ffs_alloc.c revision 1.132 1 1.132 hannken /* $NetBSD: ffs_alloc.c,v 1.132 2012/12/20 08:03:44 hannken Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.122 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.132 hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.132 2012/12/20 08:03:44 hannken Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.129 chs #include "opt_uvm_page_trkown.h"
79 1.22 scottr #endif
80 1.1 mycroft
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/buf.h>
84 1.130 tls #include <sys/cprng.h>
85 1.111 simonb #include <sys/fstrans.h>
86 1.111 simonb #include <sys/kauth.h>
87 1.111 simonb #include <sys/kernel.h>
88 1.111 simonb #include <sys/mount.h>
89 1.1 mycroft #include <sys/proc.h>
90 1.111 simonb #include <sys/syslog.h>
91 1.1 mycroft #include <sys/vnode.h>
92 1.111 simonb #include <sys/wapbl.h>
93 1.29 mrg
94 1.76 hannken #include <miscfs/specfs/specdev.h>
95 1.1 mycroft #include <ufs/ufs/quota.h>
96 1.19 bouyer #include <ufs/ufs/ufsmount.h>
97 1.1 mycroft #include <ufs/ufs/inode.h>
98 1.9 christos #include <ufs/ufs/ufs_extern.h>
99 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
100 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
101 1.1 mycroft
102 1.1 mycroft #include <ufs/ffs/fs.h>
103 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
104 1.1 mycroft
105 1.129 chs #ifdef UVM_PAGE_TRKOWN
106 1.129 chs #include <uvm/uvm.h>
107 1.129 chs #endif
108 1.129 chs
109 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
110 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
111 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
112 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
113 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
114 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
115 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
116 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
117 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
118 1.85 thorpej daddr_t, int);
119 1.119 joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
120 1.116 joerg daddr_t, long, bool);
121 1.119 joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
122 1.119 joerg int, bool);
123 1.23 drochner
124 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
125 1.34 jdolecek int ffs_log_changeopt = 0;
126 1.34 jdolecek
127 1.23 drochner /* in ffs_tables.c */
128 1.40 jdolecek extern const int inside[], around[];
129 1.40 jdolecek extern const u_char * const fragtbl[];
130 1.1 mycroft
131 1.116 joerg /* Basic consistency check for block allocations */
132 1.116 joerg static int
133 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
134 1.116 joerg long size, dev_t dev, ino_t inum)
135 1.116 joerg {
136 1.116 joerg if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
137 1.116 joerg fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
138 1.120 christos printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
139 1.120 christos "size = %ld, fs = %s\n",
140 1.120 christos (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
141 1.116 joerg panic("%s: bad size", func);
142 1.116 joerg }
143 1.116 joerg
144 1.116 joerg if (bno >= fs->fs_size) {
145 1.116 joerg printf("bad block %" PRId64 ", ino %llu\n", bno,
146 1.116 joerg (unsigned long long)inum);
147 1.116 joerg ffs_fserr(fs, inum, "bad block");
148 1.116 joerg return EINVAL;
149 1.116 joerg }
150 1.116 joerg return 0;
151 1.116 joerg }
152 1.116 joerg
153 1.1 mycroft /*
154 1.1 mycroft * Allocate a block in the file system.
155 1.81 perry *
156 1.1 mycroft * The size of the requested block is given, which must be some
157 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
158 1.1 mycroft * A preference may be optionally specified. If a preference is given
159 1.1 mycroft * the following hierarchy is used to allocate a block:
160 1.1 mycroft * 1) allocate the requested block.
161 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
162 1.1 mycroft * 3) allocate a block in the same cylinder group.
163 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
164 1.1 mycroft * available block is located.
165 1.47 wiz * If no block preference is given the following hierarchy is used
166 1.1 mycroft * to allocate a block:
167 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
168 1.1 mycroft * inode for the file.
169 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
170 1.1 mycroft * available block is located.
171 1.106 pooka *
172 1.106 pooka * => called with um_lock held
173 1.106 pooka * => releases um_lock before returning
174 1.1 mycroft */
175 1.9 christos int
176 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
177 1.91 elad kauth_cred_t cred, daddr_t *bnp)
178 1.1 mycroft {
179 1.101 ad struct ufsmount *ump;
180 1.62 fvdl struct fs *fs;
181 1.58 fvdl daddr_t bno;
182 1.9 christos int cg;
183 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
184 1.9 christos int error;
185 1.9 christos #endif
186 1.81 perry
187 1.62 fvdl fs = ip->i_fs;
188 1.101 ad ump = ip->i_ump;
189 1.101 ad
190 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
191 1.62 fvdl
192 1.37 chs #ifdef UVM_PAGE_TRKOWN
193 1.129 chs
194 1.129 chs /*
195 1.129 chs * Sanity-check that allocations within the file size
196 1.129 chs * do not allow other threads to read the stale contents
197 1.129 chs * of newly allocated blocks.
198 1.129 chs * Usually pages will exist to cover the new allocation.
199 1.129 chs * There is an optimization in ffs_write() where we skip
200 1.129 chs * creating pages if several conditions are met:
201 1.129 chs * - the file must not be mapped (in any user address space).
202 1.129 chs * - the write must cover whole pages and whole blocks.
203 1.129 chs * If those conditions are not met then pages must exist and
204 1.129 chs * be locked by the current thread.
205 1.129 chs */
206 1.129 chs
207 1.51 chs if (ITOV(ip)->v_type == VREG &&
208 1.51 chs lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
209 1.37 chs struct vm_page *pg;
210 1.129 chs struct vnode *vp = ITOV(ip);
211 1.129 chs struct uvm_object *uobj = &vp->v_uobj;
212 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbn));
213 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbn) + size);
214 1.37 chs
215 1.128 rmind mutex_enter(uobj->vmobjlock);
216 1.37 chs while (off < endoff) {
217 1.37 chs pg = uvm_pagelookup(uobj, off);
218 1.129 chs KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
219 1.129 chs (size & PAGE_MASK) == 0 &&
220 1.129 chs blkoff(fs, size) == 0) ||
221 1.129 chs (pg != NULL && pg->owner == curproc->p_pid &&
222 1.129 chs pg->lowner == curlwp->l_lid));
223 1.37 chs off += PAGE_SIZE;
224 1.37 chs }
225 1.128 rmind mutex_exit(uobj->vmobjlock);
226 1.37 chs }
227 1.37 chs #endif
228 1.37 chs
229 1.1 mycroft *bnp = 0;
230 1.1 mycroft #ifdef DIAGNOSTIC
231 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
232 1.120 christos printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
233 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, size,
234 1.120 christos fs->fs_fsmnt);
235 1.1 mycroft panic("ffs_alloc: bad size");
236 1.1 mycroft }
237 1.1 mycroft if (cred == NOCRED)
238 1.56 provos panic("ffs_alloc: missing credential");
239 1.1 mycroft #endif /* DIAGNOSTIC */
240 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
241 1.1 mycroft goto nospace;
242 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
243 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
244 1.124 elad NULL, NULL) != 0)
245 1.1 mycroft goto nospace;
246 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
247 1.101 ad mutex_exit(&ump->um_lock);
248 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
249 1.1 mycroft return (error);
250 1.101 ad mutex_enter(&ump->um_lock);
251 1.1 mycroft #endif
252 1.111 simonb
253 1.1 mycroft if (bpref >= fs->fs_size)
254 1.1 mycroft bpref = 0;
255 1.1 mycroft if (bpref == 0)
256 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
257 1.1 mycroft else
258 1.1 mycroft cg = dtog(fs, bpref);
259 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
260 1.1 mycroft if (bno > 0) {
261 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
262 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
263 1.1 mycroft *bnp = bno;
264 1.1 mycroft return (0);
265 1.1 mycroft }
266 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
267 1.1 mycroft /*
268 1.1 mycroft * Restore user's disk quota because allocation failed.
269 1.1 mycroft */
270 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
271 1.1 mycroft #endif
272 1.111 simonb if (flags & B_CONTIG) {
273 1.111 simonb /*
274 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
275 1.111 simonb * For the case where ffs_hashalloc() fails early
276 1.111 simonb * in the B_CONTIG case we reach here with um_lock
277 1.111 simonb * already unlocked, so we can't release it again
278 1.111 simonb * like in the normal error path. See kern/39206.
279 1.111 simonb *
280 1.111 simonb *
281 1.111 simonb * Fail silently - it's up to our caller to report
282 1.111 simonb * errors.
283 1.111 simonb */
284 1.111 simonb return (ENOSPC);
285 1.111 simonb }
286 1.1 mycroft nospace:
287 1.101 ad mutex_exit(&ump->um_lock);
288 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
289 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
290 1.1 mycroft return (ENOSPC);
291 1.1 mycroft }
292 1.1 mycroft
293 1.1 mycroft /*
294 1.1 mycroft * Reallocate a fragment to a bigger size
295 1.1 mycroft *
296 1.1 mycroft * The number and size of the old block is given, and a preference
297 1.1 mycroft * and new size is also specified. The allocator attempts to extend
298 1.1 mycroft * the original block. Failing that, the regular block allocator is
299 1.1 mycroft * invoked to get an appropriate block.
300 1.106 pooka *
301 1.106 pooka * => called with um_lock held
302 1.106 pooka * => return with um_lock released
303 1.1 mycroft */
304 1.9 christos int
305 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
306 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
307 1.1 mycroft {
308 1.101 ad struct ufsmount *ump;
309 1.62 fvdl struct fs *fs;
310 1.1 mycroft struct buf *bp;
311 1.1 mycroft int cg, request, error;
312 1.58 fvdl daddr_t bprev, bno;
313 1.25 thorpej
314 1.62 fvdl fs = ip->i_fs;
315 1.101 ad ump = ip->i_ump;
316 1.101 ad
317 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
318 1.101 ad
319 1.37 chs #ifdef UVM_PAGE_TRKOWN
320 1.129 chs
321 1.129 chs /*
322 1.129 chs * Sanity-check that allocations within the file size
323 1.129 chs * do not allow other threads to read the stale contents
324 1.129 chs * of newly allocated blocks.
325 1.129 chs * Unlike in ffs_alloc(), here pages must always exist
326 1.129 chs * for such allocations, because only the last block of a file
327 1.129 chs * can be a fragment and ffs_write() will reallocate the
328 1.129 chs * fragment to the new size using ufs_balloc_range(),
329 1.129 chs * which always creates pages to cover blocks it allocates.
330 1.129 chs */
331 1.129 chs
332 1.37 chs if (ITOV(ip)->v_type == VREG) {
333 1.37 chs struct vm_page *pg;
334 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
335 1.49 lukem voff_t off = trunc_page(lblktosize(fs, lbprev));
336 1.49 lukem voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
337 1.37 chs
338 1.128 rmind mutex_enter(uobj->vmobjlock);
339 1.37 chs while (off < endoff) {
340 1.37 chs pg = uvm_pagelookup(uobj, off);
341 1.129 chs KASSERT(pg->owner == curproc->p_pid &&
342 1.129 chs pg->lowner == curlwp->l_lid);
343 1.37 chs off += PAGE_SIZE;
344 1.37 chs }
345 1.128 rmind mutex_exit(uobj->vmobjlock);
346 1.37 chs }
347 1.37 chs #endif
348 1.37 chs
349 1.1 mycroft #ifdef DIAGNOSTIC
350 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
351 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
352 1.13 christos printf(
353 1.120 christos "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
354 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
355 1.120 christos fs->fs_fsmnt);
356 1.1 mycroft panic("ffs_realloccg: bad size");
357 1.1 mycroft }
358 1.1 mycroft if (cred == NOCRED)
359 1.56 provos panic("ffs_realloccg: missing credential");
360 1.1 mycroft #endif /* DIAGNOSTIC */
361 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
362 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
363 1.124 elad NULL, NULL) != 0) {
364 1.101 ad mutex_exit(&ump->um_lock);
365 1.1 mycroft goto nospace;
366 1.101 ad }
367 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
368 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
369 1.60 fvdl else
370 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
371 1.60 fvdl
372 1.60 fvdl if (bprev == 0) {
373 1.120 christos printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
374 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
375 1.120 christos fs->fs_fsmnt);
376 1.1 mycroft panic("ffs_realloccg: bad bprev");
377 1.1 mycroft }
378 1.101 ad mutex_exit(&ump->um_lock);
379 1.101 ad
380 1.1 mycroft /*
381 1.1 mycroft * Allocate the extra space in the buffer.
382 1.1 mycroft */
383 1.37 chs if (bpp != NULL &&
384 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
385 1.1 mycroft return (error);
386 1.1 mycroft }
387 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
388 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
389 1.44 chs if (bpp != NULL) {
390 1.101 ad brelse(bp, 0);
391 1.44 chs }
392 1.1 mycroft return (error);
393 1.1 mycroft }
394 1.1 mycroft #endif
395 1.1 mycroft /*
396 1.1 mycroft * Check for extension in the existing location.
397 1.1 mycroft */
398 1.1 mycroft cg = dtog(fs, bprev);
399 1.101 ad mutex_enter(&ump->um_lock);
400 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
401 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
402 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
403 1.37 chs
404 1.37 chs if (bpp != NULL) {
405 1.37 chs if (bp->b_blkno != fsbtodb(fs, bno))
406 1.37 chs panic("bad blockno");
407 1.72 pk allocbuf(bp, nsize, 1);
408 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
409 1.105 ad mutex_enter(bp->b_objlock);
410 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
411 1.105 ad bp->b_oflags |= BO_DONE;
412 1.105 ad mutex_exit(bp->b_objlock);
413 1.37 chs *bpp = bp;
414 1.37 chs }
415 1.37 chs if (blknop != NULL) {
416 1.37 chs *blknop = bno;
417 1.37 chs }
418 1.1 mycroft return (0);
419 1.1 mycroft }
420 1.1 mycroft /*
421 1.1 mycroft * Allocate a new disk location.
422 1.1 mycroft */
423 1.1 mycroft if (bpref >= fs->fs_size)
424 1.1 mycroft bpref = 0;
425 1.1 mycroft switch ((int)fs->fs_optim) {
426 1.1 mycroft case FS_OPTSPACE:
427 1.1 mycroft /*
428 1.81 perry * Allocate an exact sized fragment. Although this makes
429 1.81 perry * best use of space, we will waste time relocating it if
430 1.1 mycroft * the file continues to grow. If the fragmentation is
431 1.1 mycroft * less than half of the minimum free reserve, we choose
432 1.1 mycroft * to begin optimizing for time.
433 1.1 mycroft */
434 1.1 mycroft request = nsize;
435 1.1 mycroft if (fs->fs_minfree < 5 ||
436 1.1 mycroft fs->fs_cstotal.cs_nffree >
437 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
438 1.1 mycroft break;
439 1.34 jdolecek
440 1.34 jdolecek if (ffs_log_changeopt) {
441 1.34 jdolecek log(LOG_NOTICE,
442 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
443 1.34 jdolecek fs->fs_fsmnt);
444 1.34 jdolecek }
445 1.34 jdolecek
446 1.1 mycroft fs->fs_optim = FS_OPTTIME;
447 1.1 mycroft break;
448 1.1 mycroft case FS_OPTTIME:
449 1.1 mycroft /*
450 1.1 mycroft * At this point we have discovered a file that is trying to
451 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
452 1.1 mycroft * we allocate a full sized block, then free the unused portion.
453 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
454 1.1 mycroft * above will be able to grow it in place without further
455 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
456 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
457 1.1 mycroft * optimizing for space.
458 1.1 mycroft */
459 1.1 mycroft request = fs->fs_bsize;
460 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
461 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
462 1.1 mycroft break;
463 1.34 jdolecek
464 1.34 jdolecek if (ffs_log_changeopt) {
465 1.34 jdolecek log(LOG_NOTICE,
466 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
467 1.34 jdolecek fs->fs_fsmnt);
468 1.34 jdolecek }
469 1.34 jdolecek
470 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
471 1.1 mycroft break;
472 1.1 mycroft default:
473 1.120 christos printf("dev = 0x%llx, optim = %d, fs = %s\n",
474 1.120 christos (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
475 1.1 mycroft panic("ffs_realloccg: bad optim");
476 1.1 mycroft /* NOTREACHED */
477 1.1 mycroft }
478 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
479 1.1 mycroft if (bno > 0) {
480 1.122 ad if ((ip->i_ump->um_mountp->mnt_wapbl) &&
481 1.122 ad (ITOV(ip)->v_type != VREG)) {
482 1.122 ad UFS_WAPBL_REGISTER_DEALLOCATION(
483 1.122 ad ip->i_ump->um_mountp, fsbtodb(fs, bprev),
484 1.122 ad osize);
485 1.122 ad } else {
486 1.122 ad ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
487 1.122 ad ip->i_number);
488 1.111 simonb }
489 1.111 simonb if (nsize < request) {
490 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
491 1.111 simonb (ITOV(ip)->v_type != VREG)) {
492 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
493 1.111 simonb ip->i_ump->um_mountp,
494 1.111 simonb fsbtodb(fs, (bno + numfrags(fs, nsize))),
495 1.111 simonb request - nsize);
496 1.111 simonb } else
497 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
498 1.111 simonb bno + numfrags(fs, nsize),
499 1.111 simonb (long)(request - nsize), ip->i_number);
500 1.111 simonb }
501 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
502 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
503 1.37 chs if (bpp != NULL) {
504 1.37 chs bp->b_blkno = fsbtodb(fs, bno);
505 1.72 pk allocbuf(bp, nsize, 1);
506 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
507 1.105 ad mutex_enter(bp->b_objlock);
508 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
509 1.105 ad bp->b_oflags |= BO_DONE;
510 1.105 ad mutex_exit(bp->b_objlock);
511 1.37 chs *bpp = bp;
512 1.37 chs }
513 1.37 chs if (blknop != NULL) {
514 1.37 chs *blknop = bno;
515 1.37 chs }
516 1.1 mycroft return (0);
517 1.1 mycroft }
518 1.101 ad mutex_exit(&ump->um_lock);
519 1.101 ad
520 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
521 1.1 mycroft /*
522 1.1 mycroft * Restore user's disk quota because allocation failed.
523 1.1 mycroft */
524 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
525 1.1 mycroft #endif
526 1.37 chs if (bpp != NULL) {
527 1.101 ad brelse(bp, 0);
528 1.37 chs }
529 1.37 chs
530 1.1 mycroft nospace:
531 1.1 mycroft /*
532 1.1 mycroft * no space available
533 1.1 mycroft */
534 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
535 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
536 1.1 mycroft return (ENOSPC);
537 1.1 mycroft }
538 1.1 mycroft
539 1.1 mycroft /*
540 1.1 mycroft * Allocate an inode in the file system.
541 1.81 perry *
542 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
543 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
544 1.1 mycroft * 1) allocate the preferred inode.
545 1.1 mycroft * 2) allocate an inode in the same cylinder group.
546 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
547 1.1 mycroft * available inode is located.
548 1.47 wiz * If no inode preference is given the following hierarchy is used
549 1.1 mycroft * to allocate an inode:
550 1.1 mycroft * 1) allocate an inode in cylinder group 0.
551 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
552 1.1 mycroft * available inode is located.
553 1.106 pooka *
554 1.106 pooka * => um_lock not held upon entry or return
555 1.1 mycroft */
556 1.9 christos int
557 1.91 elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
558 1.88 yamt struct vnode **vpp)
559 1.9 christos {
560 1.101 ad struct ufsmount *ump;
561 1.33 augustss struct inode *pip;
562 1.33 augustss struct fs *fs;
563 1.33 augustss struct inode *ip;
564 1.60 fvdl struct timespec ts;
565 1.1 mycroft ino_t ino, ipref;
566 1.1 mycroft int cg, error;
567 1.81 perry
568 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
569 1.111 simonb
570 1.88 yamt *vpp = NULL;
571 1.1 mycroft pip = VTOI(pvp);
572 1.1 mycroft fs = pip->i_fs;
573 1.101 ad ump = pip->i_ump;
574 1.101 ad
575 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
576 1.111 simonb if (error) {
577 1.111 simonb return error;
578 1.111 simonb }
579 1.101 ad mutex_enter(&ump->um_lock);
580 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
581 1.1 mycroft goto noinodes;
582 1.1 mycroft
583 1.1 mycroft if ((mode & IFMT) == IFDIR)
584 1.50 lukem ipref = ffs_dirpref(pip);
585 1.50 lukem else
586 1.50 lukem ipref = pip->i_number;
587 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
588 1.1 mycroft ipref = 0;
589 1.1 mycroft cg = ino_to_cg(fs, ipref);
590 1.50 lukem /*
591 1.50 lukem * Track number of dirs created one after another
592 1.50 lukem * in a same cg without intervening by files.
593 1.50 lukem */
594 1.50 lukem if ((mode & IFMT) == IFDIR) {
595 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
596 1.50 lukem fs->fs_contigdirs[cg]++;
597 1.50 lukem } else {
598 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
599 1.50 lukem fs->fs_contigdirs[cg]--;
600 1.50 lukem }
601 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
602 1.1 mycroft if (ino == 0)
603 1.1 mycroft goto noinodes;
604 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
605 1.88 yamt error = VFS_VGET(pvp->v_mount, ino, vpp);
606 1.1 mycroft if (error) {
607 1.111 simonb int err;
608 1.111 simonb err = UFS_WAPBL_BEGIN(pvp->v_mount);
609 1.111 simonb if (err == 0)
610 1.111 simonb ffs_vfree(pvp, ino, mode);
611 1.111 simonb if (err == 0)
612 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
613 1.1 mycroft return (error);
614 1.1 mycroft }
615 1.90 yamt KASSERT((*vpp)->v_type == VNON);
616 1.88 yamt ip = VTOI(*vpp);
617 1.60 fvdl if (ip->i_mode) {
618 1.60 fvdl #if 0
619 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
620 1.60 fvdl ip->i_mode, ip->i_number, fs->fs_fsmnt);
621 1.60 fvdl #else
622 1.60 fvdl printf("dmode %x mode %x dgen %x gen %x\n",
623 1.60 fvdl DIP(ip, mode), ip->i_mode,
624 1.60 fvdl DIP(ip, gen), ip->i_gen);
625 1.60 fvdl printf("size %llx blocks %llx\n",
626 1.60 fvdl (long long)DIP(ip, size), (long long)DIP(ip, blocks));
627 1.86 christos printf("ino %llu ipref %llu\n", (unsigned long long)ino,
628 1.86 christos (unsigned long long)ipref);
629 1.60 fvdl #if 0
630 1.60 fvdl error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
631 1.107 hannken (int)fs->fs_bsize, NOCRED, 0, &bp);
632 1.60 fvdl #endif
633 1.60 fvdl
634 1.60 fvdl #endif
635 1.1 mycroft panic("ffs_valloc: dup alloc");
636 1.1 mycroft }
637 1.60 fvdl if (DIP(ip, blocks)) { /* XXX */
638 1.86 christos printf("free inode %s/%llu had %" PRId64 " blocks\n",
639 1.86 christos fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
640 1.65 kristerw DIP_ASSIGN(ip, blocks, 0);
641 1.1 mycroft }
642 1.57 hannken ip->i_flag &= ~IN_SPACECOUNTED;
643 1.61 fvdl ip->i_flags = 0;
644 1.65 kristerw DIP_ASSIGN(ip, flags, 0);
645 1.1 mycroft /*
646 1.1 mycroft * Set up a new generation number for this inode.
647 1.1 mycroft */
648 1.60 fvdl ip->i_gen++;
649 1.65 kristerw DIP_ASSIGN(ip, gen, ip->i_gen);
650 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC) {
651 1.93 yamt vfs_timestamp(&ts);
652 1.60 fvdl ip->i_ffs2_birthtime = ts.tv_sec;
653 1.60 fvdl ip->i_ffs2_birthnsec = ts.tv_nsec;
654 1.60 fvdl }
655 1.1 mycroft return (0);
656 1.1 mycroft noinodes:
657 1.101 ad mutex_exit(&ump->um_lock);
658 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
659 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
660 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
661 1.1 mycroft return (ENOSPC);
662 1.1 mycroft }
663 1.1 mycroft
664 1.1 mycroft /*
665 1.50 lukem * Find a cylinder group in which to place a directory.
666 1.42 sommerfe *
667 1.50 lukem * The policy implemented by this algorithm is to allocate a
668 1.50 lukem * directory inode in the same cylinder group as its parent
669 1.50 lukem * directory, but also to reserve space for its files inodes
670 1.50 lukem * and data. Restrict the number of directories which may be
671 1.50 lukem * allocated one after another in the same cylinder group
672 1.50 lukem * without intervening allocation of files.
673 1.42 sommerfe *
674 1.50 lukem * If we allocate a first level directory then force allocation
675 1.50 lukem * in another cylinder group.
676 1.1 mycroft */
677 1.1 mycroft static ino_t
678 1.85 thorpej ffs_dirpref(struct inode *pip)
679 1.1 mycroft {
680 1.50 lukem register struct fs *fs;
681 1.74 soren int cg, prefcg;
682 1.89 dsl int64_t dirsize, cgsize, curdsz;
683 1.89 dsl int avgifree, avgbfree, avgndir;
684 1.50 lukem int minifree, minbfree, maxndir;
685 1.50 lukem int mincg, minndir;
686 1.50 lukem int maxcontigdirs;
687 1.50 lukem
688 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
689 1.101 ad
690 1.50 lukem fs = pip->i_fs;
691 1.1 mycroft
692 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
693 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
694 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
695 1.50 lukem
696 1.50 lukem /*
697 1.50 lukem * Force allocation in another cg if creating a first level dir.
698 1.50 lukem */
699 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
700 1.71 mycroft prefcg = random() % fs->fs_ncg;
701 1.50 lukem mincg = prefcg;
702 1.50 lukem minndir = fs->fs_ipg;
703 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
704 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
705 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
706 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
707 1.42 sommerfe mincg = cg;
708 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
709 1.42 sommerfe }
710 1.50 lukem for (cg = 0; cg < prefcg; cg++)
711 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
712 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
713 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
714 1.50 lukem mincg = cg;
715 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
716 1.42 sommerfe }
717 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
718 1.42 sommerfe }
719 1.50 lukem
720 1.50 lukem /*
721 1.50 lukem * Count various limits which used for
722 1.50 lukem * optimal allocation of a directory inode.
723 1.50 lukem */
724 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
725 1.50 lukem minifree = avgifree - fs->fs_ipg / 4;
726 1.50 lukem if (minifree < 0)
727 1.50 lukem minifree = 0;
728 1.54 mycroft minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
729 1.50 lukem if (minbfree < 0)
730 1.50 lukem minbfree = 0;
731 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
732 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
733 1.89 dsl if (avgndir != 0) {
734 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
735 1.89 dsl if (dirsize < curdsz)
736 1.89 dsl dirsize = curdsz;
737 1.89 dsl }
738 1.89 dsl if (cgsize < dirsize * 255)
739 1.89 dsl maxcontigdirs = cgsize / dirsize;
740 1.89 dsl else
741 1.89 dsl maxcontigdirs = 255;
742 1.50 lukem if (fs->fs_avgfpdir > 0)
743 1.50 lukem maxcontigdirs = min(maxcontigdirs,
744 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
745 1.50 lukem if (maxcontigdirs == 0)
746 1.50 lukem maxcontigdirs = 1;
747 1.50 lukem
748 1.50 lukem /*
749 1.81 perry * Limit number of dirs in one cg and reserve space for
750 1.50 lukem * regular files, but only if we have no deficit in
751 1.50 lukem * inodes or space.
752 1.50 lukem */
753 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
754 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
755 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
756 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
757 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
758 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
759 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
760 1.50 lukem }
761 1.50 lukem for (cg = 0; cg < prefcg; cg++)
762 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
763 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
764 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
765 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
766 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
767 1.50 lukem }
768 1.50 lukem /*
769 1.50 lukem * This is a backstop when we are deficient in space.
770 1.50 lukem */
771 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
772 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
773 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
774 1.50 lukem for (cg = 0; cg < prefcg; cg++)
775 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
776 1.50 lukem break;
777 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
778 1.1 mycroft }
779 1.1 mycroft
780 1.1 mycroft /*
781 1.1 mycroft * Select the desired position for the next block in a file. The file is
782 1.1 mycroft * logically divided into sections. The first section is composed of the
783 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
784 1.81 perry *
785 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
786 1.1 mycroft * request a block in the same cylinder group as the inode that describes
787 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
788 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
789 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
790 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
791 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
792 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
793 1.1 mycroft * continues until a cylinder group with greater than the average number
794 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
795 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
796 1.1 mycroft * here a best guess is made based upon the logical block number being
797 1.1 mycroft * allocated.
798 1.81 perry *
799 1.1 mycroft * If a section is already partially allocated, the policy is to
800 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
801 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
802 1.60 fvdl * contigously if possible.
803 1.106 pooka *
804 1.106 pooka * => um_lock held on entry and exit
805 1.1 mycroft */
806 1.58 fvdl daddr_t
807 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
808 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
809 1.1 mycroft {
810 1.33 augustss struct fs *fs;
811 1.33 augustss int cg;
812 1.1 mycroft int avgbfree, startcg;
813 1.1 mycroft
814 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
815 1.101 ad
816 1.1 mycroft fs = ip->i_fs;
817 1.111 simonb
818 1.111 simonb /*
819 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
820 1.111 simonb * in the inode extentions to return the desired block.
821 1.111 simonb *
822 1.111 simonb * For metadata (indirect blocks) return the address of where
823 1.111 simonb * the first indirect block resides - we'll scan for the next
824 1.111 simonb * available slot if we need to allocate more than one indirect
825 1.111 simonb * block. For data, return the address of the actual block
826 1.111 simonb * relative to the address of the first data block.
827 1.111 simonb */
828 1.111 simonb if (flags & B_CONTIG) {
829 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
830 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
831 1.111 simonb if (flags & B_METAONLY)
832 1.111 simonb return ip->i_ffs_first_indir_blk;
833 1.111 simonb else
834 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
835 1.111 simonb }
836 1.111 simonb
837 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
838 1.31 fvdl if (lbn < NDADDR + NINDIR(fs)) {
839 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
840 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
841 1.1 mycroft }
842 1.1 mycroft /*
843 1.1 mycroft * Find a cylinder with greater than average number of
844 1.1 mycroft * unused data blocks.
845 1.1 mycroft */
846 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
847 1.1 mycroft startcg =
848 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
849 1.1 mycroft else
850 1.19 bouyer startcg = dtog(fs,
851 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
852 1.1 mycroft startcg %= fs->fs_ncg;
853 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
854 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
855 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
856 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
857 1.1 mycroft }
858 1.52 lukem for (cg = 0; cg < startcg; cg++)
859 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
861 1.1 mycroft }
862 1.35 thorpej return (0);
863 1.1 mycroft }
864 1.1 mycroft /*
865 1.60 fvdl * We just always try to lay things out contiguously.
866 1.60 fvdl */
867 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
868 1.60 fvdl }
869 1.60 fvdl
870 1.60 fvdl daddr_t
871 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
872 1.111 simonb int64_t *bap)
873 1.60 fvdl {
874 1.60 fvdl struct fs *fs;
875 1.60 fvdl int cg;
876 1.60 fvdl int avgbfree, startcg;
877 1.60 fvdl
878 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
879 1.101 ad
880 1.60 fvdl fs = ip->i_fs;
881 1.111 simonb
882 1.111 simonb /*
883 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
884 1.111 simonb * in the inode extentions to return the desired block.
885 1.111 simonb *
886 1.111 simonb * For metadata (indirect blocks) return the address of where
887 1.111 simonb * the first indirect block resides - we'll scan for the next
888 1.111 simonb * available slot if we need to allocate more than one indirect
889 1.111 simonb * block. For data, return the address of the actual block
890 1.111 simonb * relative to the address of the first data block.
891 1.111 simonb */
892 1.111 simonb if (flags & B_CONTIG) {
893 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
894 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
895 1.111 simonb if (flags & B_METAONLY)
896 1.111 simonb return ip->i_ffs_first_indir_blk;
897 1.111 simonb else
898 1.111 simonb return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
899 1.111 simonb }
900 1.111 simonb
901 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
902 1.60 fvdl if (lbn < NDADDR + NINDIR(fs)) {
903 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
904 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
905 1.60 fvdl }
906 1.1 mycroft /*
907 1.60 fvdl * Find a cylinder with greater than average number of
908 1.60 fvdl * unused data blocks.
909 1.1 mycroft */
910 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
911 1.60 fvdl startcg =
912 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
913 1.60 fvdl else
914 1.60 fvdl startcg = dtog(fs,
915 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
916 1.60 fvdl startcg %= fs->fs_ncg;
917 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
918 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
919 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
920 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
921 1.60 fvdl }
922 1.60 fvdl for (cg = 0; cg < startcg; cg++)
923 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
924 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
925 1.60 fvdl }
926 1.60 fvdl return (0);
927 1.60 fvdl }
928 1.60 fvdl /*
929 1.60 fvdl * We just always try to lay things out contiguously.
930 1.60 fvdl */
931 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
932 1.1 mycroft }
933 1.1 mycroft
934 1.60 fvdl
935 1.1 mycroft /*
936 1.1 mycroft * Implement the cylinder overflow algorithm.
937 1.1 mycroft *
938 1.1 mycroft * The policy implemented by this algorithm is:
939 1.1 mycroft * 1) allocate the block in its requested cylinder group.
940 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
941 1.1 mycroft * 3) brute force search for a free block.
942 1.106 pooka *
943 1.106 pooka * => called with um_lock held
944 1.106 pooka * => returns with um_lock released on success, held on failure
945 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
946 1.1 mycroft */
947 1.1 mycroft /*VARARGS5*/
948 1.58 fvdl static daddr_t
949 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
950 1.85 thorpej int size /* size for data blocks, mode for inodes */,
951 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
952 1.1 mycroft {
953 1.33 augustss struct fs *fs;
954 1.58 fvdl daddr_t result;
955 1.1 mycroft int i, icg = cg;
956 1.1 mycroft
957 1.1 mycroft fs = ip->i_fs;
958 1.1 mycroft /*
959 1.1 mycroft * 1: preferred cylinder group
960 1.1 mycroft */
961 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
962 1.1 mycroft if (result)
963 1.1 mycroft return (result);
964 1.111 simonb
965 1.111 simonb if (flags & B_CONTIG)
966 1.111 simonb return (result);
967 1.1 mycroft /*
968 1.1 mycroft * 2: quadratic rehash
969 1.1 mycroft */
970 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
971 1.1 mycroft cg += i;
972 1.1 mycroft if (cg >= fs->fs_ncg)
973 1.1 mycroft cg -= fs->fs_ncg;
974 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
975 1.1 mycroft if (result)
976 1.1 mycroft return (result);
977 1.1 mycroft }
978 1.1 mycroft /*
979 1.1 mycroft * 3: brute force search
980 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
981 1.1 mycroft * and 1 is always checked in the quadratic rehash.
982 1.1 mycroft */
983 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
984 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
985 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
986 1.1 mycroft if (result)
987 1.1 mycroft return (result);
988 1.1 mycroft cg++;
989 1.1 mycroft if (cg == fs->fs_ncg)
990 1.1 mycroft cg = 0;
991 1.1 mycroft }
992 1.35 thorpej return (0);
993 1.1 mycroft }
994 1.1 mycroft
995 1.1 mycroft /*
996 1.1 mycroft * Determine whether a fragment can be extended.
997 1.1 mycroft *
998 1.81 perry * Check to see if the necessary fragments are available, and
999 1.1 mycroft * if they are, allocate them.
1000 1.106 pooka *
1001 1.106 pooka * => called with um_lock held
1002 1.106 pooka * => returns with um_lock released on success, held on failure
1003 1.1 mycroft */
1004 1.58 fvdl static daddr_t
1005 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
1006 1.1 mycroft {
1007 1.101 ad struct ufsmount *ump;
1008 1.33 augustss struct fs *fs;
1009 1.33 augustss struct cg *cgp;
1010 1.1 mycroft struct buf *bp;
1011 1.58 fvdl daddr_t bno;
1012 1.1 mycroft int frags, bbase;
1013 1.1 mycroft int i, error;
1014 1.62 fvdl u_int8_t *blksfree;
1015 1.1 mycroft
1016 1.1 mycroft fs = ip->i_fs;
1017 1.101 ad ump = ip->i_ump;
1018 1.101 ad
1019 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1020 1.101 ad
1021 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1022 1.35 thorpej return (0);
1023 1.1 mycroft frags = numfrags(fs, nsize);
1024 1.1 mycroft bbase = fragnum(fs, bprev);
1025 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
1026 1.1 mycroft /* cannot extend across a block boundary */
1027 1.35 thorpej return (0);
1028 1.1 mycroft }
1029 1.101 ad mutex_exit(&ump->um_lock);
1030 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1031 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1032 1.101 ad if (error)
1033 1.101 ad goto fail;
1034 1.1 mycroft cgp = (struct cg *)bp->b_data;
1035 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1036 1.101 ad goto fail;
1037 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1038 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1039 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1040 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1041 1.1 mycroft bno = dtogd(fs, bprev);
1042 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1043 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
1044 1.101 ad if (isclr(blksfree, bno + i))
1045 1.101 ad goto fail;
1046 1.1 mycroft /*
1047 1.1 mycroft * the current fragment can be extended
1048 1.1 mycroft * deduct the count on fragment being extended into
1049 1.1 mycroft * increase the count on the remaining fragment (if any)
1050 1.1 mycroft * allocate the extended piece
1051 1.1 mycroft */
1052 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1053 1.62 fvdl if (isclr(blksfree, bno + i))
1054 1.1 mycroft break;
1055 1.30 fvdl ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1056 1.1 mycroft if (i != frags)
1057 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1058 1.101 ad mutex_enter(&ump->um_lock);
1059 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
1060 1.62 fvdl clrbit(blksfree, bno + i);
1061 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1062 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1063 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1064 1.1 mycroft }
1065 1.1 mycroft fs->fs_fmod = 1;
1066 1.101 ad ACTIVECG_CLR(fs, cg);
1067 1.101 ad mutex_exit(&ump->um_lock);
1068 1.1 mycroft bdwrite(bp);
1069 1.1 mycroft return (bprev);
1070 1.101 ad
1071 1.101 ad fail:
1072 1.132 hannken if (bp != NULL)
1073 1.132 hannken brelse(bp, 0);
1074 1.101 ad mutex_enter(&ump->um_lock);
1075 1.101 ad return (0);
1076 1.1 mycroft }
1077 1.1 mycroft
1078 1.1 mycroft /*
1079 1.1 mycroft * Determine whether a block can be allocated.
1080 1.1 mycroft *
1081 1.1 mycroft * Check to see if a block of the appropriate size is available,
1082 1.1 mycroft * and if it is, allocate it.
1083 1.1 mycroft */
1084 1.58 fvdl static daddr_t
1085 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1086 1.1 mycroft {
1087 1.101 ad struct ufsmount *ump;
1088 1.62 fvdl struct fs *fs = ip->i_fs;
1089 1.30 fvdl struct cg *cgp;
1090 1.1 mycroft struct buf *bp;
1091 1.60 fvdl int32_t bno;
1092 1.60 fvdl daddr_t blkno;
1093 1.30 fvdl int error, frags, allocsiz, i;
1094 1.62 fvdl u_int8_t *blksfree;
1095 1.30 fvdl #ifdef FFS_EI
1096 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1097 1.30 fvdl #endif
1098 1.1 mycroft
1099 1.101 ad ump = ip->i_ump;
1100 1.101 ad
1101 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1102 1.101 ad
1103 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1104 1.35 thorpej return (0);
1105 1.101 ad mutex_exit(&ump->um_lock);
1106 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1107 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1108 1.101 ad if (error)
1109 1.101 ad goto fail;
1110 1.1 mycroft cgp = (struct cg *)bp->b_data;
1111 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1112 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1113 1.101 ad goto fail;
1114 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1115 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1116 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1117 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1118 1.1 mycroft if (size == fs->fs_bsize) {
1119 1.101 ad mutex_enter(&ump->um_lock);
1120 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1121 1.76 hannken ACTIVECG_CLR(fs, cg);
1122 1.101 ad mutex_exit(&ump->um_lock);
1123 1.1 mycroft bdwrite(bp);
1124 1.60 fvdl return (blkno);
1125 1.1 mycroft }
1126 1.1 mycroft /*
1127 1.1 mycroft * check to see if any fragments are already available
1128 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1129 1.1 mycroft * it down to a smaller size if necessary
1130 1.1 mycroft */
1131 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1132 1.1 mycroft frags = numfrags(fs, size);
1133 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1134 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1135 1.1 mycroft break;
1136 1.1 mycroft if (allocsiz == fs->fs_frag) {
1137 1.1 mycroft /*
1138 1.81 perry * no fragments were available, so a block will be
1139 1.1 mycroft * allocated, and hacked up
1140 1.1 mycroft */
1141 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1142 1.101 ad goto fail;
1143 1.101 ad mutex_enter(&ump->um_lock);
1144 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1145 1.60 fvdl bno = dtogd(fs, blkno);
1146 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1147 1.62 fvdl setbit(blksfree, bno + i);
1148 1.1 mycroft i = fs->fs_frag - frags;
1149 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1150 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1151 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1152 1.1 mycroft fs->fs_fmod = 1;
1153 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1154 1.76 hannken ACTIVECG_CLR(fs, cg);
1155 1.101 ad mutex_exit(&ump->um_lock);
1156 1.1 mycroft bdwrite(bp);
1157 1.60 fvdl return (blkno);
1158 1.1 mycroft }
1159 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1160 1.30 fvdl #if 0
1161 1.30 fvdl /*
1162 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1163 1.58 fvdl * also: returning NULL as daddr_t ?
1164 1.30 fvdl */
1165 1.101 ad if (bno < 0)
1166 1.101 ad goto fail;
1167 1.30 fvdl #endif
1168 1.1 mycroft for (i = 0; i < frags; i++)
1169 1.62 fvdl clrbit(blksfree, bno + i);
1170 1.101 ad mutex_enter(&ump->um_lock);
1171 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1172 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1173 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1174 1.1 mycroft fs->fs_fmod = 1;
1175 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1176 1.1 mycroft if (frags != allocsiz)
1177 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1178 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1179 1.101 ad ACTIVECG_CLR(fs, cg);
1180 1.101 ad mutex_exit(&ump->um_lock);
1181 1.1 mycroft bdwrite(bp);
1182 1.30 fvdl return blkno;
1183 1.101 ad
1184 1.101 ad fail:
1185 1.132 hannken if (bp != NULL)
1186 1.132 hannken brelse(bp, 0);
1187 1.101 ad mutex_enter(&ump->um_lock);
1188 1.101 ad return (0);
1189 1.1 mycroft }
1190 1.1 mycroft
1191 1.1 mycroft /*
1192 1.1 mycroft * Allocate a block in a cylinder group.
1193 1.1 mycroft *
1194 1.1 mycroft * This algorithm implements the following policy:
1195 1.1 mycroft * 1) allocate the requested block.
1196 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1197 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1198 1.1 mycroft * specified cylinder group.
1199 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1200 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1201 1.1 mycroft */
1202 1.58 fvdl static daddr_t
1203 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1204 1.1 mycroft {
1205 1.101 ad struct ufsmount *ump;
1206 1.62 fvdl struct fs *fs = ip->i_fs;
1207 1.30 fvdl struct cg *cgp;
1208 1.123 sborrill int cg;
1209 1.60 fvdl daddr_t blkno;
1210 1.60 fvdl int32_t bno;
1211 1.60 fvdl u_int8_t *blksfree;
1212 1.30 fvdl #ifdef FFS_EI
1213 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1214 1.30 fvdl #endif
1215 1.1 mycroft
1216 1.101 ad ump = ip->i_ump;
1217 1.101 ad
1218 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1219 1.101 ad
1220 1.30 fvdl cgp = (struct cg *)bp->b_data;
1221 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1222 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1223 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1224 1.60 fvdl } else {
1225 1.60 fvdl bpref = blknum(fs, bpref);
1226 1.60 fvdl bno = dtogd(fs, bpref);
1227 1.1 mycroft /*
1228 1.60 fvdl * if the requested block is available, use it
1229 1.1 mycroft */
1230 1.60 fvdl if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1231 1.60 fvdl goto gotit;
1232 1.111 simonb /*
1233 1.111 simonb * if the requested data block isn't available and we are
1234 1.111 simonb * trying to allocate a contiguous file, return an error.
1235 1.111 simonb */
1236 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1237 1.111 simonb return (0);
1238 1.1 mycroft }
1239 1.111 simonb
1240 1.1 mycroft /*
1241 1.60 fvdl * Take the next available block in this cylinder group.
1242 1.1 mycroft */
1243 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1244 1.1 mycroft if (bno < 0)
1245 1.35 thorpej return (0);
1246 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1247 1.1 mycroft gotit:
1248 1.1 mycroft blkno = fragstoblks(fs, bno);
1249 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1250 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1251 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1252 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1253 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1254 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1255 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1256 1.73 dbj int cylno;
1257 1.73 dbj cylno = old_cbtocylno(fs, bno);
1258 1.75 dbj KASSERT(cylno >= 0);
1259 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1260 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1261 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1262 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1263 1.73 dbj needswap);
1264 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1265 1.73 dbj }
1266 1.1 mycroft fs->fs_fmod = 1;
1267 1.123 sborrill cg = ufs_rw32(cgp->cg_cgx, needswap);
1268 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1269 1.30 fvdl return (blkno);
1270 1.1 mycroft }
1271 1.1 mycroft
1272 1.1 mycroft /*
1273 1.1 mycroft * Determine whether an inode can be allocated.
1274 1.1 mycroft *
1275 1.1 mycroft * Check to see if an inode is available, and if it is,
1276 1.1 mycroft * allocate it using the following policy:
1277 1.1 mycroft * 1) allocate the requested inode.
1278 1.1 mycroft * 2) allocate the next available inode after the requested
1279 1.1 mycroft * inode in the specified cylinder group.
1280 1.1 mycroft */
1281 1.58 fvdl static daddr_t
1282 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1283 1.1 mycroft {
1284 1.101 ad struct ufsmount *ump = ip->i_ump;
1285 1.62 fvdl struct fs *fs = ip->i_fs;
1286 1.33 augustss struct cg *cgp;
1287 1.60 fvdl struct buf *bp, *ibp;
1288 1.60 fvdl u_int8_t *inosused;
1289 1.1 mycroft int error, start, len, loc, map, i;
1290 1.60 fvdl int32_t initediblk;
1291 1.112 hannken daddr_t nalloc;
1292 1.60 fvdl struct ufs2_dinode *dp2;
1293 1.19 bouyer #ifdef FFS_EI
1294 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1295 1.19 bouyer #endif
1296 1.1 mycroft
1297 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1298 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1299 1.101 ad
1300 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1301 1.35 thorpej return (0);
1302 1.101 ad mutex_exit(&ump->um_lock);
1303 1.112 hannken ibp = NULL;
1304 1.112 hannken initediblk = -1;
1305 1.112 hannken retry:
1306 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1307 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1308 1.101 ad if (error)
1309 1.101 ad goto fail;
1310 1.1 mycroft cgp = (struct cg *)bp->b_data;
1311 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1312 1.101 ad goto fail;
1313 1.112 hannken
1314 1.112 hannken if (ibp != NULL &&
1315 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1316 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1317 1.121 ad brelse(ibp, 0);
1318 1.112 hannken ibp = NULL;
1319 1.112 hannken }
1320 1.112 hannken /*
1321 1.112 hannken * Check to see if we need to initialize more inodes.
1322 1.112 hannken */
1323 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1324 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1325 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1326 1.112 hannken if (nalloc + INOPB(fs) > initediblk &&
1327 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1328 1.112 hannken /*
1329 1.112 hannken * We have to release the cg buffer here to prevent
1330 1.112 hannken * a deadlock when reading the inode block will
1331 1.112 hannken * run a copy-on-write that might use this cg.
1332 1.112 hannken */
1333 1.112 hannken brelse(bp, 0);
1334 1.112 hannken bp = NULL;
1335 1.112 hannken error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1336 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1337 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1338 1.112 hannken if (error)
1339 1.112 hannken goto fail;
1340 1.112 hannken goto retry;
1341 1.112 hannken }
1342 1.112 hannken }
1343 1.112 hannken
1344 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1345 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1346 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1347 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1348 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1349 1.1 mycroft if (ipref) {
1350 1.1 mycroft ipref %= fs->fs_ipg;
1351 1.60 fvdl if (isclr(inosused, ipref))
1352 1.1 mycroft goto gotit;
1353 1.1 mycroft }
1354 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1355 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1356 1.19 bouyer NBBY);
1357 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1358 1.1 mycroft if (loc == 0) {
1359 1.1 mycroft len = start + 1;
1360 1.1 mycroft start = 0;
1361 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1362 1.1 mycroft if (loc == 0) {
1363 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1364 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1365 1.19 bouyer fs->fs_fsmnt);
1366 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1367 1.1 mycroft /* NOTREACHED */
1368 1.1 mycroft }
1369 1.1 mycroft }
1370 1.1 mycroft i = start + len - loc;
1371 1.126 rmind map = inosused[i] ^ 0xff;
1372 1.126 rmind if (map == 0) {
1373 1.126 rmind printf("fs = %s\n", fs->fs_fsmnt);
1374 1.126 rmind panic("ffs_nodealloccg: block not in map");
1375 1.1 mycroft }
1376 1.126 rmind ipref = i * NBBY + ffs(map) - 1;
1377 1.126 rmind cgp->cg_irotor = ufs_rw32(ipref, needswap);
1378 1.1 mycroft gotit:
1379 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1380 1.111 simonb mode);
1381 1.60 fvdl /*
1382 1.60 fvdl * Check to see if we need to initialize more inodes.
1383 1.60 fvdl */
1384 1.112 hannken if (ibp != NULL) {
1385 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1386 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1387 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1388 1.108 hannken for (i = 0; i < INOPB(fs); i++) {
1389 1.60 fvdl /*
1390 1.60 fvdl * Don't bother to swap, it's supposed to be
1391 1.60 fvdl * random, after all.
1392 1.60 fvdl */
1393 1.130 tls dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
1394 1.60 fvdl dp2++;
1395 1.60 fvdl }
1396 1.60 fvdl initediblk += INOPB(fs);
1397 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1398 1.60 fvdl }
1399 1.60 fvdl
1400 1.101 ad mutex_enter(&ump->um_lock);
1401 1.76 hannken ACTIVECG_CLR(fs, cg);
1402 1.101 ad setbit(inosused, ipref);
1403 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1404 1.101 ad fs->fs_cstotal.cs_nifree--;
1405 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1406 1.101 ad fs->fs_fmod = 1;
1407 1.101 ad if ((mode & IFMT) == IFDIR) {
1408 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1409 1.101 ad fs->fs_cstotal.cs_ndir++;
1410 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1411 1.101 ad }
1412 1.101 ad mutex_exit(&ump->um_lock);
1413 1.112 hannken if (ibp != NULL) {
1414 1.112 hannken bwrite(bp);
1415 1.104 hannken bawrite(ibp);
1416 1.112 hannken } else
1417 1.112 hannken bdwrite(bp);
1418 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1419 1.101 ad fail:
1420 1.112 hannken if (bp != NULL)
1421 1.112 hannken brelse(bp, 0);
1422 1.112 hannken if (ibp != NULL)
1423 1.121 ad brelse(ibp, 0);
1424 1.101 ad mutex_enter(&ump->um_lock);
1425 1.101 ad return (0);
1426 1.1 mycroft }
1427 1.1 mycroft
1428 1.1 mycroft /*
1429 1.111 simonb * Allocate a block or fragment.
1430 1.111 simonb *
1431 1.111 simonb * The specified block or fragment is removed from the
1432 1.111 simonb * free map, possibly fragmenting a block in the process.
1433 1.111 simonb *
1434 1.111 simonb * This implementation should mirror fs_blkfree
1435 1.111 simonb *
1436 1.111 simonb * => um_lock not held on entry or exit
1437 1.111 simonb */
1438 1.111 simonb int
1439 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1440 1.111 simonb {
1441 1.116 joerg int error;
1442 1.111 simonb
1443 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1444 1.116 joerg ip->i_dev, ip->i_uid);
1445 1.116 joerg if (error)
1446 1.116 joerg return error;
1447 1.115 joerg
1448 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1449 1.115 joerg }
1450 1.115 joerg
1451 1.115 joerg int
1452 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1453 1.115 joerg {
1454 1.115 joerg struct fs *fs = ump->um_fs;
1455 1.115 joerg struct cg *cgp;
1456 1.115 joerg struct buf *bp;
1457 1.115 joerg int32_t fragno, cgbno;
1458 1.115 joerg int i, error, cg, blk, frags, bbase;
1459 1.115 joerg u_int8_t *blksfree;
1460 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1461 1.115 joerg
1462 1.115 joerg KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1463 1.115 joerg fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1464 1.115 joerg KASSERT(bno < fs->fs_size);
1465 1.115 joerg
1466 1.115 joerg cg = dtog(fs, bno);
1467 1.115 joerg error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1468 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1469 1.111 simonb if (error) {
1470 1.111 simonb return error;
1471 1.111 simonb }
1472 1.111 simonb cgp = (struct cg *)bp->b_data;
1473 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1474 1.111 simonb brelse(bp, 0);
1475 1.111 simonb return EIO;
1476 1.111 simonb }
1477 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1478 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1479 1.111 simonb cgbno = dtogd(fs, bno);
1480 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1481 1.111 simonb
1482 1.111 simonb mutex_enter(&ump->um_lock);
1483 1.111 simonb if (size == fs->fs_bsize) {
1484 1.111 simonb fragno = fragstoblks(fs, cgbno);
1485 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1486 1.111 simonb mutex_exit(&ump->um_lock);
1487 1.111 simonb brelse(bp, 0);
1488 1.111 simonb return EBUSY;
1489 1.111 simonb }
1490 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1491 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1492 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1493 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1494 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1495 1.111 simonb } else {
1496 1.111 simonb bbase = cgbno - fragnum(fs, cgbno);
1497 1.111 simonb
1498 1.111 simonb frags = numfrags(fs, size);
1499 1.111 simonb for (i = 0; i < frags; i++) {
1500 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1501 1.111 simonb mutex_exit(&ump->um_lock);
1502 1.111 simonb brelse(bp, 0);
1503 1.111 simonb return EBUSY;
1504 1.111 simonb }
1505 1.111 simonb }
1506 1.111 simonb /*
1507 1.111 simonb * if a complete block is being split, account for it
1508 1.111 simonb */
1509 1.111 simonb fragno = fragstoblks(fs, bbase);
1510 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1511 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1512 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1513 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1514 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1515 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1516 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1517 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1518 1.111 simonb }
1519 1.111 simonb /*
1520 1.111 simonb * decrement the counts associated with the old frags
1521 1.111 simonb */
1522 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1523 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1524 1.111 simonb /*
1525 1.111 simonb * allocate the fragment
1526 1.111 simonb */
1527 1.111 simonb for (i = 0; i < frags; i++) {
1528 1.111 simonb clrbit(blksfree, cgbno + i);
1529 1.111 simonb }
1530 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1531 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1532 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1533 1.111 simonb /*
1534 1.111 simonb * add back in counts associated with the new frags
1535 1.111 simonb */
1536 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1537 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1538 1.111 simonb }
1539 1.111 simonb fs->fs_fmod = 1;
1540 1.111 simonb ACTIVECG_CLR(fs, cg);
1541 1.111 simonb mutex_exit(&ump->um_lock);
1542 1.111 simonb bdwrite(bp);
1543 1.111 simonb return 0;
1544 1.111 simonb }
1545 1.111 simonb
1546 1.111 simonb /*
1547 1.1 mycroft * Free a block or fragment.
1548 1.1 mycroft *
1549 1.1 mycroft * The specified block or fragment is placed back in the
1550 1.81 perry * free map. If a fragment is deallocated, a possible
1551 1.1 mycroft * block reassembly is checked.
1552 1.106 pooka *
1553 1.106 pooka * => um_lock not held on entry or exit
1554 1.1 mycroft */
1555 1.131 drochner static void
1556 1.131 drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
1557 1.1 mycroft {
1558 1.33 augustss struct cg *cgp;
1559 1.1 mycroft struct buf *bp;
1560 1.76 hannken struct ufsmount *ump;
1561 1.76 hannken daddr_t cgblkno;
1562 1.116 joerg int error, cg;
1563 1.76 hannken dev_t dev;
1564 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1565 1.118 joerg #ifdef FFS_EI
1566 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1567 1.118 joerg #endif
1568 1.1 mycroft
1569 1.116 joerg KASSERT(!devvp_is_snapshot);
1570 1.116 joerg
1571 1.76 hannken cg = dtog(fs, bno);
1572 1.116 joerg dev = devvp->v_rdev;
1573 1.116 joerg ump = VFSTOUFS(devvp->v_specmountpoint);
1574 1.119 joerg KASSERT(fs == ump->um_fs);
1575 1.116 joerg cgblkno = fsbtodb(fs, cgtod(fs, cg));
1576 1.116 joerg
1577 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1578 1.116 joerg NOCRED, B_MODIFY, &bp);
1579 1.116 joerg if (error) {
1580 1.116 joerg return;
1581 1.76 hannken }
1582 1.116 joerg cgp = (struct cg *)bp->b_data;
1583 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1584 1.116 joerg brelse(bp, 0);
1585 1.116 joerg return;
1586 1.1 mycroft }
1587 1.76 hannken
1588 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1589 1.119 joerg
1590 1.119 joerg bdwrite(bp);
1591 1.116 joerg }
1592 1.116 joerg
1593 1.131 drochner struct discardopdata {
1594 1.131 drochner struct work wk; /* must be first */
1595 1.131 drochner struct vnode *devvp;
1596 1.131 drochner daddr_t bno;
1597 1.131 drochner long size;
1598 1.131 drochner };
1599 1.131 drochner
1600 1.131 drochner struct discarddata {
1601 1.131 drochner struct fs *fs;
1602 1.131 drochner struct discardopdata *entry;
1603 1.131 drochner long maxsize;
1604 1.131 drochner kmutex_t entrylk;
1605 1.131 drochner struct workqueue *wq;
1606 1.131 drochner int wqcnt, wqdraining;
1607 1.131 drochner kmutex_t wqlk;
1608 1.131 drochner kcondvar_t wqcv;
1609 1.131 drochner /* timer for flush? */
1610 1.131 drochner };
1611 1.131 drochner
1612 1.131 drochner static void
1613 1.131 drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
1614 1.131 drochner {
1615 1.131 drochner long todo;
1616 1.131 drochner
1617 1.131 drochner while (td->size) {
1618 1.131 drochner todo = min(td->size,
1619 1.131 drochner lfragtosize(fs, (fs->fs_frag - fragnum(fs, td->bno))));
1620 1.131 drochner ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
1621 1.131 drochner td->bno += numfrags(fs, todo);
1622 1.131 drochner td->size -= todo;
1623 1.131 drochner }
1624 1.131 drochner }
1625 1.131 drochner
1626 1.131 drochner static void
1627 1.131 drochner ffs_discardcb(struct work *wk, void *arg)
1628 1.131 drochner {
1629 1.131 drochner struct discardopdata *td = (void *)wk;
1630 1.131 drochner struct discarddata *ts = arg;
1631 1.131 drochner struct fs *fs = ts->fs;
1632 1.131 drochner struct disk_discard_range ta;
1633 1.131 drochner int error;
1634 1.131 drochner
1635 1.131 drochner ta.bno = fsbtodb(fs, td->bno);
1636 1.131 drochner ta.size = td->size >> DEV_BSHIFT;
1637 1.131 drochner error = VOP_IOCTL(td->devvp, DIOCDISCARD, &ta, FWRITE, FSCRED);
1638 1.131 drochner #ifdef TRIMDEBUG
1639 1.131 drochner printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
1640 1.131 drochner #endif
1641 1.131 drochner
1642 1.131 drochner ffs_blkfree_td(fs, td);
1643 1.131 drochner kmem_free(td, sizeof(*td));
1644 1.131 drochner mutex_enter(&ts->wqlk);
1645 1.131 drochner ts->wqcnt--;
1646 1.131 drochner if (ts->wqdraining && !ts->wqcnt)
1647 1.131 drochner cv_signal(&ts->wqcv);
1648 1.131 drochner mutex_exit(&ts->wqlk);
1649 1.131 drochner }
1650 1.131 drochner
1651 1.131 drochner void *
1652 1.131 drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
1653 1.131 drochner {
1654 1.131 drochner struct disk_discard_params tp;
1655 1.131 drochner struct discarddata *ts;
1656 1.131 drochner int error;
1657 1.131 drochner
1658 1.131 drochner error = VOP_IOCTL(devvp, DIOCGDISCARDPARAMS, &tp, FREAD, FSCRED);
1659 1.131 drochner if (error) {
1660 1.131 drochner printf("DIOCGDISCARDPARAMS: %d\n", error);
1661 1.131 drochner return NULL;
1662 1.131 drochner }
1663 1.131 drochner if (tp.maxsize * DEV_BSIZE < fs->fs_bsize) {
1664 1.131 drochner printf("tp.maxsize=%ld, fs_bsize=%d\n", tp.maxsize, fs->fs_bsize);
1665 1.131 drochner return NULL;
1666 1.131 drochner }
1667 1.131 drochner
1668 1.131 drochner ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
1669 1.131 drochner error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
1670 1.131 drochner 0, 0, 0);
1671 1.131 drochner if (error) {
1672 1.131 drochner kmem_free(ts, sizeof (*ts));
1673 1.131 drochner return NULL;
1674 1.131 drochner }
1675 1.131 drochner mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
1676 1.131 drochner mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
1677 1.131 drochner cv_init(&ts->wqcv, "trimwqcv");
1678 1.131 drochner ts->maxsize = max(tp.maxsize * DEV_BSIZE, 100*1024); /* XXX */
1679 1.131 drochner ts->fs = fs;
1680 1.131 drochner return ts;
1681 1.131 drochner }
1682 1.131 drochner
1683 1.131 drochner void
1684 1.131 drochner ffs_discard_finish(void *vts, int flags)
1685 1.131 drochner {
1686 1.131 drochner struct discarddata *ts = vts;
1687 1.131 drochner struct discardopdata *td = NULL;
1688 1.131 drochner int res = 0;
1689 1.131 drochner
1690 1.131 drochner /* wait for workqueue to drain */
1691 1.131 drochner mutex_enter(&ts->wqlk);
1692 1.131 drochner if (ts->wqcnt) {
1693 1.131 drochner ts->wqdraining = 1;
1694 1.131 drochner res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
1695 1.131 drochner }
1696 1.131 drochner mutex_exit(&ts->wqlk);
1697 1.131 drochner if (res)
1698 1.131 drochner printf("ffs_discarddata drain timeout\n");
1699 1.131 drochner
1700 1.131 drochner mutex_enter(&ts->entrylk);
1701 1.131 drochner if (ts->entry) {
1702 1.131 drochner td = ts->entry;
1703 1.131 drochner ts->entry = NULL;
1704 1.131 drochner }
1705 1.131 drochner mutex_exit(&ts->entrylk);
1706 1.131 drochner if (td) {
1707 1.131 drochner /* XXX don't tell disk, its optional */
1708 1.131 drochner ffs_blkfree_td(ts->fs, td);
1709 1.131 drochner #ifdef TRIMDEBUG
1710 1.131 drochner printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
1711 1.131 drochner #endif
1712 1.131 drochner kmem_free(td, sizeof(*td));
1713 1.131 drochner }
1714 1.131 drochner
1715 1.131 drochner cv_destroy(&ts->wqcv);
1716 1.131 drochner mutex_destroy(&ts->entrylk);
1717 1.131 drochner mutex_destroy(&ts->wqlk);
1718 1.131 drochner workqueue_destroy(ts->wq);
1719 1.131 drochner kmem_free(ts, sizeof(*ts));
1720 1.131 drochner }
1721 1.131 drochner
1722 1.131 drochner void
1723 1.131 drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1724 1.131 drochner ino_t inum)
1725 1.131 drochner {
1726 1.131 drochner struct ufsmount *ump;
1727 1.131 drochner int error;
1728 1.131 drochner dev_t dev;
1729 1.131 drochner struct discarddata *ts;
1730 1.131 drochner struct discardopdata *td;
1731 1.131 drochner
1732 1.131 drochner dev = devvp->v_rdev;
1733 1.131 drochner ump = VFSTOUFS(devvp->v_specmountpoint);
1734 1.131 drochner if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1735 1.131 drochner return;
1736 1.131 drochner
1737 1.131 drochner error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1738 1.131 drochner if (error)
1739 1.131 drochner return;
1740 1.131 drochner
1741 1.131 drochner if (!ump->um_discarddata) {
1742 1.131 drochner ffs_blkfree_cg(fs, devvp, bno, size);
1743 1.131 drochner return;
1744 1.131 drochner }
1745 1.131 drochner
1746 1.131 drochner #ifdef TRIMDEBUG
1747 1.131 drochner printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
1748 1.131 drochner #endif
1749 1.131 drochner ts = ump->um_discarddata;
1750 1.131 drochner td = NULL;
1751 1.131 drochner
1752 1.131 drochner mutex_enter(&ts->entrylk);
1753 1.131 drochner if (ts->entry) {
1754 1.131 drochner td = ts->entry;
1755 1.131 drochner /* ffs deallocs backwards, check for prepend only */
1756 1.131 drochner if (td->bno == bno + numfrags(fs, size)
1757 1.131 drochner && td->size + size <= ts->maxsize) {
1758 1.131 drochner td->bno = bno;
1759 1.131 drochner td->size += size;
1760 1.131 drochner if (td->size < ts->maxsize) {
1761 1.131 drochner #ifdef TRIMDEBUG
1762 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1763 1.131 drochner #endif
1764 1.131 drochner mutex_exit(&ts->entrylk);
1765 1.131 drochner return;
1766 1.131 drochner }
1767 1.131 drochner size = 0; /* mark done */
1768 1.131 drochner }
1769 1.131 drochner ts->entry = NULL;
1770 1.131 drochner }
1771 1.131 drochner mutex_exit(&ts->entrylk);
1772 1.131 drochner
1773 1.131 drochner if (td) {
1774 1.131 drochner #ifdef TRIMDEBUG
1775 1.131 drochner printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
1776 1.131 drochner #endif
1777 1.131 drochner mutex_enter(&ts->wqlk);
1778 1.131 drochner ts->wqcnt++;
1779 1.131 drochner mutex_exit(&ts->wqlk);
1780 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1781 1.131 drochner }
1782 1.131 drochner if (!size)
1783 1.131 drochner return;
1784 1.131 drochner
1785 1.131 drochner td = kmem_alloc(sizeof(*td), KM_SLEEP);
1786 1.131 drochner td->devvp = devvp;
1787 1.131 drochner td->bno = bno;
1788 1.131 drochner td->size = size;
1789 1.131 drochner
1790 1.131 drochner if (td->size < ts->maxsize) { /* XXX always the case */
1791 1.131 drochner mutex_enter(&ts->entrylk);
1792 1.131 drochner if (!ts->entry) { /* possible race? */
1793 1.131 drochner #ifdef TRIMDEBUG
1794 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1795 1.131 drochner #endif
1796 1.131 drochner ts->entry = td;
1797 1.131 drochner td = NULL;
1798 1.131 drochner }
1799 1.131 drochner mutex_exit(&ts->entrylk);
1800 1.131 drochner }
1801 1.131 drochner if (td) {
1802 1.131 drochner #ifdef TRIMDEBUG
1803 1.131 drochner printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
1804 1.131 drochner #endif
1805 1.131 drochner mutex_enter(&ts->wqlk);
1806 1.131 drochner ts->wqcnt++;
1807 1.131 drochner mutex_exit(&ts->wqlk);
1808 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1809 1.131 drochner }
1810 1.131 drochner }
1811 1.131 drochner
1812 1.116 joerg /*
1813 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1814 1.116 joerg *
1815 1.116 joerg * The specified block or fragment is placed back in the
1816 1.116 joerg * free map. If a fragment is deallocated, a possible
1817 1.116 joerg * block reassembly is checked.
1818 1.116 joerg *
1819 1.116 joerg * => um_lock not held on entry or exit
1820 1.116 joerg */
1821 1.116 joerg void
1822 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1823 1.116 joerg ino_t inum)
1824 1.116 joerg {
1825 1.116 joerg struct cg *cgp;
1826 1.116 joerg struct buf *bp;
1827 1.116 joerg struct ufsmount *ump;
1828 1.116 joerg daddr_t cgblkno;
1829 1.116 joerg int error, cg;
1830 1.116 joerg dev_t dev;
1831 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1832 1.118 joerg #ifdef FFS_EI
1833 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1834 1.118 joerg #endif
1835 1.116 joerg
1836 1.116 joerg KASSERT(devvp_is_snapshot);
1837 1.116 joerg
1838 1.116 joerg cg = dtog(fs, bno);
1839 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1840 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1841 1.116 joerg cgblkno = fragstoblks(fs, cgtod(fs, cg));
1842 1.116 joerg
1843 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1844 1.116 joerg if (error)
1845 1.1 mycroft return;
1846 1.116 joerg
1847 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1848 1.107 hannken NOCRED, B_MODIFY, &bp);
1849 1.1 mycroft if (error) {
1850 1.1 mycroft return;
1851 1.1 mycroft }
1852 1.1 mycroft cgp = (struct cg *)bp->b_data;
1853 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1854 1.101 ad brelse(bp, 0);
1855 1.1 mycroft return;
1856 1.1 mycroft }
1857 1.116 joerg
1858 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1859 1.119 joerg
1860 1.119 joerg bdwrite(bp);
1861 1.116 joerg }
1862 1.116 joerg
1863 1.116 joerg static void
1864 1.119 joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1865 1.119 joerg struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1866 1.116 joerg {
1867 1.116 joerg struct cg *cgp;
1868 1.116 joerg int32_t fragno, cgbno;
1869 1.116 joerg int i, cg, blk, frags, bbase;
1870 1.116 joerg u_int8_t *blksfree;
1871 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1872 1.116 joerg
1873 1.116 joerg cg = dtog(fs, bno);
1874 1.116 joerg cgp = (struct cg *)bp->b_data;
1875 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1876 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1877 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1878 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1879 1.60 fvdl cgbno = dtogd(fs, bno);
1880 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1881 1.101 ad mutex_enter(&ump->um_lock);
1882 1.1 mycroft if (size == fs->fs_bsize) {
1883 1.60 fvdl fragno = fragstoblks(fs, cgbno);
1884 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1885 1.113 hannken if (devvp_is_snapshot) {
1886 1.101 ad mutex_exit(&ump->um_lock);
1887 1.76 hannken return;
1888 1.76 hannken }
1889 1.120 christos printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1890 1.120 christos (unsigned long long)dev, bno, fs->fs_fsmnt);
1891 1.1 mycroft panic("blkfree: freeing free block");
1892 1.1 mycroft }
1893 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1894 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1895 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1896 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1897 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1898 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1899 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1900 1.73 dbj i = old_cbtocylno(fs, cgbno);
1901 1.75 dbj KASSERT(i >= 0);
1902 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1903 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1904 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1905 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1906 1.73 dbj needswap);
1907 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1908 1.73 dbj }
1909 1.1 mycroft } else {
1910 1.60 fvdl bbase = cgbno - fragnum(fs, cgbno);
1911 1.1 mycroft /*
1912 1.1 mycroft * decrement the counts associated with the old frags
1913 1.1 mycroft */
1914 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1915 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1916 1.1 mycroft /*
1917 1.1 mycroft * deallocate the fragment
1918 1.1 mycroft */
1919 1.1 mycroft frags = numfrags(fs, size);
1920 1.1 mycroft for (i = 0; i < frags; i++) {
1921 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1922 1.120 christos printf("dev = 0x%llx, block = %" PRId64
1923 1.59 tsutsui ", fs = %s\n",
1924 1.120 christos (unsigned long long)dev, bno + i,
1925 1.120 christos fs->fs_fsmnt);
1926 1.1 mycroft panic("blkfree: freeing free frag");
1927 1.1 mycroft }
1928 1.62 fvdl setbit(blksfree, cgbno + i);
1929 1.1 mycroft }
1930 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1931 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1932 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1933 1.1 mycroft /*
1934 1.1 mycroft * add back in counts associated with the new frags
1935 1.1 mycroft */
1936 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1937 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1938 1.1 mycroft /*
1939 1.1 mycroft * if a complete block has been reassembled, account for it
1940 1.1 mycroft */
1941 1.60 fvdl fragno = fragstoblks(fs, bbase);
1942 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1943 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1944 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1945 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1946 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1947 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1948 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1949 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1950 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1951 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1952 1.73 dbj i = old_cbtocylno(fs, bbase);
1953 1.75 dbj KASSERT(i >= 0);
1954 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1955 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1956 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1957 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1958 1.73 dbj bbase)], 1, needswap);
1959 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1960 1.73 dbj }
1961 1.1 mycroft }
1962 1.1 mycroft }
1963 1.1 mycroft fs->fs_fmod = 1;
1964 1.76 hannken ACTIVECG_CLR(fs, cg);
1965 1.101 ad mutex_exit(&ump->um_lock);
1966 1.1 mycroft }
1967 1.1 mycroft
1968 1.1 mycroft /*
1969 1.1 mycroft * Free an inode.
1970 1.30 fvdl */
1971 1.30 fvdl int
1972 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1973 1.30 fvdl {
1974 1.30 fvdl
1975 1.119 joerg return ffs_freefile(vp->v_mount, ino, mode);
1976 1.30 fvdl }
1977 1.30 fvdl
1978 1.30 fvdl /*
1979 1.30 fvdl * Do the actual free operation.
1980 1.1 mycroft * The specified inode is placed back in the free map.
1981 1.111 simonb *
1982 1.111 simonb * => um_lock not held on entry or exit
1983 1.1 mycroft */
1984 1.1 mycroft int
1985 1.119 joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
1986 1.119 joerg {
1987 1.119 joerg struct ufsmount *ump = VFSTOUFS(mp);
1988 1.119 joerg struct fs *fs = ump->um_fs;
1989 1.119 joerg struct vnode *devvp;
1990 1.119 joerg struct cg *cgp;
1991 1.119 joerg struct buf *bp;
1992 1.119 joerg int error, cg;
1993 1.119 joerg daddr_t cgbno;
1994 1.119 joerg dev_t dev;
1995 1.119 joerg #ifdef FFS_EI
1996 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1997 1.119 joerg #endif
1998 1.119 joerg
1999 1.119 joerg cg = ino_to_cg(fs, ino);
2000 1.119 joerg devvp = ump->um_devvp;
2001 1.119 joerg dev = devvp->v_rdev;
2002 1.119 joerg cgbno = fsbtodb(fs, cgtod(fs, cg));
2003 1.119 joerg
2004 1.119 joerg if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2005 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
2006 1.120 christos (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
2007 1.119 joerg error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2008 1.119 joerg NOCRED, B_MODIFY, &bp);
2009 1.119 joerg if (error) {
2010 1.119 joerg return (error);
2011 1.119 joerg }
2012 1.119 joerg cgp = (struct cg *)bp->b_data;
2013 1.119 joerg if (!cg_chkmagic(cgp, needswap)) {
2014 1.119 joerg brelse(bp, 0);
2015 1.119 joerg return (0);
2016 1.119 joerg }
2017 1.119 joerg
2018 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
2019 1.119 joerg
2020 1.119 joerg bdwrite(bp);
2021 1.119 joerg
2022 1.119 joerg return 0;
2023 1.119 joerg }
2024 1.119 joerg
2025 1.119 joerg int
2026 1.119 joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
2027 1.9 christos {
2028 1.101 ad struct ufsmount *ump;
2029 1.33 augustss struct cg *cgp;
2030 1.1 mycroft struct buf *bp;
2031 1.1 mycroft int error, cg;
2032 1.76 hannken daddr_t cgbno;
2033 1.78 hannken dev_t dev;
2034 1.19 bouyer #ifdef FFS_EI
2035 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2036 1.19 bouyer #endif
2037 1.1 mycroft
2038 1.119 joerg KASSERT(devvp->v_type != VBLK);
2039 1.111 simonb
2040 1.76 hannken cg = ino_to_cg(fs, ino);
2041 1.119 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
2042 1.119 joerg ump = VFSTOUFS(devvp->v_mount);
2043 1.119 joerg cgbno = fragstoblks(fs, cgtod(fs, cg));
2044 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2045 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
2046 1.120 christos (unsigned long long)dev, (unsigned long long)ino,
2047 1.120 christos fs->fs_fsmnt);
2048 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2049 1.107 hannken NOCRED, B_MODIFY, &bp);
2050 1.1 mycroft if (error) {
2051 1.30 fvdl return (error);
2052 1.1 mycroft }
2053 1.1 mycroft cgp = (struct cg *)bp->b_data;
2054 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
2055 1.101 ad brelse(bp, 0);
2056 1.1 mycroft return (0);
2057 1.1 mycroft }
2058 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
2059 1.119 joerg
2060 1.119 joerg bdwrite(bp);
2061 1.119 joerg
2062 1.119 joerg return 0;
2063 1.119 joerg }
2064 1.119 joerg
2065 1.119 joerg static void
2066 1.119 joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
2067 1.119 joerg struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
2068 1.119 joerg {
2069 1.119 joerg int cg;
2070 1.119 joerg struct cg *cgp;
2071 1.119 joerg u_int8_t *inosused;
2072 1.119 joerg #ifdef FFS_EI
2073 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
2074 1.119 joerg #endif
2075 1.119 joerg
2076 1.119 joerg cg = ino_to_cg(fs, ino);
2077 1.119 joerg cgp = (struct cg *)bp->b_data;
2078 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
2079 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2080 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
2081 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
2082 1.62 fvdl inosused = cg_inosused(cgp, needswap);
2083 1.1 mycroft ino %= fs->fs_ipg;
2084 1.62 fvdl if (isclr(inosused, ino)) {
2085 1.120 christos printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
2086 1.120 christos (unsigned long long)dev, (unsigned long long)ino +
2087 1.120 christos cg * fs->fs_ipg, fs->fs_fsmnt);
2088 1.1 mycroft if (fs->fs_ronly == 0)
2089 1.1 mycroft panic("ifree: freeing free inode");
2090 1.1 mycroft }
2091 1.62 fvdl clrbit(inosused, ino);
2092 1.113 hannken if (!devvp_is_snapshot)
2093 1.119 joerg UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
2094 1.113 hannken ino + cg * fs->fs_ipg, mode);
2095 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2096 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
2097 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2098 1.101 ad mutex_enter(&ump->um_lock);
2099 1.1 mycroft fs->fs_cstotal.cs_nifree++;
2100 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
2101 1.78 hannken if ((mode & IFMT) == IFDIR) {
2102 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2103 1.1 mycroft fs->fs_cstotal.cs_ndir--;
2104 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
2105 1.1 mycroft }
2106 1.1 mycroft fs->fs_fmod = 1;
2107 1.82 hannken ACTIVECG_CLR(fs, cg);
2108 1.101 ad mutex_exit(&ump->um_lock);
2109 1.1 mycroft }
2110 1.1 mycroft
2111 1.1 mycroft /*
2112 1.76 hannken * Check to see if a file is free.
2113 1.76 hannken */
2114 1.76 hannken int
2115 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2116 1.76 hannken {
2117 1.76 hannken struct cg *cgp;
2118 1.76 hannken struct buf *bp;
2119 1.76 hannken daddr_t cgbno;
2120 1.76 hannken int ret, cg;
2121 1.76 hannken u_int8_t *inosused;
2122 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
2123 1.76 hannken
2124 1.119 joerg KASSERT(devvp_is_snapshot);
2125 1.119 joerg
2126 1.76 hannken cg = ino_to_cg(fs, ino);
2127 1.113 hannken if (devvp_is_snapshot)
2128 1.76 hannken cgbno = fragstoblks(fs, cgtod(fs, cg));
2129 1.113 hannken else
2130 1.76 hannken cgbno = fsbtodb(fs, cgtod(fs, cg));
2131 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2132 1.76 hannken return 1;
2133 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
2134 1.76 hannken return 1;
2135 1.76 hannken }
2136 1.76 hannken cgp = (struct cg *)bp->b_data;
2137 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2138 1.101 ad brelse(bp, 0);
2139 1.76 hannken return 1;
2140 1.76 hannken }
2141 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2142 1.76 hannken ino %= fs->fs_ipg;
2143 1.76 hannken ret = isclr(inosused, ino);
2144 1.101 ad brelse(bp, 0);
2145 1.76 hannken return ret;
2146 1.76 hannken }
2147 1.76 hannken
2148 1.76 hannken /*
2149 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
2150 1.1 mycroft *
2151 1.1 mycroft * It is a panic if a request is made to find a block if none are
2152 1.1 mycroft * available.
2153 1.1 mycroft */
2154 1.60 fvdl static int32_t
2155 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2156 1.1 mycroft {
2157 1.60 fvdl int32_t bno;
2158 1.1 mycroft int start, len, loc, i;
2159 1.1 mycroft int blk, field, subfield, pos;
2160 1.19 bouyer int ostart, olen;
2161 1.62 fvdl u_int8_t *blksfree;
2162 1.30 fvdl #ifdef FFS_EI
2163 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2164 1.30 fvdl #endif
2165 1.1 mycroft
2166 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2167 1.101 ad
2168 1.1 mycroft /*
2169 1.1 mycroft * find the fragment by searching through the free block
2170 1.1 mycroft * map for an appropriate bit pattern
2171 1.1 mycroft */
2172 1.1 mycroft if (bpref)
2173 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
2174 1.1 mycroft else
2175 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2176 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
2177 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
2178 1.19 bouyer ostart = start;
2179 1.19 bouyer olen = len;
2180 1.45 lukem loc = scanc((u_int)len,
2181 1.62 fvdl (const u_char *)&blksfree[start],
2182 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2183 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2184 1.1 mycroft if (loc == 0) {
2185 1.1 mycroft len = start + 1;
2186 1.1 mycroft start = 0;
2187 1.45 lukem loc = scanc((u_int)len,
2188 1.62 fvdl (const u_char *)&blksfree[0],
2189 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2190 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2191 1.1 mycroft if (loc == 0) {
2192 1.13 christos printf("start = %d, len = %d, fs = %s\n",
2193 1.19 bouyer ostart, olen, fs->fs_fsmnt);
2194 1.20 ross printf("offset=%d %ld\n",
2195 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
2196 1.62 fvdl (long)blksfree - (long)cgp);
2197 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
2198 1.1 mycroft panic("ffs_alloccg: map corrupted");
2199 1.1 mycroft /* NOTREACHED */
2200 1.1 mycroft }
2201 1.1 mycroft }
2202 1.1 mycroft bno = (start + len - loc) * NBBY;
2203 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
2204 1.1 mycroft /*
2205 1.1 mycroft * found the byte in the map
2206 1.1 mycroft * sift through the bits to find the selected frag
2207 1.1 mycroft */
2208 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2209 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2210 1.1 mycroft blk <<= 1;
2211 1.1 mycroft field = around[allocsiz];
2212 1.1 mycroft subfield = inside[allocsiz];
2213 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2214 1.1 mycroft if ((blk & field) == subfield)
2215 1.1 mycroft return (bno + pos);
2216 1.1 mycroft field <<= 1;
2217 1.1 mycroft subfield <<= 1;
2218 1.1 mycroft }
2219 1.1 mycroft }
2220 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2221 1.1 mycroft panic("ffs_alloccg: block not in map");
2222 1.58 fvdl /* return (-1); */
2223 1.1 mycroft }
2224 1.1 mycroft
2225 1.1 mycroft /*
2226 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2227 1.81 perry *
2228 1.1 mycroft * The form of the error message is:
2229 1.1 mycroft * fs: error message
2230 1.1 mycroft */
2231 1.1 mycroft static void
2232 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2233 1.1 mycroft {
2234 1.1 mycroft
2235 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2236 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2237 1.1 mycroft }
2238