.1   mycroft  */
   1441       1.9  christos void
   1442       1.1   mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
   1443       1.1   mycroft 	struct fs *fs;
   1444       1.1   mycroft 	struct cg *cgp;
   1445       1.1   mycroft 	daddr_t blkno;
   1446       1.1   mycroft 	int cnt;
   1447       1.1   mycroft {
   1448       1.4       cgd 	int32_t *sump;
   1449       1.5   mycroft 	int32_t *lp;
   1450       1.1   mycroft 	u_char *freemapp, *mapp;
   1451       1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1452       1.1   mycroft 
   1453       1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1454       1.1   mycroft 		return;
   1455       1.1   mycroft 	freemapp = cg_clustersfree(cgp);
   1456       1.1   mycroft 	sump = cg_clustersum(cgp);
   1457       1.1   mycroft 	/*
   1458       1.1   mycroft 	 * Allocate or clear the actual block.
   1459       1.1   mycroft 	 */
   1460       1.1   mycroft 	if (cnt > 0)
   1461       1.1   mycroft 		setbit(freemapp, blkno);
   1462       1.1   mycroft 	else
   1463       1.1   mycroft 		clrbit(freemapp, blkno);
   1464       1.1   mycroft 	/*
   1465       1.1   mycroft 	 * Find the size of the cluster going forward.
   1466       1.1   mycroft 	 */
   1467       1.1   mycroft 	start = blkno + 1;
   1468       1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1469       1.1   mycroft 	if (end >= cgp->cg_nclusterblks)
   1470       1.1   mycroft 		end = cgp->cg_nclusterblks;
   1471       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1472       1.1   mycroft 	map = *mapp++;
   1473       1.1   mycroft 	bit = 1 << (start % NBBY);
   1474       1.1   mycroft 	for (i = start; i < end; i++) {
   1475       1.1   mycroft 		if ((map & bit) == 0)
   1476       1.1   mycroft 			break;
   1477       1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1478       1.1   mycroft 			bit <<= 1;
   1479       1.1   mycroft 		} else {
   1480       1.1   mycroft 			map = *mapp++;
   1481       1.1   mycroft 			bit = 1;
   1482       1.1   mycroft 		}
   1483       1.1   mycroft 	}
   1484       1.1   mycroft 	forw = i - start;
   1485       1.1   mycroft 	/*
   1486       1.1   mycroft 	 * Find the size of the cluster going backward.
   1487       1.1   mycroft 	 */
   1488       1.1   mycroft 	start = blkno - 1;
   1489       1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1490       1.1   mycroft 	if (end < 0)
   1491       1.1   mycroft 		end = -1;
   1492       1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1493       1.1   mycroft 	map = *mapp--;
   1494       1.1   mycroft 	bit = 1 << (start % NBBY);
   1495       1.1   mycroft 	for (i = start; i > end; i--) {
   1496       1.1   mycroft 		if ((map & bit) == 0)
   1497       1.1   mycroft 			break;
   1498       1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1499       1.1   mycroft 			bit >>= 1;
   1500       1.1   mycroft 		} else {
   1501       1.1   mycroft 			map = *mapp--;
   1502       1.1   mycroft 			bit = 1 << (NBBY - 1);
   1503       1.1   mycroft 		}
   1504       1.1   mycroft 	}
   1505       1.1   mycroft 	back = start - i;
   1506       1.1   mycroft 	/*
   1507       1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1508       1.1   mycroft 	 * back clusters.
   1509       1.1   mycroft 	 */
   1510       1.1   mycroft 	i = back + forw + 1;
   1511       1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1512       1.1   mycroft 		i = fs->fs_contigsumsize;
   1513       1.1   mycroft 	sump[i] += cnt;
   1514       1.1   mycroft 	if (back > 0)
   1515       1.1   mycroft 		sump[back] -= cnt;
   1516       1.1   mycroft 	if (forw > 0)
   1517       1.1   mycroft 		sump[forw] -= cnt;
   1518       1.5   mycroft 	/*
   1519       1.5   mycroft 	 * Update cluster summary information.
   1520       1.5   mycroft 	 */
   1521       1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1522       1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1523       1.5   mycroft 		if (*lp-- > 0)
   1524       1.5   mycroft 			break;
   1525       1.5   mycroft 	fs->fs_maxcluster[cgp->cg_cgx] = i;
   1526       1.1   mycroft }
   1527       1.1   mycroft 
   1528       1.1   mycroft /*
   1529       1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1530       1.1   mycroft  *
   1531       1.1   mycroft  * The form of the error message is:
   1532       1.1   mycroft  *	fs: error message
   1533       1.1   mycroft  */
   1534       1.1   mycroft static void
   1535       1.1   mycroft ffs_fserr(fs, uid, cp)
   1536       1.1   mycroft 	struct fs *fs;
   1537       1.1   mycroft 	u_int uid;
   1538       1.1   mycroft 	char *cp;
   1539       1.1   mycroft {
   1540       1.1   mycroft 
   1541       1.1   mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1542       1.1   mycroft }
   1543