Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.147.2.2
      1  1.147.2.2     skrll /*	$NetBSD: ffs_alloc.c,v 1.147.2.2 2015/09/22 12:06:17 skrll Exp $	*/
      2      1.111    simonb 
      3      1.111    simonb /*-
      4      1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.111    simonb  * All rights reserved.
      6      1.111    simonb  *
      7      1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8      1.111    simonb  * by Wasabi Systems, Inc.
      9      1.111    simonb  *
     10      1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11      1.111    simonb  * modification, are permitted provided that the following conditions
     12      1.111    simonb  * are met:
     13      1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14      1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15      1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17      1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18      1.111    simonb  *
     19      1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30      1.111    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.147.2.2     skrll __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.147.2.2 2015/09/22 12:06:17 skrll Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78      1.129       chs #include "opt_uvm_page_trkown.h"
     79       1.22    scottr #endif
     80        1.1   mycroft 
     81        1.1   mycroft #include <sys/param.h>
     82        1.1   mycroft #include <sys/systm.h>
     83        1.1   mycroft #include <sys/buf.h>
     84      1.130       tls #include <sys/cprng.h>
     85      1.111    simonb #include <sys/fstrans.h>
     86      1.111    simonb #include <sys/kauth.h>
     87      1.111    simonb #include <sys/kernel.h>
     88      1.111    simonb #include <sys/mount.h>
     89        1.1   mycroft #include <sys/proc.h>
     90      1.111    simonb #include <sys/syslog.h>
     91        1.1   mycroft #include <sys/vnode.h>
     92      1.111    simonb #include <sys/wapbl.h>
     93      1.147     joerg #include <sys/cprng.h>
     94       1.29       mrg 
     95       1.76   hannken #include <miscfs/specfs/specdev.h>
     96        1.1   mycroft #include <ufs/ufs/quota.h>
     97       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     98        1.1   mycroft #include <ufs/ufs/inode.h>
     99        1.9  christos #include <ufs/ufs/ufs_extern.h>
    100       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    101      1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    102        1.1   mycroft 
    103        1.1   mycroft #include <ufs/ffs/fs.h>
    104        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    105        1.1   mycroft 
    106      1.129       chs #ifdef UVM_PAGE_TRKOWN
    107      1.129       chs #include <uvm/uvm.h>
    108      1.129       chs #endif
    109      1.129       chs 
    110      1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    111      1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    112       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    113       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    114  1.147.2.2     skrll static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115      1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    116      1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    117      1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    118       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119       1.85   thorpej 				      daddr_t, int);
    120      1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121      1.116     joerg     daddr_t, long, bool);
    122      1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123      1.119     joerg     int, bool);
    124       1.23  drochner 
    125       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    126       1.34  jdolecek int ffs_log_changeopt = 0;
    127       1.34  jdolecek 
    128       1.23  drochner /* in ffs_tables.c */
    129       1.40  jdolecek extern const int inside[], around[];
    130       1.40  jdolecek extern const u_char * const fragtbl[];
    131        1.1   mycroft 
    132      1.116     joerg /* Basic consistency check for block allocations */
    133      1.116     joerg static int
    134      1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135      1.116     joerg     long size, dev_t dev, ino_t inum)
    136      1.116     joerg {
    137      1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138      1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139      1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    140      1.120  christos 		    "size = %ld, fs = %s\n",
    141      1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142      1.116     joerg 		panic("%s: bad size", func);
    143      1.116     joerg 	}
    144      1.116     joerg 
    145      1.116     joerg 	if (bno >= fs->fs_size) {
    146      1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    147      1.116     joerg 		    (unsigned long long)inum);
    148  1.147.2.2     skrll 		ffs_fserr(fs, NOCRED, "bad block");
    149      1.116     joerg 		return EINVAL;
    150      1.116     joerg 	}
    151      1.116     joerg 	return 0;
    152      1.116     joerg }
    153      1.116     joerg 
    154        1.1   mycroft /*
    155        1.1   mycroft  * Allocate a block in the file system.
    156       1.81     perry  *
    157        1.1   mycroft  * The size of the requested block is given, which must be some
    158        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    159        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    160        1.1   mycroft  * the following hierarchy is used to allocate a block:
    161        1.1   mycroft  *   1) allocate the requested block.
    162        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    163        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    164        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    165        1.1   mycroft  *      available block is located.
    166       1.47       wiz  * If no block preference is given the following hierarchy is used
    167        1.1   mycroft  * to allocate a block:
    168        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    169        1.1   mycroft  *      inode for the file.
    170        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    171        1.1   mycroft  *      available block is located.
    172      1.106     pooka  *
    173      1.106     pooka  * => called with um_lock held
    174      1.106     pooka  * => releases um_lock before returning
    175        1.1   mycroft  */
    176        1.9  christos int
    177      1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    178       1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    179        1.1   mycroft {
    180      1.101        ad 	struct ufsmount *ump;
    181       1.62      fvdl 	struct fs *fs;
    182       1.58      fvdl 	daddr_t bno;
    183        1.9  christos 	int cg;
    184      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    185        1.9  christos 	int error;
    186        1.9  christos #endif
    187       1.81     perry 
    188       1.62      fvdl 	fs = ip->i_fs;
    189      1.101        ad 	ump = ip->i_ump;
    190      1.101        ad 
    191      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    192       1.62      fvdl 
    193       1.37       chs #ifdef UVM_PAGE_TRKOWN
    194      1.129       chs 
    195      1.129       chs 	/*
    196      1.129       chs 	 * Sanity-check that allocations within the file size
    197      1.129       chs 	 * do not allow other threads to read the stale contents
    198      1.129       chs 	 * of newly allocated blocks.
    199      1.129       chs 	 * Usually pages will exist to cover the new allocation.
    200      1.129       chs 	 * There is an optimization in ffs_write() where we skip
    201      1.129       chs 	 * creating pages if several conditions are met:
    202      1.129       chs 	 *  - the file must not be mapped (in any user address space).
    203      1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    204      1.129       chs 	 * If those conditions are not met then pages must exist and
    205      1.129       chs 	 * be locked by the current thread.
    206      1.129       chs 	 */
    207      1.129       chs 
    208       1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    209      1.137  dholland 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    210       1.37       chs 		struct vm_page *pg;
    211      1.129       chs 		struct vnode *vp = ITOV(ip);
    212      1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    213      1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    214      1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    215       1.37       chs 
    216      1.128     rmind 		mutex_enter(uobj->vmobjlock);
    217       1.37       chs 		while (off < endoff) {
    218       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    219      1.129       chs 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    220  1.147.2.2     skrll 				 (size & PAGE_MASK) == 0 &&
    221      1.135  dholland 				 ffs_blkoff(fs, size) == 0) ||
    222      1.129       chs 				(pg != NULL && pg->owner == curproc->p_pid &&
    223      1.129       chs 				 pg->lowner == curlwp->l_lid));
    224       1.37       chs 			off += PAGE_SIZE;
    225       1.37       chs 		}
    226      1.128     rmind 		mutex_exit(uobj->vmobjlock);
    227       1.37       chs 	}
    228       1.37       chs #endif
    229       1.37       chs 
    230        1.1   mycroft 	*bnp = 0;
    231        1.1   mycroft #ifdef DIAGNOSTIC
    232      1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
    233      1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    234      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    235      1.120  christos 		    fs->fs_fsmnt);
    236        1.1   mycroft 		panic("ffs_alloc: bad size");
    237        1.1   mycroft 	}
    238        1.1   mycroft 	if (cred == NOCRED)
    239       1.56    provos 		panic("ffs_alloc: missing credential");
    240        1.1   mycroft #endif /* DIAGNOSTIC */
    241        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    242        1.1   mycroft 		goto nospace;
    243       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    244      1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    245      1.124      elad 	    NULL, NULL) != 0)
    246        1.1   mycroft 		goto nospace;
    247      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    248      1.101        ad 	mutex_exit(&ump->um_lock);
    249       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    250        1.1   mycroft 		return (error);
    251      1.101        ad 	mutex_enter(&ump->um_lock);
    252        1.1   mycroft #endif
    253      1.111    simonb 
    254        1.1   mycroft 	if (bpref >= fs->fs_size)
    255        1.1   mycroft 		bpref = 0;
    256        1.1   mycroft 	if (bpref == 0)
    257        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    258        1.1   mycroft 	else
    259        1.1   mycroft 		cg = dtog(fs, bpref);
    260      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    261        1.1   mycroft 	if (bno > 0) {
    262       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    263        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    264        1.1   mycroft 		*bnp = bno;
    265        1.1   mycroft 		return (0);
    266        1.1   mycroft 	}
    267      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    268        1.1   mycroft 	/*
    269        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    270        1.1   mycroft 	 */
    271       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    272        1.1   mycroft #endif
    273      1.111    simonb 	if (flags & B_CONTIG) {
    274      1.111    simonb 		/*
    275      1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    276      1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    277      1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    278      1.111    simonb 		 * already unlocked, so we can't release it again
    279      1.111    simonb 		 * like in the normal error path.  See kern/39206.
    280      1.111    simonb 		 *
    281      1.111    simonb 		 *
    282      1.111    simonb 		 * Fail silently - it's up to our caller to report
    283      1.111    simonb 		 * errors.
    284      1.111    simonb 		 */
    285      1.111    simonb 		return (ENOSPC);
    286      1.111    simonb 	}
    287        1.1   mycroft nospace:
    288      1.101        ad 	mutex_exit(&ump->um_lock);
    289  1.147.2.2     skrll 	ffs_fserr(fs, cred, "file system full");
    290        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    291        1.1   mycroft 	return (ENOSPC);
    292        1.1   mycroft }
    293        1.1   mycroft 
    294        1.1   mycroft /*
    295        1.1   mycroft  * Reallocate a fragment to a bigger size
    296        1.1   mycroft  *
    297        1.1   mycroft  * The number and size of the old block is given, and a preference
    298        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    299        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    300        1.1   mycroft  * invoked to get an appropriate block.
    301      1.106     pooka  *
    302      1.106     pooka  * => called with um_lock held
    303      1.106     pooka  * => return with um_lock released
    304        1.1   mycroft  */
    305        1.9  christos int
    306       1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    307       1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    308        1.1   mycroft {
    309      1.101        ad 	struct ufsmount *ump;
    310       1.62      fvdl 	struct fs *fs;
    311        1.1   mycroft 	struct buf *bp;
    312        1.1   mycroft 	int cg, request, error;
    313       1.58      fvdl 	daddr_t bprev, bno;
    314       1.25   thorpej 
    315       1.62      fvdl 	fs = ip->i_fs;
    316      1.101        ad 	ump = ip->i_ump;
    317      1.101        ad 
    318      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    319      1.101        ad 
    320       1.37       chs #ifdef UVM_PAGE_TRKOWN
    321      1.129       chs 
    322      1.129       chs 	/*
    323      1.129       chs 	 * Sanity-check that allocations within the file size
    324      1.129       chs 	 * do not allow other threads to read the stale contents
    325      1.129       chs 	 * of newly allocated blocks.
    326      1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    327      1.129       chs 	 * for such allocations, because only the last block of a file
    328      1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    329      1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    330      1.129       chs 	 * which always creates pages to cover blocks it allocates.
    331      1.129       chs 	 */
    332      1.129       chs 
    333       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    334       1.37       chs 		struct vm_page *pg;
    335       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    336      1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    337      1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    338       1.37       chs 
    339      1.128     rmind 		mutex_enter(uobj->vmobjlock);
    340       1.37       chs 		while (off < endoff) {
    341       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    342      1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    343      1.129       chs 				pg->lowner == curlwp->l_lid);
    344       1.37       chs 			off += PAGE_SIZE;
    345       1.37       chs 		}
    346      1.128     rmind 		mutex_exit(uobj->vmobjlock);
    347       1.37       chs 	}
    348       1.37       chs #endif
    349       1.37       chs 
    350        1.1   mycroft #ifdef DIAGNOSTIC
    351      1.134  dholland 	if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
    352      1.134  dholland 	    (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
    353       1.13  christos 		printf(
    354      1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    355      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    356      1.120  christos 		    fs->fs_fsmnt);
    357        1.1   mycroft 		panic("ffs_realloccg: bad size");
    358        1.1   mycroft 	}
    359        1.1   mycroft 	if (cred == NOCRED)
    360       1.56    provos 		panic("ffs_realloccg: missing credential");
    361        1.1   mycroft #endif /* DIAGNOSTIC */
    362       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    363      1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    364      1.124      elad 	    NULL, NULL) != 0) {
    365      1.101        ad 		mutex_exit(&ump->um_lock);
    366        1.1   mycroft 		goto nospace;
    367      1.101        ad 	}
    368       1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    369       1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    370       1.60      fvdl 	else
    371       1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    372       1.60      fvdl 
    373       1.60      fvdl 	if (bprev == 0) {
    374      1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    375      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    376      1.120  christos 		    fs->fs_fsmnt);
    377        1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    378        1.1   mycroft 	}
    379      1.101        ad 	mutex_exit(&ump->um_lock);
    380      1.101        ad 
    381        1.1   mycroft 	/*
    382        1.1   mycroft 	 * Allocate the extra space in the buffer.
    383        1.1   mycroft 	 */
    384       1.37       chs 	if (bpp != NULL &&
    385  1.147.2.1     skrll 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    386        1.1   mycroft 		return (error);
    387        1.1   mycroft 	}
    388      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    389       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    390       1.44       chs 		if (bpp != NULL) {
    391      1.101        ad 			brelse(bp, 0);
    392       1.44       chs 		}
    393        1.1   mycroft 		return (error);
    394        1.1   mycroft 	}
    395        1.1   mycroft #endif
    396        1.1   mycroft 	/*
    397        1.1   mycroft 	 * Check for extension in the existing location.
    398        1.1   mycroft 	 */
    399        1.1   mycroft 	cg = dtog(fs, bprev);
    400      1.101        ad 	mutex_enter(&ump->um_lock);
    401       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    402       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    403        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    404       1.37       chs 
    405       1.37       chs 		if (bpp != NULL) {
    406      1.136  dholland 			if (bp->b_blkno != FFS_FSBTODB(fs, bno))
    407       1.37       chs 				panic("bad blockno");
    408       1.72        pk 			allocbuf(bp, nsize, 1);
    409       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    410      1.105        ad 			mutex_enter(bp->b_objlock);
    411      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    412      1.105        ad 			bp->b_oflags |= BO_DONE;
    413      1.105        ad 			mutex_exit(bp->b_objlock);
    414       1.37       chs 			*bpp = bp;
    415       1.37       chs 		}
    416       1.37       chs 		if (blknop != NULL) {
    417       1.37       chs 			*blknop = bno;
    418       1.37       chs 		}
    419        1.1   mycroft 		return (0);
    420        1.1   mycroft 	}
    421        1.1   mycroft 	/*
    422        1.1   mycroft 	 * Allocate a new disk location.
    423        1.1   mycroft 	 */
    424        1.1   mycroft 	if (bpref >= fs->fs_size)
    425        1.1   mycroft 		bpref = 0;
    426        1.1   mycroft 	switch ((int)fs->fs_optim) {
    427        1.1   mycroft 	case FS_OPTSPACE:
    428        1.1   mycroft 		/*
    429       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    430       1.81     perry 		 * best use of space, we will waste time relocating it if
    431        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    432        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    433        1.1   mycroft 		 * to begin optimizing for time.
    434        1.1   mycroft 		 */
    435        1.1   mycroft 		request = nsize;
    436        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    437        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    438        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    439        1.1   mycroft 			break;
    440       1.34  jdolecek 
    441       1.34  jdolecek 		if (ffs_log_changeopt) {
    442       1.34  jdolecek 			log(LOG_NOTICE,
    443       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    444       1.34  jdolecek 				fs->fs_fsmnt);
    445       1.34  jdolecek 		}
    446       1.34  jdolecek 
    447        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    448        1.1   mycroft 		break;
    449        1.1   mycroft 	case FS_OPTTIME:
    450        1.1   mycroft 		/*
    451        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    452        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    453        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    454        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    455        1.1   mycroft 		 * above will be able to grow it in place without further
    456        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    457        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    458        1.1   mycroft 		 * optimizing for space.
    459        1.1   mycroft 		 */
    460        1.1   mycroft 		request = fs->fs_bsize;
    461        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    462        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    463        1.1   mycroft 			break;
    464       1.34  jdolecek 
    465       1.34  jdolecek 		if (ffs_log_changeopt) {
    466       1.34  jdolecek 			log(LOG_NOTICE,
    467       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    468       1.34  jdolecek 				fs->fs_fsmnt);
    469       1.34  jdolecek 		}
    470       1.34  jdolecek 
    471        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    472        1.1   mycroft 		break;
    473        1.1   mycroft 	default:
    474      1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    475      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    476        1.1   mycroft 		panic("ffs_realloccg: bad optim");
    477        1.1   mycroft 		/* NOTREACHED */
    478        1.1   mycroft 	}
    479      1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    480        1.1   mycroft 	if (bno > 0) {
    481      1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    482      1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    483      1.122        ad 			UFS_WAPBL_REGISTER_DEALLOCATION(
    484      1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    485      1.122        ad 			    osize);
    486      1.122        ad 		} else {
    487      1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    488      1.122        ad 			    ip->i_number);
    489      1.111    simonb 		}
    490      1.111    simonb 		if (nsize < request) {
    491      1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    492      1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    493      1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    494      1.111    simonb 				    ip->i_ump->um_mountp,
    495      1.137  dholland 				    FFS_FSBTODB(fs, (bno + ffs_numfrags(fs, nsize))),
    496      1.111    simonb 				    request - nsize);
    497      1.111    simonb 			} else
    498      1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    499      1.137  dholland 				    bno + ffs_numfrags(fs, nsize),
    500      1.111    simonb 				    (long)(request - nsize), ip->i_number);
    501      1.111    simonb 		}
    502       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    503        1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    504       1.37       chs 		if (bpp != NULL) {
    505      1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    506       1.72        pk 			allocbuf(bp, nsize, 1);
    507       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    508      1.105        ad 			mutex_enter(bp->b_objlock);
    509      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    510      1.105        ad 			bp->b_oflags |= BO_DONE;
    511      1.105        ad 			mutex_exit(bp->b_objlock);
    512       1.37       chs 			*bpp = bp;
    513       1.37       chs 		}
    514       1.37       chs 		if (blknop != NULL) {
    515       1.37       chs 			*blknop = bno;
    516       1.37       chs 		}
    517        1.1   mycroft 		return (0);
    518        1.1   mycroft 	}
    519      1.101        ad 	mutex_exit(&ump->um_lock);
    520      1.101        ad 
    521      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    522        1.1   mycroft 	/*
    523        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    524        1.1   mycroft 	 */
    525       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    526        1.1   mycroft #endif
    527       1.37       chs 	if (bpp != NULL) {
    528      1.101        ad 		brelse(bp, 0);
    529       1.37       chs 	}
    530       1.37       chs 
    531        1.1   mycroft nospace:
    532        1.1   mycroft 	/*
    533        1.1   mycroft 	 * no space available
    534        1.1   mycroft 	 */
    535  1.147.2.2     skrll 	ffs_fserr(fs, cred, "file system full");
    536        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    537        1.1   mycroft 	return (ENOSPC);
    538        1.1   mycroft }
    539        1.1   mycroft 
    540        1.1   mycroft /*
    541        1.1   mycroft  * Allocate an inode in the file system.
    542       1.81     perry  *
    543        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    544        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    545        1.1   mycroft  *   1) allocate the preferred inode.
    546        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    547        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    548        1.1   mycroft  *      available inode is located.
    549       1.47       wiz  * If no inode preference is given the following hierarchy is used
    550        1.1   mycroft  * to allocate an inode:
    551        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    552        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    553        1.1   mycroft  *      available inode is located.
    554      1.106     pooka  *
    555      1.106     pooka  * => um_lock not held upon entry or return
    556        1.1   mycroft  */
    557        1.9  christos int
    558  1.147.2.1     skrll ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    559        1.9  christos {
    560      1.101        ad 	struct ufsmount *ump;
    561       1.33  augustss 	struct inode *pip;
    562       1.33  augustss 	struct fs *fs;
    563        1.1   mycroft 	ino_t ino, ipref;
    564        1.1   mycroft 	int cg, error;
    565       1.81     perry 
    566      1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    567      1.111    simonb 
    568        1.1   mycroft 	pip = VTOI(pvp);
    569        1.1   mycroft 	fs = pip->i_fs;
    570      1.101        ad 	ump = pip->i_ump;
    571      1.101        ad 
    572      1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    573      1.111    simonb 	if (error) {
    574      1.111    simonb 		return error;
    575      1.111    simonb 	}
    576      1.101        ad 	mutex_enter(&ump->um_lock);
    577        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    578        1.1   mycroft 		goto noinodes;
    579        1.1   mycroft 
    580        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    581       1.50     lukem 		ipref = ffs_dirpref(pip);
    582       1.50     lukem 	else
    583       1.50     lukem 		ipref = pip->i_number;
    584        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    585        1.1   mycroft 		ipref = 0;
    586        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    587       1.50     lukem 	/*
    588       1.50     lukem 	 * Track number of dirs created one after another
    589       1.50     lukem 	 * in a same cg without intervening by files.
    590       1.50     lukem 	 */
    591       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    592       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    593       1.50     lukem 			fs->fs_contigdirs[cg]++;
    594       1.50     lukem 	} else {
    595       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    596       1.50     lukem 			fs->fs_contigdirs[cg]--;
    597       1.50     lukem 	}
    598      1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    599        1.1   mycroft 	if (ino == 0)
    600        1.1   mycroft 		goto noinodes;
    601      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    602  1.147.2.1     skrll 	*inop = ino;
    603  1.147.2.1     skrll 	return 0;
    604       1.60      fvdl 
    605        1.1   mycroft noinodes:
    606      1.101        ad 	mutex_exit(&ump->um_lock);
    607      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    608  1.147.2.2     skrll 	ffs_fserr(fs, cred, "out of inodes");
    609        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    610  1.147.2.1     skrll 	return ENOSPC;
    611        1.1   mycroft }
    612        1.1   mycroft 
    613        1.1   mycroft /*
    614       1.50     lukem  * Find a cylinder group in which to place a directory.
    615       1.42  sommerfe  *
    616       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    617       1.50     lukem  * directory inode in the same cylinder group as its parent
    618       1.50     lukem  * directory, but also to reserve space for its files inodes
    619       1.50     lukem  * and data. Restrict the number of directories which may be
    620       1.50     lukem  * allocated one after another in the same cylinder group
    621       1.50     lukem  * without intervening allocation of files.
    622       1.42  sommerfe  *
    623       1.50     lukem  * If we allocate a first level directory then force allocation
    624       1.50     lukem  * in another cylinder group.
    625        1.1   mycroft  */
    626        1.1   mycroft static ino_t
    627       1.85   thorpej ffs_dirpref(struct inode *pip)
    628        1.1   mycroft {
    629       1.50     lukem 	register struct fs *fs;
    630       1.74     soren 	int cg, prefcg;
    631       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    632       1.89       dsl 	int avgifree, avgbfree, avgndir;
    633       1.50     lukem 	int minifree, minbfree, maxndir;
    634       1.50     lukem 	int mincg, minndir;
    635       1.50     lukem 	int maxcontigdirs;
    636       1.50     lukem 
    637      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    638      1.101        ad 
    639       1.50     lukem 	fs = pip->i_fs;
    640        1.1   mycroft 
    641        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    642       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    643       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    644       1.50     lukem 
    645       1.50     lukem 	/*
    646       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    647       1.50     lukem 	 */
    648      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    649      1.147     joerg 		prefcg = cprng_fast32() % fs->fs_ncg;
    650       1.50     lukem 		mincg = prefcg;
    651       1.50     lukem 		minndir = fs->fs_ipg;
    652       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    653       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    654       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    655       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    656       1.42  sommerfe 				mincg = cg;
    657       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    658       1.42  sommerfe 			}
    659       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    660       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    661       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    662       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    663       1.50     lukem 				mincg = cg;
    664       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    665       1.42  sommerfe 			}
    666       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    667       1.42  sommerfe 	}
    668       1.50     lukem 
    669       1.50     lukem 	/*
    670       1.50     lukem 	 * Count various limits which used for
    671       1.50     lukem 	 * optimal allocation of a directory inode.
    672      1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    673      1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    674      1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    675       1.50     lukem 	 */
    676       1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    677      1.144       bad 	minifree = avgifree - avgifree / 4;
    678      1.144       bad 	if (minifree < 1)
    679      1.144       bad 		minifree = 1;
    680      1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    681      1.144       bad 	if (minbfree < 1)
    682      1.144       bad 		minbfree = 1;
    683       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    684       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    685       1.89       dsl 	if (avgndir != 0) {
    686       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    687       1.89       dsl 		if (dirsize < curdsz)
    688       1.89       dsl 			dirsize = curdsz;
    689       1.89       dsl 	}
    690       1.89       dsl 	if (cgsize < dirsize * 255)
    691      1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    692       1.89       dsl 	else
    693       1.89       dsl 		maxcontigdirs = 255;
    694       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    695       1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    696       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    697       1.50     lukem 	if (maxcontigdirs == 0)
    698       1.50     lukem 		maxcontigdirs = 1;
    699       1.50     lukem 
    700       1.50     lukem 	/*
    701       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    702       1.50     lukem 	 * regular files, but only if we have no deficit in
    703       1.50     lukem 	 * inodes or space.
    704       1.50     lukem 	 */
    705       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    706       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    707       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    708       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    709       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    710       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    711       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    712       1.50     lukem 		}
    713       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    714       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    715       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    716       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    717       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    718       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    719       1.50     lukem 		}
    720       1.50     lukem 	/*
    721       1.50     lukem 	 * This is a backstop when we are deficient in space.
    722       1.50     lukem 	 */
    723       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    724       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    725       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    726       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    727       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    728       1.50     lukem 			break;
    729       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    730        1.1   mycroft }
    731        1.1   mycroft 
    732        1.1   mycroft /*
    733        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    734        1.1   mycroft  * logically divided into sections. The first section is composed of the
    735        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    736       1.81     perry  *
    737        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    738        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    739        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    740        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    741        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    742        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    743        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    744        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    745        1.1   mycroft  * continues until a cylinder group with greater than the average number
    746        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    747        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    748        1.1   mycroft  * here a best guess is made based upon the logical block number being
    749        1.1   mycroft  * allocated.
    750       1.81     perry  *
    751        1.1   mycroft  * If a section is already partially allocated, the policy is to
    752        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    753       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    754       1.60      fvdl  * contigously if possible.
    755      1.106     pooka  *
    756      1.106     pooka  * => um_lock held on entry and exit
    757        1.1   mycroft  */
    758       1.58      fvdl daddr_t
    759      1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    760       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    761        1.1   mycroft {
    762       1.33  augustss 	struct fs *fs;
    763       1.33  augustss 	int cg;
    764        1.1   mycroft 	int avgbfree, startcg;
    765        1.1   mycroft 
    766      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    767      1.101        ad 
    768        1.1   mycroft 	fs = ip->i_fs;
    769      1.111    simonb 
    770      1.111    simonb 	/*
    771      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    772      1.111    simonb 	 * in the inode extentions to return the desired block.
    773      1.111    simonb 	 *
    774      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    775      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    776      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    777      1.111    simonb 	 * block.  For data, return the address of the actual block
    778      1.111    simonb 	 * relative to the address of the first data block.
    779      1.111    simonb 	 */
    780      1.111    simonb 	if (flags & B_CONTIG) {
    781      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    782      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    783      1.111    simonb 		if (flags & B_METAONLY)
    784      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    785      1.111    simonb 		else
    786      1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    787      1.111    simonb 	}
    788      1.111    simonb 
    789        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    790      1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    791        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    792      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    793        1.1   mycroft 		}
    794        1.1   mycroft 		/*
    795        1.1   mycroft 		 * Find a cylinder with greater than average number of
    796        1.1   mycroft 		 * unused data blocks.
    797        1.1   mycroft 		 */
    798        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    799        1.1   mycroft 			startcg =
    800        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    801        1.1   mycroft 		else
    802       1.19    bouyer 			startcg = dtog(fs,
    803       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    804        1.1   mycroft 		startcg %= fs->fs_ncg;
    805        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    806        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    807        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    808      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    809        1.1   mycroft 			}
    810       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    811        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    812      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    813        1.1   mycroft 			}
    814       1.35   thorpej 		return (0);
    815        1.1   mycroft 	}
    816        1.1   mycroft 	/*
    817       1.60      fvdl 	 * We just always try to lay things out contiguously.
    818       1.60      fvdl 	 */
    819       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    820       1.60      fvdl }
    821       1.60      fvdl 
    822       1.60      fvdl daddr_t
    823      1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    824      1.111    simonb     int64_t *bap)
    825       1.60      fvdl {
    826       1.60      fvdl 	struct fs *fs;
    827       1.60      fvdl 	int cg;
    828       1.60      fvdl 	int avgbfree, startcg;
    829       1.60      fvdl 
    830      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    831      1.101        ad 
    832       1.60      fvdl 	fs = ip->i_fs;
    833      1.111    simonb 
    834      1.111    simonb 	/*
    835      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    836      1.111    simonb 	 * in the inode extentions to return the desired block.
    837      1.111    simonb 	 *
    838      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    839      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    840      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    841      1.111    simonb 	 * block.  For data, return the address of the actual block
    842      1.111    simonb 	 * relative to the address of the first data block.
    843      1.111    simonb 	 */
    844      1.111    simonb 	if (flags & B_CONTIG) {
    845      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    846      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    847      1.111    simonb 		if (flags & B_METAONLY)
    848      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    849      1.111    simonb 		else
    850      1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    851      1.111    simonb 	}
    852      1.111    simonb 
    853       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    854      1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    855       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    856      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    857       1.60      fvdl 		}
    858        1.1   mycroft 		/*
    859       1.60      fvdl 		 * Find a cylinder with greater than average number of
    860       1.60      fvdl 		 * unused data blocks.
    861        1.1   mycroft 		 */
    862       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    863       1.60      fvdl 			startcg =
    864       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    865       1.60      fvdl 		else
    866       1.60      fvdl 			startcg = dtog(fs,
    867       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    868       1.60      fvdl 		startcg %= fs->fs_ncg;
    869       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    870       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    871       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    872      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    873       1.60      fvdl 			}
    874       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    875       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    876      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    877       1.60      fvdl 			}
    878       1.60      fvdl 		return (0);
    879       1.60      fvdl 	}
    880       1.60      fvdl 	/*
    881       1.60      fvdl 	 * We just always try to lay things out contiguously.
    882       1.60      fvdl 	 */
    883       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    884        1.1   mycroft }
    885        1.1   mycroft 
    886       1.60      fvdl 
    887        1.1   mycroft /*
    888        1.1   mycroft  * Implement the cylinder overflow algorithm.
    889        1.1   mycroft  *
    890        1.1   mycroft  * The policy implemented by this algorithm is:
    891        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    892        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    893        1.1   mycroft  *   3) brute force search for a free block.
    894      1.106     pooka  *
    895      1.106     pooka  * => called with um_lock held
    896      1.106     pooka  * => returns with um_lock released on success, held on failure
    897      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    898        1.1   mycroft  */
    899        1.1   mycroft /*VARARGS5*/
    900       1.58      fvdl static daddr_t
    901       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    902       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    903      1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    904        1.1   mycroft {
    905       1.33  augustss 	struct fs *fs;
    906       1.58      fvdl 	daddr_t result;
    907        1.1   mycroft 	int i, icg = cg;
    908        1.1   mycroft 
    909        1.1   mycroft 	fs = ip->i_fs;
    910        1.1   mycroft 	/*
    911        1.1   mycroft 	 * 1: preferred cylinder group
    912        1.1   mycroft 	 */
    913      1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    914        1.1   mycroft 	if (result)
    915        1.1   mycroft 		return (result);
    916      1.111    simonb 
    917      1.111    simonb 	if (flags & B_CONTIG)
    918      1.111    simonb 		return (result);
    919        1.1   mycroft 	/*
    920        1.1   mycroft 	 * 2: quadratic rehash
    921        1.1   mycroft 	 */
    922        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    923        1.1   mycroft 		cg += i;
    924        1.1   mycroft 		if (cg >= fs->fs_ncg)
    925        1.1   mycroft 			cg -= fs->fs_ncg;
    926      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    927        1.1   mycroft 		if (result)
    928        1.1   mycroft 			return (result);
    929        1.1   mycroft 	}
    930        1.1   mycroft 	/*
    931        1.1   mycroft 	 * 3: brute force search
    932        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    933        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    934        1.1   mycroft 	 */
    935        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    936        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    937      1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    938        1.1   mycroft 		if (result)
    939        1.1   mycroft 			return (result);
    940        1.1   mycroft 		cg++;
    941        1.1   mycroft 		if (cg == fs->fs_ncg)
    942        1.1   mycroft 			cg = 0;
    943        1.1   mycroft 	}
    944       1.35   thorpej 	return (0);
    945        1.1   mycroft }
    946        1.1   mycroft 
    947        1.1   mycroft /*
    948        1.1   mycroft  * Determine whether a fragment can be extended.
    949        1.1   mycroft  *
    950       1.81     perry  * Check to see if the necessary fragments are available, and
    951        1.1   mycroft  * if they are, allocate them.
    952      1.106     pooka  *
    953      1.106     pooka  * => called with um_lock held
    954      1.106     pooka  * => returns with um_lock released on success, held on failure
    955        1.1   mycroft  */
    956       1.58      fvdl static daddr_t
    957       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    958        1.1   mycroft {
    959      1.101        ad 	struct ufsmount *ump;
    960       1.33  augustss 	struct fs *fs;
    961       1.33  augustss 	struct cg *cgp;
    962        1.1   mycroft 	struct buf *bp;
    963       1.58      fvdl 	daddr_t bno;
    964        1.1   mycroft 	int frags, bbase;
    965        1.1   mycroft 	int i, error;
    966       1.62      fvdl 	u_int8_t *blksfree;
    967        1.1   mycroft 
    968        1.1   mycroft 	fs = ip->i_fs;
    969      1.101        ad 	ump = ip->i_ump;
    970      1.101        ad 
    971      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    972      1.101        ad 
    973      1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    974       1.35   thorpej 		return (0);
    975      1.137  dholland 	frags = ffs_numfrags(fs, nsize);
    976      1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
    977      1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    978        1.1   mycroft 		/* cannot extend across a block boundary */
    979       1.35   thorpej 		return (0);
    980        1.1   mycroft 	}
    981      1.101        ad 	mutex_exit(&ump->um_lock);
    982      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    983  1.147.2.1     skrll 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    984      1.101        ad 	if (error)
    985      1.101        ad 		goto fail;
    986        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    987      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    988      1.101        ad 		goto fail;
    989       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    990       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    991       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
    992       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
    993        1.1   mycroft 	bno = dtogd(fs, bprev);
    994       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
    995      1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
    996      1.101        ad 		if (isclr(blksfree, bno + i))
    997      1.101        ad 			goto fail;
    998        1.1   mycroft 	/*
    999        1.1   mycroft 	 * the current fragment can be extended
   1000        1.1   mycroft 	 * deduct the count on fragment being extended into
   1001        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1002        1.1   mycroft 	 * allocate the extended piece
   1003        1.1   mycroft 	 */
   1004        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1005       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1006        1.1   mycroft 			break;
   1007      1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1008        1.1   mycroft 	if (i != frags)
   1009       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1010      1.101        ad 	mutex_enter(&ump->um_lock);
   1011      1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1012       1.62      fvdl 		clrbit(blksfree, bno + i);
   1013       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1014        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1015        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1016        1.1   mycroft 	}
   1017        1.1   mycroft 	fs->fs_fmod = 1;
   1018      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1019      1.101        ad 	mutex_exit(&ump->um_lock);
   1020        1.1   mycroft 	bdwrite(bp);
   1021        1.1   mycroft 	return (bprev);
   1022      1.101        ad 
   1023      1.101        ad  fail:
   1024      1.132   hannken  	if (bp != NULL)
   1025      1.132   hannken 		brelse(bp, 0);
   1026      1.101        ad  	mutex_enter(&ump->um_lock);
   1027      1.101        ad  	return (0);
   1028        1.1   mycroft }
   1029        1.1   mycroft 
   1030        1.1   mycroft /*
   1031        1.1   mycroft  * Determine whether a block can be allocated.
   1032        1.1   mycroft  *
   1033        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1034        1.1   mycroft  * and if it is, allocate it.
   1035        1.1   mycroft  */
   1036       1.58      fvdl static daddr_t
   1037      1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1038        1.1   mycroft {
   1039      1.101        ad 	struct ufsmount *ump;
   1040       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1041       1.30      fvdl 	struct cg *cgp;
   1042        1.1   mycroft 	struct buf *bp;
   1043       1.60      fvdl 	int32_t bno;
   1044       1.60      fvdl 	daddr_t blkno;
   1045       1.30      fvdl 	int error, frags, allocsiz, i;
   1046       1.62      fvdl 	u_int8_t *blksfree;
   1047       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1048        1.1   mycroft 
   1049      1.101        ad 	ump = ip->i_ump;
   1050      1.101        ad 
   1051      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1052      1.101        ad 
   1053        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1054       1.35   thorpej 		return (0);
   1055      1.101        ad 	mutex_exit(&ump->um_lock);
   1056      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1057  1.147.2.1     skrll 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1058      1.101        ad 	if (error)
   1059      1.101        ad 		goto fail;
   1060        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1061       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1062      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1063      1.101        ad 		goto fail;
   1064       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1065       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1066       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1067       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1068        1.1   mycroft 	if (size == fs->fs_bsize) {
   1069      1.101        ad 		mutex_enter(&ump->um_lock);
   1070      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1071       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1072      1.101        ad 		mutex_exit(&ump->um_lock);
   1073        1.1   mycroft 		bdwrite(bp);
   1074       1.60      fvdl 		return (blkno);
   1075        1.1   mycroft 	}
   1076        1.1   mycroft 	/*
   1077        1.1   mycroft 	 * check to see if any fragments are already available
   1078        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1079        1.1   mycroft 	 * it down to a smaller size if necessary
   1080        1.1   mycroft 	 */
   1081       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1082      1.137  dholland 	frags = ffs_numfrags(fs, size);
   1083        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1084        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1085        1.1   mycroft 			break;
   1086        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1087        1.1   mycroft 		/*
   1088       1.81     perry 		 * no fragments were available, so a block will be
   1089        1.1   mycroft 		 * allocated, and hacked up
   1090        1.1   mycroft 		 */
   1091      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1092      1.101        ad 			goto fail;
   1093      1.101        ad 		mutex_enter(&ump->um_lock);
   1094      1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1095       1.60      fvdl 		bno = dtogd(fs, blkno);
   1096        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1097       1.62      fvdl 			setbit(blksfree, bno + i);
   1098        1.1   mycroft 		i = fs->fs_frag - frags;
   1099       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1100        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1101       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1102        1.1   mycroft 		fs->fs_fmod = 1;
   1103       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1104       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1105      1.101        ad 		mutex_exit(&ump->um_lock);
   1106        1.1   mycroft 		bdwrite(bp);
   1107       1.60      fvdl 		return (blkno);
   1108        1.1   mycroft 	}
   1109       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1110       1.30      fvdl #if 0
   1111       1.30      fvdl 	/*
   1112       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1113       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1114       1.30      fvdl 	 */
   1115      1.101        ad 	if (bno < 0)
   1116      1.101        ad 		goto fail;
   1117       1.30      fvdl #endif
   1118        1.1   mycroft 	for (i = 0; i < frags; i++)
   1119       1.62      fvdl 		clrbit(blksfree, bno + i);
   1120      1.101        ad 	mutex_enter(&ump->um_lock);
   1121       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1122        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1123        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1124        1.1   mycroft 	fs->fs_fmod = 1;
   1125       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1126        1.1   mycroft 	if (frags != allocsiz)
   1127       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1128      1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1129      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1130      1.101        ad 	mutex_exit(&ump->um_lock);
   1131        1.1   mycroft 	bdwrite(bp);
   1132       1.30      fvdl 	return blkno;
   1133      1.101        ad 
   1134      1.101        ad  fail:
   1135      1.132   hannken  	if (bp != NULL)
   1136      1.132   hannken 		brelse(bp, 0);
   1137      1.101        ad  	mutex_enter(&ump->um_lock);
   1138      1.101        ad  	return (0);
   1139        1.1   mycroft }
   1140        1.1   mycroft 
   1141        1.1   mycroft /*
   1142        1.1   mycroft  * Allocate a block in a cylinder group.
   1143        1.1   mycroft  *
   1144        1.1   mycroft  * This algorithm implements the following policy:
   1145        1.1   mycroft  *   1) allocate the requested block.
   1146        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1147        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1148        1.1   mycroft  *      specified cylinder group.
   1149        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1150        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1151        1.1   mycroft  */
   1152       1.58      fvdl static daddr_t
   1153      1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1154        1.1   mycroft {
   1155       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1156       1.30      fvdl 	struct cg *cgp;
   1157      1.123  sborrill 	int cg;
   1158       1.60      fvdl 	daddr_t blkno;
   1159       1.60      fvdl 	int32_t bno;
   1160       1.60      fvdl 	u_int8_t *blksfree;
   1161       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1162        1.1   mycroft 
   1163      1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1164      1.101        ad 
   1165       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1166       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1167       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1168       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1169       1.60      fvdl 	} else {
   1170      1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1171       1.60      fvdl 		bno = dtogd(fs, bpref);
   1172        1.1   mycroft 		/*
   1173       1.60      fvdl 		 * if the requested block is available, use it
   1174        1.1   mycroft 		 */
   1175      1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1176       1.60      fvdl 			goto gotit;
   1177      1.111    simonb 		/*
   1178      1.111    simonb 		 * if the requested data block isn't available and we are
   1179      1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1180      1.111    simonb 		 */
   1181      1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1182      1.111    simonb 			return (0);
   1183        1.1   mycroft 	}
   1184      1.111    simonb 
   1185        1.1   mycroft 	/*
   1186       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1187        1.1   mycroft 	 */
   1188       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1189        1.1   mycroft 	if (bno < 0)
   1190       1.35   thorpej 		return (0);
   1191       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1192        1.1   mycroft gotit:
   1193      1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1194       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1195       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1196       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1197        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1198       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1199       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1200       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1201       1.73       dbj 		int cylno;
   1202       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1203       1.75       dbj 		KASSERT(cylno >= 0);
   1204       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1205       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1206       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1207       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1208       1.73       dbj 		    needswap);
   1209       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1210       1.73       dbj 	}
   1211        1.1   mycroft 	fs->fs_fmod = 1;
   1212      1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1213      1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1214       1.30      fvdl 	return (blkno);
   1215        1.1   mycroft }
   1216        1.1   mycroft 
   1217        1.1   mycroft /*
   1218        1.1   mycroft  * Determine whether an inode can be allocated.
   1219        1.1   mycroft  *
   1220        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1221        1.1   mycroft  * allocate it using the following policy:
   1222        1.1   mycroft  *   1) allocate the requested inode.
   1223        1.1   mycroft  *   2) allocate the next available inode after the requested
   1224        1.1   mycroft  *      inode in the specified cylinder group.
   1225        1.1   mycroft  */
   1226       1.58      fvdl static daddr_t
   1227      1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1228        1.1   mycroft {
   1229      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1230       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1231       1.33  augustss 	struct cg *cgp;
   1232       1.60      fvdl 	struct buf *bp, *ibp;
   1233       1.60      fvdl 	u_int8_t *inosused;
   1234        1.1   mycroft 	int error, start, len, loc, map, i;
   1235       1.60      fvdl 	int32_t initediblk;
   1236      1.112   hannken 	daddr_t nalloc;
   1237       1.60      fvdl 	struct ufs2_dinode *dp2;
   1238       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1239        1.1   mycroft 
   1240      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1241      1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1242      1.101        ad 
   1243        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1244       1.35   thorpej 		return (0);
   1245      1.101        ad 	mutex_exit(&ump->um_lock);
   1246      1.112   hannken 	ibp = NULL;
   1247      1.112   hannken 	initediblk = -1;
   1248      1.112   hannken retry:
   1249      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1250  1.147.2.1     skrll 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1251      1.101        ad 	if (error)
   1252      1.101        ad 		goto fail;
   1253        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1254      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1255      1.101        ad 		goto fail;
   1256      1.112   hannken 
   1257      1.112   hannken 	if (ibp != NULL &&
   1258      1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1259      1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1260      1.121        ad 		brelse(ibp, 0);
   1261      1.112   hannken 		ibp = NULL;
   1262      1.112   hannken 	}
   1263      1.112   hannken 	/*
   1264      1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1265      1.112   hannken 	 */
   1266      1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1267      1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1268      1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1269      1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1270      1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1271      1.112   hannken 			/*
   1272      1.112   hannken 			 * We have to release the cg buffer here to prevent
   1273      1.112   hannken 			 * a deadlock when reading the inode block will
   1274      1.112   hannken 			 * run a copy-on-write that might use this cg.
   1275      1.112   hannken 			 */
   1276      1.112   hannken 			brelse(bp, 0);
   1277      1.112   hannken 			bp = NULL;
   1278      1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1279      1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1280      1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1281      1.112   hannken 			if (error)
   1282      1.112   hannken 				goto fail;
   1283      1.112   hannken 			goto retry;
   1284      1.112   hannken 		}
   1285      1.112   hannken 	}
   1286      1.112   hannken 
   1287       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1288       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1289       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1290       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1291       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1292        1.1   mycroft 	if (ipref) {
   1293        1.1   mycroft 		ipref %= fs->fs_ipg;
   1294       1.60      fvdl 		if (isclr(inosused, ipref))
   1295        1.1   mycroft 			goto gotit;
   1296        1.1   mycroft 	}
   1297       1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1298       1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1299       1.19    bouyer 		NBBY);
   1300       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1301        1.1   mycroft 	if (loc == 0) {
   1302        1.1   mycroft 		len = start + 1;
   1303        1.1   mycroft 		start = 0;
   1304       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1305        1.1   mycroft 		if (loc == 0) {
   1306       1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1307       1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1308       1.19    bouyer 				fs->fs_fsmnt);
   1309        1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1310        1.1   mycroft 			/* NOTREACHED */
   1311        1.1   mycroft 		}
   1312        1.1   mycroft 	}
   1313        1.1   mycroft 	i = start + len - loc;
   1314      1.126     rmind 	map = inosused[i] ^ 0xff;
   1315      1.126     rmind 	if (map == 0) {
   1316      1.126     rmind 		printf("fs = %s\n", fs->fs_fsmnt);
   1317      1.126     rmind 		panic("ffs_nodealloccg: block not in map");
   1318        1.1   mycroft 	}
   1319      1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1320      1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1321        1.1   mycroft gotit:
   1322      1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1323      1.111    simonb 	    mode);
   1324       1.60      fvdl 	/*
   1325       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1326       1.60      fvdl 	 */
   1327      1.112   hannken 	if (ibp != NULL) {
   1328      1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1329      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1330      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1331      1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1332       1.60      fvdl 			/*
   1333       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1334       1.60      fvdl 			 * random, after all.
   1335       1.60      fvdl 			 */
   1336      1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1337       1.60      fvdl 			dp2++;
   1338       1.60      fvdl 		}
   1339      1.134  dholland 		initediblk += FFS_INOPB(fs);
   1340       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1341       1.60      fvdl 	}
   1342       1.60      fvdl 
   1343      1.101        ad 	mutex_enter(&ump->um_lock);
   1344       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1345      1.101        ad 	setbit(inosused, ipref);
   1346      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1347      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1348      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1349      1.101        ad 	fs->fs_fmod = 1;
   1350      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1351      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1352      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1353      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1354      1.101        ad 	}
   1355      1.101        ad 	mutex_exit(&ump->um_lock);
   1356      1.112   hannken 	if (ibp != NULL) {
   1357      1.112   hannken 		bwrite(bp);
   1358      1.104   hannken 		bawrite(ibp);
   1359      1.112   hannken 	} else
   1360      1.112   hannken 		bdwrite(bp);
   1361        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1362      1.101        ad  fail:
   1363      1.112   hannken 	if (bp != NULL)
   1364      1.112   hannken 		brelse(bp, 0);
   1365      1.112   hannken 	if (ibp != NULL)
   1366      1.121        ad 		brelse(ibp, 0);
   1367      1.101        ad 	mutex_enter(&ump->um_lock);
   1368      1.101        ad 	return (0);
   1369        1.1   mycroft }
   1370        1.1   mycroft 
   1371        1.1   mycroft /*
   1372      1.111    simonb  * Allocate a block or fragment.
   1373      1.111    simonb  *
   1374      1.111    simonb  * The specified block or fragment is removed from the
   1375      1.111    simonb  * free map, possibly fragmenting a block in the process.
   1376      1.111    simonb  *
   1377      1.111    simonb  * This implementation should mirror fs_blkfree
   1378      1.111    simonb  *
   1379      1.111    simonb  * => um_lock not held on entry or exit
   1380      1.111    simonb  */
   1381      1.111    simonb int
   1382      1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1383      1.111    simonb {
   1384      1.116     joerg 	int error;
   1385      1.111    simonb 
   1386      1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1387      1.116     joerg 	    ip->i_dev, ip->i_uid);
   1388      1.116     joerg 	if (error)
   1389      1.116     joerg 		return error;
   1390      1.115     joerg 
   1391      1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1392      1.115     joerg }
   1393      1.115     joerg 
   1394      1.115     joerg int
   1395      1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1396      1.115     joerg {
   1397      1.115     joerg 	struct fs *fs = ump->um_fs;
   1398      1.115     joerg 	struct cg *cgp;
   1399      1.115     joerg 	struct buf *bp;
   1400      1.115     joerg 	int32_t fragno, cgbno;
   1401      1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1402      1.115     joerg 	u_int8_t *blksfree;
   1403      1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1404      1.115     joerg 
   1405      1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1406      1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1407      1.115     joerg 	KASSERT(bno < fs->fs_size);
   1408      1.115     joerg 
   1409      1.115     joerg 	cg = dtog(fs, bno);
   1410      1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1411  1.147.2.1     skrll 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1412      1.111    simonb 	if (error) {
   1413      1.111    simonb 		return error;
   1414      1.111    simonb 	}
   1415      1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1416      1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1417      1.111    simonb 		brelse(bp, 0);
   1418      1.111    simonb 		return EIO;
   1419      1.111    simonb 	}
   1420      1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1421      1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1422      1.111    simonb 	cgbno = dtogd(fs, bno);
   1423      1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1424      1.111    simonb 
   1425      1.111    simonb 	mutex_enter(&ump->um_lock);
   1426      1.111    simonb 	if (size == fs->fs_bsize) {
   1427      1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1428      1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1429      1.111    simonb 			mutex_exit(&ump->um_lock);
   1430      1.111    simonb 			brelse(bp, 0);
   1431      1.111    simonb 			return EBUSY;
   1432      1.111    simonb 		}
   1433      1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1434      1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1435      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1436      1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1437      1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1438      1.111    simonb 	} else {
   1439      1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1440      1.111    simonb 
   1441      1.137  dholland 		frags = ffs_numfrags(fs, size);
   1442      1.111    simonb 		for (i = 0; i < frags; i++) {
   1443      1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1444      1.111    simonb 				mutex_exit(&ump->um_lock);
   1445      1.111    simonb 				brelse(bp, 0);
   1446      1.111    simonb 				return EBUSY;
   1447      1.111    simonb 			}
   1448      1.111    simonb 		}
   1449      1.111    simonb 		/*
   1450      1.111    simonb 		 * if a complete block is being split, account for it
   1451      1.111    simonb 		 */
   1452      1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1453      1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1454      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1455      1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1456      1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1457      1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1458      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1459      1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1460      1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1461      1.111    simonb 		}
   1462      1.111    simonb 		/*
   1463      1.111    simonb 		 * decrement the counts associated with the old frags
   1464      1.111    simonb 		 */
   1465      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1466      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1467      1.111    simonb 		/*
   1468      1.111    simonb 		 * allocate the fragment
   1469      1.111    simonb 		 */
   1470      1.111    simonb 		for (i = 0; i < frags; i++) {
   1471      1.111    simonb 			clrbit(blksfree, cgbno + i);
   1472      1.111    simonb 		}
   1473      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1474      1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1475      1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1476      1.111    simonb 		/*
   1477      1.111    simonb 		 * add back in counts associated with the new frags
   1478      1.111    simonb 		 */
   1479      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1480      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1481      1.111    simonb 	}
   1482      1.111    simonb 	fs->fs_fmod = 1;
   1483      1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1484      1.111    simonb 	mutex_exit(&ump->um_lock);
   1485      1.111    simonb 	bdwrite(bp);
   1486      1.111    simonb 	return 0;
   1487      1.111    simonb }
   1488      1.111    simonb 
   1489      1.111    simonb /*
   1490        1.1   mycroft  * Free a block or fragment.
   1491        1.1   mycroft  *
   1492        1.1   mycroft  * The specified block or fragment is placed back in the
   1493       1.81     perry  * free map. If a fragment is deallocated, a possible
   1494        1.1   mycroft  * block reassembly is checked.
   1495      1.106     pooka  *
   1496      1.106     pooka  * => um_lock not held on entry or exit
   1497        1.1   mycroft  */
   1498      1.131  drochner static void
   1499      1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1500        1.1   mycroft {
   1501       1.33  augustss 	struct cg *cgp;
   1502        1.1   mycroft 	struct buf *bp;
   1503       1.76   hannken 	struct ufsmount *ump;
   1504       1.76   hannken 	daddr_t cgblkno;
   1505      1.116     joerg 	int error, cg;
   1506       1.76   hannken 	dev_t dev;
   1507      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1508      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1509        1.1   mycroft 
   1510      1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1511      1.116     joerg 
   1512       1.76   hannken 	cg = dtog(fs, bno);
   1513      1.116     joerg 	dev = devvp->v_rdev;
   1514      1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1515      1.119     joerg 	KASSERT(fs == ump->um_fs);
   1516      1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1517      1.116     joerg 
   1518      1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1519  1.147.2.1     skrll 	    B_MODIFY, &bp);
   1520      1.116     joerg 	if (error) {
   1521      1.116     joerg 		return;
   1522       1.76   hannken 	}
   1523      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1524      1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1525      1.116     joerg 		brelse(bp, 0);
   1526      1.116     joerg 		return;
   1527        1.1   mycroft 	}
   1528       1.76   hannken 
   1529      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1530      1.119     joerg 
   1531      1.119     joerg 	bdwrite(bp);
   1532      1.116     joerg }
   1533      1.116     joerg 
   1534      1.131  drochner struct discardopdata {
   1535      1.131  drochner 	struct work wk; /* must be first */
   1536      1.131  drochner 	struct vnode *devvp;
   1537      1.131  drochner 	daddr_t bno;
   1538      1.131  drochner 	long size;
   1539      1.131  drochner };
   1540      1.131  drochner 
   1541      1.131  drochner struct discarddata {
   1542      1.131  drochner 	struct fs *fs;
   1543      1.131  drochner 	struct discardopdata *entry;
   1544      1.131  drochner 	long maxsize;
   1545      1.131  drochner 	kmutex_t entrylk;
   1546      1.131  drochner 	struct workqueue *wq;
   1547      1.131  drochner 	int wqcnt, wqdraining;
   1548      1.131  drochner 	kmutex_t wqlk;
   1549      1.131  drochner 	kcondvar_t wqcv;
   1550      1.131  drochner 	/* timer for flush? */
   1551      1.131  drochner };
   1552      1.131  drochner 
   1553      1.131  drochner static void
   1554      1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1555      1.131  drochner {
   1556  1.147.2.2     skrll 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1557      1.131  drochner 	long todo;
   1558  1.147.2.2     skrll 	int error;
   1559      1.131  drochner 
   1560      1.131  drochner 	while (td->size) {
   1561      1.131  drochner 		todo = min(td->size,
   1562      1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1563  1.147.2.2     skrll 		error = UFS_WAPBL_BEGIN(mp);
   1564  1.147.2.2     skrll 		if (error) {
   1565  1.147.2.2     skrll 			printf("ffs: failed to begin wapbl transaction"
   1566  1.147.2.2     skrll 			    " for discard: %d\n", error);
   1567  1.147.2.2     skrll 			break;
   1568  1.147.2.2     skrll 		}
   1569      1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1570  1.147.2.2     skrll 		UFS_WAPBL_END(mp);
   1571      1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1572      1.131  drochner 		td->size -= todo;
   1573      1.131  drochner 	}
   1574      1.131  drochner }
   1575      1.131  drochner 
   1576      1.131  drochner static void
   1577      1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1578      1.131  drochner {
   1579      1.131  drochner 	struct discardopdata *td = (void *)wk;
   1580      1.131  drochner 	struct discarddata *ts = arg;
   1581      1.131  drochner 	struct fs *fs = ts->fs;
   1582      1.146  dholland 	off_t start, len;
   1583      1.139    martin #ifdef TRIMDEBUG
   1584      1.131  drochner 	int error;
   1585      1.139    martin #endif
   1586      1.131  drochner 
   1587      1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1588      1.146  dholland #ifndef FFS_FSBTOBYTES
   1589      1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1590      1.146  dholland #endif
   1591      1.146  dholland 
   1592      1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1593      1.146  dholland 	len = td->size;
   1594      1.139    martin #ifdef TRIMDEBUG
   1595      1.139    martin 	error =
   1596      1.139    martin #endif
   1597      1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1598      1.131  drochner #ifdef TRIMDEBUG
   1599      1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1600      1.131  drochner #endif
   1601      1.131  drochner 
   1602      1.131  drochner 	ffs_blkfree_td(fs, td);
   1603      1.131  drochner 	kmem_free(td, sizeof(*td));
   1604      1.131  drochner 	mutex_enter(&ts->wqlk);
   1605      1.131  drochner 	ts->wqcnt--;
   1606      1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1607      1.131  drochner 		cv_signal(&ts->wqcv);
   1608      1.131  drochner 	mutex_exit(&ts->wqlk);
   1609      1.131  drochner }
   1610      1.131  drochner 
   1611      1.131  drochner void *
   1612      1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1613      1.131  drochner {
   1614      1.131  drochner 	struct discarddata *ts;
   1615      1.131  drochner 	int error;
   1616      1.131  drochner 
   1617      1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1618      1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1619      1.131  drochner 				 0, 0, 0);
   1620      1.131  drochner 	if (error) {
   1621      1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1622      1.131  drochner 		return NULL;
   1623      1.131  drochner 	}
   1624      1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1625      1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1626      1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1627      1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1628      1.131  drochner 	ts->fs = fs;
   1629      1.131  drochner 	return ts;
   1630      1.131  drochner }
   1631      1.131  drochner 
   1632      1.131  drochner void
   1633      1.131  drochner ffs_discard_finish(void *vts, int flags)
   1634      1.131  drochner {
   1635      1.131  drochner 	struct discarddata *ts = vts;
   1636      1.131  drochner 	struct discardopdata *td = NULL;
   1637      1.131  drochner 	int res = 0;
   1638      1.131  drochner 
   1639      1.131  drochner 	/* wait for workqueue to drain */
   1640      1.131  drochner 	mutex_enter(&ts->wqlk);
   1641      1.131  drochner 	if (ts->wqcnt) {
   1642      1.131  drochner 		ts->wqdraining = 1;
   1643      1.131  drochner 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1644      1.131  drochner 	}
   1645      1.131  drochner 	mutex_exit(&ts->wqlk);
   1646      1.131  drochner 	if (res)
   1647      1.131  drochner 		printf("ffs_discarddata drain timeout\n");
   1648      1.131  drochner 
   1649      1.131  drochner 	mutex_enter(&ts->entrylk);
   1650      1.131  drochner 	if (ts->entry) {
   1651      1.131  drochner 		td = ts->entry;
   1652      1.131  drochner 		ts->entry = NULL;
   1653      1.131  drochner 	}
   1654      1.131  drochner 	mutex_exit(&ts->entrylk);
   1655      1.131  drochner 	if (td) {
   1656      1.131  drochner 		/* XXX don't tell disk, its optional */
   1657      1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1658      1.131  drochner #ifdef TRIMDEBUG
   1659      1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1660      1.131  drochner #endif
   1661      1.131  drochner 		kmem_free(td, sizeof(*td));
   1662      1.131  drochner 	}
   1663      1.131  drochner 
   1664      1.131  drochner 	cv_destroy(&ts->wqcv);
   1665      1.131  drochner 	mutex_destroy(&ts->entrylk);
   1666      1.131  drochner 	mutex_destroy(&ts->wqlk);
   1667      1.131  drochner 	workqueue_destroy(ts->wq);
   1668      1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1669      1.131  drochner }
   1670      1.131  drochner 
   1671      1.131  drochner void
   1672      1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1673      1.131  drochner     ino_t inum)
   1674      1.131  drochner {
   1675      1.131  drochner 	struct ufsmount *ump;
   1676      1.131  drochner 	int error;
   1677      1.131  drochner 	dev_t dev;
   1678      1.131  drochner 	struct discarddata *ts;
   1679      1.131  drochner 	struct discardopdata *td;
   1680      1.131  drochner 
   1681      1.131  drochner 	dev = devvp->v_rdev;
   1682      1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1683      1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1684      1.131  drochner 		return;
   1685      1.131  drochner 
   1686      1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1687      1.131  drochner 	if (error)
   1688      1.131  drochner 		return;
   1689      1.131  drochner 
   1690      1.131  drochner 	if (!ump->um_discarddata) {
   1691      1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1692      1.131  drochner 		return;
   1693      1.131  drochner 	}
   1694      1.131  drochner 
   1695      1.131  drochner #ifdef TRIMDEBUG
   1696      1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1697      1.131  drochner #endif
   1698      1.131  drochner 	ts = ump->um_discarddata;
   1699      1.131  drochner 	td = NULL;
   1700      1.131  drochner 
   1701      1.131  drochner 	mutex_enter(&ts->entrylk);
   1702      1.131  drochner 	if (ts->entry) {
   1703      1.131  drochner 		td = ts->entry;
   1704      1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1705      1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1706      1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1707      1.131  drochner 			td->bno = bno;
   1708      1.131  drochner 			td->size += size;
   1709      1.131  drochner 			if (td->size < ts->maxsize) {
   1710      1.131  drochner #ifdef TRIMDEBUG
   1711      1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1712      1.131  drochner #endif
   1713      1.131  drochner 				mutex_exit(&ts->entrylk);
   1714      1.131  drochner 				return;
   1715      1.131  drochner 			}
   1716      1.131  drochner 			size = 0; /* mark done */
   1717      1.131  drochner 		}
   1718      1.131  drochner 		ts->entry = NULL;
   1719      1.131  drochner 	}
   1720      1.131  drochner 	mutex_exit(&ts->entrylk);
   1721      1.131  drochner 
   1722      1.131  drochner 	if (td) {
   1723      1.131  drochner #ifdef TRIMDEBUG
   1724      1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1725      1.131  drochner #endif
   1726      1.131  drochner 		mutex_enter(&ts->wqlk);
   1727      1.131  drochner 		ts->wqcnt++;
   1728      1.131  drochner 		mutex_exit(&ts->wqlk);
   1729      1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1730      1.131  drochner 	}
   1731      1.131  drochner 	if (!size)
   1732      1.131  drochner 		return;
   1733      1.131  drochner 
   1734      1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1735      1.131  drochner 	td->devvp = devvp;
   1736      1.131  drochner 	td->bno = bno;
   1737      1.131  drochner 	td->size = size;
   1738      1.131  drochner 
   1739      1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1740      1.131  drochner 		mutex_enter(&ts->entrylk);
   1741      1.131  drochner 		if (!ts->entry) { /* possible race? */
   1742      1.131  drochner #ifdef TRIMDEBUG
   1743      1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1744      1.131  drochner #endif
   1745      1.131  drochner 			ts->entry = td;
   1746      1.131  drochner 			td = NULL;
   1747      1.131  drochner 		}
   1748      1.131  drochner 		mutex_exit(&ts->entrylk);
   1749      1.131  drochner 	}
   1750      1.131  drochner 	if (td) {
   1751      1.131  drochner #ifdef TRIMDEBUG
   1752      1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1753      1.131  drochner #endif
   1754      1.131  drochner 		mutex_enter(&ts->wqlk);
   1755      1.131  drochner 		ts->wqcnt++;
   1756      1.131  drochner 		mutex_exit(&ts->wqlk);
   1757      1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1758      1.131  drochner 	}
   1759      1.131  drochner }
   1760      1.131  drochner 
   1761      1.116     joerg /*
   1762      1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1763      1.116     joerg  *
   1764      1.116     joerg  * The specified block or fragment is placed back in the
   1765      1.116     joerg  * free map. If a fragment is deallocated, a possible
   1766      1.116     joerg  * block reassembly is checked.
   1767      1.116     joerg  *
   1768      1.116     joerg  * => um_lock not held on entry or exit
   1769      1.116     joerg  */
   1770      1.116     joerg void
   1771      1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1772      1.116     joerg     ino_t inum)
   1773      1.116     joerg {
   1774      1.116     joerg 	struct cg *cgp;
   1775      1.116     joerg 	struct buf *bp;
   1776      1.116     joerg 	struct ufsmount *ump;
   1777      1.116     joerg 	daddr_t cgblkno;
   1778      1.116     joerg 	int error, cg;
   1779      1.116     joerg 	dev_t dev;
   1780      1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1781      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1782      1.116     joerg 
   1783      1.116     joerg 	KASSERT(devvp_is_snapshot);
   1784      1.116     joerg 
   1785      1.116     joerg 	cg = dtog(fs, bno);
   1786      1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1787      1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1788      1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1789      1.116     joerg 
   1790      1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1791      1.116     joerg 	if (error)
   1792        1.1   mycroft 		return;
   1793      1.116     joerg 
   1794      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1795  1.147.2.1     skrll 	    B_MODIFY, &bp);
   1796        1.1   mycroft 	if (error) {
   1797        1.1   mycroft 		return;
   1798        1.1   mycroft 	}
   1799        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1800       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1801      1.101        ad 		brelse(bp, 0);
   1802        1.1   mycroft 		return;
   1803        1.1   mycroft 	}
   1804      1.116     joerg 
   1805      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1806      1.119     joerg 
   1807      1.119     joerg 	bdwrite(bp);
   1808      1.116     joerg }
   1809      1.116     joerg 
   1810      1.116     joerg static void
   1811      1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1812      1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1813      1.116     joerg {
   1814      1.116     joerg 	struct cg *cgp;
   1815      1.116     joerg 	int32_t fragno, cgbno;
   1816      1.116     joerg 	int i, cg, blk, frags, bbase;
   1817      1.116     joerg 	u_int8_t *blksfree;
   1818      1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1819      1.116     joerg 
   1820      1.116     joerg 	cg = dtog(fs, bno);
   1821      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1822       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1823       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1824       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1825       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1826       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1827       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1828      1.101        ad 	mutex_enter(&ump->um_lock);
   1829        1.1   mycroft 	if (size == fs->fs_bsize) {
   1830      1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1831       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1832      1.113   hannken 			if (devvp_is_snapshot) {
   1833      1.101        ad 				mutex_exit(&ump->um_lock);
   1834       1.76   hannken 				return;
   1835       1.76   hannken 			}
   1836      1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1837      1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1838        1.1   mycroft 			panic("blkfree: freeing free block");
   1839        1.1   mycroft 		}
   1840       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1841       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1842       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1843        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1844        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1845       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1846       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1847       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1848       1.75       dbj 			KASSERT(i >= 0);
   1849       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1850       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1851       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1852       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1853       1.73       dbj 			    needswap);
   1854       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1855       1.73       dbj 		}
   1856        1.1   mycroft 	} else {
   1857      1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1858        1.1   mycroft 		/*
   1859        1.1   mycroft 		 * decrement the counts associated with the old frags
   1860        1.1   mycroft 		 */
   1861       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1862       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1863        1.1   mycroft 		/*
   1864        1.1   mycroft 		 * deallocate the fragment
   1865        1.1   mycroft 		 */
   1866      1.137  dholland 		frags = ffs_numfrags(fs, size);
   1867        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1868       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1869      1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1870       1.59   tsutsui 				       ", fs = %s\n",
   1871      1.120  christos 				    (unsigned long long)dev, bno + i,
   1872      1.120  christos 				    fs->fs_fsmnt);
   1873        1.1   mycroft 				panic("blkfree: freeing free frag");
   1874        1.1   mycroft 			}
   1875       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1876        1.1   mycroft 		}
   1877       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1878        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1879       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1880        1.1   mycroft 		/*
   1881        1.1   mycroft 		 * add back in counts associated with the new frags
   1882        1.1   mycroft 		 */
   1883       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1884       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1885        1.1   mycroft 		/*
   1886        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1887        1.1   mycroft 		 */
   1888      1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1889       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1890       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1891        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1892        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1893       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1894       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1895        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1896        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1897       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1898       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1899       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1900       1.75       dbj 				KASSERT(i >= 0);
   1901       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1902       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1903       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1904       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1905       1.73       dbj 				    bbase)], 1, needswap);
   1906       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1907       1.73       dbj 			}
   1908        1.1   mycroft 		}
   1909        1.1   mycroft 	}
   1910        1.1   mycroft 	fs->fs_fmod = 1;
   1911       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1912      1.101        ad 	mutex_exit(&ump->um_lock);
   1913        1.1   mycroft }
   1914        1.1   mycroft 
   1915        1.1   mycroft /*
   1916        1.1   mycroft  * Free an inode.
   1917       1.30      fvdl  */
   1918       1.30      fvdl int
   1919       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1920       1.30      fvdl {
   1921       1.30      fvdl 
   1922      1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1923       1.30      fvdl }
   1924       1.30      fvdl 
   1925       1.30      fvdl /*
   1926       1.30      fvdl  * Do the actual free operation.
   1927        1.1   mycroft  * The specified inode is placed back in the free map.
   1928      1.111    simonb  *
   1929      1.111    simonb  * => um_lock not held on entry or exit
   1930        1.1   mycroft  */
   1931        1.1   mycroft int
   1932      1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1933      1.119     joerg {
   1934      1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1935      1.119     joerg 	struct fs *fs = ump->um_fs;
   1936      1.119     joerg 	struct vnode *devvp;
   1937      1.119     joerg 	struct cg *cgp;
   1938      1.119     joerg 	struct buf *bp;
   1939      1.119     joerg 	int error, cg;
   1940      1.119     joerg 	daddr_t cgbno;
   1941      1.119     joerg 	dev_t dev;
   1942      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1943      1.119     joerg 
   1944      1.119     joerg 	cg = ino_to_cg(fs, ino);
   1945      1.119     joerg 	devvp = ump->um_devvp;
   1946      1.119     joerg 	dev = devvp->v_rdev;
   1947      1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1948      1.119     joerg 
   1949      1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1950      1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1951      1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1952      1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1953  1.147.2.1     skrll 	    B_MODIFY, &bp);
   1954      1.119     joerg 	if (error) {
   1955      1.119     joerg 		return (error);
   1956      1.119     joerg 	}
   1957      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1958      1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1959      1.119     joerg 		brelse(bp, 0);
   1960      1.119     joerg 		return (0);
   1961      1.119     joerg 	}
   1962      1.119     joerg 
   1963      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1964      1.119     joerg 
   1965      1.119     joerg 	bdwrite(bp);
   1966      1.119     joerg 
   1967      1.119     joerg 	return 0;
   1968      1.119     joerg }
   1969      1.119     joerg 
   1970      1.119     joerg int
   1971      1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1972        1.9  christos {
   1973      1.101        ad 	struct ufsmount *ump;
   1974       1.33  augustss 	struct cg *cgp;
   1975        1.1   mycroft 	struct buf *bp;
   1976        1.1   mycroft 	int error, cg;
   1977       1.76   hannken 	daddr_t cgbno;
   1978       1.78   hannken 	dev_t dev;
   1979       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1980        1.1   mycroft 
   1981      1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   1982      1.111    simonb 
   1983       1.76   hannken 	cg = ino_to_cg(fs, ino);
   1984      1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1985      1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1986      1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1987        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1988      1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1989      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   1990      1.120  christos 		    fs->fs_fsmnt);
   1991      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1992  1.147.2.1     skrll 	    B_MODIFY, &bp);
   1993        1.1   mycroft 	if (error) {
   1994       1.30      fvdl 		return (error);
   1995        1.1   mycroft 	}
   1996        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1997       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1998      1.101        ad 		brelse(bp, 0);
   1999        1.1   mycroft 		return (0);
   2000        1.1   mycroft 	}
   2001      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2002      1.119     joerg 
   2003      1.119     joerg 	bdwrite(bp);
   2004      1.119     joerg 
   2005      1.119     joerg 	return 0;
   2006      1.119     joerg }
   2007      1.119     joerg 
   2008      1.119     joerg static void
   2009      1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2010      1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2011      1.119     joerg {
   2012      1.119     joerg 	int cg;
   2013      1.119     joerg 	struct cg *cgp;
   2014      1.119     joerg 	u_int8_t *inosused;
   2015      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2016      1.119     joerg 
   2017      1.119     joerg 	cg = ino_to_cg(fs, ino);
   2018      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2019       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2020       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2021       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2022       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2023       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2024        1.1   mycroft 	ino %= fs->fs_ipg;
   2025       1.62      fvdl 	if (isclr(inosused, ino)) {
   2026      1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2027      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2028      1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2029        1.1   mycroft 		if (fs->fs_ronly == 0)
   2030        1.1   mycroft 			panic("ifree: freeing free inode");
   2031        1.1   mycroft 	}
   2032       1.62      fvdl 	clrbit(inosused, ino);
   2033      1.113   hannken 	if (!devvp_is_snapshot)
   2034      1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2035      1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2036       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2037       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2038       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2039      1.101        ad 	mutex_enter(&ump->um_lock);
   2040        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2041        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2042       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2043       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2044        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2045        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2046        1.1   mycroft 	}
   2047        1.1   mycroft 	fs->fs_fmod = 1;
   2048       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2049      1.101        ad 	mutex_exit(&ump->um_lock);
   2050        1.1   mycroft }
   2051        1.1   mycroft 
   2052        1.1   mycroft /*
   2053       1.76   hannken  * Check to see if a file is free.
   2054       1.76   hannken  */
   2055       1.76   hannken int
   2056       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2057       1.76   hannken {
   2058       1.76   hannken 	struct cg *cgp;
   2059       1.76   hannken 	struct buf *bp;
   2060       1.76   hannken 	daddr_t cgbno;
   2061       1.76   hannken 	int ret, cg;
   2062       1.76   hannken 	u_int8_t *inosused;
   2063      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2064       1.76   hannken 
   2065      1.119     joerg 	KASSERT(devvp_is_snapshot);
   2066      1.119     joerg 
   2067       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2068      1.113   hannken 	if (devvp_is_snapshot)
   2069      1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2070      1.113   hannken 	else
   2071      1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2072       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2073       1.76   hannken 		return 1;
   2074  1.147.2.1     skrll 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2075       1.76   hannken 		return 1;
   2076       1.76   hannken 	}
   2077       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2078       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2079      1.101        ad 		brelse(bp, 0);
   2080       1.76   hannken 		return 1;
   2081       1.76   hannken 	}
   2082       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2083       1.76   hannken 	ino %= fs->fs_ipg;
   2084       1.76   hannken 	ret = isclr(inosused, ino);
   2085      1.101        ad 	brelse(bp, 0);
   2086       1.76   hannken 	return ret;
   2087       1.76   hannken }
   2088       1.76   hannken 
   2089       1.76   hannken /*
   2090        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2091        1.1   mycroft  *
   2092        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2093        1.1   mycroft  * available.
   2094        1.1   mycroft  */
   2095       1.60      fvdl static int32_t
   2096       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2097        1.1   mycroft {
   2098       1.60      fvdl 	int32_t bno;
   2099        1.1   mycroft 	int start, len, loc, i;
   2100        1.1   mycroft 	int blk, field, subfield, pos;
   2101       1.19    bouyer 	int ostart, olen;
   2102       1.62      fvdl 	u_int8_t *blksfree;
   2103       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2104        1.1   mycroft 
   2105      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2106      1.101        ad 
   2107        1.1   mycroft 	/*
   2108        1.1   mycroft 	 * find the fragment by searching through the free block
   2109        1.1   mycroft 	 * map for an appropriate bit pattern
   2110        1.1   mycroft 	 */
   2111        1.1   mycroft 	if (bpref)
   2112        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2113        1.1   mycroft 	else
   2114       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2115       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2116        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2117       1.19    bouyer 	ostart = start;
   2118       1.19    bouyer 	olen = len;
   2119       1.45     lukem 	loc = scanc((u_int)len,
   2120       1.62      fvdl 		(const u_char *)&blksfree[start],
   2121       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2122       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2123        1.1   mycroft 	if (loc == 0) {
   2124        1.1   mycroft 		len = start + 1;
   2125        1.1   mycroft 		start = 0;
   2126       1.45     lukem 		loc = scanc((u_int)len,
   2127       1.62      fvdl 			(const u_char *)&blksfree[0],
   2128       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2129       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2130        1.1   mycroft 		if (loc == 0) {
   2131       1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2132       1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2133       1.20      ross 			printf("offset=%d %ld\n",
   2134       1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2135       1.62      fvdl 				(long)blksfree - (long)cgp);
   2136       1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2137        1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2138        1.1   mycroft 			/* NOTREACHED */
   2139        1.1   mycroft 		}
   2140        1.1   mycroft 	}
   2141        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2142       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2143        1.1   mycroft 	/*
   2144        1.1   mycroft 	 * found the byte in the map
   2145        1.1   mycroft 	 * sift through the bits to find the selected frag
   2146        1.1   mycroft 	 */
   2147        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2148       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2149        1.1   mycroft 		blk <<= 1;
   2150        1.1   mycroft 		field = around[allocsiz];
   2151        1.1   mycroft 		subfield = inside[allocsiz];
   2152        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2153        1.1   mycroft 			if ((blk & field) == subfield)
   2154        1.1   mycroft 				return (bno + pos);
   2155        1.1   mycroft 			field <<= 1;
   2156        1.1   mycroft 			subfield <<= 1;
   2157        1.1   mycroft 		}
   2158        1.1   mycroft 	}
   2159       1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2160        1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2161       1.58      fvdl 	/* return (-1); */
   2162        1.1   mycroft }
   2163        1.1   mycroft 
   2164        1.1   mycroft /*
   2165        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2166       1.81     perry  *
   2167        1.1   mycroft  * The form of the error message is:
   2168        1.1   mycroft  *	fs: error message
   2169        1.1   mycroft  */
   2170        1.1   mycroft static void
   2171  1.147.2.2     skrll ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2172        1.1   mycroft {
   2173  1.147.2.2     skrll 	KASSERT(cred != NULL);
   2174        1.1   mycroft 
   2175  1.147.2.2     skrll 	if (cred == NOCRED || cred == FSCRED) {
   2176  1.147.2.2     skrll 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2177  1.147.2.2     skrll 		    curproc->p_pid, curproc->p_comm,
   2178  1.147.2.2     skrll 		    fs->fs_fsmnt, cp);
   2179  1.147.2.2     skrll 	} else {
   2180  1.147.2.2     skrll 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2181  1.147.2.2     skrll 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2182  1.147.2.2     skrll 		    fs->fs_fsmnt, cp);
   2183  1.147.2.2     skrll 	}
   2184        1.1   mycroft }
   2185