ffs_alloc.c revision 1.148 1 1.148 hannken /* $NetBSD: ffs_alloc.c,v 1.148 2015/03/17 09:39:29 hannken Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.122 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.148 hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.148 2015/03/17 09:39:29 hannken Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.129 chs #include "opt_uvm_page_trkown.h"
79 1.22 scottr #endif
80 1.1 mycroft
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/buf.h>
84 1.130 tls #include <sys/cprng.h>
85 1.111 simonb #include <sys/fstrans.h>
86 1.111 simonb #include <sys/kauth.h>
87 1.111 simonb #include <sys/kernel.h>
88 1.111 simonb #include <sys/mount.h>
89 1.1 mycroft #include <sys/proc.h>
90 1.111 simonb #include <sys/syslog.h>
91 1.1 mycroft #include <sys/vnode.h>
92 1.111 simonb #include <sys/wapbl.h>
93 1.147 joerg #include <sys/cprng.h>
94 1.29 mrg
95 1.76 hannken #include <miscfs/specfs/specdev.h>
96 1.1 mycroft #include <ufs/ufs/quota.h>
97 1.19 bouyer #include <ufs/ufs/ufsmount.h>
98 1.1 mycroft #include <ufs/ufs/inode.h>
99 1.9 christos #include <ufs/ufs/ufs_extern.h>
100 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
101 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
102 1.1 mycroft
103 1.1 mycroft #include <ufs/ffs/fs.h>
104 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
105 1.1 mycroft
106 1.129 chs #ifdef UVM_PAGE_TRKOWN
107 1.129 chs #include <uvm/uvm.h>
108 1.129 chs #endif
109 1.129 chs
110 1.111 simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
111 1.111 simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
112 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
113 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
114 1.85 thorpej static void ffs_fserr(struct fs *, u_int, const char *);
115 1.111 simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
116 1.111 simonb daddr_t (*)(struct inode *, int, daddr_t, int, int));
117 1.111 simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
118 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
119 1.85 thorpej daddr_t, int);
120 1.119 joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
121 1.116 joerg daddr_t, long, bool);
122 1.119 joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
123 1.119 joerg int, bool);
124 1.23 drochner
125 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
126 1.34 jdolecek int ffs_log_changeopt = 0;
127 1.34 jdolecek
128 1.23 drochner /* in ffs_tables.c */
129 1.40 jdolecek extern const int inside[], around[];
130 1.40 jdolecek extern const u_char * const fragtbl[];
131 1.1 mycroft
132 1.116 joerg /* Basic consistency check for block allocations */
133 1.116 joerg static int
134 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
135 1.116 joerg long size, dev_t dev, ino_t inum)
136 1.116 joerg {
137 1.134 dholland if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
138 1.138 dholland ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
139 1.120 christos printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
140 1.120 christos "size = %ld, fs = %s\n",
141 1.120 christos (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
142 1.116 joerg panic("%s: bad size", func);
143 1.116 joerg }
144 1.116 joerg
145 1.116 joerg if (bno >= fs->fs_size) {
146 1.116 joerg printf("bad block %" PRId64 ", ino %llu\n", bno,
147 1.116 joerg (unsigned long long)inum);
148 1.116 joerg ffs_fserr(fs, inum, "bad block");
149 1.116 joerg return EINVAL;
150 1.116 joerg }
151 1.116 joerg return 0;
152 1.116 joerg }
153 1.116 joerg
154 1.1 mycroft /*
155 1.1 mycroft * Allocate a block in the file system.
156 1.81 perry *
157 1.1 mycroft * The size of the requested block is given, which must be some
158 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
159 1.1 mycroft * A preference may be optionally specified. If a preference is given
160 1.1 mycroft * the following hierarchy is used to allocate a block:
161 1.1 mycroft * 1) allocate the requested block.
162 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
163 1.1 mycroft * 3) allocate a block in the same cylinder group.
164 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
165 1.1 mycroft * available block is located.
166 1.47 wiz * If no block preference is given the following hierarchy is used
167 1.1 mycroft * to allocate a block:
168 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
169 1.1 mycroft * inode for the file.
170 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
171 1.1 mycroft * available block is located.
172 1.106 pooka *
173 1.106 pooka * => called with um_lock held
174 1.106 pooka * => releases um_lock before returning
175 1.1 mycroft */
176 1.9 christos int
177 1.111 simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
178 1.91 elad kauth_cred_t cred, daddr_t *bnp)
179 1.1 mycroft {
180 1.101 ad struct ufsmount *ump;
181 1.62 fvdl struct fs *fs;
182 1.58 fvdl daddr_t bno;
183 1.9 christos int cg;
184 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
185 1.9 christos int error;
186 1.9 christos #endif
187 1.81 perry
188 1.62 fvdl fs = ip->i_fs;
189 1.101 ad ump = ip->i_ump;
190 1.101 ad
191 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
192 1.62 fvdl
193 1.37 chs #ifdef UVM_PAGE_TRKOWN
194 1.129 chs
195 1.129 chs /*
196 1.129 chs * Sanity-check that allocations within the file size
197 1.129 chs * do not allow other threads to read the stale contents
198 1.129 chs * of newly allocated blocks.
199 1.129 chs * Usually pages will exist to cover the new allocation.
200 1.129 chs * There is an optimization in ffs_write() where we skip
201 1.129 chs * creating pages if several conditions are met:
202 1.129 chs * - the file must not be mapped (in any user address space).
203 1.129 chs * - the write must cover whole pages and whole blocks.
204 1.129 chs * If those conditions are not met then pages must exist and
205 1.129 chs * be locked by the current thread.
206 1.129 chs */
207 1.129 chs
208 1.51 chs if (ITOV(ip)->v_type == VREG &&
209 1.137 dholland ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
210 1.37 chs struct vm_page *pg;
211 1.129 chs struct vnode *vp = ITOV(ip);
212 1.129 chs struct uvm_object *uobj = &vp->v_uobj;
213 1.137 dholland voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
214 1.137 dholland voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
215 1.37 chs
216 1.128 rmind mutex_enter(uobj->vmobjlock);
217 1.37 chs while (off < endoff) {
218 1.37 chs pg = uvm_pagelookup(uobj, off);
219 1.129 chs KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
220 1.129 chs (size & PAGE_MASK) == 0 &&
221 1.135 dholland ffs_blkoff(fs, size) == 0) ||
222 1.129 chs (pg != NULL && pg->owner == curproc->p_pid &&
223 1.129 chs pg->lowner == curlwp->l_lid));
224 1.37 chs off += PAGE_SIZE;
225 1.37 chs }
226 1.128 rmind mutex_exit(uobj->vmobjlock);
227 1.37 chs }
228 1.37 chs #endif
229 1.37 chs
230 1.1 mycroft *bnp = 0;
231 1.1 mycroft #ifdef DIAGNOSTIC
232 1.134 dholland if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
233 1.120 christos printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
234 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, size,
235 1.120 christos fs->fs_fsmnt);
236 1.1 mycroft panic("ffs_alloc: bad size");
237 1.1 mycroft }
238 1.1 mycroft if (cred == NOCRED)
239 1.56 provos panic("ffs_alloc: missing credential");
240 1.1 mycroft #endif /* DIAGNOSTIC */
241 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
242 1.1 mycroft goto nospace;
243 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
244 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
245 1.124 elad NULL, NULL) != 0)
246 1.1 mycroft goto nospace;
247 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
248 1.101 ad mutex_exit(&ump->um_lock);
249 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
250 1.1 mycroft return (error);
251 1.101 ad mutex_enter(&ump->um_lock);
252 1.1 mycroft #endif
253 1.111 simonb
254 1.1 mycroft if (bpref >= fs->fs_size)
255 1.1 mycroft bpref = 0;
256 1.1 mycroft if (bpref == 0)
257 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
258 1.1 mycroft else
259 1.1 mycroft cg = dtog(fs, bpref);
260 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
261 1.1 mycroft if (bno > 0) {
262 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
263 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
264 1.1 mycroft *bnp = bno;
265 1.1 mycroft return (0);
266 1.1 mycroft }
267 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
268 1.1 mycroft /*
269 1.1 mycroft * Restore user's disk quota because allocation failed.
270 1.1 mycroft */
271 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
272 1.1 mycroft #endif
273 1.111 simonb if (flags & B_CONTIG) {
274 1.111 simonb /*
275 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
276 1.111 simonb * For the case where ffs_hashalloc() fails early
277 1.111 simonb * in the B_CONTIG case we reach here with um_lock
278 1.111 simonb * already unlocked, so we can't release it again
279 1.111 simonb * like in the normal error path. See kern/39206.
280 1.111 simonb *
281 1.111 simonb *
282 1.111 simonb * Fail silently - it's up to our caller to report
283 1.111 simonb * errors.
284 1.111 simonb */
285 1.111 simonb return (ENOSPC);
286 1.111 simonb }
287 1.1 mycroft nospace:
288 1.101 ad mutex_exit(&ump->um_lock);
289 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
290 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
291 1.1 mycroft return (ENOSPC);
292 1.1 mycroft }
293 1.1 mycroft
294 1.1 mycroft /*
295 1.1 mycroft * Reallocate a fragment to a bigger size
296 1.1 mycroft *
297 1.1 mycroft * The number and size of the old block is given, and a preference
298 1.1 mycroft * and new size is also specified. The allocator attempts to extend
299 1.1 mycroft * the original block. Failing that, the regular block allocator is
300 1.1 mycroft * invoked to get an appropriate block.
301 1.106 pooka *
302 1.106 pooka * => called with um_lock held
303 1.106 pooka * => return with um_lock released
304 1.1 mycroft */
305 1.9 christos int
306 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
307 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
308 1.1 mycroft {
309 1.101 ad struct ufsmount *ump;
310 1.62 fvdl struct fs *fs;
311 1.1 mycroft struct buf *bp;
312 1.1 mycroft int cg, request, error;
313 1.58 fvdl daddr_t bprev, bno;
314 1.25 thorpej
315 1.62 fvdl fs = ip->i_fs;
316 1.101 ad ump = ip->i_ump;
317 1.101 ad
318 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
319 1.101 ad
320 1.37 chs #ifdef UVM_PAGE_TRKOWN
321 1.129 chs
322 1.129 chs /*
323 1.129 chs * Sanity-check that allocations within the file size
324 1.129 chs * do not allow other threads to read the stale contents
325 1.129 chs * of newly allocated blocks.
326 1.129 chs * Unlike in ffs_alloc(), here pages must always exist
327 1.129 chs * for such allocations, because only the last block of a file
328 1.129 chs * can be a fragment and ffs_write() will reallocate the
329 1.129 chs * fragment to the new size using ufs_balloc_range(),
330 1.129 chs * which always creates pages to cover blocks it allocates.
331 1.129 chs */
332 1.129 chs
333 1.37 chs if (ITOV(ip)->v_type == VREG) {
334 1.37 chs struct vm_page *pg;
335 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
336 1.137 dholland voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
337 1.137 dholland voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
338 1.37 chs
339 1.128 rmind mutex_enter(uobj->vmobjlock);
340 1.37 chs while (off < endoff) {
341 1.37 chs pg = uvm_pagelookup(uobj, off);
342 1.129 chs KASSERT(pg->owner == curproc->p_pid &&
343 1.129 chs pg->lowner == curlwp->l_lid);
344 1.37 chs off += PAGE_SIZE;
345 1.37 chs }
346 1.128 rmind mutex_exit(uobj->vmobjlock);
347 1.37 chs }
348 1.37 chs #endif
349 1.37 chs
350 1.1 mycroft #ifdef DIAGNOSTIC
351 1.134 dholland if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
352 1.134 dholland (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
353 1.13 christos printf(
354 1.120 christos "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
355 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
356 1.120 christos fs->fs_fsmnt);
357 1.1 mycroft panic("ffs_realloccg: bad size");
358 1.1 mycroft }
359 1.1 mycroft if (cred == NOCRED)
360 1.56 provos panic("ffs_realloccg: missing credential");
361 1.1 mycroft #endif /* DIAGNOSTIC */
362 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
363 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
364 1.124 elad NULL, NULL) != 0) {
365 1.101 ad mutex_exit(&ump->um_lock);
366 1.1 mycroft goto nospace;
367 1.101 ad }
368 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
369 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
370 1.60 fvdl else
371 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
372 1.60 fvdl
373 1.60 fvdl if (bprev == 0) {
374 1.120 christos printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
375 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
376 1.120 christos fs->fs_fsmnt);
377 1.1 mycroft panic("ffs_realloccg: bad bprev");
378 1.1 mycroft }
379 1.101 ad mutex_exit(&ump->um_lock);
380 1.101 ad
381 1.1 mycroft /*
382 1.1 mycroft * Allocate the extra space in the buffer.
383 1.1 mycroft */
384 1.37 chs if (bpp != NULL &&
385 1.107 hannken (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
386 1.1 mycroft return (error);
387 1.1 mycroft }
388 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
389 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
390 1.44 chs if (bpp != NULL) {
391 1.101 ad brelse(bp, 0);
392 1.44 chs }
393 1.1 mycroft return (error);
394 1.1 mycroft }
395 1.1 mycroft #endif
396 1.1 mycroft /*
397 1.1 mycroft * Check for extension in the existing location.
398 1.1 mycroft */
399 1.1 mycroft cg = dtog(fs, bprev);
400 1.101 ad mutex_enter(&ump->um_lock);
401 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
402 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
403 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
404 1.37 chs
405 1.37 chs if (bpp != NULL) {
406 1.136 dholland if (bp->b_blkno != FFS_FSBTODB(fs, bno))
407 1.37 chs panic("bad blockno");
408 1.72 pk allocbuf(bp, nsize, 1);
409 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
410 1.105 ad mutex_enter(bp->b_objlock);
411 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
412 1.105 ad bp->b_oflags |= BO_DONE;
413 1.105 ad mutex_exit(bp->b_objlock);
414 1.37 chs *bpp = bp;
415 1.37 chs }
416 1.37 chs if (blknop != NULL) {
417 1.37 chs *blknop = bno;
418 1.37 chs }
419 1.1 mycroft return (0);
420 1.1 mycroft }
421 1.1 mycroft /*
422 1.1 mycroft * Allocate a new disk location.
423 1.1 mycroft */
424 1.1 mycroft if (bpref >= fs->fs_size)
425 1.1 mycroft bpref = 0;
426 1.1 mycroft switch ((int)fs->fs_optim) {
427 1.1 mycroft case FS_OPTSPACE:
428 1.1 mycroft /*
429 1.81 perry * Allocate an exact sized fragment. Although this makes
430 1.81 perry * best use of space, we will waste time relocating it if
431 1.1 mycroft * the file continues to grow. If the fragmentation is
432 1.1 mycroft * less than half of the minimum free reserve, we choose
433 1.1 mycroft * to begin optimizing for time.
434 1.1 mycroft */
435 1.1 mycroft request = nsize;
436 1.1 mycroft if (fs->fs_minfree < 5 ||
437 1.1 mycroft fs->fs_cstotal.cs_nffree >
438 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
439 1.1 mycroft break;
440 1.34 jdolecek
441 1.34 jdolecek if (ffs_log_changeopt) {
442 1.34 jdolecek log(LOG_NOTICE,
443 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
444 1.34 jdolecek fs->fs_fsmnt);
445 1.34 jdolecek }
446 1.34 jdolecek
447 1.1 mycroft fs->fs_optim = FS_OPTTIME;
448 1.1 mycroft break;
449 1.1 mycroft case FS_OPTTIME:
450 1.1 mycroft /*
451 1.1 mycroft * At this point we have discovered a file that is trying to
452 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
453 1.1 mycroft * we allocate a full sized block, then free the unused portion.
454 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
455 1.1 mycroft * above will be able to grow it in place without further
456 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
457 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
458 1.1 mycroft * optimizing for space.
459 1.1 mycroft */
460 1.1 mycroft request = fs->fs_bsize;
461 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
462 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
463 1.1 mycroft break;
464 1.34 jdolecek
465 1.34 jdolecek if (ffs_log_changeopt) {
466 1.34 jdolecek log(LOG_NOTICE,
467 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
468 1.34 jdolecek fs->fs_fsmnt);
469 1.34 jdolecek }
470 1.34 jdolecek
471 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
472 1.1 mycroft break;
473 1.1 mycroft default:
474 1.120 christos printf("dev = 0x%llx, optim = %d, fs = %s\n",
475 1.120 christos (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
476 1.1 mycroft panic("ffs_realloccg: bad optim");
477 1.1 mycroft /* NOTREACHED */
478 1.1 mycroft }
479 1.111 simonb bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
480 1.1 mycroft if (bno > 0) {
481 1.122 ad if ((ip->i_ump->um_mountp->mnt_wapbl) &&
482 1.122 ad (ITOV(ip)->v_type != VREG)) {
483 1.122 ad UFS_WAPBL_REGISTER_DEALLOCATION(
484 1.136 dholland ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
485 1.122 ad osize);
486 1.122 ad } else {
487 1.122 ad ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
488 1.122 ad ip->i_number);
489 1.111 simonb }
490 1.111 simonb if (nsize < request) {
491 1.111 simonb if ((ip->i_ump->um_mountp->mnt_wapbl) &&
492 1.111 simonb (ITOV(ip)->v_type != VREG)) {
493 1.111 simonb UFS_WAPBL_REGISTER_DEALLOCATION(
494 1.111 simonb ip->i_ump->um_mountp,
495 1.137 dholland FFS_FSBTODB(fs, (bno + ffs_numfrags(fs, nsize))),
496 1.111 simonb request - nsize);
497 1.111 simonb } else
498 1.111 simonb ffs_blkfree(fs, ip->i_devvp,
499 1.137 dholland bno + ffs_numfrags(fs, nsize),
500 1.111 simonb (long)(request - nsize), ip->i_number);
501 1.111 simonb }
502 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
503 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
504 1.37 chs if (bpp != NULL) {
505 1.136 dholland bp->b_blkno = FFS_FSBTODB(fs, bno);
506 1.72 pk allocbuf(bp, nsize, 1);
507 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
508 1.105 ad mutex_enter(bp->b_objlock);
509 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
510 1.105 ad bp->b_oflags |= BO_DONE;
511 1.105 ad mutex_exit(bp->b_objlock);
512 1.37 chs *bpp = bp;
513 1.37 chs }
514 1.37 chs if (blknop != NULL) {
515 1.37 chs *blknop = bno;
516 1.37 chs }
517 1.1 mycroft return (0);
518 1.1 mycroft }
519 1.101 ad mutex_exit(&ump->um_lock);
520 1.101 ad
521 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
522 1.1 mycroft /*
523 1.1 mycroft * Restore user's disk quota because allocation failed.
524 1.1 mycroft */
525 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
526 1.1 mycroft #endif
527 1.37 chs if (bpp != NULL) {
528 1.101 ad brelse(bp, 0);
529 1.37 chs }
530 1.37 chs
531 1.1 mycroft nospace:
532 1.1 mycroft /*
533 1.1 mycroft * no space available
534 1.1 mycroft */
535 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
536 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
537 1.1 mycroft return (ENOSPC);
538 1.1 mycroft }
539 1.1 mycroft
540 1.1 mycroft /*
541 1.1 mycroft * Allocate an inode in the file system.
542 1.81 perry *
543 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
544 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
545 1.1 mycroft * 1) allocate the preferred inode.
546 1.1 mycroft * 2) allocate an inode in the same cylinder group.
547 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
548 1.1 mycroft * available inode is located.
549 1.47 wiz * If no inode preference is given the following hierarchy is used
550 1.1 mycroft * to allocate an inode:
551 1.1 mycroft * 1) allocate an inode in cylinder group 0.
552 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
553 1.1 mycroft * available inode is located.
554 1.106 pooka *
555 1.106 pooka * => um_lock not held upon entry or return
556 1.1 mycroft */
557 1.9 christos int
558 1.148 hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
559 1.9 christos {
560 1.101 ad struct ufsmount *ump;
561 1.33 augustss struct inode *pip;
562 1.33 augustss struct fs *fs;
563 1.1 mycroft ino_t ino, ipref;
564 1.1 mycroft int cg, error;
565 1.81 perry
566 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
567 1.111 simonb
568 1.1 mycroft pip = VTOI(pvp);
569 1.1 mycroft fs = pip->i_fs;
570 1.101 ad ump = pip->i_ump;
571 1.101 ad
572 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
573 1.111 simonb if (error) {
574 1.111 simonb return error;
575 1.111 simonb }
576 1.101 ad mutex_enter(&ump->um_lock);
577 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
578 1.1 mycroft goto noinodes;
579 1.1 mycroft
580 1.1 mycroft if ((mode & IFMT) == IFDIR)
581 1.50 lukem ipref = ffs_dirpref(pip);
582 1.50 lukem else
583 1.50 lukem ipref = pip->i_number;
584 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
585 1.1 mycroft ipref = 0;
586 1.1 mycroft cg = ino_to_cg(fs, ipref);
587 1.50 lukem /*
588 1.50 lukem * Track number of dirs created one after another
589 1.50 lukem * in a same cg without intervening by files.
590 1.50 lukem */
591 1.50 lukem if ((mode & IFMT) == IFDIR) {
592 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
593 1.50 lukem fs->fs_contigdirs[cg]++;
594 1.50 lukem } else {
595 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
596 1.50 lukem fs->fs_contigdirs[cg]--;
597 1.50 lukem }
598 1.111 simonb ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
599 1.1 mycroft if (ino == 0)
600 1.1 mycroft goto noinodes;
601 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
602 1.148 hannken *inop = ino;
603 1.148 hannken return 0;
604 1.60 fvdl
605 1.1 mycroft noinodes:
606 1.101 ad mutex_exit(&ump->um_lock);
607 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
608 1.91 elad ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
609 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
610 1.148 hannken return ENOSPC;
611 1.1 mycroft }
612 1.1 mycroft
613 1.1 mycroft /*
614 1.50 lukem * Find a cylinder group in which to place a directory.
615 1.42 sommerfe *
616 1.50 lukem * The policy implemented by this algorithm is to allocate a
617 1.50 lukem * directory inode in the same cylinder group as its parent
618 1.50 lukem * directory, but also to reserve space for its files inodes
619 1.50 lukem * and data. Restrict the number of directories which may be
620 1.50 lukem * allocated one after another in the same cylinder group
621 1.50 lukem * without intervening allocation of files.
622 1.42 sommerfe *
623 1.50 lukem * If we allocate a first level directory then force allocation
624 1.50 lukem * in another cylinder group.
625 1.1 mycroft */
626 1.1 mycroft static ino_t
627 1.85 thorpej ffs_dirpref(struct inode *pip)
628 1.1 mycroft {
629 1.50 lukem register struct fs *fs;
630 1.74 soren int cg, prefcg;
631 1.89 dsl int64_t dirsize, cgsize, curdsz;
632 1.89 dsl int avgifree, avgbfree, avgndir;
633 1.50 lukem int minifree, minbfree, maxndir;
634 1.50 lukem int mincg, minndir;
635 1.50 lukem int maxcontigdirs;
636 1.50 lukem
637 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
638 1.101 ad
639 1.50 lukem fs = pip->i_fs;
640 1.1 mycroft
641 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
642 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
643 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
644 1.50 lukem
645 1.50 lukem /*
646 1.50 lukem * Force allocation in another cg if creating a first level dir.
647 1.50 lukem */
648 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
649 1.147 joerg prefcg = cprng_fast32() % fs->fs_ncg;
650 1.50 lukem mincg = prefcg;
651 1.50 lukem minndir = fs->fs_ipg;
652 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
653 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
654 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
655 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
656 1.42 sommerfe mincg = cg;
657 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
658 1.42 sommerfe }
659 1.50 lukem for (cg = 0; cg < prefcg; cg++)
660 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
661 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
662 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
663 1.50 lukem mincg = cg;
664 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
665 1.42 sommerfe }
666 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
667 1.42 sommerfe }
668 1.50 lukem
669 1.50 lukem /*
670 1.50 lukem * Count various limits which used for
671 1.50 lukem * optimal allocation of a directory inode.
672 1.144 bad * Try cylinder groups with >75% avgifree and avgbfree.
673 1.144 bad * Avoid cylinder groups with no free blocks or inodes as that
674 1.144 bad * triggers an I/O-expensive cylinder group scan.
675 1.50 lukem */
676 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
677 1.144 bad minifree = avgifree - avgifree / 4;
678 1.144 bad if (minifree < 1)
679 1.144 bad minifree = 1;
680 1.144 bad minbfree = avgbfree - avgbfree / 4;
681 1.144 bad if (minbfree < 1)
682 1.144 bad minbfree = 1;
683 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
684 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
685 1.89 dsl if (avgndir != 0) {
686 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
687 1.89 dsl if (dirsize < curdsz)
688 1.89 dsl dirsize = curdsz;
689 1.89 dsl }
690 1.89 dsl if (cgsize < dirsize * 255)
691 1.144 bad maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
692 1.89 dsl else
693 1.89 dsl maxcontigdirs = 255;
694 1.50 lukem if (fs->fs_avgfpdir > 0)
695 1.50 lukem maxcontigdirs = min(maxcontigdirs,
696 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
697 1.50 lukem if (maxcontigdirs == 0)
698 1.50 lukem maxcontigdirs = 1;
699 1.50 lukem
700 1.50 lukem /*
701 1.81 perry * Limit number of dirs in one cg and reserve space for
702 1.50 lukem * regular files, but only if we have no deficit in
703 1.50 lukem * inodes or space.
704 1.50 lukem */
705 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
706 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
707 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
708 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
709 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
710 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
711 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
712 1.50 lukem }
713 1.50 lukem for (cg = 0; cg < prefcg; cg++)
714 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
715 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
716 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
717 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
718 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
719 1.50 lukem }
720 1.50 lukem /*
721 1.50 lukem * This is a backstop when we are deficient in space.
722 1.50 lukem */
723 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
724 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
725 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
726 1.50 lukem for (cg = 0; cg < prefcg; cg++)
727 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
728 1.50 lukem break;
729 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
730 1.1 mycroft }
731 1.1 mycroft
732 1.1 mycroft /*
733 1.1 mycroft * Select the desired position for the next block in a file. The file is
734 1.1 mycroft * logically divided into sections. The first section is composed of the
735 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
736 1.81 perry *
737 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
738 1.1 mycroft * request a block in the same cylinder group as the inode that describes
739 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
740 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
741 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
742 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
743 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
744 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
745 1.1 mycroft * continues until a cylinder group with greater than the average number
746 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
747 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
748 1.1 mycroft * here a best guess is made based upon the logical block number being
749 1.1 mycroft * allocated.
750 1.81 perry *
751 1.1 mycroft * If a section is already partially allocated, the policy is to
752 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
753 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
754 1.60 fvdl * contigously if possible.
755 1.106 pooka *
756 1.106 pooka * => um_lock held on entry and exit
757 1.1 mycroft */
758 1.58 fvdl daddr_t
759 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
760 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
761 1.1 mycroft {
762 1.33 augustss struct fs *fs;
763 1.33 augustss int cg;
764 1.1 mycroft int avgbfree, startcg;
765 1.1 mycroft
766 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
767 1.101 ad
768 1.1 mycroft fs = ip->i_fs;
769 1.111 simonb
770 1.111 simonb /*
771 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
772 1.111 simonb * in the inode extentions to return the desired block.
773 1.111 simonb *
774 1.111 simonb * For metadata (indirect blocks) return the address of where
775 1.111 simonb * the first indirect block resides - we'll scan for the next
776 1.111 simonb * available slot if we need to allocate more than one indirect
777 1.111 simonb * block. For data, return the address of the actual block
778 1.111 simonb * relative to the address of the first data block.
779 1.111 simonb */
780 1.111 simonb if (flags & B_CONTIG) {
781 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
782 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
783 1.111 simonb if (flags & B_METAONLY)
784 1.111 simonb return ip->i_ffs_first_indir_blk;
785 1.111 simonb else
786 1.138 dholland return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
787 1.111 simonb }
788 1.111 simonb
789 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
790 1.134 dholland if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
791 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
792 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
793 1.1 mycroft }
794 1.1 mycroft /*
795 1.1 mycroft * Find a cylinder with greater than average number of
796 1.1 mycroft * unused data blocks.
797 1.1 mycroft */
798 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
799 1.1 mycroft startcg =
800 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
801 1.1 mycroft else
802 1.19 bouyer startcg = dtog(fs,
803 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
804 1.1 mycroft startcg %= fs->fs_ncg;
805 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
806 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
807 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
808 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
809 1.1 mycroft }
810 1.52 lukem for (cg = 0; cg < startcg; cg++)
811 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
812 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
813 1.1 mycroft }
814 1.35 thorpej return (0);
815 1.1 mycroft }
816 1.1 mycroft /*
817 1.60 fvdl * We just always try to lay things out contiguously.
818 1.60 fvdl */
819 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
820 1.60 fvdl }
821 1.60 fvdl
822 1.60 fvdl daddr_t
823 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
824 1.111 simonb int64_t *bap)
825 1.60 fvdl {
826 1.60 fvdl struct fs *fs;
827 1.60 fvdl int cg;
828 1.60 fvdl int avgbfree, startcg;
829 1.60 fvdl
830 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
831 1.101 ad
832 1.60 fvdl fs = ip->i_fs;
833 1.111 simonb
834 1.111 simonb /*
835 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
836 1.111 simonb * in the inode extentions to return the desired block.
837 1.111 simonb *
838 1.111 simonb * For metadata (indirect blocks) return the address of where
839 1.111 simonb * the first indirect block resides - we'll scan for the next
840 1.111 simonb * available slot if we need to allocate more than one indirect
841 1.111 simonb * block. For data, return the address of the actual block
842 1.111 simonb * relative to the address of the first data block.
843 1.111 simonb */
844 1.111 simonb if (flags & B_CONTIG) {
845 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
846 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
847 1.111 simonb if (flags & B_METAONLY)
848 1.111 simonb return ip->i_ffs_first_indir_blk;
849 1.111 simonb else
850 1.138 dholland return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
851 1.111 simonb }
852 1.111 simonb
853 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
854 1.134 dholland if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
855 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
856 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
857 1.60 fvdl }
858 1.1 mycroft /*
859 1.60 fvdl * Find a cylinder with greater than average number of
860 1.60 fvdl * unused data blocks.
861 1.1 mycroft */
862 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
863 1.60 fvdl startcg =
864 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
865 1.60 fvdl else
866 1.60 fvdl startcg = dtog(fs,
867 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
868 1.60 fvdl startcg %= fs->fs_ncg;
869 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
870 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
871 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
872 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
873 1.60 fvdl }
874 1.60 fvdl for (cg = 0; cg < startcg; cg++)
875 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
876 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
877 1.60 fvdl }
878 1.60 fvdl return (0);
879 1.60 fvdl }
880 1.60 fvdl /*
881 1.60 fvdl * We just always try to lay things out contiguously.
882 1.60 fvdl */
883 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
884 1.1 mycroft }
885 1.1 mycroft
886 1.60 fvdl
887 1.1 mycroft /*
888 1.1 mycroft * Implement the cylinder overflow algorithm.
889 1.1 mycroft *
890 1.1 mycroft * The policy implemented by this algorithm is:
891 1.1 mycroft * 1) allocate the block in its requested cylinder group.
892 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
893 1.1 mycroft * 3) brute force search for a free block.
894 1.106 pooka *
895 1.106 pooka * => called with um_lock held
896 1.106 pooka * => returns with um_lock released on success, held on failure
897 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
898 1.1 mycroft */
899 1.1 mycroft /*VARARGS5*/
900 1.58 fvdl static daddr_t
901 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
902 1.85 thorpej int size /* size for data blocks, mode for inodes */,
903 1.111 simonb int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
904 1.1 mycroft {
905 1.33 augustss struct fs *fs;
906 1.58 fvdl daddr_t result;
907 1.1 mycroft int i, icg = cg;
908 1.1 mycroft
909 1.1 mycroft fs = ip->i_fs;
910 1.1 mycroft /*
911 1.1 mycroft * 1: preferred cylinder group
912 1.1 mycroft */
913 1.111 simonb result = (*allocator)(ip, cg, pref, size, flags);
914 1.1 mycroft if (result)
915 1.1 mycroft return (result);
916 1.111 simonb
917 1.111 simonb if (flags & B_CONTIG)
918 1.111 simonb return (result);
919 1.1 mycroft /*
920 1.1 mycroft * 2: quadratic rehash
921 1.1 mycroft */
922 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
923 1.1 mycroft cg += i;
924 1.1 mycroft if (cg >= fs->fs_ncg)
925 1.1 mycroft cg -= fs->fs_ncg;
926 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
927 1.1 mycroft if (result)
928 1.1 mycroft return (result);
929 1.1 mycroft }
930 1.1 mycroft /*
931 1.1 mycroft * 3: brute force search
932 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
933 1.1 mycroft * and 1 is always checked in the quadratic rehash.
934 1.1 mycroft */
935 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
936 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
937 1.111 simonb result = (*allocator)(ip, cg, 0, size, flags);
938 1.1 mycroft if (result)
939 1.1 mycroft return (result);
940 1.1 mycroft cg++;
941 1.1 mycroft if (cg == fs->fs_ncg)
942 1.1 mycroft cg = 0;
943 1.1 mycroft }
944 1.35 thorpej return (0);
945 1.1 mycroft }
946 1.1 mycroft
947 1.1 mycroft /*
948 1.1 mycroft * Determine whether a fragment can be extended.
949 1.1 mycroft *
950 1.81 perry * Check to see if the necessary fragments are available, and
951 1.1 mycroft * if they are, allocate them.
952 1.106 pooka *
953 1.106 pooka * => called with um_lock held
954 1.106 pooka * => returns with um_lock released on success, held on failure
955 1.1 mycroft */
956 1.58 fvdl static daddr_t
957 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
958 1.1 mycroft {
959 1.101 ad struct ufsmount *ump;
960 1.33 augustss struct fs *fs;
961 1.33 augustss struct cg *cgp;
962 1.1 mycroft struct buf *bp;
963 1.58 fvdl daddr_t bno;
964 1.1 mycroft int frags, bbase;
965 1.1 mycroft int i, error;
966 1.62 fvdl u_int8_t *blksfree;
967 1.1 mycroft
968 1.1 mycroft fs = ip->i_fs;
969 1.101 ad ump = ip->i_ump;
970 1.101 ad
971 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
972 1.101 ad
973 1.137 dholland if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
974 1.35 thorpej return (0);
975 1.137 dholland frags = ffs_numfrags(fs, nsize);
976 1.138 dholland bbase = ffs_fragnum(fs, bprev);
977 1.138 dholland if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
978 1.1 mycroft /* cannot extend across a block boundary */
979 1.35 thorpej return (0);
980 1.1 mycroft }
981 1.101 ad mutex_exit(&ump->um_lock);
982 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
983 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
984 1.101 ad if (error)
985 1.101 ad goto fail;
986 1.1 mycroft cgp = (struct cg *)bp->b_data;
987 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
988 1.101 ad goto fail;
989 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
990 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
991 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
992 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
993 1.1 mycroft bno = dtogd(fs, bprev);
994 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
995 1.137 dholland for (i = ffs_numfrags(fs, osize); i < frags; i++)
996 1.101 ad if (isclr(blksfree, bno + i))
997 1.101 ad goto fail;
998 1.1 mycroft /*
999 1.1 mycroft * the current fragment can be extended
1000 1.1 mycroft * deduct the count on fragment being extended into
1001 1.1 mycroft * increase the count on the remaining fragment (if any)
1002 1.1 mycroft * allocate the extended piece
1003 1.1 mycroft */
1004 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1005 1.62 fvdl if (isclr(blksfree, bno + i))
1006 1.1 mycroft break;
1007 1.137 dholland ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1008 1.1 mycroft if (i != frags)
1009 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1010 1.101 ad mutex_enter(&ump->um_lock);
1011 1.137 dholland for (i = ffs_numfrags(fs, osize); i < frags; i++) {
1012 1.62 fvdl clrbit(blksfree, bno + i);
1013 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1014 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1015 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1016 1.1 mycroft }
1017 1.1 mycroft fs->fs_fmod = 1;
1018 1.101 ad ACTIVECG_CLR(fs, cg);
1019 1.101 ad mutex_exit(&ump->um_lock);
1020 1.1 mycroft bdwrite(bp);
1021 1.1 mycroft return (bprev);
1022 1.101 ad
1023 1.101 ad fail:
1024 1.132 hannken if (bp != NULL)
1025 1.132 hannken brelse(bp, 0);
1026 1.101 ad mutex_enter(&ump->um_lock);
1027 1.101 ad return (0);
1028 1.1 mycroft }
1029 1.1 mycroft
1030 1.1 mycroft /*
1031 1.1 mycroft * Determine whether a block can be allocated.
1032 1.1 mycroft *
1033 1.1 mycroft * Check to see if a block of the appropriate size is available,
1034 1.1 mycroft * and if it is, allocate it.
1035 1.1 mycroft */
1036 1.58 fvdl static daddr_t
1037 1.111 simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1038 1.1 mycroft {
1039 1.101 ad struct ufsmount *ump;
1040 1.62 fvdl struct fs *fs = ip->i_fs;
1041 1.30 fvdl struct cg *cgp;
1042 1.1 mycroft struct buf *bp;
1043 1.60 fvdl int32_t bno;
1044 1.60 fvdl daddr_t blkno;
1045 1.30 fvdl int error, frags, allocsiz, i;
1046 1.62 fvdl u_int8_t *blksfree;
1047 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1048 1.1 mycroft
1049 1.101 ad ump = ip->i_ump;
1050 1.101 ad
1051 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1052 1.101 ad
1053 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1054 1.35 thorpej return (0);
1055 1.101 ad mutex_exit(&ump->um_lock);
1056 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1057 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1058 1.101 ad if (error)
1059 1.101 ad goto fail;
1060 1.1 mycroft cgp = (struct cg *)bp->b_data;
1061 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1062 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1063 1.101 ad goto fail;
1064 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1065 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1066 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1067 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1068 1.1 mycroft if (size == fs->fs_bsize) {
1069 1.101 ad mutex_enter(&ump->um_lock);
1070 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1071 1.76 hannken ACTIVECG_CLR(fs, cg);
1072 1.101 ad mutex_exit(&ump->um_lock);
1073 1.1 mycroft bdwrite(bp);
1074 1.60 fvdl return (blkno);
1075 1.1 mycroft }
1076 1.1 mycroft /*
1077 1.1 mycroft * check to see if any fragments are already available
1078 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1079 1.1 mycroft * it down to a smaller size if necessary
1080 1.1 mycroft */
1081 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1082 1.137 dholland frags = ffs_numfrags(fs, size);
1083 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1084 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1085 1.1 mycroft break;
1086 1.1 mycroft if (allocsiz == fs->fs_frag) {
1087 1.1 mycroft /*
1088 1.81 perry * no fragments were available, so a block will be
1089 1.1 mycroft * allocated, and hacked up
1090 1.1 mycroft */
1091 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1092 1.101 ad goto fail;
1093 1.101 ad mutex_enter(&ump->um_lock);
1094 1.111 simonb blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1095 1.60 fvdl bno = dtogd(fs, blkno);
1096 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1097 1.62 fvdl setbit(blksfree, bno + i);
1098 1.1 mycroft i = fs->fs_frag - frags;
1099 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1100 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1101 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1102 1.1 mycroft fs->fs_fmod = 1;
1103 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1104 1.76 hannken ACTIVECG_CLR(fs, cg);
1105 1.101 ad mutex_exit(&ump->um_lock);
1106 1.1 mycroft bdwrite(bp);
1107 1.60 fvdl return (blkno);
1108 1.1 mycroft }
1109 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1110 1.30 fvdl #if 0
1111 1.30 fvdl /*
1112 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1113 1.58 fvdl * also: returning NULL as daddr_t ?
1114 1.30 fvdl */
1115 1.101 ad if (bno < 0)
1116 1.101 ad goto fail;
1117 1.30 fvdl #endif
1118 1.1 mycroft for (i = 0; i < frags; i++)
1119 1.62 fvdl clrbit(blksfree, bno + i);
1120 1.101 ad mutex_enter(&ump->um_lock);
1121 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1122 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1123 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1124 1.1 mycroft fs->fs_fmod = 1;
1125 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1126 1.1 mycroft if (frags != allocsiz)
1127 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1128 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1129 1.101 ad ACTIVECG_CLR(fs, cg);
1130 1.101 ad mutex_exit(&ump->um_lock);
1131 1.1 mycroft bdwrite(bp);
1132 1.30 fvdl return blkno;
1133 1.101 ad
1134 1.101 ad fail:
1135 1.132 hannken if (bp != NULL)
1136 1.132 hannken brelse(bp, 0);
1137 1.101 ad mutex_enter(&ump->um_lock);
1138 1.101 ad return (0);
1139 1.1 mycroft }
1140 1.1 mycroft
1141 1.1 mycroft /*
1142 1.1 mycroft * Allocate a block in a cylinder group.
1143 1.1 mycroft *
1144 1.1 mycroft * This algorithm implements the following policy:
1145 1.1 mycroft * 1) allocate the requested block.
1146 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1147 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1148 1.1 mycroft * specified cylinder group.
1149 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1150 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1151 1.1 mycroft */
1152 1.58 fvdl static daddr_t
1153 1.111 simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1154 1.1 mycroft {
1155 1.62 fvdl struct fs *fs = ip->i_fs;
1156 1.30 fvdl struct cg *cgp;
1157 1.123 sborrill int cg;
1158 1.60 fvdl daddr_t blkno;
1159 1.60 fvdl int32_t bno;
1160 1.60 fvdl u_int8_t *blksfree;
1161 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1162 1.1 mycroft
1163 1.141 martin KASSERT(mutex_owned(&ip->i_ump->um_lock));
1164 1.101 ad
1165 1.30 fvdl cgp = (struct cg *)bp->b_data;
1166 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1167 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1168 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1169 1.60 fvdl } else {
1170 1.138 dholland bpref = ffs_blknum(fs, bpref);
1171 1.60 fvdl bno = dtogd(fs, bpref);
1172 1.1 mycroft /*
1173 1.60 fvdl * if the requested block is available, use it
1174 1.1 mycroft */
1175 1.138 dholland if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
1176 1.60 fvdl goto gotit;
1177 1.111 simonb /*
1178 1.111 simonb * if the requested data block isn't available and we are
1179 1.111 simonb * trying to allocate a contiguous file, return an error.
1180 1.111 simonb */
1181 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1182 1.111 simonb return (0);
1183 1.1 mycroft }
1184 1.111 simonb
1185 1.1 mycroft /*
1186 1.60 fvdl * Take the next available block in this cylinder group.
1187 1.1 mycroft */
1188 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1189 1.1 mycroft if (bno < 0)
1190 1.35 thorpej return (0);
1191 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1192 1.1 mycroft gotit:
1193 1.138 dholland blkno = ffs_fragstoblks(fs, bno);
1194 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1195 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1196 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1197 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1198 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1199 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1200 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1201 1.73 dbj int cylno;
1202 1.73 dbj cylno = old_cbtocylno(fs, bno);
1203 1.75 dbj KASSERT(cylno >= 0);
1204 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1205 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1206 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1207 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1208 1.73 dbj needswap);
1209 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1210 1.73 dbj }
1211 1.1 mycroft fs->fs_fmod = 1;
1212 1.123 sborrill cg = ufs_rw32(cgp->cg_cgx, needswap);
1213 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1214 1.30 fvdl return (blkno);
1215 1.1 mycroft }
1216 1.1 mycroft
1217 1.1 mycroft /*
1218 1.1 mycroft * Determine whether an inode can be allocated.
1219 1.1 mycroft *
1220 1.1 mycroft * Check to see if an inode is available, and if it is,
1221 1.1 mycroft * allocate it using the following policy:
1222 1.1 mycroft * 1) allocate the requested inode.
1223 1.1 mycroft * 2) allocate the next available inode after the requested
1224 1.1 mycroft * inode in the specified cylinder group.
1225 1.1 mycroft */
1226 1.58 fvdl static daddr_t
1227 1.111 simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1228 1.1 mycroft {
1229 1.101 ad struct ufsmount *ump = ip->i_ump;
1230 1.62 fvdl struct fs *fs = ip->i_fs;
1231 1.33 augustss struct cg *cgp;
1232 1.60 fvdl struct buf *bp, *ibp;
1233 1.60 fvdl u_int8_t *inosused;
1234 1.1 mycroft int error, start, len, loc, map, i;
1235 1.60 fvdl int32_t initediblk;
1236 1.112 hannken daddr_t nalloc;
1237 1.60 fvdl struct ufs2_dinode *dp2;
1238 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1239 1.1 mycroft
1240 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1241 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1242 1.101 ad
1243 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1244 1.35 thorpej return (0);
1245 1.101 ad mutex_exit(&ump->um_lock);
1246 1.112 hannken ibp = NULL;
1247 1.112 hannken initediblk = -1;
1248 1.112 hannken retry:
1249 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1250 1.107 hannken (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1251 1.101 ad if (error)
1252 1.101 ad goto fail;
1253 1.1 mycroft cgp = (struct cg *)bp->b_data;
1254 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1255 1.101 ad goto fail;
1256 1.112 hannken
1257 1.112 hannken if (ibp != NULL &&
1258 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1259 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1260 1.121 ad brelse(ibp, 0);
1261 1.112 hannken ibp = NULL;
1262 1.112 hannken }
1263 1.112 hannken /*
1264 1.112 hannken * Check to see if we need to initialize more inodes.
1265 1.112 hannken */
1266 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1267 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1268 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1269 1.134 dholland if (nalloc + FFS_INOPB(fs) > initediblk &&
1270 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1271 1.112 hannken /*
1272 1.112 hannken * We have to release the cg buffer here to prevent
1273 1.112 hannken * a deadlock when reading the inode block will
1274 1.112 hannken * run a copy-on-write that might use this cg.
1275 1.112 hannken */
1276 1.112 hannken brelse(bp, 0);
1277 1.112 hannken bp = NULL;
1278 1.136 dholland error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
1279 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1280 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1281 1.112 hannken if (error)
1282 1.112 hannken goto fail;
1283 1.112 hannken goto retry;
1284 1.112 hannken }
1285 1.112 hannken }
1286 1.112 hannken
1287 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1288 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1289 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1290 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1291 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1292 1.1 mycroft if (ipref) {
1293 1.1 mycroft ipref %= fs->fs_ipg;
1294 1.60 fvdl if (isclr(inosused, ipref))
1295 1.1 mycroft goto gotit;
1296 1.1 mycroft }
1297 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1298 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1299 1.19 bouyer NBBY);
1300 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1301 1.1 mycroft if (loc == 0) {
1302 1.1 mycroft len = start + 1;
1303 1.1 mycroft start = 0;
1304 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1305 1.1 mycroft if (loc == 0) {
1306 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1307 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1308 1.19 bouyer fs->fs_fsmnt);
1309 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1310 1.1 mycroft /* NOTREACHED */
1311 1.1 mycroft }
1312 1.1 mycroft }
1313 1.1 mycroft i = start + len - loc;
1314 1.126 rmind map = inosused[i] ^ 0xff;
1315 1.126 rmind if (map == 0) {
1316 1.126 rmind printf("fs = %s\n", fs->fs_fsmnt);
1317 1.126 rmind panic("ffs_nodealloccg: block not in map");
1318 1.1 mycroft }
1319 1.126 rmind ipref = i * NBBY + ffs(map) - 1;
1320 1.126 rmind cgp->cg_irotor = ufs_rw32(ipref, needswap);
1321 1.1 mycroft gotit:
1322 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1323 1.111 simonb mode);
1324 1.60 fvdl /*
1325 1.60 fvdl * Check to see if we need to initialize more inodes.
1326 1.60 fvdl */
1327 1.112 hannken if (ibp != NULL) {
1328 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1329 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1330 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1331 1.134 dholland for (i = 0; i < FFS_INOPB(fs); i++) {
1332 1.60 fvdl /*
1333 1.60 fvdl * Don't bother to swap, it's supposed to be
1334 1.60 fvdl * random, after all.
1335 1.60 fvdl */
1336 1.130 tls dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
1337 1.60 fvdl dp2++;
1338 1.60 fvdl }
1339 1.134 dholland initediblk += FFS_INOPB(fs);
1340 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1341 1.60 fvdl }
1342 1.60 fvdl
1343 1.101 ad mutex_enter(&ump->um_lock);
1344 1.76 hannken ACTIVECG_CLR(fs, cg);
1345 1.101 ad setbit(inosused, ipref);
1346 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1347 1.101 ad fs->fs_cstotal.cs_nifree--;
1348 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1349 1.101 ad fs->fs_fmod = 1;
1350 1.101 ad if ((mode & IFMT) == IFDIR) {
1351 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1352 1.101 ad fs->fs_cstotal.cs_ndir++;
1353 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1354 1.101 ad }
1355 1.101 ad mutex_exit(&ump->um_lock);
1356 1.112 hannken if (ibp != NULL) {
1357 1.112 hannken bwrite(bp);
1358 1.104 hannken bawrite(ibp);
1359 1.112 hannken } else
1360 1.112 hannken bdwrite(bp);
1361 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1362 1.101 ad fail:
1363 1.112 hannken if (bp != NULL)
1364 1.112 hannken brelse(bp, 0);
1365 1.112 hannken if (ibp != NULL)
1366 1.121 ad brelse(ibp, 0);
1367 1.101 ad mutex_enter(&ump->um_lock);
1368 1.101 ad return (0);
1369 1.1 mycroft }
1370 1.1 mycroft
1371 1.1 mycroft /*
1372 1.111 simonb * Allocate a block or fragment.
1373 1.111 simonb *
1374 1.111 simonb * The specified block or fragment is removed from the
1375 1.111 simonb * free map, possibly fragmenting a block in the process.
1376 1.111 simonb *
1377 1.111 simonb * This implementation should mirror fs_blkfree
1378 1.111 simonb *
1379 1.111 simonb * => um_lock not held on entry or exit
1380 1.111 simonb */
1381 1.111 simonb int
1382 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1383 1.111 simonb {
1384 1.116 joerg int error;
1385 1.111 simonb
1386 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1387 1.116 joerg ip->i_dev, ip->i_uid);
1388 1.116 joerg if (error)
1389 1.116 joerg return error;
1390 1.115 joerg
1391 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1392 1.115 joerg }
1393 1.115 joerg
1394 1.115 joerg int
1395 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1396 1.115 joerg {
1397 1.115 joerg struct fs *fs = ump->um_fs;
1398 1.115 joerg struct cg *cgp;
1399 1.115 joerg struct buf *bp;
1400 1.115 joerg int32_t fragno, cgbno;
1401 1.115 joerg int i, error, cg, blk, frags, bbase;
1402 1.115 joerg u_int8_t *blksfree;
1403 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1404 1.115 joerg
1405 1.134 dholland KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
1406 1.138 dholland ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
1407 1.115 joerg KASSERT(bno < fs->fs_size);
1408 1.115 joerg
1409 1.115 joerg cg = dtog(fs, bno);
1410 1.136 dholland error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1411 1.111 simonb (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1412 1.111 simonb if (error) {
1413 1.111 simonb return error;
1414 1.111 simonb }
1415 1.111 simonb cgp = (struct cg *)bp->b_data;
1416 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1417 1.111 simonb brelse(bp, 0);
1418 1.111 simonb return EIO;
1419 1.111 simonb }
1420 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1421 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1422 1.111 simonb cgbno = dtogd(fs, bno);
1423 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1424 1.111 simonb
1425 1.111 simonb mutex_enter(&ump->um_lock);
1426 1.111 simonb if (size == fs->fs_bsize) {
1427 1.138 dholland fragno = ffs_fragstoblks(fs, cgbno);
1428 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1429 1.111 simonb mutex_exit(&ump->um_lock);
1430 1.111 simonb brelse(bp, 0);
1431 1.111 simonb return EBUSY;
1432 1.111 simonb }
1433 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1434 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1435 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1436 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1437 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1438 1.111 simonb } else {
1439 1.138 dholland bbase = cgbno - ffs_fragnum(fs, cgbno);
1440 1.111 simonb
1441 1.137 dholland frags = ffs_numfrags(fs, size);
1442 1.111 simonb for (i = 0; i < frags; i++) {
1443 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1444 1.111 simonb mutex_exit(&ump->um_lock);
1445 1.111 simonb brelse(bp, 0);
1446 1.111 simonb return EBUSY;
1447 1.111 simonb }
1448 1.111 simonb }
1449 1.111 simonb /*
1450 1.111 simonb * if a complete block is being split, account for it
1451 1.111 simonb */
1452 1.138 dholland fragno = ffs_fragstoblks(fs, bbase);
1453 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1454 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1455 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1456 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1457 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1458 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1459 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1460 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1461 1.111 simonb }
1462 1.111 simonb /*
1463 1.111 simonb * decrement the counts associated with the old frags
1464 1.111 simonb */
1465 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1466 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1467 1.111 simonb /*
1468 1.111 simonb * allocate the fragment
1469 1.111 simonb */
1470 1.111 simonb for (i = 0; i < frags; i++) {
1471 1.111 simonb clrbit(blksfree, cgbno + i);
1472 1.111 simonb }
1473 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1474 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1475 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1476 1.111 simonb /*
1477 1.111 simonb * add back in counts associated with the new frags
1478 1.111 simonb */
1479 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1480 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1481 1.111 simonb }
1482 1.111 simonb fs->fs_fmod = 1;
1483 1.111 simonb ACTIVECG_CLR(fs, cg);
1484 1.111 simonb mutex_exit(&ump->um_lock);
1485 1.111 simonb bdwrite(bp);
1486 1.111 simonb return 0;
1487 1.111 simonb }
1488 1.111 simonb
1489 1.111 simonb /*
1490 1.1 mycroft * Free a block or fragment.
1491 1.1 mycroft *
1492 1.1 mycroft * The specified block or fragment is placed back in the
1493 1.81 perry * free map. If a fragment is deallocated, a possible
1494 1.1 mycroft * block reassembly is checked.
1495 1.106 pooka *
1496 1.106 pooka * => um_lock not held on entry or exit
1497 1.1 mycroft */
1498 1.131 drochner static void
1499 1.131 drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
1500 1.1 mycroft {
1501 1.33 augustss struct cg *cgp;
1502 1.1 mycroft struct buf *bp;
1503 1.76 hannken struct ufsmount *ump;
1504 1.76 hannken daddr_t cgblkno;
1505 1.116 joerg int error, cg;
1506 1.76 hannken dev_t dev;
1507 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1508 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1509 1.1 mycroft
1510 1.116 joerg KASSERT(!devvp_is_snapshot);
1511 1.116 joerg
1512 1.76 hannken cg = dtog(fs, bno);
1513 1.116 joerg dev = devvp->v_rdev;
1514 1.140 hannken ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1515 1.119 joerg KASSERT(fs == ump->um_fs);
1516 1.136 dholland cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
1517 1.116 joerg
1518 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1519 1.116 joerg NOCRED, B_MODIFY, &bp);
1520 1.116 joerg if (error) {
1521 1.116 joerg return;
1522 1.76 hannken }
1523 1.116 joerg cgp = (struct cg *)bp->b_data;
1524 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1525 1.116 joerg brelse(bp, 0);
1526 1.116 joerg return;
1527 1.1 mycroft }
1528 1.76 hannken
1529 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1530 1.119 joerg
1531 1.119 joerg bdwrite(bp);
1532 1.116 joerg }
1533 1.116 joerg
1534 1.131 drochner struct discardopdata {
1535 1.131 drochner struct work wk; /* must be first */
1536 1.131 drochner struct vnode *devvp;
1537 1.131 drochner daddr_t bno;
1538 1.131 drochner long size;
1539 1.131 drochner };
1540 1.131 drochner
1541 1.131 drochner struct discarddata {
1542 1.131 drochner struct fs *fs;
1543 1.131 drochner struct discardopdata *entry;
1544 1.131 drochner long maxsize;
1545 1.131 drochner kmutex_t entrylk;
1546 1.131 drochner struct workqueue *wq;
1547 1.131 drochner int wqcnt, wqdraining;
1548 1.131 drochner kmutex_t wqlk;
1549 1.131 drochner kcondvar_t wqcv;
1550 1.131 drochner /* timer for flush? */
1551 1.131 drochner };
1552 1.131 drochner
1553 1.131 drochner static void
1554 1.131 drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
1555 1.131 drochner {
1556 1.131 drochner long todo;
1557 1.131 drochner
1558 1.131 drochner while (td->size) {
1559 1.131 drochner todo = min(td->size,
1560 1.138 dholland ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
1561 1.131 drochner ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
1562 1.137 dholland td->bno += ffs_numfrags(fs, todo);
1563 1.131 drochner td->size -= todo;
1564 1.131 drochner }
1565 1.131 drochner }
1566 1.131 drochner
1567 1.131 drochner static void
1568 1.131 drochner ffs_discardcb(struct work *wk, void *arg)
1569 1.131 drochner {
1570 1.131 drochner struct discardopdata *td = (void *)wk;
1571 1.131 drochner struct discarddata *ts = arg;
1572 1.131 drochner struct fs *fs = ts->fs;
1573 1.146 dholland off_t start, len;
1574 1.139 martin #ifdef TRIMDEBUG
1575 1.131 drochner int error;
1576 1.139 martin #endif
1577 1.131 drochner
1578 1.146 dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
1579 1.146 dholland #ifndef FFS_FSBTOBYTES
1580 1.146 dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
1581 1.146 dholland #endif
1582 1.146 dholland
1583 1.146 dholland start = FFS_FSBTOBYTES(fs, td->bno);
1584 1.146 dholland len = td->size;
1585 1.139 martin #ifdef TRIMDEBUG
1586 1.139 martin error =
1587 1.139 martin #endif
1588 1.146 dholland VOP_FDISCARD(td->devvp, start, len);
1589 1.131 drochner #ifdef TRIMDEBUG
1590 1.131 drochner printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
1591 1.131 drochner #endif
1592 1.131 drochner
1593 1.131 drochner ffs_blkfree_td(fs, td);
1594 1.131 drochner kmem_free(td, sizeof(*td));
1595 1.131 drochner mutex_enter(&ts->wqlk);
1596 1.131 drochner ts->wqcnt--;
1597 1.131 drochner if (ts->wqdraining && !ts->wqcnt)
1598 1.131 drochner cv_signal(&ts->wqcv);
1599 1.131 drochner mutex_exit(&ts->wqlk);
1600 1.131 drochner }
1601 1.131 drochner
1602 1.131 drochner void *
1603 1.131 drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
1604 1.131 drochner {
1605 1.131 drochner struct discarddata *ts;
1606 1.131 drochner int error;
1607 1.131 drochner
1608 1.131 drochner ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
1609 1.131 drochner error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
1610 1.131 drochner 0, 0, 0);
1611 1.131 drochner if (error) {
1612 1.131 drochner kmem_free(ts, sizeof (*ts));
1613 1.131 drochner return NULL;
1614 1.131 drochner }
1615 1.131 drochner mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
1616 1.131 drochner mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
1617 1.131 drochner cv_init(&ts->wqcv, "trimwqcv");
1618 1.146 dholland ts->maxsize = 100*1024; /* XXX */
1619 1.131 drochner ts->fs = fs;
1620 1.131 drochner return ts;
1621 1.131 drochner }
1622 1.131 drochner
1623 1.131 drochner void
1624 1.131 drochner ffs_discard_finish(void *vts, int flags)
1625 1.131 drochner {
1626 1.131 drochner struct discarddata *ts = vts;
1627 1.131 drochner struct discardopdata *td = NULL;
1628 1.131 drochner int res = 0;
1629 1.131 drochner
1630 1.131 drochner /* wait for workqueue to drain */
1631 1.131 drochner mutex_enter(&ts->wqlk);
1632 1.131 drochner if (ts->wqcnt) {
1633 1.131 drochner ts->wqdraining = 1;
1634 1.131 drochner res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
1635 1.131 drochner }
1636 1.131 drochner mutex_exit(&ts->wqlk);
1637 1.131 drochner if (res)
1638 1.131 drochner printf("ffs_discarddata drain timeout\n");
1639 1.131 drochner
1640 1.131 drochner mutex_enter(&ts->entrylk);
1641 1.131 drochner if (ts->entry) {
1642 1.131 drochner td = ts->entry;
1643 1.131 drochner ts->entry = NULL;
1644 1.131 drochner }
1645 1.131 drochner mutex_exit(&ts->entrylk);
1646 1.131 drochner if (td) {
1647 1.131 drochner /* XXX don't tell disk, its optional */
1648 1.131 drochner ffs_blkfree_td(ts->fs, td);
1649 1.131 drochner #ifdef TRIMDEBUG
1650 1.131 drochner printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
1651 1.131 drochner #endif
1652 1.131 drochner kmem_free(td, sizeof(*td));
1653 1.131 drochner }
1654 1.131 drochner
1655 1.131 drochner cv_destroy(&ts->wqcv);
1656 1.131 drochner mutex_destroy(&ts->entrylk);
1657 1.131 drochner mutex_destroy(&ts->wqlk);
1658 1.131 drochner workqueue_destroy(ts->wq);
1659 1.131 drochner kmem_free(ts, sizeof(*ts));
1660 1.131 drochner }
1661 1.131 drochner
1662 1.131 drochner void
1663 1.131 drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1664 1.131 drochner ino_t inum)
1665 1.131 drochner {
1666 1.131 drochner struct ufsmount *ump;
1667 1.131 drochner int error;
1668 1.131 drochner dev_t dev;
1669 1.131 drochner struct discarddata *ts;
1670 1.131 drochner struct discardopdata *td;
1671 1.131 drochner
1672 1.131 drochner dev = devvp->v_rdev;
1673 1.140 hannken ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1674 1.131 drochner if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1675 1.131 drochner return;
1676 1.131 drochner
1677 1.131 drochner error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1678 1.131 drochner if (error)
1679 1.131 drochner return;
1680 1.131 drochner
1681 1.131 drochner if (!ump->um_discarddata) {
1682 1.131 drochner ffs_blkfree_cg(fs, devvp, bno, size);
1683 1.131 drochner return;
1684 1.131 drochner }
1685 1.131 drochner
1686 1.131 drochner #ifdef TRIMDEBUG
1687 1.131 drochner printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
1688 1.131 drochner #endif
1689 1.131 drochner ts = ump->um_discarddata;
1690 1.131 drochner td = NULL;
1691 1.131 drochner
1692 1.131 drochner mutex_enter(&ts->entrylk);
1693 1.131 drochner if (ts->entry) {
1694 1.131 drochner td = ts->entry;
1695 1.131 drochner /* ffs deallocs backwards, check for prepend only */
1696 1.137 dholland if (td->bno == bno + ffs_numfrags(fs, size)
1697 1.131 drochner && td->size + size <= ts->maxsize) {
1698 1.131 drochner td->bno = bno;
1699 1.131 drochner td->size += size;
1700 1.131 drochner if (td->size < ts->maxsize) {
1701 1.131 drochner #ifdef TRIMDEBUG
1702 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1703 1.131 drochner #endif
1704 1.131 drochner mutex_exit(&ts->entrylk);
1705 1.131 drochner return;
1706 1.131 drochner }
1707 1.131 drochner size = 0; /* mark done */
1708 1.131 drochner }
1709 1.131 drochner ts->entry = NULL;
1710 1.131 drochner }
1711 1.131 drochner mutex_exit(&ts->entrylk);
1712 1.131 drochner
1713 1.131 drochner if (td) {
1714 1.131 drochner #ifdef TRIMDEBUG
1715 1.131 drochner printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
1716 1.131 drochner #endif
1717 1.131 drochner mutex_enter(&ts->wqlk);
1718 1.131 drochner ts->wqcnt++;
1719 1.131 drochner mutex_exit(&ts->wqlk);
1720 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1721 1.131 drochner }
1722 1.131 drochner if (!size)
1723 1.131 drochner return;
1724 1.131 drochner
1725 1.131 drochner td = kmem_alloc(sizeof(*td), KM_SLEEP);
1726 1.131 drochner td->devvp = devvp;
1727 1.131 drochner td->bno = bno;
1728 1.131 drochner td->size = size;
1729 1.131 drochner
1730 1.131 drochner if (td->size < ts->maxsize) { /* XXX always the case */
1731 1.131 drochner mutex_enter(&ts->entrylk);
1732 1.131 drochner if (!ts->entry) { /* possible race? */
1733 1.131 drochner #ifdef TRIMDEBUG
1734 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1735 1.131 drochner #endif
1736 1.131 drochner ts->entry = td;
1737 1.131 drochner td = NULL;
1738 1.131 drochner }
1739 1.131 drochner mutex_exit(&ts->entrylk);
1740 1.131 drochner }
1741 1.131 drochner if (td) {
1742 1.131 drochner #ifdef TRIMDEBUG
1743 1.131 drochner printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
1744 1.131 drochner #endif
1745 1.131 drochner mutex_enter(&ts->wqlk);
1746 1.131 drochner ts->wqcnt++;
1747 1.131 drochner mutex_exit(&ts->wqlk);
1748 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1749 1.131 drochner }
1750 1.131 drochner }
1751 1.131 drochner
1752 1.116 joerg /*
1753 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1754 1.116 joerg *
1755 1.116 joerg * The specified block or fragment is placed back in the
1756 1.116 joerg * free map. If a fragment is deallocated, a possible
1757 1.116 joerg * block reassembly is checked.
1758 1.116 joerg *
1759 1.116 joerg * => um_lock not held on entry or exit
1760 1.116 joerg */
1761 1.116 joerg void
1762 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1763 1.116 joerg ino_t inum)
1764 1.116 joerg {
1765 1.116 joerg struct cg *cgp;
1766 1.116 joerg struct buf *bp;
1767 1.116 joerg struct ufsmount *ump;
1768 1.116 joerg daddr_t cgblkno;
1769 1.116 joerg int error, cg;
1770 1.116 joerg dev_t dev;
1771 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1772 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1773 1.116 joerg
1774 1.116 joerg KASSERT(devvp_is_snapshot);
1775 1.116 joerg
1776 1.116 joerg cg = dtog(fs, bno);
1777 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1778 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1779 1.138 dholland cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
1780 1.116 joerg
1781 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1782 1.116 joerg if (error)
1783 1.1 mycroft return;
1784 1.116 joerg
1785 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1786 1.107 hannken NOCRED, B_MODIFY, &bp);
1787 1.1 mycroft if (error) {
1788 1.1 mycroft return;
1789 1.1 mycroft }
1790 1.1 mycroft cgp = (struct cg *)bp->b_data;
1791 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1792 1.101 ad brelse(bp, 0);
1793 1.1 mycroft return;
1794 1.1 mycroft }
1795 1.116 joerg
1796 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1797 1.119 joerg
1798 1.119 joerg bdwrite(bp);
1799 1.116 joerg }
1800 1.116 joerg
1801 1.116 joerg static void
1802 1.119 joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1803 1.119 joerg struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1804 1.116 joerg {
1805 1.116 joerg struct cg *cgp;
1806 1.116 joerg int32_t fragno, cgbno;
1807 1.116 joerg int i, cg, blk, frags, bbase;
1808 1.116 joerg u_int8_t *blksfree;
1809 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1810 1.116 joerg
1811 1.116 joerg cg = dtog(fs, bno);
1812 1.116 joerg cgp = (struct cg *)bp->b_data;
1813 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1814 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1815 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1816 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1817 1.60 fvdl cgbno = dtogd(fs, bno);
1818 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1819 1.101 ad mutex_enter(&ump->um_lock);
1820 1.1 mycroft if (size == fs->fs_bsize) {
1821 1.138 dholland fragno = ffs_fragstoblks(fs, cgbno);
1822 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1823 1.113 hannken if (devvp_is_snapshot) {
1824 1.101 ad mutex_exit(&ump->um_lock);
1825 1.76 hannken return;
1826 1.76 hannken }
1827 1.120 christos printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1828 1.120 christos (unsigned long long)dev, bno, fs->fs_fsmnt);
1829 1.1 mycroft panic("blkfree: freeing free block");
1830 1.1 mycroft }
1831 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1832 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1833 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1834 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1835 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1836 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1837 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1838 1.73 dbj i = old_cbtocylno(fs, cgbno);
1839 1.75 dbj KASSERT(i >= 0);
1840 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1841 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1842 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1843 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1844 1.73 dbj needswap);
1845 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1846 1.73 dbj }
1847 1.1 mycroft } else {
1848 1.138 dholland bbase = cgbno - ffs_fragnum(fs, cgbno);
1849 1.1 mycroft /*
1850 1.1 mycroft * decrement the counts associated with the old frags
1851 1.1 mycroft */
1852 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1853 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1854 1.1 mycroft /*
1855 1.1 mycroft * deallocate the fragment
1856 1.1 mycroft */
1857 1.137 dholland frags = ffs_numfrags(fs, size);
1858 1.1 mycroft for (i = 0; i < frags; i++) {
1859 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1860 1.120 christos printf("dev = 0x%llx, block = %" PRId64
1861 1.59 tsutsui ", fs = %s\n",
1862 1.120 christos (unsigned long long)dev, bno + i,
1863 1.120 christos fs->fs_fsmnt);
1864 1.1 mycroft panic("blkfree: freeing free frag");
1865 1.1 mycroft }
1866 1.62 fvdl setbit(blksfree, cgbno + i);
1867 1.1 mycroft }
1868 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1869 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1870 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1871 1.1 mycroft /*
1872 1.1 mycroft * add back in counts associated with the new frags
1873 1.1 mycroft */
1874 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1875 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1876 1.1 mycroft /*
1877 1.1 mycroft * if a complete block has been reassembled, account for it
1878 1.1 mycroft */
1879 1.138 dholland fragno = ffs_fragstoblks(fs, bbase);
1880 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1881 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1882 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1883 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1884 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1885 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1886 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1887 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1888 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1889 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1890 1.73 dbj i = old_cbtocylno(fs, bbase);
1891 1.75 dbj KASSERT(i >= 0);
1892 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1893 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1894 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1895 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1896 1.73 dbj bbase)], 1, needswap);
1897 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1898 1.73 dbj }
1899 1.1 mycroft }
1900 1.1 mycroft }
1901 1.1 mycroft fs->fs_fmod = 1;
1902 1.76 hannken ACTIVECG_CLR(fs, cg);
1903 1.101 ad mutex_exit(&ump->um_lock);
1904 1.1 mycroft }
1905 1.1 mycroft
1906 1.1 mycroft /*
1907 1.1 mycroft * Free an inode.
1908 1.30 fvdl */
1909 1.30 fvdl int
1910 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1911 1.30 fvdl {
1912 1.30 fvdl
1913 1.119 joerg return ffs_freefile(vp->v_mount, ino, mode);
1914 1.30 fvdl }
1915 1.30 fvdl
1916 1.30 fvdl /*
1917 1.30 fvdl * Do the actual free operation.
1918 1.1 mycroft * The specified inode is placed back in the free map.
1919 1.111 simonb *
1920 1.111 simonb * => um_lock not held on entry or exit
1921 1.1 mycroft */
1922 1.1 mycroft int
1923 1.119 joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
1924 1.119 joerg {
1925 1.119 joerg struct ufsmount *ump = VFSTOUFS(mp);
1926 1.119 joerg struct fs *fs = ump->um_fs;
1927 1.119 joerg struct vnode *devvp;
1928 1.119 joerg struct cg *cgp;
1929 1.119 joerg struct buf *bp;
1930 1.119 joerg int error, cg;
1931 1.119 joerg daddr_t cgbno;
1932 1.119 joerg dev_t dev;
1933 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1934 1.119 joerg
1935 1.119 joerg cg = ino_to_cg(fs, ino);
1936 1.119 joerg devvp = ump->um_devvp;
1937 1.119 joerg dev = devvp->v_rdev;
1938 1.136 dholland cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
1939 1.119 joerg
1940 1.119 joerg if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1941 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1942 1.120 christos (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1943 1.119 joerg error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1944 1.119 joerg NOCRED, B_MODIFY, &bp);
1945 1.119 joerg if (error) {
1946 1.119 joerg return (error);
1947 1.119 joerg }
1948 1.119 joerg cgp = (struct cg *)bp->b_data;
1949 1.119 joerg if (!cg_chkmagic(cgp, needswap)) {
1950 1.119 joerg brelse(bp, 0);
1951 1.119 joerg return (0);
1952 1.119 joerg }
1953 1.119 joerg
1954 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1955 1.119 joerg
1956 1.119 joerg bdwrite(bp);
1957 1.119 joerg
1958 1.119 joerg return 0;
1959 1.119 joerg }
1960 1.119 joerg
1961 1.119 joerg int
1962 1.119 joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1963 1.9 christos {
1964 1.101 ad struct ufsmount *ump;
1965 1.33 augustss struct cg *cgp;
1966 1.1 mycroft struct buf *bp;
1967 1.1 mycroft int error, cg;
1968 1.76 hannken daddr_t cgbno;
1969 1.78 hannken dev_t dev;
1970 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1971 1.1 mycroft
1972 1.119 joerg KASSERT(devvp->v_type != VBLK);
1973 1.111 simonb
1974 1.76 hannken cg = ino_to_cg(fs, ino);
1975 1.119 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1976 1.119 joerg ump = VFSTOUFS(devvp->v_mount);
1977 1.138 dholland cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
1978 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1979 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1980 1.120 christos (unsigned long long)dev, (unsigned long long)ino,
1981 1.120 christos fs->fs_fsmnt);
1982 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1983 1.107 hannken NOCRED, B_MODIFY, &bp);
1984 1.1 mycroft if (error) {
1985 1.30 fvdl return (error);
1986 1.1 mycroft }
1987 1.1 mycroft cgp = (struct cg *)bp->b_data;
1988 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1989 1.101 ad brelse(bp, 0);
1990 1.1 mycroft return (0);
1991 1.1 mycroft }
1992 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1993 1.119 joerg
1994 1.119 joerg bdwrite(bp);
1995 1.119 joerg
1996 1.119 joerg return 0;
1997 1.119 joerg }
1998 1.119 joerg
1999 1.119 joerg static void
2000 1.119 joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
2001 1.119 joerg struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
2002 1.119 joerg {
2003 1.119 joerg int cg;
2004 1.119 joerg struct cg *cgp;
2005 1.119 joerg u_int8_t *inosused;
2006 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
2007 1.119 joerg
2008 1.119 joerg cg = ino_to_cg(fs, ino);
2009 1.119 joerg cgp = (struct cg *)bp->b_data;
2010 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
2011 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2012 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
2013 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
2014 1.62 fvdl inosused = cg_inosused(cgp, needswap);
2015 1.1 mycroft ino %= fs->fs_ipg;
2016 1.62 fvdl if (isclr(inosused, ino)) {
2017 1.120 christos printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
2018 1.120 christos (unsigned long long)dev, (unsigned long long)ino +
2019 1.120 christos cg * fs->fs_ipg, fs->fs_fsmnt);
2020 1.1 mycroft if (fs->fs_ronly == 0)
2021 1.1 mycroft panic("ifree: freeing free inode");
2022 1.1 mycroft }
2023 1.62 fvdl clrbit(inosused, ino);
2024 1.113 hannken if (!devvp_is_snapshot)
2025 1.119 joerg UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
2026 1.113 hannken ino + cg * fs->fs_ipg, mode);
2027 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2028 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
2029 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2030 1.101 ad mutex_enter(&ump->um_lock);
2031 1.1 mycroft fs->fs_cstotal.cs_nifree++;
2032 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
2033 1.78 hannken if ((mode & IFMT) == IFDIR) {
2034 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2035 1.1 mycroft fs->fs_cstotal.cs_ndir--;
2036 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
2037 1.1 mycroft }
2038 1.1 mycroft fs->fs_fmod = 1;
2039 1.82 hannken ACTIVECG_CLR(fs, cg);
2040 1.101 ad mutex_exit(&ump->um_lock);
2041 1.1 mycroft }
2042 1.1 mycroft
2043 1.1 mycroft /*
2044 1.76 hannken * Check to see if a file is free.
2045 1.76 hannken */
2046 1.76 hannken int
2047 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2048 1.76 hannken {
2049 1.76 hannken struct cg *cgp;
2050 1.76 hannken struct buf *bp;
2051 1.76 hannken daddr_t cgbno;
2052 1.76 hannken int ret, cg;
2053 1.76 hannken u_int8_t *inosused;
2054 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
2055 1.76 hannken
2056 1.119 joerg KASSERT(devvp_is_snapshot);
2057 1.119 joerg
2058 1.76 hannken cg = ino_to_cg(fs, ino);
2059 1.113 hannken if (devvp_is_snapshot)
2060 1.138 dholland cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
2061 1.113 hannken else
2062 1.136 dholland cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
2063 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2064 1.76 hannken return 1;
2065 1.107 hannken if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
2066 1.76 hannken return 1;
2067 1.76 hannken }
2068 1.76 hannken cgp = (struct cg *)bp->b_data;
2069 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2070 1.101 ad brelse(bp, 0);
2071 1.76 hannken return 1;
2072 1.76 hannken }
2073 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2074 1.76 hannken ino %= fs->fs_ipg;
2075 1.76 hannken ret = isclr(inosused, ino);
2076 1.101 ad brelse(bp, 0);
2077 1.76 hannken return ret;
2078 1.76 hannken }
2079 1.76 hannken
2080 1.76 hannken /*
2081 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
2082 1.1 mycroft *
2083 1.1 mycroft * It is a panic if a request is made to find a block if none are
2084 1.1 mycroft * available.
2085 1.1 mycroft */
2086 1.60 fvdl static int32_t
2087 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2088 1.1 mycroft {
2089 1.60 fvdl int32_t bno;
2090 1.1 mycroft int start, len, loc, i;
2091 1.1 mycroft int blk, field, subfield, pos;
2092 1.19 bouyer int ostart, olen;
2093 1.62 fvdl u_int8_t *blksfree;
2094 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2095 1.1 mycroft
2096 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2097 1.101 ad
2098 1.1 mycroft /*
2099 1.1 mycroft * find the fragment by searching through the free block
2100 1.1 mycroft * map for an appropriate bit pattern
2101 1.1 mycroft */
2102 1.1 mycroft if (bpref)
2103 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
2104 1.1 mycroft else
2105 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2106 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
2107 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
2108 1.19 bouyer ostart = start;
2109 1.19 bouyer olen = len;
2110 1.45 lukem loc = scanc((u_int)len,
2111 1.62 fvdl (const u_char *)&blksfree[start],
2112 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2113 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2114 1.1 mycroft if (loc == 0) {
2115 1.1 mycroft len = start + 1;
2116 1.1 mycroft start = 0;
2117 1.45 lukem loc = scanc((u_int)len,
2118 1.62 fvdl (const u_char *)&blksfree[0],
2119 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2120 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2121 1.1 mycroft if (loc == 0) {
2122 1.13 christos printf("start = %d, len = %d, fs = %s\n",
2123 1.19 bouyer ostart, olen, fs->fs_fsmnt);
2124 1.20 ross printf("offset=%d %ld\n",
2125 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
2126 1.62 fvdl (long)blksfree - (long)cgp);
2127 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
2128 1.1 mycroft panic("ffs_alloccg: map corrupted");
2129 1.1 mycroft /* NOTREACHED */
2130 1.1 mycroft }
2131 1.1 mycroft }
2132 1.1 mycroft bno = (start + len - loc) * NBBY;
2133 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
2134 1.1 mycroft /*
2135 1.1 mycroft * found the byte in the map
2136 1.1 mycroft * sift through the bits to find the selected frag
2137 1.1 mycroft */
2138 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2139 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2140 1.1 mycroft blk <<= 1;
2141 1.1 mycroft field = around[allocsiz];
2142 1.1 mycroft subfield = inside[allocsiz];
2143 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2144 1.1 mycroft if ((blk & field) == subfield)
2145 1.1 mycroft return (bno + pos);
2146 1.1 mycroft field <<= 1;
2147 1.1 mycroft subfield <<= 1;
2148 1.1 mycroft }
2149 1.1 mycroft }
2150 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2151 1.1 mycroft panic("ffs_alloccg: block not in map");
2152 1.58 fvdl /* return (-1); */
2153 1.1 mycroft }
2154 1.1 mycroft
2155 1.1 mycroft /*
2156 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2157 1.81 perry *
2158 1.1 mycroft * The form of the error message is:
2159 1.1 mycroft * fs: error message
2160 1.1 mycroft */
2161 1.1 mycroft static void
2162 1.85 thorpej ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2163 1.1 mycroft {
2164 1.1 mycroft
2165 1.64 gmcgarry log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2166 1.64 gmcgarry uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);
2167 1.1 mycroft }
2168