Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.132
      1  1.132   hannken /*	$NetBSD: ffs_alloc.c,v 1.132 2012/12/20 08:03:44 hannken Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.132   hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.132 2012/12/20 08:03:44 hannken Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78  1.129       chs #include "opt_uvm_page_trkown.h"
     79   1.22    scottr #endif
     80    1.1   mycroft 
     81    1.1   mycroft #include <sys/param.h>
     82    1.1   mycroft #include <sys/systm.h>
     83    1.1   mycroft #include <sys/buf.h>
     84  1.130       tls #include <sys/cprng.h>
     85  1.111    simonb #include <sys/fstrans.h>
     86  1.111    simonb #include <sys/kauth.h>
     87  1.111    simonb #include <sys/kernel.h>
     88  1.111    simonb #include <sys/mount.h>
     89    1.1   mycroft #include <sys/proc.h>
     90  1.111    simonb #include <sys/syslog.h>
     91    1.1   mycroft #include <sys/vnode.h>
     92  1.111    simonb #include <sys/wapbl.h>
     93   1.29       mrg 
     94   1.76   hannken #include <miscfs/specfs/specdev.h>
     95    1.1   mycroft #include <ufs/ufs/quota.h>
     96   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     97    1.1   mycroft #include <ufs/ufs/inode.h>
     98    1.9  christos #include <ufs/ufs/ufs_extern.h>
     99   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    100  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    101    1.1   mycroft 
    102    1.1   mycroft #include <ufs/ffs/fs.h>
    103    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    104    1.1   mycroft 
    105  1.129       chs #ifdef UVM_PAGE_TRKOWN
    106  1.129       chs #include <uvm/uvm.h>
    107  1.129       chs #endif
    108  1.129       chs 
    109  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    110  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    111   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    112   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    113   1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    114  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    115  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    116  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    117   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    118   1.85   thorpej 				      daddr_t, int);
    119  1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    120  1.116     joerg     daddr_t, long, bool);
    121  1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    122  1.119     joerg     int, bool);
    123   1.23  drochner 
    124   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    125   1.34  jdolecek int ffs_log_changeopt = 0;
    126   1.34  jdolecek 
    127   1.23  drochner /* in ffs_tables.c */
    128   1.40  jdolecek extern const int inside[], around[];
    129   1.40  jdolecek extern const u_char * const fragtbl[];
    130    1.1   mycroft 
    131  1.116     joerg /* Basic consistency check for block allocations */
    132  1.116     joerg static int
    133  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    134  1.116     joerg     long size, dev_t dev, ino_t inum)
    135  1.116     joerg {
    136  1.116     joerg 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
    137  1.116     joerg 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
    138  1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    139  1.120  christos 		    "size = %ld, fs = %s\n",
    140  1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    141  1.116     joerg 		panic("%s: bad size", func);
    142  1.116     joerg 	}
    143  1.116     joerg 
    144  1.116     joerg 	if (bno >= fs->fs_size) {
    145  1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    146  1.116     joerg 		    (unsigned long long)inum);
    147  1.116     joerg 		ffs_fserr(fs, inum, "bad block");
    148  1.116     joerg 		return EINVAL;
    149  1.116     joerg 	}
    150  1.116     joerg 	return 0;
    151  1.116     joerg }
    152  1.116     joerg 
    153    1.1   mycroft /*
    154    1.1   mycroft  * Allocate a block in the file system.
    155   1.81     perry  *
    156    1.1   mycroft  * The size of the requested block is given, which must be some
    157    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    158    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    159    1.1   mycroft  * the following hierarchy is used to allocate a block:
    160    1.1   mycroft  *   1) allocate the requested block.
    161    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    162    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    163    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    164    1.1   mycroft  *      available block is located.
    165   1.47       wiz  * If no block preference is given the following hierarchy is used
    166    1.1   mycroft  * to allocate a block:
    167    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    168    1.1   mycroft  *      inode for the file.
    169    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    170    1.1   mycroft  *      available block is located.
    171  1.106     pooka  *
    172  1.106     pooka  * => called with um_lock held
    173  1.106     pooka  * => releases um_lock before returning
    174    1.1   mycroft  */
    175    1.9  christos int
    176  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    177   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    178    1.1   mycroft {
    179  1.101        ad 	struct ufsmount *ump;
    180   1.62      fvdl 	struct fs *fs;
    181   1.58      fvdl 	daddr_t bno;
    182    1.9  christos 	int cg;
    183  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    184    1.9  christos 	int error;
    185    1.9  christos #endif
    186   1.81     perry 
    187   1.62      fvdl 	fs = ip->i_fs;
    188  1.101        ad 	ump = ip->i_ump;
    189  1.101        ad 
    190  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    191   1.62      fvdl 
    192   1.37       chs #ifdef UVM_PAGE_TRKOWN
    193  1.129       chs 
    194  1.129       chs 	/*
    195  1.129       chs 	 * Sanity-check that allocations within the file size
    196  1.129       chs 	 * do not allow other threads to read the stale contents
    197  1.129       chs 	 * of newly allocated blocks.
    198  1.129       chs 	 * Usually pages will exist to cover the new allocation.
    199  1.129       chs 	 * There is an optimization in ffs_write() where we skip
    200  1.129       chs 	 * creating pages if several conditions are met:
    201  1.129       chs 	 *  - the file must not be mapped (in any user address space).
    202  1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    203  1.129       chs 	 * If those conditions are not met then pages must exist and
    204  1.129       chs 	 * be locked by the current thread.
    205  1.129       chs 	 */
    206  1.129       chs 
    207   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    208   1.51       chs 	    lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    209   1.37       chs 		struct vm_page *pg;
    210  1.129       chs 		struct vnode *vp = ITOV(ip);
    211  1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    212   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbn));
    213   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbn) + size);
    214   1.37       chs 
    215  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    216   1.37       chs 		while (off < endoff) {
    217   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    218  1.129       chs 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    219  1.129       chs 				 (size & PAGE_MASK) == 0 &&
    220  1.129       chs 				 blkoff(fs, size) == 0) ||
    221  1.129       chs 				(pg != NULL && pg->owner == curproc->p_pid &&
    222  1.129       chs 				 pg->lowner == curlwp->l_lid));
    223   1.37       chs 			off += PAGE_SIZE;
    224   1.37       chs 		}
    225  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    226   1.37       chs 	}
    227   1.37       chs #endif
    228   1.37       chs 
    229    1.1   mycroft 	*bnp = 0;
    230    1.1   mycroft #ifdef DIAGNOSTIC
    231    1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    232  1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    233  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    234  1.120  christos 		    fs->fs_fsmnt);
    235    1.1   mycroft 		panic("ffs_alloc: bad size");
    236    1.1   mycroft 	}
    237    1.1   mycroft 	if (cred == NOCRED)
    238   1.56    provos 		panic("ffs_alloc: missing credential");
    239    1.1   mycroft #endif /* DIAGNOSTIC */
    240    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    241    1.1   mycroft 		goto nospace;
    242   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    243  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    244  1.124      elad 	    NULL, NULL) != 0)
    245    1.1   mycroft 		goto nospace;
    246  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    247  1.101        ad 	mutex_exit(&ump->um_lock);
    248   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    249    1.1   mycroft 		return (error);
    250  1.101        ad 	mutex_enter(&ump->um_lock);
    251    1.1   mycroft #endif
    252  1.111    simonb 
    253    1.1   mycroft 	if (bpref >= fs->fs_size)
    254    1.1   mycroft 		bpref = 0;
    255    1.1   mycroft 	if (bpref == 0)
    256    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    257    1.1   mycroft 	else
    258    1.1   mycroft 		cg = dtog(fs, bpref);
    259  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    260    1.1   mycroft 	if (bno > 0) {
    261   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    262    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    263    1.1   mycroft 		*bnp = bno;
    264    1.1   mycroft 		return (0);
    265    1.1   mycroft 	}
    266  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    267    1.1   mycroft 	/*
    268    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    269    1.1   mycroft 	 */
    270   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    271    1.1   mycroft #endif
    272  1.111    simonb 	if (flags & B_CONTIG) {
    273  1.111    simonb 		/*
    274  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    275  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    276  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    277  1.111    simonb 		 * already unlocked, so we can't release it again
    278  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    279  1.111    simonb 		 *
    280  1.111    simonb 		 *
    281  1.111    simonb 		 * Fail silently - it's up to our caller to report
    282  1.111    simonb 		 * errors.
    283  1.111    simonb 		 */
    284  1.111    simonb 		return (ENOSPC);
    285  1.111    simonb 	}
    286    1.1   mycroft nospace:
    287  1.101        ad 	mutex_exit(&ump->um_lock);
    288   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    289    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    290    1.1   mycroft 	return (ENOSPC);
    291    1.1   mycroft }
    292    1.1   mycroft 
    293    1.1   mycroft /*
    294    1.1   mycroft  * Reallocate a fragment to a bigger size
    295    1.1   mycroft  *
    296    1.1   mycroft  * The number and size of the old block is given, and a preference
    297    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    298    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    299    1.1   mycroft  * invoked to get an appropriate block.
    300  1.106     pooka  *
    301  1.106     pooka  * => called with um_lock held
    302  1.106     pooka  * => return with um_lock released
    303    1.1   mycroft  */
    304    1.9  christos int
    305   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    306   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    307    1.1   mycroft {
    308  1.101        ad 	struct ufsmount *ump;
    309   1.62      fvdl 	struct fs *fs;
    310    1.1   mycroft 	struct buf *bp;
    311    1.1   mycroft 	int cg, request, error;
    312   1.58      fvdl 	daddr_t bprev, bno;
    313   1.25   thorpej 
    314   1.62      fvdl 	fs = ip->i_fs;
    315  1.101        ad 	ump = ip->i_ump;
    316  1.101        ad 
    317  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    318  1.101        ad 
    319   1.37       chs #ifdef UVM_PAGE_TRKOWN
    320  1.129       chs 
    321  1.129       chs 	/*
    322  1.129       chs 	 * Sanity-check that allocations within the file size
    323  1.129       chs 	 * do not allow other threads to read the stale contents
    324  1.129       chs 	 * of newly allocated blocks.
    325  1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    326  1.129       chs 	 * for such allocations, because only the last block of a file
    327  1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    328  1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    329  1.129       chs 	 * which always creates pages to cover blocks it allocates.
    330  1.129       chs 	 */
    331  1.129       chs 
    332   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    333   1.37       chs 		struct vm_page *pg;
    334   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    335   1.49     lukem 		voff_t off = trunc_page(lblktosize(fs, lbprev));
    336   1.49     lukem 		voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
    337   1.37       chs 
    338  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    339   1.37       chs 		while (off < endoff) {
    340   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    341  1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    342  1.129       chs 				pg->lowner == curlwp->l_lid);
    343   1.37       chs 			off += PAGE_SIZE;
    344   1.37       chs 		}
    345  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    346   1.37       chs 	}
    347   1.37       chs #endif
    348   1.37       chs 
    349    1.1   mycroft #ifdef DIAGNOSTIC
    350    1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    351    1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    352   1.13  christos 		printf(
    353  1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    354  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    355  1.120  christos 		    fs->fs_fsmnt);
    356    1.1   mycroft 		panic("ffs_realloccg: bad size");
    357    1.1   mycroft 	}
    358    1.1   mycroft 	if (cred == NOCRED)
    359   1.56    provos 		panic("ffs_realloccg: missing credential");
    360    1.1   mycroft #endif /* DIAGNOSTIC */
    361   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    362  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    363  1.124      elad 	    NULL, NULL) != 0) {
    364  1.101        ad 		mutex_exit(&ump->um_lock);
    365    1.1   mycroft 		goto nospace;
    366  1.101        ad 	}
    367   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    368   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    369   1.60      fvdl 	else
    370   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    371   1.60      fvdl 
    372   1.60      fvdl 	if (bprev == 0) {
    373  1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    374  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    375  1.120  christos 		    fs->fs_fsmnt);
    376    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    377    1.1   mycroft 	}
    378  1.101        ad 	mutex_exit(&ump->um_lock);
    379  1.101        ad 
    380    1.1   mycroft 	/*
    381    1.1   mycroft 	 * Allocate the extra space in the buffer.
    382    1.1   mycroft 	 */
    383   1.37       chs 	if (bpp != NULL &&
    384  1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    385    1.1   mycroft 		return (error);
    386    1.1   mycroft 	}
    387  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    388   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    389   1.44       chs 		if (bpp != NULL) {
    390  1.101        ad 			brelse(bp, 0);
    391   1.44       chs 		}
    392    1.1   mycroft 		return (error);
    393    1.1   mycroft 	}
    394    1.1   mycroft #endif
    395    1.1   mycroft 	/*
    396    1.1   mycroft 	 * Check for extension in the existing location.
    397    1.1   mycroft 	 */
    398    1.1   mycroft 	cg = dtog(fs, bprev);
    399  1.101        ad 	mutex_enter(&ump->um_lock);
    400   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    401   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    402    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    403   1.37       chs 
    404   1.37       chs 		if (bpp != NULL) {
    405   1.37       chs 			if (bp->b_blkno != fsbtodb(fs, bno))
    406   1.37       chs 				panic("bad blockno");
    407   1.72        pk 			allocbuf(bp, nsize, 1);
    408   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    409  1.105        ad 			mutex_enter(bp->b_objlock);
    410  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    411  1.105        ad 			bp->b_oflags |= BO_DONE;
    412  1.105        ad 			mutex_exit(bp->b_objlock);
    413   1.37       chs 			*bpp = bp;
    414   1.37       chs 		}
    415   1.37       chs 		if (blknop != NULL) {
    416   1.37       chs 			*blknop = bno;
    417   1.37       chs 		}
    418    1.1   mycroft 		return (0);
    419    1.1   mycroft 	}
    420    1.1   mycroft 	/*
    421    1.1   mycroft 	 * Allocate a new disk location.
    422    1.1   mycroft 	 */
    423    1.1   mycroft 	if (bpref >= fs->fs_size)
    424    1.1   mycroft 		bpref = 0;
    425    1.1   mycroft 	switch ((int)fs->fs_optim) {
    426    1.1   mycroft 	case FS_OPTSPACE:
    427    1.1   mycroft 		/*
    428   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    429   1.81     perry 		 * best use of space, we will waste time relocating it if
    430    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    431    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    432    1.1   mycroft 		 * to begin optimizing for time.
    433    1.1   mycroft 		 */
    434    1.1   mycroft 		request = nsize;
    435    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    436    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    437    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    438    1.1   mycroft 			break;
    439   1.34  jdolecek 
    440   1.34  jdolecek 		if (ffs_log_changeopt) {
    441   1.34  jdolecek 			log(LOG_NOTICE,
    442   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    443   1.34  jdolecek 				fs->fs_fsmnt);
    444   1.34  jdolecek 		}
    445   1.34  jdolecek 
    446    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    447    1.1   mycroft 		break;
    448    1.1   mycroft 	case FS_OPTTIME:
    449    1.1   mycroft 		/*
    450    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    451    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    452    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    453    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    454    1.1   mycroft 		 * above will be able to grow it in place without further
    455    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    456    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    457    1.1   mycroft 		 * optimizing for space.
    458    1.1   mycroft 		 */
    459    1.1   mycroft 		request = fs->fs_bsize;
    460    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    461    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    462    1.1   mycroft 			break;
    463   1.34  jdolecek 
    464   1.34  jdolecek 		if (ffs_log_changeopt) {
    465   1.34  jdolecek 			log(LOG_NOTICE,
    466   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    467   1.34  jdolecek 				fs->fs_fsmnt);
    468   1.34  jdolecek 		}
    469   1.34  jdolecek 
    470    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    471    1.1   mycroft 		break;
    472    1.1   mycroft 	default:
    473  1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    474  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    475    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    476    1.1   mycroft 		/* NOTREACHED */
    477    1.1   mycroft 	}
    478  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    479    1.1   mycroft 	if (bno > 0) {
    480  1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    481  1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    482  1.122        ad 			UFS_WAPBL_REGISTER_DEALLOCATION(
    483  1.122        ad 			    ip->i_ump->um_mountp, fsbtodb(fs, bprev),
    484  1.122        ad 			    osize);
    485  1.122        ad 		} else {
    486  1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    487  1.122        ad 			    ip->i_number);
    488  1.111    simonb 		}
    489  1.111    simonb 		if (nsize < request) {
    490  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    491  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    492  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    493  1.111    simonb 				    ip->i_ump->um_mountp,
    494  1.111    simonb 				    fsbtodb(fs, (bno + numfrags(fs, nsize))),
    495  1.111    simonb 				    request - nsize);
    496  1.111    simonb 			} else
    497  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    498  1.111    simonb 				    bno + numfrags(fs, nsize),
    499  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    500  1.111    simonb 		}
    501   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    502    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    503   1.37       chs 		if (bpp != NULL) {
    504   1.37       chs 			bp->b_blkno = fsbtodb(fs, bno);
    505   1.72        pk 			allocbuf(bp, nsize, 1);
    506   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    507  1.105        ad 			mutex_enter(bp->b_objlock);
    508  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    509  1.105        ad 			bp->b_oflags |= BO_DONE;
    510  1.105        ad 			mutex_exit(bp->b_objlock);
    511   1.37       chs 			*bpp = bp;
    512   1.37       chs 		}
    513   1.37       chs 		if (blknop != NULL) {
    514   1.37       chs 			*blknop = bno;
    515   1.37       chs 		}
    516    1.1   mycroft 		return (0);
    517    1.1   mycroft 	}
    518  1.101        ad 	mutex_exit(&ump->um_lock);
    519  1.101        ad 
    520  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    521    1.1   mycroft 	/*
    522    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    523    1.1   mycroft 	 */
    524   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    525    1.1   mycroft #endif
    526   1.37       chs 	if (bpp != NULL) {
    527  1.101        ad 		brelse(bp, 0);
    528   1.37       chs 	}
    529   1.37       chs 
    530    1.1   mycroft nospace:
    531    1.1   mycroft 	/*
    532    1.1   mycroft 	 * no space available
    533    1.1   mycroft 	 */
    534   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    535    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    536    1.1   mycroft 	return (ENOSPC);
    537    1.1   mycroft }
    538    1.1   mycroft 
    539    1.1   mycroft /*
    540    1.1   mycroft  * Allocate an inode in the file system.
    541   1.81     perry  *
    542    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    543    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    544    1.1   mycroft  *   1) allocate the preferred inode.
    545    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    546    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    547    1.1   mycroft  *      available inode is located.
    548   1.47       wiz  * If no inode preference is given the following hierarchy is used
    549    1.1   mycroft  * to allocate an inode:
    550    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    551    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    552    1.1   mycroft  *      available inode is located.
    553  1.106     pooka  *
    554  1.106     pooka  * => um_lock not held upon entry or return
    555    1.1   mycroft  */
    556    1.9  christos int
    557   1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    558   1.88      yamt     struct vnode **vpp)
    559    1.9  christos {
    560  1.101        ad 	struct ufsmount *ump;
    561   1.33  augustss 	struct inode *pip;
    562   1.33  augustss 	struct fs *fs;
    563   1.33  augustss 	struct inode *ip;
    564   1.60      fvdl 	struct timespec ts;
    565    1.1   mycroft 	ino_t ino, ipref;
    566    1.1   mycroft 	int cg, error;
    567   1.81     perry 
    568  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    569  1.111    simonb 
    570   1.88      yamt 	*vpp = NULL;
    571    1.1   mycroft 	pip = VTOI(pvp);
    572    1.1   mycroft 	fs = pip->i_fs;
    573  1.101        ad 	ump = pip->i_ump;
    574  1.101        ad 
    575  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    576  1.111    simonb 	if (error) {
    577  1.111    simonb 		return error;
    578  1.111    simonb 	}
    579  1.101        ad 	mutex_enter(&ump->um_lock);
    580    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    581    1.1   mycroft 		goto noinodes;
    582    1.1   mycroft 
    583    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    584   1.50     lukem 		ipref = ffs_dirpref(pip);
    585   1.50     lukem 	else
    586   1.50     lukem 		ipref = pip->i_number;
    587    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    588    1.1   mycroft 		ipref = 0;
    589    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    590   1.50     lukem 	/*
    591   1.50     lukem 	 * Track number of dirs created one after another
    592   1.50     lukem 	 * in a same cg without intervening by files.
    593   1.50     lukem 	 */
    594   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    595   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    596   1.50     lukem 			fs->fs_contigdirs[cg]++;
    597   1.50     lukem 	} else {
    598   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    599   1.50     lukem 			fs->fs_contigdirs[cg]--;
    600   1.50     lukem 	}
    601  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    602    1.1   mycroft 	if (ino == 0)
    603    1.1   mycroft 		goto noinodes;
    604  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    605   1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    606    1.1   mycroft 	if (error) {
    607  1.111    simonb 		int err;
    608  1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    609  1.111    simonb 		if (err == 0)
    610  1.111    simonb 			ffs_vfree(pvp, ino, mode);
    611  1.111    simonb 		if (err == 0)
    612  1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    613    1.1   mycroft 		return (error);
    614    1.1   mycroft 	}
    615   1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    616   1.88      yamt 	ip = VTOI(*vpp);
    617   1.60      fvdl 	if (ip->i_mode) {
    618   1.60      fvdl #if 0
    619   1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    620   1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    621   1.60      fvdl #else
    622   1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    623   1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    624   1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    625   1.60      fvdl 		printf("size %llx blocks %llx\n",
    626   1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    627   1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    628   1.86  christos 		    (unsigned long long)ipref);
    629   1.60      fvdl #if 0
    630   1.60      fvdl 		error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
    631  1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    632   1.60      fvdl #endif
    633   1.60      fvdl 
    634   1.60      fvdl #endif
    635    1.1   mycroft 		panic("ffs_valloc: dup alloc");
    636    1.1   mycroft 	}
    637   1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    638   1.86  christos 		printf("free inode %s/%llu had %" PRId64 " blocks\n",
    639   1.86  christos 		    fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
    640   1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    641    1.1   mycroft 	}
    642   1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    643   1.61      fvdl 	ip->i_flags = 0;
    644   1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    645    1.1   mycroft 	/*
    646    1.1   mycroft 	 * Set up a new generation number for this inode.
    647    1.1   mycroft 	 */
    648   1.60      fvdl 	ip->i_gen++;
    649   1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    650   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    651   1.93      yamt 		vfs_timestamp(&ts);
    652   1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    653   1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    654   1.60      fvdl 	}
    655    1.1   mycroft 	return (0);
    656    1.1   mycroft noinodes:
    657  1.101        ad 	mutex_exit(&ump->um_lock);
    658  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    659   1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    660    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    661    1.1   mycroft 	return (ENOSPC);
    662    1.1   mycroft }
    663    1.1   mycroft 
    664    1.1   mycroft /*
    665   1.50     lukem  * Find a cylinder group in which to place a directory.
    666   1.42  sommerfe  *
    667   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    668   1.50     lukem  * directory inode in the same cylinder group as its parent
    669   1.50     lukem  * directory, but also to reserve space for its files inodes
    670   1.50     lukem  * and data. Restrict the number of directories which may be
    671   1.50     lukem  * allocated one after another in the same cylinder group
    672   1.50     lukem  * without intervening allocation of files.
    673   1.42  sommerfe  *
    674   1.50     lukem  * If we allocate a first level directory then force allocation
    675   1.50     lukem  * in another cylinder group.
    676    1.1   mycroft  */
    677    1.1   mycroft static ino_t
    678   1.85   thorpej ffs_dirpref(struct inode *pip)
    679    1.1   mycroft {
    680   1.50     lukem 	register struct fs *fs;
    681   1.74     soren 	int cg, prefcg;
    682   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    683   1.89       dsl 	int avgifree, avgbfree, avgndir;
    684   1.50     lukem 	int minifree, minbfree, maxndir;
    685   1.50     lukem 	int mincg, minndir;
    686   1.50     lukem 	int maxcontigdirs;
    687   1.50     lukem 
    688  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    689  1.101        ad 
    690   1.50     lukem 	fs = pip->i_fs;
    691    1.1   mycroft 
    692    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    693   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    694   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    695   1.50     lukem 
    696   1.50     lukem 	/*
    697   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    698   1.50     lukem 	 */
    699  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    700   1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    701   1.50     lukem 		mincg = prefcg;
    702   1.50     lukem 		minndir = fs->fs_ipg;
    703   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    704   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    705   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    706   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    707   1.42  sommerfe 				mincg = cg;
    708   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    709   1.42  sommerfe 			}
    710   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    711   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    712   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    713   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    714   1.50     lukem 				mincg = cg;
    715   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    716   1.42  sommerfe 			}
    717   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    718   1.42  sommerfe 	}
    719   1.50     lukem 
    720   1.50     lukem 	/*
    721   1.50     lukem 	 * Count various limits which used for
    722   1.50     lukem 	 * optimal allocation of a directory inode.
    723   1.50     lukem 	 */
    724   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    725   1.50     lukem 	minifree = avgifree - fs->fs_ipg / 4;
    726   1.50     lukem 	if (minifree < 0)
    727   1.50     lukem 		minifree = 0;
    728   1.54   mycroft 	minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
    729   1.50     lukem 	if (minbfree < 0)
    730   1.50     lukem 		minbfree = 0;
    731   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    732   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    733   1.89       dsl 	if (avgndir != 0) {
    734   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    735   1.89       dsl 		if (dirsize < curdsz)
    736   1.89       dsl 			dirsize = curdsz;
    737   1.89       dsl 	}
    738   1.89       dsl 	if (cgsize < dirsize * 255)
    739   1.89       dsl 		maxcontigdirs = cgsize / dirsize;
    740   1.89       dsl 	else
    741   1.89       dsl 		maxcontigdirs = 255;
    742   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    743   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    744   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    745   1.50     lukem 	if (maxcontigdirs == 0)
    746   1.50     lukem 		maxcontigdirs = 1;
    747   1.50     lukem 
    748   1.50     lukem 	/*
    749   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    750   1.50     lukem 	 * regular files, but only if we have no deficit in
    751   1.50     lukem 	 * inodes or space.
    752   1.50     lukem 	 */
    753   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    754   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    755   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    756   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    757   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    758   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    759   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    760   1.50     lukem 		}
    761   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    762   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    763   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    764   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    765   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    766   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    767   1.50     lukem 		}
    768   1.50     lukem 	/*
    769   1.50     lukem 	 * This is a backstop when we are deficient in space.
    770   1.50     lukem 	 */
    771   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    772   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    773   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    774   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    775   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    776   1.50     lukem 			break;
    777   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    778    1.1   mycroft }
    779    1.1   mycroft 
    780    1.1   mycroft /*
    781    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    782    1.1   mycroft  * logically divided into sections. The first section is composed of the
    783    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    784   1.81     perry  *
    785    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    786    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    787    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    788    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    789    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    790    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    791    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    792    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    793    1.1   mycroft  * continues until a cylinder group with greater than the average number
    794    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    795    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    796    1.1   mycroft  * here a best guess is made based upon the logical block number being
    797    1.1   mycroft  * allocated.
    798   1.81     perry  *
    799    1.1   mycroft  * If a section is already partially allocated, the policy is to
    800    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    801   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    802   1.60      fvdl  * contigously if possible.
    803  1.106     pooka  *
    804  1.106     pooka  * => um_lock held on entry and exit
    805    1.1   mycroft  */
    806   1.58      fvdl daddr_t
    807  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    808   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    809    1.1   mycroft {
    810   1.33  augustss 	struct fs *fs;
    811   1.33  augustss 	int cg;
    812    1.1   mycroft 	int avgbfree, startcg;
    813    1.1   mycroft 
    814  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    815  1.101        ad 
    816    1.1   mycroft 	fs = ip->i_fs;
    817  1.111    simonb 
    818  1.111    simonb 	/*
    819  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    820  1.111    simonb 	 * in the inode extentions to return the desired block.
    821  1.111    simonb 	 *
    822  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    823  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    824  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    825  1.111    simonb 	 * block.  For data, return the address of the actual block
    826  1.111    simonb 	 * relative to the address of the first data block.
    827  1.111    simonb 	 */
    828  1.111    simonb 	if (flags & B_CONTIG) {
    829  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    830  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    831  1.111    simonb 		if (flags & B_METAONLY)
    832  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    833  1.111    simonb 		else
    834  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    835  1.111    simonb 	}
    836  1.111    simonb 
    837    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    838   1.31      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    839    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    840  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    841    1.1   mycroft 		}
    842    1.1   mycroft 		/*
    843    1.1   mycroft 		 * Find a cylinder with greater than average number of
    844    1.1   mycroft 		 * unused data blocks.
    845    1.1   mycroft 		 */
    846    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    847    1.1   mycroft 			startcg =
    848    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    849    1.1   mycroft 		else
    850   1.19    bouyer 			startcg = dtog(fs,
    851   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    852    1.1   mycroft 		startcg %= fs->fs_ncg;
    853    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    854    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    855    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    856  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    857    1.1   mycroft 			}
    858   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    859    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    860  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    861    1.1   mycroft 			}
    862   1.35   thorpej 		return (0);
    863    1.1   mycroft 	}
    864    1.1   mycroft 	/*
    865   1.60      fvdl 	 * We just always try to lay things out contiguously.
    866   1.60      fvdl 	 */
    867   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    868   1.60      fvdl }
    869   1.60      fvdl 
    870   1.60      fvdl daddr_t
    871  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    872  1.111    simonb     int64_t *bap)
    873   1.60      fvdl {
    874   1.60      fvdl 	struct fs *fs;
    875   1.60      fvdl 	int cg;
    876   1.60      fvdl 	int avgbfree, startcg;
    877   1.60      fvdl 
    878  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    879  1.101        ad 
    880   1.60      fvdl 	fs = ip->i_fs;
    881  1.111    simonb 
    882  1.111    simonb 	/*
    883  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    884  1.111    simonb 	 * in the inode extentions to return the desired block.
    885  1.111    simonb 	 *
    886  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    887  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    888  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    889  1.111    simonb 	 * block.  For data, return the address of the actual block
    890  1.111    simonb 	 * relative to the address of the first data block.
    891  1.111    simonb 	 */
    892  1.111    simonb 	if (flags & B_CONTIG) {
    893  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    894  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    895  1.111    simonb 		if (flags & B_METAONLY)
    896  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    897  1.111    simonb 		else
    898  1.111    simonb 			return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
    899  1.111    simonb 	}
    900  1.111    simonb 
    901   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    902   1.60      fvdl 		if (lbn < NDADDR + NINDIR(fs)) {
    903   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    904  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    905   1.60      fvdl 		}
    906    1.1   mycroft 		/*
    907   1.60      fvdl 		 * Find a cylinder with greater than average number of
    908   1.60      fvdl 		 * unused data blocks.
    909    1.1   mycroft 		 */
    910   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    911   1.60      fvdl 			startcg =
    912   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    913   1.60      fvdl 		else
    914   1.60      fvdl 			startcg = dtog(fs,
    915   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    916   1.60      fvdl 		startcg %= fs->fs_ncg;
    917   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    918   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    919   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    920  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    921   1.60      fvdl 			}
    922   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    923   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    924  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    925   1.60      fvdl 			}
    926   1.60      fvdl 		return (0);
    927   1.60      fvdl 	}
    928   1.60      fvdl 	/*
    929   1.60      fvdl 	 * We just always try to lay things out contiguously.
    930   1.60      fvdl 	 */
    931   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    932    1.1   mycroft }
    933    1.1   mycroft 
    934   1.60      fvdl 
    935    1.1   mycroft /*
    936    1.1   mycroft  * Implement the cylinder overflow algorithm.
    937    1.1   mycroft  *
    938    1.1   mycroft  * The policy implemented by this algorithm is:
    939    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    940    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    941    1.1   mycroft  *   3) brute force search for a free block.
    942  1.106     pooka  *
    943  1.106     pooka  * => called with um_lock held
    944  1.106     pooka  * => returns with um_lock released on success, held on failure
    945  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    946    1.1   mycroft  */
    947    1.1   mycroft /*VARARGS5*/
    948   1.58      fvdl static daddr_t
    949   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    950   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    951  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    952    1.1   mycroft {
    953   1.33  augustss 	struct fs *fs;
    954   1.58      fvdl 	daddr_t result;
    955    1.1   mycroft 	int i, icg = cg;
    956    1.1   mycroft 
    957    1.1   mycroft 	fs = ip->i_fs;
    958    1.1   mycroft 	/*
    959    1.1   mycroft 	 * 1: preferred cylinder group
    960    1.1   mycroft 	 */
    961  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    962    1.1   mycroft 	if (result)
    963    1.1   mycroft 		return (result);
    964  1.111    simonb 
    965  1.111    simonb 	if (flags & B_CONTIG)
    966  1.111    simonb 		return (result);
    967    1.1   mycroft 	/*
    968    1.1   mycroft 	 * 2: quadratic rehash
    969    1.1   mycroft 	 */
    970    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    971    1.1   mycroft 		cg += i;
    972    1.1   mycroft 		if (cg >= fs->fs_ncg)
    973    1.1   mycroft 			cg -= fs->fs_ncg;
    974  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    975    1.1   mycroft 		if (result)
    976    1.1   mycroft 			return (result);
    977    1.1   mycroft 	}
    978    1.1   mycroft 	/*
    979    1.1   mycroft 	 * 3: brute force search
    980    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    981    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    982    1.1   mycroft 	 */
    983    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    984    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    985  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    986    1.1   mycroft 		if (result)
    987    1.1   mycroft 			return (result);
    988    1.1   mycroft 		cg++;
    989    1.1   mycroft 		if (cg == fs->fs_ncg)
    990    1.1   mycroft 			cg = 0;
    991    1.1   mycroft 	}
    992   1.35   thorpej 	return (0);
    993    1.1   mycroft }
    994    1.1   mycroft 
    995    1.1   mycroft /*
    996    1.1   mycroft  * Determine whether a fragment can be extended.
    997    1.1   mycroft  *
    998   1.81     perry  * Check to see if the necessary fragments are available, and
    999    1.1   mycroft  * if they are, allocate them.
   1000  1.106     pooka  *
   1001  1.106     pooka  * => called with um_lock held
   1002  1.106     pooka  * => returns with um_lock released on success, held on failure
   1003    1.1   mycroft  */
   1004   1.58      fvdl static daddr_t
   1005   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1006    1.1   mycroft {
   1007  1.101        ad 	struct ufsmount *ump;
   1008   1.33  augustss 	struct fs *fs;
   1009   1.33  augustss 	struct cg *cgp;
   1010    1.1   mycroft 	struct buf *bp;
   1011   1.58      fvdl 	daddr_t bno;
   1012    1.1   mycroft 	int frags, bbase;
   1013    1.1   mycroft 	int i, error;
   1014   1.62      fvdl 	u_int8_t *blksfree;
   1015    1.1   mycroft 
   1016    1.1   mycroft 	fs = ip->i_fs;
   1017  1.101        ad 	ump = ip->i_ump;
   1018  1.101        ad 
   1019  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1020  1.101        ad 
   1021    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
   1022   1.35   thorpej 		return (0);
   1023    1.1   mycroft 	frags = numfrags(fs, nsize);
   1024    1.1   mycroft 	bbase = fragnum(fs, bprev);
   1025    1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
   1026    1.1   mycroft 		/* cannot extend across a block boundary */
   1027   1.35   thorpej 		return (0);
   1028    1.1   mycroft 	}
   1029  1.101        ad 	mutex_exit(&ump->um_lock);
   1030    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1031  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1032  1.101        ad 	if (error)
   1033  1.101        ad 		goto fail;
   1034    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1035  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1036  1.101        ad 		goto fail;
   1037   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1038   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1039   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1040   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1041    1.1   mycroft 	bno = dtogd(fs, bprev);
   1042   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1043    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
   1044  1.101        ad 		if (isclr(blksfree, bno + i))
   1045  1.101        ad 			goto fail;
   1046    1.1   mycroft 	/*
   1047    1.1   mycroft 	 * the current fragment can be extended
   1048    1.1   mycroft 	 * deduct the count on fragment being extended into
   1049    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1050    1.1   mycroft 	 * allocate the extended piece
   1051    1.1   mycroft 	 */
   1052    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1053   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1054    1.1   mycroft 			break;
   1055   1.30      fvdl 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1056    1.1   mycroft 	if (i != frags)
   1057   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1058  1.101        ad 	mutex_enter(&ump->um_lock);
   1059    1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
   1060   1.62      fvdl 		clrbit(blksfree, bno + i);
   1061   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1062    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1063    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1064    1.1   mycroft 	}
   1065    1.1   mycroft 	fs->fs_fmod = 1;
   1066  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1067  1.101        ad 	mutex_exit(&ump->um_lock);
   1068    1.1   mycroft 	bdwrite(bp);
   1069    1.1   mycroft 	return (bprev);
   1070  1.101        ad 
   1071  1.101        ad  fail:
   1072  1.132   hannken  	if (bp != NULL)
   1073  1.132   hannken 		brelse(bp, 0);
   1074  1.101        ad  	mutex_enter(&ump->um_lock);
   1075  1.101        ad  	return (0);
   1076    1.1   mycroft }
   1077    1.1   mycroft 
   1078    1.1   mycroft /*
   1079    1.1   mycroft  * Determine whether a block can be allocated.
   1080    1.1   mycroft  *
   1081    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1082    1.1   mycroft  * and if it is, allocate it.
   1083    1.1   mycroft  */
   1084   1.58      fvdl static daddr_t
   1085  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1086    1.1   mycroft {
   1087  1.101        ad 	struct ufsmount *ump;
   1088   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1089   1.30      fvdl 	struct cg *cgp;
   1090    1.1   mycroft 	struct buf *bp;
   1091   1.60      fvdl 	int32_t bno;
   1092   1.60      fvdl 	daddr_t blkno;
   1093   1.30      fvdl 	int error, frags, allocsiz, i;
   1094   1.62      fvdl 	u_int8_t *blksfree;
   1095   1.30      fvdl #ifdef FFS_EI
   1096   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1097   1.30      fvdl #endif
   1098    1.1   mycroft 
   1099  1.101        ad 	ump = ip->i_ump;
   1100  1.101        ad 
   1101  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1102  1.101        ad 
   1103    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1104   1.35   thorpej 		return (0);
   1105  1.101        ad 	mutex_exit(&ump->um_lock);
   1106    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1107  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1108  1.101        ad 	if (error)
   1109  1.101        ad 		goto fail;
   1110    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1111   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1112  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1113  1.101        ad 		goto fail;
   1114   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1115   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1116   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1117   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1118    1.1   mycroft 	if (size == fs->fs_bsize) {
   1119  1.101        ad 		mutex_enter(&ump->um_lock);
   1120  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1121   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1122  1.101        ad 		mutex_exit(&ump->um_lock);
   1123    1.1   mycroft 		bdwrite(bp);
   1124   1.60      fvdl 		return (blkno);
   1125    1.1   mycroft 	}
   1126    1.1   mycroft 	/*
   1127    1.1   mycroft 	 * check to see if any fragments are already available
   1128    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1129    1.1   mycroft 	 * it down to a smaller size if necessary
   1130    1.1   mycroft 	 */
   1131   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1132    1.1   mycroft 	frags = numfrags(fs, size);
   1133    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1134    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1135    1.1   mycroft 			break;
   1136    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1137    1.1   mycroft 		/*
   1138   1.81     perry 		 * no fragments were available, so a block will be
   1139    1.1   mycroft 		 * allocated, and hacked up
   1140    1.1   mycroft 		 */
   1141  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1142  1.101        ad 			goto fail;
   1143  1.101        ad 		mutex_enter(&ump->um_lock);
   1144  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1145   1.60      fvdl 		bno = dtogd(fs, blkno);
   1146    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1147   1.62      fvdl 			setbit(blksfree, bno + i);
   1148    1.1   mycroft 		i = fs->fs_frag - frags;
   1149   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1150    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1151   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1152    1.1   mycroft 		fs->fs_fmod = 1;
   1153   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1154   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1155  1.101        ad 		mutex_exit(&ump->um_lock);
   1156    1.1   mycroft 		bdwrite(bp);
   1157   1.60      fvdl 		return (blkno);
   1158    1.1   mycroft 	}
   1159   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1160   1.30      fvdl #if 0
   1161   1.30      fvdl 	/*
   1162   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1163   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1164   1.30      fvdl 	 */
   1165  1.101        ad 	if (bno < 0)
   1166  1.101        ad 		goto fail;
   1167   1.30      fvdl #endif
   1168    1.1   mycroft 	for (i = 0; i < frags; i++)
   1169   1.62      fvdl 		clrbit(blksfree, bno + i);
   1170  1.101        ad 	mutex_enter(&ump->um_lock);
   1171   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1172    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1173    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1174    1.1   mycroft 	fs->fs_fmod = 1;
   1175   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1176    1.1   mycroft 	if (frags != allocsiz)
   1177   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1178  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1179  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1180  1.101        ad 	mutex_exit(&ump->um_lock);
   1181    1.1   mycroft 	bdwrite(bp);
   1182   1.30      fvdl 	return blkno;
   1183  1.101        ad 
   1184  1.101        ad  fail:
   1185  1.132   hannken  	if (bp != NULL)
   1186  1.132   hannken 		brelse(bp, 0);
   1187  1.101        ad  	mutex_enter(&ump->um_lock);
   1188  1.101        ad  	return (0);
   1189    1.1   mycroft }
   1190    1.1   mycroft 
   1191    1.1   mycroft /*
   1192    1.1   mycroft  * Allocate a block in a cylinder group.
   1193    1.1   mycroft  *
   1194    1.1   mycroft  * This algorithm implements the following policy:
   1195    1.1   mycroft  *   1) allocate the requested block.
   1196    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1197    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1198    1.1   mycroft  *      specified cylinder group.
   1199    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1200    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1201    1.1   mycroft  */
   1202   1.58      fvdl static daddr_t
   1203  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1204    1.1   mycroft {
   1205  1.101        ad 	struct ufsmount *ump;
   1206   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1207   1.30      fvdl 	struct cg *cgp;
   1208  1.123  sborrill 	int cg;
   1209   1.60      fvdl 	daddr_t blkno;
   1210   1.60      fvdl 	int32_t bno;
   1211   1.60      fvdl 	u_int8_t *blksfree;
   1212   1.30      fvdl #ifdef FFS_EI
   1213   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1214   1.30      fvdl #endif
   1215    1.1   mycroft 
   1216  1.101        ad 	ump = ip->i_ump;
   1217  1.101        ad 
   1218  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1219  1.101        ad 
   1220   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1221   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1222   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1223   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1224   1.60      fvdl 	} else {
   1225   1.60      fvdl 		bpref = blknum(fs, bpref);
   1226   1.60      fvdl 		bno = dtogd(fs, bpref);
   1227    1.1   mycroft 		/*
   1228   1.60      fvdl 		 * if the requested block is available, use it
   1229    1.1   mycroft 		 */
   1230   1.60      fvdl 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
   1231   1.60      fvdl 			goto gotit;
   1232  1.111    simonb 		/*
   1233  1.111    simonb 		 * if the requested data block isn't available and we are
   1234  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1235  1.111    simonb 		 */
   1236  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1237  1.111    simonb 			return (0);
   1238    1.1   mycroft 	}
   1239  1.111    simonb 
   1240    1.1   mycroft 	/*
   1241   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1242    1.1   mycroft 	 */
   1243   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1244    1.1   mycroft 	if (bno < 0)
   1245   1.35   thorpej 		return (0);
   1246   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1247    1.1   mycroft gotit:
   1248    1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1249   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1250   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1251   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1252    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1253   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1254   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1255   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1256   1.73       dbj 		int cylno;
   1257   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1258   1.75       dbj 		KASSERT(cylno >= 0);
   1259   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1260   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1261   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1262   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1263   1.73       dbj 		    needswap);
   1264   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1265   1.73       dbj 	}
   1266    1.1   mycroft 	fs->fs_fmod = 1;
   1267  1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1268  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1269   1.30      fvdl 	return (blkno);
   1270    1.1   mycroft }
   1271    1.1   mycroft 
   1272    1.1   mycroft /*
   1273    1.1   mycroft  * Determine whether an inode can be allocated.
   1274    1.1   mycroft  *
   1275    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1276    1.1   mycroft  * allocate it using the following policy:
   1277    1.1   mycroft  *   1) allocate the requested inode.
   1278    1.1   mycroft  *   2) allocate the next available inode after the requested
   1279    1.1   mycroft  *      inode in the specified cylinder group.
   1280    1.1   mycroft  */
   1281   1.58      fvdl static daddr_t
   1282  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1283    1.1   mycroft {
   1284  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1285   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1286   1.33  augustss 	struct cg *cgp;
   1287   1.60      fvdl 	struct buf *bp, *ibp;
   1288   1.60      fvdl 	u_int8_t *inosused;
   1289    1.1   mycroft 	int error, start, len, loc, map, i;
   1290   1.60      fvdl 	int32_t initediblk;
   1291  1.112   hannken 	daddr_t nalloc;
   1292   1.60      fvdl 	struct ufs2_dinode *dp2;
   1293   1.19    bouyer #ifdef FFS_EI
   1294   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1295   1.19    bouyer #endif
   1296    1.1   mycroft 
   1297  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1298  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1299  1.101        ad 
   1300    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1301   1.35   thorpej 		return (0);
   1302  1.101        ad 	mutex_exit(&ump->um_lock);
   1303  1.112   hannken 	ibp = NULL;
   1304  1.112   hannken 	initediblk = -1;
   1305  1.112   hannken retry:
   1306    1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1307  1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1308  1.101        ad 	if (error)
   1309  1.101        ad 		goto fail;
   1310    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1311  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1312  1.101        ad 		goto fail;
   1313  1.112   hannken 
   1314  1.112   hannken 	if (ibp != NULL &&
   1315  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1316  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1317  1.121        ad 		brelse(ibp, 0);
   1318  1.112   hannken 		ibp = NULL;
   1319  1.112   hannken 	}
   1320  1.112   hannken 	/*
   1321  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1322  1.112   hannken 	 */
   1323  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1324  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1325  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1326  1.112   hannken 		if (nalloc + INOPB(fs) > initediblk &&
   1327  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1328  1.112   hannken 			/*
   1329  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1330  1.112   hannken 			 * a deadlock when reading the inode block will
   1331  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1332  1.112   hannken 			 */
   1333  1.112   hannken 			brelse(bp, 0);
   1334  1.112   hannken 			bp = NULL;
   1335  1.112   hannken 			error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
   1336  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1337  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1338  1.112   hannken 			if (error)
   1339  1.112   hannken 				goto fail;
   1340  1.112   hannken 			goto retry;
   1341  1.112   hannken 		}
   1342  1.112   hannken 	}
   1343  1.112   hannken 
   1344   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1345   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1346   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1347   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1348   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1349    1.1   mycroft 	if (ipref) {
   1350    1.1   mycroft 		ipref %= fs->fs_ipg;
   1351   1.60      fvdl 		if (isclr(inosused, ipref))
   1352    1.1   mycroft 			goto gotit;
   1353    1.1   mycroft 	}
   1354   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1355   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1356   1.19    bouyer 		NBBY);
   1357   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1358    1.1   mycroft 	if (loc == 0) {
   1359    1.1   mycroft 		len = start + 1;
   1360    1.1   mycroft 		start = 0;
   1361   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1362    1.1   mycroft 		if (loc == 0) {
   1363   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1364   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1365   1.19    bouyer 				fs->fs_fsmnt);
   1366    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1367    1.1   mycroft 			/* NOTREACHED */
   1368    1.1   mycroft 		}
   1369    1.1   mycroft 	}
   1370    1.1   mycroft 	i = start + len - loc;
   1371  1.126     rmind 	map = inosused[i] ^ 0xff;
   1372  1.126     rmind 	if (map == 0) {
   1373  1.126     rmind 		printf("fs = %s\n", fs->fs_fsmnt);
   1374  1.126     rmind 		panic("ffs_nodealloccg: block not in map");
   1375    1.1   mycroft 	}
   1376  1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1377  1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1378    1.1   mycroft gotit:
   1379  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1380  1.111    simonb 	    mode);
   1381   1.60      fvdl 	/*
   1382   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1383   1.60      fvdl 	 */
   1384  1.112   hannken 	if (ibp != NULL) {
   1385  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1386  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1387  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1388  1.108   hannken 		for (i = 0; i < INOPB(fs); i++) {
   1389   1.60      fvdl 			/*
   1390   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1391   1.60      fvdl 			 * random, after all.
   1392   1.60      fvdl 			 */
   1393  1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1394   1.60      fvdl 			dp2++;
   1395   1.60      fvdl 		}
   1396   1.60      fvdl 		initediblk += INOPB(fs);
   1397   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1398   1.60      fvdl 	}
   1399   1.60      fvdl 
   1400  1.101        ad 	mutex_enter(&ump->um_lock);
   1401   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1402  1.101        ad 	setbit(inosused, ipref);
   1403  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1404  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1405  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1406  1.101        ad 	fs->fs_fmod = 1;
   1407  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1408  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1409  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1410  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1411  1.101        ad 	}
   1412  1.101        ad 	mutex_exit(&ump->um_lock);
   1413  1.112   hannken 	if (ibp != NULL) {
   1414  1.112   hannken 		bwrite(bp);
   1415  1.104   hannken 		bawrite(ibp);
   1416  1.112   hannken 	} else
   1417  1.112   hannken 		bdwrite(bp);
   1418    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1419  1.101        ad  fail:
   1420  1.112   hannken 	if (bp != NULL)
   1421  1.112   hannken 		brelse(bp, 0);
   1422  1.112   hannken 	if (ibp != NULL)
   1423  1.121        ad 		brelse(ibp, 0);
   1424  1.101        ad 	mutex_enter(&ump->um_lock);
   1425  1.101        ad 	return (0);
   1426    1.1   mycroft }
   1427    1.1   mycroft 
   1428    1.1   mycroft /*
   1429  1.111    simonb  * Allocate a block or fragment.
   1430  1.111    simonb  *
   1431  1.111    simonb  * The specified block or fragment is removed from the
   1432  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1433  1.111    simonb  *
   1434  1.111    simonb  * This implementation should mirror fs_blkfree
   1435  1.111    simonb  *
   1436  1.111    simonb  * => um_lock not held on entry or exit
   1437  1.111    simonb  */
   1438  1.111    simonb int
   1439  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1440  1.111    simonb {
   1441  1.116     joerg 	int error;
   1442  1.111    simonb 
   1443  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1444  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1445  1.116     joerg 	if (error)
   1446  1.116     joerg 		return error;
   1447  1.115     joerg 
   1448  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1449  1.115     joerg }
   1450  1.115     joerg 
   1451  1.115     joerg int
   1452  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1453  1.115     joerg {
   1454  1.115     joerg 	struct fs *fs = ump->um_fs;
   1455  1.115     joerg 	struct cg *cgp;
   1456  1.115     joerg 	struct buf *bp;
   1457  1.115     joerg 	int32_t fragno, cgbno;
   1458  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1459  1.115     joerg 	u_int8_t *blksfree;
   1460  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1461  1.115     joerg 
   1462  1.115     joerg 	KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
   1463  1.115     joerg 	    fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
   1464  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1465  1.115     joerg 
   1466  1.115     joerg 	cg = dtog(fs, bno);
   1467  1.115     joerg 	error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1468  1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1469  1.111    simonb 	if (error) {
   1470  1.111    simonb 		return error;
   1471  1.111    simonb 	}
   1472  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1473  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1474  1.111    simonb 		brelse(bp, 0);
   1475  1.111    simonb 		return EIO;
   1476  1.111    simonb 	}
   1477  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1478  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1479  1.111    simonb 	cgbno = dtogd(fs, bno);
   1480  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1481  1.111    simonb 
   1482  1.111    simonb 	mutex_enter(&ump->um_lock);
   1483  1.111    simonb 	if (size == fs->fs_bsize) {
   1484  1.111    simonb 		fragno = fragstoblks(fs, cgbno);
   1485  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1486  1.111    simonb 			mutex_exit(&ump->um_lock);
   1487  1.111    simonb 			brelse(bp, 0);
   1488  1.111    simonb 			return EBUSY;
   1489  1.111    simonb 		}
   1490  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1491  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1492  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1493  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1494  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1495  1.111    simonb 	} else {
   1496  1.111    simonb 		bbase = cgbno - fragnum(fs, cgbno);
   1497  1.111    simonb 
   1498  1.111    simonb 		frags = numfrags(fs, size);
   1499  1.111    simonb 		for (i = 0; i < frags; i++) {
   1500  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1501  1.111    simonb 				mutex_exit(&ump->um_lock);
   1502  1.111    simonb 				brelse(bp, 0);
   1503  1.111    simonb 				return EBUSY;
   1504  1.111    simonb 			}
   1505  1.111    simonb 		}
   1506  1.111    simonb 		/*
   1507  1.111    simonb 		 * if a complete block is being split, account for it
   1508  1.111    simonb 		 */
   1509  1.111    simonb 		fragno = fragstoblks(fs, bbase);
   1510  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1511  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1512  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1513  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1514  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1515  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1516  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1517  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1518  1.111    simonb 		}
   1519  1.111    simonb 		/*
   1520  1.111    simonb 		 * decrement the counts associated with the old frags
   1521  1.111    simonb 		 */
   1522  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1523  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1524  1.111    simonb 		/*
   1525  1.111    simonb 		 * allocate the fragment
   1526  1.111    simonb 		 */
   1527  1.111    simonb 		for (i = 0; i < frags; i++) {
   1528  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1529  1.111    simonb 		}
   1530  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1531  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1532  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1533  1.111    simonb 		/*
   1534  1.111    simonb 		 * add back in counts associated with the new frags
   1535  1.111    simonb 		 */
   1536  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1537  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1538  1.111    simonb 	}
   1539  1.111    simonb 	fs->fs_fmod = 1;
   1540  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1541  1.111    simonb 	mutex_exit(&ump->um_lock);
   1542  1.111    simonb 	bdwrite(bp);
   1543  1.111    simonb 	return 0;
   1544  1.111    simonb }
   1545  1.111    simonb 
   1546  1.111    simonb /*
   1547    1.1   mycroft  * Free a block or fragment.
   1548    1.1   mycroft  *
   1549    1.1   mycroft  * The specified block or fragment is placed back in the
   1550   1.81     perry  * free map. If a fragment is deallocated, a possible
   1551    1.1   mycroft  * block reassembly is checked.
   1552  1.106     pooka  *
   1553  1.106     pooka  * => um_lock not held on entry or exit
   1554    1.1   mycroft  */
   1555  1.131  drochner static void
   1556  1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1557    1.1   mycroft {
   1558   1.33  augustss 	struct cg *cgp;
   1559    1.1   mycroft 	struct buf *bp;
   1560   1.76   hannken 	struct ufsmount *ump;
   1561   1.76   hannken 	daddr_t cgblkno;
   1562  1.116     joerg 	int error, cg;
   1563   1.76   hannken 	dev_t dev;
   1564  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1565  1.118     joerg #ifdef FFS_EI
   1566  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1567  1.118     joerg #endif
   1568    1.1   mycroft 
   1569  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1570  1.116     joerg 
   1571   1.76   hannken 	cg = dtog(fs, bno);
   1572  1.116     joerg 	dev = devvp->v_rdev;
   1573  1.116     joerg 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1574  1.119     joerg 	KASSERT(fs == ump->um_fs);
   1575  1.116     joerg 	cgblkno = fsbtodb(fs, cgtod(fs, cg));
   1576  1.116     joerg 
   1577  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1578  1.116     joerg 	    NOCRED, B_MODIFY, &bp);
   1579  1.116     joerg 	if (error) {
   1580  1.116     joerg 		return;
   1581   1.76   hannken 	}
   1582  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1583  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1584  1.116     joerg 		brelse(bp, 0);
   1585  1.116     joerg 		return;
   1586    1.1   mycroft 	}
   1587   1.76   hannken 
   1588  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1589  1.119     joerg 
   1590  1.119     joerg 	bdwrite(bp);
   1591  1.116     joerg }
   1592  1.116     joerg 
   1593  1.131  drochner struct discardopdata {
   1594  1.131  drochner 	struct work wk; /* must be first */
   1595  1.131  drochner 	struct vnode *devvp;
   1596  1.131  drochner 	daddr_t bno;
   1597  1.131  drochner 	long size;
   1598  1.131  drochner };
   1599  1.131  drochner 
   1600  1.131  drochner struct discarddata {
   1601  1.131  drochner 	struct fs *fs;
   1602  1.131  drochner 	struct discardopdata *entry;
   1603  1.131  drochner 	long maxsize;
   1604  1.131  drochner 	kmutex_t entrylk;
   1605  1.131  drochner 	struct workqueue *wq;
   1606  1.131  drochner 	int wqcnt, wqdraining;
   1607  1.131  drochner 	kmutex_t wqlk;
   1608  1.131  drochner 	kcondvar_t wqcv;
   1609  1.131  drochner 	/* timer for flush? */
   1610  1.131  drochner };
   1611  1.131  drochner 
   1612  1.131  drochner static void
   1613  1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1614  1.131  drochner {
   1615  1.131  drochner 	long todo;
   1616  1.131  drochner 
   1617  1.131  drochner 	while (td->size) {
   1618  1.131  drochner 		todo = min(td->size,
   1619  1.131  drochner 		  lfragtosize(fs, (fs->fs_frag - fragnum(fs, td->bno))));
   1620  1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1621  1.131  drochner 		td->bno += numfrags(fs, todo);
   1622  1.131  drochner 		td->size -= todo;
   1623  1.131  drochner 	}
   1624  1.131  drochner }
   1625  1.131  drochner 
   1626  1.131  drochner static void
   1627  1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1628  1.131  drochner {
   1629  1.131  drochner 	struct discardopdata *td = (void *)wk;
   1630  1.131  drochner 	struct discarddata *ts = arg;
   1631  1.131  drochner 	struct fs *fs = ts->fs;
   1632  1.131  drochner 	struct disk_discard_range ta;
   1633  1.131  drochner 	int error;
   1634  1.131  drochner 
   1635  1.131  drochner 	ta.bno = fsbtodb(fs, td->bno);
   1636  1.131  drochner 	ta.size = td->size >> DEV_BSHIFT;
   1637  1.131  drochner 	error = VOP_IOCTL(td->devvp, DIOCDISCARD, &ta, FWRITE, FSCRED);
   1638  1.131  drochner #ifdef TRIMDEBUG
   1639  1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1640  1.131  drochner #endif
   1641  1.131  drochner 
   1642  1.131  drochner 	ffs_blkfree_td(fs, td);
   1643  1.131  drochner 	kmem_free(td, sizeof(*td));
   1644  1.131  drochner 	mutex_enter(&ts->wqlk);
   1645  1.131  drochner 	ts->wqcnt--;
   1646  1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1647  1.131  drochner 		cv_signal(&ts->wqcv);
   1648  1.131  drochner 	mutex_exit(&ts->wqlk);
   1649  1.131  drochner }
   1650  1.131  drochner 
   1651  1.131  drochner void *
   1652  1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1653  1.131  drochner {
   1654  1.131  drochner 	struct disk_discard_params tp;
   1655  1.131  drochner 	struct discarddata *ts;
   1656  1.131  drochner 	int error;
   1657  1.131  drochner 
   1658  1.131  drochner 	error = VOP_IOCTL(devvp, DIOCGDISCARDPARAMS, &tp, FREAD, FSCRED);
   1659  1.131  drochner 	if (error) {
   1660  1.131  drochner 		printf("DIOCGDISCARDPARAMS: %d\n", error);
   1661  1.131  drochner 		return NULL;
   1662  1.131  drochner 	}
   1663  1.131  drochner 	if (tp.maxsize * DEV_BSIZE < fs->fs_bsize) {
   1664  1.131  drochner 		printf("tp.maxsize=%ld, fs_bsize=%d\n", tp.maxsize, fs->fs_bsize);
   1665  1.131  drochner 		return NULL;
   1666  1.131  drochner 	}
   1667  1.131  drochner 
   1668  1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1669  1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1670  1.131  drochner 				 0, 0, 0);
   1671  1.131  drochner 	if (error) {
   1672  1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1673  1.131  drochner 		return NULL;
   1674  1.131  drochner 	}
   1675  1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1676  1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1677  1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1678  1.131  drochner 	ts->maxsize = max(tp.maxsize * DEV_BSIZE, 100*1024); /* XXX */
   1679  1.131  drochner 	ts->fs = fs;
   1680  1.131  drochner 	return ts;
   1681  1.131  drochner }
   1682  1.131  drochner 
   1683  1.131  drochner void
   1684  1.131  drochner ffs_discard_finish(void *vts, int flags)
   1685  1.131  drochner {
   1686  1.131  drochner 	struct discarddata *ts = vts;
   1687  1.131  drochner 	struct discardopdata *td = NULL;
   1688  1.131  drochner 	int res = 0;
   1689  1.131  drochner 
   1690  1.131  drochner 	/* wait for workqueue to drain */
   1691  1.131  drochner 	mutex_enter(&ts->wqlk);
   1692  1.131  drochner 	if (ts->wqcnt) {
   1693  1.131  drochner 		ts->wqdraining = 1;
   1694  1.131  drochner 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1695  1.131  drochner 	}
   1696  1.131  drochner 	mutex_exit(&ts->wqlk);
   1697  1.131  drochner 	if (res)
   1698  1.131  drochner 		printf("ffs_discarddata drain timeout\n");
   1699  1.131  drochner 
   1700  1.131  drochner 	mutex_enter(&ts->entrylk);
   1701  1.131  drochner 	if (ts->entry) {
   1702  1.131  drochner 		td = ts->entry;
   1703  1.131  drochner 		ts->entry = NULL;
   1704  1.131  drochner 	}
   1705  1.131  drochner 	mutex_exit(&ts->entrylk);
   1706  1.131  drochner 	if (td) {
   1707  1.131  drochner 		/* XXX don't tell disk, its optional */
   1708  1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1709  1.131  drochner #ifdef TRIMDEBUG
   1710  1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1711  1.131  drochner #endif
   1712  1.131  drochner 		kmem_free(td, sizeof(*td));
   1713  1.131  drochner 	}
   1714  1.131  drochner 
   1715  1.131  drochner 	cv_destroy(&ts->wqcv);
   1716  1.131  drochner 	mutex_destroy(&ts->entrylk);
   1717  1.131  drochner 	mutex_destroy(&ts->wqlk);
   1718  1.131  drochner 	workqueue_destroy(ts->wq);
   1719  1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1720  1.131  drochner }
   1721  1.131  drochner 
   1722  1.131  drochner void
   1723  1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1724  1.131  drochner     ino_t inum)
   1725  1.131  drochner {
   1726  1.131  drochner 	struct ufsmount *ump;
   1727  1.131  drochner 	int error;
   1728  1.131  drochner 	dev_t dev;
   1729  1.131  drochner 	struct discarddata *ts;
   1730  1.131  drochner 	struct discardopdata *td;
   1731  1.131  drochner 
   1732  1.131  drochner 	dev = devvp->v_rdev;
   1733  1.131  drochner 	ump = VFSTOUFS(devvp->v_specmountpoint);
   1734  1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1735  1.131  drochner 		return;
   1736  1.131  drochner 
   1737  1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1738  1.131  drochner 	if (error)
   1739  1.131  drochner 		return;
   1740  1.131  drochner 
   1741  1.131  drochner 	if (!ump->um_discarddata) {
   1742  1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1743  1.131  drochner 		return;
   1744  1.131  drochner 	}
   1745  1.131  drochner 
   1746  1.131  drochner #ifdef TRIMDEBUG
   1747  1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1748  1.131  drochner #endif
   1749  1.131  drochner 	ts = ump->um_discarddata;
   1750  1.131  drochner 	td = NULL;
   1751  1.131  drochner 
   1752  1.131  drochner 	mutex_enter(&ts->entrylk);
   1753  1.131  drochner 	if (ts->entry) {
   1754  1.131  drochner 		td = ts->entry;
   1755  1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1756  1.131  drochner 		if (td->bno == bno + numfrags(fs, size)
   1757  1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1758  1.131  drochner 			td->bno = bno;
   1759  1.131  drochner 			td->size += size;
   1760  1.131  drochner 			if (td->size < ts->maxsize) {
   1761  1.131  drochner #ifdef TRIMDEBUG
   1762  1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1763  1.131  drochner #endif
   1764  1.131  drochner 				mutex_exit(&ts->entrylk);
   1765  1.131  drochner 				return;
   1766  1.131  drochner 			}
   1767  1.131  drochner 			size = 0; /* mark done */
   1768  1.131  drochner 		}
   1769  1.131  drochner 		ts->entry = NULL;
   1770  1.131  drochner 	}
   1771  1.131  drochner 	mutex_exit(&ts->entrylk);
   1772  1.131  drochner 
   1773  1.131  drochner 	if (td) {
   1774  1.131  drochner #ifdef TRIMDEBUG
   1775  1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1776  1.131  drochner #endif
   1777  1.131  drochner 		mutex_enter(&ts->wqlk);
   1778  1.131  drochner 		ts->wqcnt++;
   1779  1.131  drochner 		mutex_exit(&ts->wqlk);
   1780  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1781  1.131  drochner 	}
   1782  1.131  drochner 	if (!size)
   1783  1.131  drochner 		return;
   1784  1.131  drochner 
   1785  1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1786  1.131  drochner 	td->devvp = devvp;
   1787  1.131  drochner 	td->bno = bno;
   1788  1.131  drochner 	td->size = size;
   1789  1.131  drochner 
   1790  1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1791  1.131  drochner 		mutex_enter(&ts->entrylk);
   1792  1.131  drochner 		if (!ts->entry) { /* possible race? */
   1793  1.131  drochner #ifdef TRIMDEBUG
   1794  1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1795  1.131  drochner #endif
   1796  1.131  drochner 			ts->entry = td;
   1797  1.131  drochner 			td = NULL;
   1798  1.131  drochner 		}
   1799  1.131  drochner 		mutex_exit(&ts->entrylk);
   1800  1.131  drochner 	}
   1801  1.131  drochner 	if (td) {
   1802  1.131  drochner #ifdef TRIMDEBUG
   1803  1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1804  1.131  drochner #endif
   1805  1.131  drochner 		mutex_enter(&ts->wqlk);
   1806  1.131  drochner 		ts->wqcnt++;
   1807  1.131  drochner 		mutex_exit(&ts->wqlk);
   1808  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1809  1.131  drochner 	}
   1810  1.131  drochner }
   1811  1.131  drochner 
   1812  1.116     joerg /*
   1813  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1814  1.116     joerg  *
   1815  1.116     joerg  * The specified block or fragment is placed back in the
   1816  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1817  1.116     joerg  * block reassembly is checked.
   1818  1.116     joerg  *
   1819  1.116     joerg  * => um_lock not held on entry or exit
   1820  1.116     joerg  */
   1821  1.116     joerg void
   1822  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1823  1.116     joerg     ino_t inum)
   1824  1.116     joerg {
   1825  1.116     joerg 	struct cg *cgp;
   1826  1.116     joerg 	struct buf *bp;
   1827  1.116     joerg 	struct ufsmount *ump;
   1828  1.116     joerg 	daddr_t cgblkno;
   1829  1.116     joerg 	int error, cg;
   1830  1.116     joerg 	dev_t dev;
   1831  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1832  1.118     joerg #ifdef FFS_EI
   1833  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1834  1.118     joerg #endif
   1835  1.116     joerg 
   1836  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1837  1.116     joerg 
   1838  1.116     joerg 	cg = dtog(fs, bno);
   1839  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1840  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1841  1.116     joerg 	cgblkno = fragstoblks(fs, cgtod(fs, cg));
   1842  1.116     joerg 
   1843  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1844  1.116     joerg 	if (error)
   1845    1.1   mycroft 		return;
   1846  1.116     joerg 
   1847  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1848  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1849    1.1   mycroft 	if (error) {
   1850    1.1   mycroft 		return;
   1851    1.1   mycroft 	}
   1852    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1853   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1854  1.101        ad 		brelse(bp, 0);
   1855    1.1   mycroft 		return;
   1856    1.1   mycroft 	}
   1857  1.116     joerg 
   1858  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1859  1.119     joerg 
   1860  1.119     joerg 	bdwrite(bp);
   1861  1.116     joerg }
   1862  1.116     joerg 
   1863  1.116     joerg static void
   1864  1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1865  1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1866  1.116     joerg {
   1867  1.116     joerg 	struct cg *cgp;
   1868  1.116     joerg 	int32_t fragno, cgbno;
   1869  1.116     joerg 	int i, cg, blk, frags, bbase;
   1870  1.116     joerg 	u_int8_t *blksfree;
   1871  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1872  1.116     joerg 
   1873  1.116     joerg 	cg = dtog(fs, bno);
   1874  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1875   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1876   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1877   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1878   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1879   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1880   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1881  1.101        ad 	mutex_enter(&ump->um_lock);
   1882    1.1   mycroft 	if (size == fs->fs_bsize) {
   1883   1.60      fvdl 		fragno = fragstoblks(fs, cgbno);
   1884   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1885  1.113   hannken 			if (devvp_is_snapshot) {
   1886  1.101        ad 				mutex_exit(&ump->um_lock);
   1887   1.76   hannken 				return;
   1888   1.76   hannken 			}
   1889  1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1890  1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1891    1.1   mycroft 			panic("blkfree: freeing free block");
   1892    1.1   mycroft 		}
   1893   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1894   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1895   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1896    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1897    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1898   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1899   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1900   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1901   1.75       dbj 			KASSERT(i >= 0);
   1902   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1903   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1904   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1905   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1906   1.73       dbj 			    needswap);
   1907   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1908   1.73       dbj 		}
   1909    1.1   mycroft 	} else {
   1910   1.60      fvdl 		bbase = cgbno - fragnum(fs, cgbno);
   1911    1.1   mycroft 		/*
   1912    1.1   mycroft 		 * decrement the counts associated with the old frags
   1913    1.1   mycroft 		 */
   1914   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1915   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1916    1.1   mycroft 		/*
   1917    1.1   mycroft 		 * deallocate the fragment
   1918    1.1   mycroft 		 */
   1919    1.1   mycroft 		frags = numfrags(fs, size);
   1920    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1921   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1922  1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1923   1.59   tsutsui 				       ", fs = %s\n",
   1924  1.120  christos 				    (unsigned long long)dev, bno + i,
   1925  1.120  christos 				    fs->fs_fsmnt);
   1926    1.1   mycroft 				panic("blkfree: freeing free frag");
   1927    1.1   mycroft 			}
   1928   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1929    1.1   mycroft 		}
   1930   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1931    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1932   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1933    1.1   mycroft 		/*
   1934    1.1   mycroft 		 * add back in counts associated with the new frags
   1935    1.1   mycroft 		 */
   1936   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1937   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1938    1.1   mycroft 		/*
   1939    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1940    1.1   mycroft 		 */
   1941   1.60      fvdl 		fragno = fragstoblks(fs, bbase);
   1942   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1943   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1944    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1945    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1946   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1947   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1948    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1949    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1950   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1951   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1952   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1953   1.75       dbj 				KASSERT(i >= 0);
   1954   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1955   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1956   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1957   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1958   1.73       dbj 				    bbase)], 1, needswap);
   1959   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1960   1.73       dbj 			}
   1961    1.1   mycroft 		}
   1962    1.1   mycroft 	}
   1963    1.1   mycroft 	fs->fs_fmod = 1;
   1964   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1965  1.101        ad 	mutex_exit(&ump->um_lock);
   1966    1.1   mycroft }
   1967    1.1   mycroft 
   1968    1.1   mycroft /*
   1969    1.1   mycroft  * Free an inode.
   1970   1.30      fvdl  */
   1971   1.30      fvdl int
   1972   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1973   1.30      fvdl {
   1974   1.30      fvdl 
   1975  1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1976   1.30      fvdl }
   1977   1.30      fvdl 
   1978   1.30      fvdl /*
   1979   1.30      fvdl  * Do the actual free operation.
   1980    1.1   mycroft  * The specified inode is placed back in the free map.
   1981  1.111    simonb  *
   1982  1.111    simonb  * => um_lock not held on entry or exit
   1983    1.1   mycroft  */
   1984    1.1   mycroft int
   1985  1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1986  1.119     joerg {
   1987  1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1988  1.119     joerg 	struct fs *fs = ump->um_fs;
   1989  1.119     joerg 	struct vnode *devvp;
   1990  1.119     joerg 	struct cg *cgp;
   1991  1.119     joerg 	struct buf *bp;
   1992  1.119     joerg 	int error, cg;
   1993  1.119     joerg 	daddr_t cgbno;
   1994  1.119     joerg 	dev_t dev;
   1995  1.119     joerg #ifdef FFS_EI
   1996  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1997  1.119     joerg #endif
   1998  1.119     joerg 
   1999  1.119     joerg 	cg = ino_to_cg(fs, ino);
   2000  1.119     joerg 	devvp = ump->um_devvp;
   2001  1.119     joerg 	dev = devvp->v_rdev;
   2002  1.119     joerg 	cgbno = fsbtodb(fs, cgtod(fs, cg));
   2003  1.119     joerg 
   2004  1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2005  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   2006  1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2007  1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2008  1.119     joerg 	    NOCRED, B_MODIFY, &bp);
   2009  1.119     joerg 	if (error) {
   2010  1.119     joerg 		return (error);
   2011  1.119     joerg 	}
   2012  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2013  1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   2014  1.119     joerg 		brelse(bp, 0);
   2015  1.119     joerg 		return (0);
   2016  1.119     joerg 	}
   2017  1.119     joerg 
   2018  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2019  1.119     joerg 
   2020  1.119     joerg 	bdwrite(bp);
   2021  1.119     joerg 
   2022  1.119     joerg 	return 0;
   2023  1.119     joerg }
   2024  1.119     joerg 
   2025  1.119     joerg int
   2026  1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2027    1.9  christos {
   2028  1.101        ad 	struct ufsmount *ump;
   2029   1.33  augustss 	struct cg *cgp;
   2030    1.1   mycroft 	struct buf *bp;
   2031    1.1   mycroft 	int error, cg;
   2032   1.76   hannken 	daddr_t cgbno;
   2033   1.78   hannken 	dev_t dev;
   2034   1.19    bouyer #ifdef FFS_EI
   2035   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2036   1.19    bouyer #endif
   2037    1.1   mycroft 
   2038  1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   2039  1.111    simonb 
   2040   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2041  1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2042  1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   2043  1.119     joerg 	cgbno = fragstoblks(fs, cgtod(fs, cg));
   2044    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2045  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   2046  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   2047  1.120  christos 		    fs->fs_fsmnt);
   2048  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2049  1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   2050    1.1   mycroft 	if (error) {
   2051   1.30      fvdl 		return (error);
   2052    1.1   mycroft 	}
   2053    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2054   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2055  1.101        ad 		brelse(bp, 0);
   2056    1.1   mycroft 		return (0);
   2057    1.1   mycroft 	}
   2058  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2059  1.119     joerg 
   2060  1.119     joerg 	bdwrite(bp);
   2061  1.119     joerg 
   2062  1.119     joerg 	return 0;
   2063  1.119     joerg }
   2064  1.119     joerg 
   2065  1.119     joerg static void
   2066  1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2067  1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2068  1.119     joerg {
   2069  1.119     joerg 	int cg;
   2070  1.119     joerg 	struct cg *cgp;
   2071  1.119     joerg 	u_int8_t *inosused;
   2072  1.119     joerg #ifdef FFS_EI
   2073  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2074  1.119     joerg #endif
   2075  1.119     joerg 
   2076  1.119     joerg 	cg = ino_to_cg(fs, ino);
   2077  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2078   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2079   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2080   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2081   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2082   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2083    1.1   mycroft 	ino %= fs->fs_ipg;
   2084   1.62      fvdl 	if (isclr(inosused, ino)) {
   2085  1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2086  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2087  1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2088    1.1   mycroft 		if (fs->fs_ronly == 0)
   2089    1.1   mycroft 			panic("ifree: freeing free inode");
   2090    1.1   mycroft 	}
   2091   1.62      fvdl 	clrbit(inosused, ino);
   2092  1.113   hannken 	if (!devvp_is_snapshot)
   2093  1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2094  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2095   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2096   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2097   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2098  1.101        ad 	mutex_enter(&ump->um_lock);
   2099    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2100    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2101   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2102   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2103    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2104    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2105    1.1   mycroft 	}
   2106    1.1   mycroft 	fs->fs_fmod = 1;
   2107   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2108  1.101        ad 	mutex_exit(&ump->um_lock);
   2109    1.1   mycroft }
   2110    1.1   mycroft 
   2111    1.1   mycroft /*
   2112   1.76   hannken  * Check to see if a file is free.
   2113   1.76   hannken  */
   2114   1.76   hannken int
   2115   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2116   1.76   hannken {
   2117   1.76   hannken 	struct cg *cgp;
   2118   1.76   hannken 	struct buf *bp;
   2119   1.76   hannken 	daddr_t cgbno;
   2120   1.76   hannken 	int ret, cg;
   2121   1.76   hannken 	u_int8_t *inosused;
   2122  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2123   1.76   hannken 
   2124  1.119     joerg 	KASSERT(devvp_is_snapshot);
   2125  1.119     joerg 
   2126   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2127  1.113   hannken 	if (devvp_is_snapshot)
   2128   1.76   hannken 		cgbno = fragstoblks(fs, cgtod(fs, cg));
   2129  1.113   hannken 	else
   2130   1.76   hannken 		cgbno = fsbtodb(fs, cgtod(fs, cg));
   2131   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2132   1.76   hannken 		return 1;
   2133  1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2134   1.76   hannken 		return 1;
   2135   1.76   hannken 	}
   2136   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2137   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2138  1.101        ad 		brelse(bp, 0);
   2139   1.76   hannken 		return 1;
   2140   1.76   hannken 	}
   2141   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2142   1.76   hannken 	ino %= fs->fs_ipg;
   2143   1.76   hannken 	ret = isclr(inosused, ino);
   2144  1.101        ad 	brelse(bp, 0);
   2145   1.76   hannken 	return ret;
   2146   1.76   hannken }
   2147   1.76   hannken 
   2148   1.76   hannken /*
   2149    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2150    1.1   mycroft  *
   2151    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2152    1.1   mycroft  * available.
   2153    1.1   mycroft  */
   2154   1.60      fvdl static int32_t
   2155   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2156    1.1   mycroft {
   2157   1.60      fvdl 	int32_t bno;
   2158    1.1   mycroft 	int start, len, loc, i;
   2159    1.1   mycroft 	int blk, field, subfield, pos;
   2160   1.19    bouyer 	int ostart, olen;
   2161   1.62      fvdl 	u_int8_t *blksfree;
   2162   1.30      fvdl #ifdef FFS_EI
   2163   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2164   1.30      fvdl #endif
   2165    1.1   mycroft 
   2166  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2167  1.101        ad 
   2168    1.1   mycroft 	/*
   2169    1.1   mycroft 	 * find the fragment by searching through the free block
   2170    1.1   mycroft 	 * map for an appropriate bit pattern
   2171    1.1   mycroft 	 */
   2172    1.1   mycroft 	if (bpref)
   2173    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2174    1.1   mycroft 	else
   2175   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2176   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2177    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2178   1.19    bouyer 	ostart = start;
   2179   1.19    bouyer 	olen = len;
   2180   1.45     lukem 	loc = scanc((u_int)len,
   2181   1.62      fvdl 		(const u_char *)&blksfree[start],
   2182   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2183   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2184    1.1   mycroft 	if (loc == 0) {
   2185    1.1   mycroft 		len = start + 1;
   2186    1.1   mycroft 		start = 0;
   2187   1.45     lukem 		loc = scanc((u_int)len,
   2188   1.62      fvdl 			(const u_char *)&blksfree[0],
   2189   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2190   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2191    1.1   mycroft 		if (loc == 0) {
   2192   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2193   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2194   1.20      ross 			printf("offset=%d %ld\n",
   2195   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2196   1.62      fvdl 				(long)blksfree - (long)cgp);
   2197   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2198    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2199    1.1   mycroft 			/* NOTREACHED */
   2200    1.1   mycroft 		}
   2201    1.1   mycroft 	}
   2202    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2203   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2204    1.1   mycroft 	/*
   2205    1.1   mycroft 	 * found the byte in the map
   2206    1.1   mycroft 	 * sift through the bits to find the selected frag
   2207    1.1   mycroft 	 */
   2208    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2209   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2210    1.1   mycroft 		blk <<= 1;
   2211    1.1   mycroft 		field = around[allocsiz];
   2212    1.1   mycroft 		subfield = inside[allocsiz];
   2213    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2214    1.1   mycroft 			if ((blk & field) == subfield)
   2215    1.1   mycroft 				return (bno + pos);
   2216    1.1   mycroft 			field <<= 1;
   2217    1.1   mycroft 			subfield <<= 1;
   2218    1.1   mycroft 		}
   2219    1.1   mycroft 	}
   2220   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2221    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2222   1.58      fvdl 	/* return (-1); */
   2223    1.1   mycroft }
   2224    1.1   mycroft 
   2225    1.1   mycroft /*
   2226    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2227   1.81     perry  *
   2228    1.1   mycroft  * The form of the error message is:
   2229    1.1   mycroft  *	fs: error message
   2230    1.1   mycroft  */
   2231    1.1   mycroft static void
   2232   1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2233    1.1   mycroft {
   2234    1.1   mycroft 
   2235   1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2236   1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2237    1.1   mycroft }
   2238