ffs_alloc.c revision 1.152 1 1.152 jdolecek /* $NetBSD: ffs_alloc.c,v 1.152 2016/09/25 17:14:59 jdolecek Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.122 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.152 jdolecek __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.152 2016/09/25 17:14:59 jdolecek Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.129 chs #include "opt_uvm_page_trkown.h"
79 1.22 scottr #endif
80 1.1 mycroft
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/buf.h>
84 1.130 tls #include <sys/cprng.h>
85 1.111 simonb #include <sys/fstrans.h>
86 1.111 simonb #include <sys/kauth.h>
87 1.111 simonb #include <sys/kernel.h>
88 1.111 simonb #include <sys/mount.h>
89 1.1 mycroft #include <sys/proc.h>
90 1.111 simonb #include <sys/syslog.h>
91 1.1 mycroft #include <sys/vnode.h>
92 1.111 simonb #include <sys/wapbl.h>
93 1.147 joerg #include <sys/cprng.h>
94 1.29 mrg
95 1.76 hannken #include <miscfs/specfs/specdev.h>
96 1.1 mycroft #include <ufs/ufs/quota.h>
97 1.19 bouyer #include <ufs/ufs/ufsmount.h>
98 1.1 mycroft #include <ufs/ufs/inode.h>
99 1.9 christos #include <ufs/ufs/ufs_extern.h>
100 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
101 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
102 1.1 mycroft
103 1.1 mycroft #include <ufs/ffs/fs.h>
104 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
105 1.1 mycroft
106 1.129 chs #ifdef UVM_PAGE_TRKOWN
107 1.129 chs #include <uvm/uvm.h>
108 1.129 chs #endif
109 1.129 chs
110 1.152 jdolecek static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
111 1.152 jdolecek static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
112 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
113 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
114 1.150 mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
115 1.152 jdolecek static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
116 1.152 jdolecek daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
117 1.152 jdolecek static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
118 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
119 1.85 thorpej daddr_t, int);
120 1.119 joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
121 1.116 joerg daddr_t, long, bool);
122 1.119 joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
123 1.119 joerg int, bool);
124 1.23 drochner
125 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
126 1.34 jdolecek int ffs_log_changeopt = 0;
127 1.34 jdolecek
128 1.23 drochner /* in ffs_tables.c */
129 1.40 jdolecek extern const int inside[], around[];
130 1.40 jdolecek extern const u_char * const fragtbl[];
131 1.1 mycroft
132 1.116 joerg /* Basic consistency check for block allocations */
133 1.116 joerg static int
134 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
135 1.116 joerg long size, dev_t dev, ino_t inum)
136 1.116 joerg {
137 1.134 dholland if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
138 1.138 dholland ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
139 1.120 christos printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
140 1.120 christos "size = %ld, fs = %s\n",
141 1.120 christos (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
142 1.116 joerg panic("%s: bad size", func);
143 1.116 joerg }
144 1.116 joerg
145 1.116 joerg if (bno >= fs->fs_size) {
146 1.116 joerg printf("bad block %" PRId64 ", ino %llu\n", bno,
147 1.116 joerg (unsigned long long)inum);
148 1.150 mlelstv ffs_fserr(fs, NOCRED, "bad block");
149 1.116 joerg return EINVAL;
150 1.116 joerg }
151 1.116 joerg return 0;
152 1.116 joerg }
153 1.116 joerg
154 1.1 mycroft /*
155 1.1 mycroft * Allocate a block in the file system.
156 1.81 perry *
157 1.1 mycroft * The size of the requested block is given, which must be some
158 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
159 1.1 mycroft * A preference may be optionally specified. If a preference is given
160 1.1 mycroft * the following hierarchy is used to allocate a block:
161 1.1 mycroft * 1) allocate the requested block.
162 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
163 1.1 mycroft * 3) allocate a block in the same cylinder group.
164 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
165 1.1 mycroft * available block is located.
166 1.47 wiz * If no block preference is given the following hierarchy is used
167 1.1 mycroft * to allocate a block:
168 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
169 1.1 mycroft * inode for the file.
170 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
171 1.1 mycroft * available block is located.
172 1.106 pooka *
173 1.106 pooka * => called with um_lock held
174 1.106 pooka * => releases um_lock before returning
175 1.1 mycroft */
176 1.9 christos int
177 1.152 jdolecek ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
178 1.152 jdolecek int flags, kauth_cred_t cred, daddr_t *bnp)
179 1.1 mycroft {
180 1.101 ad struct ufsmount *ump;
181 1.62 fvdl struct fs *fs;
182 1.58 fvdl daddr_t bno;
183 1.9 christos int cg;
184 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
185 1.9 christos int error;
186 1.9 christos #endif
187 1.81 perry
188 1.62 fvdl fs = ip->i_fs;
189 1.101 ad ump = ip->i_ump;
190 1.101 ad
191 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
192 1.62 fvdl
193 1.37 chs #ifdef UVM_PAGE_TRKOWN
194 1.129 chs
195 1.129 chs /*
196 1.129 chs * Sanity-check that allocations within the file size
197 1.129 chs * do not allow other threads to read the stale contents
198 1.129 chs * of newly allocated blocks.
199 1.129 chs * Usually pages will exist to cover the new allocation.
200 1.129 chs * There is an optimization in ffs_write() where we skip
201 1.129 chs * creating pages if several conditions are met:
202 1.129 chs * - the file must not be mapped (in any user address space).
203 1.129 chs * - the write must cover whole pages and whole blocks.
204 1.129 chs * If those conditions are not met then pages must exist and
205 1.129 chs * be locked by the current thread.
206 1.129 chs */
207 1.129 chs
208 1.51 chs if (ITOV(ip)->v_type == VREG &&
209 1.137 dholland ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
210 1.37 chs struct vm_page *pg;
211 1.129 chs struct vnode *vp = ITOV(ip);
212 1.129 chs struct uvm_object *uobj = &vp->v_uobj;
213 1.137 dholland voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
214 1.137 dholland voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
215 1.37 chs
216 1.128 rmind mutex_enter(uobj->vmobjlock);
217 1.37 chs while (off < endoff) {
218 1.37 chs pg = uvm_pagelookup(uobj, off);
219 1.129 chs KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
220 1.129 chs (size & PAGE_MASK) == 0 &&
221 1.135 dholland ffs_blkoff(fs, size) == 0) ||
222 1.129 chs (pg != NULL && pg->owner == curproc->p_pid &&
223 1.129 chs pg->lowner == curlwp->l_lid));
224 1.37 chs off += PAGE_SIZE;
225 1.37 chs }
226 1.128 rmind mutex_exit(uobj->vmobjlock);
227 1.37 chs }
228 1.37 chs #endif
229 1.37 chs
230 1.1 mycroft *bnp = 0;
231 1.1 mycroft #ifdef DIAGNOSTIC
232 1.134 dholland if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
233 1.120 christos printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
234 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, size,
235 1.120 christos fs->fs_fsmnt);
236 1.1 mycroft panic("ffs_alloc: bad size");
237 1.1 mycroft }
238 1.1 mycroft if (cred == NOCRED)
239 1.56 provos panic("ffs_alloc: missing credential");
240 1.1 mycroft #endif /* DIAGNOSTIC */
241 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
242 1.1 mycroft goto nospace;
243 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
244 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
245 1.124 elad NULL, NULL) != 0)
246 1.1 mycroft goto nospace;
247 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
248 1.101 ad mutex_exit(&ump->um_lock);
249 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
250 1.1 mycroft return (error);
251 1.101 ad mutex_enter(&ump->um_lock);
252 1.1 mycroft #endif
253 1.111 simonb
254 1.1 mycroft if (bpref >= fs->fs_size)
255 1.1 mycroft bpref = 0;
256 1.1 mycroft if (bpref == 0)
257 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
258 1.1 mycroft else
259 1.1 mycroft cg = dtog(fs, bpref);
260 1.152 jdolecek bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
261 1.1 mycroft if (bno > 0) {
262 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
263 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
264 1.1 mycroft *bnp = bno;
265 1.1 mycroft return (0);
266 1.1 mycroft }
267 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
268 1.1 mycroft /*
269 1.1 mycroft * Restore user's disk quota because allocation failed.
270 1.1 mycroft */
271 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
272 1.1 mycroft #endif
273 1.111 simonb if (flags & B_CONTIG) {
274 1.111 simonb /*
275 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
276 1.111 simonb * For the case where ffs_hashalloc() fails early
277 1.111 simonb * in the B_CONTIG case we reach here with um_lock
278 1.111 simonb * already unlocked, so we can't release it again
279 1.111 simonb * like in the normal error path. See kern/39206.
280 1.111 simonb *
281 1.111 simonb *
282 1.111 simonb * Fail silently - it's up to our caller to report
283 1.111 simonb * errors.
284 1.111 simonb */
285 1.111 simonb return (ENOSPC);
286 1.111 simonb }
287 1.1 mycroft nospace:
288 1.101 ad mutex_exit(&ump->um_lock);
289 1.150 mlelstv ffs_fserr(fs, cred, "file system full");
290 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
291 1.1 mycroft return (ENOSPC);
292 1.1 mycroft }
293 1.1 mycroft
294 1.1 mycroft /*
295 1.1 mycroft * Reallocate a fragment to a bigger size
296 1.1 mycroft *
297 1.1 mycroft * The number and size of the old block is given, and a preference
298 1.1 mycroft * and new size is also specified. The allocator attempts to extend
299 1.1 mycroft * the original block. Failing that, the regular block allocator is
300 1.1 mycroft * invoked to get an appropriate block.
301 1.106 pooka *
302 1.106 pooka * => called with um_lock held
303 1.106 pooka * => return with um_lock released
304 1.1 mycroft */
305 1.9 christos int
306 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
307 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
308 1.1 mycroft {
309 1.101 ad struct ufsmount *ump;
310 1.62 fvdl struct fs *fs;
311 1.1 mycroft struct buf *bp;
312 1.1 mycroft int cg, request, error;
313 1.58 fvdl daddr_t bprev, bno;
314 1.25 thorpej
315 1.62 fvdl fs = ip->i_fs;
316 1.101 ad ump = ip->i_ump;
317 1.101 ad
318 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
319 1.101 ad
320 1.37 chs #ifdef UVM_PAGE_TRKOWN
321 1.129 chs
322 1.129 chs /*
323 1.129 chs * Sanity-check that allocations within the file size
324 1.129 chs * do not allow other threads to read the stale contents
325 1.129 chs * of newly allocated blocks.
326 1.129 chs * Unlike in ffs_alloc(), here pages must always exist
327 1.129 chs * for such allocations, because only the last block of a file
328 1.129 chs * can be a fragment and ffs_write() will reallocate the
329 1.129 chs * fragment to the new size using ufs_balloc_range(),
330 1.129 chs * which always creates pages to cover blocks it allocates.
331 1.129 chs */
332 1.129 chs
333 1.37 chs if (ITOV(ip)->v_type == VREG) {
334 1.37 chs struct vm_page *pg;
335 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
336 1.137 dholland voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
337 1.137 dholland voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
338 1.37 chs
339 1.128 rmind mutex_enter(uobj->vmobjlock);
340 1.37 chs while (off < endoff) {
341 1.37 chs pg = uvm_pagelookup(uobj, off);
342 1.129 chs KASSERT(pg->owner == curproc->p_pid &&
343 1.129 chs pg->lowner == curlwp->l_lid);
344 1.37 chs off += PAGE_SIZE;
345 1.37 chs }
346 1.128 rmind mutex_exit(uobj->vmobjlock);
347 1.37 chs }
348 1.37 chs #endif
349 1.37 chs
350 1.1 mycroft #ifdef DIAGNOSTIC
351 1.134 dholland if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
352 1.134 dholland (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
353 1.13 christos printf(
354 1.120 christos "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
355 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
356 1.120 christos fs->fs_fsmnt);
357 1.1 mycroft panic("ffs_realloccg: bad size");
358 1.1 mycroft }
359 1.1 mycroft if (cred == NOCRED)
360 1.56 provos panic("ffs_realloccg: missing credential");
361 1.1 mycroft #endif /* DIAGNOSTIC */
362 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
363 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
364 1.124 elad NULL, NULL) != 0) {
365 1.101 ad mutex_exit(&ump->um_lock);
366 1.1 mycroft goto nospace;
367 1.101 ad }
368 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
369 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
370 1.60 fvdl else
371 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
372 1.60 fvdl
373 1.60 fvdl if (bprev == 0) {
374 1.120 christos printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
375 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
376 1.120 christos fs->fs_fsmnt);
377 1.1 mycroft panic("ffs_realloccg: bad bprev");
378 1.1 mycroft }
379 1.101 ad mutex_exit(&ump->um_lock);
380 1.101 ad
381 1.1 mycroft /*
382 1.1 mycroft * Allocate the extra space in the buffer.
383 1.1 mycroft */
384 1.37 chs if (bpp != NULL &&
385 1.149 maxv (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
386 1.1 mycroft return (error);
387 1.1 mycroft }
388 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
389 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
390 1.44 chs if (bpp != NULL) {
391 1.101 ad brelse(bp, 0);
392 1.44 chs }
393 1.1 mycroft return (error);
394 1.1 mycroft }
395 1.1 mycroft #endif
396 1.1 mycroft /*
397 1.1 mycroft * Check for extension in the existing location.
398 1.1 mycroft */
399 1.1 mycroft cg = dtog(fs, bprev);
400 1.101 ad mutex_enter(&ump->um_lock);
401 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
402 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
403 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
404 1.37 chs
405 1.37 chs if (bpp != NULL) {
406 1.136 dholland if (bp->b_blkno != FFS_FSBTODB(fs, bno))
407 1.37 chs panic("bad blockno");
408 1.72 pk allocbuf(bp, nsize, 1);
409 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
410 1.105 ad mutex_enter(bp->b_objlock);
411 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
412 1.105 ad bp->b_oflags |= BO_DONE;
413 1.105 ad mutex_exit(bp->b_objlock);
414 1.37 chs *bpp = bp;
415 1.37 chs }
416 1.37 chs if (blknop != NULL) {
417 1.37 chs *blknop = bno;
418 1.37 chs }
419 1.1 mycroft return (0);
420 1.1 mycroft }
421 1.1 mycroft /*
422 1.1 mycroft * Allocate a new disk location.
423 1.1 mycroft */
424 1.1 mycroft if (bpref >= fs->fs_size)
425 1.1 mycroft bpref = 0;
426 1.1 mycroft switch ((int)fs->fs_optim) {
427 1.1 mycroft case FS_OPTSPACE:
428 1.1 mycroft /*
429 1.81 perry * Allocate an exact sized fragment. Although this makes
430 1.81 perry * best use of space, we will waste time relocating it if
431 1.1 mycroft * the file continues to grow. If the fragmentation is
432 1.1 mycroft * less than half of the minimum free reserve, we choose
433 1.1 mycroft * to begin optimizing for time.
434 1.1 mycroft */
435 1.1 mycroft request = nsize;
436 1.1 mycroft if (fs->fs_minfree < 5 ||
437 1.1 mycroft fs->fs_cstotal.cs_nffree >
438 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
439 1.1 mycroft break;
440 1.34 jdolecek
441 1.34 jdolecek if (ffs_log_changeopt) {
442 1.34 jdolecek log(LOG_NOTICE,
443 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
444 1.34 jdolecek fs->fs_fsmnt);
445 1.34 jdolecek }
446 1.34 jdolecek
447 1.1 mycroft fs->fs_optim = FS_OPTTIME;
448 1.1 mycroft break;
449 1.1 mycroft case FS_OPTTIME:
450 1.1 mycroft /*
451 1.1 mycroft * At this point we have discovered a file that is trying to
452 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
453 1.1 mycroft * we allocate a full sized block, then free the unused portion.
454 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
455 1.1 mycroft * above will be able to grow it in place without further
456 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
457 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
458 1.1 mycroft * optimizing for space.
459 1.1 mycroft */
460 1.1 mycroft request = fs->fs_bsize;
461 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
462 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
463 1.1 mycroft break;
464 1.34 jdolecek
465 1.34 jdolecek if (ffs_log_changeopt) {
466 1.34 jdolecek log(LOG_NOTICE,
467 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
468 1.34 jdolecek fs->fs_fsmnt);
469 1.34 jdolecek }
470 1.34 jdolecek
471 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
472 1.1 mycroft break;
473 1.1 mycroft default:
474 1.120 christos printf("dev = 0x%llx, optim = %d, fs = %s\n",
475 1.120 christos (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
476 1.1 mycroft panic("ffs_realloccg: bad optim");
477 1.1 mycroft /* NOTREACHED */
478 1.1 mycroft }
479 1.152 jdolecek bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
480 1.1 mycroft if (bno > 0) {
481 1.122 ad if ((ip->i_ump->um_mountp->mnt_wapbl) &&
482 1.122 ad (ITOV(ip)->v_type != VREG)) {
483 1.122 ad UFS_WAPBL_REGISTER_DEALLOCATION(
484 1.136 dholland ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
485 1.122 ad osize);
486 1.122 ad } else {
487 1.122 ad ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
488 1.122 ad ip->i_number);
489 1.111 simonb }
490 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
491 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
492 1.37 chs if (bpp != NULL) {
493 1.136 dholland bp->b_blkno = FFS_FSBTODB(fs, bno);
494 1.72 pk allocbuf(bp, nsize, 1);
495 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
496 1.105 ad mutex_enter(bp->b_objlock);
497 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
498 1.105 ad bp->b_oflags |= BO_DONE;
499 1.105 ad mutex_exit(bp->b_objlock);
500 1.37 chs *bpp = bp;
501 1.37 chs }
502 1.37 chs if (blknop != NULL) {
503 1.37 chs *blknop = bno;
504 1.37 chs }
505 1.1 mycroft return (0);
506 1.1 mycroft }
507 1.101 ad mutex_exit(&ump->um_lock);
508 1.101 ad
509 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
510 1.1 mycroft /*
511 1.1 mycroft * Restore user's disk quota because allocation failed.
512 1.1 mycroft */
513 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
514 1.1 mycroft #endif
515 1.37 chs if (bpp != NULL) {
516 1.101 ad brelse(bp, 0);
517 1.37 chs }
518 1.37 chs
519 1.1 mycroft nospace:
520 1.1 mycroft /*
521 1.1 mycroft * no space available
522 1.1 mycroft */
523 1.150 mlelstv ffs_fserr(fs, cred, "file system full");
524 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
525 1.1 mycroft return (ENOSPC);
526 1.1 mycroft }
527 1.1 mycroft
528 1.1 mycroft /*
529 1.1 mycroft * Allocate an inode in the file system.
530 1.81 perry *
531 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
532 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
533 1.1 mycroft * 1) allocate the preferred inode.
534 1.1 mycroft * 2) allocate an inode in the same cylinder group.
535 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
536 1.1 mycroft * available inode is located.
537 1.47 wiz * If no inode preference is given the following hierarchy is used
538 1.1 mycroft * to allocate an inode:
539 1.1 mycroft * 1) allocate an inode in cylinder group 0.
540 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
541 1.1 mycroft * available inode is located.
542 1.106 pooka *
543 1.106 pooka * => um_lock not held upon entry or return
544 1.1 mycroft */
545 1.9 christos int
546 1.148 hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
547 1.9 christos {
548 1.101 ad struct ufsmount *ump;
549 1.33 augustss struct inode *pip;
550 1.33 augustss struct fs *fs;
551 1.1 mycroft ino_t ino, ipref;
552 1.1 mycroft int cg, error;
553 1.81 perry
554 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
555 1.111 simonb
556 1.1 mycroft pip = VTOI(pvp);
557 1.1 mycroft fs = pip->i_fs;
558 1.101 ad ump = pip->i_ump;
559 1.101 ad
560 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
561 1.111 simonb if (error) {
562 1.111 simonb return error;
563 1.111 simonb }
564 1.101 ad mutex_enter(&ump->um_lock);
565 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
566 1.1 mycroft goto noinodes;
567 1.1 mycroft
568 1.1 mycroft if ((mode & IFMT) == IFDIR)
569 1.50 lukem ipref = ffs_dirpref(pip);
570 1.50 lukem else
571 1.50 lukem ipref = pip->i_number;
572 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
573 1.1 mycroft ipref = 0;
574 1.1 mycroft cg = ino_to_cg(fs, ipref);
575 1.50 lukem /*
576 1.50 lukem * Track number of dirs created one after another
577 1.50 lukem * in a same cg without intervening by files.
578 1.50 lukem */
579 1.50 lukem if ((mode & IFMT) == IFDIR) {
580 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
581 1.50 lukem fs->fs_contigdirs[cg]++;
582 1.50 lukem } else {
583 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
584 1.50 lukem fs->fs_contigdirs[cg]--;
585 1.50 lukem }
586 1.152 jdolecek ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
587 1.1 mycroft if (ino == 0)
588 1.1 mycroft goto noinodes;
589 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
590 1.148 hannken *inop = ino;
591 1.148 hannken return 0;
592 1.60 fvdl
593 1.1 mycroft noinodes:
594 1.101 ad mutex_exit(&ump->um_lock);
595 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
596 1.150 mlelstv ffs_fserr(fs, cred, "out of inodes");
597 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
598 1.148 hannken return ENOSPC;
599 1.1 mycroft }
600 1.1 mycroft
601 1.1 mycroft /*
602 1.50 lukem * Find a cylinder group in which to place a directory.
603 1.42 sommerfe *
604 1.50 lukem * The policy implemented by this algorithm is to allocate a
605 1.50 lukem * directory inode in the same cylinder group as its parent
606 1.50 lukem * directory, but also to reserve space for its files inodes
607 1.50 lukem * and data. Restrict the number of directories which may be
608 1.50 lukem * allocated one after another in the same cylinder group
609 1.50 lukem * without intervening allocation of files.
610 1.42 sommerfe *
611 1.50 lukem * If we allocate a first level directory then force allocation
612 1.50 lukem * in another cylinder group.
613 1.1 mycroft */
614 1.1 mycroft static ino_t
615 1.85 thorpej ffs_dirpref(struct inode *pip)
616 1.1 mycroft {
617 1.50 lukem register struct fs *fs;
618 1.74 soren int cg, prefcg;
619 1.89 dsl int64_t dirsize, cgsize, curdsz;
620 1.89 dsl int avgifree, avgbfree, avgndir;
621 1.50 lukem int minifree, minbfree, maxndir;
622 1.50 lukem int mincg, minndir;
623 1.50 lukem int maxcontigdirs;
624 1.50 lukem
625 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
626 1.101 ad
627 1.50 lukem fs = pip->i_fs;
628 1.1 mycroft
629 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
630 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
631 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
632 1.50 lukem
633 1.50 lukem /*
634 1.50 lukem * Force allocation in another cg if creating a first level dir.
635 1.50 lukem */
636 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
637 1.147 joerg prefcg = cprng_fast32() % fs->fs_ncg;
638 1.50 lukem mincg = prefcg;
639 1.50 lukem minndir = fs->fs_ipg;
640 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
641 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
642 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
643 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
644 1.42 sommerfe mincg = cg;
645 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
646 1.42 sommerfe }
647 1.50 lukem for (cg = 0; cg < prefcg; cg++)
648 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
649 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
650 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
651 1.50 lukem mincg = cg;
652 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
653 1.42 sommerfe }
654 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
655 1.42 sommerfe }
656 1.50 lukem
657 1.50 lukem /*
658 1.50 lukem * Count various limits which used for
659 1.50 lukem * optimal allocation of a directory inode.
660 1.144 bad * Try cylinder groups with >75% avgifree and avgbfree.
661 1.144 bad * Avoid cylinder groups with no free blocks or inodes as that
662 1.144 bad * triggers an I/O-expensive cylinder group scan.
663 1.50 lukem */
664 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
665 1.144 bad minifree = avgifree - avgifree / 4;
666 1.144 bad if (minifree < 1)
667 1.144 bad minifree = 1;
668 1.144 bad minbfree = avgbfree - avgbfree / 4;
669 1.144 bad if (minbfree < 1)
670 1.144 bad minbfree = 1;
671 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
672 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
673 1.89 dsl if (avgndir != 0) {
674 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
675 1.89 dsl if (dirsize < curdsz)
676 1.89 dsl dirsize = curdsz;
677 1.89 dsl }
678 1.89 dsl if (cgsize < dirsize * 255)
679 1.144 bad maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
680 1.89 dsl else
681 1.89 dsl maxcontigdirs = 255;
682 1.50 lukem if (fs->fs_avgfpdir > 0)
683 1.50 lukem maxcontigdirs = min(maxcontigdirs,
684 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
685 1.50 lukem if (maxcontigdirs == 0)
686 1.50 lukem maxcontigdirs = 1;
687 1.50 lukem
688 1.50 lukem /*
689 1.81 perry * Limit number of dirs in one cg and reserve space for
690 1.50 lukem * regular files, but only if we have no deficit in
691 1.50 lukem * inodes or space.
692 1.50 lukem */
693 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
694 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
695 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
696 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
697 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
698 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
699 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
700 1.50 lukem }
701 1.50 lukem for (cg = 0; cg < prefcg; cg++)
702 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
703 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
704 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
705 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
706 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
707 1.50 lukem }
708 1.50 lukem /*
709 1.50 lukem * This is a backstop when we are deficient in space.
710 1.50 lukem */
711 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
712 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
713 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
714 1.50 lukem for (cg = 0; cg < prefcg; cg++)
715 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
716 1.50 lukem break;
717 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
718 1.1 mycroft }
719 1.1 mycroft
720 1.1 mycroft /*
721 1.1 mycroft * Select the desired position for the next block in a file. The file is
722 1.1 mycroft * logically divided into sections. The first section is composed of the
723 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
724 1.81 perry *
725 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
726 1.1 mycroft * request a block in the same cylinder group as the inode that describes
727 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
728 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
729 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
730 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
731 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
732 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
733 1.1 mycroft * continues until a cylinder group with greater than the average number
734 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
735 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
736 1.1 mycroft * here a best guess is made based upon the logical block number being
737 1.1 mycroft * allocated.
738 1.81 perry *
739 1.1 mycroft * If a section is already partially allocated, the policy is to
740 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
741 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
742 1.60 fvdl * contigously if possible.
743 1.106 pooka *
744 1.106 pooka * => um_lock held on entry and exit
745 1.1 mycroft */
746 1.58 fvdl daddr_t
747 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
748 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
749 1.1 mycroft {
750 1.33 augustss struct fs *fs;
751 1.33 augustss int cg;
752 1.1 mycroft int avgbfree, startcg;
753 1.1 mycroft
754 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
755 1.101 ad
756 1.1 mycroft fs = ip->i_fs;
757 1.111 simonb
758 1.111 simonb /*
759 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
760 1.111 simonb * in the inode extentions to return the desired block.
761 1.111 simonb *
762 1.111 simonb * For metadata (indirect blocks) return the address of where
763 1.111 simonb * the first indirect block resides - we'll scan for the next
764 1.111 simonb * available slot if we need to allocate more than one indirect
765 1.111 simonb * block. For data, return the address of the actual block
766 1.111 simonb * relative to the address of the first data block.
767 1.111 simonb */
768 1.111 simonb if (flags & B_CONTIG) {
769 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
770 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
771 1.111 simonb if (flags & B_METAONLY)
772 1.111 simonb return ip->i_ffs_first_indir_blk;
773 1.111 simonb else
774 1.138 dholland return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
775 1.111 simonb }
776 1.111 simonb
777 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
778 1.134 dholland if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
779 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
780 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
781 1.1 mycroft }
782 1.1 mycroft /*
783 1.1 mycroft * Find a cylinder with greater than average number of
784 1.1 mycroft * unused data blocks.
785 1.1 mycroft */
786 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
787 1.1 mycroft startcg =
788 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
789 1.1 mycroft else
790 1.19 bouyer startcg = dtog(fs,
791 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
792 1.1 mycroft startcg %= fs->fs_ncg;
793 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
794 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
795 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
796 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
797 1.1 mycroft }
798 1.52 lukem for (cg = 0; cg < startcg; cg++)
799 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
800 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
801 1.1 mycroft }
802 1.35 thorpej return (0);
803 1.1 mycroft }
804 1.1 mycroft /*
805 1.60 fvdl * We just always try to lay things out contiguously.
806 1.60 fvdl */
807 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
808 1.60 fvdl }
809 1.60 fvdl
810 1.60 fvdl daddr_t
811 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
812 1.111 simonb int64_t *bap)
813 1.60 fvdl {
814 1.60 fvdl struct fs *fs;
815 1.60 fvdl int cg;
816 1.60 fvdl int avgbfree, startcg;
817 1.60 fvdl
818 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
819 1.101 ad
820 1.60 fvdl fs = ip->i_fs;
821 1.111 simonb
822 1.111 simonb /*
823 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
824 1.111 simonb * in the inode extentions to return the desired block.
825 1.111 simonb *
826 1.111 simonb * For metadata (indirect blocks) return the address of where
827 1.111 simonb * the first indirect block resides - we'll scan for the next
828 1.111 simonb * available slot if we need to allocate more than one indirect
829 1.111 simonb * block. For data, return the address of the actual block
830 1.111 simonb * relative to the address of the first data block.
831 1.111 simonb */
832 1.111 simonb if (flags & B_CONTIG) {
833 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
834 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
835 1.111 simonb if (flags & B_METAONLY)
836 1.111 simonb return ip->i_ffs_first_indir_blk;
837 1.111 simonb else
838 1.138 dholland return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
839 1.111 simonb }
840 1.111 simonb
841 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
842 1.134 dholland if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
843 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
844 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
845 1.60 fvdl }
846 1.1 mycroft /*
847 1.60 fvdl * Find a cylinder with greater than average number of
848 1.60 fvdl * unused data blocks.
849 1.1 mycroft */
850 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
851 1.60 fvdl startcg =
852 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
853 1.60 fvdl else
854 1.60 fvdl startcg = dtog(fs,
855 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
856 1.60 fvdl startcg %= fs->fs_ncg;
857 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
858 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
859 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
860 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
861 1.60 fvdl }
862 1.60 fvdl for (cg = 0; cg < startcg; cg++)
863 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
864 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
865 1.60 fvdl }
866 1.60 fvdl return (0);
867 1.60 fvdl }
868 1.60 fvdl /*
869 1.60 fvdl * We just always try to lay things out contiguously.
870 1.60 fvdl */
871 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
872 1.1 mycroft }
873 1.1 mycroft
874 1.60 fvdl
875 1.1 mycroft /*
876 1.1 mycroft * Implement the cylinder overflow algorithm.
877 1.1 mycroft *
878 1.1 mycroft * The policy implemented by this algorithm is:
879 1.1 mycroft * 1) allocate the block in its requested cylinder group.
880 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
881 1.1 mycroft * 3) brute force search for a free block.
882 1.106 pooka *
883 1.106 pooka * => called with um_lock held
884 1.106 pooka * => returns with um_lock released on success, held on failure
885 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
886 1.1 mycroft */
887 1.1 mycroft /*VARARGS5*/
888 1.58 fvdl static daddr_t
889 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
890 1.85 thorpej int size /* size for data blocks, mode for inodes */,
891 1.152 jdolecek int realsize,
892 1.152 jdolecek int flags,
893 1.152 jdolecek daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
894 1.1 mycroft {
895 1.33 augustss struct fs *fs;
896 1.58 fvdl daddr_t result;
897 1.1 mycroft int i, icg = cg;
898 1.1 mycroft
899 1.1 mycroft fs = ip->i_fs;
900 1.1 mycroft /*
901 1.1 mycroft * 1: preferred cylinder group
902 1.1 mycroft */
903 1.152 jdolecek result = (*allocator)(ip, cg, pref, size, realsize, flags);
904 1.1 mycroft if (result)
905 1.1 mycroft return (result);
906 1.111 simonb
907 1.111 simonb if (flags & B_CONTIG)
908 1.111 simonb return (result);
909 1.1 mycroft /*
910 1.1 mycroft * 2: quadratic rehash
911 1.1 mycroft */
912 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
913 1.1 mycroft cg += i;
914 1.1 mycroft if (cg >= fs->fs_ncg)
915 1.1 mycroft cg -= fs->fs_ncg;
916 1.152 jdolecek result = (*allocator)(ip, cg, 0, size, realsize, flags);
917 1.1 mycroft if (result)
918 1.1 mycroft return (result);
919 1.1 mycroft }
920 1.1 mycroft /*
921 1.1 mycroft * 3: brute force search
922 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
923 1.1 mycroft * and 1 is always checked in the quadratic rehash.
924 1.1 mycroft */
925 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
926 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
927 1.152 jdolecek result = (*allocator)(ip, cg, 0, size, realsize, flags);
928 1.1 mycroft if (result)
929 1.1 mycroft return (result);
930 1.1 mycroft cg++;
931 1.1 mycroft if (cg == fs->fs_ncg)
932 1.1 mycroft cg = 0;
933 1.1 mycroft }
934 1.35 thorpej return (0);
935 1.1 mycroft }
936 1.1 mycroft
937 1.1 mycroft /*
938 1.1 mycroft * Determine whether a fragment can be extended.
939 1.1 mycroft *
940 1.81 perry * Check to see if the necessary fragments are available, and
941 1.1 mycroft * if they are, allocate them.
942 1.106 pooka *
943 1.106 pooka * => called with um_lock held
944 1.106 pooka * => returns with um_lock released on success, held on failure
945 1.1 mycroft */
946 1.58 fvdl static daddr_t
947 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
948 1.1 mycroft {
949 1.101 ad struct ufsmount *ump;
950 1.33 augustss struct fs *fs;
951 1.33 augustss struct cg *cgp;
952 1.1 mycroft struct buf *bp;
953 1.58 fvdl daddr_t bno;
954 1.1 mycroft int frags, bbase;
955 1.1 mycroft int i, error;
956 1.62 fvdl u_int8_t *blksfree;
957 1.1 mycroft
958 1.1 mycroft fs = ip->i_fs;
959 1.101 ad ump = ip->i_ump;
960 1.101 ad
961 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
962 1.101 ad
963 1.137 dholland if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
964 1.35 thorpej return (0);
965 1.137 dholland frags = ffs_numfrags(fs, nsize);
966 1.138 dholland bbase = ffs_fragnum(fs, bprev);
967 1.138 dholland if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
968 1.1 mycroft /* cannot extend across a block boundary */
969 1.35 thorpej return (0);
970 1.1 mycroft }
971 1.101 ad mutex_exit(&ump->um_lock);
972 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
973 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
974 1.101 ad if (error)
975 1.101 ad goto fail;
976 1.1 mycroft cgp = (struct cg *)bp->b_data;
977 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
978 1.101 ad goto fail;
979 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
980 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
981 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
982 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
983 1.1 mycroft bno = dtogd(fs, bprev);
984 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
985 1.137 dholland for (i = ffs_numfrags(fs, osize); i < frags; i++)
986 1.101 ad if (isclr(blksfree, bno + i))
987 1.101 ad goto fail;
988 1.1 mycroft /*
989 1.1 mycroft * the current fragment can be extended
990 1.1 mycroft * deduct the count on fragment being extended into
991 1.1 mycroft * increase the count on the remaining fragment (if any)
992 1.1 mycroft * allocate the extended piece
993 1.1 mycroft */
994 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
995 1.62 fvdl if (isclr(blksfree, bno + i))
996 1.1 mycroft break;
997 1.137 dholland ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
998 1.1 mycroft if (i != frags)
999 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1000 1.101 ad mutex_enter(&ump->um_lock);
1001 1.137 dholland for (i = ffs_numfrags(fs, osize); i < frags; i++) {
1002 1.62 fvdl clrbit(blksfree, bno + i);
1003 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1004 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1005 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1006 1.1 mycroft }
1007 1.1 mycroft fs->fs_fmod = 1;
1008 1.101 ad ACTIVECG_CLR(fs, cg);
1009 1.101 ad mutex_exit(&ump->um_lock);
1010 1.1 mycroft bdwrite(bp);
1011 1.1 mycroft return (bprev);
1012 1.101 ad
1013 1.101 ad fail:
1014 1.132 hannken if (bp != NULL)
1015 1.132 hannken brelse(bp, 0);
1016 1.101 ad mutex_enter(&ump->um_lock);
1017 1.101 ad return (0);
1018 1.1 mycroft }
1019 1.1 mycroft
1020 1.1 mycroft /*
1021 1.1 mycroft * Determine whether a block can be allocated.
1022 1.1 mycroft *
1023 1.1 mycroft * Check to see if a block of the appropriate size is available,
1024 1.1 mycroft * and if it is, allocate it.
1025 1.1 mycroft */
1026 1.58 fvdl static daddr_t
1027 1.152 jdolecek ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
1028 1.152 jdolecek int flags)
1029 1.1 mycroft {
1030 1.101 ad struct ufsmount *ump;
1031 1.62 fvdl struct fs *fs = ip->i_fs;
1032 1.30 fvdl struct cg *cgp;
1033 1.1 mycroft struct buf *bp;
1034 1.60 fvdl int32_t bno;
1035 1.60 fvdl daddr_t blkno;
1036 1.30 fvdl int error, frags, allocsiz, i;
1037 1.62 fvdl u_int8_t *blksfree;
1038 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1039 1.1 mycroft
1040 1.101 ad ump = ip->i_ump;
1041 1.101 ad
1042 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1043 1.101 ad
1044 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1045 1.35 thorpej return (0);
1046 1.101 ad mutex_exit(&ump->um_lock);
1047 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1048 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
1049 1.101 ad if (error)
1050 1.101 ad goto fail;
1051 1.1 mycroft cgp = (struct cg *)bp->b_data;
1052 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1053 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1054 1.101 ad goto fail;
1055 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1056 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1057 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1058 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1059 1.1 mycroft if (size == fs->fs_bsize) {
1060 1.101 ad mutex_enter(&ump->um_lock);
1061 1.152 jdolecek blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
1062 1.76 hannken ACTIVECG_CLR(fs, cg);
1063 1.101 ad mutex_exit(&ump->um_lock);
1064 1.152 jdolecek
1065 1.152 jdolecek /*
1066 1.152 jdolecek * If actually needed size is lower, free the extra blocks now.
1067 1.152 jdolecek * This is safe to call here, there is no outside reference
1068 1.152 jdolecek * to this block yet. It is not necessary to keep um_lock
1069 1.152 jdolecek * locked.
1070 1.152 jdolecek */
1071 1.152 jdolecek if (realsize != 0 && realsize < size) {
1072 1.152 jdolecek ffs_blkfree_common(ip->i_ump, ip->i_fs,
1073 1.152 jdolecek ip->i_devvp->v_rdev,
1074 1.152 jdolecek bp, blkno + ffs_numfrags(fs, realsize),
1075 1.152 jdolecek (long)(size - realsize), false);
1076 1.152 jdolecek }
1077 1.152 jdolecek
1078 1.1 mycroft bdwrite(bp);
1079 1.60 fvdl return (blkno);
1080 1.1 mycroft }
1081 1.1 mycroft /*
1082 1.1 mycroft * check to see if any fragments are already available
1083 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1084 1.1 mycroft * it down to a smaller size if necessary
1085 1.1 mycroft */
1086 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1087 1.137 dholland frags = ffs_numfrags(fs, size);
1088 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1089 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1090 1.1 mycroft break;
1091 1.1 mycroft if (allocsiz == fs->fs_frag) {
1092 1.1 mycroft /*
1093 1.81 perry * no fragments were available, so a block will be
1094 1.1 mycroft * allocated, and hacked up
1095 1.1 mycroft */
1096 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1097 1.101 ad goto fail;
1098 1.101 ad mutex_enter(&ump->um_lock);
1099 1.152 jdolecek blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
1100 1.60 fvdl bno = dtogd(fs, blkno);
1101 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1102 1.62 fvdl setbit(blksfree, bno + i);
1103 1.1 mycroft i = fs->fs_frag - frags;
1104 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1105 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1106 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1107 1.1 mycroft fs->fs_fmod = 1;
1108 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1109 1.76 hannken ACTIVECG_CLR(fs, cg);
1110 1.101 ad mutex_exit(&ump->um_lock);
1111 1.1 mycroft bdwrite(bp);
1112 1.60 fvdl return (blkno);
1113 1.1 mycroft }
1114 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1115 1.30 fvdl #if 0
1116 1.30 fvdl /*
1117 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1118 1.58 fvdl * also: returning NULL as daddr_t ?
1119 1.30 fvdl */
1120 1.101 ad if (bno < 0)
1121 1.101 ad goto fail;
1122 1.30 fvdl #endif
1123 1.1 mycroft for (i = 0; i < frags; i++)
1124 1.62 fvdl clrbit(blksfree, bno + i);
1125 1.101 ad mutex_enter(&ump->um_lock);
1126 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1127 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1128 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1129 1.1 mycroft fs->fs_fmod = 1;
1130 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1131 1.1 mycroft if (frags != allocsiz)
1132 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1133 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1134 1.101 ad ACTIVECG_CLR(fs, cg);
1135 1.101 ad mutex_exit(&ump->um_lock);
1136 1.1 mycroft bdwrite(bp);
1137 1.30 fvdl return blkno;
1138 1.101 ad
1139 1.101 ad fail:
1140 1.132 hannken if (bp != NULL)
1141 1.132 hannken brelse(bp, 0);
1142 1.101 ad mutex_enter(&ump->um_lock);
1143 1.101 ad return (0);
1144 1.1 mycroft }
1145 1.1 mycroft
1146 1.1 mycroft /*
1147 1.1 mycroft * Allocate a block in a cylinder group.
1148 1.1 mycroft *
1149 1.1 mycroft * This algorithm implements the following policy:
1150 1.1 mycroft * 1) allocate the requested block.
1151 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1152 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1153 1.1 mycroft * specified cylinder group.
1154 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1155 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1156 1.1 mycroft */
1157 1.58 fvdl static daddr_t
1158 1.152 jdolecek ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
1159 1.152 jdolecek int flags)
1160 1.1 mycroft {
1161 1.62 fvdl struct fs *fs = ip->i_fs;
1162 1.30 fvdl struct cg *cgp;
1163 1.123 sborrill int cg;
1164 1.60 fvdl daddr_t blkno;
1165 1.60 fvdl int32_t bno;
1166 1.60 fvdl u_int8_t *blksfree;
1167 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1168 1.1 mycroft
1169 1.141 martin KASSERT(mutex_owned(&ip->i_ump->um_lock));
1170 1.101 ad
1171 1.30 fvdl cgp = (struct cg *)bp->b_data;
1172 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1173 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1174 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1175 1.60 fvdl } else {
1176 1.138 dholland bpref = ffs_blknum(fs, bpref);
1177 1.60 fvdl bno = dtogd(fs, bpref);
1178 1.1 mycroft /*
1179 1.60 fvdl * if the requested block is available, use it
1180 1.1 mycroft */
1181 1.138 dholland if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
1182 1.60 fvdl goto gotit;
1183 1.111 simonb /*
1184 1.111 simonb * if the requested data block isn't available and we are
1185 1.111 simonb * trying to allocate a contiguous file, return an error.
1186 1.111 simonb */
1187 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1188 1.111 simonb return (0);
1189 1.1 mycroft }
1190 1.111 simonb
1191 1.1 mycroft /*
1192 1.60 fvdl * Take the next available block in this cylinder group.
1193 1.1 mycroft */
1194 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1195 1.152 jdolecek #if 0
1196 1.152 jdolecek /*
1197 1.152 jdolecek * XXX jdolecek ffs_mapsearch() succeeds or panics
1198 1.152 jdolecek */
1199 1.1 mycroft if (bno < 0)
1200 1.35 thorpej return (0);
1201 1.152 jdolecek #endif
1202 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1203 1.1 mycroft gotit:
1204 1.138 dholland blkno = ffs_fragstoblks(fs, bno);
1205 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1206 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1207 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1208 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1209 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1210 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1211 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1212 1.73 dbj int cylno;
1213 1.73 dbj cylno = old_cbtocylno(fs, bno);
1214 1.75 dbj KASSERT(cylno >= 0);
1215 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1216 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1217 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1218 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1219 1.73 dbj needswap);
1220 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1221 1.73 dbj }
1222 1.1 mycroft fs->fs_fmod = 1;
1223 1.123 sborrill cg = ufs_rw32(cgp->cg_cgx, needswap);
1224 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1225 1.30 fvdl return (blkno);
1226 1.1 mycroft }
1227 1.1 mycroft
1228 1.1 mycroft /*
1229 1.1 mycroft * Determine whether an inode can be allocated.
1230 1.1 mycroft *
1231 1.1 mycroft * Check to see if an inode is available, and if it is,
1232 1.1 mycroft * allocate it using the following policy:
1233 1.1 mycroft * 1) allocate the requested inode.
1234 1.1 mycroft * 2) allocate the next available inode after the requested
1235 1.1 mycroft * inode in the specified cylinder group.
1236 1.1 mycroft */
1237 1.58 fvdl static daddr_t
1238 1.152 jdolecek ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
1239 1.152 jdolecek int flags)
1240 1.1 mycroft {
1241 1.101 ad struct ufsmount *ump = ip->i_ump;
1242 1.62 fvdl struct fs *fs = ip->i_fs;
1243 1.33 augustss struct cg *cgp;
1244 1.60 fvdl struct buf *bp, *ibp;
1245 1.60 fvdl u_int8_t *inosused;
1246 1.1 mycroft int error, start, len, loc, map, i;
1247 1.60 fvdl int32_t initediblk;
1248 1.112 hannken daddr_t nalloc;
1249 1.60 fvdl struct ufs2_dinode *dp2;
1250 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1251 1.1 mycroft
1252 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1253 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1254 1.101 ad
1255 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1256 1.35 thorpej return (0);
1257 1.101 ad mutex_exit(&ump->um_lock);
1258 1.112 hannken ibp = NULL;
1259 1.112 hannken initediblk = -1;
1260 1.112 hannken retry:
1261 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1262 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
1263 1.101 ad if (error)
1264 1.101 ad goto fail;
1265 1.1 mycroft cgp = (struct cg *)bp->b_data;
1266 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1267 1.101 ad goto fail;
1268 1.112 hannken
1269 1.112 hannken if (ibp != NULL &&
1270 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1271 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1272 1.121 ad brelse(ibp, 0);
1273 1.112 hannken ibp = NULL;
1274 1.112 hannken }
1275 1.112 hannken /*
1276 1.112 hannken * Check to see if we need to initialize more inodes.
1277 1.112 hannken */
1278 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1279 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1280 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1281 1.134 dholland if (nalloc + FFS_INOPB(fs) > initediblk &&
1282 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1283 1.112 hannken /*
1284 1.112 hannken * We have to release the cg buffer here to prevent
1285 1.112 hannken * a deadlock when reading the inode block will
1286 1.112 hannken * run a copy-on-write that might use this cg.
1287 1.112 hannken */
1288 1.112 hannken brelse(bp, 0);
1289 1.112 hannken bp = NULL;
1290 1.136 dholland error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
1291 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1292 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1293 1.112 hannken if (error)
1294 1.112 hannken goto fail;
1295 1.112 hannken goto retry;
1296 1.112 hannken }
1297 1.112 hannken }
1298 1.112 hannken
1299 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1300 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1301 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1302 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1303 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1304 1.1 mycroft if (ipref) {
1305 1.1 mycroft ipref %= fs->fs_ipg;
1306 1.60 fvdl if (isclr(inosused, ipref))
1307 1.1 mycroft goto gotit;
1308 1.1 mycroft }
1309 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1310 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1311 1.19 bouyer NBBY);
1312 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1313 1.1 mycroft if (loc == 0) {
1314 1.1 mycroft len = start + 1;
1315 1.1 mycroft start = 0;
1316 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1317 1.1 mycroft if (loc == 0) {
1318 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1319 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1320 1.19 bouyer fs->fs_fsmnt);
1321 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1322 1.1 mycroft /* NOTREACHED */
1323 1.1 mycroft }
1324 1.1 mycroft }
1325 1.1 mycroft i = start + len - loc;
1326 1.126 rmind map = inosused[i] ^ 0xff;
1327 1.126 rmind if (map == 0) {
1328 1.126 rmind printf("fs = %s\n", fs->fs_fsmnt);
1329 1.126 rmind panic("ffs_nodealloccg: block not in map");
1330 1.1 mycroft }
1331 1.126 rmind ipref = i * NBBY + ffs(map) - 1;
1332 1.126 rmind cgp->cg_irotor = ufs_rw32(ipref, needswap);
1333 1.1 mycroft gotit:
1334 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1335 1.111 simonb mode);
1336 1.60 fvdl /*
1337 1.60 fvdl * Check to see if we need to initialize more inodes.
1338 1.60 fvdl */
1339 1.112 hannken if (ibp != NULL) {
1340 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1341 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1342 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1343 1.134 dholland for (i = 0; i < FFS_INOPB(fs); i++) {
1344 1.60 fvdl /*
1345 1.60 fvdl * Don't bother to swap, it's supposed to be
1346 1.60 fvdl * random, after all.
1347 1.60 fvdl */
1348 1.130 tls dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
1349 1.60 fvdl dp2++;
1350 1.60 fvdl }
1351 1.134 dholland initediblk += FFS_INOPB(fs);
1352 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1353 1.60 fvdl }
1354 1.60 fvdl
1355 1.101 ad mutex_enter(&ump->um_lock);
1356 1.76 hannken ACTIVECG_CLR(fs, cg);
1357 1.101 ad setbit(inosused, ipref);
1358 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1359 1.101 ad fs->fs_cstotal.cs_nifree--;
1360 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1361 1.101 ad fs->fs_fmod = 1;
1362 1.101 ad if ((mode & IFMT) == IFDIR) {
1363 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1364 1.101 ad fs->fs_cstotal.cs_ndir++;
1365 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1366 1.101 ad }
1367 1.101 ad mutex_exit(&ump->um_lock);
1368 1.112 hannken if (ibp != NULL) {
1369 1.112 hannken bwrite(bp);
1370 1.104 hannken bawrite(ibp);
1371 1.112 hannken } else
1372 1.112 hannken bdwrite(bp);
1373 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1374 1.101 ad fail:
1375 1.112 hannken if (bp != NULL)
1376 1.112 hannken brelse(bp, 0);
1377 1.112 hannken if (ibp != NULL)
1378 1.121 ad brelse(ibp, 0);
1379 1.101 ad mutex_enter(&ump->um_lock);
1380 1.101 ad return (0);
1381 1.1 mycroft }
1382 1.1 mycroft
1383 1.1 mycroft /*
1384 1.111 simonb * Allocate a block or fragment.
1385 1.111 simonb *
1386 1.111 simonb * The specified block or fragment is removed from the
1387 1.111 simonb * free map, possibly fragmenting a block in the process.
1388 1.111 simonb *
1389 1.111 simonb * This implementation should mirror fs_blkfree
1390 1.111 simonb *
1391 1.111 simonb * => um_lock not held on entry or exit
1392 1.111 simonb */
1393 1.111 simonb int
1394 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1395 1.111 simonb {
1396 1.116 joerg int error;
1397 1.111 simonb
1398 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1399 1.116 joerg ip->i_dev, ip->i_uid);
1400 1.116 joerg if (error)
1401 1.116 joerg return error;
1402 1.115 joerg
1403 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1404 1.115 joerg }
1405 1.115 joerg
1406 1.115 joerg int
1407 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1408 1.115 joerg {
1409 1.115 joerg struct fs *fs = ump->um_fs;
1410 1.115 joerg struct cg *cgp;
1411 1.115 joerg struct buf *bp;
1412 1.115 joerg int32_t fragno, cgbno;
1413 1.115 joerg int i, error, cg, blk, frags, bbase;
1414 1.115 joerg u_int8_t *blksfree;
1415 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1416 1.115 joerg
1417 1.134 dholland KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
1418 1.138 dholland ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
1419 1.115 joerg KASSERT(bno < fs->fs_size);
1420 1.115 joerg
1421 1.115 joerg cg = dtog(fs, bno);
1422 1.136 dholland error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1423 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
1424 1.111 simonb if (error) {
1425 1.111 simonb return error;
1426 1.111 simonb }
1427 1.111 simonb cgp = (struct cg *)bp->b_data;
1428 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1429 1.111 simonb brelse(bp, 0);
1430 1.111 simonb return EIO;
1431 1.111 simonb }
1432 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1433 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1434 1.111 simonb cgbno = dtogd(fs, bno);
1435 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1436 1.111 simonb
1437 1.111 simonb mutex_enter(&ump->um_lock);
1438 1.111 simonb if (size == fs->fs_bsize) {
1439 1.138 dholland fragno = ffs_fragstoblks(fs, cgbno);
1440 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1441 1.111 simonb mutex_exit(&ump->um_lock);
1442 1.111 simonb brelse(bp, 0);
1443 1.111 simonb return EBUSY;
1444 1.111 simonb }
1445 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1446 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1447 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1448 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1449 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1450 1.111 simonb } else {
1451 1.138 dholland bbase = cgbno - ffs_fragnum(fs, cgbno);
1452 1.111 simonb
1453 1.137 dholland frags = ffs_numfrags(fs, size);
1454 1.111 simonb for (i = 0; i < frags; i++) {
1455 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1456 1.111 simonb mutex_exit(&ump->um_lock);
1457 1.111 simonb brelse(bp, 0);
1458 1.111 simonb return EBUSY;
1459 1.111 simonb }
1460 1.111 simonb }
1461 1.111 simonb /*
1462 1.111 simonb * if a complete block is being split, account for it
1463 1.111 simonb */
1464 1.138 dholland fragno = ffs_fragstoblks(fs, bbase);
1465 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1466 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1467 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1468 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1469 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1470 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1471 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1472 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1473 1.111 simonb }
1474 1.111 simonb /*
1475 1.111 simonb * decrement the counts associated with the old frags
1476 1.111 simonb */
1477 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1478 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1479 1.111 simonb /*
1480 1.111 simonb * allocate the fragment
1481 1.111 simonb */
1482 1.111 simonb for (i = 0; i < frags; i++) {
1483 1.111 simonb clrbit(blksfree, cgbno + i);
1484 1.111 simonb }
1485 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1486 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1487 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1488 1.111 simonb /*
1489 1.111 simonb * add back in counts associated with the new frags
1490 1.111 simonb */
1491 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1492 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1493 1.111 simonb }
1494 1.111 simonb fs->fs_fmod = 1;
1495 1.111 simonb ACTIVECG_CLR(fs, cg);
1496 1.111 simonb mutex_exit(&ump->um_lock);
1497 1.111 simonb bdwrite(bp);
1498 1.111 simonb return 0;
1499 1.111 simonb }
1500 1.111 simonb
1501 1.111 simonb /*
1502 1.1 mycroft * Free a block or fragment.
1503 1.1 mycroft *
1504 1.1 mycroft * The specified block or fragment is placed back in the
1505 1.81 perry * free map. If a fragment is deallocated, a possible
1506 1.1 mycroft * block reassembly is checked.
1507 1.106 pooka *
1508 1.106 pooka * => um_lock not held on entry or exit
1509 1.1 mycroft */
1510 1.131 drochner static void
1511 1.131 drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
1512 1.1 mycroft {
1513 1.33 augustss struct cg *cgp;
1514 1.1 mycroft struct buf *bp;
1515 1.76 hannken struct ufsmount *ump;
1516 1.76 hannken daddr_t cgblkno;
1517 1.116 joerg int error, cg;
1518 1.76 hannken dev_t dev;
1519 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1520 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1521 1.1 mycroft
1522 1.116 joerg KASSERT(!devvp_is_snapshot);
1523 1.116 joerg
1524 1.76 hannken cg = dtog(fs, bno);
1525 1.116 joerg dev = devvp->v_rdev;
1526 1.140 hannken ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1527 1.119 joerg KASSERT(fs == ump->um_fs);
1528 1.136 dholland cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
1529 1.116 joerg
1530 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1531 1.149 maxv B_MODIFY, &bp);
1532 1.116 joerg if (error) {
1533 1.116 joerg return;
1534 1.76 hannken }
1535 1.116 joerg cgp = (struct cg *)bp->b_data;
1536 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1537 1.116 joerg brelse(bp, 0);
1538 1.116 joerg return;
1539 1.1 mycroft }
1540 1.76 hannken
1541 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1542 1.119 joerg
1543 1.119 joerg bdwrite(bp);
1544 1.116 joerg }
1545 1.116 joerg
1546 1.131 drochner struct discardopdata {
1547 1.131 drochner struct work wk; /* must be first */
1548 1.131 drochner struct vnode *devvp;
1549 1.131 drochner daddr_t bno;
1550 1.131 drochner long size;
1551 1.131 drochner };
1552 1.131 drochner
1553 1.131 drochner struct discarddata {
1554 1.131 drochner struct fs *fs;
1555 1.131 drochner struct discardopdata *entry;
1556 1.131 drochner long maxsize;
1557 1.131 drochner kmutex_t entrylk;
1558 1.131 drochner struct workqueue *wq;
1559 1.131 drochner int wqcnt, wqdraining;
1560 1.131 drochner kmutex_t wqlk;
1561 1.131 drochner kcondvar_t wqcv;
1562 1.131 drochner /* timer for flush? */
1563 1.131 drochner };
1564 1.131 drochner
1565 1.131 drochner static void
1566 1.131 drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
1567 1.131 drochner {
1568 1.151 riastrad struct mount *mp = spec_node_getmountedfs(td->devvp);
1569 1.131 drochner long todo;
1570 1.151 riastrad int error;
1571 1.131 drochner
1572 1.131 drochner while (td->size) {
1573 1.131 drochner todo = min(td->size,
1574 1.138 dholland ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
1575 1.151 riastrad error = UFS_WAPBL_BEGIN(mp);
1576 1.151 riastrad if (error) {
1577 1.151 riastrad printf("ffs: failed to begin wapbl transaction"
1578 1.151 riastrad " for discard: %d\n", error);
1579 1.151 riastrad break;
1580 1.151 riastrad }
1581 1.131 drochner ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
1582 1.151 riastrad UFS_WAPBL_END(mp);
1583 1.137 dholland td->bno += ffs_numfrags(fs, todo);
1584 1.131 drochner td->size -= todo;
1585 1.131 drochner }
1586 1.131 drochner }
1587 1.131 drochner
1588 1.131 drochner static void
1589 1.131 drochner ffs_discardcb(struct work *wk, void *arg)
1590 1.131 drochner {
1591 1.131 drochner struct discardopdata *td = (void *)wk;
1592 1.131 drochner struct discarddata *ts = arg;
1593 1.131 drochner struct fs *fs = ts->fs;
1594 1.146 dholland off_t start, len;
1595 1.139 martin #ifdef TRIMDEBUG
1596 1.131 drochner int error;
1597 1.139 martin #endif
1598 1.131 drochner
1599 1.146 dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
1600 1.146 dholland #ifndef FFS_FSBTOBYTES
1601 1.146 dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
1602 1.146 dholland #endif
1603 1.146 dholland
1604 1.146 dholland start = FFS_FSBTOBYTES(fs, td->bno);
1605 1.146 dholland len = td->size;
1606 1.139 martin #ifdef TRIMDEBUG
1607 1.139 martin error =
1608 1.139 martin #endif
1609 1.146 dholland VOP_FDISCARD(td->devvp, start, len);
1610 1.131 drochner #ifdef TRIMDEBUG
1611 1.131 drochner printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
1612 1.131 drochner #endif
1613 1.131 drochner
1614 1.131 drochner ffs_blkfree_td(fs, td);
1615 1.131 drochner kmem_free(td, sizeof(*td));
1616 1.131 drochner mutex_enter(&ts->wqlk);
1617 1.131 drochner ts->wqcnt--;
1618 1.131 drochner if (ts->wqdraining && !ts->wqcnt)
1619 1.131 drochner cv_signal(&ts->wqcv);
1620 1.131 drochner mutex_exit(&ts->wqlk);
1621 1.131 drochner }
1622 1.131 drochner
1623 1.131 drochner void *
1624 1.131 drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
1625 1.131 drochner {
1626 1.131 drochner struct discarddata *ts;
1627 1.131 drochner int error;
1628 1.131 drochner
1629 1.131 drochner ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
1630 1.131 drochner error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
1631 1.131 drochner 0, 0, 0);
1632 1.131 drochner if (error) {
1633 1.131 drochner kmem_free(ts, sizeof (*ts));
1634 1.131 drochner return NULL;
1635 1.131 drochner }
1636 1.131 drochner mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
1637 1.131 drochner mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
1638 1.131 drochner cv_init(&ts->wqcv, "trimwqcv");
1639 1.146 dholland ts->maxsize = 100*1024; /* XXX */
1640 1.131 drochner ts->fs = fs;
1641 1.131 drochner return ts;
1642 1.131 drochner }
1643 1.131 drochner
1644 1.131 drochner void
1645 1.131 drochner ffs_discard_finish(void *vts, int flags)
1646 1.131 drochner {
1647 1.131 drochner struct discarddata *ts = vts;
1648 1.131 drochner struct discardopdata *td = NULL;
1649 1.131 drochner int res = 0;
1650 1.131 drochner
1651 1.131 drochner /* wait for workqueue to drain */
1652 1.131 drochner mutex_enter(&ts->wqlk);
1653 1.131 drochner if (ts->wqcnt) {
1654 1.131 drochner ts->wqdraining = 1;
1655 1.131 drochner res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
1656 1.131 drochner }
1657 1.131 drochner mutex_exit(&ts->wqlk);
1658 1.131 drochner if (res)
1659 1.131 drochner printf("ffs_discarddata drain timeout\n");
1660 1.131 drochner
1661 1.131 drochner mutex_enter(&ts->entrylk);
1662 1.131 drochner if (ts->entry) {
1663 1.131 drochner td = ts->entry;
1664 1.131 drochner ts->entry = NULL;
1665 1.131 drochner }
1666 1.131 drochner mutex_exit(&ts->entrylk);
1667 1.131 drochner if (td) {
1668 1.131 drochner /* XXX don't tell disk, its optional */
1669 1.131 drochner ffs_blkfree_td(ts->fs, td);
1670 1.131 drochner #ifdef TRIMDEBUG
1671 1.131 drochner printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
1672 1.131 drochner #endif
1673 1.131 drochner kmem_free(td, sizeof(*td));
1674 1.131 drochner }
1675 1.131 drochner
1676 1.131 drochner cv_destroy(&ts->wqcv);
1677 1.131 drochner mutex_destroy(&ts->entrylk);
1678 1.131 drochner mutex_destroy(&ts->wqlk);
1679 1.131 drochner workqueue_destroy(ts->wq);
1680 1.131 drochner kmem_free(ts, sizeof(*ts));
1681 1.131 drochner }
1682 1.131 drochner
1683 1.131 drochner void
1684 1.131 drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1685 1.131 drochner ino_t inum)
1686 1.131 drochner {
1687 1.131 drochner struct ufsmount *ump;
1688 1.131 drochner int error;
1689 1.131 drochner dev_t dev;
1690 1.131 drochner struct discarddata *ts;
1691 1.131 drochner struct discardopdata *td;
1692 1.131 drochner
1693 1.131 drochner dev = devvp->v_rdev;
1694 1.140 hannken ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1695 1.131 drochner if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1696 1.131 drochner return;
1697 1.131 drochner
1698 1.131 drochner error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1699 1.131 drochner if (error)
1700 1.131 drochner return;
1701 1.131 drochner
1702 1.131 drochner if (!ump->um_discarddata) {
1703 1.131 drochner ffs_blkfree_cg(fs, devvp, bno, size);
1704 1.131 drochner return;
1705 1.131 drochner }
1706 1.131 drochner
1707 1.131 drochner #ifdef TRIMDEBUG
1708 1.131 drochner printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
1709 1.131 drochner #endif
1710 1.131 drochner ts = ump->um_discarddata;
1711 1.131 drochner td = NULL;
1712 1.131 drochner
1713 1.131 drochner mutex_enter(&ts->entrylk);
1714 1.131 drochner if (ts->entry) {
1715 1.131 drochner td = ts->entry;
1716 1.131 drochner /* ffs deallocs backwards, check for prepend only */
1717 1.137 dholland if (td->bno == bno + ffs_numfrags(fs, size)
1718 1.131 drochner && td->size + size <= ts->maxsize) {
1719 1.131 drochner td->bno = bno;
1720 1.131 drochner td->size += size;
1721 1.131 drochner if (td->size < ts->maxsize) {
1722 1.131 drochner #ifdef TRIMDEBUG
1723 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1724 1.131 drochner #endif
1725 1.131 drochner mutex_exit(&ts->entrylk);
1726 1.131 drochner return;
1727 1.131 drochner }
1728 1.131 drochner size = 0; /* mark done */
1729 1.131 drochner }
1730 1.131 drochner ts->entry = NULL;
1731 1.131 drochner }
1732 1.131 drochner mutex_exit(&ts->entrylk);
1733 1.131 drochner
1734 1.131 drochner if (td) {
1735 1.131 drochner #ifdef TRIMDEBUG
1736 1.131 drochner printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
1737 1.131 drochner #endif
1738 1.131 drochner mutex_enter(&ts->wqlk);
1739 1.131 drochner ts->wqcnt++;
1740 1.131 drochner mutex_exit(&ts->wqlk);
1741 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1742 1.131 drochner }
1743 1.131 drochner if (!size)
1744 1.131 drochner return;
1745 1.131 drochner
1746 1.131 drochner td = kmem_alloc(sizeof(*td), KM_SLEEP);
1747 1.131 drochner td->devvp = devvp;
1748 1.131 drochner td->bno = bno;
1749 1.131 drochner td->size = size;
1750 1.131 drochner
1751 1.131 drochner if (td->size < ts->maxsize) { /* XXX always the case */
1752 1.131 drochner mutex_enter(&ts->entrylk);
1753 1.131 drochner if (!ts->entry) { /* possible race? */
1754 1.131 drochner #ifdef TRIMDEBUG
1755 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1756 1.131 drochner #endif
1757 1.131 drochner ts->entry = td;
1758 1.131 drochner td = NULL;
1759 1.131 drochner }
1760 1.131 drochner mutex_exit(&ts->entrylk);
1761 1.131 drochner }
1762 1.131 drochner if (td) {
1763 1.131 drochner #ifdef TRIMDEBUG
1764 1.131 drochner printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
1765 1.131 drochner #endif
1766 1.131 drochner mutex_enter(&ts->wqlk);
1767 1.131 drochner ts->wqcnt++;
1768 1.131 drochner mutex_exit(&ts->wqlk);
1769 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1770 1.131 drochner }
1771 1.131 drochner }
1772 1.131 drochner
1773 1.116 joerg /*
1774 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1775 1.116 joerg *
1776 1.116 joerg * The specified block or fragment is placed back in the
1777 1.116 joerg * free map. If a fragment is deallocated, a possible
1778 1.116 joerg * block reassembly is checked.
1779 1.116 joerg *
1780 1.116 joerg * => um_lock not held on entry or exit
1781 1.116 joerg */
1782 1.116 joerg void
1783 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1784 1.116 joerg ino_t inum)
1785 1.116 joerg {
1786 1.116 joerg struct cg *cgp;
1787 1.116 joerg struct buf *bp;
1788 1.116 joerg struct ufsmount *ump;
1789 1.116 joerg daddr_t cgblkno;
1790 1.116 joerg int error, cg;
1791 1.116 joerg dev_t dev;
1792 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1793 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1794 1.116 joerg
1795 1.116 joerg KASSERT(devvp_is_snapshot);
1796 1.116 joerg
1797 1.116 joerg cg = dtog(fs, bno);
1798 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1799 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1800 1.138 dholland cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
1801 1.116 joerg
1802 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1803 1.116 joerg if (error)
1804 1.1 mycroft return;
1805 1.116 joerg
1806 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1807 1.149 maxv B_MODIFY, &bp);
1808 1.1 mycroft if (error) {
1809 1.1 mycroft return;
1810 1.1 mycroft }
1811 1.1 mycroft cgp = (struct cg *)bp->b_data;
1812 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1813 1.101 ad brelse(bp, 0);
1814 1.1 mycroft return;
1815 1.1 mycroft }
1816 1.116 joerg
1817 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1818 1.119 joerg
1819 1.119 joerg bdwrite(bp);
1820 1.116 joerg }
1821 1.116 joerg
1822 1.116 joerg static void
1823 1.119 joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1824 1.119 joerg struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1825 1.116 joerg {
1826 1.116 joerg struct cg *cgp;
1827 1.116 joerg int32_t fragno, cgbno;
1828 1.116 joerg int i, cg, blk, frags, bbase;
1829 1.116 joerg u_int8_t *blksfree;
1830 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1831 1.116 joerg
1832 1.116 joerg cg = dtog(fs, bno);
1833 1.116 joerg cgp = (struct cg *)bp->b_data;
1834 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1835 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1836 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1837 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1838 1.60 fvdl cgbno = dtogd(fs, bno);
1839 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1840 1.101 ad mutex_enter(&ump->um_lock);
1841 1.1 mycroft if (size == fs->fs_bsize) {
1842 1.138 dholland fragno = ffs_fragstoblks(fs, cgbno);
1843 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1844 1.113 hannken if (devvp_is_snapshot) {
1845 1.101 ad mutex_exit(&ump->um_lock);
1846 1.76 hannken return;
1847 1.76 hannken }
1848 1.120 christos printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1849 1.120 christos (unsigned long long)dev, bno, fs->fs_fsmnt);
1850 1.1 mycroft panic("blkfree: freeing free block");
1851 1.1 mycroft }
1852 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1853 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1854 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1855 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1856 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1857 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1858 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1859 1.73 dbj i = old_cbtocylno(fs, cgbno);
1860 1.75 dbj KASSERT(i >= 0);
1861 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1862 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1863 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1864 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1865 1.73 dbj needswap);
1866 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1867 1.73 dbj }
1868 1.1 mycroft } else {
1869 1.138 dholland bbase = cgbno - ffs_fragnum(fs, cgbno);
1870 1.1 mycroft /*
1871 1.1 mycroft * decrement the counts associated with the old frags
1872 1.1 mycroft */
1873 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1874 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1875 1.1 mycroft /*
1876 1.1 mycroft * deallocate the fragment
1877 1.1 mycroft */
1878 1.137 dholland frags = ffs_numfrags(fs, size);
1879 1.1 mycroft for (i = 0; i < frags; i++) {
1880 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1881 1.120 christos printf("dev = 0x%llx, block = %" PRId64
1882 1.59 tsutsui ", fs = %s\n",
1883 1.120 christos (unsigned long long)dev, bno + i,
1884 1.120 christos fs->fs_fsmnt);
1885 1.1 mycroft panic("blkfree: freeing free frag");
1886 1.1 mycroft }
1887 1.62 fvdl setbit(blksfree, cgbno + i);
1888 1.1 mycroft }
1889 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1890 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1891 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1892 1.1 mycroft /*
1893 1.1 mycroft * add back in counts associated with the new frags
1894 1.1 mycroft */
1895 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1896 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1897 1.1 mycroft /*
1898 1.1 mycroft * if a complete block has been reassembled, account for it
1899 1.1 mycroft */
1900 1.138 dholland fragno = ffs_fragstoblks(fs, bbase);
1901 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1902 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1903 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1904 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1905 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1906 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1907 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1908 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1909 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1910 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1911 1.73 dbj i = old_cbtocylno(fs, bbase);
1912 1.75 dbj KASSERT(i >= 0);
1913 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1914 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1915 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1916 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1917 1.73 dbj bbase)], 1, needswap);
1918 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1919 1.73 dbj }
1920 1.1 mycroft }
1921 1.1 mycroft }
1922 1.1 mycroft fs->fs_fmod = 1;
1923 1.76 hannken ACTIVECG_CLR(fs, cg);
1924 1.101 ad mutex_exit(&ump->um_lock);
1925 1.1 mycroft }
1926 1.1 mycroft
1927 1.1 mycroft /*
1928 1.1 mycroft * Free an inode.
1929 1.30 fvdl */
1930 1.30 fvdl int
1931 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1932 1.30 fvdl {
1933 1.30 fvdl
1934 1.119 joerg return ffs_freefile(vp->v_mount, ino, mode);
1935 1.30 fvdl }
1936 1.30 fvdl
1937 1.30 fvdl /*
1938 1.30 fvdl * Do the actual free operation.
1939 1.1 mycroft * The specified inode is placed back in the free map.
1940 1.111 simonb *
1941 1.111 simonb * => um_lock not held on entry or exit
1942 1.1 mycroft */
1943 1.1 mycroft int
1944 1.119 joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
1945 1.119 joerg {
1946 1.119 joerg struct ufsmount *ump = VFSTOUFS(mp);
1947 1.119 joerg struct fs *fs = ump->um_fs;
1948 1.119 joerg struct vnode *devvp;
1949 1.119 joerg struct cg *cgp;
1950 1.119 joerg struct buf *bp;
1951 1.119 joerg int error, cg;
1952 1.119 joerg daddr_t cgbno;
1953 1.119 joerg dev_t dev;
1954 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1955 1.119 joerg
1956 1.119 joerg cg = ino_to_cg(fs, ino);
1957 1.119 joerg devvp = ump->um_devvp;
1958 1.119 joerg dev = devvp->v_rdev;
1959 1.136 dholland cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
1960 1.119 joerg
1961 1.119 joerg if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1962 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1963 1.120 christos (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1964 1.119 joerg error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1965 1.149 maxv B_MODIFY, &bp);
1966 1.119 joerg if (error) {
1967 1.119 joerg return (error);
1968 1.119 joerg }
1969 1.119 joerg cgp = (struct cg *)bp->b_data;
1970 1.119 joerg if (!cg_chkmagic(cgp, needswap)) {
1971 1.119 joerg brelse(bp, 0);
1972 1.119 joerg return (0);
1973 1.119 joerg }
1974 1.119 joerg
1975 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1976 1.119 joerg
1977 1.119 joerg bdwrite(bp);
1978 1.119 joerg
1979 1.119 joerg return 0;
1980 1.119 joerg }
1981 1.119 joerg
1982 1.119 joerg int
1983 1.119 joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1984 1.9 christos {
1985 1.101 ad struct ufsmount *ump;
1986 1.33 augustss struct cg *cgp;
1987 1.1 mycroft struct buf *bp;
1988 1.1 mycroft int error, cg;
1989 1.76 hannken daddr_t cgbno;
1990 1.78 hannken dev_t dev;
1991 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1992 1.1 mycroft
1993 1.119 joerg KASSERT(devvp->v_type != VBLK);
1994 1.111 simonb
1995 1.76 hannken cg = ino_to_cg(fs, ino);
1996 1.119 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1997 1.119 joerg ump = VFSTOUFS(devvp->v_mount);
1998 1.138 dholland cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
1999 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2000 1.120 christos panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
2001 1.120 christos (unsigned long long)dev, (unsigned long long)ino,
2002 1.120 christos fs->fs_fsmnt);
2003 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2004 1.149 maxv B_MODIFY, &bp);
2005 1.1 mycroft if (error) {
2006 1.30 fvdl return (error);
2007 1.1 mycroft }
2008 1.1 mycroft cgp = (struct cg *)bp->b_data;
2009 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
2010 1.101 ad brelse(bp, 0);
2011 1.1 mycroft return (0);
2012 1.1 mycroft }
2013 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
2014 1.119 joerg
2015 1.119 joerg bdwrite(bp);
2016 1.119 joerg
2017 1.119 joerg return 0;
2018 1.119 joerg }
2019 1.119 joerg
2020 1.119 joerg static void
2021 1.119 joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
2022 1.119 joerg struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
2023 1.119 joerg {
2024 1.119 joerg int cg;
2025 1.119 joerg struct cg *cgp;
2026 1.119 joerg u_int8_t *inosused;
2027 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
2028 1.119 joerg
2029 1.119 joerg cg = ino_to_cg(fs, ino);
2030 1.119 joerg cgp = (struct cg *)bp->b_data;
2031 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
2032 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2033 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
2034 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
2035 1.62 fvdl inosused = cg_inosused(cgp, needswap);
2036 1.1 mycroft ino %= fs->fs_ipg;
2037 1.62 fvdl if (isclr(inosused, ino)) {
2038 1.120 christos printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
2039 1.120 christos (unsigned long long)dev, (unsigned long long)ino +
2040 1.120 christos cg * fs->fs_ipg, fs->fs_fsmnt);
2041 1.1 mycroft if (fs->fs_ronly == 0)
2042 1.1 mycroft panic("ifree: freeing free inode");
2043 1.1 mycroft }
2044 1.62 fvdl clrbit(inosused, ino);
2045 1.113 hannken if (!devvp_is_snapshot)
2046 1.119 joerg UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
2047 1.113 hannken ino + cg * fs->fs_ipg, mode);
2048 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2049 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
2050 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2051 1.101 ad mutex_enter(&ump->um_lock);
2052 1.1 mycroft fs->fs_cstotal.cs_nifree++;
2053 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
2054 1.78 hannken if ((mode & IFMT) == IFDIR) {
2055 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2056 1.1 mycroft fs->fs_cstotal.cs_ndir--;
2057 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
2058 1.1 mycroft }
2059 1.1 mycroft fs->fs_fmod = 1;
2060 1.82 hannken ACTIVECG_CLR(fs, cg);
2061 1.101 ad mutex_exit(&ump->um_lock);
2062 1.1 mycroft }
2063 1.1 mycroft
2064 1.1 mycroft /*
2065 1.76 hannken * Check to see if a file is free.
2066 1.76 hannken */
2067 1.76 hannken int
2068 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2069 1.76 hannken {
2070 1.76 hannken struct cg *cgp;
2071 1.76 hannken struct buf *bp;
2072 1.76 hannken daddr_t cgbno;
2073 1.76 hannken int ret, cg;
2074 1.76 hannken u_int8_t *inosused;
2075 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
2076 1.76 hannken
2077 1.119 joerg KASSERT(devvp_is_snapshot);
2078 1.119 joerg
2079 1.76 hannken cg = ino_to_cg(fs, ino);
2080 1.113 hannken if (devvp_is_snapshot)
2081 1.138 dholland cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
2082 1.113 hannken else
2083 1.136 dholland cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
2084 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2085 1.76 hannken return 1;
2086 1.149 maxv if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
2087 1.76 hannken return 1;
2088 1.76 hannken }
2089 1.76 hannken cgp = (struct cg *)bp->b_data;
2090 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2091 1.101 ad brelse(bp, 0);
2092 1.76 hannken return 1;
2093 1.76 hannken }
2094 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2095 1.76 hannken ino %= fs->fs_ipg;
2096 1.76 hannken ret = isclr(inosused, ino);
2097 1.101 ad brelse(bp, 0);
2098 1.76 hannken return ret;
2099 1.76 hannken }
2100 1.76 hannken
2101 1.76 hannken /*
2102 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
2103 1.1 mycroft *
2104 1.1 mycroft * It is a panic if a request is made to find a block if none are
2105 1.1 mycroft * available.
2106 1.1 mycroft */
2107 1.60 fvdl static int32_t
2108 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2109 1.1 mycroft {
2110 1.60 fvdl int32_t bno;
2111 1.1 mycroft int start, len, loc, i;
2112 1.1 mycroft int blk, field, subfield, pos;
2113 1.19 bouyer int ostart, olen;
2114 1.62 fvdl u_int8_t *blksfree;
2115 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2116 1.1 mycroft
2117 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2118 1.101 ad
2119 1.1 mycroft /*
2120 1.1 mycroft * find the fragment by searching through the free block
2121 1.1 mycroft * map for an appropriate bit pattern
2122 1.1 mycroft */
2123 1.1 mycroft if (bpref)
2124 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
2125 1.1 mycroft else
2126 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2127 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
2128 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
2129 1.19 bouyer ostart = start;
2130 1.19 bouyer olen = len;
2131 1.45 lukem loc = scanc((u_int)len,
2132 1.62 fvdl (const u_char *)&blksfree[start],
2133 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2134 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2135 1.1 mycroft if (loc == 0) {
2136 1.1 mycroft len = start + 1;
2137 1.1 mycroft start = 0;
2138 1.45 lukem loc = scanc((u_int)len,
2139 1.62 fvdl (const u_char *)&blksfree[0],
2140 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2141 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2142 1.1 mycroft if (loc == 0) {
2143 1.13 christos printf("start = %d, len = %d, fs = %s\n",
2144 1.19 bouyer ostart, olen, fs->fs_fsmnt);
2145 1.20 ross printf("offset=%d %ld\n",
2146 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
2147 1.62 fvdl (long)blksfree - (long)cgp);
2148 1.62 fvdl printf("cg %d\n", cgp->cg_cgx);
2149 1.1 mycroft panic("ffs_alloccg: map corrupted");
2150 1.1 mycroft /* NOTREACHED */
2151 1.1 mycroft }
2152 1.1 mycroft }
2153 1.1 mycroft bno = (start + len - loc) * NBBY;
2154 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
2155 1.1 mycroft /*
2156 1.1 mycroft * found the byte in the map
2157 1.1 mycroft * sift through the bits to find the selected frag
2158 1.1 mycroft */
2159 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2160 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2161 1.1 mycroft blk <<= 1;
2162 1.1 mycroft field = around[allocsiz];
2163 1.1 mycroft subfield = inside[allocsiz];
2164 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2165 1.1 mycroft if ((blk & field) == subfield)
2166 1.1 mycroft return (bno + pos);
2167 1.1 mycroft field <<= 1;
2168 1.1 mycroft subfield <<= 1;
2169 1.1 mycroft }
2170 1.1 mycroft }
2171 1.60 fvdl printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
2172 1.1 mycroft panic("ffs_alloccg: block not in map");
2173 1.58 fvdl /* return (-1); */
2174 1.1 mycroft }
2175 1.1 mycroft
2176 1.1 mycroft /*
2177 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2178 1.81 perry *
2179 1.1 mycroft * The form of the error message is:
2180 1.1 mycroft * fs: error message
2181 1.1 mycroft */
2182 1.1 mycroft static void
2183 1.150 mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
2184 1.1 mycroft {
2185 1.150 mlelstv KASSERT(cred != NULL);
2186 1.1 mycroft
2187 1.150 mlelstv if (cred == NOCRED || cred == FSCRED) {
2188 1.150 mlelstv log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
2189 1.150 mlelstv curproc->p_pid, curproc->p_comm,
2190 1.150 mlelstv fs->fs_fsmnt, cp);
2191 1.150 mlelstv } else {
2192 1.150 mlelstv log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2193 1.150 mlelstv kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
2194 1.150 mlelstv fs->fs_fsmnt, cp);
2195 1.150 mlelstv }
2196 1.1 mycroft }
2197