Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.152
      1  1.152  jdolecek /*	$NetBSD: ffs_alloc.c,v 1.152 2016/09/25 17:14:59 jdolecek Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.152  jdolecek __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.152 2016/09/25 17:14:59 jdolecek Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78  1.129       chs #include "opt_uvm_page_trkown.h"
     79   1.22    scottr #endif
     80    1.1   mycroft 
     81    1.1   mycroft #include <sys/param.h>
     82    1.1   mycroft #include <sys/systm.h>
     83    1.1   mycroft #include <sys/buf.h>
     84  1.130       tls #include <sys/cprng.h>
     85  1.111    simonb #include <sys/fstrans.h>
     86  1.111    simonb #include <sys/kauth.h>
     87  1.111    simonb #include <sys/kernel.h>
     88  1.111    simonb #include <sys/mount.h>
     89    1.1   mycroft #include <sys/proc.h>
     90  1.111    simonb #include <sys/syslog.h>
     91    1.1   mycroft #include <sys/vnode.h>
     92  1.111    simonb #include <sys/wapbl.h>
     93  1.147     joerg #include <sys/cprng.h>
     94   1.29       mrg 
     95   1.76   hannken #include <miscfs/specfs/specdev.h>
     96    1.1   mycroft #include <ufs/ufs/quota.h>
     97   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     98    1.1   mycroft #include <ufs/ufs/inode.h>
     99    1.9  christos #include <ufs/ufs/ufs_extern.h>
    100   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    101  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    102    1.1   mycroft 
    103    1.1   mycroft #include <ufs/ffs/fs.h>
    104    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    105    1.1   mycroft 
    106  1.129       chs #ifdef UVM_PAGE_TRKOWN
    107  1.129       chs #include <uvm/uvm.h>
    108  1.129       chs #endif
    109  1.129       chs 
    110  1.152  jdolecek static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
    111  1.152  jdolecek static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    112   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    113   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    114  1.150   mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115  1.152  jdolecek static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
    116  1.152  jdolecek     daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
    117  1.152  jdolecek static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
    118   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119   1.85   thorpej 				      daddr_t, int);
    120  1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121  1.116     joerg     daddr_t, long, bool);
    122  1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123  1.119     joerg     int, bool);
    124   1.23  drochner 
    125   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    126   1.34  jdolecek int ffs_log_changeopt = 0;
    127   1.34  jdolecek 
    128   1.23  drochner /* in ffs_tables.c */
    129   1.40  jdolecek extern const int inside[], around[];
    130   1.40  jdolecek extern const u_char * const fragtbl[];
    131    1.1   mycroft 
    132  1.116     joerg /* Basic consistency check for block allocations */
    133  1.116     joerg static int
    134  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135  1.116     joerg     long size, dev_t dev, ino_t inum)
    136  1.116     joerg {
    137  1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138  1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139  1.120  christos 		printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
    140  1.120  christos 		    "size = %ld, fs = %s\n",
    141  1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142  1.116     joerg 		panic("%s: bad size", func);
    143  1.116     joerg 	}
    144  1.116     joerg 
    145  1.116     joerg 	if (bno >= fs->fs_size) {
    146  1.116     joerg 		printf("bad block %" PRId64 ", ino %llu\n", bno,
    147  1.116     joerg 		    (unsigned long long)inum);
    148  1.150   mlelstv 		ffs_fserr(fs, NOCRED, "bad block");
    149  1.116     joerg 		return EINVAL;
    150  1.116     joerg 	}
    151  1.116     joerg 	return 0;
    152  1.116     joerg }
    153  1.116     joerg 
    154    1.1   mycroft /*
    155    1.1   mycroft  * Allocate a block in the file system.
    156   1.81     perry  *
    157    1.1   mycroft  * The size of the requested block is given, which must be some
    158    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    159    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    160    1.1   mycroft  * the following hierarchy is used to allocate a block:
    161    1.1   mycroft  *   1) allocate the requested block.
    162    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    163    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    164    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    165    1.1   mycroft  *      available block is located.
    166   1.47       wiz  * If no block preference is given the following hierarchy is used
    167    1.1   mycroft  * to allocate a block:
    168    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    169    1.1   mycroft  *      inode for the file.
    170    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    171    1.1   mycroft  *      available block is located.
    172  1.106     pooka  *
    173  1.106     pooka  * => called with um_lock held
    174  1.106     pooka  * => releases um_lock before returning
    175    1.1   mycroft  */
    176    1.9  christos int
    177  1.152  jdolecek ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    178  1.152  jdolecek     int flags, kauth_cred_t cred, daddr_t *bnp)
    179    1.1   mycroft {
    180  1.101        ad 	struct ufsmount *ump;
    181   1.62      fvdl 	struct fs *fs;
    182   1.58      fvdl 	daddr_t bno;
    183    1.9  christos 	int cg;
    184  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    185    1.9  christos 	int error;
    186    1.9  christos #endif
    187   1.81     perry 
    188   1.62      fvdl 	fs = ip->i_fs;
    189  1.101        ad 	ump = ip->i_ump;
    190  1.101        ad 
    191  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    192   1.62      fvdl 
    193   1.37       chs #ifdef UVM_PAGE_TRKOWN
    194  1.129       chs 
    195  1.129       chs 	/*
    196  1.129       chs 	 * Sanity-check that allocations within the file size
    197  1.129       chs 	 * do not allow other threads to read the stale contents
    198  1.129       chs 	 * of newly allocated blocks.
    199  1.129       chs 	 * Usually pages will exist to cover the new allocation.
    200  1.129       chs 	 * There is an optimization in ffs_write() where we skip
    201  1.129       chs 	 * creating pages if several conditions are met:
    202  1.129       chs 	 *  - the file must not be mapped (in any user address space).
    203  1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    204  1.129       chs 	 * If those conditions are not met then pages must exist and
    205  1.129       chs 	 * be locked by the current thread.
    206  1.129       chs 	 */
    207  1.129       chs 
    208   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    209  1.137  dholland 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    210   1.37       chs 		struct vm_page *pg;
    211  1.129       chs 		struct vnode *vp = ITOV(ip);
    212  1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    213  1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    214  1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    215   1.37       chs 
    216  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    217   1.37       chs 		while (off < endoff) {
    218   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    219  1.129       chs 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    220  1.129       chs 				 (size & PAGE_MASK) == 0 &&
    221  1.135  dholland 				 ffs_blkoff(fs, size) == 0) ||
    222  1.129       chs 				(pg != NULL && pg->owner == curproc->p_pid &&
    223  1.129       chs 				 pg->lowner == curlwp->l_lid));
    224   1.37       chs 			off += PAGE_SIZE;
    225   1.37       chs 		}
    226  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    227   1.37       chs 	}
    228   1.37       chs #endif
    229   1.37       chs 
    230    1.1   mycroft 	*bnp = 0;
    231    1.1   mycroft #ifdef DIAGNOSTIC
    232  1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
    233  1.120  christos 		printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
    234  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, size,
    235  1.120  christos 		    fs->fs_fsmnt);
    236    1.1   mycroft 		panic("ffs_alloc: bad size");
    237    1.1   mycroft 	}
    238    1.1   mycroft 	if (cred == NOCRED)
    239   1.56    provos 		panic("ffs_alloc: missing credential");
    240    1.1   mycroft #endif /* DIAGNOSTIC */
    241    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    242    1.1   mycroft 		goto nospace;
    243   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    244  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    245  1.124      elad 	    NULL, NULL) != 0)
    246    1.1   mycroft 		goto nospace;
    247  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    248  1.101        ad 	mutex_exit(&ump->um_lock);
    249   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    250    1.1   mycroft 		return (error);
    251  1.101        ad 	mutex_enter(&ump->um_lock);
    252    1.1   mycroft #endif
    253  1.111    simonb 
    254    1.1   mycroft 	if (bpref >= fs->fs_size)
    255    1.1   mycroft 		bpref = 0;
    256    1.1   mycroft 	if (bpref == 0)
    257    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    258    1.1   mycroft 	else
    259    1.1   mycroft 		cg = dtog(fs, bpref);
    260  1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    261    1.1   mycroft 	if (bno > 0) {
    262   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    263    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    264    1.1   mycroft 		*bnp = bno;
    265    1.1   mycroft 		return (0);
    266    1.1   mycroft 	}
    267  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    268    1.1   mycroft 	/*
    269    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    270    1.1   mycroft 	 */
    271   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    272    1.1   mycroft #endif
    273  1.111    simonb 	if (flags & B_CONTIG) {
    274  1.111    simonb 		/*
    275  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    276  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    277  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    278  1.111    simonb 		 * already unlocked, so we can't release it again
    279  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    280  1.111    simonb 		 *
    281  1.111    simonb 		 *
    282  1.111    simonb 		 * Fail silently - it's up to our caller to report
    283  1.111    simonb 		 * errors.
    284  1.111    simonb 		 */
    285  1.111    simonb 		return (ENOSPC);
    286  1.111    simonb 	}
    287    1.1   mycroft nospace:
    288  1.101        ad 	mutex_exit(&ump->um_lock);
    289  1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    290    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    291    1.1   mycroft 	return (ENOSPC);
    292    1.1   mycroft }
    293    1.1   mycroft 
    294    1.1   mycroft /*
    295    1.1   mycroft  * Reallocate a fragment to a bigger size
    296    1.1   mycroft  *
    297    1.1   mycroft  * The number and size of the old block is given, and a preference
    298    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    299    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    300    1.1   mycroft  * invoked to get an appropriate block.
    301  1.106     pooka  *
    302  1.106     pooka  * => called with um_lock held
    303  1.106     pooka  * => return with um_lock released
    304    1.1   mycroft  */
    305    1.9  christos int
    306   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    307   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    308    1.1   mycroft {
    309  1.101        ad 	struct ufsmount *ump;
    310   1.62      fvdl 	struct fs *fs;
    311    1.1   mycroft 	struct buf *bp;
    312    1.1   mycroft 	int cg, request, error;
    313   1.58      fvdl 	daddr_t bprev, bno;
    314   1.25   thorpej 
    315   1.62      fvdl 	fs = ip->i_fs;
    316  1.101        ad 	ump = ip->i_ump;
    317  1.101        ad 
    318  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    319  1.101        ad 
    320   1.37       chs #ifdef UVM_PAGE_TRKOWN
    321  1.129       chs 
    322  1.129       chs 	/*
    323  1.129       chs 	 * Sanity-check that allocations within the file size
    324  1.129       chs 	 * do not allow other threads to read the stale contents
    325  1.129       chs 	 * of newly allocated blocks.
    326  1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    327  1.129       chs 	 * for such allocations, because only the last block of a file
    328  1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    329  1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    330  1.129       chs 	 * which always creates pages to cover blocks it allocates.
    331  1.129       chs 	 */
    332  1.129       chs 
    333   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    334   1.37       chs 		struct vm_page *pg;
    335   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    336  1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    337  1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    338   1.37       chs 
    339  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    340   1.37       chs 		while (off < endoff) {
    341   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    342  1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    343  1.129       chs 				pg->lowner == curlwp->l_lid);
    344   1.37       chs 			off += PAGE_SIZE;
    345   1.37       chs 		}
    346  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    347   1.37       chs 	}
    348   1.37       chs #endif
    349   1.37       chs 
    350    1.1   mycroft #ifdef DIAGNOSTIC
    351  1.134  dholland 	if ((u_int)osize > fs->fs_bsize || ffs_fragoff(fs, osize) != 0 ||
    352  1.134  dholland 	    (u_int)nsize > fs->fs_bsize || ffs_fragoff(fs, nsize) != 0) {
    353   1.13  christos 		printf(
    354  1.120  christos 		    "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    355  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    356  1.120  christos 		    fs->fs_fsmnt);
    357    1.1   mycroft 		panic("ffs_realloccg: bad size");
    358    1.1   mycroft 	}
    359    1.1   mycroft 	if (cred == NOCRED)
    360   1.56    provos 		panic("ffs_realloccg: missing credential");
    361    1.1   mycroft #endif /* DIAGNOSTIC */
    362   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    363  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    364  1.124      elad 	    NULL, NULL) != 0) {
    365  1.101        ad 		mutex_exit(&ump->um_lock);
    366    1.1   mycroft 		goto nospace;
    367  1.101        ad 	}
    368   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    369   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    370   1.60      fvdl 	else
    371   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    372   1.60      fvdl 
    373   1.60      fvdl 	if (bprev == 0) {
    374  1.120  christos 		printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
    375  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    376  1.120  christos 		    fs->fs_fsmnt);
    377    1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    378    1.1   mycroft 	}
    379  1.101        ad 	mutex_exit(&ump->um_lock);
    380  1.101        ad 
    381    1.1   mycroft 	/*
    382    1.1   mycroft 	 * Allocate the extra space in the buffer.
    383    1.1   mycroft 	 */
    384   1.37       chs 	if (bpp != NULL &&
    385  1.149      maxv 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    386    1.1   mycroft 		return (error);
    387    1.1   mycroft 	}
    388  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    389   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    390   1.44       chs 		if (bpp != NULL) {
    391  1.101        ad 			brelse(bp, 0);
    392   1.44       chs 		}
    393    1.1   mycroft 		return (error);
    394    1.1   mycroft 	}
    395    1.1   mycroft #endif
    396    1.1   mycroft 	/*
    397    1.1   mycroft 	 * Check for extension in the existing location.
    398    1.1   mycroft 	 */
    399    1.1   mycroft 	cg = dtog(fs, bprev);
    400  1.101        ad 	mutex_enter(&ump->um_lock);
    401   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    402   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    403    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    404   1.37       chs 
    405   1.37       chs 		if (bpp != NULL) {
    406  1.136  dholland 			if (bp->b_blkno != FFS_FSBTODB(fs, bno))
    407   1.37       chs 				panic("bad blockno");
    408   1.72        pk 			allocbuf(bp, nsize, 1);
    409   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    410  1.105        ad 			mutex_enter(bp->b_objlock);
    411  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    412  1.105        ad 			bp->b_oflags |= BO_DONE;
    413  1.105        ad 			mutex_exit(bp->b_objlock);
    414   1.37       chs 			*bpp = bp;
    415   1.37       chs 		}
    416   1.37       chs 		if (blknop != NULL) {
    417   1.37       chs 			*blknop = bno;
    418   1.37       chs 		}
    419    1.1   mycroft 		return (0);
    420    1.1   mycroft 	}
    421    1.1   mycroft 	/*
    422    1.1   mycroft 	 * Allocate a new disk location.
    423    1.1   mycroft 	 */
    424    1.1   mycroft 	if (bpref >= fs->fs_size)
    425    1.1   mycroft 		bpref = 0;
    426    1.1   mycroft 	switch ((int)fs->fs_optim) {
    427    1.1   mycroft 	case FS_OPTSPACE:
    428    1.1   mycroft 		/*
    429   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    430   1.81     perry 		 * best use of space, we will waste time relocating it if
    431    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    432    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    433    1.1   mycroft 		 * to begin optimizing for time.
    434    1.1   mycroft 		 */
    435    1.1   mycroft 		request = nsize;
    436    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    437    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    438    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    439    1.1   mycroft 			break;
    440   1.34  jdolecek 
    441   1.34  jdolecek 		if (ffs_log_changeopt) {
    442   1.34  jdolecek 			log(LOG_NOTICE,
    443   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    444   1.34  jdolecek 				fs->fs_fsmnt);
    445   1.34  jdolecek 		}
    446   1.34  jdolecek 
    447    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    448    1.1   mycroft 		break;
    449    1.1   mycroft 	case FS_OPTTIME:
    450    1.1   mycroft 		/*
    451    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    452    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    453    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    454    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    455    1.1   mycroft 		 * above will be able to grow it in place without further
    456    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    457    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    458    1.1   mycroft 		 * optimizing for space.
    459    1.1   mycroft 		 */
    460    1.1   mycroft 		request = fs->fs_bsize;
    461    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    462    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    463    1.1   mycroft 			break;
    464   1.34  jdolecek 
    465   1.34  jdolecek 		if (ffs_log_changeopt) {
    466   1.34  jdolecek 			log(LOG_NOTICE,
    467   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    468   1.34  jdolecek 				fs->fs_fsmnt);
    469   1.34  jdolecek 		}
    470   1.34  jdolecek 
    471    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    472    1.1   mycroft 		break;
    473    1.1   mycroft 	default:
    474  1.120  christos 		printf("dev = 0x%llx, optim = %d, fs = %s\n",
    475  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    476    1.1   mycroft 		panic("ffs_realloccg: bad optim");
    477    1.1   mycroft 		/* NOTREACHED */
    478    1.1   mycroft 	}
    479  1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    480    1.1   mycroft 	if (bno > 0) {
    481  1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    482  1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    483  1.122        ad 			UFS_WAPBL_REGISTER_DEALLOCATION(
    484  1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    485  1.122        ad 			    osize);
    486  1.122        ad 		} else {
    487  1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    488  1.122        ad 			    ip->i_number);
    489  1.111    simonb 		}
    490   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    491    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    492   1.37       chs 		if (bpp != NULL) {
    493  1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    494   1.72        pk 			allocbuf(bp, nsize, 1);
    495   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    496  1.105        ad 			mutex_enter(bp->b_objlock);
    497  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    498  1.105        ad 			bp->b_oflags |= BO_DONE;
    499  1.105        ad 			mutex_exit(bp->b_objlock);
    500   1.37       chs 			*bpp = bp;
    501   1.37       chs 		}
    502   1.37       chs 		if (blknop != NULL) {
    503   1.37       chs 			*blknop = bno;
    504   1.37       chs 		}
    505    1.1   mycroft 		return (0);
    506    1.1   mycroft 	}
    507  1.101        ad 	mutex_exit(&ump->um_lock);
    508  1.101        ad 
    509  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    510    1.1   mycroft 	/*
    511    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    512    1.1   mycroft 	 */
    513   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    514    1.1   mycroft #endif
    515   1.37       chs 	if (bpp != NULL) {
    516  1.101        ad 		brelse(bp, 0);
    517   1.37       chs 	}
    518   1.37       chs 
    519    1.1   mycroft nospace:
    520    1.1   mycroft 	/*
    521    1.1   mycroft 	 * no space available
    522    1.1   mycroft 	 */
    523  1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    524    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    525    1.1   mycroft 	return (ENOSPC);
    526    1.1   mycroft }
    527    1.1   mycroft 
    528    1.1   mycroft /*
    529    1.1   mycroft  * Allocate an inode in the file system.
    530   1.81     perry  *
    531    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    532    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    533    1.1   mycroft  *   1) allocate the preferred inode.
    534    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    535    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    536    1.1   mycroft  *      available inode is located.
    537   1.47       wiz  * If no inode preference is given the following hierarchy is used
    538    1.1   mycroft  * to allocate an inode:
    539    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    540    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    541    1.1   mycroft  *      available inode is located.
    542  1.106     pooka  *
    543  1.106     pooka  * => um_lock not held upon entry or return
    544    1.1   mycroft  */
    545    1.9  christos int
    546  1.148   hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    547    1.9  christos {
    548  1.101        ad 	struct ufsmount *ump;
    549   1.33  augustss 	struct inode *pip;
    550   1.33  augustss 	struct fs *fs;
    551    1.1   mycroft 	ino_t ino, ipref;
    552    1.1   mycroft 	int cg, error;
    553   1.81     perry 
    554  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    555  1.111    simonb 
    556    1.1   mycroft 	pip = VTOI(pvp);
    557    1.1   mycroft 	fs = pip->i_fs;
    558  1.101        ad 	ump = pip->i_ump;
    559  1.101        ad 
    560  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    561  1.111    simonb 	if (error) {
    562  1.111    simonb 		return error;
    563  1.111    simonb 	}
    564  1.101        ad 	mutex_enter(&ump->um_lock);
    565    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    566    1.1   mycroft 		goto noinodes;
    567    1.1   mycroft 
    568    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    569   1.50     lukem 		ipref = ffs_dirpref(pip);
    570   1.50     lukem 	else
    571   1.50     lukem 		ipref = pip->i_number;
    572    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    573    1.1   mycroft 		ipref = 0;
    574    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    575   1.50     lukem 	/*
    576   1.50     lukem 	 * Track number of dirs created one after another
    577   1.50     lukem 	 * in a same cg without intervening by files.
    578   1.50     lukem 	 */
    579   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    580   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    581   1.50     lukem 			fs->fs_contigdirs[cg]++;
    582   1.50     lukem 	} else {
    583   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    584   1.50     lukem 			fs->fs_contigdirs[cg]--;
    585   1.50     lukem 	}
    586  1.152  jdolecek 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    587    1.1   mycroft 	if (ino == 0)
    588    1.1   mycroft 		goto noinodes;
    589  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    590  1.148   hannken 	*inop = ino;
    591  1.148   hannken 	return 0;
    592   1.60      fvdl 
    593    1.1   mycroft noinodes:
    594  1.101        ad 	mutex_exit(&ump->um_lock);
    595  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    596  1.150   mlelstv 	ffs_fserr(fs, cred, "out of inodes");
    597    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    598  1.148   hannken 	return ENOSPC;
    599    1.1   mycroft }
    600    1.1   mycroft 
    601    1.1   mycroft /*
    602   1.50     lukem  * Find a cylinder group in which to place a directory.
    603   1.42  sommerfe  *
    604   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    605   1.50     lukem  * directory inode in the same cylinder group as its parent
    606   1.50     lukem  * directory, but also to reserve space for its files inodes
    607   1.50     lukem  * and data. Restrict the number of directories which may be
    608   1.50     lukem  * allocated one after another in the same cylinder group
    609   1.50     lukem  * without intervening allocation of files.
    610   1.42  sommerfe  *
    611   1.50     lukem  * If we allocate a first level directory then force allocation
    612   1.50     lukem  * in another cylinder group.
    613    1.1   mycroft  */
    614    1.1   mycroft static ino_t
    615   1.85   thorpej ffs_dirpref(struct inode *pip)
    616    1.1   mycroft {
    617   1.50     lukem 	register struct fs *fs;
    618   1.74     soren 	int cg, prefcg;
    619   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    620   1.89       dsl 	int avgifree, avgbfree, avgndir;
    621   1.50     lukem 	int minifree, minbfree, maxndir;
    622   1.50     lukem 	int mincg, minndir;
    623   1.50     lukem 	int maxcontigdirs;
    624   1.50     lukem 
    625  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    626  1.101        ad 
    627   1.50     lukem 	fs = pip->i_fs;
    628    1.1   mycroft 
    629    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    630   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    631   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    632   1.50     lukem 
    633   1.50     lukem 	/*
    634   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    635   1.50     lukem 	 */
    636  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    637  1.147     joerg 		prefcg = cprng_fast32() % fs->fs_ncg;
    638   1.50     lukem 		mincg = prefcg;
    639   1.50     lukem 		minndir = fs->fs_ipg;
    640   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    641   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    642   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    643   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    644   1.42  sommerfe 				mincg = cg;
    645   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    646   1.42  sommerfe 			}
    647   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    648   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    649   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    650   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    651   1.50     lukem 				mincg = cg;
    652   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    653   1.42  sommerfe 			}
    654   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    655   1.42  sommerfe 	}
    656   1.50     lukem 
    657   1.50     lukem 	/*
    658   1.50     lukem 	 * Count various limits which used for
    659   1.50     lukem 	 * optimal allocation of a directory inode.
    660  1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    661  1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    662  1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    663   1.50     lukem 	 */
    664   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    665  1.144       bad 	minifree = avgifree - avgifree / 4;
    666  1.144       bad 	if (minifree < 1)
    667  1.144       bad 		minifree = 1;
    668  1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    669  1.144       bad 	if (minbfree < 1)
    670  1.144       bad 		minbfree = 1;
    671   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    672   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    673   1.89       dsl 	if (avgndir != 0) {
    674   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    675   1.89       dsl 		if (dirsize < curdsz)
    676   1.89       dsl 			dirsize = curdsz;
    677   1.89       dsl 	}
    678   1.89       dsl 	if (cgsize < dirsize * 255)
    679  1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    680   1.89       dsl 	else
    681   1.89       dsl 		maxcontigdirs = 255;
    682   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    683   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    684   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    685   1.50     lukem 	if (maxcontigdirs == 0)
    686   1.50     lukem 		maxcontigdirs = 1;
    687   1.50     lukem 
    688   1.50     lukem 	/*
    689   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    690   1.50     lukem 	 * regular files, but only if we have no deficit in
    691   1.50     lukem 	 * inodes or space.
    692   1.50     lukem 	 */
    693   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    694   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    695   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    696   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    697   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    698   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    699   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    700   1.50     lukem 		}
    701   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    702   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    703   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    704   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    705   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    706   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    707   1.50     lukem 		}
    708   1.50     lukem 	/*
    709   1.50     lukem 	 * This is a backstop when we are deficient in space.
    710   1.50     lukem 	 */
    711   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    712   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    713   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    714   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    715   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    716   1.50     lukem 			break;
    717   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    718    1.1   mycroft }
    719    1.1   mycroft 
    720    1.1   mycroft /*
    721    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    722    1.1   mycroft  * logically divided into sections. The first section is composed of the
    723    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    724   1.81     perry  *
    725    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    726    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    727    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    728    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    729    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    730    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    731    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    732    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    733    1.1   mycroft  * continues until a cylinder group with greater than the average number
    734    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    735    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    736    1.1   mycroft  * here a best guess is made based upon the logical block number being
    737    1.1   mycroft  * allocated.
    738   1.81     perry  *
    739    1.1   mycroft  * If a section is already partially allocated, the policy is to
    740    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    741   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    742   1.60      fvdl  * contigously if possible.
    743  1.106     pooka  *
    744  1.106     pooka  * => um_lock held on entry and exit
    745    1.1   mycroft  */
    746   1.58      fvdl daddr_t
    747  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    748   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    749    1.1   mycroft {
    750   1.33  augustss 	struct fs *fs;
    751   1.33  augustss 	int cg;
    752    1.1   mycroft 	int avgbfree, startcg;
    753    1.1   mycroft 
    754  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    755  1.101        ad 
    756    1.1   mycroft 	fs = ip->i_fs;
    757  1.111    simonb 
    758  1.111    simonb 	/*
    759  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    760  1.111    simonb 	 * in the inode extentions to return the desired block.
    761  1.111    simonb 	 *
    762  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    763  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    764  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    765  1.111    simonb 	 * block.  For data, return the address of the actual block
    766  1.111    simonb 	 * relative to the address of the first data block.
    767  1.111    simonb 	 */
    768  1.111    simonb 	if (flags & B_CONTIG) {
    769  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    770  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    771  1.111    simonb 		if (flags & B_METAONLY)
    772  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    773  1.111    simonb 		else
    774  1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    775  1.111    simonb 	}
    776  1.111    simonb 
    777    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    778  1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    779    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    780  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    781    1.1   mycroft 		}
    782    1.1   mycroft 		/*
    783    1.1   mycroft 		 * Find a cylinder with greater than average number of
    784    1.1   mycroft 		 * unused data blocks.
    785    1.1   mycroft 		 */
    786    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    787    1.1   mycroft 			startcg =
    788    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    789    1.1   mycroft 		else
    790   1.19    bouyer 			startcg = dtog(fs,
    791   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    792    1.1   mycroft 		startcg %= fs->fs_ncg;
    793    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    794    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    795    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    796  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    797    1.1   mycroft 			}
    798   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    799    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    800  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    801    1.1   mycroft 			}
    802   1.35   thorpej 		return (0);
    803    1.1   mycroft 	}
    804    1.1   mycroft 	/*
    805   1.60      fvdl 	 * We just always try to lay things out contiguously.
    806   1.60      fvdl 	 */
    807   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    808   1.60      fvdl }
    809   1.60      fvdl 
    810   1.60      fvdl daddr_t
    811  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    812  1.111    simonb     int64_t *bap)
    813   1.60      fvdl {
    814   1.60      fvdl 	struct fs *fs;
    815   1.60      fvdl 	int cg;
    816   1.60      fvdl 	int avgbfree, startcg;
    817   1.60      fvdl 
    818  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    819  1.101        ad 
    820   1.60      fvdl 	fs = ip->i_fs;
    821  1.111    simonb 
    822  1.111    simonb 	/*
    823  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    824  1.111    simonb 	 * in the inode extentions to return the desired block.
    825  1.111    simonb 	 *
    826  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    827  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    828  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    829  1.111    simonb 	 * block.  For data, return the address of the actual block
    830  1.111    simonb 	 * relative to the address of the first data block.
    831  1.111    simonb 	 */
    832  1.111    simonb 	if (flags & B_CONTIG) {
    833  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    834  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    835  1.111    simonb 		if (flags & B_METAONLY)
    836  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    837  1.111    simonb 		else
    838  1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    839  1.111    simonb 	}
    840  1.111    simonb 
    841   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    842  1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    843   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    844  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    845   1.60      fvdl 		}
    846    1.1   mycroft 		/*
    847   1.60      fvdl 		 * Find a cylinder with greater than average number of
    848   1.60      fvdl 		 * unused data blocks.
    849    1.1   mycroft 		 */
    850   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    851   1.60      fvdl 			startcg =
    852   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    853   1.60      fvdl 		else
    854   1.60      fvdl 			startcg = dtog(fs,
    855   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    856   1.60      fvdl 		startcg %= fs->fs_ncg;
    857   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    858   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    859   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    860  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    861   1.60      fvdl 			}
    862   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    863   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    864  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    865   1.60      fvdl 			}
    866   1.60      fvdl 		return (0);
    867   1.60      fvdl 	}
    868   1.60      fvdl 	/*
    869   1.60      fvdl 	 * We just always try to lay things out contiguously.
    870   1.60      fvdl 	 */
    871   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    872    1.1   mycroft }
    873    1.1   mycroft 
    874   1.60      fvdl 
    875    1.1   mycroft /*
    876    1.1   mycroft  * Implement the cylinder overflow algorithm.
    877    1.1   mycroft  *
    878    1.1   mycroft  * The policy implemented by this algorithm is:
    879    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    880    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    881    1.1   mycroft  *   3) brute force search for a free block.
    882  1.106     pooka  *
    883  1.106     pooka  * => called with um_lock held
    884  1.106     pooka  * => returns with um_lock released on success, held on failure
    885  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    886    1.1   mycroft  */
    887    1.1   mycroft /*VARARGS5*/
    888   1.58      fvdl static daddr_t
    889   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    890   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    891  1.152  jdolecek     int realsize,
    892  1.152  jdolecek     int flags,
    893  1.152  jdolecek     daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
    894    1.1   mycroft {
    895   1.33  augustss 	struct fs *fs;
    896   1.58      fvdl 	daddr_t result;
    897    1.1   mycroft 	int i, icg = cg;
    898    1.1   mycroft 
    899    1.1   mycroft 	fs = ip->i_fs;
    900    1.1   mycroft 	/*
    901    1.1   mycroft 	 * 1: preferred cylinder group
    902    1.1   mycroft 	 */
    903  1.152  jdolecek 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    904    1.1   mycroft 	if (result)
    905    1.1   mycroft 		return (result);
    906  1.111    simonb 
    907  1.111    simonb 	if (flags & B_CONTIG)
    908  1.111    simonb 		return (result);
    909    1.1   mycroft 	/*
    910    1.1   mycroft 	 * 2: quadratic rehash
    911    1.1   mycroft 	 */
    912    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    913    1.1   mycroft 		cg += i;
    914    1.1   mycroft 		if (cg >= fs->fs_ncg)
    915    1.1   mycroft 			cg -= fs->fs_ncg;
    916  1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    917    1.1   mycroft 		if (result)
    918    1.1   mycroft 			return (result);
    919    1.1   mycroft 	}
    920    1.1   mycroft 	/*
    921    1.1   mycroft 	 * 3: brute force search
    922    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    923    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    924    1.1   mycroft 	 */
    925    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    926    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    927  1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    928    1.1   mycroft 		if (result)
    929    1.1   mycroft 			return (result);
    930    1.1   mycroft 		cg++;
    931    1.1   mycroft 		if (cg == fs->fs_ncg)
    932    1.1   mycroft 			cg = 0;
    933    1.1   mycroft 	}
    934   1.35   thorpej 	return (0);
    935    1.1   mycroft }
    936    1.1   mycroft 
    937    1.1   mycroft /*
    938    1.1   mycroft  * Determine whether a fragment can be extended.
    939    1.1   mycroft  *
    940   1.81     perry  * Check to see if the necessary fragments are available, and
    941    1.1   mycroft  * if they are, allocate them.
    942  1.106     pooka  *
    943  1.106     pooka  * => called with um_lock held
    944  1.106     pooka  * => returns with um_lock released on success, held on failure
    945    1.1   mycroft  */
    946   1.58      fvdl static daddr_t
    947   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    948    1.1   mycroft {
    949  1.101        ad 	struct ufsmount *ump;
    950   1.33  augustss 	struct fs *fs;
    951   1.33  augustss 	struct cg *cgp;
    952    1.1   mycroft 	struct buf *bp;
    953   1.58      fvdl 	daddr_t bno;
    954    1.1   mycroft 	int frags, bbase;
    955    1.1   mycroft 	int i, error;
    956   1.62      fvdl 	u_int8_t *blksfree;
    957    1.1   mycroft 
    958    1.1   mycroft 	fs = ip->i_fs;
    959  1.101        ad 	ump = ip->i_ump;
    960  1.101        ad 
    961  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    962  1.101        ad 
    963  1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    964   1.35   thorpej 		return (0);
    965  1.137  dholland 	frags = ffs_numfrags(fs, nsize);
    966  1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
    967  1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    968    1.1   mycroft 		/* cannot extend across a block boundary */
    969   1.35   thorpej 		return (0);
    970    1.1   mycroft 	}
    971  1.101        ad 	mutex_exit(&ump->um_lock);
    972  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    973  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    974  1.101        ad 	if (error)
    975  1.101        ad 		goto fail;
    976    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    977  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    978  1.101        ad 		goto fail;
    979   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    980   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    981   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
    982   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
    983    1.1   mycroft 	bno = dtogd(fs, bprev);
    984   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
    985  1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
    986  1.101        ad 		if (isclr(blksfree, bno + i))
    987  1.101        ad 			goto fail;
    988    1.1   mycroft 	/*
    989    1.1   mycroft 	 * the current fragment can be extended
    990    1.1   mycroft 	 * deduct the count on fragment being extended into
    991    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    992    1.1   mycroft 	 * allocate the extended piece
    993    1.1   mycroft 	 */
    994    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    995   1.62      fvdl 		if (isclr(blksfree, bno + i))
    996    1.1   mycroft 			break;
    997  1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
    998    1.1   mycroft 	if (i != frags)
    999   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1000  1.101        ad 	mutex_enter(&ump->um_lock);
   1001  1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1002   1.62      fvdl 		clrbit(blksfree, bno + i);
   1003   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1004    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1005    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1006    1.1   mycroft 	}
   1007    1.1   mycroft 	fs->fs_fmod = 1;
   1008  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1009  1.101        ad 	mutex_exit(&ump->um_lock);
   1010    1.1   mycroft 	bdwrite(bp);
   1011    1.1   mycroft 	return (bprev);
   1012  1.101        ad 
   1013  1.101        ad  fail:
   1014  1.132   hannken  	if (bp != NULL)
   1015  1.132   hannken 		brelse(bp, 0);
   1016  1.101        ad  	mutex_enter(&ump->um_lock);
   1017  1.101        ad  	return (0);
   1018    1.1   mycroft }
   1019    1.1   mycroft 
   1020    1.1   mycroft /*
   1021    1.1   mycroft  * Determine whether a block can be allocated.
   1022    1.1   mycroft  *
   1023    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1024    1.1   mycroft  * and if it is, allocate it.
   1025    1.1   mycroft  */
   1026   1.58      fvdl static daddr_t
   1027  1.152  jdolecek ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
   1028  1.152  jdolecek     int flags)
   1029    1.1   mycroft {
   1030  1.101        ad 	struct ufsmount *ump;
   1031   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1032   1.30      fvdl 	struct cg *cgp;
   1033    1.1   mycroft 	struct buf *bp;
   1034   1.60      fvdl 	int32_t bno;
   1035   1.60      fvdl 	daddr_t blkno;
   1036   1.30      fvdl 	int error, frags, allocsiz, i;
   1037   1.62      fvdl 	u_int8_t *blksfree;
   1038   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1039    1.1   mycroft 
   1040  1.101        ad 	ump = ip->i_ump;
   1041  1.101        ad 
   1042  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1043  1.101        ad 
   1044    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1045   1.35   thorpej 		return (0);
   1046  1.101        ad 	mutex_exit(&ump->um_lock);
   1047  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1048  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1049  1.101        ad 	if (error)
   1050  1.101        ad 		goto fail;
   1051    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1052   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1053  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1054  1.101        ad 		goto fail;
   1055   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1056   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1057   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1058   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1059    1.1   mycroft 	if (size == fs->fs_bsize) {
   1060  1.101        ad 		mutex_enter(&ump->um_lock);
   1061  1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1062   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1063  1.101        ad 		mutex_exit(&ump->um_lock);
   1064  1.152  jdolecek 
   1065  1.152  jdolecek 		/*
   1066  1.152  jdolecek 		 * If actually needed size is lower, free the extra blocks now.
   1067  1.152  jdolecek 		 * This is safe to call here, there is no outside reference
   1068  1.152  jdolecek 		 * to this block yet. It is not necessary to keep um_lock
   1069  1.152  jdolecek 		 * locked.
   1070  1.152  jdolecek 		 */
   1071  1.152  jdolecek 		if (realsize != 0 && realsize < size) {
   1072  1.152  jdolecek 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1073  1.152  jdolecek 			    ip->i_devvp->v_rdev,
   1074  1.152  jdolecek 			    bp, blkno + ffs_numfrags(fs, realsize),
   1075  1.152  jdolecek 			    (long)(size - realsize), false);
   1076  1.152  jdolecek 		}
   1077  1.152  jdolecek 
   1078    1.1   mycroft 		bdwrite(bp);
   1079   1.60      fvdl 		return (blkno);
   1080    1.1   mycroft 	}
   1081    1.1   mycroft 	/*
   1082    1.1   mycroft 	 * check to see if any fragments are already available
   1083    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1084    1.1   mycroft 	 * it down to a smaller size if necessary
   1085    1.1   mycroft 	 */
   1086   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1087  1.137  dholland 	frags = ffs_numfrags(fs, size);
   1088    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1089    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1090    1.1   mycroft 			break;
   1091    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1092    1.1   mycroft 		/*
   1093   1.81     perry 		 * no fragments were available, so a block will be
   1094    1.1   mycroft 		 * allocated, and hacked up
   1095    1.1   mycroft 		 */
   1096  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1097  1.101        ad 			goto fail;
   1098  1.101        ad 		mutex_enter(&ump->um_lock);
   1099  1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1100   1.60      fvdl 		bno = dtogd(fs, blkno);
   1101    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1102   1.62      fvdl 			setbit(blksfree, bno + i);
   1103    1.1   mycroft 		i = fs->fs_frag - frags;
   1104   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1105    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1106   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1107    1.1   mycroft 		fs->fs_fmod = 1;
   1108   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1109   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1110  1.101        ad 		mutex_exit(&ump->um_lock);
   1111    1.1   mycroft 		bdwrite(bp);
   1112   1.60      fvdl 		return (blkno);
   1113    1.1   mycroft 	}
   1114   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1115   1.30      fvdl #if 0
   1116   1.30      fvdl 	/*
   1117   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1118   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1119   1.30      fvdl 	 */
   1120  1.101        ad 	if (bno < 0)
   1121  1.101        ad 		goto fail;
   1122   1.30      fvdl #endif
   1123    1.1   mycroft 	for (i = 0; i < frags; i++)
   1124   1.62      fvdl 		clrbit(blksfree, bno + i);
   1125  1.101        ad 	mutex_enter(&ump->um_lock);
   1126   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1127    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1128    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1129    1.1   mycroft 	fs->fs_fmod = 1;
   1130   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1131    1.1   mycroft 	if (frags != allocsiz)
   1132   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1133  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1134  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1135  1.101        ad 	mutex_exit(&ump->um_lock);
   1136    1.1   mycroft 	bdwrite(bp);
   1137   1.30      fvdl 	return blkno;
   1138  1.101        ad 
   1139  1.101        ad  fail:
   1140  1.132   hannken  	if (bp != NULL)
   1141  1.132   hannken 		brelse(bp, 0);
   1142  1.101        ad  	mutex_enter(&ump->um_lock);
   1143  1.101        ad  	return (0);
   1144    1.1   mycroft }
   1145    1.1   mycroft 
   1146    1.1   mycroft /*
   1147    1.1   mycroft  * Allocate a block in a cylinder group.
   1148    1.1   mycroft  *
   1149    1.1   mycroft  * This algorithm implements the following policy:
   1150    1.1   mycroft  *   1) allocate the requested block.
   1151    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1152    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1153    1.1   mycroft  *      specified cylinder group.
   1154    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1155    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1156    1.1   mycroft  */
   1157   1.58      fvdl static daddr_t
   1158  1.152  jdolecek ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1159  1.152  jdolecek     int flags)
   1160    1.1   mycroft {
   1161   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1162   1.30      fvdl 	struct cg *cgp;
   1163  1.123  sborrill 	int cg;
   1164   1.60      fvdl 	daddr_t blkno;
   1165   1.60      fvdl 	int32_t bno;
   1166   1.60      fvdl 	u_int8_t *blksfree;
   1167   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1168    1.1   mycroft 
   1169  1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1170  1.101        ad 
   1171   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1172   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1173   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1174   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1175   1.60      fvdl 	} else {
   1176  1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1177   1.60      fvdl 		bno = dtogd(fs, bpref);
   1178    1.1   mycroft 		/*
   1179   1.60      fvdl 		 * if the requested block is available, use it
   1180    1.1   mycroft 		 */
   1181  1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1182   1.60      fvdl 			goto gotit;
   1183  1.111    simonb 		/*
   1184  1.111    simonb 		 * if the requested data block isn't available and we are
   1185  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1186  1.111    simonb 		 */
   1187  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1188  1.111    simonb 			return (0);
   1189    1.1   mycroft 	}
   1190  1.111    simonb 
   1191    1.1   mycroft 	/*
   1192   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1193    1.1   mycroft 	 */
   1194   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1195  1.152  jdolecek #if 0
   1196  1.152  jdolecek 	/*
   1197  1.152  jdolecek 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1198  1.152  jdolecek 	 */
   1199    1.1   mycroft 	if (bno < 0)
   1200   1.35   thorpej 		return (0);
   1201  1.152  jdolecek #endif
   1202   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1203    1.1   mycroft gotit:
   1204  1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1205   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1206   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1207   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1208    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1209   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1210   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1211   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1212   1.73       dbj 		int cylno;
   1213   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1214   1.75       dbj 		KASSERT(cylno >= 0);
   1215   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1216   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1217   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1218   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1219   1.73       dbj 		    needswap);
   1220   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1221   1.73       dbj 	}
   1222    1.1   mycroft 	fs->fs_fmod = 1;
   1223  1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1224  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1225   1.30      fvdl 	return (blkno);
   1226    1.1   mycroft }
   1227    1.1   mycroft 
   1228    1.1   mycroft /*
   1229    1.1   mycroft  * Determine whether an inode can be allocated.
   1230    1.1   mycroft  *
   1231    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1232    1.1   mycroft  * allocate it using the following policy:
   1233    1.1   mycroft  *   1) allocate the requested inode.
   1234    1.1   mycroft  *   2) allocate the next available inode after the requested
   1235    1.1   mycroft  *      inode in the specified cylinder group.
   1236    1.1   mycroft  */
   1237   1.58      fvdl static daddr_t
   1238  1.152  jdolecek ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
   1239  1.152  jdolecek     int flags)
   1240    1.1   mycroft {
   1241  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1242   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1243   1.33  augustss 	struct cg *cgp;
   1244   1.60      fvdl 	struct buf *bp, *ibp;
   1245   1.60      fvdl 	u_int8_t *inosused;
   1246    1.1   mycroft 	int error, start, len, loc, map, i;
   1247   1.60      fvdl 	int32_t initediblk;
   1248  1.112   hannken 	daddr_t nalloc;
   1249   1.60      fvdl 	struct ufs2_dinode *dp2;
   1250   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1251    1.1   mycroft 
   1252  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1253  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1254  1.101        ad 
   1255    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1256   1.35   thorpej 		return (0);
   1257  1.101        ad 	mutex_exit(&ump->um_lock);
   1258  1.112   hannken 	ibp = NULL;
   1259  1.112   hannken 	initediblk = -1;
   1260  1.112   hannken retry:
   1261  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1262  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1263  1.101        ad 	if (error)
   1264  1.101        ad 		goto fail;
   1265    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1266  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1267  1.101        ad 		goto fail;
   1268  1.112   hannken 
   1269  1.112   hannken 	if (ibp != NULL &&
   1270  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1271  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1272  1.121        ad 		brelse(ibp, 0);
   1273  1.112   hannken 		ibp = NULL;
   1274  1.112   hannken 	}
   1275  1.112   hannken 	/*
   1276  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1277  1.112   hannken 	 */
   1278  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1279  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1280  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1281  1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1282  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1283  1.112   hannken 			/*
   1284  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1285  1.112   hannken 			 * a deadlock when reading the inode block will
   1286  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1287  1.112   hannken 			 */
   1288  1.112   hannken 			brelse(bp, 0);
   1289  1.112   hannken 			bp = NULL;
   1290  1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1291  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1292  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1293  1.112   hannken 			if (error)
   1294  1.112   hannken 				goto fail;
   1295  1.112   hannken 			goto retry;
   1296  1.112   hannken 		}
   1297  1.112   hannken 	}
   1298  1.112   hannken 
   1299   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1300   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1301   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1302   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1303   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1304    1.1   mycroft 	if (ipref) {
   1305    1.1   mycroft 		ipref %= fs->fs_ipg;
   1306   1.60      fvdl 		if (isclr(inosused, ipref))
   1307    1.1   mycroft 			goto gotit;
   1308    1.1   mycroft 	}
   1309   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1310   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1311   1.19    bouyer 		NBBY);
   1312   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1313    1.1   mycroft 	if (loc == 0) {
   1314    1.1   mycroft 		len = start + 1;
   1315    1.1   mycroft 		start = 0;
   1316   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1317    1.1   mycroft 		if (loc == 0) {
   1318   1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1319   1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1320   1.19    bouyer 				fs->fs_fsmnt);
   1321    1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1322    1.1   mycroft 			/* NOTREACHED */
   1323    1.1   mycroft 		}
   1324    1.1   mycroft 	}
   1325    1.1   mycroft 	i = start + len - loc;
   1326  1.126     rmind 	map = inosused[i] ^ 0xff;
   1327  1.126     rmind 	if (map == 0) {
   1328  1.126     rmind 		printf("fs = %s\n", fs->fs_fsmnt);
   1329  1.126     rmind 		panic("ffs_nodealloccg: block not in map");
   1330    1.1   mycroft 	}
   1331  1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1332  1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1333    1.1   mycroft gotit:
   1334  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1335  1.111    simonb 	    mode);
   1336   1.60      fvdl 	/*
   1337   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1338   1.60      fvdl 	 */
   1339  1.112   hannken 	if (ibp != NULL) {
   1340  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1341  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1342  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1343  1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1344   1.60      fvdl 			/*
   1345   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1346   1.60      fvdl 			 * random, after all.
   1347   1.60      fvdl 			 */
   1348  1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1349   1.60      fvdl 			dp2++;
   1350   1.60      fvdl 		}
   1351  1.134  dholland 		initediblk += FFS_INOPB(fs);
   1352   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1353   1.60      fvdl 	}
   1354   1.60      fvdl 
   1355  1.101        ad 	mutex_enter(&ump->um_lock);
   1356   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1357  1.101        ad 	setbit(inosused, ipref);
   1358  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1359  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1360  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1361  1.101        ad 	fs->fs_fmod = 1;
   1362  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1363  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1364  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1365  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1366  1.101        ad 	}
   1367  1.101        ad 	mutex_exit(&ump->um_lock);
   1368  1.112   hannken 	if (ibp != NULL) {
   1369  1.112   hannken 		bwrite(bp);
   1370  1.104   hannken 		bawrite(ibp);
   1371  1.112   hannken 	} else
   1372  1.112   hannken 		bdwrite(bp);
   1373    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1374  1.101        ad  fail:
   1375  1.112   hannken 	if (bp != NULL)
   1376  1.112   hannken 		brelse(bp, 0);
   1377  1.112   hannken 	if (ibp != NULL)
   1378  1.121        ad 		brelse(ibp, 0);
   1379  1.101        ad 	mutex_enter(&ump->um_lock);
   1380  1.101        ad 	return (0);
   1381    1.1   mycroft }
   1382    1.1   mycroft 
   1383    1.1   mycroft /*
   1384  1.111    simonb  * Allocate a block or fragment.
   1385  1.111    simonb  *
   1386  1.111    simonb  * The specified block or fragment is removed from the
   1387  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1388  1.111    simonb  *
   1389  1.111    simonb  * This implementation should mirror fs_blkfree
   1390  1.111    simonb  *
   1391  1.111    simonb  * => um_lock not held on entry or exit
   1392  1.111    simonb  */
   1393  1.111    simonb int
   1394  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1395  1.111    simonb {
   1396  1.116     joerg 	int error;
   1397  1.111    simonb 
   1398  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1399  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1400  1.116     joerg 	if (error)
   1401  1.116     joerg 		return error;
   1402  1.115     joerg 
   1403  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1404  1.115     joerg }
   1405  1.115     joerg 
   1406  1.115     joerg int
   1407  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1408  1.115     joerg {
   1409  1.115     joerg 	struct fs *fs = ump->um_fs;
   1410  1.115     joerg 	struct cg *cgp;
   1411  1.115     joerg 	struct buf *bp;
   1412  1.115     joerg 	int32_t fragno, cgbno;
   1413  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1414  1.115     joerg 	u_int8_t *blksfree;
   1415  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1416  1.115     joerg 
   1417  1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1418  1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1419  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1420  1.115     joerg 
   1421  1.115     joerg 	cg = dtog(fs, bno);
   1422  1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1423  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1424  1.111    simonb 	if (error) {
   1425  1.111    simonb 		return error;
   1426  1.111    simonb 	}
   1427  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1428  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1429  1.111    simonb 		brelse(bp, 0);
   1430  1.111    simonb 		return EIO;
   1431  1.111    simonb 	}
   1432  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1433  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1434  1.111    simonb 	cgbno = dtogd(fs, bno);
   1435  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1436  1.111    simonb 
   1437  1.111    simonb 	mutex_enter(&ump->um_lock);
   1438  1.111    simonb 	if (size == fs->fs_bsize) {
   1439  1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1440  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1441  1.111    simonb 			mutex_exit(&ump->um_lock);
   1442  1.111    simonb 			brelse(bp, 0);
   1443  1.111    simonb 			return EBUSY;
   1444  1.111    simonb 		}
   1445  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1446  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1447  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1448  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1449  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1450  1.111    simonb 	} else {
   1451  1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1452  1.111    simonb 
   1453  1.137  dholland 		frags = ffs_numfrags(fs, size);
   1454  1.111    simonb 		for (i = 0; i < frags; i++) {
   1455  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1456  1.111    simonb 				mutex_exit(&ump->um_lock);
   1457  1.111    simonb 				brelse(bp, 0);
   1458  1.111    simonb 				return EBUSY;
   1459  1.111    simonb 			}
   1460  1.111    simonb 		}
   1461  1.111    simonb 		/*
   1462  1.111    simonb 		 * if a complete block is being split, account for it
   1463  1.111    simonb 		 */
   1464  1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1465  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1466  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1467  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1468  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1469  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1470  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1471  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1472  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1473  1.111    simonb 		}
   1474  1.111    simonb 		/*
   1475  1.111    simonb 		 * decrement the counts associated with the old frags
   1476  1.111    simonb 		 */
   1477  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1478  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1479  1.111    simonb 		/*
   1480  1.111    simonb 		 * allocate the fragment
   1481  1.111    simonb 		 */
   1482  1.111    simonb 		for (i = 0; i < frags; i++) {
   1483  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1484  1.111    simonb 		}
   1485  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1486  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1487  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1488  1.111    simonb 		/*
   1489  1.111    simonb 		 * add back in counts associated with the new frags
   1490  1.111    simonb 		 */
   1491  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1492  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1493  1.111    simonb 	}
   1494  1.111    simonb 	fs->fs_fmod = 1;
   1495  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1496  1.111    simonb 	mutex_exit(&ump->um_lock);
   1497  1.111    simonb 	bdwrite(bp);
   1498  1.111    simonb 	return 0;
   1499  1.111    simonb }
   1500  1.111    simonb 
   1501  1.111    simonb /*
   1502    1.1   mycroft  * Free a block or fragment.
   1503    1.1   mycroft  *
   1504    1.1   mycroft  * The specified block or fragment is placed back in the
   1505   1.81     perry  * free map. If a fragment is deallocated, a possible
   1506    1.1   mycroft  * block reassembly is checked.
   1507  1.106     pooka  *
   1508  1.106     pooka  * => um_lock not held on entry or exit
   1509    1.1   mycroft  */
   1510  1.131  drochner static void
   1511  1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1512    1.1   mycroft {
   1513   1.33  augustss 	struct cg *cgp;
   1514    1.1   mycroft 	struct buf *bp;
   1515   1.76   hannken 	struct ufsmount *ump;
   1516   1.76   hannken 	daddr_t cgblkno;
   1517  1.116     joerg 	int error, cg;
   1518   1.76   hannken 	dev_t dev;
   1519  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1520  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1521    1.1   mycroft 
   1522  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1523  1.116     joerg 
   1524   1.76   hannken 	cg = dtog(fs, bno);
   1525  1.116     joerg 	dev = devvp->v_rdev;
   1526  1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1527  1.119     joerg 	KASSERT(fs == ump->um_fs);
   1528  1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1529  1.116     joerg 
   1530  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1531  1.149      maxv 	    B_MODIFY, &bp);
   1532  1.116     joerg 	if (error) {
   1533  1.116     joerg 		return;
   1534   1.76   hannken 	}
   1535  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1536  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1537  1.116     joerg 		brelse(bp, 0);
   1538  1.116     joerg 		return;
   1539    1.1   mycroft 	}
   1540   1.76   hannken 
   1541  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1542  1.119     joerg 
   1543  1.119     joerg 	bdwrite(bp);
   1544  1.116     joerg }
   1545  1.116     joerg 
   1546  1.131  drochner struct discardopdata {
   1547  1.131  drochner 	struct work wk; /* must be first */
   1548  1.131  drochner 	struct vnode *devvp;
   1549  1.131  drochner 	daddr_t bno;
   1550  1.131  drochner 	long size;
   1551  1.131  drochner };
   1552  1.131  drochner 
   1553  1.131  drochner struct discarddata {
   1554  1.131  drochner 	struct fs *fs;
   1555  1.131  drochner 	struct discardopdata *entry;
   1556  1.131  drochner 	long maxsize;
   1557  1.131  drochner 	kmutex_t entrylk;
   1558  1.131  drochner 	struct workqueue *wq;
   1559  1.131  drochner 	int wqcnt, wqdraining;
   1560  1.131  drochner 	kmutex_t wqlk;
   1561  1.131  drochner 	kcondvar_t wqcv;
   1562  1.131  drochner 	/* timer for flush? */
   1563  1.131  drochner };
   1564  1.131  drochner 
   1565  1.131  drochner static void
   1566  1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1567  1.131  drochner {
   1568  1.151  riastrad 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1569  1.131  drochner 	long todo;
   1570  1.151  riastrad 	int error;
   1571  1.131  drochner 
   1572  1.131  drochner 	while (td->size) {
   1573  1.131  drochner 		todo = min(td->size,
   1574  1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1575  1.151  riastrad 		error = UFS_WAPBL_BEGIN(mp);
   1576  1.151  riastrad 		if (error) {
   1577  1.151  riastrad 			printf("ffs: failed to begin wapbl transaction"
   1578  1.151  riastrad 			    " for discard: %d\n", error);
   1579  1.151  riastrad 			break;
   1580  1.151  riastrad 		}
   1581  1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1582  1.151  riastrad 		UFS_WAPBL_END(mp);
   1583  1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1584  1.131  drochner 		td->size -= todo;
   1585  1.131  drochner 	}
   1586  1.131  drochner }
   1587  1.131  drochner 
   1588  1.131  drochner static void
   1589  1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1590  1.131  drochner {
   1591  1.131  drochner 	struct discardopdata *td = (void *)wk;
   1592  1.131  drochner 	struct discarddata *ts = arg;
   1593  1.131  drochner 	struct fs *fs = ts->fs;
   1594  1.146  dholland 	off_t start, len;
   1595  1.139    martin #ifdef TRIMDEBUG
   1596  1.131  drochner 	int error;
   1597  1.139    martin #endif
   1598  1.131  drochner 
   1599  1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1600  1.146  dholland #ifndef FFS_FSBTOBYTES
   1601  1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1602  1.146  dholland #endif
   1603  1.146  dholland 
   1604  1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1605  1.146  dholland 	len = td->size;
   1606  1.139    martin #ifdef TRIMDEBUG
   1607  1.139    martin 	error =
   1608  1.139    martin #endif
   1609  1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1610  1.131  drochner #ifdef TRIMDEBUG
   1611  1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1612  1.131  drochner #endif
   1613  1.131  drochner 
   1614  1.131  drochner 	ffs_blkfree_td(fs, td);
   1615  1.131  drochner 	kmem_free(td, sizeof(*td));
   1616  1.131  drochner 	mutex_enter(&ts->wqlk);
   1617  1.131  drochner 	ts->wqcnt--;
   1618  1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1619  1.131  drochner 		cv_signal(&ts->wqcv);
   1620  1.131  drochner 	mutex_exit(&ts->wqlk);
   1621  1.131  drochner }
   1622  1.131  drochner 
   1623  1.131  drochner void *
   1624  1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1625  1.131  drochner {
   1626  1.131  drochner 	struct discarddata *ts;
   1627  1.131  drochner 	int error;
   1628  1.131  drochner 
   1629  1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1630  1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1631  1.131  drochner 				 0, 0, 0);
   1632  1.131  drochner 	if (error) {
   1633  1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1634  1.131  drochner 		return NULL;
   1635  1.131  drochner 	}
   1636  1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1637  1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1638  1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1639  1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1640  1.131  drochner 	ts->fs = fs;
   1641  1.131  drochner 	return ts;
   1642  1.131  drochner }
   1643  1.131  drochner 
   1644  1.131  drochner void
   1645  1.131  drochner ffs_discard_finish(void *vts, int flags)
   1646  1.131  drochner {
   1647  1.131  drochner 	struct discarddata *ts = vts;
   1648  1.131  drochner 	struct discardopdata *td = NULL;
   1649  1.131  drochner 	int res = 0;
   1650  1.131  drochner 
   1651  1.131  drochner 	/* wait for workqueue to drain */
   1652  1.131  drochner 	mutex_enter(&ts->wqlk);
   1653  1.131  drochner 	if (ts->wqcnt) {
   1654  1.131  drochner 		ts->wqdraining = 1;
   1655  1.131  drochner 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1656  1.131  drochner 	}
   1657  1.131  drochner 	mutex_exit(&ts->wqlk);
   1658  1.131  drochner 	if (res)
   1659  1.131  drochner 		printf("ffs_discarddata drain timeout\n");
   1660  1.131  drochner 
   1661  1.131  drochner 	mutex_enter(&ts->entrylk);
   1662  1.131  drochner 	if (ts->entry) {
   1663  1.131  drochner 		td = ts->entry;
   1664  1.131  drochner 		ts->entry = NULL;
   1665  1.131  drochner 	}
   1666  1.131  drochner 	mutex_exit(&ts->entrylk);
   1667  1.131  drochner 	if (td) {
   1668  1.131  drochner 		/* XXX don't tell disk, its optional */
   1669  1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1670  1.131  drochner #ifdef TRIMDEBUG
   1671  1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1672  1.131  drochner #endif
   1673  1.131  drochner 		kmem_free(td, sizeof(*td));
   1674  1.131  drochner 	}
   1675  1.131  drochner 
   1676  1.131  drochner 	cv_destroy(&ts->wqcv);
   1677  1.131  drochner 	mutex_destroy(&ts->entrylk);
   1678  1.131  drochner 	mutex_destroy(&ts->wqlk);
   1679  1.131  drochner 	workqueue_destroy(ts->wq);
   1680  1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1681  1.131  drochner }
   1682  1.131  drochner 
   1683  1.131  drochner void
   1684  1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1685  1.131  drochner     ino_t inum)
   1686  1.131  drochner {
   1687  1.131  drochner 	struct ufsmount *ump;
   1688  1.131  drochner 	int error;
   1689  1.131  drochner 	dev_t dev;
   1690  1.131  drochner 	struct discarddata *ts;
   1691  1.131  drochner 	struct discardopdata *td;
   1692  1.131  drochner 
   1693  1.131  drochner 	dev = devvp->v_rdev;
   1694  1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1695  1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1696  1.131  drochner 		return;
   1697  1.131  drochner 
   1698  1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1699  1.131  drochner 	if (error)
   1700  1.131  drochner 		return;
   1701  1.131  drochner 
   1702  1.131  drochner 	if (!ump->um_discarddata) {
   1703  1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1704  1.131  drochner 		return;
   1705  1.131  drochner 	}
   1706  1.131  drochner 
   1707  1.131  drochner #ifdef TRIMDEBUG
   1708  1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1709  1.131  drochner #endif
   1710  1.131  drochner 	ts = ump->um_discarddata;
   1711  1.131  drochner 	td = NULL;
   1712  1.131  drochner 
   1713  1.131  drochner 	mutex_enter(&ts->entrylk);
   1714  1.131  drochner 	if (ts->entry) {
   1715  1.131  drochner 		td = ts->entry;
   1716  1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1717  1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1718  1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1719  1.131  drochner 			td->bno = bno;
   1720  1.131  drochner 			td->size += size;
   1721  1.131  drochner 			if (td->size < ts->maxsize) {
   1722  1.131  drochner #ifdef TRIMDEBUG
   1723  1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1724  1.131  drochner #endif
   1725  1.131  drochner 				mutex_exit(&ts->entrylk);
   1726  1.131  drochner 				return;
   1727  1.131  drochner 			}
   1728  1.131  drochner 			size = 0; /* mark done */
   1729  1.131  drochner 		}
   1730  1.131  drochner 		ts->entry = NULL;
   1731  1.131  drochner 	}
   1732  1.131  drochner 	mutex_exit(&ts->entrylk);
   1733  1.131  drochner 
   1734  1.131  drochner 	if (td) {
   1735  1.131  drochner #ifdef TRIMDEBUG
   1736  1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1737  1.131  drochner #endif
   1738  1.131  drochner 		mutex_enter(&ts->wqlk);
   1739  1.131  drochner 		ts->wqcnt++;
   1740  1.131  drochner 		mutex_exit(&ts->wqlk);
   1741  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1742  1.131  drochner 	}
   1743  1.131  drochner 	if (!size)
   1744  1.131  drochner 		return;
   1745  1.131  drochner 
   1746  1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1747  1.131  drochner 	td->devvp = devvp;
   1748  1.131  drochner 	td->bno = bno;
   1749  1.131  drochner 	td->size = size;
   1750  1.131  drochner 
   1751  1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1752  1.131  drochner 		mutex_enter(&ts->entrylk);
   1753  1.131  drochner 		if (!ts->entry) { /* possible race? */
   1754  1.131  drochner #ifdef TRIMDEBUG
   1755  1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1756  1.131  drochner #endif
   1757  1.131  drochner 			ts->entry = td;
   1758  1.131  drochner 			td = NULL;
   1759  1.131  drochner 		}
   1760  1.131  drochner 		mutex_exit(&ts->entrylk);
   1761  1.131  drochner 	}
   1762  1.131  drochner 	if (td) {
   1763  1.131  drochner #ifdef TRIMDEBUG
   1764  1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1765  1.131  drochner #endif
   1766  1.131  drochner 		mutex_enter(&ts->wqlk);
   1767  1.131  drochner 		ts->wqcnt++;
   1768  1.131  drochner 		mutex_exit(&ts->wqlk);
   1769  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1770  1.131  drochner 	}
   1771  1.131  drochner }
   1772  1.131  drochner 
   1773  1.116     joerg /*
   1774  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1775  1.116     joerg  *
   1776  1.116     joerg  * The specified block or fragment is placed back in the
   1777  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1778  1.116     joerg  * block reassembly is checked.
   1779  1.116     joerg  *
   1780  1.116     joerg  * => um_lock not held on entry or exit
   1781  1.116     joerg  */
   1782  1.116     joerg void
   1783  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1784  1.116     joerg     ino_t inum)
   1785  1.116     joerg {
   1786  1.116     joerg 	struct cg *cgp;
   1787  1.116     joerg 	struct buf *bp;
   1788  1.116     joerg 	struct ufsmount *ump;
   1789  1.116     joerg 	daddr_t cgblkno;
   1790  1.116     joerg 	int error, cg;
   1791  1.116     joerg 	dev_t dev;
   1792  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1793  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1794  1.116     joerg 
   1795  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1796  1.116     joerg 
   1797  1.116     joerg 	cg = dtog(fs, bno);
   1798  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1799  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1800  1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1801  1.116     joerg 
   1802  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1803  1.116     joerg 	if (error)
   1804    1.1   mycroft 		return;
   1805  1.116     joerg 
   1806  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1807  1.149      maxv 	    B_MODIFY, &bp);
   1808    1.1   mycroft 	if (error) {
   1809    1.1   mycroft 		return;
   1810    1.1   mycroft 	}
   1811    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1812   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1813  1.101        ad 		brelse(bp, 0);
   1814    1.1   mycroft 		return;
   1815    1.1   mycroft 	}
   1816  1.116     joerg 
   1817  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1818  1.119     joerg 
   1819  1.119     joerg 	bdwrite(bp);
   1820  1.116     joerg }
   1821  1.116     joerg 
   1822  1.116     joerg static void
   1823  1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1824  1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1825  1.116     joerg {
   1826  1.116     joerg 	struct cg *cgp;
   1827  1.116     joerg 	int32_t fragno, cgbno;
   1828  1.116     joerg 	int i, cg, blk, frags, bbase;
   1829  1.116     joerg 	u_int8_t *blksfree;
   1830  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1831  1.116     joerg 
   1832  1.116     joerg 	cg = dtog(fs, bno);
   1833  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1834   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1835   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1836   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1837   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1838   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1839   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1840  1.101        ad 	mutex_enter(&ump->um_lock);
   1841    1.1   mycroft 	if (size == fs->fs_bsize) {
   1842  1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1843   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1844  1.113   hannken 			if (devvp_is_snapshot) {
   1845  1.101        ad 				mutex_exit(&ump->um_lock);
   1846   1.76   hannken 				return;
   1847   1.76   hannken 			}
   1848  1.120  christos 			printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
   1849  1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1850    1.1   mycroft 			panic("blkfree: freeing free block");
   1851    1.1   mycroft 		}
   1852   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1853   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1854   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1855    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1856    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1857   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1858   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1859   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1860   1.75       dbj 			KASSERT(i >= 0);
   1861   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1862   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1863   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1864   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1865   1.73       dbj 			    needswap);
   1866   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1867   1.73       dbj 		}
   1868    1.1   mycroft 	} else {
   1869  1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1870    1.1   mycroft 		/*
   1871    1.1   mycroft 		 * decrement the counts associated with the old frags
   1872    1.1   mycroft 		 */
   1873   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1874   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1875    1.1   mycroft 		/*
   1876    1.1   mycroft 		 * deallocate the fragment
   1877    1.1   mycroft 		 */
   1878  1.137  dholland 		frags = ffs_numfrags(fs, size);
   1879    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1880   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1881  1.120  christos 				printf("dev = 0x%llx, block = %" PRId64
   1882   1.59   tsutsui 				       ", fs = %s\n",
   1883  1.120  christos 				    (unsigned long long)dev, bno + i,
   1884  1.120  christos 				    fs->fs_fsmnt);
   1885    1.1   mycroft 				panic("blkfree: freeing free frag");
   1886    1.1   mycroft 			}
   1887   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1888    1.1   mycroft 		}
   1889   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1890    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1891   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1892    1.1   mycroft 		/*
   1893    1.1   mycroft 		 * add back in counts associated with the new frags
   1894    1.1   mycroft 		 */
   1895   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1896   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1897    1.1   mycroft 		/*
   1898    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1899    1.1   mycroft 		 */
   1900  1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1901   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1902   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1903    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1904    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1905   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1906   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1907    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1908    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1909   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1910   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1911   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1912   1.75       dbj 				KASSERT(i >= 0);
   1913   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1914   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1915   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1916   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1917   1.73       dbj 				    bbase)], 1, needswap);
   1918   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1919   1.73       dbj 			}
   1920    1.1   mycroft 		}
   1921    1.1   mycroft 	}
   1922    1.1   mycroft 	fs->fs_fmod = 1;
   1923   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1924  1.101        ad 	mutex_exit(&ump->um_lock);
   1925    1.1   mycroft }
   1926    1.1   mycroft 
   1927    1.1   mycroft /*
   1928    1.1   mycroft  * Free an inode.
   1929   1.30      fvdl  */
   1930   1.30      fvdl int
   1931   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1932   1.30      fvdl {
   1933   1.30      fvdl 
   1934  1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1935   1.30      fvdl }
   1936   1.30      fvdl 
   1937   1.30      fvdl /*
   1938   1.30      fvdl  * Do the actual free operation.
   1939    1.1   mycroft  * The specified inode is placed back in the free map.
   1940  1.111    simonb  *
   1941  1.111    simonb  * => um_lock not held on entry or exit
   1942    1.1   mycroft  */
   1943    1.1   mycroft int
   1944  1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1945  1.119     joerg {
   1946  1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1947  1.119     joerg 	struct fs *fs = ump->um_fs;
   1948  1.119     joerg 	struct vnode *devvp;
   1949  1.119     joerg 	struct cg *cgp;
   1950  1.119     joerg 	struct buf *bp;
   1951  1.119     joerg 	int error, cg;
   1952  1.119     joerg 	daddr_t cgbno;
   1953  1.119     joerg 	dev_t dev;
   1954  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1955  1.119     joerg 
   1956  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1957  1.119     joerg 	devvp = ump->um_devvp;
   1958  1.119     joerg 	dev = devvp->v_rdev;
   1959  1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1960  1.119     joerg 
   1961  1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1962  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   1963  1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1964  1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1965  1.149      maxv 	    B_MODIFY, &bp);
   1966  1.119     joerg 	if (error) {
   1967  1.119     joerg 		return (error);
   1968  1.119     joerg 	}
   1969  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1970  1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1971  1.119     joerg 		brelse(bp, 0);
   1972  1.119     joerg 		return (0);
   1973  1.119     joerg 	}
   1974  1.119     joerg 
   1975  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1976  1.119     joerg 
   1977  1.119     joerg 	bdwrite(bp);
   1978  1.119     joerg 
   1979  1.119     joerg 	return 0;
   1980  1.119     joerg }
   1981  1.119     joerg 
   1982  1.119     joerg int
   1983  1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1984    1.9  christos {
   1985  1.101        ad 	struct ufsmount *ump;
   1986   1.33  augustss 	struct cg *cgp;
   1987    1.1   mycroft 	struct buf *bp;
   1988    1.1   mycroft 	int error, cg;
   1989   1.76   hannken 	daddr_t cgbno;
   1990   1.78   hannken 	dev_t dev;
   1991   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1992    1.1   mycroft 
   1993  1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   1994  1.111    simonb 
   1995   1.76   hannken 	cg = ino_to_cg(fs, ino);
   1996  1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1997  1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1998  1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1999    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2000  1.120  christos 		panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
   2001  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   2002  1.120  christos 		    fs->fs_fsmnt);
   2003  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2004  1.149      maxv 	    B_MODIFY, &bp);
   2005    1.1   mycroft 	if (error) {
   2006   1.30      fvdl 		return (error);
   2007    1.1   mycroft 	}
   2008    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2009   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2010  1.101        ad 		brelse(bp, 0);
   2011    1.1   mycroft 		return (0);
   2012    1.1   mycroft 	}
   2013  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2014  1.119     joerg 
   2015  1.119     joerg 	bdwrite(bp);
   2016  1.119     joerg 
   2017  1.119     joerg 	return 0;
   2018  1.119     joerg }
   2019  1.119     joerg 
   2020  1.119     joerg static void
   2021  1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2022  1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2023  1.119     joerg {
   2024  1.119     joerg 	int cg;
   2025  1.119     joerg 	struct cg *cgp;
   2026  1.119     joerg 	u_int8_t *inosused;
   2027  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2028  1.119     joerg 
   2029  1.119     joerg 	cg = ino_to_cg(fs, ino);
   2030  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2031   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2032   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2033   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2034   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2035   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2036    1.1   mycroft 	ino %= fs->fs_ipg;
   2037   1.62      fvdl 	if (isclr(inosused, ino)) {
   2038  1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2039  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2040  1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2041    1.1   mycroft 		if (fs->fs_ronly == 0)
   2042    1.1   mycroft 			panic("ifree: freeing free inode");
   2043    1.1   mycroft 	}
   2044   1.62      fvdl 	clrbit(inosused, ino);
   2045  1.113   hannken 	if (!devvp_is_snapshot)
   2046  1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2047  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2048   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2049   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2050   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2051  1.101        ad 	mutex_enter(&ump->um_lock);
   2052    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2053    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2054   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2055   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2056    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2057    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2058    1.1   mycroft 	}
   2059    1.1   mycroft 	fs->fs_fmod = 1;
   2060   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2061  1.101        ad 	mutex_exit(&ump->um_lock);
   2062    1.1   mycroft }
   2063    1.1   mycroft 
   2064    1.1   mycroft /*
   2065   1.76   hannken  * Check to see if a file is free.
   2066   1.76   hannken  */
   2067   1.76   hannken int
   2068   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2069   1.76   hannken {
   2070   1.76   hannken 	struct cg *cgp;
   2071   1.76   hannken 	struct buf *bp;
   2072   1.76   hannken 	daddr_t cgbno;
   2073   1.76   hannken 	int ret, cg;
   2074   1.76   hannken 	u_int8_t *inosused;
   2075  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2076   1.76   hannken 
   2077  1.119     joerg 	KASSERT(devvp_is_snapshot);
   2078  1.119     joerg 
   2079   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2080  1.113   hannken 	if (devvp_is_snapshot)
   2081  1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2082  1.113   hannken 	else
   2083  1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2084   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2085   1.76   hannken 		return 1;
   2086  1.149      maxv 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2087   1.76   hannken 		return 1;
   2088   1.76   hannken 	}
   2089   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2090   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2091  1.101        ad 		brelse(bp, 0);
   2092   1.76   hannken 		return 1;
   2093   1.76   hannken 	}
   2094   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2095   1.76   hannken 	ino %= fs->fs_ipg;
   2096   1.76   hannken 	ret = isclr(inosused, ino);
   2097  1.101        ad 	brelse(bp, 0);
   2098   1.76   hannken 	return ret;
   2099   1.76   hannken }
   2100   1.76   hannken 
   2101   1.76   hannken /*
   2102    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2103    1.1   mycroft  *
   2104    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2105    1.1   mycroft  * available.
   2106    1.1   mycroft  */
   2107   1.60      fvdl static int32_t
   2108   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2109    1.1   mycroft {
   2110   1.60      fvdl 	int32_t bno;
   2111    1.1   mycroft 	int start, len, loc, i;
   2112    1.1   mycroft 	int blk, field, subfield, pos;
   2113   1.19    bouyer 	int ostart, olen;
   2114   1.62      fvdl 	u_int8_t *blksfree;
   2115   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2116    1.1   mycroft 
   2117  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2118  1.101        ad 
   2119    1.1   mycroft 	/*
   2120    1.1   mycroft 	 * find the fragment by searching through the free block
   2121    1.1   mycroft 	 * map for an appropriate bit pattern
   2122    1.1   mycroft 	 */
   2123    1.1   mycroft 	if (bpref)
   2124    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2125    1.1   mycroft 	else
   2126   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2127   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2128    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2129   1.19    bouyer 	ostart = start;
   2130   1.19    bouyer 	olen = len;
   2131   1.45     lukem 	loc = scanc((u_int)len,
   2132   1.62      fvdl 		(const u_char *)&blksfree[start],
   2133   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2134   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2135    1.1   mycroft 	if (loc == 0) {
   2136    1.1   mycroft 		len = start + 1;
   2137    1.1   mycroft 		start = 0;
   2138   1.45     lukem 		loc = scanc((u_int)len,
   2139   1.62      fvdl 			(const u_char *)&blksfree[0],
   2140   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2141   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2142    1.1   mycroft 		if (loc == 0) {
   2143   1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   2144   1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   2145   1.20      ross 			printf("offset=%d %ld\n",
   2146   1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   2147   1.62      fvdl 				(long)blksfree - (long)cgp);
   2148   1.62      fvdl 			printf("cg %d\n", cgp->cg_cgx);
   2149    1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   2150    1.1   mycroft 			/* NOTREACHED */
   2151    1.1   mycroft 		}
   2152    1.1   mycroft 	}
   2153    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2154   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2155    1.1   mycroft 	/*
   2156    1.1   mycroft 	 * found the byte in the map
   2157    1.1   mycroft 	 * sift through the bits to find the selected frag
   2158    1.1   mycroft 	 */
   2159    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2160   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2161    1.1   mycroft 		blk <<= 1;
   2162    1.1   mycroft 		field = around[allocsiz];
   2163    1.1   mycroft 		subfield = inside[allocsiz];
   2164    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2165    1.1   mycroft 			if ((blk & field) == subfield)
   2166    1.1   mycroft 				return (bno + pos);
   2167    1.1   mycroft 			field <<= 1;
   2168    1.1   mycroft 			subfield <<= 1;
   2169    1.1   mycroft 		}
   2170    1.1   mycroft 	}
   2171   1.60      fvdl 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   2172    1.1   mycroft 	panic("ffs_alloccg: block not in map");
   2173   1.58      fvdl 	/* return (-1); */
   2174    1.1   mycroft }
   2175    1.1   mycroft 
   2176    1.1   mycroft /*
   2177    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2178   1.81     perry  *
   2179    1.1   mycroft  * The form of the error message is:
   2180    1.1   mycroft  *	fs: error message
   2181    1.1   mycroft  */
   2182    1.1   mycroft static void
   2183  1.150   mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2184    1.1   mycroft {
   2185  1.150   mlelstv 	KASSERT(cred != NULL);
   2186    1.1   mycroft 
   2187  1.150   mlelstv 	if (cred == NOCRED || cred == FSCRED) {
   2188  1.150   mlelstv 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2189  1.150   mlelstv 		    curproc->p_pid, curproc->p_comm,
   2190  1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2191  1.150   mlelstv 	} else {
   2192  1.150   mlelstv 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2193  1.150   mlelstv 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2194  1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2195  1.150   mlelstv 	}
   2196    1.1   mycroft }
   2197