Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.146.2.1.2.1
      1  1.146.2.1.2.1    martin /*	$NetBSD: ffs_alloc.c,v 1.146.2.1.2.1 2019/05/29 15:55:18 martin Exp $	*/
      2          1.111    simonb 
      3          1.111    simonb /*-
      4          1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5          1.111    simonb  * All rights reserved.
      6          1.111    simonb  *
      7          1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8          1.111    simonb  * by Wasabi Systems, Inc.
      9          1.111    simonb  *
     10          1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11          1.111    simonb  * modification, are permitted provided that the following conditions
     12          1.111    simonb  * are met:
     13          1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14          1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15          1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16          1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17          1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18          1.111    simonb  *
     19          1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20          1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21          1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22          1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23          1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24          1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25          1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26          1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27          1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28          1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29          1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30          1.111    simonb  */
     31            1.2       cgd 
     32            1.1   mycroft /*
     33           1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34           1.60      fvdl  * All rights reserved.
     35           1.60      fvdl  *
     36           1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37           1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38           1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39           1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40           1.60      fvdl  * research program
     41           1.60      fvdl  *
     42            1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43            1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44            1.1   mycroft  *
     45            1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46            1.1   mycroft  * modification, are permitted provided that the following conditions
     47            1.1   mycroft  * are met:
     48            1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49            1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50            1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51            1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52            1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53           1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54            1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55            1.1   mycroft  *    without specific prior written permission.
     56            1.1   mycroft  *
     57            1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58            1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59            1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60            1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61            1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62            1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63            1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64            1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65            1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66            1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67            1.1   mycroft  * SUCH DAMAGE.
     68            1.1   mycroft  *
     69           1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70            1.1   mycroft  */
     71           1.53     lukem 
     72           1.53     lukem #include <sys/cdefs.h>
     73  1.146.2.1.2.1    martin __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.146.2.1.2.1 2019/05/29 15:55:18 martin Exp $");
     74           1.17       mrg 
     75           1.43       mrg #if defined(_KERNEL_OPT)
     76           1.27   thorpej #include "opt_ffs.h"
     77           1.21    scottr #include "opt_quota.h"
     78          1.129       chs #include "opt_uvm_page_trkown.h"
     79           1.22    scottr #endif
     80            1.1   mycroft 
     81            1.1   mycroft #include <sys/param.h>
     82            1.1   mycroft #include <sys/systm.h>
     83            1.1   mycroft #include <sys/buf.h>
     84          1.130       tls #include <sys/cprng.h>
     85          1.111    simonb #include <sys/fstrans.h>
     86          1.111    simonb #include <sys/kauth.h>
     87          1.111    simonb #include <sys/kernel.h>
     88          1.111    simonb #include <sys/mount.h>
     89            1.1   mycroft #include <sys/proc.h>
     90          1.111    simonb #include <sys/syslog.h>
     91            1.1   mycroft #include <sys/vnode.h>
     92          1.111    simonb #include <sys/wapbl.h>
     93           1.29       mrg 
     94           1.76   hannken #include <miscfs/specfs/specdev.h>
     95            1.1   mycroft #include <ufs/ufs/quota.h>
     96           1.19    bouyer #include <ufs/ufs/ufsmount.h>
     97            1.1   mycroft #include <ufs/ufs/inode.h>
     98            1.9  christos #include <ufs/ufs/ufs_extern.h>
     99           1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    100          1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    101            1.1   mycroft 
    102            1.1   mycroft #include <ufs/ffs/fs.h>
    103            1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    104            1.1   mycroft 
    105          1.129       chs #ifdef UVM_PAGE_TRKOWN
    106          1.129       chs #include <uvm/uvm.h>
    107          1.129       chs #endif
    108          1.129       chs 
    109          1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    110          1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    111           1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    112           1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    113           1.85   thorpej static void ffs_fserr(struct fs *, u_int, const char *);
    114          1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    115          1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    116          1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    117           1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    118           1.85   thorpej 				      daddr_t, int);
    119          1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    120          1.116     joerg     daddr_t, long, bool);
    121          1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    122          1.119     joerg     int, bool);
    123           1.23  drochner 
    124           1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    125           1.34  jdolecek int ffs_log_changeopt = 0;
    126           1.34  jdolecek 
    127           1.23  drochner /* in ffs_tables.c */
    128           1.40  jdolecek extern const int inside[], around[];
    129           1.40  jdolecek extern const u_char * const fragtbl[];
    130            1.1   mycroft 
    131          1.116     joerg /* Basic consistency check for block allocations */
    132          1.116     joerg static int
    133          1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    134          1.116     joerg     long size, dev_t dev, ino_t inum)
    135          1.116     joerg {
    136          1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    137          1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    138          1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    139          1.120  christos 		    "size = %ld, fs = %s\n",
    140          1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    141          1.116     joerg 		panic("%s: bad size", func);
    142          1.116     joerg 	}
    143          1.116     joerg 
    144          1.116     joerg 	if (bno >= fs->fs_size) {
    145          1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    146          1.116     joerg 		    (unsigned long long)inum);
    147          1.116     joerg 		ffs_fserr(fs, inum, "bad block");
    148          1.116     joerg 		return EINVAL;
    149          1.116     joerg 	}
    150          1.116     joerg 	return 0;
    151          1.116     joerg }
    152          1.116     joerg 
    153            1.1   mycroft /*
    154            1.1   mycroft  * Allocate a block in the file system.
    155           1.81     perry  *
    156            1.1   mycroft  * The size of the requested block is given, which must be some
    157            1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    158            1.1   mycroft  * A preference may be optionally specified. If a preference is given
    159            1.1   mycroft  * the following hierarchy is used to allocate a block:
    160            1.1   mycroft  *   1) allocate the requested block.
    161            1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    162            1.1   mycroft  *   3) allocate a block in the same cylinder group.
    163            1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    164            1.1   mycroft  *      available block is located.
    165           1.47       wiz  * If no block preference is given the following hierarchy is used
    166            1.1   mycroft  * to allocate a block:
    167            1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    168            1.1   mycroft  *      inode for the file.
    169            1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    170            1.1   mycroft  *      available block is located.
    171          1.106     pooka  *
    172          1.106     pooka  * => called with um_lock held
    173          1.106     pooka  * => releases um_lock before returning
    174            1.1   mycroft  */
    175            1.9  christos int
    176          1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    177           1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    178            1.1   mycroft {
    179          1.101        ad 	struct ufsmount *ump;
    180           1.62      fvdl 	struct fs *fs;
    181           1.58      fvdl 	daddr_t bno;
    182            1.9  christos 	int cg;
    183          1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    184            1.9  christos 	int error;
    185            1.9  christos #endif
    186           1.81     perry 
    187           1.62      fvdl 	fs = ip->i_fs;
    188          1.101        ad 	ump = ip->i_ump;
    189          1.101        ad 
    190          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    191           1.62      fvdl 
    192           1.37       chs #ifdef UVM_PAGE_TRKOWN
    193          1.129       chs 
    194          1.129       chs 	/*
    195          1.129       chs 	 * Sanity-check that allocations within the file size
    196          1.129       chs 	 * do not allow other threads to read the stale contents
    197          1.129       chs 	 * of newly allocated blocks.
    198          1.129       chs 	 * Usually pages will exist to cover the new allocation.
    199          1.129       chs 	 * There is an optimization in ffs_write() where we skip
    200          1.129       chs 	 * creating pages if several conditions are met:
    201          1.129       chs 	 *  - the file must not be mapped (in any user address space).
    202          1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    203          1.129       chs 	 * If those conditions are not met then pages must exist and
    204          1.129       chs 	 * be locked by the current thread.
    205          1.129       chs 	 */
    206          1.129       chs 
    207           1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    208          1.137  dholland 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    209           1.37       chs 		struct vm_page *pg;
    210          1.129       chs 		struct vnode *vp = ITOV(ip);
    211          1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    212          1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    213          1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    214           1.37       chs 
    215          1.128     rmind 		mutex_enter(uobj->vmobjlock);
    216           1.37       chs 		while (off < endoff) {
    217           1.37       chs 			pg = uvm_pagelookup(uobj, off);
    218          1.129       chs 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    219          1.129       chs 				 (size & PAGE_MASK) == 0 &&
    220          1.135  dholland 				 ffs_blkoff(fs, size) == 0) ||
    221          1.129       chs 				(pg != NULL && pg->owner == curproc->p_pid &&
    222          1.129       chs 				 pg->lowner == curlwp->l_lid));
    223           1.37       chs 			off += PAGE_SIZE;
    224           1.37       chs 		}
    225          1.128     rmind 		mutex_exit(uobj->vmobjlock);
    226           1.37       chs 	}
    227           1.37       chs #endif
    228           1.37       chs 
    229            1.1   mycroft 	*bnp = 0;
    230            1.1   mycroft #ifdef DIAGNOSTIC
    231          1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
    232          1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    233          1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    234          1.120  christos 		    fs->fs_fsmnt);
    235            1.1   mycroft 		panic("ffs_alloc: bad size");
    236            1.1   mycroft 	}
    237            1.1   mycroft 	if (cred == NOCRED)
    238           1.56    provos 		panic("ffs_alloc: missing credential");
    239            1.1   mycroft #endif /* DIAGNOSTIC */
    240            1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    241            1.1   mycroft 		goto nospace;
    242           1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    243          1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    244          1.124      elad 	    NULL, NULL) != 0)
    245            1.1   mycroft 		goto nospace;
    246          1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    247          1.101        ad 	mutex_exit(&ump->um_lock);
    248           1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    249            1.1   mycroft 		return (error);
    250          1.101        ad 	mutex_enter(&ump->um_lock);
    251            1.1   mycroft #endif
    252          1.111    simonb 
    253            1.1   mycroft 	if (bpref >= fs->fs_size)
    254            1.1   mycroft 		bpref = 0;
    255            1.1   mycroft 	if (bpref == 0)
    256            1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    257            1.1   mycroft 	else
    258            1.1   mycroft 		cg = dtog(fs, bpref);
    259          1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    260            1.1   mycroft 	if (bno > 0) {
    261           1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    262            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    263            1.1   mycroft 		*bnp = bno;
    264            1.1   mycroft 		return (0);
    265            1.1   mycroft 	}
    266          1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    267            1.1   mycroft 	/*
    268            1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    269            1.1   mycroft 	 */
    270           1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    271            1.1   mycroft #endif
    272          1.111    simonb 	if (flags & B_CONTIG) {
    273          1.111    simonb 		/*
    274          1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    275          1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    276          1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    277          1.111    simonb 		 * already unlocked, so we can't release it again
    278          1.111    simonb 		 * like in the normal error path.  See kern/39206.
    279          1.111    simonb 		 *
    280          1.111    simonb 		 *
    281          1.111    simonb 		 * Fail silently - it's up to our caller to report
    282          1.111    simonb 		 * errors.
    283          1.111    simonb 		 */
    284          1.111    simonb 		return (ENOSPC);
    285          1.111    simonb 	}
    286            1.1   mycroft nospace:
    287          1.101        ad 	mutex_exit(&ump->um_lock);
    288           1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    289            1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    290            1.1   mycroft 	return (ENOSPC);
    291            1.1   mycroft }
    292            1.1   mycroft 
    293            1.1   mycroft /*
    294            1.1   mycroft  * Reallocate a fragment to a bigger size
    295            1.1   mycroft  *
    296            1.1   mycroft  * The number and size of the old block is given, and a preference
    297            1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    298            1.1   mycroft  * the original block. Failing that, the regular block allocator is
    299            1.1   mycroft  * invoked to get an appropriate block.
    300          1.106     pooka  *
    301          1.106     pooka  * => called with um_lock held
    302          1.106     pooka  * => return with um_lock released
    303            1.1   mycroft  */
    304            1.9  christos int
    305           1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    306           1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    307            1.1   mycroft {
    308          1.101        ad 	struct ufsmount *ump;
    309           1.62      fvdl 	struct fs *fs;
    310            1.1   mycroft 	struct buf *bp;
    311            1.1   mycroft 	int cg, request, error;
    312           1.58      fvdl 	daddr_t bprev, bno;
    313           1.25   thorpej 
    314           1.62      fvdl 	fs = ip->i_fs;
    315          1.101        ad 	ump = ip->i_ump;
    316          1.101        ad 
    317          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    318          1.101        ad 
    319           1.37       chs #ifdef UVM_PAGE_TRKOWN
    320          1.129       chs 
    321          1.129       chs 	/*
    322          1.129       chs 	 * Sanity-check that allocations within the file size
    323          1.129       chs 	 * do not allow other threads to read the stale contents
    324          1.129       chs 	 * of newly allocated blocks.
    325          1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    326          1.129       chs 	 * for such allocations, because only the last block of a file
    327          1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    328          1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    329          1.129       chs 	 * which always creates pages to cover blocks it allocates.
    330          1.129       chs 	 */
    331          1.129       chs 
    332           1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    333           1.37       chs 		struct vm_page *pg;
    334           1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    335          1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    336          1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    337           1.37       chs 
    338          1.128     rmind 		mutex_enter(uobj->vmobjlock);
    339           1.37       chs 		while (off < endoff) {
    340           1.37       chs 			pg = uvm_pagelookup(uobj, off);
    341          1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    342          1.129       chs 				pg->lowner == curlwp->l_lid);
    343           1.37       chs 			off += PAGE_SIZE;
    344           1.37       chs 		}
    345          1.128     rmind 		mutex_exit(uobj->vmobjlock);
    346           1.37       chs 	}
    347           1.37       chs #endif
    348           1.37       chs 
    349            1.1   mycroft #ifdef DIAGNOSTIC
    350          1.134  dholland 	if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
    351          1.134  dholland 	    (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
    352           1.13  christos 		printf(
    353          1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    354          1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    355          1.120  christos 		    fs->fs_fsmnt);
    356            1.1   mycroft 		panic("ffs_realloccg: bad size");
    357            1.1   mycroft 	}
    358            1.1   mycroft 	if (cred == NOCRED)
    359           1.56    provos 		panic("ffs_realloccg: missing credential");
    360            1.1   mycroft #endif /* DIAGNOSTIC */
    361           1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    362          1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    363          1.124      elad 	    NULL, NULL) != 0) {
    364          1.101        ad 		mutex_exit(&ump->um_lock);
    365            1.1   mycroft 		goto nospace;
    366          1.101        ad 	}
    367           1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    368           1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    369           1.60      fvdl 	else
    370           1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    371           1.60      fvdl 
    372           1.60      fvdl 	if (bprev == 0) {
    373          1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    374          1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    375          1.120  christos 		    fs->fs_fsmnt);
    376            1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    377            1.1   mycroft 	}
    378          1.101        ad 	mutex_exit(&ump->um_lock);
    379          1.101        ad 
    380            1.1   mycroft 	/*
    381            1.1   mycroft 	 * Allocate the extra space in the buffer.
    382            1.1   mycroft 	 */
    383           1.37       chs 	if (bpp != NULL &&
    384          1.107   hannken 	    (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
    385            1.1   mycroft 		return (error);
    386            1.1   mycroft 	}
    387          1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    388           1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    389           1.44       chs 		if (bpp != NULL) {
    390          1.101        ad 			brelse(bp, 0);
    391           1.44       chs 		}
    392            1.1   mycroft 		return (error);
    393            1.1   mycroft 	}
    394            1.1   mycroft #endif
    395            1.1   mycroft 	/*
    396            1.1   mycroft 	 * Check for extension in the existing location.
    397            1.1   mycroft 	 */
    398            1.1   mycroft 	cg = dtog(fs, bprev);
    399          1.101        ad 	mutex_enter(&ump->um_lock);
    400           1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    401           1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    402            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    403           1.37       chs 
    404           1.37       chs 		if (bpp != NULL) {
    405          1.136  dholland 			if (bp->b_blkno != FFS_FSBTODB(fs, bno))
    406           1.37       chs 				panic("bad blockno");
    407           1.72        pk 			allocbuf(bp, nsize, 1);
    408           1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    409          1.105        ad 			mutex_enter(bp->b_objlock);
    410          1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    411          1.105        ad 			bp->b_oflags |= BO_DONE;
    412          1.105        ad 			mutex_exit(bp->b_objlock);
    413           1.37       chs 			*bpp = bp;
    414           1.37       chs 		}
    415           1.37       chs 		if (blknop != NULL) {
    416           1.37       chs 			*blknop = bno;
    417           1.37       chs 		}
    418            1.1   mycroft 		return (0);
    419            1.1   mycroft 	}
    420            1.1   mycroft 	/*
    421            1.1   mycroft 	 * Allocate a new disk location.
    422            1.1   mycroft 	 */
    423            1.1   mycroft 	if (bpref >= fs->fs_size)
    424            1.1   mycroft 		bpref = 0;
    425            1.1   mycroft 	switch ((int)fs->fs_optim) {
    426            1.1   mycroft 	case FS_OPTSPACE:
    427            1.1   mycroft 		/*
    428           1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    429           1.81     perry 		 * best use of space, we will waste time relocating it if
    430            1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    431            1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    432            1.1   mycroft 		 * to begin optimizing for time.
    433            1.1   mycroft 		 */
    434            1.1   mycroft 		request = nsize;
    435            1.1   mycroft 		if (fs->fs_minfree < 5 ||
    436            1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    437            1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    438            1.1   mycroft 			break;
    439           1.34  jdolecek 
    440           1.34  jdolecek 		if (ffs_log_changeopt) {
    441           1.34  jdolecek 			log(LOG_NOTICE,
    442           1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    443           1.34  jdolecek 				fs->fs_fsmnt);
    444           1.34  jdolecek 		}
    445           1.34  jdolecek 
    446            1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    447            1.1   mycroft 		break;
    448            1.1   mycroft 	case FS_OPTTIME:
    449            1.1   mycroft 		/*
    450            1.1   mycroft 		 * At this point we have discovered a file that is trying to
    451            1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    452            1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    453            1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    454            1.1   mycroft 		 * above will be able to grow it in place without further
    455            1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    456            1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    457            1.1   mycroft 		 * optimizing for space.
    458            1.1   mycroft 		 */
    459            1.1   mycroft 		request = fs->fs_bsize;
    460            1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    461            1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    462            1.1   mycroft 			break;
    463           1.34  jdolecek 
    464           1.34  jdolecek 		if (ffs_log_changeopt) {
    465           1.34  jdolecek 			log(LOG_NOTICE,
    466           1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    467           1.34  jdolecek 				fs->fs_fsmnt);
    468           1.34  jdolecek 		}
    469           1.34  jdolecek 
    470            1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    471            1.1   mycroft 		break;
    472            1.1   mycroft 	default:
    473          1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    474          1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    475            1.1   mycroft 		panic("ffs_realloccg: bad optim");
    476            1.1   mycroft 		/* NOTREACHED */
    477            1.1   mycroft 	}
    478          1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    479            1.1   mycroft 	if (bno > 0) {
    480          1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    481          1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    482          1.122        ad 			UFS_WAPBL_REGISTER_DEALLOCATION(
    483          1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    484          1.122        ad 			    osize);
    485          1.122        ad 		} else {
    486          1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    487          1.122        ad 			    ip->i_number);
    488          1.111    simonb 		}
    489          1.111    simonb 		if (nsize < request) {
    490          1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    491          1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    492          1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    493          1.111    simonb 				    ip->i_ump->um_mountp,
    494          1.137  dholland 				    FFS_FSBTODB(fs, (bno + ffs_numfrags(fs, nsize))),
    495          1.111    simonb 				    request - nsize);
    496          1.111    simonb 			} else
    497          1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    498          1.137  dholland 				    bno + ffs_numfrags(fs, nsize),
    499          1.111    simonb 				    (long)(request - nsize), ip->i_number);
    500          1.111    simonb 		}
    501           1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    502            1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    503           1.37       chs 		if (bpp != NULL) {
    504          1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    505           1.72        pk 			allocbuf(bp, nsize, 1);
    506           1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    507          1.105        ad 			mutex_enter(bp->b_objlock);
    508          1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    509          1.105        ad 			bp->b_oflags |= BO_DONE;
    510          1.105        ad 			mutex_exit(bp->b_objlock);
    511           1.37       chs 			*bpp = bp;
    512           1.37       chs 		}
    513           1.37       chs 		if (blknop != NULL) {
    514           1.37       chs 			*blknop = bno;
    515           1.37       chs 		}
    516            1.1   mycroft 		return (0);
    517            1.1   mycroft 	}
    518          1.101        ad 	mutex_exit(&ump->um_lock);
    519          1.101        ad 
    520          1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    521            1.1   mycroft 	/*
    522            1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    523            1.1   mycroft 	 */
    524           1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    525            1.1   mycroft #endif
    526           1.37       chs 	if (bpp != NULL) {
    527          1.101        ad 		brelse(bp, 0);
    528           1.37       chs 	}
    529           1.37       chs 
    530            1.1   mycroft nospace:
    531            1.1   mycroft 	/*
    532            1.1   mycroft 	 * no space available
    533            1.1   mycroft 	 */
    534           1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
    535            1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    536            1.1   mycroft 	return (ENOSPC);
    537            1.1   mycroft }
    538            1.1   mycroft 
    539            1.1   mycroft /*
    540            1.1   mycroft  * Allocate an inode in the file system.
    541           1.81     perry  *
    542            1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    543            1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    544            1.1   mycroft  *   1) allocate the preferred inode.
    545            1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    546            1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    547            1.1   mycroft  *      available inode is located.
    548           1.47       wiz  * If no inode preference is given the following hierarchy is used
    549            1.1   mycroft  * to allocate an inode:
    550            1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    551            1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    552            1.1   mycroft  *      available inode is located.
    553          1.106     pooka  *
    554          1.106     pooka  * => um_lock not held upon entry or return
    555            1.1   mycroft  */
    556            1.9  christos int
    557           1.91      elad ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
    558           1.88      yamt     struct vnode **vpp)
    559            1.9  christos {
    560          1.101        ad 	struct ufsmount *ump;
    561           1.33  augustss 	struct inode *pip;
    562           1.33  augustss 	struct fs *fs;
    563           1.33  augustss 	struct inode *ip;
    564           1.60      fvdl 	struct timespec ts;
    565            1.1   mycroft 	ino_t ino, ipref;
    566            1.1   mycroft 	int cg, error;
    567           1.81     perry 
    568          1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    569          1.111    simonb 
    570           1.88      yamt 	*vpp = NULL;
    571            1.1   mycroft 	pip = VTOI(pvp);
    572            1.1   mycroft 	fs = pip->i_fs;
    573          1.101        ad 	ump = pip->i_ump;
    574          1.101        ad 
    575          1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    576          1.111    simonb 	if (error) {
    577          1.111    simonb 		return error;
    578          1.111    simonb 	}
    579          1.101        ad 	mutex_enter(&ump->um_lock);
    580            1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    581            1.1   mycroft 		goto noinodes;
    582            1.1   mycroft 
    583            1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    584           1.50     lukem 		ipref = ffs_dirpref(pip);
    585           1.50     lukem 	else
    586           1.50     lukem 		ipref = pip->i_number;
    587            1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    588            1.1   mycroft 		ipref = 0;
    589            1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    590           1.50     lukem 	/*
    591           1.50     lukem 	 * Track number of dirs created one after another
    592           1.50     lukem 	 * in a same cg without intervening by files.
    593           1.50     lukem 	 */
    594           1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    595           1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    596           1.50     lukem 			fs->fs_contigdirs[cg]++;
    597           1.50     lukem 	} else {
    598           1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    599           1.50     lukem 			fs->fs_contigdirs[cg]--;
    600           1.50     lukem 	}
    601          1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    602            1.1   mycroft 	if (ino == 0)
    603            1.1   mycroft 		goto noinodes;
    604          1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    605           1.88      yamt 	error = VFS_VGET(pvp->v_mount, ino, vpp);
    606            1.1   mycroft 	if (error) {
    607          1.111    simonb 		int err;
    608          1.111    simonb 		err = UFS_WAPBL_BEGIN(pvp->v_mount);
    609          1.111    simonb 		if (err == 0)
    610          1.111    simonb 			ffs_vfree(pvp, ino, mode);
    611          1.111    simonb 		if (err == 0)
    612          1.111    simonb 			UFS_WAPBL_END(pvp->v_mount);
    613            1.1   mycroft 		return (error);
    614            1.1   mycroft 	}
    615           1.90      yamt 	KASSERT((*vpp)->v_type == VNON);
    616           1.88      yamt 	ip = VTOI(*vpp);
    617           1.60      fvdl 	if (ip->i_mode) {
    618           1.60      fvdl #if 0
    619           1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    620           1.60      fvdl 		    ip->i_mode, ip->i_number, fs->fs_fsmnt);
    621           1.60      fvdl #else
    622           1.60      fvdl 		printf("dmode %x mode %x dgen %x gen %x\n",
    623           1.60      fvdl 		    DIP(ip, mode), ip->i_mode,
    624           1.60      fvdl 		    DIP(ip, gen), ip->i_gen);
    625           1.60      fvdl 		printf("size %llx blocks %llx\n",
    626           1.60      fvdl 		    (long long)DIP(ip, size), (long long)DIP(ip, blocks));
    627           1.86  christos 		printf("ino %llu ipref %llu\n", (unsigned long long)ino,
    628           1.86  christos 		    (unsigned long long)ipref);
    629           1.60      fvdl #if 0
    630          1.136  dholland 		error = bread(ump->um_devvp, FFS_FSBTODB(fs, ino_to_fsba(fs, ino)),
    631          1.107   hannken 		    (int)fs->fs_bsize, NOCRED, 0, &bp);
    632           1.60      fvdl #endif
    633           1.60      fvdl 
    634           1.60      fvdl #endif
    635            1.1   mycroft 		panic("ffs_valloc: dup alloc");
    636            1.1   mycroft 	}
    637           1.60      fvdl 	if (DIP(ip, blocks)) {				/* XXX */
    638          1.145  dholland 		printf("free inode %llu on %s had %" PRId64 " blocks\n",
    639          1.145  dholland 		    (unsigned long long)ino, fs->fs_fsmnt, DIP(ip, blocks));
    640           1.65  kristerw 		DIP_ASSIGN(ip, blocks, 0);
    641            1.1   mycroft 	}
    642           1.57   hannken 	ip->i_flag &= ~IN_SPACECOUNTED;
    643           1.61      fvdl 	ip->i_flags = 0;
    644           1.65  kristerw 	DIP_ASSIGN(ip, flags, 0);
    645            1.1   mycroft 	/*
    646            1.1   mycroft 	 * Set up a new generation number for this inode.
    647            1.1   mycroft 	 */
    648           1.60      fvdl 	ip->i_gen++;
    649           1.65  kristerw 	DIP_ASSIGN(ip, gen, ip->i_gen);
    650           1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC) {
    651           1.93      yamt 		vfs_timestamp(&ts);
    652           1.60      fvdl 		ip->i_ffs2_birthtime = ts.tv_sec;
    653           1.60      fvdl 		ip->i_ffs2_birthnsec = ts.tv_nsec;
    654           1.60      fvdl 	}
    655            1.1   mycroft 	return (0);
    656            1.1   mycroft noinodes:
    657          1.101        ad 	mutex_exit(&ump->um_lock);
    658          1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    659           1.91      elad 	ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
    660            1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    661            1.1   mycroft 	return (ENOSPC);
    662            1.1   mycroft }
    663            1.1   mycroft 
    664            1.1   mycroft /*
    665           1.50     lukem  * Find a cylinder group in which to place a directory.
    666           1.42  sommerfe  *
    667           1.50     lukem  * The policy implemented by this algorithm is to allocate a
    668           1.50     lukem  * directory inode in the same cylinder group as its parent
    669           1.50     lukem  * directory, but also to reserve space for its files inodes
    670           1.50     lukem  * and data. Restrict the number of directories which may be
    671           1.50     lukem  * allocated one after another in the same cylinder group
    672           1.50     lukem  * without intervening allocation of files.
    673           1.42  sommerfe  *
    674           1.50     lukem  * If we allocate a first level directory then force allocation
    675           1.50     lukem  * in another cylinder group.
    676            1.1   mycroft  */
    677            1.1   mycroft static ino_t
    678           1.85   thorpej ffs_dirpref(struct inode *pip)
    679            1.1   mycroft {
    680           1.50     lukem 	register struct fs *fs;
    681           1.74     soren 	int cg, prefcg;
    682           1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    683           1.89       dsl 	int avgifree, avgbfree, avgndir;
    684           1.50     lukem 	int minifree, minbfree, maxndir;
    685           1.50     lukem 	int mincg, minndir;
    686           1.50     lukem 	int maxcontigdirs;
    687           1.50     lukem 
    688          1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    689          1.101        ad 
    690           1.50     lukem 	fs = pip->i_fs;
    691            1.1   mycroft 
    692            1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    693           1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    694           1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    695           1.50     lukem 
    696           1.50     lukem 	/*
    697           1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    698           1.50     lukem 	 */
    699          1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    700           1.71   mycroft 		prefcg = random() % fs->fs_ncg;
    701           1.50     lukem 		mincg = prefcg;
    702           1.50     lukem 		minndir = fs->fs_ipg;
    703           1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    704           1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    705           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    706           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    707           1.42  sommerfe 				mincg = cg;
    708           1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    709           1.42  sommerfe 			}
    710           1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    711           1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    712           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    713           1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    714           1.50     lukem 				mincg = cg;
    715           1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    716           1.42  sommerfe 			}
    717           1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    718           1.42  sommerfe 	}
    719           1.50     lukem 
    720           1.50     lukem 	/*
    721           1.50     lukem 	 * Count various limits which used for
    722           1.50     lukem 	 * optimal allocation of a directory inode.
    723          1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    724          1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    725          1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    726           1.50     lukem 	 */
    727           1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    728          1.144       bad 	minifree = avgifree - avgifree / 4;
    729          1.144       bad 	if (minifree < 1)
    730          1.144       bad 		minifree = 1;
    731          1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    732          1.144       bad 	if (minbfree < 1)
    733          1.144       bad 		minbfree = 1;
    734           1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    735           1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    736           1.89       dsl 	if (avgndir != 0) {
    737           1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    738           1.89       dsl 		if (dirsize < curdsz)
    739           1.89       dsl 			dirsize = curdsz;
    740           1.89       dsl 	}
    741           1.89       dsl 	if (cgsize < dirsize * 255)
    742          1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    743           1.89       dsl 	else
    744           1.89       dsl 		maxcontigdirs = 255;
    745           1.50     lukem 	if (fs->fs_avgfpdir > 0)
    746           1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    747           1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    748           1.50     lukem 	if (maxcontigdirs == 0)
    749           1.50     lukem 		maxcontigdirs = 1;
    750           1.50     lukem 
    751           1.50     lukem 	/*
    752           1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    753           1.50     lukem 	 * regular files, but only if we have no deficit in
    754           1.50     lukem 	 * inodes or space.
    755           1.50     lukem 	 */
    756           1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    757           1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    758           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    759           1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    760           1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    761           1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    762           1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    763           1.50     lukem 		}
    764           1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    765           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    766           1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    767           1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    768           1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    769           1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    770           1.50     lukem 		}
    771           1.50     lukem 	/*
    772           1.50     lukem 	 * This is a backstop when we are deficient in space.
    773           1.50     lukem 	 */
    774           1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    775           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    776           1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    777           1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    778           1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    779           1.50     lukem 			break;
    780           1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    781            1.1   mycroft }
    782            1.1   mycroft 
    783            1.1   mycroft /*
    784            1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    785            1.1   mycroft  * logically divided into sections. The first section is composed of the
    786            1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    787           1.81     perry  *
    788            1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    789            1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    790            1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    791            1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    792            1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    793            1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    794            1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    795            1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    796            1.1   mycroft  * continues until a cylinder group with greater than the average number
    797            1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    798            1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    799            1.1   mycroft  * here a best guess is made based upon the logical block number being
    800            1.1   mycroft  * allocated.
    801           1.81     perry  *
    802            1.1   mycroft  * If a section is already partially allocated, the policy is to
    803            1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    804           1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    805           1.60      fvdl  * contigously if possible.
    806          1.106     pooka  *
    807          1.106     pooka  * => um_lock held on entry and exit
    808            1.1   mycroft  */
    809           1.58      fvdl daddr_t
    810          1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    811           1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    812            1.1   mycroft {
    813           1.33  augustss 	struct fs *fs;
    814           1.33  augustss 	int cg;
    815            1.1   mycroft 	int avgbfree, startcg;
    816            1.1   mycroft 
    817          1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    818          1.101        ad 
    819            1.1   mycroft 	fs = ip->i_fs;
    820          1.111    simonb 
    821          1.111    simonb 	/*
    822          1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    823          1.111    simonb 	 * in the inode extentions to return the desired block.
    824          1.111    simonb 	 *
    825          1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    826          1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    827          1.111    simonb 	 * available slot if we need to allocate more than one indirect
    828          1.111    simonb 	 * block.  For data, return the address of the actual block
    829          1.111    simonb 	 * relative to the address of the first data block.
    830          1.111    simonb 	 */
    831          1.111    simonb 	if (flags & B_CONTIG) {
    832          1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    833          1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    834          1.111    simonb 		if (flags & B_METAONLY)
    835          1.111    simonb 			return ip->i_ffs_first_indir_blk;
    836          1.111    simonb 		else
    837          1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    838          1.111    simonb 	}
    839          1.111    simonb 
    840            1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    841          1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    842            1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    843          1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    844            1.1   mycroft 		}
    845            1.1   mycroft 		/*
    846            1.1   mycroft 		 * Find a cylinder with greater than average number of
    847            1.1   mycroft 		 * unused data blocks.
    848            1.1   mycroft 		 */
    849            1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    850            1.1   mycroft 			startcg =
    851            1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    852            1.1   mycroft 		else
    853           1.19    bouyer 			startcg = dtog(fs,
    854           1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    855            1.1   mycroft 		startcg %= fs->fs_ncg;
    856            1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    857            1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    858            1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    859          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    860            1.1   mycroft 			}
    861           1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    862            1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    863          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    864            1.1   mycroft 			}
    865           1.35   thorpej 		return (0);
    866            1.1   mycroft 	}
    867            1.1   mycroft 	/*
    868           1.60      fvdl 	 * We just always try to lay things out contiguously.
    869           1.60      fvdl 	 */
    870           1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    871           1.60      fvdl }
    872           1.60      fvdl 
    873           1.60      fvdl daddr_t
    874          1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    875          1.111    simonb     int64_t *bap)
    876           1.60      fvdl {
    877           1.60      fvdl 	struct fs *fs;
    878           1.60      fvdl 	int cg;
    879           1.60      fvdl 	int avgbfree, startcg;
    880           1.60      fvdl 
    881          1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    882          1.101        ad 
    883           1.60      fvdl 	fs = ip->i_fs;
    884          1.111    simonb 
    885          1.111    simonb 	/*
    886          1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    887          1.111    simonb 	 * in the inode extentions to return the desired block.
    888          1.111    simonb 	 *
    889          1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    890          1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    891          1.111    simonb 	 * available slot if we need to allocate more than one indirect
    892          1.111    simonb 	 * block.  For data, return the address of the actual block
    893          1.111    simonb 	 * relative to the address of the first data block.
    894          1.111    simonb 	 */
    895          1.111    simonb 	if (flags & B_CONTIG) {
    896          1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    897          1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    898          1.111    simonb 		if (flags & B_METAONLY)
    899          1.111    simonb 			return ip->i_ffs_first_indir_blk;
    900          1.111    simonb 		else
    901          1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    902          1.111    simonb 	}
    903          1.111    simonb 
    904           1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    905          1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    906           1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    907          1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    908           1.60      fvdl 		}
    909            1.1   mycroft 		/*
    910           1.60      fvdl 		 * Find a cylinder with greater than average number of
    911           1.60      fvdl 		 * unused data blocks.
    912            1.1   mycroft 		 */
    913           1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    914           1.60      fvdl 			startcg =
    915           1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    916           1.60      fvdl 		else
    917           1.60      fvdl 			startcg = dtog(fs,
    918           1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    919           1.60      fvdl 		startcg %= fs->fs_ncg;
    920           1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    921           1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    922           1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    923          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    924           1.60      fvdl 			}
    925           1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    926           1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    927          1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    928           1.60      fvdl 			}
    929           1.60      fvdl 		return (0);
    930           1.60      fvdl 	}
    931           1.60      fvdl 	/*
    932           1.60      fvdl 	 * We just always try to lay things out contiguously.
    933           1.60      fvdl 	 */
    934           1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    935            1.1   mycroft }
    936            1.1   mycroft 
    937           1.60      fvdl 
    938            1.1   mycroft /*
    939            1.1   mycroft  * Implement the cylinder overflow algorithm.
    940            1.1   mycroft  *
    941            1.1   mycroft  * The policy implemented by this algorithm is:
    942            1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    943            1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    944            1.1   mycroft  *   3) brute force search for a free block.
    945          1.106     pooka  *
    946          1.106     pooka  * => called with um_lock held
    947          1.106     pooka  * => returns with um_lock released on success, held on failure
    948          1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    949            1.1   mycroft  */
    950            1.1   mycroft /*VARARGS5*/
    951           1.58      fvdl static daddr_t
    952           1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    953           1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    954          1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    955            1.1   mycroft {
    956           1.33  augustss 	struct fs *fs;
    957           1.58      fvdl 	daddr_t result;
    958            1.1   mycroft 	int i, icg = cg;
    959            1.1   mycroft 
    960            1.1   mycroft 	fs = ip->i_fs;
    961            1.1   mycroft 	/*
    962            1.1   mycroft 	 * 1: preferred cylinder group
    963            1.1   mycroft 	 */
    964          1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    965            1.1   mycroft 	if (result)
    966            1.1   mycroft 		return (result);
    967          1.111    simonb 
    968          1.111    simonb 	if (flags & B_CONTIG)
    969          1.111    simonb 		return (result);
    970            1.1   mycroft 	/*
    971            1.1   mycroft 	 * 2: quadratic rehash
    972            1.1   mycroft 	 */
    973            1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    974            1.1   mycroft 		cg += i;
    975            1.1   mycroft 		if (cg >= fs->fs_ncg)
    976            1.1   mycroft 			cg -= fs->fs_ncg;
    977          1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    978            1.1   mycroft 		if (result)
    979            1.1   mycroft 			return (result);
    980            1.1   mycroft 	}
    981            1.1   mycroft 	/*
    982            1.1   mycroft 	 * 3: brute force search
    983            1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    984            1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    985            1.1   mycroft 	 */
    986            1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    987            1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    988          1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    989            1.1   mycroft 		if (result)
    990            1.1   mycroft 			return (result);
    991            1.1   mycroft 		cg++;
    992            1.1   mycroft 		if (cg == fs->fs_ncg)
    993            1.1   mycroft 			cg = 0;
    994            1.1   mycroft 	}
    995           1.35   thorpej 	return (0);
    996            1.1   mycroft }
    997            1.1   mycroft 
    998            1.1   mycroft /*
    999            1.1   mycroft  * Determine whether a fragment can be extended.
   1000            1.1   mycroft  *
   1001           1.81     perry  * Check to see if the necessary fragments are available, and
   1002            1.1   mycroft  * if they are, allocate them.
   1003          1.106     pooka  *
   1004          1.106     pooka  * => called with um_lock held
   1005          1.106     pooka  * => returns with um_lock released on success, held on failure
   1006            1.1   mycroft  */
   1007           1.58      fvdl static daddr_t
   1008           1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
   1009            1.1   mycroft {
   1010          1.101        ad 	struct ufsmount *ump;
   1011           1.33  augustss 	struct fs *fs;
   1012           1.33  augustss 	struct cg *cgp;
   1013            1.1   mycroft 	struct buf *bp;
   1014           1.58      fvdl 	daddr_t bno;
   1015            1.1   mycroft 	int frags, bbase;
   1016            1.1   mycroft 	int i, error;
   1017           1.62      fvdl 	u_int8_t *blksfree;
   1018            1.1   mycroft 
   1019            1.1   mycroft 	fs = ip->i_fs;
   1020          1.101        ad 	ump = ip->i_ump;
   1021          1.101        ad 
   1022          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1023          1.101        ad 
   1024          1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
   1025           1.35   thorpej 		return (0);
   1026          1.137  dholland 	frags = ffs_numfrags(fs, nsize);
   1027          1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
   1028          1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
   1029            1.1   mycroft 		/* cannot extend across a block boundary */
   1030           1.35   thorpej 		return (0);
   1031            1.1   mycroft 	}
   1032          1.101        ad 	mutex_exit(&ump->um_lock);
   1033          1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1034          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1035          1.101        ad 	if (error)
   1036          1.101        ad 		goto fail;
   1037            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1038          1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1039          1.101        ad 		goto fail;
   1040           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1041           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1042           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1043           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1044            1.1   mycroft 	bno = dtogd(fs, bprev);
   1045           1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1046          1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1047          1.101        ad 		if (isclr(blksfree, bno + i))
   1048          1.101        ad 			goto fail;
   1049            1.1   mycroft 	/*
   1050            1.1   mycroft 	 * the current fragment can be extended
   1051            1.1   mycroft 	 * deduct the count on fragment being extended into
   1052            1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1053            1.1   mycroft 	 * allocate the extended piece
   1054            1.1   mycroft 	 */
   1055            1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1056           1.62      fvdl 		if (isclr(blksfree, bno + i))
   1057            1.1   mycroft 			break;
   1058          1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1059            1.1   mycroft 	if (i != frags)
   1060           1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1061          1.101        ad 	mutex_enter(&ump->um_lock);
   1062          1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1063           1.62      fvdl 		clrbit(blksfree, bno + i);
   1064           1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1065            1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1066            1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1067            1.1   mycroft 	}
   1068            1.1   mycroft 	fs->fs_fmod = 1;
   1069          1.101        ad 	ACTIVECG_CLR(fs, cg);
   1070          1.101        ad 	mutex_exit(&ump->um_lock);
   1071            1.1   mycroft 	bdwrite(bp);
   1072            1.1   mycroft 	return (bprev);
   1073          1.101        ad 
   1074          1.101        ad  fail:
   1075          1.132   hannken  	if (bp != NULL)
   1076          1.132   hannken 		brelse(bp, 0);
   1077          1.101        ad  	mutex_enter(&ump->um_lock);
   1078          1.101        ad  	return (0);
   1079            1.1   mycroft }
   1080            1.1   mycroft 
   1081            1.1   mycroft /*
   1082            1.1   mycroft  * Determine whether a block can be allocated.
   1083            1.1   mycroft  *
   1084            1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1085            1.1   mycroft  * and if it is, allocate it.
   1086            1.1   mycroft  */
   1087           1.58      fvdl static daddr_t
   1088          1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1089            1.1   mycroft {
   1090          1.101        ad 	struct ufsmount *ump;
   1091           1.62      fvdl 	struct fs *fs = ip->i_fs;
   1092           1.30      fvdl 	struct cg *cgp;
   1093            1.1   mycroft 	struct buf *bp;
   1094           1.60      fvdl 	int32_t bno;
   1095           1.60      fvdl 	daddr_t blkno;
   1096           1.30      fvdl 	int error, frags, allocsiz, i;
   1097           1.62      fvdl 	u_int8_t *blksfree;
   1098           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1099            1.1   mycroft 
   1100          1.101        ad 	ump = ip->i_ump;
   1101          1.101        ad 
   1102          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1103          1.101        ad 
   1104            1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1105           1.35   thorpej 		return (0);
   1106          1.101        ad 	mutex_exit(&ump->um_lock);
   1107          1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1108          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1109          1.101        ad 	if (error)
   1110          1.101        ad 		goto fail;
   1111            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1112           1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1113          1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1114          1.101        ad 		goto fail;
   1115           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1116           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1117           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1118           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1119            1.1   mycroft 	if (size == fs->fs_bsize) {
   1120          1.101        ad 		mutex_enter(&ump->um_lock);
   1121          1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1122           1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1123          1.101        ad 		mutex_exit(&ump->um_lock);
   1124            1.1   mycroft 		bdwrite(bp);
   1125           1.60      fvdl 		return (blkno);
   1126            1.1   mycroft 	}
   1127            1.1   mycroft 	/*
   1128            1.1   mycroft 	 * check to see if any fragments are already available
   1129            1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1130            1.1   mycroft 	 * it down to a smaller size if necessary
   1131            1.1   mycroft 	 */
   1132           1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1133          1.137  dholland 	frags = ffs_numfrags(fs, size);
   1134            1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1135            1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1136            1.1   mycroft 			break;
   1137            1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1138            1.1   mycroft 		/*
   1139           1.81     perry 		 * no fragments were available, so a block will be
   1140            1.1   mycroft 		 * allocated, and hacked up
   1141            1.1   mycroft 		 */
   1142          1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1143          1.101        ad 			goto fail;
   1144          1.101        ad 		mutex_enter(&ump->um_lock);
   1145          1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1146           1.60      fvdl 		bno = dtogd(fs, blkno);
   1147            1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1148           1.62      fvdl 			setbit(blksfree, bno + i);
   1149            1.1   mycroft 		i = fs->fs_frag - frags;
   1150           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1151            1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1152           1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1153            1.1   mycroft 		fs->fs_fmod = 1;
   1154           1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1155           1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1156          1.101        ad 		mutex_exit(&ump->um_lock);
   1157            1.1   mycroft 		bdwrite(bp);
   1158           1.60      fvdl 		return (blkno);
   1159            1.1   mycroft 	}
   1160           1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1161           1.30      fvdl #if 0
   1162           1.30      fvdl 	/*
   1163           1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1164           1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1165           1.30      fvdl 	 */
   1166          1.101        ad 	if (bno < 0)
   1167          1.101        ad 		goto fail;
   1168           1.30      fvdl #endif
   1169            1.1   mycroft 	for (i = 0; i < frags; i++)
   1170           1.62      fvdl 		clrbit(blksfree, bno + i);
   1171          1.101        ad 	mutex_enter(&ump->um_lock);
   1172           1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1173            1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1174            1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1175            1.1   mycroft 	fs->fs_fmod = 1;
   1176           1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1177            1.1   mycroft 	if (frags != allocsiz)
   1178           1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1179          1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1180          1.101        ad 	ACTIVECG_CLR(fs, cg);
   1181          1.101        ad 	mutex_exit(&ump->um_lock);
   1182            1.1   mycroft 	bdwrite(bp);
   1183           1.30      fvdl 	return blkno;
   1184          1.101        ad 
   1185          1.101        ad  fail:
   1186          1.132   hannken  	if (bp != NULL)
   1187          1.132   hannken 		brelse(bp, 0);
   1188          1.101        ad  	mutex_enter(&ump->um_lock);
   1189          1.101        ad  	return (0);
   1190            1.1   mycroft }
   1191            1.1   mycroft 
   1192            1.1   mycroft /*
   1193            1.1   mycroft  * Allocate a block in a cylinder group.
   1194            1.1   mycroft  *
   1195            1.1   mycroft  * This algorithm implements the following policy:
   1196            1.1   mycroft  *   1) allocate the requested block.
   1197            1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1198            1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1199            1.1   mycroft  *      specified cylinder group.
   1200            1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1201            1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1202            1.1   mycroft  */
   1203           1.58      fvdl static daddr_t
   1204          1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1205            1.1   mycroft {
   1206           1.62      fvdl 	struct fs *fs = ip->i_fs;
   1207           1.30      fvdl 	struct cg *cgp;
   1208          1.123  sborrill 	int cg;
   1209           1.60      fvdl 	daddr_t blkno;
   1210           1.60      fvdl 	int32_t bno;
   1211           1.60      fvdl 	u_int8_t *blksfree;
   1212           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1213            1.1   mycroft 
   1214          1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1215          1.101        ad 
   1216           1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1217           1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1218           1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1219           1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1220           1.60      fvdl 	} else {
   1221          1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1222           1.60      fvdl 		bno = dtogd(fs, bpref);
   1223            1.1   mycroft 		/*
   1224           1.60      fvdl 		 * if the requested block is available, use it
   1225            1.1   mycroft 		 */
   1226          1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1227           1.60      fvdl 			goto gotit;
   1228          1.111    simonb 		/*
   1229          1.111    simonb 		 * if the requested data block isn't available and we are
   1230          1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1231          1.111    simonb 		 */
   1232          1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1233          1.111    simonb 			return (0);
   1234            1.1   mycroft 	}
   1235          1.111    simonb 
   1236            1.1   mycroft 	/*
   1237           1.60      fvdl 	 * Take the next available block in this cylinder group.
   1238            1.1   mycroft 	 */
   1239           1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1240            1.1   mycroft 	if (bno < 0)
   1241           1.35   thorpej 		return (0);
   1242           1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1243            1.1   mycroft gotit:
   1244          1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1245           1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1246           1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1247           1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1248            1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1249           1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1250           1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1251           1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1252           1.73       dbj 		int cylno;
   1253           1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1254           1.75       dbj 		KASSERT(cylno >= 0);
   1255           1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1256           1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1257           1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1258           1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1259           1.73       dbj 		    needswap);
   1260           1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1261           1.73       dbj 	}
   1262            1.1   mycroft 	fs->fs_fmod = 1;
   1263          1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1264          1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1265           1.30      fvdl 	return (blkno);
   1266            1.1   mycroft }
   1267            1.1   mycroft 
   1268            1.1   mycroft /*
   1269            1.1   mycroft  * Determine whether an inode can be allocated.
   1270            1.1   mycroft  *
   1271            1.1   mycroft  * Check to see if an inode is available, and if it is,
   1272            1.1   mycroft  * allocate it using the following policy:
   1273            1.1   mycroft  *   1) allocate the requested inode.
   1274            1.1   mycroft  *   2) allocate the next available inode after the requested
   1275            1.1   mycroft  *      inode in the specified cylinder group.
   1276            1.1   mycroft  */
   1277           1.58      fvdl static daddr_t
   1278          1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1279            1.1   mycroft {
   1280          1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1281           1.62      fvdl 	struct fs *fs = ip->i_fs;
   1282           1.33  augustss 	struct cg *cgp;
   1283           1.60      fvdl 	struct buf *bp, *ibp;
   1284           1.60      fvdl 	u_int8_t *inosused;
   1285            1.1   mycroft 	int error, start, len, loc, map, i;
   1286  1.146.2.1.2.1    martin 	int32_t initediblk, maxiblk, irotor;
   1287          1.112   hannken 	daddr_t nalloc;
   1288           1.60      fvdl 	struct ufs2_dinode *dp2;
   1289           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1290            1.1   mycroft 
   1291          1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1292          1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1293          1.101        ad 
   1294            1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1295           1.35   thorpej 		return (0);
   1296          1.101        ad 	mutex_exit(&ump->um_lock);
   1297          1.112   hannken 	ibp = NULL;
   1298  1.146.2.1.2.1    martin 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   1299  1.146.2.1.2.1    martin 		initediblk = -1;
   1300  1.146.2.1.2.1    martin 	} else {
   1301  1.146.2.1.2.1    martin 		initediblk = fs->fs_ipg;
   1302  1.146.2.1.2.1    martin 	}
   1303  1.146.2.1.2.1    martin 	maxiblk = initediblk;
   1304  1.146.2.1.2.1    martin 
   1305          1.112   hannken retry:
   1306          1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1307          1.107   hannken 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1308          1.101        ad 	if (error)
   1309          1.101        ad 		goto fail;
   1310            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1311          1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1312          1.101        ad 		goto fail;
   1313          1.112   hannken 
   1314          1.112   hannken 	if (ibp != NULL &&
   1315          1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1316          1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1317          1.121        ad 		brelse(ibp, 0);
   1318          1.112   hannken 		ibp = NULL;
   1319          1.112   hannken 	}
   1320          1.112   hannken 	/*
   1321          1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1322          1.112   hannken 	 */
   1323          1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1324  1.146.2.1.2.1    martin 	        initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1325  1.146.2.1.2.1    martin 		maxiblk = initediblk;
   1326          1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1327          1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1328          1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1329          1.112   hannken 			/*
   1330          1.112   hannken 			 * We have to release the cg buffer here to prevent
   1331          1.112   hannken 			 * a deadlock when reading the inode block will
   1332          1.112   hannken 			 * run a copy-on-write that might use this cg.
   1333          1.112   hannken 			 */
   1334          1.112   hannken 			brelse(bp, 0);
   1335          1.112   hannken 			bp = NULL;
   1336          1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1337          1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1338          1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1339          1.112   hannken 			if (error)
   1340          1.112   hannken 				goto fail;
   1341  1.146.2.1.2.1    martin 
   1342  1.146.2.1.2.1    martin 			maxiblk += FFS_INOPB(fs);
   1343  1.146.2.1.2.1    martin 
   1344          1.112   hannken 			goto retry;
   1345          1.112   hannken 		}
   1346          1.112   hannken 	}
   1347          1.112   hannken 
   1348           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1349           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1350           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1351           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1352           1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1353  1.146.2.1.2.1    martin 
   1354            1.1   mycroft 	if (ipref) {
   1355            1.1   mycroft 		ipref %= fs->fs_ipg;
   1356  1.146.2.1.2.1    martin 		/* safeguard to stay in (to be) allocated range */
   1357  1.146.2.1.2.1    martin 		if (ipref < maxiblk && isclr(inosused, ipref))
   1358            1.1   mycroft 			goto gotit;
   1359            1.1   mycroft 	}
   1360  1.146.2.1.2.1    martin 
   1361  1.146.2.1.2.1    martin 	irotor = ufs_rw32(cgp->cg_irotor, needswap);
   1362  1.146.2.1.2.1    martin 
   1363  1.146.2.1.2.1    martin 	KASSERTMSG(irotor < initediblk, "%s: allocation botch: cg=%d, irotor %d"
   1364  1.146.2.1.2.1    martin 		   " out of bounds, initediblk=%d",
   1365  1.146.2.1.2.1    martin 		   __func__, cg, irotor, initediblk);
   1366  1.146.2.1.2.1    martin 
   1367  1.146.2.1.2.1    martin 	start = irotor / NBBY;
   1368  1.146.2.1.2.1    martin 	len = howmany(maxiblk - irotor, NBBY);
   1369           1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1370            1.1   mycroft 	if (loc == 0) {
   1371            1.1   mycroft 		len = start + 1;
   1372            1.1   mycroft 		start = 0;
   1373           1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1374            1.1   mycroft 		if (loc == 0) {
   1375           1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1376           1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1377           1.19    bouyer 				fs->fs_fsmnt);
   1378            1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1379            1.1   mycroft 			/* NOTREACHED */
   1380            1.1   mycroft 		}
   1381            1.1   mycroft 	}
   1382            1.1   mycroft 	i = start + len - loc;
   1383          1.126     rmind 	map = inosused[i] ^ 0xff;
   1384          1.126     rmind 	if (map == 0) {
   1385          1.126     rmind 		printf("fs = %s\n", fs->fs_fsmnt);
   1386          1.126     rmind 		panic("ffs_nodealloccg: block not in map");
   1387            1.1   mycroft 	}
   1388  1.146.2.1.2.1    martin 
   1389          1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1390  1.146.2.1.2.1    martin 
   1391          1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1392  1.146.2.1.2.1    martin 
   1393            1.1   mycroft gotit:
   1394  1.146.2.1.2.1    martin 	KASSERTMSG(ipref < maxiblk, "%s: allocation botch: cg=%d attempt to "
   1395  1.146.2.1.2.1    martin 		   "allocate inode index %d beyond max allocated index %d"
   1396  1.146.2.1.2.1    martin 		   " of %d inodes/cg",
   1397  1.146.2.1.2.1    martin 		   __func__, cg, (int)ipref, maxiblk, cgp->cg_niblk);
   1398  1.146.2.1.2.1    martin 
   1399          1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1400          1.111    simonb 	    mode);
   1401           1.60      fvdl 	/*
   1402           1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1403           1.60      fvdl 	 */
   1404          1.112   hannken 	if (ibp != NULL) {
   1405          1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1406          1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1407          1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1408          1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1409           1.60      fvdl 			/*
   1410           1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1411           1.60      fvdl 			 * random, after all.
   1412           1.60      fvdl 			 */
   1413          1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1414           1.60      fvdl 			dp2++;
   1415           1.60      fvdl 		}
   1416          1.134  dholland 		initediblk += FFS_INOPB(fs);
   1417           1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1418           1.60      fvdl 	}
   1419           1.60      fvdl 
   1420          1.101        ad 	mutex_enter(&ump->um_lock);
   1421           1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1422          1.101        ad 	setbit(inosused, ipref);
   1423          1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1424          1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1425          1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1426          1.101        ad 	fs->fs_fmod = 1;
   1427          1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1428          1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1429          1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1430          1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1431          1.101        ad 	}
   1432          1.101        ad 	mutex_exit(&ump->um_lock);
   1433          1.112   hannken 	if (ibp != NULL) {
   1434          1.112   hannken 		bwrite(bp);
   1435          1.104   hannken 		bawrite(ibp);
   1436          1.112   hannken 	} else
   1437          1.112   hannken 		bdwrite(bp);
   1438            1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1439          1.101        ad  fail:
   1440          1.112   hannken 	if (bp != NULL)
   1441          1.112   hannken 		brelse(bp, 0);
   1442          1.112   hannken 	if (ibp != NULL)
   1443          1.121        ad 		brelse(ibp, 0);
   1444          1.101        ad 	mutex_enter(&ump->um_lock);
   1445          1.101        ad 	return (0);
   1446            1.1   mycroft }
   1447            1.1   mycroft 
   1448            1.1   mycroft /*
   1449          1.111    simonb  * Allocate a block or fragment.
   1450          1.111    simonb  *
   1451          1.111    simonb  * The specified block or fragment is removed from the
   1452          1.111    simonb  * free map, possibly fragmenting a block in the process.
   1453          1.111    simonb  *
   1454          1.111    simonb  * This implementation should mirror fs_blkfree
   1455          1.111    simonb  *
   1456          1.111    simonb  * => um_lock not held on entry or exit
   1457          1.111    simonb  */
   1458          1.111    simonb int
   1459          1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1460          1.111    simonb {
   1461          1.116     joerg 	int error;
   1462          1.111    simonb 
   1463          1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1464          1.116     joerg 	    ip->i_dev, ip->i_uid);
   1465          1.116     joerg 	if (error)
   1466          1.116     joerg 		return error;
   1467          1.115     joerg 
   1468          1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1469          1.115     joerg }
   1470          1.115     joerg 
   1471          1.115     joerg int
   1472          1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1473          1.115     joerg {
   1474          1.115     joerg 	struct fs *fs = ump->um_fs;
   1475          1.115     joerg 	struct cg *cgp;
   1476          1.115     joerg 	struct buf *bp;
   1477          1.115     joerg 	int32_t fragno, cgbno;
   1478          1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1479          1.115     joerg 	u_int8_t *blksfree;
   1480          1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1481          1.115     joerg 
   1482          1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1483          1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1484          1.115     joerg 	KASSERT(bno < fs->fs_size);
   1485          1.115     joerg 
   1486          1.115     joerg 	cg = dtog(fs, bno);
   1487          1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1488          1.111    simonb 		(int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
   1489          1.111    simonb 	if (error) {
   1490          1.111    simonb 		return error;
   1491          1.111    simonb 	}
   1492          1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1493          1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1494          1.111    simonb 		brelse(bp, 0);
   1495          1.111    simonb 		return EIO;
   1496          1.111    simonb 	}
   1497          1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1498          1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1499          1.111    simonb 	cgbno = dtogd(fs, bno);
   1500          1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1501          1.111    simonb 
   1502          1.111    simonb 	mutex_enter(&ump->um_lock);
   1503          1.111    simonb 	if (size == fs->fs_bsize) {
   1504          1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1505          1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1506          1.111    simonb 			mutex_exit(&ump->um_lock);
   1507          1.111    simonb 			brelse(bp, 0);
   1508          1.111    simonb 			return EBUSY;
   1509          1.111    simonb 		}
   1510          1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1511          1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1512          1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1513          1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1514          1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1515          1.111    simonb 	} else {
   1516          1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1517          1.111    simonb 
   1518          1.137  dholland 		frags = ffs_numfrags(fs, size);
   1519          1.111    simonb 		for (i = 0; i < frags; i++) {
   1520          1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1521          1.111    simonb 				mutex_exit(&ump->um_lock);
   1522          1.111    simonb 				brelse(bp, 0);
   1523          1.111    simonb 				return EBUSY;
   1524          1.111    simonb 			}
   1525          1.111    simonb 		}
   1526          1.111    simonb 		/*
   1527          1.111    simonb 		 * if a complete block is being split, account for it
   1528          1.111    simonb 		 */
   1529          1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1530          1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1531          1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1532          1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1533          1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1534          1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1535          1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1536          1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1537          1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1538          1.111    simonb 		}
   1539          1.111    simonb 		/*
   1540          1.111    simonb 		 * decrement the counts associated with the old frags
   1541          1.111    simonb 		 */
   1542          1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1543          1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1544          1.111    simonb 		/*
   1545          1.111    simonb 		 * allocate the fragment
   1546          1.111    simonb 		 */
   1547          1.111    simonb 		for (i = 0; i < frags; i++) {
   1548          1.111    simonb 			clrbit(blksfree, cgbno + i);
   1549          1.111    simonb 		}
   1550          1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1551          1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1552          1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1553          1.111    simonb 		/*
   1554          1.111    simonb 		 * add back in counts associated with the new frags
   1555          1.111    simonb 		 */
   1556          1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1557          1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1558          1.111    simonb 	}
   1559          1.111    simonb 	fs->fs_fmod = 1;
   1560          1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1561          1.111    simonb 	mutex_exit(&ump->um_lock);
   1562          1.111    simonb 	bdwrite(bp);
   1563          1.111    simonb 	return 0;
   1564          1.111    simonb }
   1565          1.111    simonb 
   1566          1.111    simonb /*
   1567            1.1   mycroft  * Free a block or fragment.
   1568            1.1   mycroft  *
   1569            1.1   mycroft  * The specified block or fragment is placed back in the
   1570           1.81     perry  * free map. If a fragment is deallocated, a possible
   1571            1.1   mycroft  * block reassembly is checked.
   1572          1.106     pooka  *
   1573          1.106     pooka  * => um_lock not held on entry or exit
   1574            1.1   mycroft  */
   1575          1.131  drochner static void
   1576          1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1577            1.1   mycroft {
   1578           1.33  augustss 	struct cg *cgp;
   1579            1.1   mycroft 	struct buf *bp;
   1580           1.76   hannken 	struct ufsmount *ump;
   1581           1.76   hannken 	daddr_t cgblkno;
   1582          1.116     joerg 	int error, cg;
   1583           1.76   hannken 	dev_t dev;
   1584          1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1585          1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1586            1.1   mycroft 
   1587          1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1588          1.116     joerg 
   1589           1.76   hannken 	cg = dtog(fs, bno);
   1590          1.116     joerg 	dev = devvp->v_rdev;
   1591          1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1592          1.119     joerg 	KASSERT(fs == ump->um_fs);
   1593          1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1594          1.116     joerg 
   1595          1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1596          1.116     joerg 	    NOCRED, B_MODIFY, &bp);
   1597          1.116     joerg 	if (error) {
   1598          1.116     joerg 		return;
   1599           1.76   hannken 	}
   1600          1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1601          1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1602          1.116     joerg 		brelse(bp, 0);
   1603          1.116     joerg 		return;
   1604            1.1   mycroft 	}
   1605           1.76   hannken 
   1606          1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1607          1.119     joerg 
   1608          1.119     joerg 	bdwrite(bp);
   1609          1.116     joerg }
   1610          1.116     joerg 
   1611          1.131  drochner struct discardopdata {
   1612          1.131  drochner 	struct work wk; /* must be first */
   1613          1.131  drochner 	struct vnode *devvp;
   1614          1.131  drochner 	daddr_t bno;
   1615          1.131  drochner 	long size;
   1616          1.131  drochner };
   1617          1.131  drochner 
   1618          1.131  drochner struct discarddata {
   1619          1.131  drochner 	struct fs *fs;
   1620          1.131  drochner 	struct discardopdata *entry;
   1621          1.131  drochner 	long maxsize;
   1622          1.131  drochner 	kmutex_t entrylk;
   1623          1.131  drochner 	struct workqueue *wq;
   1624          1.131  drochner 	int wqcnt, wqdraining;
   1625          1.131  drochner 	kmutex_t wqlk;
   1626          1.131  drochner 	kcondvar_t wqcv;
   1627          1.131  drochner 	/* timer for flush? */
   1628          1.131  drochner };
   1629          1.131  drochner 
   1630          1.131  drochner static void
   1631          1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1632          1.131  drochner {
   1633      1.146.2.1   msaitoh 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1634          1.131  drochner 	long todo;
   1635      1.146.2.1   msaitoh 	int error;
   1636          1.131  drochner 
   1637          1.131  drochner 	while (td->size) {
   1638          1.131  drochner 		todo = min(td->size,
   1639          1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1640      1.146.2.1   msaitoh 		error = UFS_WAPBL_BEGIN(mp);
   1641      1.146.2.1   msaitoh 		if (error) {
   1642      1.146.2.1   msaitoh 			printf("ffs: failed to begin wapbl transaction"
   1643      1.146.2.1   msaitoh 			    " for discard: %d\n", error);
   1644      1.146.2.1   msaitoh 			break;
   1645      1.146.2.1   msaitoh 		}
   1646          1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1647      1.146.2.1   msaitoh 		UFS_WAPBL_END(mp);
   1648          1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1649          1.131  drochner 		td->size -= todo;
   1650          1.131  drochner 	}
   1651          1.131  drochner }
   1652          1.131  drochner 
   1653          1.131  drochner static void
   1654          1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1655          1.131  drochner {
   1656          1.131  drochner 	struct discardopdata *td = (void *)wk;
   1657          1.131  drochner 	struct discarddata *ts = arg;
   1658          1.131  drochner 	struct fs *fs = ts->fs;
   1659          1.146  dholland 	off_t start, len;
   1660          1.139    martin #ifdef TRIMDEBUG
   1661          1.131  drochner 	int error;
   1662          1.139    martin #endif
   1663          1.131  drochner 
   1664          1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1665          1.146  dholland #ifndef FFS_FSBTOBYTES
   1666          1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1667          1.146  dholland #endif
   1668          1.146  dholland 
   1669          1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1670          1.146  dholland 	len = td->size;
   1671          1.139    martin #ifdef TRIMDEBUG
   1672          1.139    martin 	error =
   1673          1.139    martin #endif
   1674          1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1675          1.131  drochner #ifdef TRIMDEBUG
   1676          1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1677          1.131  drochner #endif
   1678          1.131  drochner 
   1679          1.131  drochner 	ffs_blkfree_td(fs, td);
   1680          1.131  drochner 	kmem_free(td, sizeof(*td));
   1681          1.131  drochner 	mutex_enter(&ts->wqlk);
   1682          1.131  drochner 	ts->wqcnt--;
   1683          1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1684          1.131  drochner 		cv_signal(&ts->wqcv);
   1685          1.131  drochner 	mutex_exit(&ts->wqlk);
   1686          1.131  drochner }
   1687          1.131  drochner 
   1688          1.131  drochner void *
   1689          1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1690          1.131  drochner {
   1691          1.131  drochner 	struct discarddata *ts;
   1692          1.131  drochner 	int error;
   1693          1.131  drochner 
   1694          1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1695          1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1696          1.131  drochner 				 0, 0, 0);
   1697          1.131  drochner 	if (error) {
   1698          1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1699          1.131  drochner 		return NULL;
   1700          1.131  drochner 	}
   1701          1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1702          1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1703          1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1704          1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1705          1.131  drochner 	ts->fs = fs;
   1706          1.131  drochner 	return ts;
   1707          1.131  drochner }
   1708          1.131  drochner 
   1709          1.131  drochner void
   1710          1.131  drochner ffs_discard_finish(void *vts, int flags)
   1711          1.131  drochner {
   1712          1.131  drochner 	struct discarddata *ts = vts;
   1713          1.131  drochner 	struct discardopdata *td = NULL;
   1714          1.131  drochner 	int res = 0;
   1715          1.131  drochner 
   1716          1.131  drochner 	/* wait for workqueue to drain */
   1717          1.131  drochner 	mutex_enter(&ts->wqlk);
   1718          1.131  drochner 	if (ts->wqcnt) {
   1719          1.131  drochner 		ts->wqdraining = 1;
   1720          1.131  drochner 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1721          1.131  drochner 	}
   1722          1.131  drochner 	mutex_exit(&ts->wqlk);
   1723          1.131  drochner 	if (res)
   1724          1.131  drochner 		printf("ffs_discarddata drain timeout\n");
   1725          1.131  drochner 
   1726          1.131  drochner 	mutex_enter(&ts->entrylk);
   1727          1.131  drochner 	if (ts->entry) {
   1728          1.131  drochner 		td = ts->entry;
   1729          1.131  drochner 		ts->entry = NULL;
   1730          1.131  drochner 	}
   1731          1.131  drochner 	mutex_exit(&ts->entrylk);
   1732          1.131  drochner 	if (td) {
   1733          1.131  drochner 		/* XXX don't tell disk, its optional */
   1734          1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1735          1.131  drochner #ifdef TRIMDEBUG
   1736          1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1737          1.131  drochner #endif
   1738          1.131  drochner 		kmem_free(td, sizeof(*td));
   1739          1.131  drochner 	}
   1740          1.131  drochner 
   1741          1.131  drochner 	cv_destroy(&ts->wqcv);
   1742          1.131  drochner 	mutex_destroy(&ts->entrylk);
   1743          1.131  drochner 	mutex_destroy(&ts->wqlk);
   1744          1.131  drochner 	workqueue_destroy(ts->wq);
   1745          1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1746          1.131  drochner }
   1747          1.131  drochner 
   1748          1.131  drochner void
   1749          1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1750          1.131  drochner     ino_t inum)
   1751          1.131  drochner {
   1752          1.131  drochner 	struct ufsmount *ump;
   1753          1.131  drochner 	int error;
   1754          1.131  drochner 	dev_t dev;
   1755          1.131  drochner 	struct discarddata *ts;
   1756          1.131  drochner 	struct discardopdata *td;
   1757          1.131  drochner 
   1758          1.131  drochner 	dev = devvp->v_rdev;
   1759          1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1760          1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1761          1.131  drochner 		return;
   1762          1.131  drochner 
   1763          1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1764          1.131  drochner 	if (error)
   1765          1.131  drochner 		return;
   1766          1.131  drochner 
   1767          1.131  drochner 	if (!ump->um_discarddata) {
   1768          1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1769          1.131  drochner 		return;
   1770          1.131  drochner 	}
   1771          1.131  drochner 
   1772          1.131  drochner #ifdef TRIMDEBUG
   1773          1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1774          1.131  drochner #endif
   1775          1.131  drochner 	ts = ump->um_discarddata;
   1776          1.131  drochner 	td = NULL;
   1777          1.131  drochner 
   1778          1.131  drochner 	mutex_enter(&ts->entrylk);
   1779          1.131  drochner 	if (ts->entry) {
   1780          1.131  drochner 		td = ts->entry;
   1781          1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1782          1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1783          1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1784          1.131  drochner 			td->bno = bno;
   1785          1.131  drochner 			td->size += size;
   1786          1.131  drochner 			if (td->size < ts->maxsize) {
   1787          1.131  drochner #ifdef TRIMDEBUG
   1788          1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1789          1.131  drochner #endif
   1790          1.131  drochner 				mutex_exit(&ts->entrylk);
   1791          1.131  drochner 				return;
   1792          1.131  drochner 			}
   1793          1.131  drochner 			size = 0; /* mark done */
   1794          1.131  drochner 		}
   1795          1.131  drochner 		ts->entry = NULL;
   1796          1.131  drochner 	}
   1797          1.131  drochner 	mutex_exit(&ts->entrylk);
   1798          1.131  drochner 
   1799          1.131  drochner 	if (td) {
   1800          1.131  drochner #ifdef TRIMDEBUG
   1801          1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1802          1.131  drochner #endif
   1803          1.131  drochner 		mutex_enter(&ts->wqlk);
   1804          1.131  drochner 		ts->wqcnt++;
   1805          1.131  drochner 		mutex_exit(&ts->wqlk);
   1806          1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1807          1.131  drochner 	}
   1808          1.131  drochner 	if (!size)
   1809          1.131  drochner 		return;
   1810          1.131  drochner 
   1811          1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1812          1.131  drochner 	td->devvp = devvp;
   1813          1.131  drochner 	td->bno = bno;
   1814          1.131  drochner 	td->size = size;
   1815          1.131  drochner 
   1816          1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1817          1.131  drochner 		mutex_enter(&ts->entrylk);
   1818          1.131  drochner 		if (!ts->entry) { /* possible race? */
   1819          1.131  drochner #ifdef TRIMDEBUG
   1820          1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1821          1.131  drochner #endif
   1822          1.131  drochner 			ts->entry = td;
   1823          1.131  drochner 			td = NULL;
   1824          1.131  drochner 		}
   1825          1.131  drochner 		mutex_exit(&ts->entrylk);
   1826          1.131  drochner 	}
   1827          1.131  drochner 	if (td) {
   1828          1.131  drochner #ifdef TRIMDEBUG
   1829          1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1830          1.131  drochner #endif
   1831          1.131  drochner 		mutex_enter(&ts->wqlk);
   1832          1.131  drochner 		ts->wqcnt++;
   1833          1.131  drochner 		mutex_exit(&ts->wqlk);
   1834          1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1835          1.131  drochner 	}
   1836          1.131  drochner }
   1837          1.131  drochner 
   1838          1.116     joerg /*
   1839          1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1840          1.116     joerg  *
   1841          1.116     joerg  * The specified block or fragment is placed back in the
   1842          1.116     joerg  * free map. If a fragment is deallocated, a possible
   1843          1.116     joerg  * block reassembly is checked.
   1844          1.116     joerg  *
   1845          1.116     joerg  * => um_lock not held on entry or exit
   1846          1.116     joerg  */
   1847          1.116     joerg void
   1848          1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1849          1.116     joerg     ino_t inum)
   1850          1.116     joerg {
   1851          1.116     joerg 	struct cg *cgp;
   1852          1.116     joerg 	struct buf *bp;
   1853          1.116     joerg 	struct ufsmount *ump;
   1854          1.116     joerg 	daddr_t cgblkno;
   1855          1.116     joerg 	int error, cg;
   1856          1.116     joerg 	dev_t dev;
   1857          1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1858          1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1859          1.116     joerg 
   1860          1.116     joerg 	KASSERT(devvp_is_snapshot);
   1861          1.116     joerg 
   1862          1.116     joerg 	cg = dtog(fs, bno);
   1863          1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1864          1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1865          1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1866          1.116     joerg 
   1867          1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1868          1.116     joerg 	if (error)
   1869            1.1   mycroft 		return;
   1870          1.116     joerg 
   1871          1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1872          1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   1873            1.1   mycroft 	if (error) {
   1874            1.1   mycroft 		return;
   1875            1.1   mycroft 	}
   1876            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1877           1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1878          1.101        ad 		brelse(bp, 0);
   1879            1.1   mycroft 		return;
   1880            1.1   mycroft 	}
   1881          1.116     joerg 
   1882          1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1883          1.119     joerg 
   1884          1.119     joerg 	bdwrite(bp);
   1885          1.116     joerg }
   1886          1.116     joerg 
   1887          1.116     joerg static void
   1888          1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1889          1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1890          1.116     joerg {
   1891          1.116     joerg 	struct cg *cgp;
   1892          1.116     joerg 	int32_t fragno, cgbno;
   1893          1.116     joerg 	int i, cg, blk, frags, bbase;
   1894          1.116     joerg 	u_int8_t *blksfree;
   1895          1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1896          1.116     joerg 
   1897          1.116     joerg 	cg = dtog(fs, bno);
   1898          1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1899           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1900           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1901           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1902           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1903           1.60      fvdl 	cgbno = dtogd(fs, bno);
   1904           1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1905          1.101        ad 	mutex_enter(&ump->um_lock);
   1906            1.1   mycroft 	if (size == fs->fs_bsize) {
   1907          1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1908           1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1909          1.113   hannken 			if (devvp_is_snapshot) {
   1910          1.101        ad 				mutex_exit(&ump->um_lock);
   1911           1.76   hannken 				return;
   1912           1.76   hannken 			}
   1913          1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1914          1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1915            1.1   mycroft 			panic("blkfree: freeing free block");
   1916            1.1   mycroft 		}
   1917           1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1918           1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1919           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1920            1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1921            1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1922           1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1923           1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1924           1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1925           1.75       dbj 			KASSERT(i >= 0);
   1926           1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1927           1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1928           1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1929           1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1930           1.73       dbj 			    needswap);
   1931           1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1932           1.73       dbj 		}
   1933            1.1   mycroft 	} else {
   1934          1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1935            1.1   mycroft 		/*
   1936            1.1   mycroft 		 * decrement the counts associated with the old frags
   1937            1.1   mycroft 		 */
   1938           1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1939           1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1940            1.1   mycroft 		/*
   1941            1.1   mycroft 		 * deallocate the fragment
   1942            1.1   mycroft 		 */
   1943          1.137  dholland 		frags = ffs_numfrags(fs, size);
   1944            1.1   mycroft 		for (i = 0; i < frags; i++) {
   1945           1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1946          1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1947           1.59   tsutsui 				       ", fs = %s\n",
   1948          1.120  christos 				    (unsigned long long)dev, bno + i,
   1949          1.120  christos 				    fs->fs_fsmnt);
   1950            1.1   mycroft 				panic("blkfree: freeing free frag");
   1951            1.1   mycroft 			}
   1952           1.62      fvdl 			setbit(blksfree, cgbno + i);
   1953            1.1   mycroft 		}
   1954           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1955            1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1956           1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1957            1.1   mycroft 		/*
   1958            1.1   mycroft 		 * add back in counts associated with the new frags
   1959            1.1   mycroft 		 */
   1960           1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1961           1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1962            1.1   mycroft 		/*
   1963            1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1964            1.1   mycroft 		 */
   1965          1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1966           1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1967           1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1968            1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1969            1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1970           1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1971           1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1972            1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1973            1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1974           1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1975           1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1976           1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1977           1.75       dbj 				KASSERT(i >= 0);
   1978           1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1979           1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1980           1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1981           1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1982           1.73       dbj 				    bbase)], 1, needswap);
   1983           1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1984           1.73       dbj 			}
   1985            1.1   mycroft 		}
   1986            1.1   mycroft 	}
   1987            1.1   mycroft 	fs->fs_fmod = 1;
   1988           1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1989          1.101        ad 	mutex_exit(&ump->um_lock);
   1990            1.1   mycroft }
   1991            1.1   mycroft 
   1992            1.1   mycroft /*
   1993            1.1   mycroft  * Free an inode.
   1994           1.30      fvdl  */
   1995           1.30      fvdl int
   1996           1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1997           1.30      fvdl {
   1998           1.30      fvdl 
   1999          1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   2000           1.30      fvdl }
   2001           1.30      fvdl 
   2002           1.30      fvdl /*
   2003           1.30      fvdl  * Do the actual free operation.
   2004            1.1   mycroft  * The specified inode is placed back in the free map.
   2005          1.111    simonb  *
   2006          1.111    simonb  * => um_lock not held on entry or exit
   2007            1.1   mycroft  */
   2008            1.1   mycroft int
   2009          1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   2010          1.119     joerg {
   2011          1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   2012          1.119     joerg 	struct fs *fs = ump->um_fs;
   2013          1.119     joerg 	struct vnode *devvp;
   2014          1.119     joerg 	struct cg *cgp;
   2015          1.119     joerg 	struct buf *bp;
   2016          1.119     joerg 	int error, cg;
   2017          1.119     joerg 	daddr_t cgbno;
   2018          1.119     joerg 	dev_t dev;
   2019          1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2020          1.119     joerg 
   2021          1.119     joerg 	cg = ino_to_cg(fs, ino);
   2022          1.119     joerg 	devvp = ump->um_devvp;
   2023          1.119     joerg 	dev = devvp->v_rdev;
   2024          1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2025          1.119     joerg 
   2026          1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2027          1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   2028          1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2029          1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2030          1.119     joerg 	    NOCRED, B_MODIFY, &bp);
   2031          1.119     joerg 	if (error) {
   2032          1.119     joerg 		return (error);
   2033          1.119     joerg 	}
   2034          1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2035          1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   2036          1.119     joerg 		brelse(bp, 0);
   2037          1.119     joerg 		return (0);
   2038          1.119     joerg 	}
   2039          1.119     joerg 
   2040          1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2041          1.119     joerg 
   2042          1.119     joerg 	bdwrite(bp);
   2043          1.119     joerg 
   2044          1.119     joerg 	return 0;
   2045          1.119     joerg }
   2046          1.119     joerg 
   2047          1.119     joerg int
   2048          1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2049            1.9  christos {
   2050          1.101        ad 	struct ufsmount *ump;
   2051           1.33  augustss 	struct cg *cgp;
   2052            1.1   mycroft 	struct buf *bp;
   2053            1.1   mycroft 	int error, cg;
   2054           1.76   hannken 	daddr_t cgbno;
   2055           1.78   hannken 	dev_t dev;
   2056           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2057            1.1   mycroft 
   2058          1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   2059          1.111    simonb 
   2060           1.76   hannken 	cg = ino_to_cg(fs, ino);
   2061          1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2062          1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   2063          1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2064            1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2065          1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   2066          1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   2067          1.120  christos 		    fs->fs_fsmnt);
   2068          1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2069          1.107   hannken 	    NOCRED, B_MODIFY, &bp);
   2070            1.1   mycroft 	if (error) {
   2071           1.30      fvdl 		return (error);
   2072            1.1   mycroft 	}
   2073            1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2074           1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2075          1.101        ad 		brelse(bp, 0);
   2076            1.1   mycroft 		return (0);
   2077            1.1   mycroft 	}
   2078          1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2079          1.119     joerg 
   2080          1.119     joerg 	bdwrite(bp);
   2081          1.119     joerg 
   2082          1.119     joerg 	return 0;
   2083          1.119     joerg }
   2084          1.119     joerg 
   2085          1.119     joerg static void
   2086          1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2087          1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2088          1.119     joerg {
   2089          1.119     joerg 	int cg;
   2090          1.119     joerg 	struct cg *cgp;
   2091          1.119     joerg 	u_int8_t *inosused;
   2092          1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2093          1.119     joerg 
   2094          1.119     joerg 	cg = ino_to_cg(fs, ino);
   2095          1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2096           1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2097           1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2098           1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2099           1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2100           1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2101            1.1   mycroft 	ino %= fs->fs_ipg;
   2102           1.62      fvdl 	if (isclr(inosused, ino)) {
   2103          1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2104          1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2105          1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2106            1.1   mycroft 		if (fs->fs_ronly == 0)
   2107            1.1   mycroft 			panic("ifree: freeing free inode");
   2108            1.1   mycroft 	}
   2109           1.62      fvdl 	clrbit(inosused, ino);
   2110          1.113   hannken 	if (!devvp_is_snapshot)
   2111          1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2112          1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2113           1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2114           1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2115           1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2116          1.101        ad 	mutex_enter(&ump->um_lock);
   2117            1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2118            1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2119           1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2120           1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2121            1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2122            1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2123            1.1   mycroft 	}
   2124            1.1   mycroft 	fs->fs_fmod = 1;
   2125           1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2126          1.101        ad 	mutex_exit(&ump->um_lock);
   2127            1.1   mycroft }
   2128            1.1   mycroft 
   2129            1.1   mycroft /*
   2130           1.76   hannken  * Check to see if a file is free.
   2131           1.76   hannken  */
   2132           1.76   hannken int
   2133           1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2134           1.76   hannken {
   2135           1.76   hannken 	struct cg *cgp;
   2136           1.76   hannken 	struct buf *bp;
   2137           1.76   hannken 	daddr_t cgbno;
   2138           1.76   hannken 	int ret, cg;
   2139           1.76   hannken 	u_int8_t *inosused;
   2140          1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2141           1.76   hannken 
   2142          1.119     joerg 	KASSERT(devvp_is_snapshot);
   2143          1.119     joerg 
   2144           1.76   hannken 	cg = ino_to_cg(fs, ino);
   2145          1.113   hannken 	if (devvp_is_snapshot)
   2146          1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2147          1.113   hannken 	else
   2148          1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2149           1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2150           1.76   hannken 		return 1;
   2151          1.107   hannken 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
   2152           1.76   hannken 		return 1;
   2153           1.76   hannken 	}
   2154           1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2155           1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2156          1.101        ad 		brelse(bp, 0);
   2157           1.76   hannken 		return 1;
   2158           1.76   hannken 	}
   2159           1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2160           1.76   hannken 	ino %= fs->fs_ipg;
   2161           1.76   hannken 	ret = isclr(inosused, ino);
   2162          1.101        ad 	brelse(bp, 0);
   2163           1.76   hannken 	return ret;
   2164           1.76   hannken }
   2165           1.76   hannken 
   2166           1.76   hannken /*
   2167            1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2168            1.1   mycroft  *
   2169            1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2170            1.1   mycroft  * available.
   2171            1.1   mycroft  */
   2172           1.60      fvdl static int32_t
   2173           1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2174            1.1   mycroft {
   2175           1.60      fvdl 	int32_t bno;
   2176            1.1   mycroft 	int start, len, loc, i;
   2177            1.1   mycroft 	int blk, field, subfield, pos;
   2178           1.19    bouyer 	int ostart, olen;
   2179           1.62      fvdl 	u_int8_t *blksfree;
   2180           1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2181            1.1   mycroft 
   2182          1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2183          1.101        ad 
   2184            1.1   mycroft 	/*
   2185            1.1   mycroft 	 * find the fragment by searching through the free block
   2186            1.1   mycroft 	 * map for an appropriate bit pattern
   2187            1.1   mycroft 	 */
   2188            1.1   mycroft 	if (bpref)
   2189            1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2190            1.1   mycroft 	else
   2191           1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2192           1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2193            1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2194           1.19    bouyer 	ostart = start;
   2195           1.19    bouyer 	olen = len;
   2196           1.45     lukem 	loc = scanc((u_int)len,
   2197           1.62      fvdl 		(const u_char *)&blksfree[start],
   2198           1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2199           1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2200            1.1   mycroft 	if (loc == 0) {
   2201            1.1   mycroft 		len = start + 1;
   2202            1.1   mycroft 		start = 0;
   2203           1.45     lukem 		loc = scanc((u_int)len,
   2204           1.62      fvdl 			(const u_char *)&blksfree[0],
   2205           1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2206           1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2207            1.1   mycroft 		if (loc == 0) {
   2208           1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2209           1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2210           1.20      ross 			printf("offset=%d %ld\n",
   2211           1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2212           1.62      fvdl 				(long)blksfree - (long)cgp);
   2213           1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2214            1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2215            1.1   mycroft 			/* NOTREACHED */
   2216            1.1   mycroft 		}
   2217            1.1   mycroft 	}
   2218            1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2219           1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2220            1.1   mycroft 	/*
   2221            1.1   mycroft 	 * found the byte in the map
   2222            1.1   mycroft 	 * sift through the bits to find the selected frag
   2223            1.1   mycroft 	 */
   2224            1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2225           1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2226            1.1   mycroft 		blk <<= 1;
   2227            1.1   mycroft 		field = around[allocsiz];
   2228            1.1   mycroft 		subfield = inside[allocsiz];
   2229            1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2230            1.1   mycroft 			if ((blk & field) == subfield)
   2231            1.1   mycroft 				return (bno + pos);
   2232            1.1   mycroft 			field <<= 1;
   2233            1.1   mycroft 			subfield <<= 1;
   2234            1.1   mycroft 		}
   2235            1.1   mycroft 	}
   2236           1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2237            1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2238           1.58      fvdl 	/* return (-1); */
   2239            1.1   mycroft }
   2240            1.1   mycroft 
   2241            1.1   mycroft /*
   2242            1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2243           1.81     perry  *
   2244            1.1   mycroft  * The form of the error message is:
   2245            1.1   mycroft  *	fs: error message
   2246            1.1   mycroft  */
   2247            1.1   mycroft static void
   2248           1.85   thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
   2249            1.1   mycroft {
   2250            1.1   mycroft 
   2251           1.64  gmcgarry 	log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2252           1.64  gmcgarry 	    uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
   2253            1.1   mycroft }
   2254