ffs_alloc.c revision 1.157 1 1.157 hannken /* $NetBSD: ffs_alloc.c,v 1.157 2017/07/12 09:30:16 hannken Exp $ */
2 1.111 simonb
3 1.111 simonb /*-
4 1.122 ad * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 1.111 simonb * All rights reserved.
6 1.111 simonb *
7 1.111 simonb * This code is derived from software contributed to The NetBSD Foundation
8 1.111 simonb * by Wasabi Systems, Inc.
9 1.111 simonb *
10 1.111 simonb * Redistribution and use in source and binary forms, with or without
11 1.111 simonb * modification, are permitted provided that the following conditions
12 1.111 simonb * are met:
13 1.111 simonb * 1. Redistributions of source code must retain the above copyright
14 1.111 simonb * notice, this list of conditions and the following disclaimer.
15 1.111 simonb * 2. Redistributions in binary form must reproduce the above copyright
16 1.111 simonb * notice, this list of conditions and the following disclaimer in the
17 1.111 simonb * documentation and/or other materials provided with the distribution.
18 1.111 simonb *
19 1.111 simonb * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.111 simonb * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.111 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.111 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.111 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.111 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.111 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.111 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.111 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.111 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.111 simonb * POSSIBILITY OF SUCH DAMAGE.
30 1.111 simonb */
31 1.2 cgd
32 1.1 mycroft /*
33 1.60 fvdl * Copyright (c) 2002 Networks Associates Technology, Inc.
34 1.60 fvdl * All rights reserved.
35 1.60 fvdl *
36 1.60 fvdl * This software was developed for the FreeBSD Project by Marshall
37 1.60 fvdl * Kirk McKusick and Network Associates Laboratories, the Security
38 1.60 fvdl * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 1.60 fvdl * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 1.60 fvdl * research program
41 1.60 fvdl *
42 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
43 1.1 mycroft * The Regents of the University of California. All rights reserved.
44 1.1 mycroft *
45 1.1 mycroft * Redistribution and use in source and binary forms, with or without
46 1.1 mycroft * modification, are permitted provided that the following conditions
47 1.1 mycroft * are met:
48 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
49 1.1 mycroft * notice, this list of conditions and the following disclaimer.
50 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
51 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
52 1.1 mycroft * documentation and/or other materials provided with the distribution.
53 1.69 agc * 3. Neither the name of the University nor the names of its contributors
54 1.1 mycroft * may be used to endorse or promote products derived from this software
55 1.1 mycroft * without specific prior written permission.
56 1.1 mycroft *
57 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 1.1 mycroft * SUCH DAMAGE.
68 1.1 mycroft *
69 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
70 1.1 mycroft */
71 1.53 lukem
72 1.53 lukem #include <sys/cdefs.h>
73 1.157 hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.157 2017/07/12 09:30:16 hannken Exp $");
74 1.17 mrg
75 1.43 mrg #if defined(_KERNEL_OPT)
76 1.27 thorpej #include "opt_ffs.h"
77 1.21 scottr #include "opt_quota.h"
78 1.129 chs #include "opt_uvm_page_trkown.h"
79 1.22 scottr #endif
80 1.1 mycroft
81 1.1 mycroft #include <sys/param.h>
82 1.1 mycroft #include <sys/systm.h>
83 1.1 mycroft #include <sys/buf.h>
84 1.130 tls #include <sys/cprng.h>
85 1.111 simonb #include <sys/kauth.h>
86 1.111 simonb #include <sys/kernel.h>
87 1.111 simonb #include <sys/mount.h>
88 1.1 mycroft #include <sys/proc.h>
89 1.111 simonb #include <sys/syslog.h>
90 1.1 mycroft #include <sys/vnode.h>
91 1.111 simonb #include <sys/wapbl.h>
92 1.147 joerg #include <sys/cprng.h>
93 1.29 mrg
94 1.76 hannken #include <miscfs/specfs/specdev.h>
95 1.1 mycroft #include <ufs/ufs/quota.h>
96 1.19 bouyer #include <ufs/ufs/ufsmount.h>
97 1.1 mycroft #include <ufs/ufs/inode.h>
98 1.9 christos #include <ufs/ufs/ufs_extern.h>
99 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
100 1.111 simonb #include <ufs/ufs/ufs_wapbl.h>
101 1.1 mycroft
102 1.1 mycroft #include <ufs/ffs/fs.h>
103 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
104 1.1 mycroft
105 1.129 chs #ifdef UVM_PAGE_TRKOWN
106 1.129 chs #include <uvm/uvm.h>
107 1.129 chs #endif
108 1.129 chs
109 1.152 jdolecek static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
110 1.152 jdolecek static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
111 1.85 thorpej static ino_t ffs_dirpref(struct inode *);
112 1.85 thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
113 1.150 mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
114 1.152 jdolecek static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
115 1.152 jdolecek daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
116 1.152 jdolecek static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
117 1.85 thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
118 1.85 thorpej daddr_t, int);
119 1.119 joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
120 1.116 joerg daddr_t, long, bool);
121 1.119 joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
122 1.119 joerg int, bool);
123 1.23 drochner
124 1.34 jdolecek /* if 1, changes in optimalization strategy are logged */
125 1.34 jdolecek int ffs_log_changeopt = 0;
126 1.34 jdolecek
127 1.23 drochner /* in ffs_tables.c */
128 1.40 jdolecek extern const int inside[], around[];
129 1.40 jdolecek extern const u_char * const fragtbl[];
130 1.1 mycroft
131 1.116 joerg /* Basic consistency check for block allocations */
132 1.116 joerg static int
133 1.116 joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
134 1.116 joerg long size, dev_t dev, ino_t inum)
135 1.116 joerg {
136 1.134 dholland if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
137 1.138 dholland ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
138 1.154 christos panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
139 1.154 christos " bsize = %d, size = %ld, fs = %s", func,
140 1.120 christos (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
141 1.116 joerg }
142 1.116 joerg
143 1.116 joerg if (bno >= fs->fs_size) {
144 1.154 christos printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
145 1.116 joerg (unsigned long long)inum);
146 1.150 mlelstv ffs_fserr(fs, NOCRED, "bad block");
147 1.116 joerg return EINVAL;
148 1.116 joerg }
149 1.116 joerg return 0;
150 1.116 joerg }
151 1.116 joerg
152 1.1 mycroft /*
153 1.1 mycroft * Allocate a block in the file system.
154 1.81 perry *
155 1.1 mycroft * The size of the requested block is given, which must be some
156 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
157 1.1 mycroft * A preference may be optionally specified. If a preference is given
158 1.1 mycroft * the following hierarchy is used to allocate a block:
159 1.1 mycroft * 1) allocate the requested block.
160 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
161 1.1 mycroft * 3) allocate a block in the same cylinder group.
162 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
163 1.1 mycroft * available block is located.
164 1.47 wiz * If no block preference is given the following hierarchy is used
165 1.1 mycroft * to allocate a block:
166 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
167 1.1 mycroft * inode for the file.
168 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
169 1.1 mycroft * available block is located.
170 1.106 pooka *
171 1.106 pooka * => called with um_lock held
172 1.106 pooka * => releases um_lock before returning
173 1.1 mycroft */
174 1.9 christos int
175 1.152 jdolecek ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
176 1.152 jdolecek int flags, kauth_cred_t cred, daddr_t *bnp)
177 1.1 mycroft {
178 1.101 ad struct ufsmount *ump;
179 1.62 fvdl struct fs *fs;
180 1.58 fvdl daddr_t bno;
181 1.9 christos int cg;
182 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
183 1.9 christos int error;
184 1.9 christos #endif
185 1.81 perry
186 1.62 fvdl fs = ip->i_fs;
187 1.101 ad ump = ip->i_ump;
188 1.101 ad
189 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
190 1.62 fvdl
191 1.37 chs #ifdef UVM_PAGE_TRKOWN
192 1.129 chs
193 1.129 chs /*
194 1.129 chs * Sanity-check that allocations within the file size
195 1.129 chs * do not allow other threads to read the stale contents
196 1.129 chs * of newly allocated blocks.
197 1.129 chs * Usually pages will exist to cover the new allocation.
198 1.129 chs * There is an optimization in ffs_write() where we skip
199 1.129 chs * creating pages if several conditions are met:
200 1.129 chs * - the file must not be mapped (in any user address space).
201 1.129 chs * - the write must cover whole pages and whole blocks.
202 1.129 chs * If those conditions are not met then pages must exist and
203 1.129 chs * be locked by the current thread.
204 1.129 chs */
205 1.129 chs
206 1.51 chs if (ITOV(ip)->v_type == VREG &&
207 1.137 dholland ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
208 1.37 chs struct vm_page *pg;
209 1.129 chs struct vnode *vp = ITOV(ip);
210 1.129 chs struct uvm_object *uobj = &vp->v_uobj;
211 1.137 dholland voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
212 1.137 dholland voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
213 1.37 chs
214 1.128 rmind mutex_enter(uobj->vmobjlock);
215 1.37 chs while (off < endoff) {
216 1.37 chs pg = uvm_pagelookup(uobj, off);
217 1.129 chs KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
218 1.129 chs (size & PAGE_MASK) == 0 &&
219 1.135 dholland ffs_blkoff(fs, size) == 0) ||
220 1.129 chs (pg != NULL && pg->owner == curproc->p_pid &&
221 1.129 chs pg->lowner == curlwp->l_lid));
222 1.37 chs off += PAGE_SIZE;
223 1.37 chs }
224 1.128 rmind mutex_exit(uobj->vmobjlock);
225 1.37 chs }
226 1.37 chs #endif
227 1.37 chs
228 1.1 mycroft *bnp = 0;
229 1.156 riastrad
230 1.156 riastrad KASSERTMSG((cred != NOCRED), "missing credential");
231 1.156 riastrad KASSERTMSG(((u_int)size <= fs->fs_bsize),
232 1.156 riastrad "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
233 1.156 riastrad (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
234 1.156 riastrad KASSERTMSG((ffs_fragoff(fs, size) == 0),
235 1.156 riastrad "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
236 1.156 riastrad (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
237 1.156 riastrad
238 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
239 1.1 mycroft goto nospace;
240 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
241 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
242 1.124 elad NULL, NULL) != 0)
243 1.1 mycroft goto nospace;
244 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
245 1.101 ad mutex_exit(&ump->um_lock);
246 1.60 fvdl if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
247 1.1 mycroft return (error);
248 1.101 ad mutex_enter(&ump->um_lock);
249 1.1 mycroft #endif
250 1.111 simonb
251 1.1 mycroft if (bpref >= fs->fs_size)
252 1.1 mycroft bpref = 0;
253 1.1 mycroft if (bpref == 0)
254 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
255 1.1 mycroft else
256 1.1 mycroft cg = dtog(fs, bpref);
257 1.152 jdolecek bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
258 1.1 mycroft if (bno > 0) {
259 1.65 kristerw DIP_ADD(ip, blocks, btodb(size));
260 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
261 1.1 mycroft *bnp = bno;
262 1.1 mycroft return (0);
263 1.1 mycroft }
264 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
265 1.1 mycroft /*
266 1.1 mycroft * Restore user's disk quota because allocation failed.
267 1.1 mycroft */
268 1.60 fvdl (void) chkdq(ip, -btodb(size), cred, FORCE);
269 1.1 mycroft #endif
270 1.111 simonb if (flags & B_CONTIG) {
271 1.111 simonb /*
272 1.111 simonb * XXX ump->um_lock handling is "suspect" at best.
273 1.111 simonb * For the case where ffs_hashalloc() fails early
274 1.111 simonb * in the B_CONTIG case we reach here with um_lock
275 1.111 simonb * already unlocked, so we can't release it again
276 1.111 simonb * like in the normal error path. See kern/39206.
277 1.111 simonb *
278 1.111 simonb *
279 1.111 simonb * Fail silently - it's up to our caller to report
280 1.111 simonb * errors.
281 1.111 simonb */
282 1.111 simonb return (ENOSPC);
283 1.111 simonb }
284 1.1 mycroft nospace:
285 1.101 ad mutex_exit(&ump->um_lock);
286 1.150 mlelstv ffs_fserr(fs, cred, "file system full");
287 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
288 1.1 mycroft return (ENOSPC);
289 1.1 mycroft }
290 1.1 mycroft
291 1.1 mycroft /*
292 1.1 mycroft * Reallocate a fragment to a bigger size
293 1.1 mycroft *
294 1.1 mycroft * The number and size of the old block is given, and a preference
295 1.1 mycroft * and new size is also specified. The allocator attempts to extend
296 1.1 mycroft * the original block. Failing that, the regular block allocator is
297 1.1 mycroft * invoked to get an appropriate block.
298 1.106 pooka *
299 1.106 pooka * => called with um_lock held
300 1.106 pooka * => return with um_lock released
301 1.1 mycroft */
302 1.9 christos int
303 1.85 thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
304 1.91 elad int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
305 1.1 mycroft {
306 1.101 ad struct ufsmount *ump;
307 1.62 fvdl struct fs *fs;
308 1.1 mycroft struct buf *bp;
309 1.1 mycroft int cg, request, error;
310 1.58 fvdl daddr_t bprev, bno;
311 1.25 thorpej
312 1.62 fvdl fs = ip->i_fs;
313 1.101 ad ump = ip->i_ump;
314 1.101 ad
315 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
316 1.101 ad
317 1.37 chs #ifdef UVM_PAGE_TRKOWN
318 1.129 chs
319 1.129 chs /*
320 1.129 chs * Sanity-check that allocations within the file size
321 1.129 chs * do not allow other threads to read the stale contents
322 1.129 chs * of newly allocated blocks.
323 1.129 chs * Unlike in ffs_alloc(), here pages must always exist
324 1.129 chs * for such allocations, because only the last block of a file
325 1.129 chs * can be a fragment and ffs_write() will reallocate the
326 1.129 chs * fragment to the new size using ufs_balloc_range(),
327 1.129 chs * which always creates pages to cover blocks it allocates.
328 1.129 chs */
329 1.129 chs
330 1.37 chs if (ITOV(ip)->v_type == VREG) {
331 1.37 chs struct vm_page *pg;
332 1.51 chs struct uvm_object *uobj = &ITOV(ip)->v_uobj;
333 1.137 dholland voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
334 1.137 dholland voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
335 1.37 chs
336 1.128 rmind mutex_enter(uobj->vmobjlock);
337 1.37 chs while (off < endoff) {
338 1.37 chs pg = uvm_pagelookup(uobj, off);
339 1.129 chs KASSERT(pg->owner == curproc->p_pid &&
340 1.129 chs pg->lowner == curlwp->l_lid);
341 1.37 chs off += PAGE_SIZE;
342 1.37 chs }
343 1.128 rmind mutex_exit(uobj->vmobjlock);
344 1.37 chs }
345 1.37 chs #endif
346 1.37 chs
347 1.156 riastrad KASSERTMSG((cred != NOCRED), "missing credential");
348 1.156 riastrad KASSERTMSG(((u_int)osize <= fs->fs_bsize),
349 1.156 riastrad "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
350 1.156 riastrad (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
351 1.156 riastrad fs->fs_fsmnt);
352 1.156 riastrad KASSERTMSG((ffs_fragoff(fs, osize) == 0),
353 1.156 riastrad "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
354 1.156 riastrad (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
355 1.156 riastrad fs->fs_fsmnt);
356 1.156 riastrad KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
357 1.156 riastrad "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
358 1.156 riastrad (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
359 1.156 riastrad fs->fs_fsmnt);
360 1.156 riastrad KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
361 1.156 riastrad "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
362 1.156 riastrad (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
363 1.156 riastrad fs->fs_fsmnt);
364 1.156 riastrad
365 1.99 pooka if (freespace(fs, fs->fs_minfree) <= 0 &&
366 1.124 elad kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
367 1.124 elad NULL, NULL) != 0) {
368 1.101 ad mutex_exit(&ump->um_lock);
369 1.1 mycroft goto nospace;
370 1.101 ad }
371 1.60 fvdl if (fs->fs_magic == FS_UFS2_MAGIC)
372 1.60 fvdl bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
373 1.60 fvdl else
374 1.60 fvdl bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
375 1.60 fvdl
376 1.60 fvdl if (bprev == 0) {
377 1.154 christos panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
378 1.154 christos PRId64 ", fs = %s", __func__,
379 1.120 christos (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
380 1.120 christos fs->fs_fsmnt);
381 1.1 mycroft }
382 1.101 ad mutex_exit(&ump->um_lock);
383 1.101 ad
384 1.1 mycroft /*
385 1.1 mycroft * Allocate the extra space in the buffer.
386 1.1 mycroft */
387 1.37 chs if (bpp != NULL &&
388 1.149 maxv (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
389 1.1 mycroft return (error);
390 1.1 mycroft }
391 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
392 1.60 fvdl if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
393 1.44 chs if (bpp != NULL) {
394 1.101 ad brelse(bp, 0);
395 1.44 chs }
396 1.1 mycroft return (error);
397 1.1 mycroft }
398 1.1 mycroft #endif
399 1.1 mycroft /*
400 1.1 mycroft * Check for extension in the existing location.
401 1.1 mycroft */
402 1.1 mycroft cg = dtog(fs, bprev);
403 1.101 ad mutex_enter(&ump->um_lock);
404 1.60 fvdl if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
405 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
406 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
407 1.37 chs
408 1.37 chs if (bpp != NULL) {
409 1.154 christos if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
410 1.154 christos panic("%s: bad blockno %#llx != %#llx",
411 1.154 christos __func__, (unsigned long long) bp->b_blkno,
412 1.154 christos (unsigned long long)FFS_FSBTODB(fs, bno));
413 1.154 christos }
414 1.72 pk allocbuf(bp, nsize, 1);
415 1.98 christos memset((char *)bp->b_data + osize, 0, nsize - osize);
416 1.105 ad mutex_enter(bp->b_objlock);
417 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
418 1.105 ad bp->b_oflags |= BO_DONE;
419 1.105 ad mutex_exit(bp->b_objlock);
420 1.37 chs *bpp = bp;
421 1.37 chs }
422 1.37 chs if (blknop != NULL) {
423 1.37 chs *blknop = bno;
424 1.37 chs }
425 1.1 mycroft return (0);
426 1.1 mycroft }
427 1.1 mycroft /*
428 1.1 mycroft * Allocate a new disk location.
429 1.1 mycroft */
430 1.1 mycroft if (bpref >= fs->fs_size)
431 1.1 mycroft bpref = 0;
432 1.1 mycroft switch ((int)fs->fs_optim) {
433 1.1 mycroft case FS_OPTSPACE:
434 1.1 mycroft /*
435 1.81 perry * Allocate an exact sized fragment. Although this makes
436 1.81 perry * best use of space, we will waste time relocating it if
437 1.1 mycroft * the file continues to grow. If the fragmentation is
438 1.1 mycroft * less than half of the minimum free reserve, we choose
439 1.1 mycroft * to begin optimizing for time.
440 1.1 mycroft */
441 1.1 mycroft request = nsize;
442 1.1 mycroft if (fs->fs_minfree < 5 ||
443 1.1 mycroft fs->fs_cstotal.cs_nffree >
444 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
445 1.1 mycroft break;
446 1.34 jdolecek
447 1.34 jdolecek if (ffs_log_changeopt) {
448 1.34 jdolecek log(LOG_NOTICE,
449 1.34 jdolecek "%s: optimization changed from SPACE to TIME\n",
450 1.34 jdolecek fs->fs_fsmnt);
451 1.34 jdolecek }
452 1.34 jdolecek
453 1.1 mycroft fs->fs_optim = FS_OPTTIME;
454 1.1 mycroft break;
455 1.1 mycroft case FS_OPTTIME:
456 1.1 mycroft /*
457 1.1 mycroft * At this point we have discovered a file that is trying to
458 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
459 1.1 mycroft * we allocate a full sized block, then free the unused portion.
460 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
461 1.1 mycroft * above will be able to grow it in place without further
462 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
463 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
464 1.1 mycroft * optimizing for space.
465 1.1 mycroft */
466 1.1 mycroft request = fs->fs_bsize;
467 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
468 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
469 1.1 mycroft break;
470 1.34 jdolecek
471 1.34 jdolecek if (ffs_log_changeopt) {
472 1.34 jdolecek log(LOG_NOTICE,
473 1.34 jdolecek "%s: optimization changed from TIME to SPACE\n",
474 1.34 jdolecek fs->fs_fsmnt);
475 1.34 jdolecek }
476 1.34 jdolecek
477 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
478 1.1 mycroft break;
479 1.1 mycroft default:
480 1.154 christos panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
481 1.154 christos __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
482 1.154 christos fs->fs_fsmnt);
483 1.1 mycroft /* NOTREACHED */
484 1.1 mycroft }
485 1.152 jdolecek bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
486 1.1 mycroft if (bno > 0) {
487 1.153 jdolecek /*
488 1.153 jdolecek * Use forced deallocation registration, we can't handle
489 1.153 jdolecek * failure here. This is safe, as this place is ever hit
490 1.153 jdolecek * maximum once per write operation, when fragment is extended
491 1.153 jdolecek * to longer fragment, or a full block.
492 1.153 jdolecek */
493 1.122 ad if ((ip->i_ump->um_mountp->mnt_wapbl) &&
494 1.122 ad (ITOV(ip)->v_type != VREG)) {
495 1.153 jdolecek /* this should never fail */
496 1.153 jdolecek error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
497 1.136 dholland ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
498 1.122 ad osize);
499 1.153 jdolecek if (error)
500 1.153 jdolecek panic("ffs_realloccg: dealloc registration failed");
501 1.122 ad } else {
502 1.122 ad ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
503 1.122 ad ip->i_number);
504 1.111 simonb }
505 1.65 kristerw DIP_ADD(ip, blocks, btodb(nsize - osize));
506 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
507 1.37 chs if (bpp != NULL) {
508 1.136 dholland bp->b_blkno = FFS_FSBTODB(fs, bno);
509 1.72 pk allocbuf(bp, nsize, 1);
510 1.98 christos memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
511 1.105 ad mutex_enter(bp->b_objlock);
512 1.109 ad KASSERT(!cv_has_waiters(&bp->b_done));
513 1.105 ad bp->b_oflags |= BO_DONE;
514 1.105 ad mutex_exit(bp->b_objlock);
515 1.37 chs *bpp = bp;
516 1.37 chs }
517 1.37 chs if (blknop != NULL) {
518 1.37 chs *blknop = bno;
519 1.37 chs }
520 1.1 mycroft return (0);
521 1.1 mycroft }
522 1.101 ad mutex_exit(&ump->um_lock);
523 1.101 ad
524 1.127 bouyer #if defined(QUOTA) || defined(QUOTA2)
525 1.1 mycroft /*
526 1.1 mycroft * Restore user's disk quota because allocation failed.
527 1.1 mycroft */
528 1.60 fvdl (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
529 1.1 mycroft #endif
530 1.37 chs if (bpp != NULL) {
531 1.101 ad brelse(bp, 0);
532 1.37 chs }
533 1.37 chs
534 1.1 mycroft nospace:
535 1.1 mycroft /*
536 1.1 mycroft * no space available
537 1.1 mycroft */
538 1.150 mlelstv ffs_fserr(fs, cred, "file system full");
539 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
540 1.1 mycroft return (ENOSPC);
541 1.1 mycroft }
542 1.1 mycroft
543 1.1 mycroft /*
544 1.1 mycroft * Allocate an inode in the file system.
545 1.81 perry *
546 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
547 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
548 1.1 mycroft * 1) allocate the preferred inode.
549 1.1 mycroft * 2) allocate an inode in the same cylinder group.
550 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
551 1.1 mycroft * available inode is located.
552 1.47 wiz * If no inode preference is given the following hierarchy is used
553 1.1 mycroft * to allocate an inode:
554 1.1 mycroft * 1) allocate an inode in cylinder group 0.
555 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
556 1.1 mycroft * available inode is located.
557 1.106 pooka *
558 1.106 pooka * => um_lock not held upon entry or return
559 1.1 mycroft */
560 1.9 christos int
561 1.148 hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
562 1.9 christos {
563 1.101 ad struct ufsmount *ump;
564 1.33 augustss struct inode *pip;
565 1.33 augustss struct fs *fs;
566 1.1 mycroft ino_t ino, ipref;
567 1.1 mycroft int cg, error;
568 1.81 perry
569 1.111 simonb UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
570 1.111 simonb
571 1.1 mycroft pip = VTOI(pvp);
572 1.1 mycroft fs = pip->i_fs;
573 1.101 ad ump = pip->i_ump;
574 1.101 ad
575 1.111 simonb error = UFS_WAPBL_BEGIN(pvp->v_mount);
576 1.111 simonb if (error) {
577 1.111 simonb return error;
578 1.111 simonb }
579 1.101 ad mutex_enter(&ump->um_lock);
580 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
581 1.1 mycroft goto noinodes;
582 1.1 mycroft
583 1.1 mycroft if ((mode & IFMT) == IFDIR)
584 1.50 lukem ipref = ffs_dirpref(pip);
585 1.50 lukem else
586 1.50 lukem ipref = pip->i_number;
587 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
588 1.1 mycroft ipref = 0;
589 1.1 mycroft cg = ino_to_cg(fs, ipref);
590 1.50 lukem /*
591 1.50 lukem * Track number of dirs created one after another
592 1.50 lukem * in a same cg without intervening by files.
593 1.50 lukem */
594 1.50 lukem if ((mode & IFMT) == IFDIR) {
595 1.63 fvdl if (fs->fs_contigdirs[cg] < 255)
596 1.50 lukem fs->fs_contigdirs[cg]++;
597 1.50 lukem } else {
598 1.50 lukem if (fs->fs_contigdirs[cg] > 0)
599 1.50 lukem fs->fs_contigdirs[cg]--;
600 1.50 lukem }
601 1.152 jdolecek ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
602 1.1 mycroft if (ino == 0)
603 1.1 mycroft goto noinodes;
604 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
605 1.148 hannken *inop = ino;
606 1.148 hannken return 0;
607 1.60 fvdl
608 1.1 mycroft noinodes:
609 1.101 ad mutex_exit(&ump->um_lock);
610 1.111 simonb UFS_WAPBL_END(pvp->v_mount);
611 1.150 mlelstv ffs_fserr(fs, cred, "out of inodes");
612 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
613 1.148 hannken return ENOSPC;
614 1.1 mycroft }
615 1.1 mycroft
616 1.1 mycroft /*
617 1.50 lukem * Find a cylinder group in which to place a directory.
618 1.42 sommerfe *
619 1.50 lukem * The policy implemented by this algorithm is to allocate a
620 1.50 lukem * directory inode in the same cylinder group as its parent
621 1.50 lukem * directory, but also to reserve space for its files inodes
622 1.50 lukem * and data. Restrict the number of directories which may be
623 1.50 lukem * allocated one after another in the same cylinder group
624 1.50 lukem * without intervening allocation of files.
625 1.42 sommerfe *
626 1.50 lukem * If we allocate a first level directory then force allocation
627 1.50 lukem * in another cylinder group.
628 1.1 mycroft */
629 1.1 mycroft static ino_t
630 1.85 thorpej ffs_dirpref(struct inode *pip)
631 1.1 mycroft {
632 1.50 lukem register struct fs *fs;
633 1.74 soren int cg, prefcg;
634 1.89 dsl int64_t dirsize, cgsize, curdsz;
635 1.89 dsl int avgifree, avgbfree, avgndir;
636 1.50 lukem int minifree, minbfree, maxndir;
637 1.50 lukem int mincg, minndir;
638 1.50 lukem int maxcontigdirs;
639 1.50 lukem
640 1.101 ad KASSERT(mutex_owned(&pip->i_ump->um_lock));
641 1.101 ad
642 1.50 lukem fs = pip->i_fs;
643 1.1 mycroft
644 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
645 1.50 lukem avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
646 1.50 lukem avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
647 1.50 lukem
648 1.50 lukem /*
649 1.50 lukem * Force allocation in another cg if creating a first level dir.
650 1.50 lukem */
651 1.102 ad if (ITOV(pip)->v_vflag & VV_ROOT) {
652 1.147 joerg prefcg = cprng_fast32() % fs->fs_ncg;
653 1.50 lukem mincg = prefcg;
654 1.50 lukem minndir = fs->fs_ipg;
655 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
656 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
657 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
658 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
659 1.42 sommerfe mincg = cg;
660 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
661 1.42 sommerfe }
662 1.50 lukem for (cg = 0; cg < prefcg; cg++)
663 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
664 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
665 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
666 1.50 lukem mincg = cg;
667 1.50 lukem minndir = fs->fs_cs(fs, cg).cs_ndir;
668 1.42 sommerfe }
669 1.50 lukem return ((ino_t)(fs->fs_ipg * mincg));
670 1.42 sommerfe }
671 1.50 lukem
672 1.50 lukem /*
673 1.50 lukem * Count various limits which used for
674 1.50 lukem * optimal allocation of a directory inode.
675 1.144 bad * Try cylinder groups with >75% avgifree and avgbfree.
676 1.144 bad * Avoid cylinder groups with no free blocks or inodes as that
677 1.144 bad * triggers an I/O-expensive cylinder group scan.
678 1.50 lukem */
679 1.50 lukem maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
680 1.144 bad minifree = avgifree - avgifree / 4;
681 1.144 bad if (minifree < 1)
682 1.144 bad minifree = 1;
683 1.144 bad minbfree = avgbfree - avgbfree / 4;
684 1.144 bad if (minbfree < 1)
685 1.144 bad minbfree = 1;
686 1.89 dsl cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
687 1.89 dsl dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
688 1.89 dsl if (avgndir != 0) {
689 1.89 dsl curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
690 1.89 dsl if (dirsize < curdsz)
691 1.89 dsl dirsize = curdsz;
692 1.89 dsl }
693 1.89 dsl if (cgsize < dirsize * 255)
694 1.144 bad maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
695 1.89 dsl else
696 1.89 dsl maxcontigdirs = 255;
697 1.50 lukem if (fs->fs_avgfpdir > 0)
698 1.50 lukem maxcontigdirs = min(maxcontigdirs,
699 1.50 lukem fs->fs_ipg / fs->fs_avgfpdir);
700 1.50 lukem if (maxcontigdirs == 0)
701 1.50 lukem maxcontigdirs = 1;
702 1.50 lukem
703 1.50 lukem /*
704 1.81 perry * Limit number of dirs in one cg and reserve space for
705 1.50 lukem * regular files, but only if we have no deficit in
706 1.50 lukem * inodes or space.
707 1.50 lukem */
708 1.50 lukem prefcg = ino_to_cg(fs, pip->i_number);
709 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
710 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
711 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
712 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
713 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
714 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
715 1.50 lukem }
716 1.50 lukem for (cg = 0; cg < prefcg; cg++)
717 1.50 lukem if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
718 1.50 lukem fs->fs_cs(fs, cg).cs_nifree >= minifree &&
719 1.50 lukem fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
720 1.50 lukem if (fs->fs_contigdirs[cg] < maxcontigdirs)
721 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
722 1.50 lukem }
723 1.50 lukem /*
724 1.50 lukem * This is a backstop when we are deficient in space.
725 1.50 lukem */
726 1.50 lukem for (cg = prefcg; cg < fs->fs_ncg; cg++)
727 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
728 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
729 1.50 lukem for (cg = 0; cg < prefcg; cg++)
730 1.50 lukem if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
731 1.50 lukem break;
732 1.50 lukem return ((ino_t)(fs->fs_ipg * cg));
733 1.1 mycroft }
734 1.1 mycroft
735 1.1 mycroft /*
736 1.1 mycroft * Select the desired position for the next block in a file. The file is
737 1.1 mycroft * logically divided into sections. The first section is composed of the
738 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
739 1.81 perry *
740 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
741 1.1 mycroft * request a block in the same cylinder group as the inode that describes
742 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
743 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
744 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
745 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
746 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
747 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
748 1.1 mycroft * continues until a cylinder group with greater than the average number
749 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
750 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
751 1.1 mycroft * here a best guess is made based upon the logical block number being
752 1.1 mycroft * allocated.
753 1.81 perry *
754 1.1 mycroft * If a section is already partially allocated, the policy is to
755 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
756 1.60 fvdl * contiguous blocks and the beginning of the next is laid out
757 1.60 fvdl * contigously if possible.
758 1.106 pooka *
759 1.106 pooka * => um_lock held on entry and exit
760 1.1 mycroft */
761 1.58 fvdl daddr_t
762 1.111 simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
763 1.85 thorpej int32_t *bap /* XXX ondisk32 */)
764 1.1 mycroft {
765 1.33 augustss struct fs *fs;
766 1.33 augustss int cg;
767 1.1 mycroft int avgbfree, startcg;
768 1.1 mycroft
769 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
770 1.101 ad
771 1.1 mycroft fs = ip->i_fs;
772 1.111 simonb
773 1.111 simonb /*
774 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
775 1.111 simonb * in the inode extentions to return the desired block.
776 1.111 simonb *
777 1.111 simonb * For metadata (indirect blocks) return the address of where
778 1.111 simonb * the first indirect block resides - we'll scan for the next
779 1.111 simonb * available slot if we need to allocate more than one indirect
780 1.111 simonb * block. For data, return the address of the actual block
781 1.111 simonb * relative to the address of the first data block.
782 1.111 simonb */
783 1.111 simonb if (flags & B_CONTIG) {
784 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
785 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
786 1.111 simonb if (flags & B_METAONLY)
787 1.111 simonb return ip->i_ffs_first_indir_blk;
788 1.111 simonb else
789 1.138 dholland return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
790 1.111 simonb }
791 1.111 simonb
792 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
793 1.134 dholland if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
794 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
795 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
796 1.1 mycroft }
797 1.1 mycroft /*
798 1.1 mycroft * Find a cylinder with greater than average number of
799 1.1 mycroft * unused data blocks.
800 1.1 mycroft */
801 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
802 1.1 mycroft startcg =
803 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
804 1.1 mycroft else
805 1.19 bouyer startcg = dtog(fs,
806 1.30 fvdl ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
807 1.1 mycroft startcg %= fs->fs_ncg;
808 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
809 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
810 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
811 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
812 1.1 mycroft }
813 1.52 lukem for (cg = 0; cg < startcg; cg++)
814 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
815 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
816 1.1 mycroft }
817 1.35 thorpej return (0);
818 1.1 mycroft }
819 1.1 mycroft /*
820 1.60 fvdl * We just always try to lay things out contiguously.
821 1.60 fvdl */
822 1.60 fvdl return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
823 1.60 fvdl }
824 1.60 fvdl
825 1.60 fvdl daddr_t
826 1.111 simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
827 1.111 simonb int64_t *bap)
828 1.60 fvdl {
829 1.60 fvdl struct fs *fs;
830 1.60 fvdl int cg;
831 1.60 fvdl int avgbfree, startcg;
832 1.60 fvdl
833 1.101 ad KASSERT(mutex_owned(&ip->i_ump->um_lock));
834 1.101 ad
835 1.60 fvdl fs = ip->i_fs;
836 1.111 simonb
837 1.111 simonb /*
838 1.111 simonb * If allocating a contiguous file with B_CONTIG, use the hints
839 1.111 simonb * in the inode extentions to return the desired block.
840 1.111 simonb *
841 1.111 simonb * For metadata (indirect blocks) return the address of where
842 1.111 simonb * the first indirect block resides - we'll scan for the next
843 1.111 simonb * available slot if we need to allocate more than one indirect
844 1.111 simonb * block. For data, return the address of the actual block
845 1.111 simonb * relative to the address of the first data block.
846 1.111 simonb */
847 1.111 simonb if (flags & B_CONTIG) {
848 1.111 simonb KASSERT(ip->i_ffs_first_data_blk != 0);
849 1.111 simonb KASSERT(ip->i_ffs_first_indir_blk != 0);
850 1.111 simonb if (flags & B_METAONLY)
851 1.111 simonb return ip->i_ffs_first_indir_blk;
852 1.111 simonb else
853 1.138 dholland return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
854 1.111 simonb }
855 1.111 simonb
856 1.60 fvdl if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
857 1.134 dholland if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
858 1.60 fvdl cg = ino_to_cg(fs, ip->i_number);
859 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
860 1.60 fvdl }
861 1.1 mycroft /*
862 1.60 fvdl * Find a cylinder with greater than average number of
863 1.60 fvdl * unused data blocks.
864 1.1 mycroft */
865 1.60 fvdl if (indx == 0 || bap[indx - 1] == 0)
866 1.60 fvdl startcg =
867 1.60 fvdl ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
868 1.60 fvdl else
869 1.60 fvdl startcg = dtog(fs,
870 1.60 fvdl ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
871 1.60 fvdl startcg %= fs->fs_ncg;
872 1.60 fvdl avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
873 1.60 fvdl for (cg = startcg; cg < fs->fs_ncg; cg++)
874 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
875 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
876 1.60 fvdl }
877 1.60 fvdl for (cg = 0; cg < startcg; cg++)
878 1.60 fvdl if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
879 1.110 simonb return (cgbase(fs, cg) + fs->fs_frag);
880 1.60 fvdl }
881 1.60 fvdl return (0);
882 1.60 fvdl }
883 1.60 fvdl /*
884 1.60 fvdl * We just always try to lay things out contiguously.
885 1.60 fvdl */
886 1.60 fvdl return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
887 1.1 mycroft }
888 1.1 mycroft
889 1.60 fvdl
890 1.1 mycroft /*
891 1.1 mycroft * Implement the cylinder overflow algorithm.
892 1.1 mycroft *
893 1.1 mycroft * The policy implemented by this algorithm is:
894 1.1 mycroft * 1) allocate the block in its requested cylinder group.
895 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
896 1.1 mycroft * 3) brute force search for a free block.
897 1.106 pooka *
898 1.106 pooka * => called with um_lock held
899 1.106 pooka * => returns with um_lock released on success, held on failure
900 1.106 pooka * (*allocator releases lock on success, retains lock on failure)
901 1.1 mycroft */
902 1.1 mycroft /*VARARGS5*/
903 1.58 fvdl static daddr_t
904 1.85 thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
905 1.85 thorpej int size /* size for data blocks, mode for inodes */,
906 1.152 jdolecek int realsize,
907 1.152 jdolecek int flags,
908 1.152 jdolecek daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
909 1.1 mycroft {
910 1.33 augustss struct fs *fs;
911 1.58 fvdl daddr_t result;
912 1.1 mycroft int i, icg = cg;
913 1.1 mycroft
914 1.1 mycroft fs = ip->i_fs;
915 1.1 mycroft /*
916 1.1 mycroft * 1: preferred cylinder group
917 1.1 mycroft */
918 1.152 jdolecek result = (*allocator)(ip, cg, pref, size, realsize, flags);
919 1.1 mycroft if (result)
920 1.1 mycroft return (result);
921 1.111 simonb
922 1.111 simonb if (flags & B_CONTIG)
923 1.111 simonb return (result);
924 1.1 mycroft /*
925 1.1 mycroft * 2: quadratic rehash
926 1.1 mycroft */
927 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
928 1.1 mycroft cg += i;
929 1.1 mycroft if (cg >= fs->fs_ncg)
930 1.1 mycroft cg -= fs->fs_ncg;
931 1.152 jdolecek result = (*allocator)(ip, cg, 0, size, realsize, flags);
932 1.1 mycroft if (result)
933 1.1 mycroft return (result);
934 1.1 mycroft }
935 1.1 mycroft /*
936 1.1 mycroft * 3: brute force search
937 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
938 1.1 mycroft * and 1 is always checked in the quadratic rehash.
939 1.1 mycroft */
940 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
941 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
942 1.152 jdolecek result = (*allocator)(ip, cg, 0, size, realsize, flags);
943 1.1 mycroft if (result)
944 1.1 mycroft return (result);
945 1.1 mycroft cg++;
946 1.1 mycroft if (cg == fs->fs_ncg)
947 1.1 mycroft cg = 0;
948 1.1 mycroft }
949 1.35 thorpej return (0);
950 1.1 mycroft }
951 1.1 mycroft
952 1.1 mycroft /*
953 1.1 mycroft * Determine whether a fragment can be extended.
954 1.1 mycroft *
955 1.81 perry * Check to see if the necessary fragments are available, and
956 1.1 mycroft * if they are, allocate them.
957 1.106 pooka *
958 1.106 pooka * => called with um_lock held
959 1.106 pooka * => returns with um_lock released on success, held on failure
960 1.1 mycroft */
961 1.58 fvdl static daddr_t
962 1.85 thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
963 1.1 mycroft {
964 1.101 ad struct ufsmount *ump;
965 1.33 augustss struct fs *fs;
966 1.33 augustss struct cg *cgp;
967 1.1 mycroft struct buf *bp;
968 1.58 fvdl daddr_t bno;
969 1.1 mycroft int frags, bbase;
970 1.1 mycroft int i, error;
971 1.62 fvdl u_int8_t *blksfree;
972 1.1 mycroft
973 1.1 mycroft fs = ip->i_fs;
974 1.101 ad ump = ip->i_ump;
975 1.101 ad
976 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
977 1.101 ad
978 1.137 dholland if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
979 1.35 thorpej return (0);
980 1.137 dholland frags = ffs_numfrags(fs, nsize);
981 1.138 dholland bbase = ffs_fragnum(fs, bprev);
982 1.138 dholland if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
983 1.1 mycroft /* cannot extend across a block boundary */
984 1.35 thorpej return (0);
985 1.1 mycroft }
986 1.101 ad mutex_exit(&ump->um_lock);
987 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
988 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
989 1.101 ad if (error)
990 1.101 ad goto fail;
991 1.1 mycroft cgp = (struct cg *)bp->b_data;
992 1.101 ad if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
993 1.101 ad goto fail;
994 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
995 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
996 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
997 1.92 kardel cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
998 1.1 mycroft bno = dtogd(fs, bprev);
999 1.62 fvdl blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1000 1.137 dholland for (i = ffs_numfrags(fs, osize); i < frags; i++)
1001 1.101 ad if (isclr(blksfree, bno + i))
1002 1.101 ad goto fail;
1003 1.1 mycroft /*
1004 1.1 mycroft * the current fragment can be extended
1005 1.1 mycroft * deduct the count on fragment being extended into
1006 1.1 mycroft * increase the count on the remaining fragment (if any)
1007 1.1 mycroft * allocate the extended piece
1008 1.1 mycroft */
1009 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
1010 1.62 fvdl if (isclr(blksfree, bno + i))
1011 1.1 mycroft break;
1012 1.137 dholland ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1013 1.1 mycroft if (i != frags)
1014 1.30 fvdl ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1015 1.101 ad mutex_enter(&ump->um_lock);
1016 1.137 dholland for (i = ffs_numfrags(fs, osize); i < frags; i++) {
1017 1.62 fvdl clrbit(blksfree, bno + i);
1018 1.30 fvdl ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1019 1.1 mycroft fs->fs_cstotal.cs_nffree--;
1020 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
1021 1.1 mycroft }
1022 1.1 mycroft fs->fs_fmod = 1;
1023 1.101 ad ACTIVECG_CLR(fs, cg);
1024 1.101 ad mutex_exit(&ump->um_lock);
1025 1.1 mycroft bdwrite(bp);
1026 1.1 mycroft return (bprev);
1027 1.101 ad
1028 1.101 ad fail:
1029 1.132 hannken if (bp != NULL)
1030 1.132 hannken brelse(bp, 0);
1031 1.101 ad mutex_enter(&ump->um_lock);
1032 1.101 ad return (0);
1033 1.1 mycroft }
1034 1.1 mycroft
1035 1.1 mycroft /*
1036 1.1 mycroft * Determine whether a block can be allocated.
1037 1.1 mycroft *
1038 1.1 mycroft * Check to see if a block of the appropriate size is available,
1039 1.1 mycroft * and if it is, allocate it.
1040 1.1 mycroft */
1041 1.58 fvdl static daddr_t
1042 1.152 jdolecek ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
1043 1.152 jdolecek int flags)
1044 1.1 mycroft {
1045 1.101 ad struct ufsmount *ump;
1046 1.62 fvdl struct fs *fs = ip->i_fs;
1047 1.30 fvdl struct cg *cgp;
1048 1.1 mycroft struct buf *bp;
1049 1.60 fvdl int32_t bno;
1050 1.60 fvdl daddr_t blkno;
1051 1.30 fvdl int error, frags, allocsiz, i;
1052 1.62 fvdl u_int8_t *blksfree;
1053 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1054 1.1 mycroft
1055 1.101 ad ump = ip->i_ump;
1056 1.101 ad
1057 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1058 1.101 ad
1059 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1060 1.35 thorpej return (0);
1061 1.101 ad mutex_exit(&ump->um_lock);
1062 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1063 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
1064 1.101 ad if (error)
1065 1.101 ad goto fail;
1066 1.1 mycroft cgp = (struct cg *)bp->b_data;
1067 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
1068 1.101 ad (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1069 1.101 ad goto fail;
1070 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1071 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1072 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1073 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1074 1.1 mycroft if (size == fs->fs_bsize) {
1075 1.101 ad mutex_enter(&ump->um_lock);
1076 1.152 jdolecek blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
1077 1.76 hannken ACTIVECG_CLR(fs, cg);
1078 1.101 ad mutex_exit(&ump->um_lock);
1079 1.152 jdolecek
1080 1.152 jdolecek /*
1081 1.152 jdolecek * If actually needed size is lower, free the extra blocks now.
1082 1.152 jdolecek * This is safe to call here, there is no outside reference
1083 1.152 jdolecek * to this block yet. It is not necessary to keep um_lock
1084 1.152 jdolecek * locked.
1085 1.152 jdolecek */
1086 1.152 jdolecek if (realsize != 0 && realsize < size) {
1087 1.152 jdolecek ffs_blkfree_common(ip->i_ump, ip->i_fs,
1088 1.152 jdolecek ip->i_devvp->v_rdev,
1089 1.152 jdolecek bp, blkno + ffs_numfrags(fs, realsize),
1090 1.152 jdolecek (long)(size - realsize), false);
1091 1.152 jdolecek }
1092 1.152 jdolecek
1093 1.1 mycroft bdwrite(bp);
1094 1.60 fvdl return (blkno);
1095 1.1 mycroft }
1096 1.1 mycroft /*
1097 1.1 mycroft * check to see if any fragments are already available
1098 1.1 mycroft * allocsiz is the size which will be allocated, hacking
1099 1.1 mycroft * it down to a smaller size if necessary
1100 1.1 mycroft */
1101 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1102 1.137 dholland frags = ffs_numfrags(fs, size);
1103 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1104 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
1105 1.1 mycroft break;
1106 1.1 mycroft if (allocsiz == fs->fs_frag) {
1107 1.1 mycroft /*
1108 1.81 perry * no fragments were available, so a block will be
1109 1.1 mycroft * allocated, and hacked up
1110 1.1 mycroft */
1111 1.101 ad if (cgp->cg_cs.cs_nbfree == 0)
1112 1.101 ad goto fail;
1113 1.101 ad mutex_enter(&ump->um_lock);
1114 1.152 jdolecek blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
1115 1.60 fvdl bno = dtogd(fs, blkno);
1116 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
1117 1.62 fvdl setbit(blksfree, bno + i);
1118 1.1 mycroft i = fs->fs_frag - frags;
1119 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1120 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1121 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1122 1.1 mycroft fs->fs_fmod = 1;
1123 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
1124 1.76 hannken ACTIVECG_CLR(fs, cg);
1125 1.101 ad mutex_exit(&ump->um_lock);
1126 1.1 mycroft bdwrite(bp);
1127 1.60 fvdl return (blkno);
1128 1.1 mycroft }
1129 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1130 1.30 fvdl #if 0
1131 1.30 fvdl /*
1132 1.30 fvdl * XXX fvdl mapsearch will panic, and never return -1
1133 1.58 fvdl * also: returning NULL as daddr_t ?
1134 1.30 fvdl */
1135 1.101 ad if (bno < 0)
1136 1.101 ad goto fail;
1137 1.30 fvdl #endif
1138 1.1 mycroft for (i = 0; i < frags; i++)
1139 1.62 fvdl clrbit(blksfree, bno + i);
1140 1.101 ad mutex_enter(&ump->um_lock);
1141 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1142 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
1143 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
1144 1.1 mycroft fs->fs_fmod = 1;
1145 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1146 1.1 mycroft if (frags != allocsiz)
1147 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1148 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1149 1.101 ad ACTIVECG_CLR(fs, cg);
1150 1.101 ad mutex_exit(&ump->um_lock);
1151 1.1 mycroft bdwrite(bp);
1152 1.30 fvdl return blkno;
1153 1.101 ad
1154 1.101 ad fail:
1155 1.132 hannken if (bp != NULL)
1156 1.132 hannken brelse(bp, 0);
1157 1.101 ad mutex_enter(&ump->um_lock);
1158 1.101 ad return (0);
1159 1.1 mycroft }
1160 1.1 mycroft
1161 1.1 mycroft /*
1162 1.1 mycroft * Allocate a block in a cylinder group.
1163 1.1 mycroft *
1164 1.1 mycroft * This algorithm implements the following policy:
1165 1.1 mycroft * 1) allocate the requested block.
1166 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
1167 1.1 mycroft * 3) allocate the next available block on the block rotor for the
1168 1.1 mycroft * specified cylinder group.
1169 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
1170 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
1171 1.1 mycroft */
1172 1.58 fvdl static daddr_t
1173 1.152 jdolecek ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
1174 1.152 jdolecek int flags)
1175 1.1 mycroft {
1176 1.62 fvdl struct fs *fs = ip->i_fs;
1177 1.30 fvdl struct cg *cgp;
1178 1.123 sborrill int cg;
1179 1.60 fvdl daddr_t blkno;
1180 1.60 fvdl int32_t bno;
1181 1.60 fvdl u_int8_t *blksfree;
1182 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1183 1.1 mycroft
1184 1.141 martin KASSERT(mutex_owned(&ip->i_ump->um_lock));
1185 1.101 ad
1186 1.30 fvdl cgp = (struct cg *)bp->b_data;
1187 1.60 fvdl blksfree = cg_blksfree(cgp, needswap);
1188 1.30 fvdl if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1189 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
1190 1.60 fvdl } else {
1191 1.138 dholland bpref = ffs_blknum(fs, bpref);
1192 1.60 fvdl bno = dtogd(fs, bpref);
1193 1.1 mycroft /*
1194 1.60 fvdl * if the requested block is available, use it
1195 1.1 mycroft */
1196 1.138 dholland if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
1197 1.60 fvdl goto gotit;
1198 1.111 simonb /*
1199 1.111 simonb * if the requested data block isn't available and we are
1200 1.111 simonb * trying to allocate a contiguous file, return an error.
1201 1.111 simonb */
1202 1.111 simonb if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1203 1.111 simonb return (0);
1204 1.1 mycroft }
1205 1.111 simonb
1206 1.1 mycroft /*
1207 1.60 fvdl * Take the next available block in this cylinder group.
1208 1.1 mycroft */
1209 1.30 fvdl bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1210 1.152 jdolecek #if 0
1211 1.152 jdolecek /*
1212 1.152 jdolecek * XXX jdolecek ffs_mapsearch() succeeds or panics
1213 1.152 jdolecek */
1214 1.1 mycroft if (bno < 0)
1215 1.35 thorpej return (0);
1216 1.152 jdolecek #endif
1217 1.60 fvdl cgp->cg_rotor = ufs_rw32(bno, needswap);
1218 1.1 mycroft gotit:
1219 1.138 dholland blkno = ffs_fragstoblks(fs, bno);
1220 1.60 fvdl ffs_clrblock(fs, blksfree, blkno);
1221 1.30 fvdl ffs_clusteracct(fs, cgp, blkno, -1);
1222 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1223 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1224 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1225 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1226 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1227 1.73 dbj int cylno;
1228 1.73 dbj cylno = old_cbtocylno(fs, bno);
1229 1.75 dbj KASSERT(cylno >= 0);
1230 1.75 dbj KASSERT(cylno < fs->fs_old_ncyl);
1231 1.75 dbj KASSERT(old_cbtorpos(fs, bno) >= 0);
1232 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1233 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1234 1.73 dbj needswap);
1235 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1236 1.73 dbj }
1237 1.1 mycroft fs->fs_fmod = 1;
1238 1.123 sborrill cg = ufs_rw32(cgp->cg_cgx, needswap);
1239 1.123 sborrill blkno = cgbase(fs, cg) + bno;
1240 1.30 fvdl return (blkno);
1241 1.1 mycroft }
1242 1.1 mycroft
1243 1.1 mycroft /*
1244 1.1 mycroft * Determine whether an inode can be allocated.
1245 1.1 mycroft *
1246 1.1 mycroft * Check to see if an inode is available, and if it is,
1247 1.1 mycroft * allocate it using the following policy:
1248 1.1 mycroft * 1) allocate the requested inode.
1249 1.1 mycroft * 2) allocate the next available inode after the requested
1250 1.1 mycroft * inode in the specified cylinder group.
1251 1.1 mycroft */
1252 1.58 fvdl static daddr_t
1253 1.152 jdolecek ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
1254 1.152 jdolecek int flags)
1255 1.1 mycroft {
1256 1.101 ad struct ufsmount *ump = ip->i_ump;
1257 1.62 fvdl struct fs *fs = ip->i_fs;
1258 1.33 augustss struct cg *cgp;
1259 1.60 fvdl struct buf *bp, *ibp;
1260 1.60 fvdl u_int8_t *inosused;
1261 1.1 mycroft int error, start, len, loc, map, i;
1262 1.60 fvdl int32_t initediblk;
1263 1.112 hannken daddr_t nalloc;
1264 1.60 fvdl struct ufs2_dinode *dp2;
1265 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
1266 1.1 mycroft
1267 1.101 ad KASSERT(mutex_owned(&ump->um_lock));
1268 1.111 simonb UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1269 1.101 ad
1270 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1271 1.35 thorpej return (0);
1272 1.101 ad mutex_exit(&ump->um_lock);
1273 1.112 hannken ibp = NULL;
1274 1.112 hannken initediblk = -1;
1275 1.112 hannken retry:
1276 1.136 dholland error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1277 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
1278 1.101 ad if (error)
1279 1.101 ad goto fail;
1280 1.1 mycroft cgp = (struct cg *)bp->b_data;
1281 1.101 ad if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1282 1.101 ad goto fail;
1283 1.112 hannken
1284 1.112 hannken if (ibp != NULL &&
1285 1.112 hannken initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1286 1.112 hannken /* Another thread allocated more inodes so we retry the test. */
1287 1.121 ad brelse(ibp, 0);
1288 1.112 hannken ibp = NULL;
1289 1.112 hannken }
1290 1.112 hannken /*
1291 1.112 hannken * Check to see if we need to initialize more inodes.
1292 1.112 hannken */
1293 1.112 hannken if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1294 1.112 hannken initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1295 1.112 hannken nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1296 1.134 dholland if (nalloc + FFS_INOPB(fs) > initediblk &&
1297 1.112 hannken initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1298 1.112 hannken /*
1299 1.112 hannken * We have to release the cg buffer here to prevent
1300 1.112 hannken * a deadlock when reading the inode block will
1301 1.112 hannken * run a copy-on-write that might use this cg.
1302 1.112 hannken */
1303 1.112 hannken brelse(bp, 0);
1304 1.112 hannken bp = NULL;
1305 1.136 dholland error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
1306 1.112 hannken ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1307 1.112 hannken FFS_NOBLK, fs->fs_bsize, false, &ibp);
1308 1.112 hannken if (error)
1309 1.112 hannken goto fail;
1310 1.112 hannken goto retry;
1311 1.112 hannken }
1312 1.112 hannken }
1313 1.112 hannken
1314 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1315 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1316 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1317 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1318 1.60 fvdl inosused = cg_inosused(cgp, needswap);
1319 1.1 mycroft if (ipref) {
1320 1.1 mycroft ipref %= fs->fs_ipg;
1321 1.60 fvdl if (isclr(inosused, ipref))
1322 1.1 mycroft goto gotit;
1323 1.1 mycroft }
1324 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1325 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1326 1.19 bouyer NBBY);
1327 1.60 fvdl loc = skpc(0xff, len, &inosused[start]);
1328 1.1 mycroft if (loc == 0) {
1329 1.1 mycroft len = start + 1;
1330 1.1 mycroft start = 0;
1331 1.60 fvdl loc = skpc(0xff, len, &inosused[0]);
1332 1.1 mycroft if (loc == 0) {
1333 1.154 christos panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
1334 1.154 christos __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
1335 1.154 christos fs->fs_fsmnt);
1336 1.1 mycroft /* NOTREACHED */
1337 1.1 mycroft }
1338 1.1 mycroft }
1339 1.1 mycroft i = start + len - loc;
1340 1.126 rmind map = inosused[i] ^ 0xff;
1341 1.126 rmind if (map == 0) {
1342 1.154 christos panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
1343 1.1 mycroft }
1344 1.126 rmind ipref = i * NBBY + ffs(map) - 1;
1345 1.126 rmind cgp->cg_irotor = ufs_rw32(ipref, needswap);
1346 1.1 mycroft gotit:
1347 1.111 simonb UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1348 1.111 simonb mode);
1349 1.60 fvdl /*
1350 1.60 fvdl * Check to see if we need to initialize more inodes.
1351 1.60 fvdl */
1352 1.112 hannken if (ibp != NULL) {
1353 1.112 hannken KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1354 1.108 hannken memset(ibp->b_data, 0, fs->fs_bsize);
1355 1.108 hannken dp2 = (struct ufs2_dinode *)(ibp->b_data);
1356 1.134 dholland for (i = 0; i < FFS_INOPB(fs); i++) {
1357 1.60 fvdl /*
1358 1.60 fvdl * Don't bother to swap, it's supposed to be
1359 1.60 fvdl * random, after all.
1360 1.60 fvdl */
1361 1.130 tls dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
1362 1.60 fvdl dp2++;
1363 1.60 fvdl }
1364 1.134 dholland initediblk += FFS_INOPB(fs);
1365 1.60 fvdl cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1366 1.60 fvdl }
1367 1.60 fvdl
1368 1.101 ad mutex_enter(&ump->um_lock);
1369 1.76 hannken ACTIVECG_CLR(fs, cg);
1370 1.101 ad setbit(inosused, ipref);
1371 1.101 ad ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1372 1.101 ad fs->fs_cstotal.cs_nifree--;
1373 1.101 ad fs->fs_cs(fs, cg).cs_nifree--;
1374 1.101 ad fs->fs_fmod = 1;
1375 1.101 ad if ((mode & IFMT) == IFDIR) {
1376 1.101 ad ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1377 1.101 ad fs->fs_cstotal.cs_ndir++;
1378 1.101 ad fs->fs_cs(fs, cg).cs_ndir++;
1379 1.101 ad }
1380 1.101 ad mutex_exit(&ump->um_lock);
1381 1.112 hannken if (ibp != NULL) {
1382 1.157 hannken bwrite(ibp);
1383 1.112 hannken bwrite(bp);
1384 1.112 hannken } else
1385 1.112 hannken bdwrite(bp);
1386 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1387 1.101 ad fail:
1388 1.112 hannken if (bp != NULL)
1389 1.112 hannken brelse(bp, 0);
1390 1.112 hannken if (ibp != NULL)
1391 1.121 ad brelse(ibp, 0);
1392 1.101 ad mutex_enter(&ump->um_lock);
1393 1.101 ad return (0);
1394 1.1 mycroft }
1395 1.1 mycroft
1396 1.1 mycroft /*
1397 1.111 simonb * Allocate a block or fragment.
1398 1.111 simonb *
1399 1.111 simonb * The specified block or fragment is removed from the
1400 1.111 simonb * free map, possibly fragmenting a block in the process.
1401 1.111 simonb *
1402 1.111 simonb * This implementation should mirror fs_blkfree
1403 1.111 simonb *
1404 1.111 simonb * => um_lock not held on entry or exit
1405 1.111 simonb */
1406 1.111 simonb int
1407 1.111 simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1408 1.111 simonb {
1409 1.116 joerg int error;
1410 1.111 simonb
1411 1.116 joerg error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1412 1.116 joerg ip->i_dev, ip->i_uid);
1413 1.116 joerg if (error)
1414 1.116 joerg return error;
1415 1.115 joerg
1416 1.115 joerg return ffs_blkalloc_ump(ip->i_ump, bno, size);
1417 1.115 joerg }
1418 1.115 joerg
1419 1.115 joerg int
1420 1.115 joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1421 1.115 joerg {
1422 1.115 joerg struct fs *fs = ump->um_fs;
1423 1.115 joerg struct cg *cgp;
1424 1.115 joerg struct buf *bp;
1425 1.115 joerg int32_t fragno, cgbno;
1426 1.115 joerg int i, error, cg, blk, frags, bbase;
1427 1.115 joerg u_int8_t *blksfree;
1428 1.115 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1429 1.115 joerg
1430 1.134 dholland KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
1431 1.138 dholland ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
1432 1.115 joerg KASSERT(bno < fs->fs_size);
1433 1.115 joerg
1434 1.115 joerg cg = dtog(fs, bno);
1435 1.136 dholland error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
1436 1.149 maxv (int)fs->fs_cgsize, B_MODIFY, &bp);
1437 1.111 simonb if (error) {
1438 1.111 simonb return error;
1439 1.111 simonb }
1440 1.111 simonb cgp = (struct cg *)bp->b_data;
1441 1.111 simonb if (!cg_chkmagic(cgp, needswap)) {
1442 1.111 simonb brelse(bp, 0);
1443 1.111 simonb return EIO;
1444 1.111 simonb }
1445 1.111 simonb cgp->cg_old_time = ufs_rw32(time_second, needswap);
1446 1.111 simonb cgp->cg_time = ufs_rw64(time_second, needswap);
1447 1.111 simonb cgbno = dtogd(fs, bno);
1448 1.111 simonb blksfree = cg_blksfree(cgp, needswap);
1449 1.111 simonb
1450 1.111 simonb mutex_enter(&ump->um_lock);
1451 1.111 simonb if (size == fs->fs_bsize) {
1452 1.138 dholland fragno = ffs_fragstoblks(fs, cgbno);
1453 1.111 simonb if (!ffs_isblock(fs, blksfree, fragno)) {
1454 1.111 simonb mutex_exit(&ump->um_lock);
1455 1.111 simonb brelse(bp, 0);
1456 1.111 simonb return EBUSY;
1457 1.111 simonb }
1458 1.111 simonb ffs_clrblock(fs, blksfree, fragno);
1459 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1460 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1461 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1462 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1463 1.111 simonb } else {
1464 1.138 dholland bbase = cgbno - ffs_fragnum(fs, cgbno);
1465 1.111 simonb
1466 1.137 dholland frags = ffs_numfrags(fs, size);
1467 1.111 simonb for (i = 0; i < frags; i++) {
1468 1.111 simonb if (isclr(blksfree, cgbno + i)) {
1469 1.111 simonb mutex_exit(&ump->um_lock);
1470 1.111 simonb brelse(bp, 0);
1471 1.111 simonb return EBUSY;
1472 1.111 simonb }
1473 1.111 simonb }
1474 1.111 simonb /*
1475 1.111 simonb * if a complete block is being split, account for it
1476 1.111 simonb */
1477 1.138 dholland fragno = ffs_fragstoblks(fs, bbase);
1478 1.111 simonb if (ffs_isblock(fs, blksfree, fragno)) {
1479 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1480 1.111 simonb fs->fs_cstotal.cs_nffree += fs->fs_frag;
1481 1.111 simonb fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1482 1.111 simonb ffs_clusteracct(fs, cgp, fragno, -1);
1483 1.111 simonb ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1484 1.111 simonb fs->fs_cstotal.cs_nbfree--;
1485 1.111 simonb fs->fs_cs(fs, cg).cs_nbfree--;
1486 1.111 simonb }
1487 1.111 simonb /*
1488 1.111 simonb * decrement the counts associated with the old frags
1489 1.111 simonb */
1490 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1491 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1492 1.111 simonb /*
1493 1.111 simonb * allocate the fragment
1494 1.111 simonb */
1495 1.111 simonb for (i = 0; i < frags; i++) {
1496 1.111 simonb clrbit(blksfree, cgbno + i);
1497 1.111 simonb }
1498 1.111 simonb ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1499 1.111 simonb fs->fs_cstotal.cs_nffree -= i;
1500 1.111 simonb fs->fs_cs(fs, cg).cs_nffree -= i;
1501 1.111 simonb /*
1502 1.111 simonb * add back in counts associated with the new frags
1503 1.111 simonb */
1504 1.111 simonb blk = blkmap(fs, blksfree, bbase);
1505 1.111 simonb ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1506 1.111 simonb }
1507 1.111 simonb fs->fs_fmod = 1;
1508 1.111 simonb ACTIVECG_CLR(fs, cg);
1509 1.111 simonb mutex_exit(&ump->um_lock);
1510 1.111 simonb bdwrite(bp);
1511 1.111 simonb return 0;
1512 1.111 simonb }
1513 1.111 simonb
1514 1.111 simonb /*
1515 1.1 mycroft * Free a block or fragment.
1516 1.1 mycroft *
1517 1.1 mycroft * The specified block or fragment is placed back in the
1518 1.81 perry * free map. If a fragment is deallocated, a possible
1519 1.1 mycroft * block reassembly is checked.
1520 1.106 pooka *
1521 1.106 pooka * => um_lock not held on entry or exit
1522 1.1 mycroft */
1523 1.131 drochner static void
1524 1.131 drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
1525 1.1 mycroft {
1526 1.33 augustss struct cg *cgp;
1527 1.1 mycroft struct buf *bp;
1528 1.76 hannken struct ufsmount *ump;
1529 1.76 hannken daddr_t cgblkno;
1530 1.116 joerg int error, cg;
1531 1.76 hannken dev_t dev;
1532 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1533 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1534 1.1 mycroft
1535 1.116 joerg KASSERT(!devvp_is_snapshot);
1536 1.116 joerg
1537 1.76 hannken cg = dtog(fs, bno);
1538 1.116 joerg dev = devvp->v_rdev;
1539 1.140 hannken ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1540 1.119 joerg KASSERT(fs == ump->um_fs);
1541 1.136 dholland cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
1542 1.116 joerg
1543 1.116 joerg error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1544 1.149 maxv B_MODIFY, &bp);
1545 1.116 joerg if (error) {
1546 1.116 joerg return;
1547 1.76 hannken }
1548 1.116 joerg cgp = (struct cg *)bp->b_data;
1549 1.116 joerg if (!cg_chkmagic(cgp, needswap)) {
1550 1.116 joerg brelse(bp, 0);
1551 1.116 joerg return;
1552 1.1 mycroft }
1553 1.76 hannken
1554 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1555 1.119 joerg
1556 1.119 joerg bdwrite(bp);
1557 1.116 joerg }
1558 1.116 joerg
1559 1.131 drochner struct discardopdata {
1560 1.131 drochner struct work wk; /* must be first */
1561 1.131 drochner struct vnode *devvp;
1562 1.131 drochner daddr_t bno;
1563 1.131 drochner long size;
1564 1.131 drochner };
1565 1.131 drochner
1566 1.131 drochner struct discarddata {
1567 1.131 drochner struct fs *fs;
1568 1.131 drochner struct discardopdata *entry;
1569 1.131 drochner long maxsize;
1570 1.131 drochner kmutex_t entrylk;
1571 1.131 drochner struct workqueue *wq;
1572 1.131 drochner int wqcnt, wqdraining;
1573 1.131 drochner kmutex_t wqlk;
1574 1.131 drochner kcondvar_t wqcv;
1575 1.131 drochner /* timer for flush? */
1576 1.131 drochner };
1577 1.131 drochner
1578 1.131 drochner static void
1579 1.131 drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
1580 1.131 drochner {
1581 1.151 riastrad struct mount *mp = spec_node_getmountedfs(td->devvp);
1582 1.131 drochner long todo;
1583 1.151 riastrad int error;
1584 1.131 drochner
1585 1.131 drochner while (td->size) {
1586 1.131 drochner todo = min(td->size,
1587 1.138 dholland ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
1588 1.151 riastrad error = UFS_WAPBL_BEGIN(mp);
1589 1.151 riastrad if (error) {
1590 1.151 riastrad printf("ffs: failed to begin wapbl transaction"
1591 1.151 riastrad " for discard: %d\n", error);
1592 1.151 riastrad break;
1593 1.151 riastrad }
1594 1.131 drochner ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
1595 1.151 riastrad UFS_WAPBL_END(mp);
1596 1.137 dholland td->bno += ffs_numfrags(fs, todo);
1597 1.131 drochner td->size -= todo;
1598 1.131 drochner }
1599 1.131 drochner }
1600 1.131 drochner
1601 1.131 drochner static void
1602 1.131 drochner ffs_discardcb(struct work *wk, void *arg)
1603 1.131 drochner {
1604 1.131 drochner struct discardopdata *td = (void *)wk;
1605 1.131 drochner struct discarddata *ts = arg;
1606 1.131 drochner struct fs *fs = ts->fs;
1607 1.146 dholland off_t start, len;
1608 1.139 martin #ifdef TRIMDEBUG
1609 1.131 drochner int error;
1610 1.139 martin #endif
1611 1.131 drochner
1612 1.146 dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
1613 1.146 dholland #ifndef FFS_FSBTOBYTES
1614 1.146 dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
1615 1.146 dholland #endif
1616 1.146 dholland
1617 1.146 dholland start = FFS_FSBTOBYTES(fs, td->bno);
1618 1.146 dholland len = td->size;
1619 1.139 martin #ifdef TRIMDEBUG
1620 1.139 martin error =
1621 1.139 martin #endif
1622 1.146 dholland VOP_FDISCARD(td->devvp, start, len);
1623 1.131 drochner #ifdef TRIMDEBUG
1624 1.131 drochner printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
1625 1.131 drochner #endif
1626 1.131 drochner
1627 1.131 drochner ffs_blkfree_td(fs, td);
1628 1.131 drochner kmem_free(td, sizeof(*td));
1629 1.131 drochner mutex_enter(&ts->wqlk);
1630 1.131 drochner ts->wqcnt--;
1631 1.131 drochner if (ts->wqdraining && !ts->wqcnt)
1632 1.131 drochner cv_signal(&ts->wqcv);
1633 1.131 drochner mutex_exit(&ts->wqlk);
1634 1.131 drochner }
1635 1.131 drochner
1636 1.131 drochner void *
1637 1.131 drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
1638 1.131 drochner {
1639 1.131 drochner struct discarddata *ts;
1640 1.131 drochner int error;
1641 1.131 drochner
1642 1.131 drochner ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
1643 1.131 drochner error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
1644 1.131 drochner 0, 0, 0);
1645 1.131 drochner if (error) {
1646 1.131 drochner kmem_free(ts, sizeof (*ts));
1647 1.131 drochner return NULL;
1648 1.131 drochner }
1649 1.131 drochner mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
1650 1.131 drochner mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
1651 1.131 drochner cv_init(&ts->wqcv, "trimwqcv");
1652 1.146 dholland ts->maxsize = 100*1024; /* XXX */
1653 1.131 drochner ts->fs = fs;
1654 1.131 drochner return ts;
1655 1.131 drochner }
1656 1.131 drochner
1657 1.131 drochner void
1658 1.131 drochner ffs_discard_finish(void *vts, int flags)
1659 1.131 drochner {
1660 1.131 drochner struct discarddata *ts = vts;
1661 1.131 drochner struct discardopdata *td = NULL;
1662 1.131 drochner int res = 0;
1663 1.131 drochner
1664 1.131 drochner /* wait for workqueue to drain */
1665 1.131 drochner mutex_enter(&ts->wqlk);
1666 1.131 drochner if (ts->wqcnt) {
1667 1.131 drochner ts->wqdraining = 1;
1668 1.131 drochner res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
1669 1.131 drochner }
1670 1.131 drochner mutex_exit(&ts->wqlk);
1671 1.131 drochner if (res)
1672 1.131 drochner printf("ffs_discarddata drain timeout\n");
1673 1.131 drochner
1674 1.131 drochner mutex_enter(&ts->entrylk);
1675 1.131 drochner if (ts->entry) {
1676 1.131 drochner td = ts->entry;
1677 1.131 drochner ts->entry = NULL;
1678 1.131 drochner }
1679 1.131 drochner mutex_exit(&ts->entrylk);
1680 1.131 drochner if (td) {
1681 1.131 drochner /* XXX don't tell disk, its optional */
1682 1.131 drochner ffs_blkfree_td(ts->fs, td);
1683 1.131 drochner #ifdef TRIMDEBUG
1684 1.131 drochner printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
1685 1.131 drochner #endif
1686 1.131 drochner kmem_free(td, sizeof(*td));
1687 1.131 drochner }
1688 1.131 drochner
1689 1.131 drochner cv_destroy(&ts->wqcv);
1690 1.131 drochner mutex_destroy(&ts->entrylk);
1691 1.131 drochner mutex_destroy(&ts->wqlk);
1692 1.131 drochner workqueue_destroy(ts->wq);
1693 1.131 drochner kmem_free(ts, sizeof(*ts));
1694 1.131 drochner }
1695 1.131 drochner
1696 1.131 drochner void
1697 1.131 drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1698 1.131 drochner ino_t inum)
1699 1.131 drochner {
1700 1.131 drochner struct ufsmount *ump;
1701 1.131 drochner int error;
1702 1.131 drochner dev_t dev;
1703 1.131 drochner struct discarddata *ts;
1704 1.131 drochner struct discardopdata *td;
1705 1.131 drochner
1706 1.131 drochner dev = devvp->v_rdev;
1707 1.140 hannken ump = VFSTOUFS(spec_node_getmountedfs(devvp));
1708 1.131 drochner if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1709 1.131 drochner return;
1710 1.131 drochner
1711 1.131 drochner error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1712 1.131 drochner if (error)
1713 1.131 drochner return;
1714 1.131 drochner
1715 1.131 drochner if (!ump->um_discarddata) {
1716 1.131 drochner ffs_blkfree_cg(fs, devvp, bno, size);
1717 1.131 drochner return;
1718 1.131 drochner }
1719 1.131 drochner
1720 1.131 drochner #ifdef TRIMDEBUG
1721 1.131 drochner printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
1722 1.131 drochner #endif
1723 1.131 drochner ts = ump->um_discarddata;
1724 1.131 drochner td = NULL;
1725 1.131 drochner
1726 1.131 drochner mutex_enter(&ts->entrylk);
1727 1.131 drochner if (ts->entry) {
1728 1.131 drochner td = ts->entry;
1729 1.131 drochner /* ffs deallocs backwards, check for prepend only */
1730 1.137 dholland if (td->bno == bno + ffs_numfrags(fs, size)
1731 1.131 drochner && td->size + size <= ts->maxsize) {
1732 1.131 drochner td->bno = bno;
1733 1.131 drochner td->size += size;
1734 1.131 drochner if (td->size < ts->maxsize) {
1735 1.131 drochner #ifdef TRIMDEBUG
1736 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1737 1.131 drochner #endif
1738 1.131 drochner mutex_exit(&ts->entrylk);
1739 1.131 drochner return;
1740 1.131 drochner }
1741 1.131 drochner size = 0; /* mark done */
1742 1.131 drochner }
1743 1.131 drochner ts->entry = NULL;
1744 1.131 drochner }
1745 1.131 drochner mutex_exit(&ts->entrylk);
1746 1.131 drochner
1747 1.131 drochner if (td) {
1748 1.131 drochner #ifdef TRIMDEBUG
1749 1.131 drochner printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
1750 1.131 drochner #endif
1751 1.131 drochner mutex_enter(&ts->wqlk);
1752 1.131 drochner ts->wqcnt++;
1753 1.131 drochner mutex_exit(&ts->wqlk);
1754 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1755 1.131 drochner }
1756 1.131 drochner if (!size)
1757 1.131 drochner return;
1758 1.131 drochner
1759 1.131 drochner td = kmem_alloc(sizeof(*td), KM_SLEEP);
1760 1.131 drochner td->devvp = devvp;
1761 1.131 drochner td->bno = bno;
1762 1.131 drochner td->size = size;
1763 1.131 drochner
1764 1.131 drochner if (td->size < ts->maxsize) { /* XXX always the case */
1765 1.131 drochner mutex_enter(&ts->entrylk);
1766 1.131 drochner if (!ts->entry) { /* possible race? */
1767 1.131 drochner #ifdef TRIMDEBUG
1768 1.131 drochner printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
1769 1.131 drochner #endif
1770 1.131 drochner ts->entry = td;
1771 1.131 drochner td = NULL;
1772 1.131 drochner }
1773 1.131 drochner mutex_exit(&ts->entrylk);
1774 1.131 drochner }
1775 1.131 drochner if (td) {
1776 1.131 drochner #ifdef TRIMDEBUG
1777 1.131 drochner printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
1778 1.131 drochner #endif
1779 1.131 drochner mutex_enter(&ts->wqlk);
1780 1.131 drochner ts->wqcnt++;
1781 1.131 drochner mutex_exit(&ts->wqlk);
1782 1.131 drochner workqueue_enqueue(ts->wq, &td->wk, NULL);
1783 1.131 drochner }
1784 1.131 drochner }
1785 1.131 drochner
1786 1.116 joerg /*
1787 1.116 joerg * Free a block or fragment from a snapshot cg copy.
1788 1.116 joerg *
1789 1.116 joerg * The specified block or fragment is placed back in the
1790 1.116 joerg * free map. If a fragment is deallocated, a possible
1791 1.116 joerg * block reassembly is checked.
1792 1.116 joerg *
1793 1.116 joerg * => um_lock not held on entry or exit
1794 1.116 joerg */
1795 1.116 joerg void
1796 1.116 joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1797 1.116 joerg ino_t inum)
1798 1.116 joerg {
1799 1.116 joerg struct cg *cgp;
1800 1.116 joerg struct buf *bp;
1801 1.116 joerg struct ufsmount *ump;
1802 1.116 joerg daddr_t cgblkno;
1803 1.116 joerg int error, cg;
1804 1.116 joerg dev_t dev;
1805 1.116 joerg const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1806 1.118 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1807 1.116 joerg
1808 1.116 joerg KASSERT(devvp_is_snapshot);
1809 1.116 joerg
1810 1.116 joerg cg = dtog(fs, bno);
1811 1.116 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
1812 1.116 joerg ump = VFSTOUFS(devvp->v_mount);
1813 1.138 dholland cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
1814 1.116 joerg
1815 1.116 joerg error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1816 1.116 joerg if (error)
1817 1.1 mycroft return;
1818 1.116 joerg
1819 1.107 hannken error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1820 1.149 maxv B_MODIFY, &bp);
1821 1.1 mycroft if (error) {
1822 1.1 mycroft return;
1823 1.1 mycroft }
1824 1.1 mycroft cgp = (struct cg *)bp->b_data;
1825 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1826 1.101 ad brelse(bp, 0);
1827 1.1 mycroft return;
1828 1.1 mycroft }
1829 1.116 joerg
1830 1.119 joerg ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1831 1.119 joerg
1832 1.119 joerg bdwrite(bp);
1833 1.116 joerg }
1834 1.116 joerg
1835 1.116 joerg static void
1836 1.119 joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1837 1.119 joerg struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1838 1.116 joerg {
1839 1.116 joerg struct cg *cgp;
1840 1.116 joerg int32_t fragno, cgbno;
1841 1.116 joerg int i, cg, blk, frags, bbase;
1842 1.116 joerg u_int8_t *blksfree;
1843 1.116 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1844 1.116 joerg
1845 1.116 joerg cg = dtog(fs, bno);
1846 1.116 joerg cgp = (struct cg *)bp->b_data;
1847 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
1848 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1849 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
1850 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
1851 1.60 fvdl cgbno = dtogd(fs, bno);
1852 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
1853 1.101 ad mutex_enter(&ump->um_lock);
1854 1.1 mycroft if (size == fs->fs_bsize) {
1855 1.138 dholland fragno = ffs_fragstoblks(fs, cgbno);
1856 1.62 fvdl if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1857 1.113 hannken if (devvp_is_snapshot) {
1858 1.101 ad mutex_exit(&ump->um_lock);
1859 1.76 hannken return;
1860 1.76 hannken }
1861 1.154 christos panic("%s: freeing free block: dev = 0x%llx, block = %"
1862 1.154 christos PRId64 ", fs = %s", __func__,
1863 1.120 christos (unsigned long long)dev, bno, fs->fs_fsmnt);
1864 1.1 mycroft }
1865 1.62 fvdl ffs_setblock(fs, blksfree, fragno);
1866 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1867 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1868 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1869 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1870 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1871 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1872 1.73 dbj i = old_cbtocylno(fs, cgbno);
1873 1.75 dbj KASSERT(i >= 0);
1874 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1875 1.75 dbj KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1876 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1877 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1878 1.73 dbj needswap);
1879 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1880 1.73 dbj }
1881 1.1 mycroft } else {
1882 1.138 dholland bbase = cgbno - ffs_fragnum(fs, cgbno);
1883 1.1 mycroft /*
1884 1.1 mycroft * decrement the counts associated with the old frags
1885 1.1 mycroft */
1886 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1887 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1888 1.1 mycroft /*
1889 1.1 mycroft * deallocate the fragment
1890 1.1 mycroft */
1891 1.137 dholland frags = ffs_numfrags(fs, size);
1892 1.1 mycroft for (i = 0; i < frags; i++) {
1893 1.62 fvdl if (isset(blksfree, cgbno + i)) {
1894 1.154 christos panic("%s: freeing free frag: "
1895 1.154 christos "dev = 0x%llx, block = %" PRId64
1896 1.154 christos ", fs = %s", __func__,
1897 1.120 christos (unsigned long long)dev, bno + i,
1898 1.120 christos fs->fs_fsmnt);
1899 1.1 mycroft }
1900 1.62 fvdl setbit(blksfree, cgbno + i);
1901 1.1 mycroft }
1902 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1903 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1904 1.30 fvdl fs->fs_cs(fs, cg).cs_nffree += i;
1905 1.1 mycroft /*
1906 1.1 mycroft * add back in counts associated with the new frags
1907 1.1 mycroft */
1908 1.62 fvdl blk = blkmap(fs, blksfree, bbase);
1909 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1910 1.1 mycroft /*
1911 1.1 mycroft * if a complete block has been reassembled, account for it
1912 1.1 mycroft */
1913 1.138 dholland fragno = ffs_fragstoblks(fs, bbase);
1914 1.62 fvdl if (ffs_isblock(fs, blksfree, fragno)) {
1915 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1916 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1917 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1918 1.60 fvdl ffs_clusteracct(fs, cgp, fragno, 1);
1919 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1920 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1921 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1922 1.73 dbj if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1923 1.73 dbj ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1924 1.73 dbj i = old_cbtocylno(fs, bbase);
1925 1.75 dbj KASSERT(i >= 0);
1926 1.75 dbj KASSERT(i < fs->fs_old_ncyl);
1927 1.75 dbj KASSERT(old_cbtorpos(fs, bbase) >= 0);
1928 1.75 dbj KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1929 1.73 dbj ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1930 1.73 dbj bbase)], 1, needswap);
1931 1.73 dbj ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1932 1.73 dbj }
1933 1.1 mycroft }
1934 1.1 mycroft }
1935 1.1 mycroft fs->fs_fmod = 1;
1936 1.76 hannken ACTIVECG_CLR(fs, cg);
1937 1.101 ad mutex_exit(&ump->um_lock);
1938 1.1 mycroft }
1939 1.1 mycroft
1940 1.1 mycroft /*
1941 1.1 mycroft * Free an inode.
1942 1.30 fvdl */
1943 1.30 fvdl int
1944 1.88 yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1945 1.30 fvdl {
1946 1.30 fvdl
1947 1.119 joerg return ffs_freefile(vp->v_mount, ino, mode);
1948 1.30 fvdl }
1949 1.30 fvdl
1950 1.30 fvdl /*
1951 1.30 fvdl * Do the actual free operation.
1952 1.1 mycroft * The specified inode is placed back in the free map.
1953 1.111 simonb *
1954 1.111 simonb * => um_lock not held on entry or exit
1955 1.1 mycroft */
1956 1.1 mycroft int
1957 1.119 joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
1958 1.119 joerg {
1959 1.119 joerg struct ufsmount *ump = VFSTOUFS(mp);
1960 1.119 joerg struct fs *fs = ump->um_fs;
1961 1.119 joerg struct vnode *devvp;
1962 1.119 joerg struct cg *cgp;
1963 1.119 joerg struct buf *bp;
1964 1.119 joerg int error, cg;
1965 1.119 joerg daddr_t cgbno;
1966 1.119 joerg dev_t dev;
1967 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
1968 1.119 joerg
1969 1.119 joerg cg = ino_to_cg(fs, ino);
1970 1.119 joerg devvp = ump->um_devvp;
1971 1.119 joerg dev = devvp->v_rdev;
1972 1.136 dholland cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
1973 1.119 joerg
1974 1.119 joerg if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1975 1.154 christos panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
1976 1.120 christos (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1977 1.119 joerg error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1978 1.149 maxv B_MODIFY, &bp);
1979 1.119 joerg if (error) {
1980 1.119 joerg return (error);
1981 1.119 joerg }
1982 1.119 joerg cgp = (struct cg *)bp->b_data;
1983 1.119 joerg if (!cg_chkmagic(cgp, needswap)) {
1984 1.119 joerg brelse(bp, 0);
1985 1.119 joerg return (0);
1986 1.119 joerg }
1987 1.119 joerg
1988 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1989 1.119 joerg
1990 1.119 joerg bdwrite(bp);
1991 1.119 joerg
1992 1.119 joerg return 0;
1993 1.119 joerg }
1994 1.119 joerg
1995 1.119 joerg int
1996 1.119 joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1997 1.9 christos {
1998 1.101 ad struct ufsmount *ump;
1999 1.33 augustss struct cg *cgp;
2000 1.1 mycroft struct buf *bp;
2001 1.1 mycroft int error, cg;
2002 1.76 hannken daddr_t cgbno;
2003 1.78 hannken dev_t dev;
2004 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2005 1.1 mycroft
2006 1.119 joerg KASSERT(devvp->v_type != VBLK);
2007 1.111 simonb
2008 1.76 hannken cg = ino_to_cg(fs, ino);
2009 1.119 joerg dev = VTOI(devvp)->i_devvp->v_rdev;
2010 1.119 joerg ump = VFSTOUFS(devvp->v_mount);
2011 1.138 dholland cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
2012 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2013 1.154 christos panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
2014 1.120 christos (unsigned long long)dev, (unsigned long long)ino,
2015 1.120 christos fs->fs_fsmnt);
2016 1.107 hannken error = bread(devvp, cgbno, (int)fs->fs_cgsize,
2017 1.149 maxv B_MODIFY, &bp);
2018 1.1 mycroft if (error) {
2019 1.30 fvdl return (error);
2020 1.1 mycroft }
2021 1.1 mycroft cgp = (struct cg *)bp->b_data;
2022 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
2023 1.101 ad brelse(bp, 0);
2024 1.1 mycroft return (0);
2025 1.1 mycroft }
2026 1.119 joerg ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
2027 1.119 joerg
2028 1.119 joerg bdwrite(bp);
2029 1.119 joerg
2030 1.119 joerg return 0;
2031 1.119 joerg }
2032 1.119 joerg
2033 1.119 joerg static void
2034 1.119 joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
2035 1.119 joerg struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
2036 1.119 joerg {
2037 1.119 joerg int cg;
2038 1.119 joerg struct cg *cgp;
2039 1.119 joerg u_int8_t *inosused;
2040 1.119 joerg const int needswap = UFS_FSNEEDSWAP(fs);
2041 1.119 joerg
2042 1.119 joerg cg = ino_to_cg(fs, ino);
2043 1.119 joerg cgp = (struct cg *)bp->b_data;
2044 1.92 kardel cgp->cg_old_time = ufs_rw32(time_second, needswap);
2045 1.73 dbj if ((fs->fs_magic != FS_UFS1_MAGIC) ||
2046 1.73 dbj (fs->fs_old_flags & FS_FLAGS_UPDATED))
2047 1.92 kardel cgp->cg_time = ufs_rw64(time_second, needswap);
2048 1.62 fvdl inosused = cg_inosused(cgp, needswap);
2049 1.1 mycroft ino %= fs->fs_ipg;
2050 1.62 fvdl if (isclr(inosused, ino)) {
2051 1.120 christos printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
2052 1.120 christos (unsigned long long)dev, (unsigned long long)ino +
2053 1.120 christos cg * fs->fs_ipg, fs->fs_fsmnt);
2054 1.1 mycroft if (fs->fs_ronly == 0)
2055 1.154 christos panic("%s: freeing free inode", __func__);
2056 1.1 mycroft }
2057 1.62 fvdl clrbit(inosused, ino);
2058 1.113 hannken if (!devvp_is_snapshot)
2059 1.119 joerg UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
2060 1.113 hannken ino + cg * fs->fs_ipg, mode);
2061 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
2062 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
2063 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
2064 1.101 ad mutex_enter(&ump->um_lock);
2065 1.1 mycroft fs->fs_cstotal.cs_nifree++;
2066 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
2067 1.78 hannken if ((mode & IFMT) == IFDIR) {
2068 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
2069 1.1 mycroft fs->fs_cstotal.cs_ndir--;
2070 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
2071 1.1 mycroft }
2072 1.1 mycroft fs->fs_fmod = 1;
2073 1.82 hannken ACTIVECG_CLR(fs, cg);
2074 1.101 ad mutex_exit(&ump->um_lock);
2075 1.1 mycroft }
2076 1.1 mycroft
2077 1.1 mycroft /*
2078 1.76 hannken * Check to see if a file is free.
2079 1.76 hannken */
2080 1.76 hannken int
2081 1.85 thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
2082 1.76 hannken {
2083 1.76 hannken struct cg *cgp;
2084 1.76 hannken struct buf *bp;
2085 1.76 hannken daddr_t cgbno;
2086 1.76 hannken int ret, cg;
2087 1.76 hannken u_int8_t *inosused;
2088 1.113 hannken const bool devvp_is_snapshot = (devvp->v_type != VBLK);
2089 1.76 hannken
2090 1.119 joerg KASSERT(devvp_is_snapshot);
2091 1.119 joerg
2092 1.76 hannken cg = ino_to_cg(fs, ino);
2093 1.113 hannken if (devvp_is_snapshot)
2094 1.138 dholland cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
2095 1.113 hannken else
2096 1.136 dholland cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
2097 1.76 hannken if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2098 1.76 hannken return 1;
2099 1.149 maxv if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
2100 1.76 hannken return 1;
2101 1.76 hannken }
2102 1.76 hannken cgp = (struct cg *)bp->b_data;
2103 1.76 hannken if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
2104 1.101 ad brelse(bp, 0);
2105 1.76 hannken return 1;
2106 1.76 hannken }
2107 1.76 hannken inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
2108 1.76 hannken ino %= fs->fs_ipg;
2109 1.76 hannken ret = isclr(inosused, ino);
2110 1.101 ad brelse(bp, 0);
2111 1.76 hannken return ret;
2112 1.76 hannken }
2113 1.76 hannken
2114 1.76 hannken /*
2115 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
2116 1.1 mycroft *
2117 1.1 mycroft * It is a panic if a request is made to find a block if none are
2118 1.1 mycroft * available.
2119 1.1 mycroft */
2120 1.60 fvdl static int32_t
2121 1.85 thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
2122 1.1 mycroft {
2123 1.60 fvdl int32_t bno;
2124 1.1 mycroft int start, len, loc, i;
2125 1.1 mycroft int blk, field, subfield, pos;
2126 1.19 bouyer int ostart, olen;
2127 1.62 fvdl u_int8_t *blksfree;
2128 1.30 fvdl const int needswap = UFS_FSNEEDSWAP(fs);
2129 1.1 mycroft
2130 1.101 ad /* KASSERT(mutex_owned(&ump->um_lock)); */
2131 1.101 ad
2132 1.1 mycroft /*
2133 1.1 mycroft * find the fragment by searching through the free block
2134 1.1 mycroft * map for an appropriate bit pattern
2135 1.1 mycroft */
2136 1.1 mycroft if (bpref)
2137 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
2138 1.1 mycroft else
2139 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
2140 1.62 fvdl blksfree = cg_blksfree(cgp, needswap);
2141 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
2142 1.19 bouyer ostart = start;
2143 1.19 bouyer olen = len;
2144 1.45 lukem loc = scanc((u_int)len,
2145 1.62 fvdl (const u_char *)&blksfree[start],
2146 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2147 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2148 1.1 mycroft if (loc == 0) {
2149 1.1 mycroft len = start + 1;
2150 1.1 mycroft start = 0;
2151 1.45 lukem loc = scanc((u_int)len,
2152 1.62 fvdl (const u_char *)&blksfree[0],
2153 1.45 lukem (const u_char *)fragtbl[fs->fs_frag],
2154 1.54 mycroft (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
2155 1.1 mycroft if (loc == 0) {
2156 1.154 christos panic("%s: map corrupted: start=%d, len=%d, "
2157 1.154 christos "fs = %s, offset=%d/%ld, cg %d", __func__,
2158 1.154 christos ostart, olen, fs->fs_fsmnt,
2159 1.154 christos ufs_rw32(cgp->cg_freeoff, needswap),
2160 1.154 christos (long)blksfree - (long)cgp, cgp->cg_cgx);
2161 1.1 mycroft /* NOTREACHED */
2162 1.1 mycroft }
2163 1.1 mycroft }
2164 1.1 mycroft bno = (start + len - loc) * NBBY;
2165 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
2166 1.1 mycroft /*
2167 1.1 mycroft * found the byte in the map
2168 1.1 mycroft * sift through the bits to find the selected frag
2169 1.1 mycroft */
2170 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2171 1.62 fvdl blk = blkmap(fs, blksfree, bno);
2172 1.1 mycroft blk <<= 1;
2173 1.1 mycroft field = around[allocsiz];
2174 1.1 mycroft subfield = inside[allocsiz];
2175 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2176 1.1 mycroft if ((blk & field) == subfield)
2177 1.1 mycroft return (bno + pos);
2178 1.1 mycroft field <<= 1;
2179 1.1 mycroft subfield <<= 1;
2180 1.1 mycroft }
2181 1.1 mycroft }
2182 1.154 christos panic("%s: block not in map: bno=%d, fs=%s", __func__,
2183 1.154 christos bno, fs->fs_fsmnt);
2184 1.58 fvdl /* return (-1); */
2185 1.1 mycroft }
2186 1.1 mycroft
2187 1.1 mycroft /*
2188 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
2189 1.81 perry *
2190 1.1 mycroft * The form of the error message is:
2191 1.1 mycroft * fs: error message
2192 1.1 mycroft */
2193 1.1 mycroft static void
2194 1.150 mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
2195 1.1 mycroft {
2196 1.150 mlelstv KASSERT(cred != NULL);
2197 1.1 mycroft
2198 1.150 mlelstv if (cred == NOCRED || cred == FSCRED) {
2199 1.150 mlelstv log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
2200 1.150 mlelstv curproc->p_pid, curproc->p_comm,
2201 1.150 mlelstv fs->fs_fsmnt, cp);
2202 1.150 mlelstv } else {
2203 1.150 mlelstv log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2204 1.150 mlelstv kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
2205 1.150 mlelstv fs->fs_fsmnt, cp);
2206 1.150 mlelstv }
2207 1.1 mycroft }
2208