Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.150
      1  1.150   mlelstv /*	$NetBSD: ffs_alloc.c,v 1.150 2015/08/08 08:18:52 mlelstv Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.150   mlelstv __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.150 2015/08/08 08:18:52 mlelstv Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78  1.129       chs #include "opt_uvm_page_trkown.h"
     79   1.22    scottr #endif
     80    1.1   mycroft 
     81    1.1   mycroft #include <sys/param.h>
     82    1.1   mycroft #include <sys/systm.h>
     83    1.1   mycroft #include <sys/buf.h>
     84  1.130       tls #include <sys/cprng.h>
     85  1.111    simonb #include <sys/fstrans.h>
     86  1.111    simonb #include <sys/kauth.h>
     87  1.111    simonb #include <sys/kernel.h>
     88  1.111    simonb #include <sys/mount.h>
     89    1.1   mycroft #include <sys/proc.h>
     90  1.111    simonb #include <sys/syslog.h>
     91    1.1   mycroft #include <sys/vnode.h>
     92  1.111    simonb #include <sys/wapbl.h>
     93  1.147     joerg #include <sys/cprng.h>
     94   1.29       mrg 
     95   1.76   hannken #include <miscfs/specfs/specdev.h>
     96    1.1   mycroft #include <ufs/ufs/quota.h>
     97   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     98    1.1   mycroft #include <ufs/ufs/inode.h>
     99    1.9  christos #include <ufs/ufs/ufs_extern.h>
    100   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    101  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    102    1.1   mycroft 
    103    1.1   mycroft #include <ufs/ffs/fs.h>
    104    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    105    1.1   mycroft 
    106  1.129       chs #ifdef UVM_PAGE_TRKOWN
    107  1.129       chs #include <uvm/uvm.h>
    108  1.129       chs #endif
    109  1.129       chs 
    110  1.111    simonb static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
    111  1.111    simonb static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
    112   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    113   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    114  1.150   mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115  1.111    simonb static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
    116  1.111    simonb     daddr_t (*)(struct inode *, int, daddr_t, int, int));
    117  1.111    simonb static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
    118   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119   1.85   thorpej 				      daddr_t, int);
    120  1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121  1.116     joerg     daddr_t, long, bool);
    122  1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123  1.119     joerg     int, bool);
    124   1.23  drochner 
    125   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    126   1.34  jdolecek int ffs_log_changeopt = 0;
    127   1.34  jdolecek 
    128   1.23  drochner /* in ffs_tables.c */
    129   1.40  jdolecek extern const int inside[], around[];
    130   1.40  jdolecek extern const u_char * const fragtbl[];
    131    1.1   mycroft 
    132  1.116     joerg /* Basic consistency check for block allocations */
    133  1.116     joerg static int
    134  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135  1.116     joerg     long size, dev_t dev, ino_t inum)
    136  1.116     joerg {
    137  1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138  1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139  1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    140  1.120  christos 		    "size = %ld, fs = %s\n",
    141  1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142  1.116     joerg 		panic("%s: bad size", func);
    143  1.116     joerg 	}
    144  1.116     joerg 
    145  1.116     joerg 	if (bno >= fs->fs_size) {
    146  1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    147  1.116     joerg 		    (unsigned long long)inum);
    148  1.150   mlelstv 		ffs_fserr(fs, NOCRED, "bad block");
    149  1.116     joerg 		return EINVAL;
    150  1.116     joerg 	}
    151  1.116     joerg 	return 0;
    152  1.116     joerg }
    153  1.116     joerg 
    154    1.1   mycroft /*
    155    1.1   mycroft  * Allocate a block in the file system.
    156   1.81     perry  *
    157    1.1   mycroft  * The size of the requested block is given, which must be some
    158    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    159    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    160    1.1   mycroft  * the following hierarchy is used to allocate a block:
    161    1.1   mycroft  *   1) allocate the requested block.
    162    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    163    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    164    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    165    1.1   mycroft  *      available block is located.
    166   1.47       wiz  * If no block preference is given the following hierarchy is used
    167    1.1   mycroft  * to allocate a block:
    168    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    169    1.1   mycroft  *      inode for the file.
    170    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    171    1.1   mycroft  *      available block is located.
    172  1.106     pooka  *
    173  1.106     pooka  * => called with um_lock held
    174  1.106     pooka  * => releases um_lock before returning
    175    1.1   mycroft  */
    176    1.9  christos int
    177  1.111    simonb ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
    178   1.91      elad     kauth_cred_t cred, daddr_t *bnp)
    179    1.1   mycroft {
    180  1.101        ad 	struct ufsmount *ump;
    181   1.62      fvdl 	struct fs *fs;
    182   1.58      fvdl 	daddr_t bno;
    183    1.9  christos 	int cg;
    184  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    185    1.9  christos 	int error;
    186    1.9  christos #endif
    187   1.81     perry 
    188   1.62      fvdl 	fs = ip->i_fs;
    189  1.101        ad 	ump = ip->i_ump;
    190  1.101        ad 
    191  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    192   1.62      fvdl 
    193   1.37       chs #ifdef UVM_PAGE_TRKOWN
    194  1.129       chs 
    195  1.129       chs 	/*
    196  1.129       chs 	 * Sanity-check that allocations within the file size
    197  1.129       chs 	 * do not allow other threads to read the stale contents
    198  1.129       chs 	 * of newly allocated blocks.
    199  1.129       chs 	 * Usually pages will exist to cover the new allocation.
    200  1.129       chs 	 * There is an optimization in ffs_write() where we skip
    201  1.129       chs 	 * creating pages if several conditions are met:
    202  1.129       chs 	 *  - the file must not be mapped (in any user address space).
    203  1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    204  1.129       chs 	 * If those conditions are not met then pages must exist and
    205  1.129       chs 	 * be locked by the current thread.
    206  1.129       chs 	 */
    207  1.129       chs 
    208   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    209  1.137  dholland 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    210   1.37       chs 		struct vm_page *pg;
    211  1.129       chs 		struct vnode *vp = ITOV(ip);
    212  1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    213  1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    214  1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    215   1.37       chs 
    216  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    217   1.37       chs 		while (off < endoff) {
    218   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    219  1.129       chs 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    220  1.129       chs 				 (size & PAGE_MASK) == 0 &&
    221  1.135  dholland 				 ffs_blkoff(fs, size) == 0) ||
    222  1.129       chs 				(pg != NULL && pg->owner == curproc->p_pid &&
    223  1.129       chs 				 pg->lowner == curlwp->l_lid));
    224   1.37       chs 			off += PAGE_SIZE;
    225   1.37       chs 		}
    226  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    227   1.37       chs 	}
    228   1.37       chs #endif
    229   1.37       chs 
    230    1.1   mycroft 	*bnp = 0;
    231    1.1   mycroft #ifdef DIAGNOSTIC
    232  1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
    233  1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    234  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    235  1.120  christos 		    fs->fs_fsmnt);
    236    1.1   mycroft 		panic("ffs_alloc: bad size");
    237    1.1   mycroft 	}
    238    1.1   mycroft 	if (cred == NOCRED)
    239   1.56    provos 		panic("ffs_alloc: missing credential");
    240    1.1   mycroft #endif /* DIAGNOSTIC */
    241    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    242    1.1   mycroft 		goto nospace;
    243   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    244  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    245  1.124      elad 	    NULL, NULL) != 0)
    246    1.1   mycroft 		goto nospace;
    247  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    248  1.101        ad 	mutex_exit(&ump->um_lock);
    249   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    250    1.1   mycroft 		return (error);
    251  1.101        ad 	mutex_enter(&ump->um_lock);
    252    1.1   mycroft #endif
    253  1.111    simonb 
    254    1.1   mycroft 	if (bpref >= fs->fs_size)
    255    1.1   mycroft 		bpref = 0;
    256    1.1   mycroft 	if (bpref == 0)
    257    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    258    1.1   mycroft 	else
    259    1.1   mycroft 		cg = dtog(fs, bpref);
    260  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
    261    1.1   mycroft 	if (bno > 0) {
    262   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    263    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    264    1.1   mycroft 		*bnp = bno;
    265    1.1   mycroft 		return (0);
    266    1.1   mycroft 	}
    267  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    268    1.1   mycroft 	/*
    269    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    270    1.1   mycroft 	 */
    271   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    272    1.1   mycroft #endif
    273  1.111    simonb 	if (flags & B_CONTIG) {
    274  1.111    simonb 		/*
    275  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    276  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    277  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    278  1.111    simonb 		 * already unlocked, so we can't release it again
    279  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    280  1.111    simonb 		 *
    281  1.111    simonb 		 *
    282  1.111    simonb 		 * Fail silently - it's up to our caller to report
    283  1.111    simonb 		 * errors.
    284  1.111    simonb 		 */
    285  1.111    simonb 		return (ENOSPC);
    286  1.111    simonb 	}
    287    1.1   mycroft nospace:
    288  1.101        ad 	mutex_exit(&ump->um_lock);
    289  1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    290    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    291    1.1   mycroft 	return (ENOSPC);
    292    1.1   mycroft }
    293    1.1   mycroft 
    294    1.1   mycroft /*
    295    1.1   mycroft  * Reallocate a fragment to a bigger size
    296    1.1   mycroft  *
    297    1.1   mycroft  * The number and size of the old block is given, and a preference
    298    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    299    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    300    1.1   mycroft  * invoked to get an appropriate block.
    301  1.106     pooka  *
    302  1.106     pooka  * => called with um_lock held
    303  1.106     pooka  * => return with um_lock released
    304    1.1   mycroft  */
    305    1.9  christos int
    306   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    307   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    308    1.1   mycroft {
    309  1.101        ad 	struct ufsmount *ump;
    310   1.62      fvdl 	struct fs *fs;
    311    1.1   mycroft 	struct buf *bp;
    312    1.1   mycroft 	int cg, request, error;
    313   1.58      fvdl 	daddr_t bprev, bno;
    314   1.25   thorpej 
    315   1.62      fvdl 	fs = ip->i_fs;
    316  1.101        ad 	ump = ip->i_ump;
    317  1.101        ad 
    318  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    319  1.101        ad 
    320   1.37       chs #ifdef UVM_PAGE_TRKOWN
    321  1.129       chs 
    322  1.129       chs 	/*
    323  1.129       chs 	 * Sanity-check that allocations within the file size
    324  1.129       chs 	 * do not allow other threads to read the stale contents
    325  1.129       chs 	 * of newly allocated blocks.
    326  1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    327  1.129       chs 	 * for such allocations, because only the last block of a file
    328  1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    329  1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    330  1.129       chs 	 * which always creates pages to cover blocks it allocates.
    331  1.129       chs 	 */
    332  1.129       chs 
    333   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    334   1.37       chs 		struct vm_page *pg;
    335   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    336  1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    337  1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    338   1.37       chs 
    339  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    340   1.37       chs 		while (off < endoff) {
    341   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    342  1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    343  1.129       chs 				pg->lowner == curlwp->l_lid);
    344   1.37       chs 			off += PAGE_SIZE;
    345   1.37       chs 		}
    346  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    347   1.37       chs 	}
    348   1.37       chs #endif
    349   1.37       chs 
    350    1.1   mycroft #ifdef DIAGNOSTIC
    351  1.134  dholland 	if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
    352  1.134  dholland 	    (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
    353   1.13  christos 		printf(
    354  1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    355  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    356  1.120  christos 		    fs->fs_fsmnt);
    357    1.1   mycroft 		panic("ffs_realloccg: bad size");
    358    1.1   mycroft 	}
    359    1.1   mycroft 	if (cred == NOCRED)
    360   1.56    provos 		panic("ffs_realloccg: missing credential");
    361    1.1   mycroft #endif /* DIAGNOSTIC */
    362   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    363  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    364  1.124      elad 	    NULL, NULL) != 0) {
    365  1.101        ad 		mutex_exit(&ump->um_lock);
    366    1.1   mycroft 		goto nospace;
    367  1.101        ad 	}
    368   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    369   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    370   1.60      fvdl 	else
    371   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    372   1.60      fvdl 
    373   1.60      fvdl 	if (bprev == 0) {
    374  1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    375  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    376  1.120  christos 		    fs->fs_fsmnt);
    377    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    378    1.1   mycroft 	}
    379  1.101        ad 	mutex_exit(&ump->um_lock);
    380  1.101        ad 
    381    1.1   mycroft 	/*
    382    1.1   mycroft 	 * Allocate the extra space in the buffer.
    383    1.1   mycroft 	 */
    384   1.37       chs 	if (bpp != NULL &&
    385  1.149      maxv 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    386    1.1   mycroft 		return (error);
    387    1.1   mycroft 	}
    388  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    389   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    390   1.44       chs 		if (bpp != NULL) {
    391  1.101        ad 			brelse(bp, 0);
    392   1.44       chs 		}
    393    1.1   mycroft 		return (error);
    394    1.1   mycroft 	}
    395    1.1   mycroft #endif
    396    1.1   mycroft 	/*
    397    1.1   mycroft 	 * Check for extension in the existing location.
    398    1.1   mycroft 	 */
    399    1.1   mycroft 	cg = dtog(fs, bprev);
    400  1.101        ad 	mutex_enter(&ump->um_lock);
    401   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    402   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    403    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    404   1.37       chs 
    405   1.37       chs 		if (bpp != NULL) {
    406  1.136  dholland 			if (bp->b_blkno != FFS_FSBTODB(fs, bno))
    407   1.37       chs 				panic("bad blockno");
    408   1.72        pk 			allocbuf(bp, nsize, 1);
    409   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    410  1.105        ad 			mutex_enter(bp->b_objlock);
    411  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    412  1.105        ad 			bp->b_oflags |= BO_DONE;
    413  1.105        ad 			mutex_exit(bp->b_objlock);
    414   1.37       chs 			*bpp = bp;
    415   1.37       chs 		}
    416   1.37       chs 		if (blknop != NULL) {
    417   1.37       chs 			*blknop = bno;
    418   1.37       chs 		}
    419    1.1   mycroft 		return (0);
    420    1.1   mycroft 	}
    421    1.1   mycroft 	/*
    422    1.1   mycroft 	 * Allocate a new disk location.
    423    1.1   mycroft 	 */
    424    1.1   mycroft 	if (bpref >= fs->fs_size)
    425    1.1   mycroft 		bpref = 0;
    426    1.1   mycroft 	switch ((int)fs->fs_optim) {
    427    1.1   mycroft 	case FS_OPTSPACE:
    428    1.1   mycroft 		/*
    429   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    430   1.81     perry 		 * best use of space, we will waste time relocating it if
    431    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    432    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    433    1.1   mycroft 		 * to begin optimizing for time.
    434    1.1   mycroft 		 */
    435    1.1   mycroft 		request = nsize;
    436    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    437    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    438    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    439    1.1   mycroft 			break;
    440   1.34  jdolecek 
    441   1.34  jdolecek 		if (ffs_log_changeopt) {
    442   1.34  jdolecek 			log(LOG_NOTICE,
    443   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    444   1.34  jdolecek 				fs->fs_fsmnt);
    445   1.34  jdolecek 		}
    446   1.34  jdolecek 
    447    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    448    1.1   mycroft 		break;
    449    1.1   mycroft 	case FS_OPTTIME:
    450    1.1   mycroft 		/*
    451    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    452    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    453    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    454    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    455    1.1   mycroft 		 * above will be able to grow it in place without further
    456    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    457    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    458    1.1   mycroft 		 * optimizing for space.
    459    1.1   mycroft 		 */
    460    1.1   mycroft 		request = fs->fs_bsize;
    461    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    462    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    463    1.1   mycroft 			break;
    464   1.34  jdolecek 
    465   1.34  jdolecek 		if (ffs_log_changeopt) {
    466   1.34  jdolecek 			log(LOG_NOTICE,
    467   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    468   1.34  jdolecek 				fs->fs_fsmnt);
    469   1.34  jdolecek 		}
    470   1.34  jdolecek 
    471    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    472    1.1   mycroft 		break;
    473    1.1   mycroft 	default:
    474  1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    475  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    476    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    477    1.1   mycroft 		/* NOTREACHED */
    478    1.1   mycroft 	}
    479  1.111    simonb 	bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
    480    1.1   mycroft 	if (bno > 0) {
    481  1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    482  1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    483  1.122        ad 			UFS_WAPBL_REGISTER_DEALLOCATION(
    484  1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    485  1.122        ad 			    osize);
    486  1.122        ad 		} else {
    487  1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    488  1.122        ad 			    ip->i_number);
    489  1.111    simonb 		}
    490  1.111    simonb 		if (nsize < request) {
    491  1.111    simonb 			if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    492  1.111    simonb 			    (ITOV(ip)->v_type != VREG)) {
    493  1.111    simonb 				UFS_WAPBL_REGISTER_DEALLOCATION(
    494  1.111    simonb 				    ip->i_ump->um_mountp,
    495  1.137  dholland 				    FFS_FSBTODB(fs, (bno + ffs_numfrags(fs, nsize))),
    496  1.111    simonb 				    request - nsize);
    497  1.111    simonb 			} else
    498  1.111    simonb 				ffs_blkfree(fs, ip->i_devvp,
    499  1.137  dholland 				    bno + ffs_numfrags(fs, nsize),
    500  1.111    simonb 				    (long)(request - nsize), ip->i_number);
    501  1.111    simonb 		}
    502   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    503    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    504   1.37       chs 		if (bpp != NULL) {
    505  1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    506   1.72        pk 			allocbuf(bp, nsize, 1);
    507   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    508  1.105        ad 			mutex_enter(bp->b_objlock);
    509  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    510  1.105        ad 			bp->b_oflags |= BO_DONE;
    511  1.105        ad 			mutex_exit(bp->b_objlock);
    512   1.37       chs 			*bpp = bp;
    513   1.37       chs 		}
    514   1.37       chs 		if (blknop != NULL) {
    515   1.37       chs 			*blknop = bno;
    516   1.37       chs 		}
    517    1.1   mycroft 		return (0);
    518    1.1   mycroft 	}
    519  1.101        ad 	mutex_exit(&ump->um_lock);
    520  1.101        ad 
    521  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    522    1.1   mycroft 	/*
    523    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    524    1.1   mycroft 	 */
    525   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    526    1.1   mycroft #endif
    527   1.37       chs 	if (bpp != NULL) {
    528  1.101        ad 		brelse(bp, 0);
    529   1.37       chs 	}
    530   1.37       chs 
    531    1.1   mycroft nospace:
    532    1.1   mycroft 	/*
    533    1.1   mycroft 	 * no space available
    534    1.1   mycroft 	 */
    535  1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    536    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    537    1.1   mycroft 	return (ENOSPC);
    538    1.1   mycroft }
    539    1.1   mycroft 
    540    1.1   mycroft /*
    541    1.1   mycroft  * Allocate an inode in the file system.
    542   1.81     perry  *
    543    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    544    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    545    1.1   mycroft  *   1) allocate the preferred inode.
    546    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    547    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    548    1.1   mycroft  *      available inode is located.
    549   1.47       wiz  * If no inode preference is given the following hierarchy is used
    550    1.1   mycroft  * to allocate an inode:
    551    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    552    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    553    1.1   mycroft  *      available inode is located.
    554  1.106     pooka  *
    555  1.106     pooka  * => um_lock not held upon entry or return
    556    1.1   mycroft  */
    557    1.9  christos int
    558  1.148   hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    559    1.9  christos {
    560  1.101        ad 	struct ufsmount *ump;
    561   1.33  augustss 	struct inode *pip;
    562   1.33  augustss 	struct fs *fs;
    563    1.1   mycroft 	ino_t ino, ipref;
    564    1.1   mycroft 	int cg, error;
    565   1.81     perry 
    566  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    567  1.111    simonb 
    568    1.1   mycroft 	pip = VTOI(pvp);
    569    1.1   mycroft 	fs = pip->i_fs;
    570  1.101        ad 	ump = pip->i_ump;
    571  1.101        ad 
    572  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    573  1.111    simonb 	if (error) {
    574  1.111    simonb 		return error;
    575  1.111    simonb 	}
    576  1.101        ad 	mutex_enter(&ump->um_lock);
    577    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    578    1.1   mycroft 		goto noinodes;
    579    1.1   mycroft 
    580    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    581   1.50     lukem 		ipref = ffs_dirpref(pip);
    582   1.50     lukem 	else
    583   1.50     lukem 		ipref = pip->i_number;
    584    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    585    1.1   mycroft 		ipref = 0;
    586    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    587   1.50     lukem 	/*
    588   1.50     lukem 	 * Track number of dirs created one after another
    589   1.50     lukem 	 * in a same cg without intervening by files.
    590   1.50     lukem 	 */
    591   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    592   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    593   1.50     lukem 			fs->fs_contigdirs[cg]++;
    594   1.50     lukem 	} else {
    595   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    596   1.50     lukem 			fs->fs_contigdirs[cg]--;
    597   1.50     lukem 	}
    598  1.111    simonb 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
    599    1.1   mycroft 	if (ino == 0)
    600    1.1   mycroft 		goto noinodes;
    601  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    602  1.148   hannken 	*inop = ino;
    603  1.148   hannken 	return 0;
    604   1.60      fvdl 
    605    1.1   mycroft noinodes:
    606  1.101        ad 	mutex_exit(&ump->um_lock);
    607  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    608  1.150   mlelstv 	ffs_fserr(fs, cred, "out of inodes");
    609    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    610  1.148   hannken 	return ENOSPC;
    611    1.1   mycroft }
    612    1.1   mycroft 
    613    1.1   mycroft /*
    614   1.50     lukem  * Find a cylinder group in which to place a directory.
    615   1.42  sommerfe  *
    616   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    617   1.50     lukem  * directory inode in the same cylinder group as its parent
    618   1.50     lukem  * directory, but also to reserve space for its files inodes
    619   1.50     lukem  * and data. Restrict the number of directories which may be
    620   1.50     lukem  * allocated one after another in the same cylinder group
    621   1.50     lukem  * without intervening allocation of files.
    622   1.42  sommerfe  *
    623   1.50     lukem  * If we allocate a first level directory then force allocation
    624   1.50     lukem  * in another cylinder group.
    625    1.1   mycroft  */
    626    1.1   mycroft static ino_t
    627   1.85   thorpej ffs_dirpref(struct inode *pip)
    628    1.1   mycroft {
    629   1.50     lukem 	register struct fs *fs;
    630   1.74     soren 	int cg, prefcg;
    631   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    632   1.89       dsl 	int avgifree, avgbfree, avgndir;
    633   1.50     lukem 	int minifree, minbfree, maxndir;
    634   1.50     lukem 	int mincg, minndir;
    635   1.50     lukem 	int maxcontigdirs;
    636   1.50     lukem 
    637  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    638  1.101        ad 
    639   1.50     lukem 	fs = pip->i_fs;
    640    1.1   mycroft 
    641    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    642   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    643   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    644   1.50     lukem 
    645   1.50     lukem 	/*
    646   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    647   1.50     lukem 	 */
    648  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    649  1.147     joerg 		prefcg = cprng_fast32() % fs->fs_ncg;
    650   1.50     lukem 		mincg = prefcg;
    651   1.50     lukem 		minndir = fs->fs_ipg;
    652   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    653   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    654   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    655   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    656   1.42  sommerfe 				mincg = cg;
    657   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    658   1.42  sommerfe 			}
    659   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    660   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    661   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    662   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    663   1.50     lukem 				mincg = cg;
    664   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    665   1.42  sommerfe 			}
    666   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    667   1.42  sommerfe 	}
    668   1.50     lukem 
    669   1.50     lukem 	/*
    670   1.50     lukem 	 * Count various limits which used for
    671   1.50     lukem 	 * optimal allocation of a directory inode.
    672  1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    673  1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    674  1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    675   1.50     lukem 	 */
    676   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    677  1.144       bad 	minifree = avgifree - avgifree / 4;
    678  1.144       bad 	if (minifree < 1)
    679  1.144       bad 		minifree = 1;
    680  1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    681  1.144       bad 	if (minbfree < 1)
    682  1.144       bad 		minbfree = 1;
    683   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    684   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    685   1.89       dsl 	if (avgndir != 0) {
    686   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    687   1.89       dsl 		if (dirsize < curdsz)
    688   1.89       dsl 			dirsize = curdsz;
    689   1.89       dsl 	}
    690   1.89       dsl 	if (cgsize < dirsize * 255)
    691  1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    692   1.89       dsl 	else
    693   1.89       dsl 		maxcontigdirs = 255;
    694   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    695   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    696   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    697   1.50     lukem 	if (maxcontigdirs == 0)
    698   1.50     lukem 		maxcontigdirs = 1;
    699   1.50     lukem 
    700   1.50     lukem 	/*
    701   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    702   1.50     lukem 	 * regular files, but only if we have no deficit in
    703   1.50     lukem 	 * inodes or space.
    704   1.50     lukem 	 */
    705   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    706   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    707   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    708   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    709   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    710   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    711   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    712   1.50     lukem 		}
    713   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    714   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    715   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    716   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    717   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    718   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    719   1.50     lukem 		}
    720   1.50     lukem 	/*
    721   1.50     lukem 	 * This is a backstop when we are deficient in space.
    722   1.50     lukem 	 */
    723   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    724   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    725   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    726   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    727   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    728   1.50     lukem 			break;
    729   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    730    1.1   mycroft }
    731    1.1   mycroft 
    732    1.1   mycroft /*
    733    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    734    1.1   mycroft  * logically divided into sections. The first section is composed of the
    735    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    736   1.81     perry  *
    737    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    738    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    739    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    740    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    741    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    742    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    743    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    744    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    745    1.1   mycroft  * continues until a cylinder group with greater than the average number
    746    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    747    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    748    1.1   mycroft  * here a best guess is made based upon the logical block number being
    749    1.1   mycroft  * allocated.
    750   1.81     perry  *
    751    1.1   mycroft  * If a section is already partially allocated, the policy is to
    752    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    753   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    754   1.60      fvdl  * contigously if possible.
    755  1.106     pooka  *
    756  1.106     pooka  * => um_lock held on entry and exit
    757    1.1   mycroft  */
    758   1.58      fvdl daddr_t
    759  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    760   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    761    1.1   mycroft {
    762   1.33  augustss 	struct fs *fs;
    763   1.33  augustss 	int cg;
    764    1.1   mycroft 	int avgbfree, startcg;
    765    1.1   mycroft 
    766  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    767  1.101        ad 
    768    1.1   mycroft 	fs = ip->i_fs;
    769  1.111    simonb 
    770  1.111    simonb 	/*
    771  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    772  1.111    simonb 	 * in the inode extentions to return the desired block.
    773  1.111    simonb 	 *
    774  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    775  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    776  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    777  1.111    simonb 	 * block.  For data, return the address of the actual block
    778  1.111    simonb 	 * relative to the address of the first data block.
    779  1.111    simonb 	 */
    780  1.111    simonb 	if (flags & B_CONTIG) {
    781  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    782  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    783  1.111    simonb 		if (flags & B_METAONLY)
    784  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    785  1.111    simonb 		else
    786  1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    787  1.111    simonb 	}
    788  1.111    simonb 
    789    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    790  1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    791    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    792  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    793    1.1   mycroft 		}
    794    1.1   mycroft 		/*
    795    1.1   mycroft 		 * Find a cylinder with greater than average number of
    796    1.1   mycroft 		 * unused data blocks.
    797    1.1   mycroft 		 */
    798    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    799    1.1   mycroft 			startcg =
    800    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    801    1.1   mycroft 		else
    802   1.19    bouyer 			startcg = dtog(fs,
    803   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    804    1.1   mycroft 		startcg %= fs->fs_ncg;
    805    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    806    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    807    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    808  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    809    1.1   mycroft 			}
    810   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    811    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    812  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    813    1.1   mycroft 			}
    814   1.35   thorpej 		return (0);
    815    1.1   mycroft 	}
    816    1.1   mycroft 	/*
    817   1.60      fvdl 	 * We just always try to lay things out contiguously.
    818   1.60      fvdl 	 */
    819   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    820   1.60      fvdl }
    821   1.60      fvdl 
    822   1.60      fvdl daddr_t
    823  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    824  1.111    simonb     int64_t *bap)
    825   1.60      fvdl {
    826   1.60      fvdl 	struct fs *fs;
    827   1.60      fvdl 	int cg;
    828   1.60      fvdl 	int avgbfree, startcg;
    829   1.60      fvdl 
    830  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    831  1.101        ad 
    832   1.60      fvdl 	fs = ip->i_fs;
    833  1.111    simonb 
    834  1.111    simonb 	/*
    835  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    836  1.111    simonb 	 * in the inode extentions to return the desired block.
    837  1.111    simonb 	 *
    838  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    839  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    840  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    841  1.111    simonb 	 * block.  For data, return the address of the actual block
    842  1.111    simonb 	 * relative to the address of the first data block.
    843  1.111    simonb 	 */
    844  1.111    simonb 	if (flags & B_CONTIG) {
    845  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    846  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    847  1.111    simonb 		if (flags & B_METAONLY)
    848  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    849  1.111    simonb 		else
    850  1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    851  1.111    simonb 	}
    852  1.111    simonb 
    853   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    854  1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    855   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    856  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    857   1.60      fvdl 		}
    858    1.1   mycroft 		/*
    859   1.60      fvdl 		 * Find a cylinder with greater than average number of
    860   1.60      fvdl 		 * unused data blocks.
    861    1.1   mycroft 		 */
    862   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    863   1.60      fvdl 			startcg =
    864   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    865   1.60      fvdl 		else
    866   1.60      fvdl 			startcg = dtog(fs,
    867   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    868   1.60      fvdl 		startcg %= fs->fs_ncg;
    869   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    870   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    871   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    872  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    873   1.60      fvdl 			}
    874   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    875   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    876  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    877   1.60      fvdl 			}
    878   1.60      fvdl 		return (0);
    879   1.60      fvdl 	}
    880   1.60      fvdl 	/*
    881   1.60      fvdl 	 * We just always try to lay things out contiguously.
    882   1.60      fvdl 	 */
    883   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    884    1.1   mycroft }
    885    1.1   mycroft 
    886   1.60      fvdl 
    887    1.1   mycroft /*
    888    1.1   mycroft  * Implement the cylinder overflow algorithm.
    889    1.1   mycroft  *
    890    1.1   mycroft  * The policy implemented by this algorithm is:
    891    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    892    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    893    1.1   mycroft  *   3) brute force search for a free block.
    894  1.106     pooka  *
    895  1.106     pooka  * => called with um_lock held
    896  1.106     pooka  * => returns with um_lock released on success, held on failure
    897  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    898    1.1   mycroft  */
    899    1.1   mycroft /*VARARGS5*/
    900   1.58      fvdl static daddr_t
    901   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    902   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    903  1.111    simonb     int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
    904    1.1   mycroft {
    905   1.33  augustss 	struct fs *fs;
    906   1.58      fvdl 	daddr_t result;
    907    1.1   mycroft 	int i, icg = cg;
    908    1.1   mycroft 
    909    1.1   mycroft 	fs = ip->i_fs;
    910    1.1   mycroft 	/*
    911    1.1   mycroft 	 * 1: preferred cylinder group
    912    1.1   mycroft 	 */
    913  1.111    simonb 	result = (*allocator)(ip, cg, pref, size, flags);
    914    1.1   mycroft 	if (result)
    915    1.1   mycroft 		return (result);
    916  1.111    simonb 
    917  1.111    simonb 	if (flags & B_CONTIG)
    918  1.111    simonb 		return (result);
    919    1.1   mycroft 	/*
    920    1.1   mycroft 	 * 2: quadratic rehash
    921    1.1   mycroft 	 */
    922    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    923    1.1   mycroft 		cg += i;
    924    1.1   mycroft 		if (cg >= fs->fs_ncg)
    925    1.1   mycroft 			cg -= fs->fs_ncg;
    926  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    927    1.1   mycroft 		if (result)
    928    1.1   mycroft 			return (result);
    929    1.1   mycroft 	}
    930    1.1   mycroft 	/*
    931    1.1   mycroft 	 * 3: brute force search
    932    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    933    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    934    1.1   mycroft 	 */
    935    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    936    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    937  1.111    simonb 		result = (*allocator)(ip, cg, 0, size, flags);
    938    1.1   mycroft 		if (result)
    939    1.1   mycroft 			return (result);
    940    1.1   mycroft 		cg++;
    941    1.1   mycroft 		if (cg == fs->fs_ncg)
    942    1.1   mycroft 			cg = 0;
    943    1.1   mycroft 	}
    944   1.35   thorpej 	return (0);
    945    1.1   mycroft }
    946    1.1   mycroft 
    947    1.1   mycroft /*
    948    1.1   mycroft  * Determine whether a fragment can be extended.
    949    1.1   mycroft  *
    950   1.81     perry  * Check to see if the necessary fragments are available, and
    951    1.1   mycroft  * if they are, allocate them.
    952  1.106     pooka  *
    953  1.106     pooka  * => called with um_lock held
    954  1.106     pooka  * => returns with um_lock released on success, held on failure
    955    1.1   mycroft  */
    956   1.58      fvdl static daddr_t
    957   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    958    1.1   mycroft {
    959  1.101        ad 	struct ufsmount *ump;
    960   1.33  augustss 	struct fs *fs;
    961   1.33  augustss 	struct cg *cgp;
    962    1.1   mycroft 	struct buf *bp;
    963   1.58      fvdl 	daddr_t bno;
    964    1.1   mycroft 	int frags, bbase;
    965    1.1   mycroft 	int i, error;
    966   1.62      fvdl 	u_int8_t *blksfree;
    967    1.1   mycroft 
    968    1.1   mycroft 	fs = ip->i_fs;
    969  1.101        ad 	ump = ip->i_ump;
    970  1.101        ad 
    971  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    972  1.101        ad 
    973  1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    974   1.35   thorpej 		return (0);
    975  1.137  dholland 	frags = ffs_numfrags(fs, nsize);
    976  1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
    977  1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    978    1.1   mycroft 		/* cannot extend across a block boundary */
    979   1.35   thorpej 		return (0);
    980    1.1   mycroft 	}
    981  1.101        ad 	mutex_exit(&ump->um_lock);
    982  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    983  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    984  1.101        ad 	if (error)
    985  1.101        ad 		goto fail;
    986    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    987  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    988  1.101        ad 		goto fail;
    989   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    990   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    991   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
    992   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
    993    1.1   mycroft 	bno = dtogd(fs, bprev);
    994   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
    995  1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
    996  1.101        ad 		if (isclr(blksfree, bno + i))
    997  1.101        ad 			goto fail;
    998    1.1   mycroft 	/*
    999    1.1   mycroft 	 * the current fragment can be extended
   1000    1.1   mycroft 	 * deduct the count on fragment being extended into
   1001    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1002    1.1   mycroft 	 * allocate the extended piece
   1003    1.1   mycroft 	 */
   1004    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1005   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1006    1.1   mycroft 			break;
   1007  1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1008    1.1   mycroft 	if (i != frags)
   1009   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1010  1.101        ad 	mutex_enter(&ump->um_lock);
   1011  1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1012   1.62      fvdl 		clrbit(blksfree, bno + i);
   1013   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1014    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1015    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1016    1.1   mycroft 	}
   1017    1.1   mycroft 	fs->fs_fmod = 1;
   1018  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1019  1.101        ad 	mutex_exit(&ump->um_lock);
   1020    1.1   mycroft 	bdwrite(bp);
   1021    1.1   mycroft 	return (bprev);
   1022  1.101        ad 
   1023  1.101        ad  fail:
   1024  1.132   hannken  	if (bp != NULL)
   1025  1.132   hannken 		brelse(bp, 0);
   1026  1.101        ad  	mutex_enter(&ump->um_lock);
   1027  1.101        ad  	return (0);
   1028    1.1   mycroft }
   1029    1.1   mycroft 
   1030    1.1   mycroft /*
   1031    1.1   mycroft  * Determine whether a block can be allocated.
   1032    1.1   mycroft  *
   1033    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1034    1.1   mycroft  * and if it is, allocate it.
   1035    1.1   mycroft  */
   1036   1.58      fvdl static daddr_t
   1037  1.111    simonb ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
   1038    1.1   mycroft {
   1039  1.101        ad 	struct ufsmount *ump;
   1040   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1041   1.30      fvdl 	struct cg *cgp;
   1042    1.1   mycroft 	struct buf *bp;
   1043   1.60      fvdl 	int32_t bno;
   1044   1.60      fvdl 	daddr_t blkno;
   1045   1.30      fvdl 	int error, frags, allocsiz, i;
   1046   1.62      fvdl 	u_int8_t *blksfree;
   1047   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1048    1.1   mycroft 
   1049  1.101        ad 	ump = ip->i_ump;
   1050  1.101        ad 
   1051  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1052  1.101        ad 
   1053    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1054   1.35   thorpej 		return (0);
   1055  1.101        ad 	mutex_exit(&ump->um_lock);
   1056  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1057  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1058  1.101        ad 	if (error)
   1059  1.101        ad 		goto fail;
   1060    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1061   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1062  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1063  1.101        ad 		goto fail;
   1064   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1065   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1066   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1067   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1068    1.1   mycroft 	if (size == fs->fs_bsize) {
   1069  1.101        ad 		mutex_enter(&ump->um_lock);
   1070  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1071   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1072  1.101        ad 		mutex_exit(&ump->um_lock);
   1073    1.1   mycroft 		bdwrite(bp);
   1074   1.60      fvdl 		return (blkno);
   1075    1.1   mycroft 	}
   1076    1.1   mycroft 	/*
   1077    1.1   mycroft 	 * check to see if any fragments are already available
   1078    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1079    1.1   mycroft 	 * it down to a smaller size if necessary
   1080    1.1   mycroft 	 */
   1081   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1082  1.137  dholland 	frags = ffs_numfrags(fs, size);
   1083    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1084    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1085    1.1   mycroft 			break;
   1086    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1087    1.1   mycroft 		/*
   1088   1.81     perry 		 * no fragments were available, so a block will be
   1089    1.1   mycroft 		 * allocated, and hacked up
   1090    1.1   mycroft 		 */
   1091  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1092  1.101        ad 			goto fail;
   1093  1.101        ad 		mutex_enter(&ump->um_lock);
   1094  1.111    simonb 		blkno = ffs_alloccgblk(ip, bp, bpref, flags);
   1095   1.60      fvdl 		bno = dtogd(fs, blkno);
   1096    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1097   1.62      fvdl 			setbit(blksfree, bno + i);
   1098    1.1   mycroft 		i = fs->fs_frag - frags;
   1099   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1100    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1101   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1102    1.1   mycroft 		fs->fs_fmod = 1;
   1103   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1104   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1105  1.101        ad 		mutex_exit(&ump->um_lock);
   1106    1.1   mycroft 		bdwrite(bp);
   1107   1.60      fvdl 		return (blkno);
   1108    1.1   mycroft 	}
   1109   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1110   1.30      fvdl #if 0
   1111   1.30      fvdl 	/*
   1112   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1113   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1114   1.30      fvdl 	 */
   1115  1.101        ad 	if (bno < 0)
   1116  1.101        ad 		goto fail;
   1117   1.30      fvdl #endif
   1118    1.1   mycroft 	for (i = 0; i < frags; i++)
   1119   1.62      fvdl 		clrbit(blksfree, bno + i);
   1120  1.101        ad 	mutex_enter(&ump->um_lock);
   1121   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1122    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1123    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1124    1.1   mycroft 	fs->fs_fmod = 1;
   1125   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1126    1.1   mycroft 	if (frags != allocsiz)
   1127   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1128  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1129  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1130  1.101        ad 	mutex_exit(&ump->um_lock);
   1131    1.1   mycroft 	bdwrite(bp);
   1132   1.30      fvdl 	return blkno;
   1133  1.101        ad 
   1134  1.101        ad  fail:
   1135  1.132   hannken  	if (bp != NULL)
   1136  1.132   hannken 		brelse(bp, 0);
   1137  1.101        ad  	mutex_enter(&ump->um_lock);
   1138  1.101        ad  	return (0);
   1139    1.1   mycroft }
   1140    1.1   mycroft 
   1141    1.1   mycroft /*
   1142    1.1   mycroft  * Allocate a block in a cylinder group.
   1143    1.1   mycroft  *
   1144    1.1   mycroft  * This algorithm implements the following policy:
   1145    1.1   mycroft  *   1) allocate the requested block.
   1146    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1147    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1148    1.1   mycroft  *      specified cylinder group.
   1149    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1150    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1151    1.1   mycroft  */
   1152   1.58      fvdl static daddr_t
   1153  1.111    simonb ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
   1154    1.1   mycroft {
   1155   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1156   1.30      fvdl 	struct cg *cgp;
   1157  1.123  sborrill 	int cg;
   1158   1.60      fvdl 	daddr_t blkno;
   1159   1.60      fvdl 	int32_t bno;
   1160   1.60      fvdl 	u_int8_t *blksfree;
   1161   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1162    1.1   mycroft 
   1163  1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1164  1.101        ad 
   1165   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1166   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1167   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1168   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1169   1.60      fvdl 	} else {
   1170  1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1171   1.60      fvdl 		bno = dtogd(fs, bpref);
   1172    1.1   mycroft 		/*
   1173   1.60      fvdl 		 * if the requested block is available, use it
   1174    1.1   mycroft 		 */
   1175  1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1176   1.60      fvdl 			goto gotit;
   1177  1.111    simonb 		/*
   1178  1.111    simonb 		 * if the requested data block isn't available and we are
   1179  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1180  1.111    simonb 		 */
   1181  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1182  1.111    simonb 			return (0);
   1183    1.1   mycroft 	}
   1184  1.111    simonb 
   1185    1.1   mycroft 	/*
   1186   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1187    1.1   mycroft 	 */
   1188   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1189    1.1   mycroft 	if (bno < 0)
   1190   1.35   thorpej 		return (0);
   1191   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1192    1.1   mycroft gotit:
   1193  1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1194   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1195   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1196   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1197    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1198   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1199   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1200   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1201   1.73       dbj 		int cylno;
   1202   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1203   1.75       dbj 		KASSERT(cylno >= 0);
   1204   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1205   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1206   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1207   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1208   1.73       dbj 		    needswap);
   1209   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1210   1.73       dbj 	}
   1211    1.1   mycroft 	fs->fs_fmod = 1;
   1212  1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1213  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1214   1.30      fvdl 	return (blkno);
   1215    1.1   mycroft }
   1216    1.1   mycroft 
   1217    1.1   mycroft /*
   1218    1.1   mycroft  * Determine whether an inode can be allocated.
   1219    1.1   mycroft  *
   1220    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1221    1.1   mycroft  * allocate it using the following policy:
   1222    1.1   mycroft  *   1) allocate the requested inode.
   1223    1.1   mycroft  *   2) allocate the next available inode after the requested
   1224    1.1   mycroft  *      inode in the specified cylinder group.
   1225    1.1   mycroft  */
   1226   1.58      fvdl static daddr_t
   1227  1.111    simonb ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
   1228    1.1   mycroft {
   1229  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1230   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1231   1.33  augustss 	struct cg *cgp;
   1232   1.60      fvdl 	struct buf *bp, *ibp;
   1233   1.60      fvdl 	u_int8_t *inosused;
   1234    1.1   mycroft 	int error, start, len, loc, map, i;
   1235   1.60      fvdl 	int32_t initediblk;
   1236  1.112   hannken 	daddr_t nalloc;
   1237   1.60      fvdl 	struct ufs2_dinode *dp2;
   1238   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1239    1.1   mycroft 
   1240  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1241  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1242  1.101        ad 
   1243    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1244   1.35   thorpej 		return (0);
   1245  1.101        ad 	mutex_exit(&ump->um_lock);
   1246  1.112   hannken 	ibp = NULL;
   1247  1.112   hannken 	initediblk = -1;
   1248  1.112   hannken retry:
   1249  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1250  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1251  1.101        ad 	if (error)
   1252  1.101        ad 		goto fail;
   1253    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1254  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1255  1.101        ad 		goto fail;
   1256  1.112   hannken 
   1257  1.112   hannken 	if (ibp != NULL &&
   1258  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1259  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1260  1.121        ad 		brelse(ibp, 0);
   1261  1.112   hannken 		ibp = NULL;
   1262  1.112   hannken 	}
   1263  1.112   hannken 	/*
   1264  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1265  1.112   hannken 	 */
   1266  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1267  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1268  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1269  1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1270  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1271  1.112   hannken 			/*
   1272  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1273  1.112   hannken 			 * a deadlock when reading the inode block will
   1274  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1275  1.112   hannken 			 */
   1276  1.112   hannken 			brelse(bp, 0);
   1277  1.112   hannken 			bp = NULL;
   1278  1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1279  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1280  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1281  1.112   hannken 			if (error)
   1282  1.112   hannken 				goto fail;
   1283  1.112   hannken 			goto retry;
   1284  1.112   hannken 		}
   1285  1.112   hannken 	}
   1286  1.112   hannken 
   1287   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1288   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1289   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1290   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1291   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1292    1.1   mycroft 	if (ipref) {
   1293    1.1   mycroft 		ipref %= fs->fs_ipg;
   1294   1.60      fvdl 		if (isclr(inosused, ipref))
   1295    1.1   mycroft 			goto gotit;
   1296    1.1   mycroft 	}
   1297   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1298   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1299   1.19    bouyer 		NBBY);
   1300   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1301    1.1   mycroft 	if (loc == 0) {
   1302    1.1   mycroft 		len = start + 1;
   1303    1.1   mycroft 		start = 0;
   1304   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1305    1.1   mycroft 		if (loc == 0) {
   1306   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1307   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1308   1.19    bouyer 				fs->fs_fsmnt);
   1309    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1310    1.1   mycroft 			/* NOTREACHED */
   1311    1.1   mycroft 		}
   1312    1.1   mycroft 	}
   1313    1.1   mycroft 	i = start + len - loc;
   1314  1.126     rmind 	map = inosused[i] ^ 0xff;
   1315  1.126     rmind 	if (map == 0) {
   1316  1.126     rmind 		printf("fs = %s\n", fs->fs_fsmnt);
   1317  1.126     rmind 		panic("ffs_nodealloccg: block not in map");
   1318    1.1   mycroft 	}
   1319  1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1320  1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1321    1.1   mycroft gotit:
   1322  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1323  1.111    simonb 	    mode);
   1324   1.60      fvdl 	/*
   1325   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1326   1.60      fvdl 	 */
   1327  1.112   hannken 	if (ibp != NULL) {
   1328  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1329  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1330  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1331  1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1332   1.60      fvdl 			/*
   1333   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1334   1.60      fvdl 			 * random, after all.
   1335   1.60      fvdl 			 */
   1336  1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1337   1.60      fvdl 			dp2++;
   1338   1.60      fvdl 		}
   1339  1.134  dholland 		initediblk += FFS_INOPB(fs);
   1340   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1341   1.60      fvdl 	}
   1342   1.60      fvdl 
   1343  1.101        ad 	mutex_enter(&ump->um_lock);
   1344   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1345  1.101        ad 	setbit(inosused, ipref);
   1346  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1347  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1348  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1349  1.101        ad 	fs->fs_fmod = 1;
   1350  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1351  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1352  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1353  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1354  1.101        ad 	}
   1355  1.101        ad 	mutex_exit(&ump->um_lock);
   1356  1.112   hannken 	if (ibp != NULL) {
   1357  1.112   hannken 		bwrite(bp);
   1358  1.104   hannken 		bawrite(ibp);
   1359  1.112   hannken 	} else
   1360  1.112   hannken 		bdwrite(bp);
   1361    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1362  1.101        ad  fail:
   1363  1.112   hannken 	if (bp != NULL)
   1364  1.112   hannken 		brelse(bp, 0);
   1365  1.112   hannken 	if (ibp != NULL)
   1366  1.121        ad 		brelse(ibp, 0);
   1367  1.101        ad 	mutex_enter(&ump->um_lock);
   1368  1.101        ad 	return (0);
   1369    1.1   mycroft }
   1370    1.1   mycroft 
   1371    1.1   mycroft /*
   1372  1.111    simonb  * Allocate a block or fragment.
   1373  1.111    simonb  *
   1374  1.111    simonb  * The specified block or fragment is removed from the
   1375  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1376  1.111    simonb  *
   1377  1.111    simonb  * This implementation should mirror fs_blkfree
   1378  1.111    simonb  *
   1379  1.111    simonb  * => um_lock not held on entry or exit
   1380  1.111    simonb  */
   1381  1.111    simonb int
   1382  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1383  1.111    simonb {
   1384  1.116     joerg 	int error;
   1385  1.111    simonb 
   1386  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1387  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1388  1.116     joerg 	if (error)
   1389  1.116     joerg 		return error;
   1390  1.115     joerg 
   1391  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1392  1.115     joerg }
   1393  1.115     joerg 
   1394  1.115     joerg int
   1395  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1396  1.115     joerg {
   1397  1.115     joerg 	struct fs *fs = ump->um_fs;
   1398  1.115     joerg 	struct cg *cgp;
   1399  1.115     joerg 	struct buf *bp;
   1400  1.115     joerg 	int32_t fragno, cgbno;
   1401  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1402  1.115     joerg 	u_int8_t *blksfree;
   1403  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1404  1.115     joerg 
   1405  1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1406  1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1407  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1408  1.115     joerg 
   1409  1.115     joerg 	cg = dtog(fs, bno);
   1410  1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1411  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1412  1.111    simonb 	if (error) {
   1413  1.111    simonb 		return error;
   1414  1.111    simonb 	}
   1415  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1416  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1417  1.111    simonb 		brelse(bp, 0);
   1418  1.111    simonb 		return EIO;
   1419  1.111    simonb 	}
   1420  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1421  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1422  1.111    simonb 	cgbno = dtogd(fs, bno);
   1423  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1424  1.111    simonb 
   1425  1.111    simonb 	mutex_enter(&ump->um_lock);
   1426  1.111    simonb 	if (size == fs->fs_bsize) {
   1427  1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1428  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1429  1.111    simonb 			mutex_exit(&ump->um_lock);
   1430  1.111    simonb 			brelse(bp, 0);
   1431  1.111    simonb 			return EBUSY;
   1432  1.111    simonb 		}
   1433  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1434  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1435  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1436  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1437  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1438  1.111    simonb 	} else {
   1439  1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1440  1.111    simonb 
   1441  1.137  dholland 		frags = ffs_numfrags(fs, size);
   1442  1.111    simonb 		for (i = 0; i < frags; i++) {
   1443  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1444  1.111    simonb 				mutex_exit(&ump->um_lock);
   1445  1.111    simonb 				brelse(bp, 0);
   1446  1.111    simonb 				return EBUSY;
   1447  1.111    simonb 			}
   1448  1.111    simonb 		}
   1449  1.111    simonb 		/*
   1450  1.111    simonb 		 * if a complete block is being split, account for it
   1451  1.111    simonb 		 */
   1452  1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1453  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1454  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1455  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1456  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1457  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1458  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1459  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1460  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1461  1.111    simonb 		}
   1462  1.111    simonb 		/*
   1463  1.111    simonb 		 * decrement the counts associated with the old frags
   1464  1.111    simonb 		 */
   1465  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1466  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1467  1.111    simonb 		/*
   1468  1.111    simonb 		 * allocate the fragment
   1469  1.111    simonb 		 */
   1470  1.111    simonb 		for (i = 0; i < frags; i++) {
   1471  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1472  1.111    simonb 		}
   1473  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1474  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1475  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1476  1.111    simonb 		/*
   1477  1.111    simonb 		 * add back in counts associated with the new frags
   1478  1.111    simonb 		 */
   1479  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1480  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1481  1.111    simonb 	}
   1482  1.111    simonb 	fs->fs_fmod = 1;
   1483  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1484  1.111    simonb 	mutex_exit(&ump->um_lock);
   1485  1.111    simonb 	bdwrite(bp);
   1486  1.111    simonb 	return 0;
   1487  1.111    simonb }
   1488  1.111    simonb 
   1489  1.111    simonb /*
   1490    1.1   mycroft  * Free a block or fragment.
   1491    1.1   mycroft  *
   1492    1.1   mycroft  * The specified block or fragment is placed back in the
   1493   1.81     perry  * free map. If a fragment is deallocated, a possible
   1494    1.1   mycroft  * block reassembly is checked.
   1495  1.106     pooka  *
   1496  1.106     pooka  * => um_lock not held on entry or exit
   1497    1.1   mycroft  */
   1498  1.131  drochner static void
   1499  1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1500    1.1   mycroft {
   1501   1.33  augustss 	struct cg *cgp;
   1502    1.1   mycroft 	struct buf *bp;
   1503   1.76   hannken 	struct ufsmount *ump;
   1504   1.76   hannken 	daddr_t cgblkno;
   1505  1.116     joerg 	int error, cg;
   1506   1.76   hannken 	dev_t dev;
   1507  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1508  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1509    1.1   mycroft 
   1510  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1511  1.116     joerg 
   1512   1.76   hannken 	cg = dtog(fs, bno);
   1513  1.116     joerg 	dev = devvp->v_rdev;
   1514  1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1515  1.119     joerg 	KASSERT(fs == ump->um_fs);
   1516  1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1517  1.116     joerg 
   1518  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1519  1.149      maxv 	    B_MODIFY, &bp);
   1520  1.116     joerg 	if (error) {
   1521  1.116     joerg 		return;
   1522   1.76   hannken 	}
   1523  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1524  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1525  1.116     joerg 		brelse(bp, 0);
   1526  1.116     joerg 		return;
   1527    1.1   mycroft 	}
   1528   1.76   hannken 
   1529  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1530  1.119     joerg 
   1531  1.119     joerg 	bdwrite(bp);
   1532  1.116     joerg }
   1533  1.116     joerg 
   1534  1.131  drochner struct discardopdata {
   1535  1.131  drochner 	struct work wk; /* must be first */
   1536  1.131  drochner 	struct vnode *devvp;
   1537  1.131  drochner 	daddr_t bno;
   1538  1.131  drochner 	long size;
   1539  1.131  drochner };
   1540  1.131  drochner 
   1541  1.131  drochner struct discarddata {
   1542  1.131  drochner 	struct fs *fs;
   1543  1.131  drochner 	struct discardopdata *entry;
   1544  1.131  drochner 	long maxsize;
   1545  1.131  drochner 	kmutex_t entrylk;
   1546  1.131  drochner 	struct workqueue *wq;
   1547  1.131  drochner 	int wqcnt, wqdraining;
   1548  1.131  drochner 	kmutex_t wqlk;
   1549  1.131  drochner 	kcondvar_t wqcv;
   1550  1.131  drochner 	/* timer for flush? */
   1551  1.131  drochner };
   1552  1.131  drochner 
   1553  1.131  drochner static void
   1554  1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1555  1.131  drochner {
   1556  1.131  drochner 	long todo;
   1557  1.131  drochner 
   1558  1.131  drochner 	while (td->size) {
   1559  1.131  drochner 		todo = min(td->size,
   1560  1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1561  1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1562  1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1563  1.131  drochner 		td->size -= todo;
   1564  1.131  drochner 	}
   1565  1.131  drochner }
   1566  1.131  drochner 
   1567  1.131  drochner static void
   1568  1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1569  1.131  drochner {
   1570  1.131  drochner 	struct discardopdata *td = (void *)wk;
   1571  1.131  drochner 	struct discarddata *ts = arg;
   1572  1.131  drochner 	struct fs *fs = ts->fs;
   1573  1.146  dholland 	off_t start, len;
   1574  1.139    martin #ifdef TRIMDEBUG
   1575  1.131  drochner 	int error;
   1576  1.139    martin #endif
   1577  1.131  drochner 
   1578  1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1579  1.146  dholland #ifndef FFS_FSBTOBYTES
   1580  1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1581  1.146  dholland #endif
   1582  1.146  dholland 
   1583  1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1584  1.146  dholland 	len = td->size;
   1585  1.139    martin #ifdef TRIMDEBUG
   1586  1.139    martin 	error =
   1587  1.139    martin #endif
   1588  1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1589  1.131  drochner #ifdef TRIMDEBUG
   1590  1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1591  1.131  drochner #endif
   1592  1.131  drochner 
   1593  1.131  drochner 	ffs_blkfree_td(fs, td);
   1594  1.131  drochner 	kmem_free(td, sizeof(*td));
   1595  1.131  drochner 	mutex_enter(&ts->wqlk);
   1596  1.131  drochner 	ts->wqcnt--;
   1597  1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1598  1.131  drochner 		cv_signal(&ts->wqcv);
   1599  1.131  drochner 	mutex_exit(&ts->wqlk);
   1600  1.131  drochner }
   1601  1.131  drochner 
   1602  1.131  drochner void *
   1603  1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1604  1.131  drochner {
   1605  1.131  drochner 	struct discarddata *ts;
   1606  1.131  drochner 	int error;
   1607  1.131  drochner 
   1608  1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1609  1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1610  1.131  drochner 				 0, 0, 0);
   1611  1.131  drochner 	if (error) {
   1612  1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1613  1.131  drochner 		return NULL;
   1614  1.131  drochner 	}
   1615  1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1616  1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1617  1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1618  1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1619  1.131  drochner 	ts->fs = fs;
   1620  1.131  drochner 	return ts;
   1621  1.131  drochner }
   1622  1.131  drochner 
   1623  1.131  drochner void
   1624  1.131  drochner ffs_discard_finish(void *vts, int flags)
   1625  1.131  drochner {
   1626  1.131  drochner 	struct discarddata *ts = vts;
   1627  1.131  drochner 	struct discardopdata *td = NULL;
   1628  1.131  drochner 	int res = 0;
   1629  1.131  drochner 
   1630  1.131  drochner 	/* wait for workqueue to drain */
   1631  1.131  drochner 	mutex_enter(&ts->wqlk);
   1632  1.131  drochner 	if (ts->wqcnt) {
   1633  1.131  drochner 		ts->wqdraining = 1;
   1634  1.131  drochner 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1635  1.131  drochner 	}
   1636  1.131  drochner 	mutex_exit(&ts->wqlk);
   1637  1.131  drochner 	if (res)
   1638  1.131  drochner 		printf("ffs_discarddata drain timeout\n");
   1639  1.131  drochner 
   1640  1.131  drochner 	mutex_enter(&ts->entrylk);
   1641  1.131  drochner 	if (ts->entry) {
   1642  1.131  drochner 		td = ts->entry;
   1643  1.131  drochner 		ts->entry = NULL;
   1644  1.131  drochner 	}
   1645  1.131  drochner 	mutex_exit(&ts->entrylk);
   1646  1.131  drochner 	if (td) {
   1647  1.131  drochner 		/* XXX don't tell disk, its optional */
   1648  1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1649  1.131  drochner #ifdef TRIMDEBUG
   1650  1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1651  1.131  drochner #endif
   1652  1.131  drochner 		kmem_free(td, sizeof(*td));
   1653  1.131  drochner 	}
   1654  1.131  drochner 
   1655  1.131  drochner 	cv_destroy(&ts->wqcv);
   1656  1.131  drochner 	mutex_destroy(&ts->entrylk);
   1657  1.131  drochner 	mutex_destroy(&ts->wqlk);
   1658  1.131  drochner 	workqueue_destroy(ts->wq);
   1659  1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1660  1.131  drochner }
   1661  1.131  drochner 
   1662  1.131  drochner void
   1663  1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1664  1.131  drochner     ino_t inum)
   1665  1.131  drochner {
   1666  1.131  drochner 	struct ufsmount *ump;
   1667  1.131  drochner 	int error;
   1668  1.131  drochner 	dev_t dev;
   1669  1.131  drochner 	struct discarddata *ts;
   1670  1.131  drochner 	struct discardopdata *td;
   1671  1.131  drochner 
   1672  1.131  drochner 	dev = devvp->v_rdev;
   1673  1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1674  1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1675  1.131  drochner 		return;
   1676  1.131  drochner 
   1677  1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1678  1.131  drochner 	if (error)
   1679  1.131  drochner 		return;
   1680  1.131  drochner 
   1681  1.131  drochner 	if (!ump->um_discarddata) {
   1682  1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1683  1.131  drochner 		return;
   1684  1.131  drochner 	}
   1685  1.131  drochner 
   1686  1.131  drochner #ifdef TRIMDEBUG
   1687  1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1688  1.131  drochner #endif
   1689  1.131  drochner 	ts = ump->um_discarddata;
   1690  1.131  drochner 	td = NULL;
   1691  1.131  drochner 
   1692  1.131  drochner 	mutex_enter(&ts->entrylk);
   1693  1.131  drochner 	if (ts->entry) {
   1694  1.131  drochner 		td = ts->entry;
   1695  1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1696  1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1697  1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1698  1.131  drochner 			td->bno = bno;
   1699  1.131  drochner 			td->size += size;
   1700  1.131  drochner 			if (td->size < ts->maxsize) {
   1701  1.131  drochner #ifdef TRIMDEBUG
   1702  1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1703  1.131  drochner #endif
   1704  1.131  drochner 				mutex_exit(&ts->entrylk);
   1705  1.131  drochner 				return;
   1706  1.131  drochner 			}
   1707  1.131  drochner 			size = 0; /* mark done */
   1708  1.131  drochner 		}
   1709  1.131  drochner 		ts->entry = NULL;
   1710  1.131  drochner 	}
   1711  1.131  drochner 	mutex_exit(&ts->entrylk);
   1712  1.131  drochner 
   1713  1.131  drochner 	if (td) {
   1714  1.131  drochner #ifdef TRIMDEBUG
   1715  1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1716  1.131  drochner #endif
   1717  1.131  drochner 		mutex_enter(&ts->wqlk);
   1718  1.131  drochner 		ts->wqcnt++;
   1719  1.131  drochner 		mutex_exit(&ts->wqlk);
   1720  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1721  1.131  drochner 	}
   1722  1.131  drochner 	if (!size)
   1723  1.131  drochner 		return;
   1724  1.131  drochner 
   1725  1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1726  1.131  drochner 	td->devvp = devvp;
   1727  1.131  drochner 	td->bno = bno;
   1728  1.131  drochner 	td->size = size;
   1729  1.131  drochner 
   1730  1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1731  1.131  drochner 		mutex_enter(&ts->entrylk);
   1732  1.131  drochner 		if (!ts->entry) { /* possible race? */
   1733  1.131  drochner #ifdef TRIMDEBUG
   1734  1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1735  1.131  drochner #endif
   1736  1.131  drochner 			ts->entry = td;
   1737  1.131  drochner 			td = NULL;
   1738  1.131  drochner 		}
   1739  1.131  drochner 		mutex_exit(&ts->entrylk);
   1740  1.131  drochner 	}
   1741  1.131  drochner 	if (td) {
   1742  1.131  drochner #ifdef TRIMDEBUG
   1743  1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1744  1.131  drochner #endif
   1745  1.131  drochner 		mutex_enter(&ts->wqlk);
   1746  1.131  drochner 		ts->wqcnt++;
   1747  1.131  drochner 		mutex_exit(&ts->wqlk);
   1748  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1749  1.131  drochner 	}
   1750  1.131  drochner }
   1751  1.131  drochner 
   1752  1.116     joerg /*
   1753  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1754  1.116     joerg  *
   1755  1.116     joerg  * The specified block or fragment is placed back in the
   1756  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1757  1.116     joerg  * block reassembly is checked.
   1758  1.116     joerg  *
   1759  1.116     joerg  * => um_lock not held on entry or exit
   1760  1.116     joerg  */
   1761  1.116     joerg void
   1762  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1763  1.116     joerg     ino_t inum)
   1764  1.116     joerg {
   1765  1.116     joerg 	struct cg *cgp;
   1766  1.116     joerg 	struct buf *bp;
   1767  1.116     joerg 	struct ufsmount *ump;
   1768  1.116     joerg 	daddr_t cgblkno;
   1769  1.116     joerg 	int error, cg;
   1770  1.116     joerg 	dev_t dev;
   1771  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1772  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1773  1.116     joerg 
   1774  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1775  1.116     joerg 
   1776  1.116     joerg 	cg = dtog(fs, bno);
   1777  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1778  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1779  1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1780  1.116     joerg 
   1781  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1782  1.116     joerg 	if (error)
   1783    1.1   mycroft 		return;
   1784  1.116     joerg 
   1785  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1786  1.149      maxv 	    B_MODIFY, &bp);
   1787    1.1   mycroft 	if (error) {
   1788    1.1   mycroft 		return;
   1789    1.1   mycroft 	}
   1790    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1791   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1792  1.101        ad 		brelse(bp, 0);
   1793    1.1   mycroft 		return;
   1794    1.1   mycroft 	}
   1795  1.116     joerg 
   1796  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1797  1.119     joerg 
   1798  1.119     joerg 	bdwrite(bp);
   1799  1.116     joerg }
   1800  1.116     joerg 
   1801  1.116     joerg static void
   1802  1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1803  1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1804  1.116     joerg {
   1805  1.116     joerg 	struct cg *cgp;
   1806  1.116     joerg 	int32_t fragno, cgbno;
   1807  1.116     joerg 	int i, cg, blk, frags, bbase;
   1808  1.116     joerg 	u_int8_t *blksfree;
   1809  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1810  1.116     joerg 
   1811  1.116     joerg 	cg = dtog(fs, bno);
   1812  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1813   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1814   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1815   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1816   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1817   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1818   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1819  1.101        ad 	mutex_enter(&ump->um_lock);
   1820    1.1   mycroft 	if (size == fs->fs_bsize) {
   1821  1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1822   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1823  1.113   hannken 			if (devvp_is_snapshot) {
   1824  1.101        ad 				mutex_exit(&ump->um_lock);
   1825   1.76   hannken 				return;
   1826   1.76   hannken 			}
   1827  1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1828  1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1829    1.1   mycroft 			panic("blkfree: freeing free block");
   1830    1.1   mycroft 		}
   1831   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1832   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1833   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1834    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1835    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1836   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1837   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1838   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1839   1.75       dbj 			KASSERT(i >= 0);
   1840   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1841   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1842   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1843   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1844   1.73       dbj 			    needswap);
   1845   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1846   1.73       dbj 		}
   1847    1.1   mycroft 	} else {
   1848  1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1849    1.1   mycroft 		/*
   1850    1.1   mycroft 		 * decrement the counts associated with the old frags
   1851    1.1   mycroft 		 */
   1852   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1853   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1854    1.1   mycroft 		/*
   1855    1.1   mycroft 		 * deallocate the fragment
   1856    1.1   mycroft 		 */
   1857  1.137  dholland 		frags = ffs_numfrags(fs, size);
   1858    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1859   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1860  1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1861   1.59   tsutsui 				       ", fs = %s\n",
   1862  1.120  christos 				    (unsigned long long)dev, bno + i,
   1863  1.120  christos 				    fs->fs_fsmnt);
   1864    1.1   mycroft 				panic("blkfree: freeing free frag");
   1865    1.1   mycroft 			}
   1866   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1867    1.1   mycroft 		}
   1868   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1869    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1870   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1871    1.1   mycroft 		/*
   1872    1.1   mycroft 		 * add back in counts associated with the new frags
   1873    1.1   mycroft 		 */
   1874   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1875   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1876    1.1   mycroft 		/*
   1877    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1878    1.1   mycroft 		 */
   1879  1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1880   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1881   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1882    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1883    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1884   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1885   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1886    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1887    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1888   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1889   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1890   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1891   1.75       dbj 				KASSERT(i >= 0);
   1892   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1893   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1894   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1895   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1896   1.73       dbj 				    bbase)], 1, needswap);
   1897   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1898   1.73       dbj 			}
   1899    1.1   mycroft 		}
   1900    1.1   mycroft 	}
   1901    1.1   mycroft 	fs->fs_fmod = 1;
   1902   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1903  1.101        ad 	mutex_exit(&ump->um_lock);
   1904    1.1   mycroft }
   1905    1.1   mycroft 
   1906    1.1   mycroft /*
   1907    1.1   mycroft  * Free an inode.
   1908   1.30      fvdl  */
   1909   1.30      fvdl int
   1910   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1911   1.30      fvdl {
   1912   1.30      fvdl 
   1913  1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1914   1.30      fvdl }
   1915   1.30      fvdl 
   1916   1.30      fvdl /*
   1917   1.30      fvdl  * Do the actual free operation.
   1918    1.1   mycroft  * The specified inode is placed back in the free map.
   1919  1.111    simonb  *
   1920  1.111    simonb  * => um_lock not held on entry or exit
   1921    1.1   mycroft  */
   1922    1.1   mycroft int
   1923  1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1924  1.119     joerg {
   1925  1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1926  1.119     joerg 	struct fs *fs = ump->um_fs;
   1927  1.119     joerg 	struct vnode *devvp;
   1928  1.119     joerg 	struct cg *cgp;
   1929  1.119     joerg 	struct buf *bp;
   1930  1.119     joerg 	int error, cg;
   1931  1.119     joerg 	daddr_t cgbno;
   1932  1.119     joerg 	dev_t dev;
   1933  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1934  1.119     joerg 
   1935  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1936  1.119     joerg 	devvp = ump->um_devvp;
   1937  1.119     joerg 	dev = devvp->v_rdev;
   1938  1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1939  1.119     joerg 
   1940  1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1941  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1942  1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1943  1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1944  1.149      maxv 	    B_MODIFY, &bp);
   1945  1.119     joerg 	if (error) {
   1946  1.119     joerg 		return (error);
   1947  1.119     joerg 	}
   1948  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1949  1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1950  1.119     joerg 		brelse(bp, 0);
   1951  1.119     joerg 		return (0);
   1952  1.119     joerg 	}
   1953  1.119     joerg 
   1954  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1955  1.119     joerg 
   1956  1.119     joerg 	bdwrite(bp);
   1957  1.119     joerg 
   1958  1.119     joerg 	return 0;
   1959  1.119     joerg }
   1960  1.119     joerg 
   1961  1.119     joerg int
   1962  1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1963    1.9  christos {
   1964  1.101        ad 	struct ufsmount *ump;
   1965   1.33  augustss 	struct cg *cgp;
   1966    1.1   mycroft 	struct buf *bp;
   1967    1.1   mycroft 	int error, cg;
   1968   1.76   hannken 	daddr_t cgbno;
   1969   1.78   hannken 	dev_t dev;
   1970   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1971    1.1   mycroft 
   1972  1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   1973  1.111    simonb 
   1974   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1975  1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1976  1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1977  1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1978    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1979  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1980  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   1981  1.120  christos 		    fs->fs_fsmnt);
   1982  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1983  1.149      maxv 	    B_MODIFY, &bp);
   1984    1.1   mycroft 	if (error) {
   1985   1.30      fvdl 		return (error);
   1986    1.1   mycroft 	}
   1987    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1988   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1989  1.101        ad 		brelse(bp, 0);
   1990    1.1   mycroft 		return (0);
   1991    1.1   mycroft 	}
   1992  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   1993  1.119     joerg 
   1994  1.119     joerg 	bdwrite(bp);
   1995  1.119     joerg 
   1996  1.119     joerg 	return 0;
   1997  1.119     joerg }
   1998  1.119     joerg 
   1999  1.119     joerg static void
   2000  1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2001  1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2002  1.119     joerg {
   2003  1.119     joerg 	int cg;
   2004  1.119     joerg 	struct cg *cgp;
   2005  1.119     joerg 	u_int8_t *inosused;
   2006  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2007  1.119     joerg 
   2008  1.119     joerg 	cg = ino_to_cg(fs, ino);
   2009  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2010   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2011   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2012   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2013   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2014   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2015    1.1   mycroft 	ino %= fs->fs_ipg;
   2016   1.62      fvdl 	if (isclr(inosused, ino)) {
   2017  1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2018  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2019  1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2020    1.1   mycroft 		if (fs->fs_ronly == 0)
   2021    1.1   mycroft 			panic("ifree: freeing free inode");
   2022    1.1   mycroft 	}
   2023   1.62      fvdl 	clrbit(inosused, ino);
   2024  1.113   hannken 	if (!devvp_is_snapshot)
   2025  1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2026  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2027   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2028   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2029   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2030  1.101        ad 	mutex_enter(&ump->um_lock);
   2031    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2032    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2033   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2034   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2035    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2036    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2037    1.1   mycroft 	}
   2038    1.1   mycroft 	fs->fs_fmod = 1;
   2039   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2040  1.101        ad 	mutex_exit(&ump->um_lock);
   2041    1.1   mycroft }
   2042    1.1   mycroft 
   2043    1.1   mycroft /*
   2044   1.76   hannken  * Check to see if a file is free.
   2045   1.76   hannken  */
   2046   1.76   hannken int
   2047   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2048   1.76   hannken {
   2049   1.76   hannken 	struct cg *cgp;
   2050   1.76   hannken 	struct buf *bp;
   2051   1.76   hannken 	daddr_t cgbno;
   2052   1.76   hannken 	int ret, cg;
   2053   1.76   hannken 	u_int8_t *inosused;
   2054  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2055   1.76   hannken 
   2056  1.119     joerg 	KASSERT(devvp_is_snapshot);
   2057  1.119     joerg 
   2058   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2059  1.113   hannken 	if (devvp_is_snapshot)
   2060  1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2061  1.113   hannken 	else
   2062  1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2063   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2064   1.76   hannken 		return 1;
   2065  1.149      maxv 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2066   1.76   hannken 		return 1;
   2067   1.76   hannken 	}
   2068   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2069   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2070  1.101        ad 		brelse(bp, 0);
   2071   1.76   hannken 		return 1;
   2072   1.76   hannken 	}
   2073   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2074   1.76   hannken 	ino %= fs->fs_ipg;
   2075   1.76   hannken 	ret = isclr(inosused, ino);
   2076  1.101        ad 	brelse(bp, 0);
   2077   1.76   hannken 	return ret;
   2078   1.76   hannken }
   2079   1.76   hannken 
   2080   1.76   hannken /*
   2081    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2082    1.1   mycroft  *
   2083    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2084    1.1   mycroft  * available.
   2085    1.1   mycroft  */
   2086   1.60      fvdl static int32_t
   2087   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2088    1.1   mycroft {
   2089   1.60      fvdl 	int32_t bno;
   2090    1.1   mycroft 	int start, len, loc, i;
   2091    1.1   mycroft 	int blk, field, subfield, pos;
   2092   1.19    bouyer 	int ostart, olen;
   2093   1.62      fvdl 	u_int8_t *blksfree;
   2094   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2095    1.1   mycroft 
   2096  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2097  1.101        ad 
   2098    1.1   mycroft 	/*
   2099    1.1   mycroft 	 * find the fragment by searching through the free block
   2100    1.1   mycroft 	 * map for an appropriate bit pattern
   2101    1.1   mycroft 	 */
   2102    1.1   mycroft 	if (bpref)
   2103    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2104    1.1   mycroft 	else
   2105   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2106   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2107    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2108   1.19    bouyer 	ostart = start;
   2109   1.19    bouyer 	olen = len;
   2110   1.45     lukem 	loc = scanc((u_int)len,
   2111   1.62      fvdl 		(const u_char *)&blksfree[start],
   2112   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2113   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2114    1.1   mycroft 	if (loc == 0) {
   2115    1.1   mycroft 		len = start + 1;
   2116    1.1   mycroft 		start = 0;
   2117   1.45     lukem 		loc = scanc((u_int)len,
   2118   1.62      fvdl 			(const u_char *)&blksfree[0],
   2119   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2120   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2121    1.1   mycroft 		if (loc == 0) {
   2122   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2123   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2124   1.20      ross 			printf("offset=%d %ld\n",
   2125   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2126   1.62      fvdl 				(long)blksfree - (long)cgp);
   2127   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2128    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2129    1.1   mycroft 			/* NOTREACHED */
   2130    1.1   mycroft 		}
   2131    1.1   mycroft 	}
   2132    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2133   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2134    1.1   mycroft 	/*
   2135    1.1   mycroft 	 * found the byte in the map
   2136    1.1   mycroft 	 * sift through the bits to find the selected frag
   2137    1.1   mycroft 	 */
   2138    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2139   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2140    1.1   mycroft 		blk <<= 1;
   2141    1.1   mycroft 		field = around[allocsiz];
   2142    1.1   mycroft 		subfield = inside[allocsiz];
   2143    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2144    1.1   mycroft 			if ((blk & field) == subfield)
   2145    1.1   mycroft 				return (bno + pos);
   2146    1.1   mycroft 			field <<= 1;
   2147    1.1   mycroft 			subfield <<= 1;
   2148    1.1   mycroft 		}
   2149    1.1   mycroft 	}
   2150   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2151    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2152   1.58      fvdl 	/* return (-1); */
   2153    1.1   mycroft }
   2154    1.1   mycroft 
   2155    1.1   mycroft /*
   2156    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2157   1.81     perry  *
   2158    1.1   mycroft  * The form of the error message is:
   2159    1.1   mycroft  *	fs: error message
   2160    1.1   mycroft  */
   2161    1.1   mycroft static void
   2162  1.150   mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2163    1.1   mycroft {
   2164  1.150   mlelstv 	KASSERT(cred != NULL);
   2165    1.1   mycroft 
   2166  1.150   mlelstv 	if (cred == NOCRED || cred == FSCRED) {
   2167  1.150   mlelstv 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2168  1.150   mlelstv 		    curproc->p_pid, curproc->p_comm,
   2169  1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2170  1.150   mlelstv 	} else {
   2171  1.150   mlelstv 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2172  1.150   mlelstv 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2173  1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2174  1.150   mlelstv 	}
   2175    1.1   mycroft }
   2176