Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.157
      1  1.157   hannken /*	$NetBSD: ffs_alloc.c,v 1.157 2017/07/12 09:30:16 hannken Exp $	*/
      2  1.111    simonb 
      3  1.111    simonb /*-
      4  1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5  1.111    simonb  * All rights reserved.
      6  1.111    simonb  *
      7  1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8  1.111    simonb  * by Wasabi Systems, Inc.
      9  1.111    simonb  *
     10  1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11  1.111    simonb  * modification, are permitted provided that the following conditions
     12  1.111    simonb  * are met:
     13  1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14  1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15  1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17  1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18  1.111    simonb  *
     19  1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30  1.111    simonb  */
     31    1.2       cgd 
     32    1.1   mycroft /*
     33   1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34   1.60      fvdl  * All rights reserved.
     35   1.60      fvdl  *
     36   1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37   1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38   1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39   1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40   1.60      fvdl  * research program
     41   1.60      fvdl  *
     42    1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43    1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44    1.1   mycroft  *
     45    1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46    1.1   mycroft  * modification, are permitted provided that the following conditions
     47    1.1   mycroft  * are met:
     48    1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49    1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50    1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51    1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52    1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53   1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54    1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55    1.1   mycroft  *    without specific prior written permission.
     56    1.1   mycroft  *
     57    1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58    1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59    1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60    1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61    1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62    1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63    1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64    1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65    1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66    1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67    1.1   mycroft  * SUCH DAMAGE.
     68    1.1   mycroft  *
     69   1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70    1.1   mycroft  */
     71   1.53     lukem 
     72   1.53     lukem #include <sys/cdefs.h>
     73  1.157   hannken __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.157 2017/07/12 09:30:16 hannken Exp $");
     74   1.17       mrg 
     75   1.43       mrg #if defined(_KERNEL_OPT)
     76   1.27   thorpej #include "opt_ffs.h"
     77   1.21    scottr #include "opt_quota.h"
     78  1.129       chs #include "opt_uvm_page_trkown.h"
     79   1.22    scottr #endif
     80    1.1   mycroft 
     81    1.1   mycroft #include <sys/param.h>
     82    1.1   mycroft #include <sys/systm.h>
     83    1.1   mycroft #include <sys/buf.h>
     84  1.130       tls #include <sys/cprng.h>
     85  1.111    simonb #include <sys/kauth.h>
     86  1.111    simonb #include <sys/kernel.h>
     87  1.111    simonb #include <sys/mount.h>
     88    1.1   mycroft #include <sys/proc.h>
     89  1.111    simonb #include <sys/syslog.h>
     90    1.1   mycroft #include <sys/vnode.h>
     91  1.111    simonb #include <sys/wapbl.h>
     92  1.147     joerg #include <sys/cprng.h>
     93   1.29       mrg 
     94   1.76   hannken #include <miscfs/specfs/specdev.h>
     95    1.1   mycroft #include <ufs/ufs/quota.h>
     96   1.19    bouyer #include <ufs/ufs/ufsmount.h>
     97    1.1   mycroft #include <ufs/ufs/inode.h>
     98    1.9  christos #include <ufs/ufs/ufs_extern.h>
     99   1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    100  1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    101    1.1   mycroft 
    102    1.1   mycroft #include <ufs/ffs/fs.h>
    103    1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    104    1.1   mycroft 
    105  1.129       chs #ifdef UVM_PAGE_TRKOWN
    106  1.129       chs #include <uvm/uvm.h>
    107  1.129       chs #endif
    108  1.129       chs 
    109  1.152  jdolecek static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
    110  1.152  jdolecek static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    111   1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    112   1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    113  1.150   mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    114  1.152  jdolecek static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
    115  1.152  jdolecek     daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
    116  1.152  jdolecek static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
    117   1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    118   1.85   thorpej 				      daddr_t, int);
    119  1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    120  1.116     joerg     daddr_t, long, bool);
    121  1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    122  1.119     joerg     int, bool);
    123   1.23  drochner 
    124   1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    125   1.34  jdolecek int ffs_log_changeopt = 0;
    126   1.34  jdolecek 
    127   1.23  drochner /* in ffs_tables.c */
    128   1.40  jdolecek extern const int inside[], around[];
    129   1.40  jdolecek extern const u_char * const fragtbl[];
    130    1.1   mycroft 
    131  1.116     joerg /* Basic consistency check for block allocations */
    132  1.116     joerg static int
    133  1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    134  1.116     joerg     long size, dev_t dev, ino_t inum)
    135  1.116     joerg {
    136  1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    137  1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    138  1.154  christos 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    139  1.154  christos 		    " bsize = %d, size = %ld, fs = %s", func,
    140  1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    141  1.116     joerg 	}
    142  1.116     joerg 
    143  1.116     joerg 	if (bno >= fs->fs_size) {
    144  1.154  christos 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    145  1.116     joerg 		    (unsigned long long)inum);
    146  1.150   mlelstv 		ffs_fserr(fs, NOCRED, "bad block");
    147  1.116     joerg 		return EINVAL;
    148  1.116     joerg 	}
    149  1.116     joerg 	return 0;
    150  1.116     joerg }
    151  1.116     joerg 
    152    1.1   mycroft /*
    153    1.1   mycroft  * Allocate a block in the file system.
    154   1.81     perry  *
    155    1.1   mycroft  * The size of the requested block is given, which must be some
    156    1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    157    1.1   mycroft  * A preference may be optionally specified. If a preference is given
    158    1.1   mycroft  * the following hierarchy is used to allocate a block:
    159    1.1   mycroft  *   1) allocate the requested block.
    160    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    161    1.1   mycroft  *   3) allocate a block in the same cylinder group.
    162    1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    163    1.1   mycroft  *      available block is located.
    164   1.47       wiz  * If no block preference is given the following hierarchy is used
    165    1.1   mycroft  * to allocate a block:
    166    1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    167    1.1   mycroft  *      inode for the file.
    168    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    169    1.1   mycroft  *      available block is located.
    170  1.106     pooka  *
    171  1.106     pooka  * => called with um_lock held
    172  1.106     pooka  * => releases um_lock before returning
    173    1.1   mycroft  */
    174    1.9  christos int
    175  1.152  jdolecek ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    176  1.152  jdolecek     int flags, kauth_cred_t cred, daddr_t *bnp)
    177    1.1   mycroft {
    178  1.101        ad 	struct ufsmount *ump;
    179   1.62      fvdl 	struct fs *fs;
    180   1.58      fvdl 	daddr_t bno;
    181    1.9  christos 	int cg;
    182  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    183    1.9  christos 	int error;
    184    1.9  christos #endif
    185   1.81     perry 
    186   1.62      fvdl 	fs = ip->i_fs;
    187  1.101        ad 	ump = ip->i_ump;
    188  1.101        ad 
    189  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    190   1.62      fvdl 
    191   1.37       chs #ifdef UVM_PAGE_TRKOWN
    192  1.129       chs 
    193  1.129       chs 	/*
    194  1.129       chs 	 * Sanity-check that allocations within the file size
    195  1.129       chs 	 * do not allow other threads to read the stale contents
    196  1.129       chs 	 * of newly allocated blocks.
    197  1.129       chs 	 * Usually pages will exist to cover the new allocation.
    198  1.129       chs 	 * There is an optimization in ffs_write() where we skip
    199  1.129       chs 	 * creating pages if several conditions are met:
    200  1.129       chs 	 *  - the file must not be mapped (in any user address space).
    201  1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    202  1.129       chs 	 * If those conditions are not met then pages must exist and
    203  1.129       chs 	 * be locked by the current thread.
    204  1.129       chs 	 */
    205  1.129       chs 
    206   1.51       chs 	if (ITOV(ip)->v_type == VREG &&
    207  1.137  dholland 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
    208   1.37       chs 		struct vm_page *pg;
    209  1.129       chs 		struct vnode *vp = ITOV(ip);
    210  1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    211  1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    212  1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    213   1.37       chs 
    214  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    215   1.37       chs 		while (off < endoff) {
    216   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    217  1.129       chs 			KASSERT((pg == NULL && (vp->v_vflag & VV_MAPPED) == 0 &&
    218  1.129       chs 				 (size & PAGE_MASK) == 0 &&
    219  1.135  dholland 				 ffs_blkoff(fs, size) == 0) ||
    220  1.129       chs 				(pg != NULL && pg->owner == curproc->p_pid &&
    221  1.129       chs 				 pg->lowner == curlwp->l_lid));
    222   1.37       chs 			off += PAGE_SIZE;
    223   1.37       chs 		}
    224  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    225   1.37       chs 	}
    226   1.37       chs #endif
    227   1.37       chs 
    228    1.1   mycroft 	*bnp = 0;
    229  1.156  riastrad 
    230  1.156  riastrad 	KASSERTMSG((cred != NOCRED), "missing credential");
    231  1.156  riastrad 	KASSERTMSG(((u_int)size <= fs->fs_bsize),
    232  1.156  riastrad 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    233  1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    234  1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, size) == 0),
    235  1.156  riastrad 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    236  1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    237  1.156  riastrad 
    238    1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    239    1.1   mycroft 		goto nospace;
    240   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    241  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    242  1.124      elad 	    NULL, NULL) != 0)
    243    1.1   mycroft 		goto nospace;
    244  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    245  1.101        ad 	mutex_exit(&ump->um_lock);
    246   1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    247    1.1   mycroft 		return (error);
    248  1.101        ad 	mutex_enter(&ump->um_lock);
    249    1.1   mycroft #endif
    250  1.111    simonb 
    251    1.1   mycroft 	if (bpref >= fs->fs_size)
    252    1.1   mycroft 		bpref = 0;
    253    1.1   mycroft 	if (bpref == 0)
    254    1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    255    1.1   mycroft 	else
    256    1.1   mycroft 		cg = dtog(fs, bpref);
    257  1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    258    1.1   mycroft 	if (bno > 0) {
    259   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    260    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    261    1.1   mycroft 		*bnp = bno;
    262    1.1   mycroft 		return (0);
    263    1.1   mycroft 	}
    264  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    265    1.1   mycroft 	/*
    266    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    267    1.1   mycroft 	 */
    268   1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    269    1.1   mycroft #endif
    270  1.111    simonb 	if (flags & B_CONTIG) {
    271  1.111    simonb 		/*
    272  1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    273  1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    274  1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    275  1.111    simonb 		 * already unlocked, so we can't release it again
    276  1.111    simonb 		 * like in the normal error path.  See kern/39206.
    277  1.111    simonb 		 *
    278  1.111    simonb 		 *
    279  1.111    simonb 		 * Fail silently - it's up to our caller to report
    280  1.111    simonb 		 * errors.
    281  1.111    simonb 		 */
    282  1.111    simonb 		return (ENOSPC);
    283  1.111    simonb 	}
    284    1.1   mycroft nospace:
    285  1.101        ad 	mutex_exit(&ump->um_lock);
    286  1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    287    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    288    1.1   mycroft 	return (ENOSPC);
    289    1.1   mycroft }
    290    1.1   mycroft 
    291    1.1   mycroft /*
    292    1.1   mycroft  * Reallocate a fragment to a bigger size
    293    1.1   mycroft  *
    294    1.1   mycroft  * The number and size of the old block is given, and a preference
    295    1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    296    1.1   mycroft  * the original block. Failing that, the regular block allocator is
    297    1.1   mycroft  * invoked to get an appropriate block.
    298  1.106     pooka  *
    299  1.106     pooka  * => called with um_lock held
    300  1.106     pooka  * => return with um_lock released
    301    1.1   mycroft  */
    302    1.9  christos int
    303   1.85   thorpej ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
    304   1.91      elad     int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
    305    1.1   mycroft {
    306  1.101        ad 	struct ufsmount *ump;
    307   1.62      fvdl 	struct fs *fs;
    308    1.1   mycroft 	struct buf *bp;
    309    1.1   mycroft 	int cg, request, error;
    310   1.58      fvdl 	daddr_t bprev, bno;
    311   1.25   thorpej 
    312   1.62      fvdl 	fs = ip->i_fs;
    313  1.101        ad 	ump = ip->i_ump;
    314  1.101        ad 
    315  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    316  1.101        ad 
    317   1.37       chs #ifdef UVM_PAGE_TRKOWN
    318  1.129       chs 
    319  1.129       chs 	/*
    320  1.129       chs 	 * Sanity-check that allocations within the file size
    321  1.129       chs 	 * do not allow other threads to read the stale contents
    322  1.129       chs 	 * of newly allocated blocks.
    323  1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    324  1.129       chs 	 * for such allocations, because only the last block of a file
    325  1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    326  1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    327  1.129       chs 	 * which always creates pages to cover blocks it allocates.
    328  1.129       chs 	 */
    329  1.129       chs 
    330   1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    331   1.37       chs 		struct vm_page *pg;
    332   1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    333  1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    334  1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    335   1.37       chs 
    336  1.128     rmind 		mutex_enter(uobj->vmobjlock);
    337   1.37       chs 		while (off < endoff) {
    338   1.37       chs 			pg = uvm_pagelookup(uobj, off);
    339  1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    340  1.129       chs 				pg->lowner == curlwp->l_lid);
    341   1.37       chs 			off += PAGE_SIZE;
    342   1.37       chs 		}
    343  1.128     rmind 		mutex_exit(uobj->vmobjlock);
    344   1.37       chs 	}
    345   1.37       chs #endif
    346   1.37       chs 
    347  1.156  riastrad 	KASSERTMSG((cred != NOCRED), "missing credential");
    348  1.156  riastrad 	KASSERTMSG(((u_int)osize <= fs->fs_bsize),
    349  1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    350  1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    351  1.156  riastrad 	    fs->fs_fsmnt);
    352  1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, osize) == 0),
    353  1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    354  1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    355  1.156  riastrad 	    fs->fs_fsmnt);
    356  1.156  riastrad 	KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
    357  1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    358  1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    359  1.156  riastrad 	    fs->fs_fsmnt);
    360  1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
    361  1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    362  1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    363  1.156  riastrad 	    fs->fs_fsmnt);
    364  1.156  riastrad 
    365   1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    366  1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    367  1.124      elad 	    NULL, NULL) != 0) {
    368  1.101        ad 		mutex_exit(&ump->um_lock);
    369    1.1   mycroft 		goto nospace;
    370  1.101        ad 	}
    371   1.60      fvdl 	if (fs->fs_magic == FS_UFS2_MAGIC)
    372   1.60      fvdl 		bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
    373   1.60      fvdl 	else
    374   1.60      fvdl 		bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
    375   1.60      fvdl 
    376   1.60      fvdl 	if (bprev == 0) {
    377  1.154  christos 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    378  1.154  christos 		    PRId64 ", fs = %s", __func__,
    379  1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    380  1.120  christos 		    fs->fs_fsmnt);
    381    1.1   mycroft 	}
    382  1.101        ad 	mutex_exit(&ump->um_lock);
    383  1.101        ad 
    384    1.1   mycroft 	/*
    385    1.1   mycroft 	 * Allocate the extra space in the buffer.
    386    1.1   mycroft 	 */
    387   1.37       chs 	if (bpp != NULL &&
    388  1.149      maxv 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    389    1.1   mycroft 		return (error);
    390    1.1   mycroft 	}
    391  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    392   1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    393   1.44       chs 		if (bpp != NULL) {
    394  1.101        ad 			brelse(bp, 0);
    395   1.44       chs 		}
    396    1.1   mycroft 		return (error);
    397    1.1   mycroft 	}
    398    1.1   mycroft #endif
    399    1.1   mycroft 	/*
    400    1.1   mycroft 	 * Check for extension in the existing location.
    401    1.1   mycroft 	 */
    402    1.1   mycroft 	cg = dtog(fs, bprev);
    403  1.101        ad 	mutex_enter(&ump->um_lock);
    404   1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    405   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    406    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    407   1.37       chs 
    408   1.37       chs 		if (bpp != NULL) {
    409  1.154  christos 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    410  1.154  christos 				panic("%s: bad blockno %#llx != %#llx",
    411  1.154  christos 				    __func__, (unsigned long long) bp->b_blkno,
    412  1.154  christos 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    413  1.154  christos 			}
    414   1.72        pk 			allocbuf(bp, nsize, 1);
    415   1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    416  1.105        ad 			mutex_enter(bp->b_objlock);
    417  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    418  1.105        ad 			bp->b_oflags |= BO_DONE;
    419  1.105        ad 			mutex_exit(bp->b_objlock);
    420   1.37       chs 			*bpp = bp;
    421   1.37       chs 		}
    422   1.37       chs 		if (blknop != NULL) {
    423   1.37       chs 			*blknop = bno;
    424   1.37       chs 		}
    425    1.1   mycroft 		return (0);
    426    1.1   mycroft 	}
    427    1.1   mycroft 	/*
    428    1.1   mycroft 	 * Allocate a new disk location.
    429    1.1   mycroft 	 */
    430    1.1   mycroft 	if (bpref >= fs->fs_size)
    431    1.1   mycroft 		bpref = 0;
    432    1.1   mycroft 	switch ((int)fs->fs_optim) {
    433    1.1   mycroft 	case FS_OPTSPACE:
    434    1.1   mycroft 		/*
    435   1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    436   1.81     perry 		 * best use of space, we will waste time relocating it if
    437    1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    438    1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    439    1.1   mycroft 		 * to begin optimizing for time.
    440    1.1   mycroft 		 */
    441    1.1   mycroft 		request = nsize;
    442    1.1   mycroft 		if (fs->fs_minfree < 5 ||
    443    1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    444    1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    445    1.1   mycroft 			break;
    446   1.34  jdolecek 
    447   1.34  jdolecek 		if (ffs_log_changeopt) {
    448   1.34  jdolecek 			log(LOG_NOTICE,
    449   1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    450   1.34  jdolecek 				fs->fs_fsmnt);
    451   1.34  jdolecek 		}
    452   1.34  jdolecek 
    453    1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    454    1.1   mycroft 		break;
    455    1.1   mycroft 	case FS_OPTTIME:
    456    1.1   mycroft 		/*
    457    1.1   mycroft 		 * At this point we have discovered a file that is trying to
    458    1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    459    1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    460    1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    461    1.1   mycroft 		 * above will be able to grow it in place without further
    462    1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    463    1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    464    1.1   mycroft 		 * optimizing for space.
    465    1.1   mycroft 		 */
    466    1.1   mycroft 		request = fs->fs_bsize;
    467    1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    468    1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    469    1.1   mycroft 			break;
    470   1.34  jdolecek 
    471   1.34  jdolecek 		if (ffs_log_changeopt) {
    472   1.34  jdolecek 			log(LOG_NOTICE,
    473   1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    474   1.34  jdolecek 				fs->fs_fsmnt);
    475   1.34  jdolecek 		}
    476   1.34  jdolecek 
    477    1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    478    1.1   mycroft 		break;
    479    1.1   mycroft 	default:
    480  1.154  christos 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    481  1.154  christos 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    482  1.154  christos 		    fs->fs_fsmnt);
    483    1.1   mycroft 		/* NOTREACHED */
    484    1.1   mycroft 	}
    485  1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    486    1.1   mycroft 	if (bno > 0) {
    487  1.153  jdolecek 		/*
    488  1.153  jdolecek 		 * Use forced deallocation registration, we can't handle
    489  1.153  jdolecek 		 * failure here. This is safe, as this place is ever hit
    490  1.153  jdolecek 		 * maximum once per write operation, when fragment is extended
    491  1.153  jdolecek 		 * to longer fragment, or a full block.
    492  1.153  jdolecek 		 */
    493  1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    494  1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    495  1.153  jdolecek 			/* this should never fail */
    496  1.153  jdolecek 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    497  1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    498  1.122        ad 			    osize);
    499  1.153  jdolecek 			if (error)
    500  1.153  jdolecek 				panic("ffs_realloccg: dealloc registration failed");
    501  1.122        ad 		} else {
    502  1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    503  1.122        ad 			    ip->i_number);
    504  1.111    simonb 		}
    505   1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    506    1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    507   1.37       chs 		if (bpp != NULL) {
    508  1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    509   1.72        pk 			allocbuf(bp, nsize, 1);
    510   1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    511  1.105        ad 			mutex_enter(bp->b_objlock);
    512  1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    513  1.105        ad 			bp->b_oflags |= BO_DONE;
    514  1.105        ad 			mutex_exit(bp->b_objlock);
    515   1.37       chs 			*bpp = bp;
    516   1.37       chs 		}
    517   1.37       chs 		if (blknop != NULL) {
    518   1.37       chs 			*blknop = bno;
    519   1.37       chs 		}
    520    1.1   mycroft 		return (0);
    521    1.1   mycroft 	}
    522  1.101        ad 	mutex_exit(&ump->um_lock);
    523  1.101        ad 
    524  1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    525    1.1   mycroft 	/*
    526    1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    527    1.1   mycroft 	 */
    528   1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    529    1.1   mycroft #endif
    530   1.37       chs 	if (bpp != NULL) {
    531  1.101        ad 		brelse(bp, 0);
    532   1.37       chs 	}
    533   1.37       chs 
    534    1.1   mycroft nospace:
    535    1.1   mycroft 	/*
    536    1.1   mycroft 	 * no space available
    537    1.1   mycroft 	 */
    538  1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    539    1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    540    1.1   mycroft 	return (ENOSPC);
    541    1.1   mycroft }
    542    1.1   mycroft 
    543    1.1   mycroft /*
    544    1.1   mycroft  * Allocate an inode in the file system.
    545   1.81     perry  *
    546    1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    547    1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    548    1.1   mycroft  *   1) allocate the preferred inode.
    549    1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    550    1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    551    1.1   mycroft  *      available inode is located.
    552   1.47       wiz  * If no inode preference is given the following hierarchy is used
    553    1.1   mycroft  * to allocate an inode:
    554    1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    555    1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    556    1.1   mycroft  *      available inode is located.
    557  1.106     pooka  *
    558  1.106     pooka  * => um_lock not held upon entry or return
    559    1.1   mycroft  */
    560    1.9  christos int
    561  1.148   hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    562    1.9  christos {
    563  1.101        ad 	struct ufsmount *ump;
    564   1.33  augustss 	struct inode *pip;
    565   1.33  augustss 	struct fs *fs;
    566    1.1   mycroft 	ino_t ino, ipref;
    567    1.1   mycroft 	int cg, error;
    568   1.81     perry 
    569  1.111    simonb 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    570  1.111    simonb 
    571    1.1   mycroft 	pip = VTOI(pvp);
    572    1.1   mycroft 	fs = pip->i_fs;
    573  1.101        ad 	ump = pip->i_ump;
    574  1.101        ad 
    575  1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    576  1.111    simonb 	if (error) {
    577  1.111    simonb 		return error;
    578  1.111    simonb 	}
    579  1.101        ad 	mutex_enter(&ump->um_lock);
    580    1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    581    1.1   mycroft 		goto noinodes;
    582    1.1   mycroft 
    583    1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    584   1.50     lukem 		ipref = ffs_dirpref(pip);
    585   1.50     lukem 	else
    586   1.50     lukem 		ipref = pip->i_number;
    587    1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    588    1.1   mycroft 		ipref = 0;
    589    1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    590   1.50     lukem 	/*
    591   1.50     lukem 	 * Track number of dirs created one after another
    592   1.50     lukem 	 * in a same cg without intervening by files.
    593   1.50     lukem 	 */
    594   1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    595   1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    596   1.50     lukem 			fs->fs_contigdirs[cg]++;
    597   1.50     lukem 	} else {
    598   1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    599   1.50     lukem 			fs->fs_contigdirs[cg]--;
    600   1.50     lukem 	}
    601  1.152  jdolecek 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    602    1.1   mycroft 	if (ino == 0)
    603    1.1   mycroft 		goto noinodes;
    604  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    605  1.148   hannken 	*inop = ino;
    606  1.148   hannken 	return 0;
    607   1.60      fvdl 
    608    1.1   mycroft noinodes:
    609  1.101        ad 	mutex_exit(&ump->um_lock);
    610  1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    611  1.150   mlelstv 	ffs_fserr(fs, cred, "out of inodes");
    612    1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    613  1.148   hannken 	return ENOSPC;
    614    1.1   mycroft }
    615    1.1   mycroft 
    616    1.1   mycroft /*
    617   1.50     lukem  * Find a cylinder group in which to place a directory.
    618   1.42  sommerfe  *
    619   1.50     lukem  * The policy implemented by this algorithm is to allocate a
    620   1.50     lukem  * directory inode in the same cylinder group as its parent
    621   1.50     lukem  * directory, but also to reserve space for its files inodes
    622   1.50     lukem  * and data. Restrict the number of directories which may be
    623   1.50     lukem  * allocated one after another in the same cylinder group
    624   1.50     lukem  * without intervening allocation of files.
    625   1.42  sommerfe  *
    626   1.50     lukem  * If we allocate a first level directory then force allocation
    627   1.50     lukem  * in another cylinder group.
    628    1.1   mycroft  */
    629    1.1   mycroft static ino_t
    630   1.85   thorpej ffs_dirpref(struct inode *pip)
    631    1.1   mycroft {
    632   1.50     lukem 	register struct fs *fs;
    633   1.74     soren 	int cg, prefcg;
    634   1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    635   1.89       dsl 	int avgifree, avgbfree, avgndir;
    636   1.50     lukem 	int minifree, minbfree, maxndir;
    637   1.50     lukem 	int mincg, minndir;
    638   1.50     lukem 	int maxcontigdirs;
    639   1.50     lukem 
    640  1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    641  1.101        ad 
    642   1.50     lukem 	fs = pip->i_fs;
    643    1.1   mycroft 
    644    1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    645   1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    646   1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    647   1.50     lukem 
    648   1.50     lukem 	/*
    649   1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    650   1.50     lukem 	 */
    651  1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    652  1.147     joerg 		prefcg = cprng_fast32() % fs->fs_ncg;
    653   1.50     lukem 		mincg = prefcg;
    654   1.50     lukem 		minndir = fs->fs_ipg;
    655   1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    656   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    657   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    658   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    659   1.42  sommerfe 				mincg = cg;
    660   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    661   1.42  sommerfe 			}
    662   1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    663   1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    664   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    665   1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    666   1.50     lukem 				mincg = cg;
    667   1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    668   1.42  sommerfe 			}
    669   1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    670   1.42  sommerfe 	}
    671   1.50     lukem 
    672   1.50     lukem 	/*
    673   1.50     lukem 	 * Count various limits which used for
    674   1.50     lukem 	 * optimal allocation of a directory inode.
    675  1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    676  1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    677  1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    678   1.50     lukem 	 */
    679   1.50     lukem 	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    680  1.144       bad 	minifree = avgifree - avgifree / 4;
    681  1.144       bad 	if (minifree < 1)
    682  1.144       bad 		minifree = 1;
    683  1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    684  1.144       bad 	if (minbfree < 1)
    685  1.144       bad 		minbfree = 1;
    686   1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    687   1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    688   1.89       dsl 	if (avgndir != 0) {
    689   1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    690   1.89       dsl 		if (dirsize < curdsz)
    691   1.89       dsl 			dirsize = curdsz;
    692   1.89       dsl 	}
    693   1.89       dsl 	if (cgsize < dirsize * 255)
    694  1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    695   1.89       dsl 	else
    696   1.89       dsl 		maxcontigdirs = 255;
    697   1.50     lukem 	if (fs->fs_avgfpdir > 0)
    698   1.50     lukem 		maxcontigdirs = min(maxcontigdirs,
    699   1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    700   1.50     lukem 	if (maxcontigdirs == 0)
    701   1.50     lukem 		maxcontigdirs = 1;
    702   1.50     lukem 
    703   1.50     lukem 	/*
    704   1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    705   1.50     lukem 	 * regular files, but only if we have no deficit in
    706   1.50     lukem 	 * inodes or space.
    707   1.50     lukem 	 */
    708   1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    709   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    710   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    711   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    712   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    713   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    714   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    715   1.50     lukem 		}
    716   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    717   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    718   1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    719   1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    720   1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    721   1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    722   1.50     lukem 		}
    723   1.50     lukem 	/*
    724   1.50     lukem 	 * This is a backstop when we are deficient in space.
    725   1.50     lukem 	 */
    726   1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    727   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    728   1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    729   1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    730   1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    731   1.50     lukem 			break;
    732   1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    733    1.1   mycroft }
    734    1.1   mycroft 
    735    1.1   mycroft /*
    736    1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    737    1.1   mycroft  * logically divided into sections. The first section is composed of the
    738    1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    739   1.81     perry  *
    740    1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    741    1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    742    1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    743    1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    744    1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    745    1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    746    1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    747    1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    748    1.1   mycroft  * continues until a cylinder group with greater than the average number
    749    1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    750    1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    751    1.1   mycroft  * here a best guess is made based upon the logical block number being
    752    1.1   mycroft  * allocated.
    753   1.81     perry  *
    754    1.1   mycroft  * If a section is already partially allocated, the policy is to
    755    1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    756   1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    757   1.60      fvdl  * contigously if possible.
    758  1.106     pooka  *
    759  1.106     pooka  * => um_lock held on entry and exit
    760    1.1   mycroft  */
    761   1.58      fvdl daddr_t
    762  1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    763   1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    764    1.1   mycroft {
    765   1.33  augustss 	struct fs *fs;
    766   1.33  augustss 	int cg;
    767    1.1   mycroft 	int avgbfree, startcg;
    768    1.1   mycroft 
    769  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    770  1.101        ad 
    771    1.1   mycroft 	fs = ip->i_fs;
    772  1.111    simonb 
    773  1.111    simonb 	/*
    774  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    775  1.111    simonb 	 * in the inode extentions to return the desired block.
    776  1.111    simonb 	 *
    777  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    778  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    779  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    780  1.111    simonb 	 * block.  For data, return the address of the actual block
    781  1.111    simonb 	 * relative to the address of the first data block.
    782  1.111    simonb 	 */
    783  1.111    simonb 	if (flags & B_CONTIG) {
    784  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    785  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    786  1.111    simonb 		if (flags & B_METAONLY)
    787  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    788  1.111    simonb 		else
    789  1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    790  1.111    simonb 	}
    791  1.111    simonb 
    792    1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    793  1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    794    1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    795  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    796    1.1   mycroft 		}
    797    1.1   mycroft 		/*
    798    1.1   mycroft 		 * Find a cylinder with greater than average number of
    799    1.1   mycroft 		 * unused data blocks.
    800    1.1   mycroft 		 */
    801    1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    802    1.1   mycroft 			startcg =
    803    1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    804    1.1   mycroft 		else
    805   1.19    bouyer 			startcg = dtog(fs,
    806   1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    807    1.1   mycroft 		startcg %= fs->fs_ncg;
    808    1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    809    1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    810    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    811  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    812    1.1   mycroft 			}
    813   1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    814    1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    815  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    816    1.1   mycroft 			}
    817   1.35   thorpej 		return (0);
    818    1.1   mycroft 	}
    819    1.1   mycroft 	/*
    820   1.60      fvdl 	 * We just always try to lay things out contiguously.
    821   1.60      fvdl 	 */
    822   1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    823   1.60      fvdl }
    824   1.60      fvdl 
    825   1.60      fvdl daddr_t
    826  1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    827  1.111    simonb     int64_t *bap)
    828   1.60      fvdl {
    829   1.60      fvdl 	struct fs *fs;
    830   1.60      fvdl 	int cg;
    831   1.60      fvdl 	int avgbfree, startcg;
    832   1.60      fvdl 
    833  1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    834  1.101        ad 
    835   1.60      fvdl 	fs = ip->i_fs;
    836  1.111    simonb 
    837  1.111    simonb 	/*
    838  1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    839  1.111    simonb 	 * in the inode extentions to return the desired block.
    840  1.111    simonb 	 *
    841  1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    842  1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    843  1.111    simonb 	 * available slot if we need to allocate more than one indirect
    844  1.111    simonb 	 * block.  For data, return the address of the actual block
    845  1.111    simonb 	 * relative to the address of the first data block.
    846  1.111    simonb 	 */
    847  1.111    simonb 	if (flags & B_CONTIG) {
    848  1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    849  1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    850  1.111    simonb 		if (flags & B_METAONLY)
    851  1.111    simonb 			return ip->i_ffs_first_indir_blk;
    852  1.111    simonb 		else
    853  1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    854  1.111    simonb 	}
    855  1.111    simonb 
    856   1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    857  1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    858   1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    859  1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    860   1.60      fvdl 		}
    861    1.1   mycroft 		/*
    862   1.60      fvdl 		 * Find a cylinder with greater than average number of
    863   1.60      fvdl 		 * unused data blocks.
    864    1.1   mycroft 		 */
    865   1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    866   1.60      fvdl 			startcg =
    867   1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    868   1.60      fvdl 		else
    869   1.60      fvdl 			startcg = dtog(fs,
    870   1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    871   1.60      fvdl 		startcg %= fs->fs_ncg;
    872   1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    873   1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    874   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    875  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    876   1.60      fvdl 			}
    877   1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    878   1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    879  1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    880   1.60      fvdl 			}
    881   1.60      fvdl 		return (0);
    882   1.60      fvdl 	}
    883   1.60      fvdl 	/*
    884   1.60      fvdl 	 * We just always try to lay things out contiguously.
    885   1.60      fvdl 	 */
    886   1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    887    1.1   mycroft }
    888    1.1   mycroft 
    889   1.60      fvdl 
    890    1.1   mycroft /*
    891    1.1   mycroft  * Implement the cylinder overflow algorithm.
    892    1.1   mycroft  *
    893    1.1   mycroft  * The policy implemented by this algorithm is:
    894    1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    895    1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    896    1.1   mycroft  *   3) brute force search for a free block.
    897  1.106     pooka  *
    898  1.106     pooka  * => called with um_lock held
    899  1.106     pooka  * => returns with um_lock released on success, held on failure
    900  1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    901    1.1   mycroft  */
    902    1.1   mycroft /*VARARGS5*/
    903   1.58      fvdl static daddr_t
    904   1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    905   1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    906  1.152  jdolecek     int realsize,
    907  1.152  jdolecek     int flags,
    908  1.152  jdolecek     daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
    909    1.1   mycroft {
    910   1.33  augustss 	struct fs *fs;
    911   1.58      fvdl 	daddr_t result;
    912    1.1   mycroft 	int i, icg = cg;
    913    1.1   mycroft 
    914    1.1   mycroft 	fs = ip->i_fs;
    915    1.1   mycroft 	/*
    916    1.1   mycroft 	 * 1: preferred cylinder group
    917    1.1   mycroft 	 */
    918  1.152  jdolecek 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    919    1.1   mycroft 	if (result)
    920    1.1   mycroft 		return (result);
    921  1.111    simonb 
    922  1.111    simonb 	if (flags & B_CONTIG)
    923  1.111    simonb 		return (result);
    924    1.1   mycroft 	/*
    925    1.1   mycroft 	 * 2: quadratic rehash
    926    1.1   mycroft 	 */
    927    1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    928    1.1   mycroft 		cg += i;
    929    1.1   mycroft 		if (cg >= fs->fs_ncg)
    930    1.1   mycroft 			cg -= fs->fs_ncg;
    931  1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    932    1.1   mycroft 		if (result)
    933    1.1   mycroft 			return (result);
    934    1.1   mycroft 	}
    935    1.1   mycroft 	/*
    936    1.1   mycroft 	 * 3: brute force search
    937    1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    938    1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    939    1.1   mycroft 	 */
    940    1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    941    1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    942  1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    943    1.1   mycroft 		if (result)
    944    1.1   mycroft 			return (result);
    945    1.1   mycroft 		cg++;
    946    1.1   mycroft 		if (cg == fs->fs_ncg)
    947    1.1   mycroft 			cg = 0;
    948    1.1   mycroft 	}
    949   1.35   thorpej 	return (0);
    950    1.1   mycroft }
    951    1.1   mycroft 
    952    1.1   mycroft /*
    953    1.1   mycroft  * Determine whether a fragment can be extended.
    954    1.1   mycroft  *
    955   1.81     perry  * Check to see if the necessary fragments are available, and
    956    1.1   mycroft  * if they are, allocate them.
    957  1.106     pooka  *
    958  1.106     pooka  * => called with um_lock held
    959  1.106     pooka  * => returns with um_lock released on success, held on failure
    960    1.1   mycroft  */
    961   1.58      fvdl static daddr_t
    962   1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    963    1.1   mycroft {
    964  1.101        ad 	struct ufsmount *ump;
    965   1.33  augustss 	struct fs *fs;
    966   1.33  augustss 	struct cg *cgp;
    967    1.1   mycroft 	struct buf *bp;
    968   1.58      fvdl 	daddr_t bno;
    969    1.1   mycroft 	int frags, bbase;
    970    1.1   mycroft 	int i, error;
    971   1.62      fvdl 	u_int8_t *blksfree;
    972    1.1   mycroft 
    973    1.1   mycroft 	fs = ip->i_fs;
    974  1.101        ad 	ump = ip->i_ump;
    975  1.101        ad 
    976  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    977  1.101        ad 
    978  1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    979   1.35   thorpej 		return (0);
    980  1.137  dholland 	frags = ffs_numfrags(fs, nsize);
    981  1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
    982  1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    983    1.1   mycroft 		/* cannot extend across a block boundary */
    984   1.35   thorpej 		return (0);
    985    1.1   mycroft 	}
    986  1.101        ad 	mutex_exit(&ump->um_lock);
    987  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    988  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    989  1.101        ad 	if (error)
    990  1.101        ad 		goto fail;
    991    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    992  1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    993  1.101        ad 		goto fail;
    994   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
    995   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
    996   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
    997   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
    998    1.1   mycroft 	bno = dtogd(fs, bprev);
    999   1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1000  1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1001  1.101        ad 		if (isclr(blksfree, bno + i))
   1002  1.101        ad 			goto fail;
   1003    1.1   mycroft 	/*
   1004    1.1   mycroft 	 * the current fragment can be extended
   1005    1.1   mycroft 	 * deduct the count on fragment being extended into
   1006    1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1007    1.1   mycroft 	 * allocate the extended piece
   1008    1.1   mycroft 	 */
   1009    1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1010   1.62      fvdl 		if (isclr(blksfree, bno + i))
   1011    1.1   mycroft 			break;
   1012  1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1013    1.1   mycroft 	if (i != frags)
   1014   1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1015  1.101        ad 	mutex_enter(&ump->um_lock);
   1016  1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1017   1.62      fvdl 		clrbit(blksfree, bno + i);
   1018   1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1019    1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1020    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1021    1.1   mycroft 	}
   1022    1.1   mycroft 	fs->fs_fmod = 1;
   1023  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1024  1.101        ad 	mutex_exit(&ump->um_lock);
   1025    1.1   mycroft 	bdwrite(bp);
   1026    1.1   mycroft 	return (bprev);
   1027  1.101        ad 
   1028  1.101        ad  fail:
   1029  1.132   hannken  	if (bp != NULL)
   1030  1.132   hannken 		brelse(bp, 0);
   1031  1.101        ad  	mutex_enter(&ump->um_lock);
   1032  1.101        ad  	return (0);
   1033    1.1   mycroft }
   1034    1.1   mycroft 
   1035    1.1   mycroft /*
   1036    1.1   mycroft  * Determine whether a block can be allocated.
   1037    1.1   mycroft  *
   1038    1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1039    1.1   mycroft  * and if it is, allocate it.
   1040    1.1   mycroft  */
   1041   1.58      fvdl static daddr_t
   1042  1.152  jdolecek ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
   1043  1.152  jdolecek     int flags)
   1044    1.1   mycroft {
   1045  1.101        ad 	struct ufsmount *ump;
   1046   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1047   1.30      fvdl 	struct cg *cgp;
   1048    1.1   mycroft 	struct buf *bp;
   1049   1.60      fvdl 	int32_t bno;
   1050   1.60      fvdl 	daddr_t blkno;
   1051   1.30      fvdl 	int error, frags, allocsiz, i;
   1052   1.62      fvdl 	u_int8_t *blksfree;
   1053   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1054    1.1   mycroft 
   1055  1.101        ad 	ump = ip->i_ump;
   1056  1.101        ad 
   1057  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1058  1.101        ad 
   1059    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1060   1.35   thorpej 		return (0);
   1061  1.101        ad 	mutex_exit(&ump->um_lock);
   1062  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1063  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1064  1.101        ad 	if (error)
   1065  1.101        ad 		goto fail;
   1066    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1067   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1068  1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1069  1.101        ad 		goto fail;
   1070   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1071   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1072   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1073   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1074    1.1   mycroft 	if (size == fs->fs_bsize) {
   1075  1.101        ad 		mutex_enter(&ump->um_lock);
   1076  1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1077   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1078  1.101        ad 		mutex_exit(&ump->um_lock);
   1079  1.152  jdolecek 
   1080  1.152  jdolecek 		/*
   1081  1.152  jdolecek 		 * If actually needed size is lower, free the extra blocks now.
   1082  1.152  jdolecek 		 * This is safe to call here, there is no outside reference
   1083  1.152  jdolecek 		 * to this block yet. It is not necessary to keep um_lock
   1084  1.152  jdolecek 		 * locked.
   1085  1.152  jdolecek 		 */
   1086  1.152  jdolecek 		if (realsize != 0 && realsize < size) {
   1087  1.152  jdolecek 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1088  1.152  jdolecek 			    ip->i_devvp->v_rdev,
   1089  1.152  jdolecek 			    bp, blkno + ffs_numfrags(fs, realsize),
   1090  1.152  jdolecek 			    (long)(size - realsize), false);
   1091  1.152  jdolecek 		}
   1092  1.152  jdolecek 
   1093    1.1   mycroft 		bdwrite(bp);
   1094   1.60      fvdl 		return (blkno);
   1095    1.1   mycroft 	}
   1096    1.1   mycroft 	/*
   1097    1.1   mycroft 	 * check to see if any fragments are already available
   1098    1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1099    1.1   mycroft 	 * it down to a smaller size if necessary
   1100    1.1   mycroft 	 */
   1101   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1102  1.137  dholland 	frags = ffs_numfrags(fs, size);
   1103    1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1104    1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1105    1.1   mycroft 			break;
   1106    1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1107    1.1   mycroft 		/*
   1108   1.81     perry 		 * no fragments were available, so a block will be
   1109    1.1   mycroft 		 * allocated, and hacked up
   1110    1.1   mycroft 		 */
   1111  1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1112  1.101        ad 			goto fail;
   1113  1.101        ad 		mutex_enter(&ump->um_lock);
   1114  1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1115   1.60      fvdl 		bno = dtogd(fs, blkno);
   1116    1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1117   1.62      fvdl 			setbit(blksfree, bno + i);
   1118    1.1   mycroft 		i = fs->fs_frag - frags;
   1119   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1120    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1121   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1122    1.1   mycroft 		fs->fs_fmod = 1;
   1123   1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1124   1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1125  1.101        ad 		mutex_exit(&ump->um_lock);
   1126    1.1   mycroft 		bdwrite(bp);
   1127   1.60      fvdl 		return (blkno);
   1128    1.1   mycroft 	}
   1129   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1130   1.30      fvdl #if 0
   1131   1.30      fvdl 	/*
   1132   1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1133   1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1134   1.30      fvdl 	 */
   1135  1.101        ad 	if (bno < 0)
   1136  1.101        ad 		goto fail;
   1137   1.30      fvdl #endif
   1138    1.1   mycroft 	for (i = 0; i < frags; i++)
   1139   1.62      fvdl 		clrbit(blksfree, bno + i);
   1140  1.101        ad 	mutex_enter(&ump->um_lock);
   1141   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1142    1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1143    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1144    1.1   mycroft 	fs->fs_fmod = 1;
   1145   1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1146    1.1   mycroft 	if (frags != allocsiz)
   1147   1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1148  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1149  1.101        ad 	ACTIVECG_CLR(fs, cg);
   1150  1.101        ad 	mutex_exit(&ump->um_lock);
   1151    1.1   mycroft 	bdwrite(bp);
   1152   1.30      fvdl 	return blkno;
   1153  1.101        ad 
   1154  1.101        ad  fail:
   1155  1.132   hannken  	if (bp != NULL)
   1156  1.132   hannken 		brelse(bp, 0);
   1157  1.101        ad  	mutex_enter(&ump->um_lock);
   1158  1.101        ad  	return (0);
   1159    1.1   mycroft }
   1160    1.1   mycroft 
   1161    1.1   mycroft /*
   1162    1.1   mycroft  * Allocate a block in a cylinder group.
   1163    1.1   mycroft  *
   1164    1.1   mycroft  * This algorithm implements the following policy:
   1165    1.1   mycroft  *   1) allocate the requested block.
   1166    1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1167    1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1168    1.1   mycroft  *      specified cylinder group.
   1169    1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1170    1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1171    1.1   mycroft  */
   1172   1.58      fvdl static daddr_t
   1173  1.152  jdolecek ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1174  1.152  jdolecek     int flags)
   1175    1.1   mycroft {
   1176   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1177   1.30      fvdl 	struct cg *cgp;
   1178  1.123  sborrill 	int cg;
   1179   1.60      fvdl 	daddr_t blkno;
   1180   1.60      fvdl 	int32_t bno;
   1181   1.60      fvdl 	u_int8_t *blksfree;
   1182   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1183    1.1   mycroft 
   1184  1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1185  1.101        ad 
   1186   1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1187   1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1188   1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1189   1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1190   1.60      fvdl 	} else {
   1191  1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1192   1.60      fvdl 		bno = dtogd(fs, bpref);
   1193    1.1   mycroft 		/*
   1194   1.60      fvdl 		 * if the requested block is available, use it
   1195    1.1   mycroft 		 */
   1196  1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1197   1.60      fvdl 			goto gotit;
   1198  1.111    simonb 		/*
   1199  1.111    simonb 		 * if the requested data block isn't available and we are
   1200  1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1201  1.111    simonb 		 */
   1202  1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1203  1.111    simonb 			return (0);
   1204    1.1   mycroft 	}
   1205  1.111    simonb 
   1206    1.1   mycroft 	/*
   1207   1.60      fvdl 	 * Take the next available block in this cylinder group.
   1208    1.1   mycroft 	 */
   1209   1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1210  1.152  jdolecek #if 0
   1211  1.152  jdolecek 	/*
   1212  1.152  jdolecek 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1213  1.152  jdolecek 	 */
   1214    1.1   mycroft 	if (bno < 0)
   1215   1.35   thorpej 		return (0);
   1216  1.152  jdolecek #endif
   1217   1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1218    1.1   mycroft gotit:
   1219  1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1220   1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1221   1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1222   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1223    1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1224   1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1225   1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1226   1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1227   1.73       dbj 		int cylno;
   1228   1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1229   1.75       dbj 		KASSERT(cylno >= 0);
   1230   1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1231   1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1232   1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1233   1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1234   1.73       dbj 		    needswap);
   1235   1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1236   1.73       dbj 	}
   1237    1.1   mycroft 	fs->fs_fmod = 1;
   1238  1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1239  1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1240   1.30      fvdl 	return (blkno);
   1241    1.1   mycroft }
   1242    1.1   mycroft 
   1243    1.1   mycroft /*
   1244    1.1   mycroft  * Determine whether an inode can be allocated.
   1245    1.1   mycroft  *
   1246    1.1   mycroft  * Check to see if an inode is available, and if it is,
   1247    1.1   mycroft  * allocate it using the following policy:
   1248    1.1   mycroft  *   1) allocate the requested inode.
   1249    1.1   mycroft  *   2) allocate the next available inode after the requested
   1250    1.1   mycroft  *      inode in the specified cylinder group.
   1251    1.1   mycroft  */
   1252   1.58      fvdl static daddr_t
   1253  1.152  jdolecek ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
   1254  1.152  jdolecek     int flags)
   1255    1.1   mycroft {
   1256  1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1257   1.62      fvdl 	struct fs *fs = ip->i_fs;
   1258   1.33  augustss 	struct cg *cgp;
   1259   1.60      fvdl 	struct buf *bp, *ibp;
   1260   1.60      fvdl 	u_int8_t *inosused;
   1261    1.1   mycroft 	int error, start, len, loc, map, i;
   1262   1.60      fvdl 	int32_t initediblk;
   1263  1.112   hannken 	daddr_t nalloc;
   1264   1.60      fvdl 	struct ufs2_dinode *dp2;
   1265   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1266    1.1   mycroft 
   1267  1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1268  1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1269  1.101        ad 
   1270    1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1271   1.35   thorpej 		return (0);
   1272  1.101        ad 	mutex_exit(&ump->um_lock);
   1273  1.112   hannken 	ibp = NULL;
   1274  1.112   hannken 	initediblk = -1;
   1275  1.112   hannken retry:
   1276  1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1277  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1278  1.101        ad 	if (error)
   1279  1.101        ad 		goto fail;
   1280    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1281  1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1282  1.101        ad 		goto fail;
   1283  1.112   hannken 
   1284  1.112   hannken 	if (ibp != NULL &&
   1285  1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1286  1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1287  1.121        ad 		brelse(ibp, 0);
   1288  1.112   hannken 		ibp = NULL;
   1289  1.112   hannken 	}
   1290  1.112   hannken 	/*
   1291  1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1292  1.112   hannken 	 */
   1293  1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1294  1.112   hannken 		initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1295  1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1296  1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1297  1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1298  1.112   hannken 			/*
   1299  1.112   hannken 			 * We have to release the cg buffer here to prevent
   1300  1.112   hannken 			 * a deadlock when reading the inode block will
   1301  1.112   hannken 			 * run a copy-on-write that might use this cg.
   1302  1.112   hannken 			 */
   1303  1.112   hannken 			brelse(bp, 0);
   1304  1.112   hannken 			bp = NULL;
   1305  1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1306  1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1307  1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1308  1.112   hannken 			if (error)
   1309  1.112   hannken 				goto fail;
   1310  1.112   hannken 			goto retry;
   1311  1.112   hannken 		}
   1312  1.112   hannken 	}
   1313  1.112   hannken 
   1314   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1315   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1316   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1317   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1318   1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1319    1.1   mycroft 	if (ipref) {
   1320    1.1   mycroft 		ipref %= fs->fs_ipg;
   1321   1.60      fvdl 		if (isclr(inosused, ipref))
   1322    1.1   mycroft 			goto gotit;
   1323    1.1   mycroft 	}
   1324   1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1325   1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1326   1.19    bouyer 		NBBY);
   1327   1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1328    1.1   mycroft 	if (loc == 0) {
   1329    1.1   mycroft 		len = start + 1;
   1330    1.1   mycroft 		start = 0;
   1331   1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1332    1.1   mycroft 		if (loc == 0) {
   1333  1.154  christos 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1334  1.154  christos 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1335  1.154  christos 			    fs->fs_fsmnt);
   1336    1.1   mycroft 			/* NOTREACHED */
   1337    1.1   mycroft 		}
   1338    1.1   mycroft 	}
   1339    1.1   mycroft 	i = start + len - loc;
   1340  1.126     rmind 	map = inosused[i] ^ 0xff;
   1341  1.126     rmind 	if (map == 0) {
   1342  1.154  christos 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1343    1.1   mycroft 	}
   1344  1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1345  1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1346    1.1   mycroft gotit:
   1347  1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1348  1.111    simonb 	    mode);
   1349   1.60      fvdl 	/*
   1350   1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1351   1.60      fvdl 	 */
   1352  1.112   hannken 	if (ibp != NULL) {
   1353  1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1354  1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1355  1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1356  1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1357   1.60      fvdl 			/*
   1358   1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1359   1.60      fvdl 			 * random, after all.
   1360   1.60      fvdl 			 */
   1361  1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1362   1.60      fvdl 			dp2++;
   1363   1.60      fvdl 		}
   1364  1.134  dholland 		initediblk += FFS_INOPB(fs);
   1365   1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1366   1.60      fvdl 	}
   1367   1.60      fvdl 
   1368  1.101        ad 	mutex_enter(&ump->um_lock);
   1369   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1370  1.101        ad 	setbit(inosused, ipref);
   1371  1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1372  1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1373  1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1374  1.101        ad 	fs->fs_fmod = 1;
   1375  1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1376  1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1377  1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1378  1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1379  1.101        ad 	}
   1380  1.101        ad 	mutex_exit(&ump->um_lock);
   1381  1.112   hannken 	if (ibp != NULL) {
   1382  1.157   hannken 		bwrite(ibp);
   1383  1.112   hannken 		bwrite(bp);
   1384  1.112   hannken 	} else
   1385  1.112   hannken 		bdwrite(bp);
   1386    1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1387  1.101        ad  fail:
   1388  1.112   hannken 	if (bp != NULL)
   1389  1.112   hannken 		brelse(bp, 0);
   1390  1.112   hannken 	if (ibp != NULL)
   1391  1.121        ad 		brelse(ibp, 0);
   1392  1.101        ad 	mutex_enter(&ump->um_lock);
   1393  1.101        ad 	return (0);
   1394    1.1   mycroft }
   1395    1.1   mycroft 
   1396    1.1   mycroft /*
   1397  1.111    simonb  * Allocate a block or fragment.
   1398  1.111    simonb  *
   1399  1.111    simonb  * The specified block or fragment is removed from the
   1400  1.111    simonb  * free map, possibly fragmenting a block in the process.
   1401  1.111    simonb  *
   1402  1.111    simonb  * This implementation should mirror fs_blkfree
   1403  1.111    simonb  *
   1404  1.111    simonb  * => um_lock not held on entry or exit
   1405  1.111    simonb  */
   1406  1.111    simonb int
   1407  1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1408  1.111    simonb {
   1409  1.116     joerg 	int error;
   1410  1.111    simonb 
   1411  1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1412  1.116     joerg 	    ip->i_dev, ip->i_uid);
   1413  1.116     joerg 	if (error)
   1414  1.116     joerg 		return error;
   1415  1.115     joerg 
   1416  1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1417  1.115     joerg }
   1418  1.115     joerg 
   1419  1.115     joerg int
   1420  1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1421  1.115     joerg {
   1422  1.115     joerg 	struct fs *fs = ump->um_fs;
   1423  1.115     joerg 	struct cg *cgp;
   1424  1.115     joerg 	struct buf *bp;
   1425  1.115     joerg 	int32_t fragno, cgbno;
   1426  1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1427  1.115     joerg 	u_int8_t *blksfree;
   1428  1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1429  1.115     joerg 
   1430  1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1431  1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1432  1.115     joerg 	KASSERT(bno < fs->fs_size);
   1433  1.115     joerg 
   1434  1.115     joerg 	cg = dtog(fs, bno);
   1435  1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1436  1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1437  1.111    simonb 	if (error) {
   1438  1.111    simonb 		return error;
   1439  1.111    simonb 	}
   1440  1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1441  1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1442  1.111    simonb 		brelse(bp, 0);
   1443  1.111    simonb 		return EIO;
   1444  1.111    simonb 	}
   1445  1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1446  1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1447  1.111    simonb 	cgbno = dtogd(fs, bno);
   1448  1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1449  1.111    simonb 
   1450  1.111    simonb 	mutex_enter(&ump->um_lock);
   1451  1.111    simonb 	if (size == fs->fs_bsize) {
   1452  1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1453  1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1454  1.111    simonb 			mutex_exit(&ump->um_lock);
   1455  1.111    simonb 			brelse(bp, 0);
   1456  1.111    simonb 			return EBUSY;
   1457  1.111    simonb 		}
   1458  1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1459  1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1460  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1461  1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1462  1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1463  1.111    simonb 	} else {
   1464  1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1465  1.111    simonb 
   1466  1.137  dholland 		frags = ffs_numfrags(fs, size);
   1467  1.111    simonb 		for (i = 0; i < frags; i++) {
   1468  1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1469  1.111    simonb 				mutex_exit(&ump->um_lock);
   1470  1.111    simonb 				brelse(bp, 0);
   1471  1.111    simonb 				return EBUSY;
   1472  1.111    simonb 			}
   1473  1.111    simonb 		}
   1474  1.111    simonb 		/*
   1475  1.111    simonb 		 * if a complete block is being split, account for it
   1476  1.111    simonb 		 */
   1477  1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1478  1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1479  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1480  1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1481  1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1482  1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1483  1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1484  1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1485  1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1486  1.111    simonb 		}
   1487  1.111    simonb 		/*
   1488  1.111    simonb 		 * decrement the counts associated with the old frags
   1489  1.111    simonb 		 */
   1490  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1491  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1492  1.111    simonb 		/*
   1493  1.111    simonb 		 * allocate the fragment
   1494  1.111    simonb 		 */
   1495  1.111    simonb 		for (i = 0; i < frags; i++) {
   1496  1.111    simonb 			clrbit(blksfree, cgbno + i);
   1497  1.111    simonb 		}
   1498  1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1499  1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1500  1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1501  1.111    simonb 		/*
   1502  1.111    simonb 		 * add back in counts associated with the new frags
   1503  1.111    simonb 		 */
   1504  1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1505  1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1506  1.111    simonb 	}
   1507  1.111    simonb 	fs->fs_fmod = 1;
   1508  1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1509  1.111    simonb 	mutex_exit(&ump->um_lock);
   1510  1.111    simonb 	bdwrite(bp);
   1511  1.111    simonb 	return 0;
   1512  1.111    simonb }
   1513  1.111    simonb 
   1514  1.111    simonb /*
   1515    1.1   mycroft  * Free a block or fragment.
   1516    1.1   mycroft  *
   1517    1.1   mycroft  * The specified block or fragment is placed back in the
   1518   1.81     perry  * free map. If a fragment is deallocated, a possible
   1519    1.1   mycroft  * block reassembly is checked.
   1520  1.106     pooka  *
   1521  1.106     pooka  * => um_lock not held on entry or exit
   1522    1.1   mycroft  */
   1523  1.131  drochner static void
   1524  1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1525    1.1   mycroft {
   1526   1.33  augustss 	struct cg *cgp;
   1527    1.1   mycroft 	struct buf *bp;
   1528   1.76   hannken 	struct ufsmount *ump;
   1529   1.76   hannken 	daddr_t cgblkno;
   1530  1.116     joerg 	int error, cg;
   1531   1.76   hannken 	dev_t dev;
   1532  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1533  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1534    1.1   mycroft 
   1535  1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1536  1.116     joerg 
   1537   1.76   hannken 	cg = dtog(fs, bno);
   1538  1.116     joerg 	dev = devvp->v_rdev;
   1539  1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1540  1.119     joerg 	KASSERT(fs == ump->um_fs);
   1541  1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1542  1.116     joerg 
   1543  1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1544  1.149      maxv 	    B_MODIFY, &bp);
   1545  1.116     joerg 	if (error) {
   1546  1.116     joerg 		return;
   1547   1.76   hannken 	}
   1548  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1549  1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1550  1.116     joerg 		brelse(bp, 0);
   1551  1.116     joerg 		return;
   1552    1.1   mycroft 	}
   1553   1.76   hannken 
   1554  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1555  1.119     joerg 
   1556  1.119     joerg 	bdwrite(bp);
   1557  1.116     joerg }
   1558  1.116     joerg 
   1559  1.131  drochner struct discardopdata {
   1560  1.131  drochner 	struct work wk; /* must be first */
   1561  1.131  drochner 	struct vnode *devvp;
   1562  1.131  drochner 	daddr_t bno;
   1563  1.131  drochner 	long size;
   1564  1.131  drochner };
   1565  1.131  drochner 
   1566  1.131  drochner struct discarddata {
   1567  1.131  drochner 	struct fs *fs;
   1568  1.131  drochner 	struct discardopdata *entry;
   1569  1.131  drochner 	long maxsize;
   1570  1.131  drochner 	kmutex_t entrylk;
   1571  1.131  drochner 	struct workqueue *wq;
   1572  1.131  drochner 	int wqcnt, wqdraining;
   1573  1.131  drochner 	kmutex_t wqlk;
   1574  1.131  drochner 	kcondvar_t wqcv;
   1575  1.131  drochner 	/* timer for flush? */
   1576  1.131  drochner };
   1577  1.131  drochner 
   1578  1.131  drochner static void
   1579  1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1580  1.131  drochner {
   1581  1.151  riastrad 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1582  1.131  drochner 	long todo;
   1583  1.151  riastrad 	int error;
   1584  1.131  drochner 
   1585  1.131  drochner 	while (td->size) {
   1586  1.131  drochner 		todo = min(td->size,
   1587  1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1588  1.151  riastrad 		error = UFS_WAPBL_BEGIN(mp);
   1589  1.151  riastrad 		if (error) {
   1590  1.151  riastrad 			printf("ffs: failed to begin wapbl transaction"
   1591  1.151  riastrad 			    " for discard: %d\n", error);
   1592  1.151  riastrad 			break;
   1593  1.151  riastrad 		}
   1594  1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1595  1.151  riastrad 		UFS_WAPBL_END(mp);
   1596  1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1597  1.131  drochner 		td->size -= todo;
   1598  1.131  drochner 	}
   1599  1.131  drochner }
   1600  1.131  drochner 
   1601  1.131  drochner static void
   1602  1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1603  1.131  drochner {
   1604  1.131  drochner 	struct discardopdata *td = (void *)wk;
   1605  1.131  drochner 	struct discarddata *ts = arg;
   1606  1.131  drochner 	struct fs *fs = ts->fs;
   1607  1.146  dholland 	off_t start, len;
   1608  1.139    martin #ifdef TRIMDEBUG
   1609  1.131  drochner 	int error;
   1610  1.139    martin #endif
   1611  1.131  drochner 
   1612  1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1613  1.146  dholland #ifndef FFS_FSBTOBYTES
   1614  1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1615  1.146  dholland #endif
   1616  1.146  dholland 
   1617  1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1618  1.146  dholland 	len = td->size;
   1619  1.139    martin #ifdef TRIMDEBUG
   1620  1.139    martin 	error =
   1621  1.139    martin #endif
   1622  1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1623  1.131  drochner #ifdef TRIMDEBUG
   1624  1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1625  1.131  drochner #endif
   1626  1.131  drochner 
   1627  1.131  drochner 	ffs_blkfree_td(fs, td);
   1628  1.131  drochner 	kmem_free(td, sizeof(*td));
   1629  1.131  drochner 	mutex_enter(&ts->wqlk);
   1630  1.131  drochner 	ts->wqcnt--;
   1631  1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1632  1.131  drochner 		cv_signal(&ts->wqcv);
   1633  1.131  drochner 	mutex_exit(&ts->wqlk);
   1634  1.131  drochner }
   1635  1.131  drochner 
   1636  1.131  drochner void *
   1637  1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1638  1.131  drochner {
   1639  1.131  drochner 	struct discarddata *ts;
   1640  1.131  drochner 	int error;
   1641  1.131  drochner 
   1642  1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1643  1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1644  1.131  drochner 				 0, 0, 0);
   1645  1.131  drochner 	if (error) {
   1646  1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1647  1.131  drochner 		return NULL;
   1648  1.131  drochner 	}
   1649  1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1650  1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1651  1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1652  1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1653  1.131  drochner 	ts->fs = fs;
   1654  1.131  drochner 	return ts;
   1655  1.131  drochner }
   1656  1.131  drochner 
   1657  1.131  drochner void
   1658  1.131  drochner ffs_discard_finish(void *vts, int flags)
   1659  1.131  drochner {
   1660  1.131  drochner 	struct discarddata *ts = vts;
   1661  1.131  drochner 	struct discardopdata *td = NULL;
   1662  1.131  drochner 	int res = 0;
   1663  1.131  drochner 
   1664  1.131  drochner 	/* wait for workqueue to drain */
   1665  1.131  drochner 	mutex_enter(&ts->wqlk);
   1666  1.131  drochner 	if (ts->wqcnt) {
   1667  1.131  drochner 		ts->wqdraining = 1;
   1668  1.131  drochner 		res = cv_timedwait(&ts->wqcv, &ts->wqlk, mstohz(5000));
   1669  1.131  drochner 	}
   1670  1.131  drochner 	mutex_exit(&ts->wqlk);
   1671  1.131  drochner 	if (res)
   1672  1.131  drochner 		printf("ffs_discarddata drain timeout\n");
   1673  1.131  drochner 
   1674  1.131  drochner 	mutex_enter(&ts->entrylk);
   1675  1.131  drochner 	if (ts->entry) {
   1676  1.131  drochner 		td = ts->entry;
   1677  1.131  drochner 		ts->entry = NULL;
   1678  1.131  drochner 	}
   1679  1.131  drochner 	mutex_exit(&ts->entrylk);
   1680  1.131  drochner 	if (td) {
   1681  1.131  drochner 		/* XXX don't tell disk, its optional */
   1682  1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1683  1.131  drochner #ifdef TRIMDEBUG
   1684  1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1685  1.131  drochner #endif
   1686  1.131  drochner 		kmem_free(td, sizeof(*td));
   1687  1.131  drochner 	}
   1688  1.131  drochner 
   1689  1.131  drochner 	cv_destroy(&ts->wqcv);
   1690  1.131  drochner 	mutex_destroy(&ts->entrylk);
   1691  1.131  drochner 	mutex_destroy(&ts->wqlk);
   1692  1.131  drochner 	workqueue_destroy(ts->wq);
   1693  1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1694  1.131  drochner }
   1695  1.131  drochner 
   1696  1.131  drochner void
   1697  1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1698  1.131  drochner     ino_t inum)
   1699  1.131  drochner {
   1700  1.131  drochner 	struct ufsmount *ump;
   1701  1.131  drochner 	int error;
   1702  1.131  drochner 	dev_t dev;
   1703  1.131  drochner 	struct discarddata *ts;
   1704  1.131  drochner 	struct discardopdata *td;
   1705  1.131  drochner 
   1706  1.131  drochner 	dev = devvp->v_rdev;
   1707  1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1708  1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1709  1.131  drochner 		return;
   1710  1.131  drochner 
   1711  1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1712  1.131  drochner 	if (error)
   1713  1.131  drochner 		return;
   1714  1.131  drochner 
   1715  1.131  drochner 	if (!ump->um_discarddata) {
   1716  1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1717  1.131  drochner 		return;
   1718  1.131  drochner 	}
   1719  1.131  drochner 
   1720  1.131  drochner #ifdef TRIMDEBUG
   1721  1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1722  1.131  drochner #endif
   1723  1.131  drochner 	ts = ump->um_discarddata;
   1724  1.131  drochner 	td = NULL;
   1725  1.131  drochner 
   1726  1.131  drochner 	mutex_enter(&ts->entrylk);
   1727  1.131  drochner 	if (ts->entry) {
   1728  1.131  drochner 		td = ts->entry;
   1729  1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1730  1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1731  1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1732  1.131  drochner 			td->bno = bno;
   1733  1.131  drochner 			td->size += size;
   1734  1.131  drochner 			if (td->size < ts->maxsize) {
   1735  1.131  drochner #ifdef TRIMDEBUG
   1736  1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1737  1.131  drochner #endif
   1738  1.131  drochner 				mutex_exit(&ts->entrylk);
   1739  1.131  drochner 				return;
   1740  1.131  drochner 			}
   1741  1.131  drochner 			size = 0; /* mark done */
   1742  1.131  drochner 		}
   1743  1.131  drochner 		ts->entry = NULL;
   1744  1.131  drochner 	}
   1745  1.131  drochner 	mutex_exit(&ts->entrylk);
   1746  1.131  drochner 
   1747  1.131  drochner 	if (td) {
   1748  1.131  drochner #ifdef TRIMDEBUG
   1749  1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1750  1.131  drochner #endif
   1751  1.131  drochner 		mutex_enter(&ts->wqlk);
   1752  1.131  drochner 		ts->wqcnt++;
   1753  1.131  drochner 		mutex_exit(&ts->wqlk);
   1754  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1755  1.131  drochner 	}
   1756  1.131  drochner 	if (!size)
   1757  1.131  drochner 		return;
   1758  1.131  drochner 
   1759  1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1760  1.131  drochner 	td->devvp = devvp;
   1761  1.131  drochner 	td->bno = bno;
   1762  1.131  drochner 	td->size = size;
   1763  1.131  drochner 
   1764  1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1765  1.131  drochner 		mutex_enter(&ts->entrylk);
   1766  1.131  drochner 		if (!ts->entry) { /* possible race? */
   1767  1.131  drochner #ifdef TRIMDEBUG
   1768  1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1769  1.131  drochner #endif
   1770  1.131  drochner 			ts->entry = td;
   1771  1.131  drochner 			td = NULL;
   1772  1.131  drochner 		}
   1773  1.131  drochner 		mutex_exit(&ts->entrylk);
   1774  1.131  drochner 	}
   1775  1.131  drochner 	if (td) {
   1776  1.131  drochner #ifdef TRIMDEBUG
   1777  1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1778  1.131  drochner #endif
   1779  1.131  drochner 		mutex_enter(&ts->wqlk);
   1780  1.131  drochner 		ts->wqcnt++;
   1781  1.131  drochner 		mutex_exit(&ts->wqlk);
   1782  1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1783  1.131  drochner 	}
   1784  1.131  drochner }
   1785  1.131  drochner 
   1786  1.116     joerg /*
   1787  1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1788  1.116     joerg  *
   1789  1.116     joerg  * The specified block or fragment is placed back in the
   1790  1.116     joerg  * free map. If a fragment is deallocated, a possible
   1791  1.116     joerg  * block reassembly is checked.
   1792  1.116     joerg  *
   1793  1.116     joerg  * => um_lock not held on entry or exit
   1794  1.116     joerg  */
   1795  1.116     joerg void
   1796  1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1797  1.116     joerg     ino_t inum)
   1798  1.116     joerg {
   1799  1.116     joerg 	struct cg *cgp;
   1800  1.116     joerg 	struct buf *bp;
   1801  1.116     joerg 	struct ufsmount *ump;
   1802  1.116     joerg 	daddr_t cgblkno;
   1803  1.116     joerg 	int error, cg;
   1804  1.116     joerg 	dev_t dev;
   1805  1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1806  1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1807  1.116     joerg 
   1808  1.116     joerg 	KASSERT(devvp_is_snapshot);
   1809  1.116     joerg 
   1810  1.116     joerg 	cg = dtog(fs, bno);
   1811  1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1812  1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1813  1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1814  1.116     joerg 
   1815  1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1816  1.116     joerg 	if (error)
   1817    1.1   mycroft 		return;
   1818  1.116     joerg 
   1819  1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1820  1.149      maxv 	    B_MODIFY, &bp);
   1821    1.1   mycroft 	if (error) {
   1822    1.1   mycroft 		return;
   1823    1.1   mycroft 	}
   1824    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1825   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1826  1.101        ad 		brelse(bp, 0);
   1827    1.1   mycroft 		return;
   1828    1.1   mycroft 	}
   1829  1.116     joerg 
   1830  1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1831  1.119     joerg 
   1832  1.119     joerg 	bdwrite(bp);
   1833  1.116     joerg }
   1834  1.116     joerg 
   1835  1.116     joerg static void
   1836  1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1837  1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1838  1.116     joerg {
   1839  1.116     joerg 	struct cg *cgp;
   1840  1.116     joerg 	int32_t fragno, cgbno;
   1841  1.116     joerg 	int i, cg, blk, frags, bbase;
   1842  1.116     joerg 	u_int8_t *blksfree;
   1843  1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1844  1.116     joerg 
   1845  1.116     joerg 	cg = dtog(fs, bno);
   1846  1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1847   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1848   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1849   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1850   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1851   1.60      fvdl 	cgbno = dtogd(fs, bno);
   1852   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1853  1.101        ad 	mutex_enter(&ump->um_lock);
   1854    1.1   mycroft 	if (size == fs->fs_bsize) {
   1855  1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1856   1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1857  1.113   hannken 			if (devvp_is_snapshot) {
   1858  1.101        ad 				mutex_exit(&ump->um_lock);
   1859   1.76   hannken 				return;
   1860   1.76   hannken 			}
   1861  1.154  christos 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1862  1.154  christos 			    PRId64 ", fs = %s", __func__,
   1863  1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1864    1.1   mycroft 		}
   1865   1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1866   1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1867   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1868    1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1869    1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1870   1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1871   1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1872   1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1873   1.75       dbj 			KASSERT(i >= 0);
   1874   1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1875   1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1876   1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1877   1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1878   1.73       dbj 			    needswap);
   1879   1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1880   1.73       dbj 		}
   1881    1.1   mycroft 	} else {
   1882  1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1883    1.1   mycroft 		/*
   1884    1.1   mycroft 		 * decrement the counts associated with the old frags
   1885    1.1   mycroft 		 */
   1886   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1887   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1888    1.1   mycroft 		/*
   1889    1.1   mycroft 		 * deallocate the fragment
   1890    1.1   mycroft 		 */
   1891  1.137  dholland 		frags = ffs_numfrags(fs, size);
   1892    1.1   mycroft 		for (i = 0; i < frags; i++) {
   1893   1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1894  1.154  christos 				panic("%s: freeing free frag: "
   1895  1.154  christos 				    "dev = 0x%llx, block = %" PRId64
   1896  1.154  christos 				    ", fs = %s", __func__,
   1897  1.120  christos 				    (unsigned long long)dev, bno + i,
   1898  1.120  christos 				    fs->fs_fsmnt);
   1899    1.1   mycroft 			}
   1900   1.62      fvdl 			setbit(blksfree, cgbno + i);
   1901    1.1   mycroft 		}
   1902   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1903    1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1904   1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1905    1.1   mycroft 		/*
   1906    1.1   mycroft 		 * add back in counts associated with the new frags
   1907    1.1   mycroft 		 */
   1908   1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1909   1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1910    1.1   mycroft 		/*
   1911    1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1912    1.1   mycroft 		 */
   1913  1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1914   1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1915   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1916    1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1917    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1918   1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1919   1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1920    1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1921    1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1922   1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1923   1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1924   1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1925   1.75       dbj 				KASSERT(i >= 0);
   1926   1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1927   1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1928   1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1929   1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1930   1.73       dbj 				    bbase)], 1, needswap);
   1931   1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1932   1.73       dbj 			}
   1933    1.1   mycroft 		}
   1934    1.1   mycroft 	}
   1935    1.1   mycroft 	fs->fs_fmod = 1;
   1936   1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1937  1.101        ad 	mutex_exit(&ump->um_lock);
   1938    1.1   mycroft }
   1939    1.1   mycroft 
   1940    1.1   mycroft /*
   1941    1.1   mycroft  * Free an inode.
   1942   1.30      fvdl  */
   1943   1.30      fvdl int
   1944   1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1945   1.30      fvdl {
   1946   1.30      fvdl 
   1947  1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1948   1.30      fvdl }
   1949   1.30      fvdl 
   1950   1.30      fvdl /*
   1951   1.30      fvdl  * Do the actual free operation.
   1952    1.1   mycroft  * The specified inode is placed back in the free map.
   1953  1.111    simonb  *
   1954  1.111    simonb  * => um_lock not held on entry or exit
   1955    1.1   mycroft  */
   1956    1.1   mycroft int
   1957  1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1958  1.119     joerg {
   1959  1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1960  1.119     joerg 	struct fs *fs = ump->um_fs;
   1961  1.119     joerg 	struct vnode *devvp;
   1962  1.119     joerg 	struct cg *cgp;
   1963  1.119     joerg 	struct buf *bp;
   1964  1.119     joerg 	int error, cg;
   1965  1.119     joerg 	daddr_t cgbno;
   1966  1.119     joerg 	dev_t dev;
   1967  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1968  1.119     joerg 
   1969  1.119     joerg 	cg = ino_to_cg(fs, ino);
   1970  1.119     joerg 	devvp = ump->um_devvp;
   1971  1.119     joerg 	dev = devvp->v_rdev;
   1972  1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1973  1.119     joerg 
   1974  1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1975  1.154  christos 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   1976  1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   1977  1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   1978  1.149      maxv 	    B_MODIFY, &bp);
   1979  1.119     joerg 	if (error) {
   1980  1.119     joerg 		return (error);
   1981  1.119     joerg 	}
   1982  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   1983  1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1984  1.119     joerg 		brelse(bp, 0);
   1985  1.119     joerg 		return (0);
   1986  1.119     joerg 	}
   1987  1.119     joerg 
   1988  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   1989  1.119     joerg 
   1990  1.119     joerg 	bdwrite(bp);
   1991  1.119     joerg 
   1992  1.119     joerg 	return 0;
   1993  1.119     joerg }
   1994  1.119     joerg 
   1995  1.119     joerg int
   1996  1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   1997    1.9  christos {
   1998  1.101        ad 	struct ufsmount *ump;
   1999   1.33  augustss 	struct cg *cgp;
   2000    1.1   mycroft 	struct buf *bp;
   2001    1.1   mycroft 	int error, cg;
   2002   1.76   hannken 	daddr_t cgbno;
   2003   1.78   hannken 	dev_t dev;
   2004   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2005    1.1   mycroft 
   2006  1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   2007  1.111    simonb 
   2008   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2009  1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2010  1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   2011  1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2012    1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2013  1.154  christos 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2014  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   2015  1.120  christos 		    fs->fs_fsmnt);
   2016  1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2017  1.149      maxv 	    B_MODIFY, &bp);
   2018    1.1   mycroft 	if (error) {
   2019   1.30      fvdl 		return (error);
   2020    1.1   mycroft 	}
   2021    1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2022   1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2023  1.101        ad 		brelse(bp, 0);
   2024    1.1   mycroft 		return (0);
   2025    1.1   mycroft 	}
   2026  1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2027  1.119     joerg 
   2028  1.119     joerg 	bdwrite(bp);
   2029  1.119     joerg 
   2030  1.119     joerg 	return 0;
   2031  1.119     joerg }
   2032  1.119     joerg 
   2033  1.119     joerg static void
   2034  1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2035  1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2036  1.119     joerg {
   2037  1.119     joerg 	int cg;
   2038  1.119     joerg 	struct cg *cgp;
   2039  1.119     joerg 	u_int8_t *inosused;
   2040  1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2041  1.119     joerg 
   2042  1.119     joerg 	cg = ino_to_cg(fs, ino);
   2043  1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2044   1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2045   1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2046   1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2047   1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2048   1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2049    1.1   mycroft 	ino %= fs->fs_ipg;
   2050   1.62      fvdl 	if (isclr(inosused, ino)) {
   2051  1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2052  1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2053  1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2054    1.1   mycroft 		if (fs->fs_ronly == 0)
   2055  1.154  christos 			panic("%s: freeing free inode", __func__);
   2056    1.1   mycroft 	}
   2057   1.62      fvdl 	clrbit(inosused, ino);
   2058  1.113   hannken 	if (!devvp_is_snapshot)
   2059  1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2060  1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2061   1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2062   1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2063   1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2064  1.101        ad 	mutex_enter(&ump->um_lock);
   2065    1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2066    1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2067   1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2068   1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2069    1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2070    1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2071    1.1   mycroft 	}
   2072    1.1   mycroft 	fs->fs_fmod = 1;
   2073   1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2074  1.101        ad 	mutex_exit(&ump->um_lock);
   2075    1.1   mycroft }
   2076    1.1   mycroft 
   2077    1.1   mycroft /*
   2078   1.76   hannken  * Check to see if a file is free.
   2079   1.76   hannken  */
   2080   1.76   hannken int
   2081   1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2082   1.76   hannken {
   2083   1.76   hannken 	struct cg *cgp;
   2084   1.76   hannken 	struct buf *bp;
   2085   1.76   hannken 	daddr_t cgbno;
   2086   1.76   hannken 	int ret, cg;
   2087   1.76   hannken 	u_int8_t *inosused;
   2088  1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2089   1.76   hannken 
   2090  1.119     joerg 	KASSERT(devvp_is_snapshot);
   2091  1.119     joerg 
   2092   1.76   hannken 	cg = ino_to_cg(fs, ino);
   2093  1.113   hannken 	if (devvp_is_snapshot)
   2094  1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2095  1.113   hannken 	else
   2096  1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2097   1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2098   1.76   hannken 		return 1;
   2099  1.149      maxv 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2100   1.76   hannken 		return 1;
   2101   1.76   hannken 	}
   2102   1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2103   1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2104  1.101        ad 		brelse(bp, 0);
   2105   1.76   hannken 		return 1;
   2106   1.76   hannken 	}
   2107   1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2108   1.76   hannken 	ino %= fs->fs_ipg;
   2109   1.76   hannken 	ret = isclr(inosused, ino);
   2110  1.101        ad 	brelse(bp, 0);
   2111   1.76   hannken 	return ret;
   2112   1.76   hannken }
   2113   1.76   hannken 
   2114   1.76   hannken /*
   2115    1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2116    1.1   mycroft  *
   2117    1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2118    1.1   mycroft  * available.
   2119    1.1   mycroft  */
   2120   1.60      fvdl static int32_t
   2121   1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2122    1.1   mycroft {
   2123   1.60      fvdl 	int32_t bno;
   2124    1.1   mycroft 	int start, len, loc, i;
   2125    1.1   mycroft 	int blk, field, subfield, pos;
   2126   1.19    bouyer 	int ostart, olen;
   2127   1.62      fvdl 	u_int8_t *blksfree;
   2128   1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2129    1.1   mycroft 
   2130  1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2131  1.101        ad 
   2132    1.1   mycroft 	/*
   2133    1.1   mycroft 	 * find the fragment by searching through the free block
   2134    1.1   mycroft 	 * map for an appropriate bit pattern
   2135    1.1   mycroft 	 */
   2136    1.1   mycroft 	if (bpref)
   2137    1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2138    1.1   mycroft 	else
   2139   1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2140   1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2141    1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2142   1.19    bouyer 	ostart = start;
   2143   1.19    bouyer 	olen = len;
   2144   1.45     lukem 	loc = scanc((u_int)len,
   2145   1.62      fvdl 		(const u_char *)&blksfree[start],
   2146   1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2147   1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2148    1.1   mycroft 	if (loc == 0) {
   2149    1.1   mycroft 		len = start + 1;
   2150    1.1   mycroft 		start = 0;
   2151   1.45     lukem 		loc = scanc((u_int)len,
   2152   1.62      fvdl 			(const u_char *)&blksfree[0],
   2153   1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2154   1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2155    1.1   mycroft 		if (loc == 0) {
   2156  1.154  christos 			panic("%s: map corrupted: start=%d, len=%d, "
   2157  1.154  christos 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2158  1.154  christos 			    ostart, olen, fs->fs_fsmnt,
   2159  1.154  christos 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2160  1.154  christos 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2161    1.1   mycroft 			/* NOTREACHED */
   2162    1.1   mycroft 		}
   2163    1.1   mycroft 	}
   2164    1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2165   1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2166    1.1   mycroft 	/*
   2167    1.1   mycroft 	 * found the byte in the map
   2168    1.1   mycroft 	 * sift through the bits to find the selected frag
   2169    1.1   mycroft 	 */
   2170    1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2171   1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2172    1.1   mycroft 		blk <<= 1;
   2173    1.1   mycroft 		field = around[allocsiz];
   2174    1.1   mycroft 		subfield = inside[allocsiz];
   2175    1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2176    1.1   mycroft 			if ((blk & field) == subfield)
   2177    1.1   mycroft 				return (bno + pos);
   2178    1.1   mycroft 			field <<= 1;
   2179    1.1   mycroft 			subfield <<= 1;
   2180    1.1   mycroft 		}
   2181    1.1   mycroft 	}
   2182  1.154  christos 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2183  1.154  christos 	    bno, fs->fs_fsmnt);
   2184   1.58      fvdl 	/* return (-1); */
   2185    1.1   mycroft }
   2186    1.1   mycroft 
   2187    1.1   mycroft /*
   2188    1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2189   1.81     perry  *
   2190    1.1   mycroft  * The form of the error message is:
   2191    1.1   mycroft  *	fs: error message
   2192    1.1   mycroft  */
   2193    1.1   mycroft static void
   2194  1.150   mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2195    1.1   mycroft {
   2196  1.150   mlelstv 	KASSERT(cred != NULL);
   2197    1.1   mycroft 
   2198  1.150   mlelstv 	if (cred == NOCRED || cred == FSCRED) {
   2199  1.150   mlelstv 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2200  1.150   mlelstv 		    curproc->p_pid, curproc->p_comm,
   2201  1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2202  1.150   mlelstv 	} else {
   2203  1.150   mlelstv 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2204  1.150   mlelstv 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2205  1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2206  1.150   mlelstv 	}
   2207    1.1   mycroft }
   2208