ffs_alloc.c revision 1.130 1 1.130 tls /* $NetBSD: ffs_alloc.c,v 1.130 2011/11/28 08:05:07 tls Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.122 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.130 tls __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.130 2011/11/28 08:05:07 tls Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.129 chs #include "opt_uvm_page_trkown.h"
79 1.22 scottr #endif
80 1.1 mycroft
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/buf.h>
84 1.130 tls #include <sys/cprng.h>
85 1.111 simonb #include <sys/fstrans.h>
86 1.111 simonb #include <sys/kauth.h>
87 1.111 simonb #include <sys/kernel.h>
88 1.111 simonb #include <sys/mount.h>
89 1.1 mycroft #include <sys/proc.h>
90 1.111 simonb #include <sys/syslog.h>
91 1.1 mycroft #include <sys/vnode.h>
92 1.111 simonb #include <sys/wapbl.h>
93 1.29 mrg
94 1.76 hannken #include <miscfs/specfs/specdev.h>
95 1.1 mycroft #include <ufs/ufs/quota.h>
96 1.19 bouyer #include <ufs/ufs/ufsmount.h>
97 1.1 mycroft #include <ufs/ufs/inode.h>
98 1.9 christos #include <ufs/ufs/ufs_extern.h>
99 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
100 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
101 1.1 mycroft
102 1.1 mycroft #include <ufs/ffs/fs.h>
103 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
104 1.1 mycroft
105 1.129 chs #ifdef UVM_PAGE_TRKOWN
106 1.129 chs #include <uvm/uvm.h>
107 1.129 chs #endif
108 1.129 chs
109 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
110 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
111 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
112 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
113 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
114 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
115 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
116 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
117 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
118 1.85 thorpej daddr_t, int);
119 1.119 joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
120 1.116 joerg daddr_t, long, bool);
121 1.119 joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
122 1.119 joerg int, bool);
123 1.23 drochner
124 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
125 1.34 jdolecek int ffs_log_changeopt = 0;
126 1.34 jdolecek
127 1.23 drochner /* in ffs_tables.c */
128 1.40 jdolecek extern const int inside[], around[];
129 1.40 jdolecek extern const u_char * const fragtbl[];
130 1.1 mycroft
131 1.116 joerg /* Basic consistency check for block allocations */
132 1.116 joerg static int
133 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
134 1.116 joerg long size, dev_t dev, ino_t inum)
135 1.116 joerg {
136 1.116 joerg if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
137 1.116 joerg fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
138 1.120 christos printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
139 1.120 christos "size = %ld, fs = %s\n",
140 1.120 christos (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
141 1.116 joerg panic("%s: bad size", func);
142 1.116 joerg }
143 1.116 joerg
144 1.116 joerg if (bno >= fs->fs_size) {
145 1.116 joerg printf("bad block %" PRId64 ", ino %llu\n", bno,
146 1.116 joerg (unsigned long long)inum);
147 1.116 joerg ffs_fserr(fs, inum, "bad block");
148 1.116 joerg return EINVAL;
149 1.116 joerg }
150 1.116 joerg return 0;
151 1.116 joerg }
152 1.116 joerg
153 1.1 mycroft /*
154 1.1 mycroft * Allocate a block in the file system.
155 1.81 perry *
156 1.1 mycroft * The size of the requested block is given, which must be some
157 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
158 1.1 mycroft * A preference may be optionally specified. If a preference is given
159 1.1 mycroft * the following hierarchy is used to allocate a block:
160 1.1 mycroft * 1) allocate the requested block.
161 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
162 1.1 mycroft * 3) allocate a block in the same cylinder group.
163 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
164 1.1 mycroft * available block is located.
165 1.47 wiz * If no block preference is given the following hierarchy is used
166 1.1 mycroft * to allocate a block:
167 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
168 1.1 mycroft * inode for the file.
169 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
170 1.1 mycroft * available block is located.
171 1.106 pooka *
172 1.106 pooka * => called with um_lock held
173 1.106 pooka * => releases um_lock before returning
174 1.1 mycroft */
175 1.9 christos int
176 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
177 1.91 elad kauth_cred_t cred, daddr_t *bnp)
178 1.1 mycroft {
179 1.101 ad struct ufsmount *ump;
180 1.62 fvdl struct fs *fs;
181 1.58 fvdl daddr_t bno;
182 1.9 christos int cg;
183 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
184 1.9 christos int error;
185 1.9 christos #endif
186 1.81 perry
187 1.62 fvdl fs = ip->i_fs;
188 1.101 ad ump = ip->i_ump;
189 1.101 ad
190 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
191 1.62 fvdl
192 1.37 chs #ifdef UVM_PAGE_TRKOWN
193 1.129 chs
194 1.129 chs /*
195 1.129 chs * Sanity-check that allocations within the file size
196 1.129 chs * do not allow other threads to read the stale contents
197 1.129 chs * of newly allocated blocks.
198 1.129 chs * Usually pages will exist to cover the new allocation.
199 1.129 chs * There is an optimization in ffs_write() where we skip
200 1.129 chs * creating pages if several conditions are met:
201 1.129 chs * - the file must not be mapped (in any user address space).
202 1.129 chs * - the write must cover whole pages and whole blocks.
203 1.129 chs * If those conditions are not met then pages must exist and
204 1.129 chs * be locked by the current thread.
205 1.129 chs */
206 1.129 chs
207 1.51 chs if (ITOV(ip)->v_type == VREG &&
208 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
209 1.37 chs struct vm_page *pg;
210 1.129 chs struct vnode *vp = ITOV(ip);
211 1.129 chs struct uvm_object *uobj = &vp->v_uobj;
212 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
213 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
214 1.37 chs
215 1.128 rmind mutex_enter(uobj->vmobjlock);
216 1.37 chs while (off < endoff) {
217 1.37 chs pg = uvm_pagelookup(uobj, off);
218 1.129 chs KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
219 1.129 chs (size & PAGE_MASK) == 0 &&
220 1.129 chs blkoff(fs, size) == 0) ||
221 1.129 chs (pg != NULL && pg->owner == curproc->p_pid &&
222 1.129 chs pg->lowner == curlwp->l_lid));
223 1.37 chs off += PAGE_SIZE;
224 1.37 chs }
225 1.128 rmind mutex_exit(uobj->vmobjlock);
226 1.37 chs }
227 1.37 chs #endif
228 1.37 chs
229 1.1 mycroft *bnp = 0;
230 1.1 mycroft #ifdef DIAGNOSTIC
231 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
232 1.120 christos printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
233 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, size,
234 1.120 christos fs->fs_fsmnt);
235 1.1 mycroft panic("ffs_alloc: bad size");
236 1.1 mycroft }
237 1.1 mycroft if (cred == NOCRED)
238 1.56 provos panic("ffs_alloc: missing credential");
239 1.1 mycroft #endif /* DIAGNOSTIC */
240 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
241 1.1 mycroft goto nospace;
242 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
243 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
244 1.124 elad NULL, NULL) != 0)
245 1.1 mycroft goto nospace;
246 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
247 1.101 ad mutex_exit(&ump->um_lock);
248 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
249 1.1 mycroft return (error);
250 1.101 ad mutex_enter(&ump->um_lock);
251 1.1 mycroft #endif
252 1.111 simonb
253 1.1 mycroft if (bpref >= fs->fs_size)
254 1.1 mycroft bpref = 0;
255 1.1 mycroft if (bpref == 0)
256 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
257 1.1 mycroft else
258 1.1 mycroft cg = dtog(fs, bpref);
259 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
260 1.1 mycroft if (bno > 0) {
261 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
262 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
263 1.1 mycroft *bnp = bno;
264 1.1 mycroft return (0);
265 1.1 mycroft }
266 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
267 1.1 mycroft /*
268 1.1 mycroft * Restore user's disk quota because allocation failed.
269 1.1 mycroft */
270 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
271 1.1 mycroft #endif
272 1.111 simonb if (flags & B_CONTIG) {
273 1.111 simonb /*
274 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
275 1.111 simonb * For the case where ffs_hashalloc() fails early
276 1.111 simonb * in the B_CONTIG case we reach here with um_lock
277 1.111 simonb * already unlocked, so we can't release it again
278 1.111 simonb * like in the normal error path. See kern/39206.
279 1.111 simonb *
280 1.111 simonb *
281 1.111 simonb * Fail silently - it's up to our caller to report
282 1.111 simonb * errors.
283 1.111 simonb */
284 1.111 simonb return (ENOSPC);
285 1.111 simonb }
286 1.1 mycroft nospace:
287 1.101 ad mutex_exit(&ump->um_lock);
288 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
289 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
290 1.1 mycroft return (ENOSPC);
291 1.1 mycroft }
292 1.1 mycroft
293 1.1 mycroft /*
294 1.1 mycroft * Reallocate a fragment to a bigger size
295 1.1 mycroft *
296 1.1 mycroft * The number and size of the old block is given, and a preference
297 1.1 mycroft * and new size is also specified. The allocator attempts to extend
298 1.1 mycroft * the original block. Failing that, the regular block allocator is
299 1.1 mycroft * invoked to get an appropriate block.
300 1.106 pooka *
301 1.106 pooka * => called with um_lock held
302 1.106 pooka * => return with um_lock released
303 1.1 mycroft */
304 1.9 christos int
305 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
306 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
307 1.1 mycroft {
308 1.101 ad struct ufsmount *ump;
309 1.62 fvdl struct fs *fs;
310 1.1 mycroft struct buf *bp;
311 1.1 mycroft int cg, request, error;
312 1.58 fvdl daddr_t bprev, bno;
313 1.25 thorpej
314 1.62 fvdl fs = ip->i_fs;
315 1.101 ad ump = ip->i_ump;
316 1.101 ad
317 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
318 1.101 ad
319 1.37 chs #ifdef UVM_PAGE_TRKOWN
320 1.129 chs
321 1.129 chs /*
322 1.129 chs * Sanity-check that allocations within the file size
323 1.129 chs * do not allow other threads to read the stale contents
324 1.129 chs * of newly allocated blocks.
325 1.129 chs * Unlike in ffs_alloc(), here pages must always exist
326 1.129 chs * for such allocations, because only the last block of a file
327 1.129 chs * can be a fragment and ffs_write() will reallocate the
328 1.129 chs * fragment to the new size using ufs_balloc_range(),
329 1.129 chs * which always creates pages to cover blocks it allocates.
330 1.129 chs */
331 1.129 chs
332 1.37 chs if (ITOV(ip)->v_type == VREG) {
333 1.37 chs struct vm_page *pg;
334 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
335 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
336 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
337 1.37 chs
338 1.128 rmind mutex_enter(uobj->vmobjlock);
339 1.37 chs while (off < endoff) {
340 1.37 chs pg = uvm_pagelookup(uobj, off);
341 1.129 chs KASSERT(pg->owner == curproc->p_pid &&
342 1.129 chs pg->lowner == curlwp->l_lid);
343 1.37 chs off += PAGE_SIZE;
344 1.37 chs }
345 1.128 rmind mutex_exit(uobj->vmobjlock);
346 1.37 chs }
347 1.37 chs #endif
348 1.37 chs
349 1.1 mycroft #ifdef DIAGNOSTIC
350 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
351 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
352 1.13 christos printf(
353 1.120 christos "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
354 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
355 1.120 christos fs->fs_fsmnt);
356 1.1 mycroft panic("ffs_realloccg: bad size");
357 1.1 mycroft }
358 1.1 mycroft if (cred == NOCRED)
359 1.56 provos panic("ffs_realloccg: missing credential");
360 1.1 mycroft #endif /* DIAGNOSTIC */
361 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
362 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
363 1.124 elad NULL, NULL) != 0) {
364 1.101 ad mutex_exit(&ump->um_lock);
365 1.1 mycroft goto nospace;
366 1.101 ad }
367 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
368 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
369 1.60 fvdl else
370 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
371 1.60 fvdl
372 1.60 fvdl if (bprev == 0) {
373 1.120 christos printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
374 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
375 1.120 christos fs->fs_fsmnt);
376 1.1 mycroft panic("ffs_realloccg: bad bprev");
377 1.1 mycroft }
378 1.101 ad mutex_exit(&ump->um_lock);
379 1.101 ad
380 1.1 mycroft /*
381 1.1 mycroft * Allocate the extra space in the buffer.
382 1.1 mycroft */
383 1.37 chs if (bpp != NULL &&
384 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
385 1.101 ad brelse(bp, 0);
386 1.1 mycroft return (error);
387 1.1 mycroft }
388 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
389 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
390 1.44 chs if (bpp != NULL) {
391 1.101 ad brelse(bp, 0);
392 1.44 chs }
393 1.1 mycroft return (error);
394 1.1 mycroft }
395 1.1 mycroft #endif
396 1.1 mycroft /*
397 1.1 mycroft * Check for extension in the existing location.
398 1.1 mycroft */
399 1.1 mycroft cg = dtog(fs, bprev);
400 1.101 ad mutex_enter(&ump->um_lock);
401 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
402 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
403 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
404 1.37 chs
405 1.37 chs if (bpp != NULL) {
406 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
407 1.37 chs panic("bad blockno");
408 1.72 pk allocbuf(bp, nsize, 1);
409 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
410 1.105 ad mutex_enter(bp->b_objlock);
411 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
412 1.105 ad bp->b_oflags |= BO_DONE;
413 1.105 ad mutex_exit(bp->b_objlock);
414 1.37 chs *bpp = bp;
415 1.37 chs }
416 1.37 chs if (blknop != NULL) {
417 1.37 chs *blknop = bno;
418 1.37 chs }
419 1.1 mycroft return (0);
420 1.1 mycroft }
421 1.1 mycroft /*
422 1.1 mycroft * Allocate a new disk location.
423 1.1 mycroft */
424 1.1 mycroft if (bpref >= fs->fs_size)
425 1.1 mycroft bpref = 0;
426 1.1 mycroft switch ((int)fs->fs_optim) {
427 1.1 mycroft case FS_OPTSPACE:
428 1.1 mycroft /*
429 1.81 perry * Allocate an exact sized fragment. Although this makes
430 1.81 perry * best use of space, we will waste time relocating it if
431 1.1 mycroft * the file continues to grow. If the fragmentation is
432 1.1 mycroft * less than half of the minimum free reserve, we choose
433 1.1 mycroft * to begin optimizing for time.
434 1.1 mycroft */
435 1.1 mycroft request = nsize;
436 1.1 mycroft if (fs->fs_minfree < 5 ||
437 1.1 mycroft fs->fs_cstotal.cs_nffree >
438 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
439 1.1 mycroft break;
440 1.34 jdolecek
441 1.34 jdolecek if (ffs_log_changeopt) {
442 1.34 jdolecek log(LOG_NOTICE,
443 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
444 1.34 jdolecek fs->fs_fsmnt);
445 1.34 jdolecek }
446 1.34 jdolecek
447 1.1 mycroft fs->fs_optim = FS_OPTTIME;
448 1.1 mycroft break;
449 1.1 mycroft case FS_OPTTIME:
450 1.1 mycroft /*
451 1.1 mycroft * At this point we have discovered a file that is trying to
452 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
453 1.1 mycroft * we allocate a full sized block, then free the unused portion.
454 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
455 1.1 mycroft * above will be able to grow it in place without further
456 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
457 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
458 1.1 mycroft * optimizing for space.
459 1.1 mycroft */
460 1.1 mycroft request = fs->fs_bsize;
461 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
462 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
463 1.1 mycroft break;
464 1.34 jdolecek
465 1.34 jdolecek if (ffs_log_changeopt) {
466 1.34 jdolecek log(LOG_NOTICE,
467 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
468 1.34 jdolecek fs->fs_fsmnt);
469 1.34 jdolecek }
470 1.34 jdolecek
471 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
472 1.1 mycroft break;
473 1.1 mycroft default:
474 1.120 christos printf("dev = 0x%llx, optim = %d, fs = %s\n",
475 1.120 christos (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
476 1.1 mycroft panic("ffs_realloccg: bad optim");
477 1.1 mycroft /* NOTREACHED */
478 1.1 mycroft }
479 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
480 1.1 mycroft if (bno > 0) {
481 1.122 ad if ((ip->i_ump->um_mountp->mnt_wapbl) &&
482 1.122 ad (ITOV(ip)->v_type != VREG)) {
483 1.122 ad UFS_WAPBL_REGISTER_DEALLOCATION(
484 1.122 ad ip->i_ump->um_mountp, fsbtodb(fs, bprev),
485 1.122 ad osize);
486 1.122 ad } else {
487 1.122 ad ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
488 1.122 ad ip->i_number);
489 1.111 simonb }
490 1.111 simonb if (nsize < request) {
491 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
492 1.111 simonb (ITOV(ip)->v_type != VREG)) {
493 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
494 1.111 simonb ip->i_ump->um_mountp,
495 1.111 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
496 1.111 simonb request - nsize);
497 1.111 simonb } else
498 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
499 1.111 simonb bno + numfrags(fs, nsize),
500 1.111 simonb (long)(request - nsize), ip->i_number);
501 1.111 simonb }
502 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
503 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
504 1.37 chs if (bpp != NULL) {
505 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
506 1.72 pk allocbuf(bp, nsize, 1);
507 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
508 1.105 ad mutex_enter(bp->b_objlock);
509 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
510 1.105 ad bp->b_oflags |= BO_DONE;
511 1.105 ad mutex_exit(bp->b_objlock);
512 1.37 chs *bpp = bp;
513 1.37 chs }
514 1.37 chs if (blknop != NULL) {
515 1.37 chs *blknop = bno;
516 1.37 chs }
517 1.1 mycroft return (0);
518 1.1 mycroft }
519 1.101 ad mutex_exit(&ump->um_lock);
520 1.101 ad
521 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
522 1.1 mycroft /*
523 1.1 mycroft * Restore user's disk quota because allocation failed.
524 1.1 mycroft */
525 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
526 1.1 mycroft #endif
527 1.37 chs if (bpp != NULL) {
528 1.101 ad brelse(bp, 0);
529 1.37 chs }
530 1.37 chs
531 1.1 mycroft nospace:
532 1.1 mycroft /*
533 1.1 mycroft * no space available
534 1.1 mycroft */
535 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
536 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
537 1.1 mycroft return (ENOSPC);
538 1.1 mycroft }
539 1.1 mycroft
540 1.1 mycroft /*
541 1.1 mycroft * Allocate an inode in the file system.
542 1.81 perry *
543 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
544 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
545 1.1 mycroft * 1) allocate the preferred inode.
546 1.1 mycroft * 2) allocate an inode in the same cylinder group.
547 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
548 1.1 mycroft * available inode is located.
549 1.47 wiz * If no inode preference is given the following hierarchy is used
550 1.1 mycroft * to allocate an inode:
551 1.1 mycroft * 1) allocate an inode in cylinder group 0.
552 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
553 1.1 mycroft * available inode is located.
554 1.106 pooka *
555 1.106 pooka * => um_lock not held upon entry or return
556 1.1 mycroft */
557 1.9 christos int
558 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
559 1.88 yamt struct vnode **vpp)
560 1.9 christos {
561 1.101 ad struct ufsmount *ump;
562 1.33 augustss struct inode *pip;
563 1.33 augustss struct fs *fs;
564 1.33 augustss struct inode *ip;
565 1.60 fvdl struct timespec ts;
566 1.1 mycroft ino_t ino, ipref;
567 1.1 mycroft int cg, error;
568 1.81 perry
569 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
570 1.111 simonb
571 1.88 yamt *vpp = NULL;
572 1.1 mycroft pip = VTOI(pvp);
573 1.1 mycroft fs = pip->i_fs;
574 1.101 ad ump = pip->i_ump;
575 1.101 ad
576 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
577 1.111 simonb if (error) {
578 1.111 simonb return error;
579 1.111 simonb }
580 1.101 ad mutex_enter(&ump->um_lock);
581 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
582 1.1 mycroft goto noinodes;
583 1.1 mycroft
584 1.1 mycroft if ((mode & IFMT) == IFDIR)
585 1.50 lukem ipref = ffs_dirpref(pip);
586 1.50 lukem else
587 1.50 lukem ipref = pip->i_number;
588 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
589 1.1 mycroft ipref = 0;
590 1.1 mycroft cg = ino_to_cg(fs, ipref);
591 1.50 lukem /*
592 1.50 lukem * Track number of dirs created one after another
593 1.50 lukem * in a same cg without intervening by files.
594 1.50 lukem */
595 1.50 lukem if ((mode & IFMT) == IFDIR) {
596 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
597 1.50 lukem fs->fs_contigdirs[cg]++;
598 1.50 lukem } else {
599 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
600 1.50 lukem fs->fs_contigdirs[cg]--;
601 1.50 lukem }
602 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
603 1.1 mycroft if (ino == 0)
604 1.1 mycroft goto noinodes;
605 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
606 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
607 1.1 mycroft if (error) {
608 1.111 simonb int err;
609 1.111 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
610 1.111 simonb if (err == 0)
611 1.111 simonb ffs_vfree(pvp, ino, mode);
612 1.111 simonb if (err == 0)
613 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
614 1.1 mycroft return (error);
615 1.1 mycroft }
616 1.90 yamt KASSERT((*vpp)->v_type == VNON);
617 1.88 yamt ip = VTOI(*vpp);
618 1.60 fvdl if (ip->i_mode) {
619 1.60 fvdl #if 0
620 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
621 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
622 1.60 fvdl #else
623 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
624 1.60 fvdl DIP(ip, mode), ip->i_mode,
625 1.60 fvdl DIP(ip, gen), ip->i_gen);
626 1.60 fvdl printf("size %llx blocks %llx\n",
627 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
628 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
629 1.86 christos (unsigned long long)ipref);
630 1.60 fvdl #if 0
631 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
632 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
633 1.60 fvdl #endif
634 1.60 fvdl
635 1.60 fvdl #endif
636 1.1 mycroft panic("ffs_valloc: dup alloc");
637 1.1 mycroft }
638 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
639 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
640 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
641 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
642 1.1 mycroft }
643 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
644 1.61 fvdl ip->i_flags = 0;
645 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
646 1.1 mycroft /*
647 1.1 mycroft * Set up a new generation number for this inode.
648 1.1 mycroft */
649 1.60 fvdl ip->i_gen++;
650 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
651 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
652 1.93 yamt vfs_timestamp(&ts);
653 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
654 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
655 1.60 fvdl }
656 1.1 mycroft return (0);
657 1.1 mycroft noinodes:
658 1.101 ad mutex_exit(&ump->um_lock);
659 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
660 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
661 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
662 1.1 mycroft return (ENOSPC);
663 1.1 mycroft }
664 1.1 mycroft
665 1.1 mycroft /*
666 1.50 lukem * Find a cylinder group in which to place a directory.
667 1.42 sommerfe *
668 1.50 lukem * The policy implemented by this algorithm is to allocate a
669 1.50 lukem * directory inode in the same cylinder group as its parent
670 1.50 lukem * directory, but also to reserve space for its files inodes
671 1.50 lukem * and data. Restrict the number of directories which may be
672 1.50 lukem * allocated one after another in the same cylinder group
673 1.50 lukem * without intervening allocation of files.
674 1.42 sommerfe *
675 1.50 lukem * If we allocate a first level directory then force allocation
676 1.50 lukem * in another cylinder group.
677 1.1 mycroft */
678 1.1 mycroft static ino_t
679 1.85 thorpej ffs_dirpref(struct inode *pip)
680 1.1 mycroft {
681 1.50 lukem register struct fs *fs;
682 1.74 soren int cg, prefcg;
683 1.89 dsl int64_t dirsize, cgsize, curdsz;
684 1.89 dsl int avgifree, avgbfree, avgndir;
685 1.50 lukem int minifree, minbfree, maxndir;
686 1.50 lukem int mincg, minndir;
687 1.50 lukem int maxcontigdirs;
688 1.50 lukem
689 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
690 1.101 ad
691 1.50 lukem fs = pip->i_fs;
692 1.1 mycroft
693 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
694 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
695 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
696 1.50 lukem
697 1.50 lukem /*
698 1.50 lukem * Force allocation in another cg if creating a first level dir.
699 1.50 lukem */
700 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
701 1.71 mycroft prefcg = random() % fs->fs_ncg;
702 1.50 lukem mincg = prefcg;
703 1.50 lukem minndir = fs->fs_ipg;
704 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
705 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
706 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
707 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
708 1.42 sommerfe mincg = cg;
709 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
710 1.42 sommerfe }
711 1.50 lukem for (cg = 0; cg < prefcg; cg++)
712 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
713 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
714 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
715 1.50 lukem mincg = cg;
716 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
717 1.42 sommerfe }
718 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
719 1.42 sommerfe }
720 1.50 lukem
721 1.50 lukem /*
722 1.50 lukem * Count various limits which used for
723 1.50 lukem * optimal allocation of a directory inode.
724 1.50 lukem */
725 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
726 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
727 1.50 lukem if (minifree < 0)
728 1.50 lukem minifree = 0;
729 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
730 1.50 lukem if (minbfree < 0)
731 1.50 lukem minbfree = 0;
732 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
733 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
734 1.89 dsl if (avgndir != 0) {
735 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
736 1.89 dsl if (dirsize < curdsz)
737 1.89 dsl dirsize = curdsz;
738 1.89 dsl }
739 1.89 dsl if (cgsize < dirsize * 255)
740 1.89 dsl maxcontigdirs = cgsize / dirsize;
741 1.89 dsl else
742 1.89 dsl maxcontigdirs = 255;
743 1.50 lukem if (fs->fs_avgfpdir > 0)
744 1.50 lukem maxcontigdirs = min(maxcontigdirs,
745 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
746 1.50 lukem if (maxcontigdirs == 0)
747 1.50 lukem maxcontigdirs = 1;
748 1.50 lukem
749 1.50 lukem /*
750 1.81 perry * Limit number of dirs in one cg and reserve space for
751 1.50 lukem * regular files, but only if we have no deficit in
752 1.50 lukem * inodes or space.
753 1.50 lukem */
754 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
755 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
756 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
757 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
758 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
759 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
760 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
761 1.50 lukem }
762 1.50 lukem for (cg = 0; cg < prefcg; cg++)
763 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
764 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
765 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
766 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
767 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
768 1.50 lukem }
769 1.50 lukem /*
770 1.50 lukem * This is a backstop when we are deficient in space.
771 1.50 lukem */
772 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
773 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
774 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
775 1.50 lukem for (cg = 0; cg < prefcg; cg++)
776 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
777 1.50 lukem break;
778 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
779 1.1 mycroft }
780 1.1 mycroft
781 1.1 mycroft /*
782 1.1 mycroft * Select the desired position for the next block in a file. The file is
783 1.1 mycroft * logically divided into sections. The first section is composed of the
784 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
785 1.81 perry *
786 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
787 1.1 mycroft * request a block in the same cylinder group as the inode that describes
788 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
789 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
790 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
791 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
792 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
793 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
794 1.1 mycroft * continues until a cylinder group with greater than the average number
795 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
796 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
797 1.1 mycroft * here a best guess is made based upon the logical block number being
798 1.1 mycroft * allocated.
799 1.81 perry *
800 1.1 mycroft * If a section is already partially allocated, the policy is to
801 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
802 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
803 1.60 fvdl * contigously if possible.
804 1.106 pooka *
805 1.106 pooka * => um_lock held on entry and exit
806 1.1 mycroft */
807 1.58 fvdl daddr_t
808 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
809 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
810 1.1 mycroft {
811 1.33 augustss struct fs *fs;
812 1.33 augustss int cg;
813 1.1 mycroft int avgbfree, startcg;
814 1.1 mycroft
815 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
816 1.101 ad
817 1.1 mycroft fs = ip->i_fs;
818 1.111 simonb
819 1.111 simonb /*
820 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
821 1.111 simonb * in the inode extentions to return the desired block.
822 1.111 simonb *
823 1.111 simonb * For metadata (indirect blocks) return the address of where
824 1.111 simonb * the first indirect block resides - we'll scan for the next
825 1.111 simonb * available slot if we need to allocate more than one indirect
826 1.111 simonb * block. For data, return the address of the actual block
827 1.111 simonb * relative to the address of the first data block.
828 1.111 simonb */
829 1.111 simonb if (flags & B_CONTIG) {
830 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
831 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
832 1.111 simonb if (flags & B_METAONLY)
833 1.111 simonb return ip->i_ffs_first_indir_blk;
834 1.111 simonb else
835 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
836 1.111 simonb }
837 1.111 simonb
838 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
839 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
840 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
841 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
842 1.1 mycroft }
843 1.1 mycroft /*
844 1.1 mycroft * Find a cylinder with greater than average number of
845 1.1 mycroft * unused data blocks.
846 1.1 mycroft */
847 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
848 1.1 mycroft startcg =
849 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
850 1.1 mycroft else
851 1.19 bouyer startcg = dtog(fs,
852 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
853 1.1 mycroft startcg %= fs->fs_ncg;
854 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
855 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
856 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
857 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
858 1.1 mycroft }
859 1.52 lukem for (cg = 0; cg < startcg; cg++)
860 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
861 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
862 1.1 mycroft }
863 1.35 thorpej return (0);
864 1.1 mycroft }
865 1.1 mycroft /*
866 1.60 fvdl * We just always try to lay things out contiguously.
867 1.60 fvdl */
868 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
869 1.60 fvdl }
870 1.60 fvdl
871 1.60 fvdl daddr_t
872 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
873 1.111 simonb int64_t *bap)
874 1.60 fvdl {
875 1.60 fvdl struct fs *fs;
876 1.60 fvdl int cg;
877 1.60 fvdl int avgbfree, startcg;
878 1.60 fvdl
879 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
880 1.101 ad
881 1.60 fvdl fs = ip->i_fs;
882 1.111 simonb
883 1.111 simonb /*
884 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
885 1.111 simonb * in the inode extentions to return the desired block.
886 1.111 simonb *
887 1.111 simonb * For metadata (indirect blocks) return the address of where
888 1.111 simonb * the first indirect block resides - we'll scan for the next
889 1.111 simonb * available slot if we need to allocate more than one indirect
890 1.111 simonb * block. For data, return the address of the actual block
891 1.111 simonb * relative to the address of the first data block.
892 1.111 simonb */
893 1.111 simonb if (flags & B_CONTIG) {
894 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
895 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
896 1.111 simonb if (flags & B_METAONLY)
897 1.111 simonb return ip->i_ffs_first_indir_blk;
898 1.111 simonb else
899 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
900 1.111 simonb }
901 1.111 simonb
902 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
903 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
904 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
905 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
906 1.60 fvdl }
907 1.1 mycroft /*
908 1.60 fvdl * Find a cylinder with greater than average number of
909 1.60 fvdl * unused data blocks.
910 1.1 mycroft */
911 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
912 1.60 fvdl startcg =
913 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
914 1.60 fvdl else
915 1.60 fvdl startcg = dtog(fs,
916 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
917 1.60 fvdl startcg %= fs->fs_ncg;
918 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
919 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
920 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
921 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
922 1.60 fvdl }
923 1.60 fvdl for (cg = 0; cg < startcg; cg++)
924 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
925 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
926 1.60 fvdl }
927 1.60 fvdl return (0);
928 1.60 fvdl }
929 1.60 fvdl /*
930 1.60 fvdl * We just always try to lay things out contiguously.
931 1.60 fvdl */
932 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
933 1.1 mycroft }
934 1.1 mycroft
935 1.60 fvdl
936 1.1 mycroft /*
937 1.1 mycroft * Implement the cylinder overflow algorithm.
938 1.1 mycroft *
939 1.1 mycroft * The policy implemented by this algorithm is:
940 1.1 mycroft * 1) allocate the block in its requested cylinder group.
941 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
942 1.1 mycroft * 3) brute force search for a free block.
943 1.106 pooka *
944 1.106 pooka * => called with um_lock held
945 1.106 pooka * => returns with um_lock released on success, held on failure
946 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
947 1.1 mycroft */
948 1.1 mycroft /*VARARGS5*/
949 1.58 fvdl static daddr_t
950 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
951 1.85 thorpej int size /* size for data blocks, mode for inodes */,
952 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
953 1.1 mycroft {
954 1.33 augustss struct fs *fs;
955 1.58 fvdl daddr_t result;
956 1.1 mycroft int i, icg = cg;
957 1.1 mycroft
958 1.1 mycroft fs = ip->i_fs;
959 1.1 mycroft /*
960 1.1 mycroft * 1: preferred cylinder group
961 1.1 mycroft */
962 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
963 1.1 mycroft if (result)
964 1.1 mycroft return (result);
965 1.111 simonb
966 1.111 simonb if (flags & B_CONTIG)
967 1.111 simonb return (result);
968 1.1 mycroft /*
969 1.1 mycroft * 2: quadratic rehash
970 1.1 mycroft */
971 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
972 1.1 mycroft cg += i;
973 1.1 mycroft if (cg >= fs->fs_ncg)
974 1.1 mycroft cg -= fs->fs_ncg;
975 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
976 1.1 mycroft if (result)
977 1.1 mycroft return (result);
978 1.1 mycroft }
979 1.1 mycroft /*
980 1.1 mycroft * 3: brute force search
981 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
982 1.1 mycroft * and 1 is always checked in the quadratic rehash.
983 1.1 mycroft */
984 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
985 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
986 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
987 1.1 mycroft if (result)
988 1.1 mycroft return (result);
989 1.1 mycroft cg++;
990 1.1 mycroft if (cg == fs->fs_ncg)
991 1.1 mycroft cg = 0;
992 1.1 mycroft }
993 1.35 thorpej return (0);
994 1.1 mycroft }
995 1.1 mycroft
996 1.1 mycroft /*
997 1.1 mycroft * Determine whether a fragment can be extended.
998 1.1 mycroft *
999 1.81 perry * Check to see if the necessary fragments are available, and
1000 1.1 mycroft * if they are, allocate them.
1001 1.106 pooka *
1002 1.106 pooka * => called with um_lock held
1003 1.106 pooka * => returns with um_lock released on success, held on failure
1004 1.1 mycroft */
1005 1.58 fvdl static daddr_t
1006 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1007 1.1 mycroft {
1008 1.101 ad struct ufsmount *ump;
1009 1.33 augustss struct fs *fs;
1010 1.33 augustss struct cg *cgp;
1011 1.1 mycroft struct buf *bp;
1012 1.58 fvdl daddr_t bno;
1013 1.1 mycroft int frags, bbase;
1014 1.1 mycroft int i, error;
1015 1.62 fvdl u_int8_t *blksfree;
1016 1.1 mycroft
1017 1.1 mycroft fs = ip->i_fs;
1018 1.101 ad ump = ip->i_ump;
1019 1.101 ad
1020 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1021 1.101 ad
1022 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1023 1.35 thorpej return (0);
1024 1.1 mycroft frags = numfrags(fs, nsize);
1025 1.1 mycroft bbase = fragnum(fs, bprev);
1026 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1027 1.1 mycroft /* cannot extend across a block boundary */
1028 1.35 thorpej return (0);
1029 1.1 mycroft }
1030 1.101 ad mutex_exit(&ump->um_lock);
1031 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1032 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1033 1.101 ad if (error)
1034 1.101 ad goto fail;
1035 1.1 mycroft cgp = (struct cg *)bp->b_data;
1036 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1037 1.101 ad goto fail;
1038 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1039 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1040 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1041 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1042 1.1 mycroft bno = dtogd(fs, bprev);
1043 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1044 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1045 1.101 ad if (isclr(blksfree, bno + i))
1046 1.101 ad goto fail;
1047 1.1 mycroft /*
1048 1.1 mycroft * the current fragment can be extended
1049 1.1 mycroft * deduct the count on fragment being extended into
1050 1.1 mycroft * increase the count on the remaining fragment (if any)
1051 1.1 mycroft * allocate the extended piece
1052 1.1 mycroft */
1053 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1054 1.62 fvdl if (isclr(blksfree, bno + i))
1055 1.1 mycroft break;
1056 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1057 1.1 mycroft if (i != frags)
1058 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1059 1.101 ad mutex_enter(&ump->um_lock);
1060 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1061 1.62 fvdl clrbit(blksfree, bno + i);
1062 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1063 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1064 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1065 1.1 mycroft }
1066 1.1 mycroft fs->fs_fmod = 1;
1067 1.101 ad ACTIVECG_CLR(fs, cg);
1068 1.101 ad mutex_exit(&ump->um_lock);
1069 1.1 mycroft bdwrite(bp);
1070 1.1 mycroft return (bprev);
1071 1.101 ad
1072 1.101 ad fail:
1073 1.101 ad brelse(bp, 0);
1074 1.101 ad mutex_enter(&ump->um_lock);
1075 1.101 ad return (0);
1076 1.1 mycroft }
1077 1.1 mycroft
1078 1.1 mycroft /*
1079 1.1 mycroft * Determine whether a block can be allocated.
1080 1.1 mycroft *
1081 1.1 mycroft * Check to see if a block of the appropriate size is available,
1082 1.1 mycroft * and if it is, allocate it.
1083 1.1 mycroft */
1084 1.58 fvdl static daddr_t
1085 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1086 1.1 mycroft {
1087 1.101 ad struct ufsmount *ump;
1088 1.62 fvdl struct fs *fs = ip->i_fs;
1089 1.30 fvdl struct cg *cgp;
1090 1.1 mycroft struct buf *bp;
1091 1.60 fvdl int32_t bno;
1092 1.60 fvdl daddr_t blkno;
1093 1.30 fvdl int error, frags, allocsiz, i;
1094 1.62 fvdl u_int8_t *blksfree;
1095 1.30 fvdl #ifdef FFS_EI
1096 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1097 1.30 fvdl #endif
1098 1.1 mycroft
1099 1.101 ad ump = ip->i_ump;
1100 1.101 ad
1101 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1102 1.101 ad
1103 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1104 1.35 thorpej return (0);
1105 1.101 ad mutex_exit(&ump->um_lock);
1106 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1107 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1108 1.101 ad if (error)
1109 1.101 ad goto fail;
1110 1.1 mycroft cgp = (struct cg *)bp->b_data;
1111 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1112 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1113 1.101 ad goto fail;
1114 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1115 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1116 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1117 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1118 1.1 mycroft if (size == fs->fs_bsize) {
1119 1.101 ad mutex_enter(&ump->um_lock);
1120 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1121 1.76 hannken ACTIVECG_CLR(fs, cg);
1122 1.101 ad mutex_exit(&ump->um_lock);
1123 1.1 mycroft bdwrite(bp);
1124 1.60 fvdl return (blkno);
1125 1.1 mycroft }
1126 1.1 mycroft /*
1127 1.1 mycroft * check to see if any fragments are already available
1128 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1129 1.1 mycroft * it down to a smaller size if necessary
1130 1.1 mycroft */
1131 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1132 1.1 mycroft frags = numfrags(fs, size);
1133 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1134 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1135 1.1 mycroft break;
1136 1.1 mycroft if (allocsiz == fs->fs_frag) {
1137 1.1 mycroft /*
1138 1.81 perry * no fragments were available, so a block will be
1139 1.1 mycroft * allocated, and hacked up
1140 1.1 mycroft */
1141 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1142 1.101 ad goto fail;
1143 1.101 ad mutex_enter(&ump->um_lock);
1144 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1145 1.60 fvdl bno = dtogd(fs, blkno);
1146 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1147 1.62 fvdl setbit(blksfree, bno + i);
1148 1.1 mycroft i = fs->fs_frag - frags;
1149 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1150 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1151 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1152 1.1 mycroft fs->fs_fmod = 1;
1153 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1154 1.76 hannken ACTIVECG_CLR(fs, cg);
1155 1.101 ad mutex_exit(&ump->um_lock);
1156 1.1 mycroft bdwrite(bp);
1157 1.60 fvdl return (blkno);
1158 1.1 mycroft }
1159 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1160 1.30 fvdl #if 0
1161 1.30 fvdl /*
1162 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1163 1.58 fvdl * also: returning NULL as daddr_t ?
1164 1.30 fvdl */
1165 1.101 ad if (bno < 0)
1166 1.101 ad goto fail;
1167 1.30 fvdl #endif
1168 1.1 mycroft for (i = 0; i < frags; i++)
1169 1.62 fvdl clrbit(blksfree, bno + i);
1170 1.101 ad mutex_enter(&ump->um_lock);
1171 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1172 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1173 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1174 1.1 mycroft fs->fs_fmod = 1;
1175 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1176 1.1 mycroft if (frags != allocsiz)
1177 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1178 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1179 1.101 ad ACTIVECG_CLR(fs, cg);
1180 1.101 ad mutex_exit(&ump->um_lock);
1181 1.1 mycroft bdwrite(bp);
1182 1.30 fvdl return blkno;
1183 1.101 ad
1184 1.101 ad fail:
1185 1.101 ad brelse(bp, 0);
1186 1.101 ad mutex_enter(&ump->um_lock);
1187 1.101 ad return (0);
1188 1.1 mycroft }
1189 1.1 mycroft
1190 1.1 mycroft /*
1191 1.1 mycroft * Allocate a block in a cylinder group.
1192 1.1 mycroft *
1193 1.1 mycroft * This algorithm implements the following policy:
1194 1.1 mycroft * 1) allocate the requested block.
1195 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1196 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1197 1.1 mycroft * specified cylinder group.
1198 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1199 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1200 1.1 mycroft */
1201 1.58 fvdl static daddr_t
1202 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1203 1.1 mycroft {
1204 1.101 ad struct ufsmount *ump;
1205 1.62 fvdl struct fs *fs = ip->i_fs;
1206 1.30 fvdl struct cg *cgp;
1207 1.123 sborrill int cg;
1208 1.60 fvdl daddr_t blkno;
1209 1.60 fvdl int32_t bno;
1210 1.60 fvdl u_int8_t *blksfree;
1211 1.30 fvdl #ifdef FFS_EI
1212 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1213 1.30 fvdl #endif
1214 1.1 mycroft
1215 1.101 ad ump = ip->i_ump;
1216 1.101 ad
1217 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1218 1.101 ad
1219 1.30 fvdl cgp = (struct cg *)bp->b_data;
1220 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1221 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1222 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1223 1.60 fvdl } else {
1224 1.60 fvdl bpref = blknum(fs, bpref);
1225 1.60 fvdl bno = dtogd(fs, bpref);
1226 1.1 mycroft /*
1227 1.60 fvdl * if the requested block is available, use it
1228 1.1 mycroft */
1229 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1230 1.60 fvdl goto gotit;
1231 1.111 simonb /*
1232 1.111 simonb * if the requested data block isn't available and we are
1233 1.111 simonb * trying to allocate a contiguous file, return an error.
1234 1.111 simonb */
1235 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1236 1.111 simonb return (0);
1237 1.1 mycroft }
1238 1.111 simonb
1239 1.1 mycroft /*
1240 1.60 fvdl * Take the next available block in this cylinder group.
1241 1.1 mycroft */
1242 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1243 1.1 mycroft if (bno < 0)
1244 1.35 thorpej return (0);
1245 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1246 1.1 mycroft gotit:
1247 1.1 mycroft blkno = fragstoblks(fs, bno);
1248 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1249 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1250 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1251 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1252 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1253 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1254 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1255 1.73 dbj int cylno;
1256 1.73 dbj cylno = old_cbtocylno(fs, bno);
1257 1.75 dbj KASSERT(cylno >= 0);
1258 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1259 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1260 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1261 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1262 1.73 dbj needswap);
1263 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1264 1.73 dbj }
1265 1.1 mycroft fs->fs_fmod = 1;
1266 1.123 sborrill cg = ufs_rw32(cgp->cg_cgx, needswap);
1267 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1268 1.30 fvdl return (blkno);
1269 1.1 mycroft }
1270 1.1 mycroft
1271 1.1 mycroft /*
1272 1.1 mycroft * Determine whether an inode can be allocated.
1273 1.1 mycroft *
1274 1.1 mycroft * Check to see if an inode is available, and if it is,
1275 1.1 mycroft * allocate it using the following policy:
1276 1.1 mycroft * 1) allocate the requested inode.
1277 1.1 mycroft * 2) allocate the next available inode after the requested
1278 1.1 mycroft * inode in the specified cylinder group.
1279 1.1 mycroft */
1280 1.58 fvdl static daddr_t
1281 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1282 1.1 mycroft {
1283 1.101 ad struct ufsmount *ump = ip->i_ump;
1284 1.62 fvdl struct fs *fs = ip->i_fs;
1285 1.33 augustss struct cg *cgp;
1286 1.60 fvdl struct buf *bp, *ibp;
1287 1.60 fvdl u_int8_t *inosused;
1288 1.1 mycroft int error, start, len, loc, map, i;
1289 1.60 fvdl int32_t initediblk;
1290 1.112 hannken daddr_t nalloc;
1291 1.60 fvdl struct ufs2_dinode *dp2;
1292 1.19 bouyer #ifdef FFS_EI
1293 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1294 1.19 bouyer #endif
1295 1.1 mycroft
1296 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1297 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1298 1.101 ad
1299 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1300 1.35 thorpej return (0);
1301 1.101 ad mutex_exit(&ump->um_lock);
1302 1.112 hannken ibp = NULL;
1303 1.112 hannken initediblk = -1;
1304 1.112 hannken retry:
1305 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1306 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1307 1.101 ad if (error)
1308 1.101 ad goto fail;
1309 1.1 mycroft cgp = (struct cg *)bp->b_data;
1310 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1311 1.101 ad goto fail;
1312 1.112 hannken
1313 1.112 hannken if (ibp != NULL &&
1314 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1315 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1316 1.121 ad brelse(ibp, 0);
1317 1.112 hannken ibp = NULL;
1318 1.112 hannken }
1319 1.112 hannken /*
1320 1.112 hannken * Check to see if we need to initialize more inodes.
1321 1.112 hannken */
1322 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1323 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1324 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1325 1.112 hannken if (nalloc + INOPB(fs) > initediblk &&
1326 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1327 1.112 hannken /*
1328 1.112 hannken * We have to release the cg buffer here to prevent
1329 1.112 hannken * a deadlock when reading the inode block will
1330 1.112 hannken * run a copy-on-write that might use this cg.
1331 1.112 hannken */
1332 1.112 hannken brelse(bp, 0);
1333 1.112 hannken bp = NULL;
1334 1.112 hannken error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1335 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1336 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1337 1.112 hannken if (error)
1338 1.112 hannken goto fail;
1339 1.112 hannken goto retry;
1340 1.112 hannken }
1341 1.112 hannken }
1342 1.112 hannken
1343 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1344 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1345 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1346 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1347 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1348 1.1 mycroft if (ipref) {
1349 1.1 mycroft ipref %= fs->fs_ipg;
1350 1.60 fvdl if (isclr(inosused, ipref))
1351 1.1 mycroft goto gotit;
1352 1.1 mycroft }
1353 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1354 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1355 1.19 bouyer NBBY);
1356 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1357 1.1 mycroft if (loc == 0) {
1358 1.1 mycroft len = start + 1;
1359 1.1 mycroft start = 0;
1360 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1361 1.1 mycroft if (loc == 0) {
1362 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1363 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1364 1.19 bouyer fs->fs_fsmnt);
1365 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1366 1.1 mycroft /* NOTREACHED */
1367 1.1 mycroft }
1368 1.1 mycroft }
1369 1.1 mycroft i = start + len - loc;
1370 1.126 rmind map = inosused[i] ^ 0xff;
1371 1.126 rmind if (map == 0) {
1372 1.126 rmind printf("fs = %s\n", fs->fs_fsmnt);
1373 1.126 rmind panic("ffs_nodealloccg: block not in map");
1374 1.1 mycroft }
1375 1.126 rmind ipref = i * NBBY + ffs(map) - 1;
1376 1.126 rmind cgp->cg_irotor = ufs_rw32(ipref, needswap);
1377 1.1 mycroft gotit:
1378 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1379 1.111 simonb mode);
1380 1.60 fvdl /*
1381 1.60 fvdl * Check to see if we need to initialize more inodes.
1382 1.60 fvdl */
1383 1.112 hannken if (ibp != NULL) {
1384 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1385 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1386 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1387 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1388 1.60 fvdl /*
1389 1.60 fvdl * Don't bother to swap, it's supposed to be
1390 1.60 fvdl * random, after all.
1391 1.60 fvdl */
1392 1.130 tls dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
1393 1.60 fvdl dp2++;
1394 1.60 fvdl }
1395 1.60 fvdl initediblk += INOPB(fs);
1396 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1397 1.60 fvdl }
1398 1.60 fvdl
1399 1.101 ad mutex_enter(&ump->um_lock);
1400 1.76 hannken ACTIVECG_CLR(fs, cg);
1401 1.101 ad setbit(inosused, ipref);
1402 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1403 1.101 ad fs->fs_cstotal.cs_nifree--;
1404 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1405 1.101 ad fs->fs_fmod = 1;
1406 1.101 ad if ((mode & IFMT) == IFDIR) {
1407 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1408 1.101 ad fs->fs_cstotal.cs_ndir++;
1409 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1410 1.101 ad }
1411 1.101 ad mutex_exit(&ump->um_lock);
1412 1.112 hannken if (ibp != NULL) {
1413 1.112 hannken bwrite(bp);
1414 1.104 hannken bawrite(ibp);
1415 1.112 hannken } else
1416 1.112 hannken bdwrite(bp);
1417 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1418 1.101 ad fail:
1419 1.112 hannken if (bp != NULL)
1420 1.112 hannken brelse(bp, 0);
1421 1.112 hannken if (ibp != NULL)
1422 1.121 ad brelse(ibp, 0);
1423 1.101 ad mutex_enter(&ump->um_lock);
1424 1.101 ad return (0);
1425 1.1 mycroft }
1426 1.1 mycroft
1427 1.1 mycroft /*
1428 1.111 simonb * Allocate a block or fragment.
1429 1.111 simonb *
1430 1.111 simonb * The specified block or fragment is removed from the
1431 1.111 simonb * free map, possibly fragmenting a block in the process.
1432 1.111 simonb *
1433 1.111 simonb * This implementation should mirror fs_blkfree
1434 1.111 simonb *
1435 1.111 simonb * => um_lock not held on entry or exit
1436 1.111 simonb */
1437 1.111 simonb int
1438 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1439 1.111 simonb {
1440 1.116 joerg int error;
1441 1.111 simonb
1442 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1443 1.116 joerg ip->i_dev, ip->i_uid);
1444 1.116 joerg if (error)
1445 1.116 joerg return error;
1446 1.115 joerg
1447 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1448 1.115 joerg }
1449 1.115 joerg
1450 1.115 joerg int
1451 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1452 1.115 joerg {
1453 1.115 joerg struct fs *fs = ump->um_fs;
1454 1.115 joerg struct cg *cgp;
1455 1.115 joerg struct buf *bp;
1456 1.115 joerg int32_t fragno, cgbno;
1457 1.115 joerg int i, error, cg, blk, frags, bbase;
1458 1.115 joerg u_int8_t *blksfree;
1459 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1460 1.115 joerg
1461 1.115 joerg KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1462 1.115 joerg fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1463 1.115 joerg KASSERT(bno < fs->fs_size);
1464 1.115 joerg
1465 1.115 joerg cg = dtog(fs, bno);
1466 1.115 joerg error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1467 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1468 1.111 simonb if (error) {
1469 1.111 simonb brelse(bp, 0);
1470 1.111 simonb return error;
1471 1.111 simonb }
1472 1.111 simonb cgp = (struct cg *)bp->b_data;
1473 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1474 1.111 simonb brelse(bp, 0);
1475 1.111 simonb return EIO;
1476 1.111 simonb }
1477 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1478 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1479 1.111 simonb cgbno = dtogd(fs, bno);
1480 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1481 1.111 simonb
1482 1.111 simonb mutex_enter(&ump->um_lock);
1483 1.111 simonb if (size == fs->fs_bsize) {
1484 1.111 simonb fragno = fragstoblks(fs, cgbno);
1485 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1486 1.111 simonb mutex_exit(&ump->um_lock);
1487 1.111 simonb brelse(bp, 0);
1488 1.111 simonb return EBUSY;
1489 1.111 simonb }
1490 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1491 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1492 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1493 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1494 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1495 1.111 simonb } else {
1496 1.111 simonb bbase = cgbno - fragnum(fs, cgbno);
1497 1.111 simonb
1498 1.111 simonb frags = numfrags(fs, size);
1499 1.111 simonb for (i = 0; i < frags; i++) {
1500 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1501 1.111 simonb mutex_exit(&ump->um_lock);
1502 1.111 simonb brelse(bp, 0);
1503 1.111 simonb return EBUSY;
1504 1.111 simonb }
1505 1.111 simonb }
1506 1.111 simonb /*
1507 1.111 simonb * if a complete block is being split, account for it
1508 1.111 simonb */
1509 1.111 simonb fragno = fragstoblks(fs, bbase);
1510 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1511 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1512 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1513 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1514 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1515 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1516 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1517 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1518 1.111 simonb }
1519 1.111 simonb /*
1520 1.111 simonb * decrement the counts associated with the old frags
1521 1.111 simonb */
1522 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1523 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1524 1.111 simonb /*
1525 1.111 simonb * allocate the fragment
1526 1.111 simonb */
1527 1.111 simonb for (i = 0; i < frags; i++) {
1528 1.111 simonb clrbit(blksfree, cgbno + i);
1529 1.111 simonb }
1530 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1531 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1532 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1533 1.111 simonb /*
1534 1.111 simonb * add back in counts associated with the new frags
1535 1.111 simonb */
1536 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1537 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1538 1.111 simonb }
1539 1.111 simonb fs->fs_fmod = 1;
1540 1.111 simonb ACTIVECG_CLR(fs, cg);
1541 1.111 simonb mutex_exit(&ump->um_lock);
1542 1.111 simonb bdwrite(bp);
1543 1.111 simonb return 0;
1544 1.111 simonb }
1545 1.111 simonb
1546 1.111 simonb /*
1547 1.1 mycroft * Free a block or fragment.
1548 1.1 mycroft *
1549 1.1 mycroft * The specified block or fragment is placed back in the
1550 1.81 perry * free map. If a fragment is deallocated, a possible
1551 1.1 mycroft * block reassembly is checked.
1552 1.106 pooka *
1553 1.106 pooka * => um_lock not held on entry or exit
1554 1.1 mycroft */
1555 1.9 christos void
1556 1.85 thorpej ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1557 1.85 thorpej ino_t inum)
1558 1.1 mycroft {
1559 1.33 augustss struct cg *cgp;
1560 1.1 mycroft struct buf *bp;
1561 1.76 hannken struct ufsmount *ump;
1562 1.76 hannken daddr_t cgblkno;
1563 1.116 joerg int error, cg;
1564 1.76 hannken dev_t dev;
1565 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1566 1.118 joerg #ifdef FFS_EI
1567 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1568 1.118 joerg #endif
1569 1.1 mycroft
1570 1.116 joerg KASSERT(!devvp_is_snapshot);
1571 1.116 joerg
1572 1.76 hannken cg = dtog(fs, bno);
1573 1.116 joerg dev = devvp->v_rdev;
1574 1.116 joerg ump = VFSTOUFS(devvp->v_specmountpoint);
1575 1.119 joerg KASSERT(fs == ump->um_fs);
1576 1.116 joerg cgblkno = fsbtodb(fs, cgtod(fs, cg));
1577 1.116 joerg if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1578 1.116 joerg return;
1579 1.116 joerg
1580 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1581 1.116 joerg if (error)
1582 1.116 joerg return;
1583 1.116 joerg
1584 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1585 1.116 joerg NOCRED, B_MODIFY, &bp);
1586 1.116 joerg if (error) {
1587 1.116 joerg brelse(bp, 0);
1588 1.116 joerg return;
1589 1.76 hannken }
1590 1.116 joerg cgp = (struct cg *)bp->b_data;
1591 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1592 1.116 joerg brelse(bp, 0);
1593 1.116 joerg return;
1594 1.1 mycroft }
1595 1.76 hannken
1596 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1597 1.119 joerg
1598 1.119 joerg bdwrite(bp);
1599 1.116 joerg }
1600 1.116 joerg
1601 1.116 joerg /*
1602 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1603 1.116 joerg *
1604 1.116 joerg * The specified block or fragment is placed back in the
1605 1.116 joerg * free map. If a fragment is deallocated, a possible
1606 1.116 joerg * block reassembly is checked.
1607 1.116 joerg *
1608 1.116 joerg * => um_lock not held on entry or exit
1609 1.116 joerg */
1610 1.116 joerg void
1611 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1612 1.116 joerg ino_t inum)
1613 1.116 joerg {
1614 1.116 joerg struct cg *cgp;
1615 1.116 joerg struct buf *bp;
1616 1.116 joerg struct ufsmount *ump;
1617 1.116 joerg daddr_t cgblkno;
1618 1.116 joerg int error, cg;
1619 1.116 joerg dev_t dev;
1620 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1621 1.118 joerg #ifdef FFS_EI
1622 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1623 1.118 joerg #endif
1624 1.116 joerg
1625 1.116 joerg KASSERT(devvp_is_snapshot);
1626 1.116 joerg
1627 1.116 joerg cg = dtog(fs, bno);
1628 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1629 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1630 1.116 joerg cgblkno = fragstoblks(fs, cgtod(fs, cg));
1631 1.116 joerg
1632 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1633 1.116 joerg if (error)
1634 1.1 mycroft return;
1635 1.116 joerg
1636 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1637 1.107 hannken NOCRED, B_MODIFY, &bp);
1638 1.1 mycroft if (error) {
1639 1.101 ad brelse(bp, 0);
1640 1.1 mycroft return;
1641 1.1 mycroft }
1642 1.1 mycroft cgp = (struct cg *)bp->b_data;
1643 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1644 1.101 ad brelse(bp, 0);
1645 1.1 mycroft return;
1646 1.1 mycroft }
1647 1.116 joerg
1648 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1649 1.119 joerg
1650 1.119 joerg bdwrite(bp);
1651 1.116 joerg }
1652 1.116 joerg
1653 1.116 joerg static void
1654 1.119 joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1655 1.119 joerg struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1656 1.116 joerg {
1657 1.116 joerg struct cg *cgp;
1658 1.116 joerg int32_t fragno, cgbno;
1659 1.116 joerg int i, cg, blk, frags, bbase;
1660 1.116 joerg u_int8_t *blksfree;
1661 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1662 1.116 joerg
1663 1.116 joerg cg = dtog(fs, bno);
1664 1.116 joerg cgp = (struct cg *)bp->b_data;
1665 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1666 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1667 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1668 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1669 1.60 fvdl cgbno = dtogd(fs, bno);
1670 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1671 1.101 ad mutex_enter(&ump->um_lock);
1672 1.1 mycroft if (size == fs->fs_bsize) {
1673 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1674 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1675 1.113 hannken if (devvp_is_snapshot) {
1676 1.101 ad mutex_exit(&ump->um_lock);
1677 1.76 hannken return;
1678 1.76 hannken }
1679 1.120 christos printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1680 1.120 christos (unsigned long long)dev, bno, fs->fs_fsmnt);
1681 1.1 mycroft panic("blkfree: freeing free block");
1682 1.1 mycroft }
1683 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1684 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1685 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1686 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1687 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1688 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1689 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1690 1.73 dbj i = old_cbtocylno(fs, cgbno);
1691 1.75 dbj KASSERT(i >= 0);
1692 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1693 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1694 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1695 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1696 1.73 dbj needswap);
1697 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1698 1.73 dbj }
1699 1.1 mycroft } else {
1700 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1701 1.1 mycroft /*
1702 1.1 mycroft * decrement the counts associated with the old frags
1703 1.1 mycroft */
1704 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1705 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1706 1.1 mycroft /*
1707 1.1 mycroft * deallocate the fragment
1708 1.1 mycroft */
1709 1.1 mycroft frags = numfrags(fs, size);
1710 1.1 mycroft for (i = 0; i < frags; i++) {
1711 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1712 1.120 christos printf("dev = 0x%llx, block = %" PRId64
1713 1.59 tsutsui ", fs = %s\n",
1714 1.120 christos (unsigned long long)dev, bno + i,
1715 1.120 christos fs->fs_fsmnt);
1716 1.1 mycroft panic("blkfree: freeing free frag");
1717 1.1 mycroft }
1718 1.62 fvdl setbit(blksfree, cgbno + i);
1719 1.1 mycroft }
1720 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1721 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1722 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1723 1.1 mycroft /*
1724 1.1 mycroft * add back in counts associated with the new frags
1725 1.1 mycroft */
1726 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1727 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1728 1.1 mycroft /*
1729 1.1 mycroft * if a complete block has been reassembled, account for it
1730 1.1 mycroft */
1731 1.60 fvdl fragno = fragstoblks(fs, bbase);
1732 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1733 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1734 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1735 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1736 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1737 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1738 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1739 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1740 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1741 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1742 1.73 dbj i = old_cbtocylno(fs, bbase);
1743 1.75 dbj KASSERT(i >= 0);
1744 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1745 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1746 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1747 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1748 1.73 dbj bbase)], 1, needswap);
1749 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1750 1.73 dbj }
1751 1.1 mycroft }
1752 1.1 mycroft }
1753 1.1 mycroft fs->fs_fmod = 1;
1754 1.76 hannken ACTIVECG_CLR(fs, cg);
1755 1.101 ad mutex_exit(&ump->um_lock);
1756 1.1 mycroft }
1757 1.1 mycroft
1758 1.1 mycroft /*
1759 1.1 mycroft * Free an inode.
1760 1.30 fvdl */
1761 1.30 fvdl int
1762 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1763 1.30 fvdl {
1764 1.30 fvdl
1765 1.119 joerg return ffs_freefile(vp->v_mount, ino, mode);
1766 1.30 fvdl }
1767 1.30 fvdl
1768 1.30 fvdl /*
1769 1.30 fvdl * Do the actual free operation.
1770 1.1 mycroft * The specified inode is placed back in the free map.
1771 1.111 simonb *
1772 1.111 simonb * => um_lock not held on entry or exit
1773 1.1 mycroft */
1774 1.1 mycroft int
1775 1.119 joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
1776 1.119 joerg {
1777 1.119 joerg struct ufsmount *ump = VFSTOUFS(mp);
1778 1.119 joerg struct fs *fs = ump->um_fs;
1779 1.119 joerg struct vnode *devvp;
1780 1.119 joerg struct cg *cgp;
1781 1.119 joerg struct buf *bp;
1782 1.119 joerg int error, cg;
1783 1.119 joerg daddr_t cgbno;
1784 1.119 joerg dev_t dev;
1785 1.119 joerg #ifdef FFS_EI
1786 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1787 1.119 joerg #endif
1788 1.119 joerg
1789 1.119 joerg cg = ino_to_cg(fs, ino);
1790 1.119 joerg devvp = ump->um_devvp;
1791 1.119 joerg dev = devvp->v_rdev;
1792 1.119 joerg cgbno = fsbtodb(fs, cgtod(fs, cg));
1793 1.119 joerg
1794 1.119 joerg if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1795 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1796 1.120 christos (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1797 1.119 joerg error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1798 1.119 joerg NOCRED, B_MODIFY, &bp);
1799 1.119 joerg if (error) {
1800 1.119 joerg brelse(bp, 0);
1801 1.119 joerg return (error);
1802 1.119 joerg }
1803 1.119 joerg cgp = (struct cg *)bp->b_data;
1804 1.119 joerg if (!cg_chkmagic(cgp, needswap)) {
1805 1.119 joerg brelse(bp, 0);
1806 1.119 joerg return (0);
1807 1.119 joerg }
1808 1.119 joerg
1809 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1810 1.119 joerg
1811 1.119 joerg bdwrite(bp);
1812 1.119 joerg
1813 1.119 joerg return 0;
1814 1.119 joerg }
1815 1.119 joerg
1816 1.119 joerg int
1817 1.119 joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1818 1.9 christos {
1819 1.101 ad struct ufsmount *ump;
1820 1.33 augustss struct cg *cgp;
1821 1.1 mycroft struct buf *bp;
1822 1.1 mycroft int error, cg;
1823 1.76 hannken daddr_t cgbno;
1824 1.78 hannken dev_t dev;
1825 1.19 bouyer #ifdef FFS_EI
1826 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1827 1.19 bouyer #endif
1828 1.1 mycroft
1829 1.119 joerg KASSERT(devvp->v_type != VBLK);
1830 1.111 simonb
1831 1.76 hannken cg = ino_to_cg(fs, ino);
1832 1.119 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1833 1.119 joerg ump = VFSTOUFS(devvp->v_mount);
1834 1.119 joerg cgbno = fragstoblks(fs, cgtod(fs, cg));
1835 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1836 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1837 1.120 christos (unsigned long long)dev, (unsigned long long)ino,
1838 1.120 christos fs->fs_fsmnt);
1839 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1840 1.107 hannken NOCRED, B_MODIFY, &bp);
1841 1.1 mycroft if (error) {
1842 1.101 ad brelse(bp, 0);
1843 1.30 fvdl return (error);
1844 1.1 mycroft }
1845 1.1 mycroft cgp = (struct cg *)bp->b_data;
1846 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1847 1.101 ad brelse(bp, 0);
1848 1.1 mycroft return (0);
1849 1.1 mycroft }
1850 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1851 1.119 joerg
1852 1.119 joerg bdwrite(bp);
1853 1.119 joerg
1854 1.119 joerg return 0;
1855 1.119 joerg }
1856 1.119 joerg
1857 1.119 joerg static void
1858 1.119 joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1859 1.119 joerg struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
1860 1.119 joerg {
1861 1.119 joerg int cg;
1862 1.119 joerg struct cg *cgp;
1863 1.119 joerg u_int8_t *inosused;
1864 1.119 joerg #ifdef FFS_EI
1865 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1866 1.119 joerg #endif
1867 1.119 joerg
1868 1.119 joerg cg = ino_to_cg(fs, ino);
1869 1.119 joerg cgp = (struct cg *)bp->b_data;
1870 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1871 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1872 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1873 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1874 1.62 fvdl inosused = cg_inosused(cgp, needswap);
1875 1.1 mycroft ino %= fs->fs_ipg;
1876 1.62 fvdl if (isclr(inosused, ino)) {
1877 1.120 christos printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
1878 1.120 christos (unsigned long long)dev, (unsigned long long)ino +
1879 1.120 christos cg * fs->fs_ipg, fs->fs_fsmnt);
1880 1.1 mycroft if (fs->fs_ronly == 0)
1881 1.1 mycroft panic("ifree: freeing free inode");
1882 1.1 mycroft }
1883 1.62 fvdl clrbit(inosused, ino);
1884 1.113 hannken if (!devvp_is_snapshot)
1885 1.119 joerg UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
1886 1.113 hannken ino + cg * fs->fs_ipg, mode);
1887 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1888 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1889 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1890 1.101 ad mutex_enter(&ump->um_lock);
1891 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1892 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1893 1.78 hannken if ((mode & IFMT) == IFDIR) {
1894 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1895 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1896 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1897 1.1 mycroft }
1898 1.1 mycroft fs->fs_fmod = 1;
1899 1.82 hannken ACTIVECG_CLR(fs, cg);
1900 1.101 ad mutex_exit(&ump->um_lock);
1901 1.1 mycroft }
1902 1.1 mycroft
1903 1.1 mycroft /*
1904 1.76 hannken * Check to see if a file is free.
1905 1.76 hannken */
1906 1.76 hannken int
1907 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1908 1.76 hannken {
1909 1.76 hannken struct cg *cgp;
1910 1.76 hannken struct buf *bp;
1911 1.76 hannken daddr_t cgbno;
1912 1.76 hannken int ret, cg;
1913 1.76 hannken u_int8_t *inosused;
1914 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1915 1.76 hannken
1916 1.119 joerg KASSERT(devvp_is_snapshot);
1917 1.119 joerg
1918 1.76 hannken cg = ino_to_cg(fs, ino);
1919 1.113 hannken if (devvp_is_snapshot)
1920 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
1921 1.113 hannken else
1922 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
1923 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1924 1.76 hannken return 1;
1925 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1926 1.101 ad brelse(bp, 0);
1927 1.76 hannken return 1;
1928 1.76 hannken }
1929 1.76 hannken cgp = (struct cg *)bp->b_data;
1930 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1931 1.101 ad brelse(bp, 0);
1932 1.76 hannken return 1;
1933 1.76 hannken }
1934 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1935 1.76 hannken ino %= fs->fs_ipg;
1936 1.76 hannken ret = isclr(inosused, ino);
1937 1.101 ad brelse(bp, 0);
1938 1.76 hannken return ret;
1939 1.76 hannken }
1940 1.76 hannken
1941 1.76 hannken /*
1942 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1943 1.1 mycroft *
1944 1.1 mycroft * It is a panic if a request is made to find a block if none are
1945 1.1 mycroft * available.
1946 1.1 mycroft */
1947 1.60 fvdl static int32_t
1948 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1949 1.1 mycroft {
1950 1.60 fvdl int32_t bno;
1951 1.1 mycroft int start, len, loc, i;
1952 1.1 mycroft int blk, field, subfield, pos;
1953 1.19 bouyer int ostart, olen;
1954 1.62 fvdl u_int8_t *blksfree;
1955 1.30 fvdl #ifdef FFS_EI
1956 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1957 1.30 fvdl #endif
1958 1.1 mycroft
1959 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
1960 1.101 ad
1961 1.1 mycroft /*
1962 1.1 mycroft * find the fragment by searching through the free block
1963 1.1 mycroft * map for an appropriate bit pattern
1964 1.1 mycroft */
1965 1.1 mycroft if (bpref)
1966 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1967 1.1 mycroft else
1968 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1969 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1970 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1971 1.19 bouyer ostart = start;
1972 1.19 bouyer olen = len;
1973 1.45 lukem loc = scanc((u_int)len,
1974 1.62 fvdl (const u_char *)&blksfree[start],
1975 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1976 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1977 1.1 mycroft if (loc == 0) {
1978 1.1 mycroft len = start + 1;
1979 1.1 mycroft start = 0;
1980 1.45 lukem loc = scanc((u_int)len,
1981 1.62 fvdl (const u_char *)&blksfree[0],
1982 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
1983 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1984 1.1 mycroft if (loc == 0) {
1985 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1986 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1987 1.20 ross printf("offset=%d %ld\n",
1988 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1989 1.62 fvdl (long)blksfree - (long)cgp);
1990 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
1991 1.1 mycroft panic("ffs_alloccg: map corrupted");
1992 1.1 mycroft /* NOTREACHED */
1993 1.1 mycroft }
1994 1.1 mycroft }
1995 1.1 mycroft bno = (start + len - loc) * NBBY;
1996 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1997 1.1 mycroft /*
1998 1.1 mycroft * found the byte in the map
1999 1.1 mycroft * sift through the bits to find the selected frag
2000 1.1 mycroft */
2001 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2002 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2003 1.1 mycroft blk <<= 1;
2004 1.1 mycroft field = around[allocsiz];
2005 1.1 mycroft subfield = inside[allocsiz];
2006 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2007 1.1 mycroft if ((blk & field) == subfield)
2008 1.1 mycroft return (bno + pos);
2009 1.1 mycroft field <<= 1;
2010 1.1 mycroft subfield <<= 1;
2011 1.1 mycroft }
2012 1.1 mycroft }
2013 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2014 1.1 mycroft panic("ffs_alloccg: block not in map");
2015 1.58 fvdl /* return (-1); */
2016 1.1 mycroft }
2017 1.1 mycroft
2018 1.1 mycroft /*
2019 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2020 1.81 perry *
2021 1.1 mycroft * The form of the error message is:
2022 1.1 mycroft * fs: error message
2023 1.1 mycroft */
2024 1.1 mycroft static void
2025 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2026 1.1 mycroft {
2027 1.1 mycroft
2028 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2029 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2030 1.1 mycroft }
2031