Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.166.4.1
      1  1.166.4.1    bouyer /*	$NetBSD: ffs_alloc.c,v 1.166.4.1 2020/04/20 11:29:14 bouyer Exp $	*/
      2      1.111    simonb 
      3      1.111    simonb /*-
      4      1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.111    simonb  * All rights reserved.
      6      1.111    simonb  *
      7      1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8      1.111    simonb  * by Wasabi Systems, Inc.
      9      1.111    simonb  *
     10      1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11      1.111    simonb  * modification, are permitted provided that the following conditions
     12      1.111    simonb  * are met:
     13      1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14      1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15      1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17      1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18      1.111    simonb  *
     19      1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30      1.111    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.166.4.1    bouyer __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.166.4.1 2020/04/20 11:29:14 bouyer Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78      1.129       chs #include "opt_uvm_page_trkown.h"
     79       1.22    scottr #endif
     80        1.1   mycroft 
     81        1.1   mycroft #include <sys/param.h>
     82        1.1   mycroft #include <sys/systm.h>
     83        1.1   mycroft #include <sys/buf.h>
     84      1.130       tls #include <sys/cprng.h>
     85      1.111    simonb #include <sys/kauth.h>
     86      1.111    simonb #include <sys/kernel.h>
     87      1.111    simonb #include <sys/mount.h>
     88        1.1   mycroft #include <sys/proc.h>
     89      1.111    simonb #include <sys/syslog.h>
     90        1.1   mycroft #include <sys/vnode.h>
     91      1.111    simonb #include <sys/wapbl.h>
     92      1.147     joerg #include <sys/cprng.h>
     93       1.29       mrg 
     94       1.76   hannken #include <miscfs/specfs/specdev.h>
     95        1.1   mycroft #include <ufs/ufs/quota.h>
     96       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     97        1.1   mycroft #include <ufs/ufs/inode.h>
     98        1.9  christos #include <ufs/ufs/ufs_extern.h>
     99       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    100      1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    101        1.1   mycroft 
    102        1.1   mycroft #include <ufs/ffs/fs.h>
    103        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    104        1.1   mycroft 
    105      1.129       chs #ifdef UVM_PAGE_TRKOWN
    106      1.129       chs #include <uvm/uvm.h>
    107      1.129       chs #endif
    108      1.129       chs 
    109      1.152  jdolecek static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int, int);
    110      1.152  jdolecek static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    111       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    112       1.85   thorpej static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
    113      1.150   mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    114      1.152  jdolecek static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int, int,
    115      1.152  jdolecek     daddr_t (*)(struct inode *, int, daddr_t, int, int, int));
    116      1.152  jdolecek static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int, int);
    117       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    118       1.85   thorpej 				      daddr_t, int);
    119      1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    120      1.116     joerg     daddr_t, long, bool);
    121      1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    122      1.119     joerg     int, bool);
    123       1.23  drochner 
    124       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    125       1.34  jdolecek int ffs_log_changeopt = 0;
    126       1.34  jdolecek 
    127       1.23  drochner /* in ffs_tables.c */
    128       1.40  jdolecek extern const int inside[], around[];
    129       1.40  jdolecek extern const u_char * const fragtbl[];
    130        1.1   mycroft 
    131      1.116     joerg /* Basic consistency check for block allocations */
    132      1.116     joerg static int
    133      1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    134      1.116     joerg     long size, dev_t dev, ino_t inum)
    135      1.116     joerg {
    136      1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    137      1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    138      1.154  christos 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    139      1.154  christos 		    " bsize = %d, size = %ld, fs = %s", func,
    140      1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    141      1.116     joerg 	}
    142      1.116     joerg 
    143      1.116     joerg 	if (bno >= fs->fs_size) {
    144      1.154  christos 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    145      1.116     joerg 		    (unsigned long long)inum);
    146      1.150   mlelstv 		ffs_fserr(fs, NOCRED, "bad block");
    147      1.116     joerg 		return EINVAL;
    148      1.116     joerg 	}
    149      1.116     joerg 	return 0;
    150      1.116     joerg }
    151      1.116     joerg 
    152        1.1   mycroft /*
    153        1.1   mycroft  * Allocate a block in the file system.
    154       1.81     perry  *
    155        1.1   mycroft  * The size of the requested block is given, which must be some
    156        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    157        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    158        1.1   mycroft  * the following hierarchy is used to allocate a block:
    159        1.1   mycroft  *   1) allocate the requested block.
    160        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    161        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    162        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    163        1.1   mycroft  *      available block is located.
    164       1.47       wiz  * If no block preference is given the following hierarchy is used
    165        1.1   mycroft  * to allocate a block:
    166        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    167        1.1   mycroft  *      inode for the file.
    168        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    169        1.1   mycroft  *      available block is located.
    170      1.106     pooka  *
    171      1.106     pooka  * => called with um_lock held
    172      1.106     pooka  * => releases um_lock before returning
    173        1.1   mycroft  */
    174        1.9  christos int
    175      1.152  jdolecek ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    176      1.152  jdolecek     int flags, kauth_cred_t cred, daddr_t *bnp)
    177        1.1   mycroft {
    178      1.101        ad 	struct ufsmount *ump;
    179       1.62      fvdl 	struct fs *fs;
    180       1.58      fvdl 	daddr_t bno;
    181        1.9  christos 	int cg;
    182      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    183        1.9  christos 	int error;
    184        1.9  christos #endif
    185       1.81     perry 
    186       1.62      fvdl 	fs = ip->i_fs;
    187      1.101        ad 	ump = ip->i_ump;
    188      1.101        ad 
    189      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    190       1.62      fvdl 
    191       1.37       chs #ifdef UVM_PAGE_TRKOWN
    192      1.129       chs 
    193      1.129       chs 	/*
    194      1.129       chs 	 * Sanity-check that allocations within the file size
    195      1.129       chs 	 * do not allow other threads to read the stale contents
    196      1.129       chs 	 * of newly allocated blocks.
    197      1.129       chs 	 * Usually pages will exist to cover the new allocation.
    198      1.129       chs 	 * There is an optimization in ffs_write() where we skip
    199      1.129       chs 	 * creating pages if several conditions are met:
    200      1.129       chs 	 *  - the file must not be mapped (in any user address space).
    201      1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    202      1.129       chs 	 * If those conditions are not met then pages must exist and
    203      1.129       chs 	 * be locked by the current thread.
    204      1.129       chs 	 */
    205      1.129       chs 
    206      1.159       chs 	struct vnode *vp = ITOV(ip);
    207      1.159       chs 	if (vp->v_type == VREG &&
    208      1.159       chs 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(vp->v_size) &&
    209      1.159       chs 	    ((vp->v_vflag & VV_MAPPED) != 0 || (size & PAGE_MASK) != 0 ||
    210      1.159       chs 	     ffs_blkoff(fs, size) != 0)) {
    211      1.165  riastrad 		struct vm_page *pg __diagused;
    212      1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    213      1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    214      1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    215       1.37       chs 
    216      1.166        ad 		rw_enter(uobj->vmobjlock, RW_WRITER);
    217       1.37       chs 		while (off < endoff) {
    218       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    219      1.159       chs 			KASSERT((pg != NULL && pg->owner_tag != NULL &&
    220      1.159       chs 				 pg->owner == curproc->p_pid &&
    221      1.129       chs 				 pg->lowner == curlwp->l_lid));
    222       1.37       chs 			off += PAGE_SIZE;
    223       1.37       chs 		}
    224      1.166        ad 		rw_exit(uobj->vmobjlock);
    225       1.37       chs 	}
    226       1.37       chs #endif
    227       1.37       chs 
    228        1.1   mycroft 	*bnp = 0;
    229      1.156  riastrad 
    230      1.156  riastrad 	KASSERTMSG((cred != NOCRED), "missing credential");
    231      1.156  riastrad 	KASSERTMSG(((u_int)size <= fs->fs_bsize),
    232      1.156  riastrad 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    233      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    234      1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, size) == 0),
    235      1.156  riastrad 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    236      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    237      1.156  riastrad 
    238        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    239        1.1   mycroft 		goto nospace;
    240       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    241      1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    242      1.124      elad 	    NULL, NULL) != 0)
    243        1.1   mycroft 		goto nospace;
    244      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    245      1.101        ad 	mutex_exit(&ump->um_lock);
    246       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    247        1.1   mycroft 		return (error);
    248      1.101        ad 	mutex_enter(&ump->um_lock);
    249        1.1   mycroft #endif
    250      1.111    simonb 
    251        1.1   mycroft 	if (bpref >= fs->fs_size)
    252        1.1   mycroft 		bpref = 0;
    253        1.1   mycroft 	if (bpref == 0)
    254        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    255        1.1   mycroft 	else
    256        1.1   mycroft 		cg = dtog(fs, bpref);
    257      1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    258        1.1   mycroft 	if (bno > 0) {
    259       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    260  1.166.4.1    bouyer 		if (flags & IO_EXT)
    261  1.166.4.1    bouyer 			ip->i_flag |= IN_CHANGE;
    262  1.166.4.1    bouyer 		else
    263  1.166.4.1    bouyer 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    264        1.1   mycroft 		*bnp = bno;
    265        1.1   mycroft 		return (0);
    266        1.1   mycroft 	}
    267      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    268        1.1   mycroft 	/*
    269        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    270        1.1   mycroft 	 */
    271       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    272        1.1   mycroft #endif
    273      1.111    simonb 	if (flags & B_CONTIG) {
    274      1.111    simonb 		/*
    275      1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    276      1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    277      1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    278      1.111    simonb 		 * already unlocked, so we can't release it again
    279      1.111    simonb 		 * like in the normal error path.  See kern/39206.
    280      1.111    simonb 		 *
    281      1.111    simonb 		 *
    282      1.111    simonb 		 * Fail silently - it's up to our caller to report
    283      1.111    simonb 		 * errors.
    284      1.111    simonb 		 */
    285      1.111    simonb 		return (ENOSPC);
    286      1.111    simonb 	}
    287        1.1   mycroft nospace:
    288      1.101        ad 	mutex_exit(&ump->um_lock);
    289      1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    290        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    291        1.1   mycroft 	return (ENOSPC);
    292        1.1   mycroft }
    293        1.1   mycroft 
    294        1.1   mycroft /*
    295        1.1   mycroft  * Reallocate a fragment to a bigger size
    296        1.1   mycroft  *
    297        1.1   mycroft  * The number and size of the old block is given, and a preference
    298        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    299        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    300        1.1   mycroft  * invoked to get an appropriate block.
    301      1.106     pooka  *
    302      1.106     pooka  * => called with um_lock held
    303      1.106     pooka  * => return with um_lock released
    304        1.1   mycroft  */
    305        1.9  christos int
    306  1.166.4.1    bouyer ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bprev, daddr_t bpref,
    307  1.166.4.1    bouyer     int osize, int nsize, int flags, kauth_cred_t cred, struct buf **bpp,
    308  1.166.4.1    bouyer     daddr_t *blknop)
    309        1.1   mycroft {
    310      1.101        ad 	struct ufsmount *ump;
    311       1.62      fvdl 	struct fs *fs;
    312        1.1   mycroft 	struct buf *bp;
    313        1.1   mycroft 	int cg, request, error;
    314  1.166.4.1    bouyer 	daddr_t bno;
    315       1.25   thorpej 
    316       1.62      fvdl 	fs = ip->i_fs;
    317      1.101        ad 	ump = ip->i_ump;
    318      1.101        ad 
    319      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    320      1.101        ad 
    321       1.37       chs #ifdef UVM_PAGE_TRKOWN
    322      1.129       chs 
    323      1.129       chs 	/*
    324      1.129       chs 	 * Sanity-check that allocations within the file size
    325      1.129       chs 	 * do not allow other threads to read the stale contents
    326      1.129       chs 	 * of newly allocated blocks.
    327      1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    328      1.129       chs 	 * for such allocations, because only the last block of a file
    329      1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    330      1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    331      1.129       chs 	 * which always creates pages to cover blocks it allocates.
    332      1.129       chs 	 */
    333      1.129       chs 
    334       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    335      1.165  riastrad 		struct vm_page *pg __diagused;
    336       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    337      1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    338      1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    339       1.37       chs 
    340      1.166        ad 		rw_enter(uobj->vmobjlock, RW_WRITER);
    341       1.37       chs 		while (off < endoff) {
    342       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    343      1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    344      1.129       chs 				pg->lowner == curlwp->l_lid);
    345       1.37       chs 			off += PAGE_SIZE;
    346       1.37       chs 		}
    347      1.166        ad 		rw_exit(uobj->vmobjlock);
    348       1.37       chs 	}
    349       1.37       chs #endif
    350       1.37       chs 
    351      1.156  riastrad 	KASSERTMSG((cred != NOCRED), "missing credential");
    352      1.156  riastrad 	KASSERTMSG(((u_int)osize <= fs->fs_bsize),
    353      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    354      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    355      1.156  riastrad 	    fs->fs_fsmnt);
    356      1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, osize) == 0),
    357      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    358      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    359      1.156  riastrad 	    fs->fs_fsmnt);
    360      1.156  riastrad 	KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
    361      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    362      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    363      1.156  riastrad 	    fs->fs_fsmnt);
    364      1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
    365      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    366      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    367      1.156  riastrad 	    fs->fs_fsmnt);
    368      1.156  riastrad 
    369       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    370      1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    371      1.124      elad 	    NULL, NULL) != 0) {
    372      1.101        ad 		mutex_exit(&ump->um_lock);
    373        1.1   mycroft 		goto nospace;
    374      1.101        ad 	}
    375       1.60      fvdl 
    376       1.60      fvdl 	if (bprev == 0) {
    377      1.154  christos 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    378      1.154  christos 		    PRId64 ", fs = %s", __func__,
    379      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    380      1.120  christos 		    fs->fs_fsmnt);
    381        1.1   mycroft 	}
    382      1.101        ad 	mutex_exit(&ump->um_lock);
    383      1.101        ad 
    384        1.1   mycroft 	/*
    385        1.1   mycroft 	 * Allocate the extra space in the buffer.
    386        1.1   mycroft 	 */
    387       1.37       chs 	if (bpp != NULL &&
    388      1.149      maxv 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    389        1.1   mycroft 		return (error);
    390        1.1   mycroft 	}
    391      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    392       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    393       1.44       chs 		if (bpp != NULL) {
    394      1.101        ad 			brelse(bp, 0);
    395       1.44       chs 		}
    396        1.1   mycroft 		return (error);
    397        1.1   mycroft 	}
    398        1.1   mycroft #endif
    399        1.1   mycroft 	/*
    400        1.1   mycroft 	 * Check for extension in the existing location.
    401        1.1   mycroft 	 */
    402        1.1   mycroft 	cg = dtog(fs, bprev);
    403      1.101        ad 	mutex_enter(&ump->um_lock);
    404       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    405       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    406  1.166.4.1    bouyer 		if (flags & IO_EXT)
    407  1.166.4.1    bouyer 			ip->i_flag |= IN_CHANGE;
    408  1.166.4.1    bouyer 		else
    409  1.166.4.1    bouyer 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    410       1.37       chs 
    411       1.37       chs 		if (bpp != NULL) {
    412      1.154  christos 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    413      1.154  christos 				panic("%s: bad blockno %#llx != %#llx",
    414      1.154  christos 				    __func__, (unsigned long long) bp->b_blkno,
    415      1.154  christos 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    416      1.154  christos 			}
    417       1.72        pk 			allocbuf(bp, nsize, 1);
    418       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    419      1.105        ad 			mutex_enter(bp->b_objlock);
    420      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    421      1.105        ad 			bp->b_oflags |= BO_DONE;
    422      1.105        ad 			mutex_exit(bp->b_objlock);
    423       1.37       chs 			*bpp = bp;
    424       1.37       chs 		}
    425       1.37       chs 		if (blknop != NULL) {
    426       1.37       chs 			*blknop = bno;
    427       1.37       chs 		}
    428        1.1   mycroft 		return (0);
    429        1.1   mycroft 	}
    430        1.1   mycroft 	/*
    431        1.1   mycroft 	 * Allocate a new disk location.
    432        1.1   mycroft 	 */
    433        1.1   mycroft 	if (bpref >= fs->fs_size)
    434        1.1   mycroft 		bpref = 0;
    435        1.1   mycroft 	switch ((int)fs->fs_optim) {
    436        1.1   mycroft 	case FS_OPTSPACE:
    437        1.1   mycroft 		/*
    438       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    439       1.81     perry 		 * best use of space, we will waste time relocating it if
    440        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    441        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    442        1.1   mycroft 		 * to begin optimizing for time.
    443        1.1   mycroft 		 */
    444        1.1   mycroft 		request = nsize;
    445        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    446        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    447        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    448        1.1   mycroft 			break;
    449       1.34  jdolecek 
    450       1.34  jdolecek 		if (ffs_log_changeopt) {
    451       1.34  jdolecek 			log(LOG_NOTICE,
    452       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    453       1.34  jdolecek 				fs->fs_fsmnt);
    454       1.34  jdolecek 		}
    455       1.34  jdolecek 
    456        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    457        1.1   mycroft 		break;
    458        1.1   mycroft 	case FS_OPTTIME:
    459        1.1   mycroft 		/*
    460        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    461        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    462        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    463        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    464        1.1   mycroft 		 * above will be able to grow it in place without further
    465        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    466        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    467        1.1   mycroft 		 * optimizing for space.
    468        1.1   mycroft 		 */
    469        1.1   mycroft 		request = fs->fs_bsize;
    470        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    471        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    472        1.1   mycroft 			break;
    473       1.34  jdolecek 
    474       1.34  jdolecek 		if (ffs_log_changeopt) {
    475       1.34  jdolecek 			log(LOG_NOTICE,
    476       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    477       1.34  jdolecek 				fs->fs_fsmnt);
    478       1.34  jdolecek 		}
    479       1.34  jdolecek 
    480        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    481        1.1   mycroft 		break;
    482        1.1   mycroft 	default:
    483      1.154  christos 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    484      1.154  christos 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    485      1.154  christos 		    fs->fs_fsmnt);
    486        1.1   mycroft 		/* NOTREACHED */
    487        1.1   mycroft 	}
    488      1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    489        1.1   mycroft 	if (bno > 0) {
    490      1.153  jdolecek 		/*
    491      1.153  jdolecek 		 * Use forced deallocation registration, we can't handle
    492      1.153  jdolecek 		 * failure here. This is safe, as this place is ever hit
    493      1.153  jdolecek 		 * maximum once per write operation, when fragment is extended
    494      1.153  jdolecek 		 * to longer fragment, or a full block.
    495      1.153  jdolecek 		 */
    496      1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    497      1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    498      1.153  jdolecek 			/* this should never fail */
    499      1.153  jdolecek 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    500      1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    501      1.122        ad 			    osize);
    502      1.153  jdolecek 			if (error)
    503      1.153  jdolecek 				panic("ffs_realloccg: dealloc registration failed");
    504      1.122        ad 		} else {
    505      1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    506      1.122        ad 			    ip->i_number);
    507      1.111    simonb 		}
    508       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    509  1.166.4.1    bouyer 		if (flags & IO_EXT)
    510  1.166.4.1    bouyer 			ip->i_flag |= IN_CHANGE;
    511  1.166.4.1    bouyer 		else
    512  1.166.4.1    bouyer 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    513       1.37       chs 		if (bpp != NULL) {
    514      1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    515       1.72        pk 			allocbuf(bp, nsize, 1);
    516       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    517      1.105        ad 			mutex_enter(bp->b_objlock);
    518      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    519      1.105        ad 			bp->b_oflags |= BO_DONE;
    520      1.105        ad 			mutex_exit(bp->b_objlock);
    521       1.37       chs 			*bpp = bp;
    522       1.37       chs 		}
    523       1.37       chs 		if (blknop != NULL) {
    524       1.37       chs 			*blknop = bno;
    525       1.37       chs 		}
    526        1.1   mycroft 		return (0);
    527        1.1   mycroft 	}
    528      1.101        ad 	mutex_exit(&ump->um_lock);
    529      1.101        ad 
    530      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    531        1.1   mycroft 	/*
    532        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    533        1.1   mycroft 	 */
    534       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    535        1.1   mycroft #endif
    536       1.37       chs 	if (bpp != NULL) {
    537      1.101        ad 		brelse(bp, 0);
    538       1.37       chs 	}
    539       1.37       chs 
    540        1.1   mycroft nospace:
    541        1.1   mycroft 	/*
    542        1.1   mycroft 	 * no space available
    543        1.1   mycroft 	 */
    544      1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    545        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    546        1.1   mycroft 	return (ENOSPC);
    547        1.1   mycroft }
    548        1.1   mycroft 
    549        1.1   mycroft /*
    550        1.1   mycroft  * Allocate an inode in the file system.
    551       1.81     perry  *
    552        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    553        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    554        1.1   mycroft  *   1) allocate the preferred inode.
    555        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    556        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    557        1.1   mycroft  *      available inode is located.
    558       1.47       wiz  * If no inode preference is given the following hierarchy is used
    559        1.1   mycroft  * to allocate an inode:
    560        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    561        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    562        1.1   mycroft  *      available inode is located.
    563      1.106     pooka  *
    564      1.106     pooka  * => um_lock not held upon entry or return
    565        1.1   mycroft  */
    566        1.9  christos int
    567      1.148   hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    568        1.9  christos {
    569      1.101        ad 	struct ufsmount *ump;
    570       1.33  augustss 	struct inode *pip;
    571       1.33  augustss 	struct fs *fs;
    572        1.1   mycroft 	ino_t ino, ipref;
    573        1.1   mycroft 	int cg, error;
    574       1.81     perry 
    575      1.163  jdolecek 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    576      1.163  jdolecek 
    577        1.1   mycroft 	pip = VTOI(pvp);
    578        1.1   mycroft 	fs = pip->i_fs;
    579      1.101        ad 	ump = pip->i_ump;
    580      1.101        ad 
    581      1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    582      1.111    simonb 	if (error) {
    583      1.111    simonb 		return error;
    584      1.111    simonb 	}
    585      1.101        ad 	mutex_enter(&ump->um_lock);
    586        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    587        1.1   mycroft 		goto noinodes;
    588        1.1   mycroft 
    589        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    590       1.50     lukem 		ipref = ffs_dirpref(pip);
    591       1.50     lukem 	else
    592       1.50     lukem 		ipref = pip->i_number;
    593        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    594        1.1   mycroft 		ipref = 0;
    595        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    596       1.50     lukem 	/*
    597       1.50     lukem 	 * Track number of dirs created one after another
    598       1.50     lukem 	 * in a same cg without intervening by files.
    599       1.50     lukem 	 */
    600       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    601       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    602       1.50     lukem 			fs->fs_contigdirs[cg]++;
    603       1.50     lukem 	} else {
    604       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    605       1.50     lukem 			fs->fs_contigdirs[cg]--;
    606       1.50     lukem 	}
    607      1.152  jdolecek 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    608        1.1   mycroft 	if (ino == 0)
    609        1.1   mycroft 		goto noinodes;
    610      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    611      1.148   hannken 	*inop = ino;
    612      1.148   hannken 	return 0;
    613       1.60      fvdl 
    614        1.1   mycroft noinodes:
    615      1.101        ad 	mutex_exit(&ump->um_lock);
    616      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    617      1.150   mlelstv 	ffs_fserr(fs, cred, "out of inodes");
    618        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    619      1.148   hannken 	return ENOSPC;
    620        1.1   mycroft }
    621        1.1   mycroft 
    622        1.1   mycroft /*
    623       1.50     lukem  * Find a cylinder group in which to place a directory.
    624       1.42  sommerfe  *
    625       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    626       1.50     lukem  * directory inode in the same cylinder group as its parent
    627       1.50     lukem  * directory, but also to reserve space for its files inodes
    628       1.50     lukem  * and data. Restrict the number of directories which may be
    629       1.50     lukem  * allocated one after another in the same cylinder group
    630       1.50     lukem  * without intervening allocation of files.
    631       1.42  sommerfe  *
    632       1.50     lukem  * If we allocate a first level directory then force allocation
    633       1.50     lukem  * in another cylinder group.
    634        1.1   mycroft  */
    635        1.1   mycroft static ino_t
    636       1.85   thorpej ffs_dirpref(struct inode *pip)
    637        1.1   mycroft {
    638       1.50     lukem 	register struct fs *fs;
    639       1.74     soren 	int cg, prefcg;
    640       1.89       dsl 	int64_t dirsize, cgsize, curdsz;
    641       1.89       dsl 	int avgifree, avgbfree, avgndir;
    642       1.50     lukem 	int minifree, minbfree, maxndir;
    643       1.50     lukem 	int mincg, minndir;
    644       1.50     lukem 	int maxcontigdirs;
    645       1.50     lukem 
    646      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    647      1.101        ad 
    648       1.50     lukem 	fs = pip->i_fs;
    649        1.1   mycroft 
    650        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    651       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    652       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    653       1.50     lukem 
    654       1.50     lukem 	/*
    655       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    656       1.50     lukem 	 */
    657      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    658      1.147     joerg 		prefcg = cprng_fast32() % fs->fs_ncg;
    659       1.50     lukem 		mincg = prefcg;
    660       1.50     lukem 		minndir = fs->fs_ipg;
    661       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    662       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    663       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    664       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    665       1.42  sommerfe 				mincg = cg;
    666       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    667       1.42  sommerfe 			}
    668       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    669       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    670       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    671       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    672       1.50     lukem 				mincg = cg;
    673       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    674       1.42  sommerfe 			}
    675       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    676       1.42  sommerfe 	}
    677       1.50     lukem 
    678       1.50     lukem 	/*
    679       1.50     lukem 	 * Count various limits which used for
    680       1.50     lukem 	 * optimal allocation of a directory inode.
    681      1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    682      1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    683      1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    684       1.50     lukem 	 */
    685      1.161  riastrad 	maxndir = uimin(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    686      1.144       bad 	minifree = avgifree - avgifree / 4;
    687      1.144       bad 	if (minifree < 1)
    688      1.144       bad 		minifree = 1;
    689      1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    690      1.144       bad 	if (minbfree < 1)
    691      1.144       bad 		minbfree = 1;
    692       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    693       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    694       1.89       dsl 	if (avgndir != 0) {
    695       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    696       1.89       dsl 		if (dirsize < curdsz)
    697       1.89       dsl 			dirsize = curdsz;
    698       1.89       dsl 	}
    699       1.89       dsl 	if (cgsize < dirsize * 255)
    700      1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    701       1.89       dsl 	else
    702       1.89       dsl 		maxcontigdirs = 255;
    703       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    704      1.161  riastrad 		maxcontigdirs = uimin(maxcontigdirs,
    705       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    706       1.50     lukem 	if (maxcontigdirs == 0)
    707       1.50     lukem 		maxcontigdirs = 1;
    708       1.50     lukem 
    709       1.50     lukem 	/*
    710       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    711       1.50     lukem 	 * regular files, but only if we have no deficit in
    712       1.50     lukem 	 * inodes or space.
    713       1.50     lukem 	 */
    714       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    715       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    716       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    717       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    718       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    719       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    720       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    721       1.50     lukem 		}
    722       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    723       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    724       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    725       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    726       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    727       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    728       1.50     lukem 		}
    729       1.50     lukem 	/*
    730       1.50     lukem 	 * This is a backstop when we are deficient in space.
    731       1.50     lukem 	 */
    732       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    733       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    734       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    735       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    736       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    737       1.50     lukem 			break;
    738       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    739        1.1   mycroft }
    740        1.1   mycroft 
    741        1.1   mycroft /*
    742        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    743        1.1   mycroft  * logically divided into sections. The first section is composed of the
    744        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    745       1.81     perry  *
    746        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    747        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    748        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    749        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    750        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    751        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    752        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    753        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    754        1.1   mycroft  * continues until a cylinder group with greater than the average number
    755        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    756        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    757        1.1   mycroft  * here a best guess is made based upon the logical block number being
    758        1.1   mycroft  * allocated.
    759       1.81     perry  *
    760        1.1   mycroft  * If a section is already partially allocated, the policy is to
    761        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    762       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    763       1.60      fvdl  * contigously if possible.
    764      1.106     pooka  *
    765      1.106     pooka  * => um_lock held on entry and exit
    766        1.1   mycroft  */
    767       1.58      fvdl daddr_t
    768      1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    769       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    770        1.1   mycroft {
    771       1.33  augustss 	struct fs *fs;
    772       1.33  augustss 	int cg;
    773        1.1   mycroft 	int avgbfree, startcg;
    774        1.1   mycroft 
    775      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    776      1.101        ad 
    777        1.1   mycroft 	fs = ip->i_fs;
    778      1.111    simonb 
    779      1.111    simonb 	/*
    780      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    781      1.111    simonb 	 * in the inode extentions to return the desired block.
    782      1.111    simonb 	 *
    783      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    784      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    785      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    786      1.111    simonb 	 * block.  For data, return the address of the actual block
    787      1.111    simonb 	 * relative to the address of the first data block.
    788      1.111    simonb 	 */
    789      1.111    simonb 	if (flags & B_CONTIG) {
    790      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    791      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    792      1.111    simonb 		if (flags & B_METAONLY)
    793      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    794      1.111    simonb 		else
    795      1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    796      1.111    simonb 	}
    797      1.111    simonb 
    798        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    799      1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    800        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    801      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    802        1.1   mycroft 		}
    803        1.1   mycroft 		/*
    804        1.1   mycroft 		 * Find a cylinder with greater than average number of
    805        1.1   mycroft 		 * unused data blocks.
    806        1.1   mycroft 		 */
    807        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    808        1.1   mycroft 			startcg =
    809        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    810        1.1   mycroft 		else
    811       1.19    bouyer 			startcg = dtog(fs,
    812       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    813        1.1   mycroft 		startcg %= fs->fs_ncg;
    814        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    815        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    816        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    817      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    818        1.1   mycroft 			}
    819       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    820        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    821      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    822        1.1   mycroft 			}
    823       1.35   thorpej 		return (0);
    824        1.1   mycroft 	}
    825        1.1   mycroft 	/*
    826       1.60      fvdl 	 * We just always try to lay things out contiguously.
    827       1.60      fvdl 	 */
    828       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    829       1.60      fvdl }
    830       1.60      fvdl 
    831       1.60      fvdl daddr_t
    832      1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    833      1.111    simonb     int64_t *bap)
    834       1.60      fvdl {
    835       1.60      fvdl 	struct fs *fs;
    836       1.60      fvdl 	int cg;
    837       1.60      fvdl 	int avgbfree, startcg;
    838       1.60      fvdl 
    839      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    840      1.101        ad 
    841       1.60      fvdl 	fs = ip->i_fs;
    842      1.111    simonb 
    843      1.111    simonb 	/*
    844      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    845      1.111    simonb 	 * in the inode extentions to return the desired block.
    846      1.111    simonb 	 *
    847      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    848      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    849      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    850      1.111    simonb 	 * block.  For data, return the address of the actual block
    851      1.111    simonb 	 * relative to the address of the first data block.
    852      1.111    simonb 	 */
    853      1.111    simonb 	if (flags & B_CONTIG) {
    854      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    855      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    856      1.111    simonb 		if (flags & B_METAONLY)
    857      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    858      1.111    simonb 		else
    859      1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    860      1.111    simonb 	}
    861      1.111    simonb 
    862       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    863      1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    864       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    865      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    866       1.60      fvdl 		}
    867        1.1   mycroft 		/*
    868       1.60      fvdl 		 * Find a cylinder with greater than average number of
    869       1.60      fvdl 		 * unused data blocks.
    870        1.1   mycroft 		 */
    871       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    872       1.60      fvdl 			startcg =
    873       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    874       1.60      fvdl 		else
    875       1.60      fvdl 			startcg = dtog(fs,
    876       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    877       1.60      fvdl 		startcg %= fs->fs_ncg;
    878       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    879       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    880       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    881      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    882       1.60      fvdl 			}
    883       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    884       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    885      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    886       1.60      fvdl 			}
    887       1.60      fvdl 		return (0);
    888       1.60      fvdl 	}
    889       1.60      fvdl 	/*
    890       1.60      fvdl 	 * We just always try to lay things out contiguously.
    891       1.60      fvdl 	 */
    892       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    893        1.1   mycroft }
    894        1.1   mycroft 
    895       1.60      fvdl 
    896        1.1   mycroft /*
    897        1.1   mycroft  * Implement the cylinder overflow algorithm.
    898        1.1   mycroft  *
    899        1.1   mycroft  * The policy implemented by this algorithm is:
    900        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    901        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    902        1.1   mycroft  *   3) brute force search for a free block.
    903      1.106     pooka  *
    904      1.106     pooka  * => called with um_lock held
    905      1.106     pooka  * => returns with um_lock released on success, held on failure
    906      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    907        1.1   mycroft  */
    908        1.1   mycroft /*VARARGS5*/
    909       1.58      fvdl static daddr_t
    910       1.85   thorpej ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
    911       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    912      1.152  jdolecek     int realsize,
    913      1.152  jdolecek     int flags,
    914      1.152  jdolecek     daddr_t (*allocator)(struct inode *, int, daddr_t, int, int, int))
    915        1.1   mycroft {
    916       1.33  augustss 	struct fs *fs;
    917       1.58      fvdl 	daddr_t result;
    918        1.1   mycroft 	int i, icg = cg;
    919        1.1   mycroft 
    920        1.1   mycroft 	fs = ip->i_fs;
    921        1.1   mycroft 	/*
    922        1.1   mycroft 	 * 1: preferred cylinder group
    923        1.1   mycroft 	 */
    924      1.152  jdolecek 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    925        1.1   mycroft 	if (result)
    926        1.1   mycroft 		return (result);
    927      1.111    simonb 
    928      1.111    simonb 	if (flags & B_CONTIG)
    929      1.111    simonb 		return (result);
    930        1.1   mycroft 	/*
    931        1.1   mycroft 	 * 2: quadratic rehash
    932        1.1   mycroft 	 */
    933        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    934        1.1   mycroft 		cg += i;
    935        1.1   mycroft 		if (cg >= fs->fs_ncg)
    936        1.1   mycroft 			cg -= fs->fs_ncg;
    937      1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    938        1.1   mycroft 		if (result)
    939        1.1   mycroft 			return (result);
    940        1.1   mycroft 	}
    941        1.1   mycroft 	/*
    942        1.1   mycroft 	 * 3: brute force search
    943        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    944        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    945        1.1   mycroft 	 */
    946        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    947        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    948      1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    949        1.1   mycroft 		if (result)
    950        1.1   mycroft 			return (result);
    951        1.1   mycroft 		cg++;
    952        1.1   mycroft 		if (cg == fs->fs_ncg)
    953        1.1   mycroft 			cg = 0;
    954        1.1   mycroft 	}
    955       1.35   thorpej 	return (0);
    956        1.1   mycroft }
    957        1.1   mycroft 
    958        1.1   mycroft /*
    959        1.1   mycroft  * Determine whether a fragment can be extended.
    960        1.1   mycroft  *
    961       1.81     perry  * Check to see if the necessary fragments are available, and
    962        1.1   mycroft  * if they are, allocate them.
    963      1.106     pooka  *
    964      1.106     pooka  * => called with um_lock held
    965      1.106     pooka  * => returns with um_lock released on success, held on failure
    966        1.1   mycroft  */
    967       1.58      fvdl static daddr_t
    968       1.85   thorpej ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
    969        1.1   mycroft {
    970      1.101        ad 	struct ufsmount *ump;
    971       1.33  augustss 	struct fs *fs;
    972       1.33  augustss 	struct cg *cgp;
    973        1.1   mycroft 	struct buf *bp;
    974       1.58      fvdl 	daddr_t bno;
    975        1.1   mycroft 	int frags, bbase;
    976        1.1   mycroft 	int i, error;
    977       1.62      fvdl 	u_int8_t *blksfree;
    978        1.1   mycroft 
    979        1.1   mycroft 	fs = ip->i_fs;
    980      1.101        ad 	ump = ip->i_ump;
    981      1.101        ad 
    982      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    983      1.101        ad 
    984      1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    985       1.35   thorpej 		return (0);
    986      1.137  dholland 	frags = ffs_numfrags(fs, nsize);
    987      1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
    988      1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    989        1.1   mycroft 		/* cannot extend across a block boundary */
    990       1.35   thorpej 		return (0);
    991        1.1   mycroft 	}
    992      1.101        ad 	mutex_exit(&ump->um_lock);
    993      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    994      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    995      1.101        ad 	if (error)
    996      1.101        ad 		goto fail;
    997        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    998      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
    999      1.101        ad 		goto fail;
   1000       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1001       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1002       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1003       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1004        1.1   mycroft 	bno = dtogd(fs, bprev);
   1005       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1006      1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1007      1.101        ad 		if (isclr(blksfree, bno + i))
   1008      1.101        ad 			goto fail;
   1009        1.1   mycroft 	/*
   1010        1.1   mycroft 	 * the current fragment can be extended
   1011        1.1   mycroft 	 * deduct the count on fragment being extended into
   1012        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1013        1.1   mycroft 	 * allocate the extended piece
   1014        1.1   mycroft 	 */
   1015        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1016       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1017        1.1   mycroft 			break;
   1018      1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1019        1.1   mycroft 	if (i != frags)
   1020       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1021      1.101        ad 	mutex_enter(&ump->um_lock);
   1022      1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1023       1.62      fvdl 		clrbit(blksfree, bno + i);
   1024       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1025        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1026        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1027        1.1   mycroft 	}
   1028        1.1   mycroft 	fs->fs_fmod = 1;
   1029      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1030      1.101        ad 	mutex_exit(&ump->um_lock);
   1031        1.1   mycroft 	bdwrite(bp);
   1032        1.1   mycroft 	return (bprev);
   1033      1.101        ad 
   1034      1.101        ad  fail:
   1035      1.132   hannken  	if (bp != NULL)
   1036      1.132   hannken 		brelse(bp, 0);
   1037      1.101        ad  	mutex_enter(&ump->um_lock);
   1038      1.101        ad  	return (0);
   1039        1.1   mycroft }
   1040        1.1   mycroft 
   1041        1.1   mycroft /*
   1042        1.1   mycroft  * Determine whether a block can be allocated.
   1043        1.1   mycroft  *
   1044        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1045        1.1   mycroft  * and if it is, allocate it.
   1046        1.1   mycroft  */
   1047       1.58      fvdl static daddr_t
   1048      1.152  jdolecek ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int realsize,
   1049      1.152  jdolecek     int flags)
   1050        1.1   mycroft {
   1051      1.101        ad 	struct ufsmount *ump;
   1052       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1053       1.30      fvdl 	struct cg *cgp;
   1054        1.1   mycroft 	struct buf *bp;
   1055       1.60      fvdl 	int32_t bno;
   1056       1.60      fvdl 	daddr_t blkno;
   1057       1.30      fvdl 	int error, frags, allocsiz, i;
   1058       1.62      fvdl 	u_int8_t *blksfree;
   1059       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1060        1.1   mycroft 
   1061      1.101        ad 	ump = ip->i_ump;
   1062      1.101        ad 
   1063      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1064      1.101        ad 
   1065        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1066       1.35   thorpej 		return (0);
   1067      1.101        ad 	mutex_exit(&ump->um_lock);
   1068      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1069      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1070      1.101        ad 	if (error)
   1071      1.101        ad 		goto fail;
   1072        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1073       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1074      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1075      1.101        ad 		goto fail;
   1076       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1077       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1078       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1079       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1080        1.1   mycroft 	if (size == fs->fs_bsize) {
   1081      1.101        ad 		mutex_enter(&ump->um_lock);
   1082      1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1083       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1084      1.101        ad 		mutex_exit(&ump->um_lock);
   1085      1.152  jdolecek 
   1086      1.152  jdolecek 		/*
   1087      1.152  jdolecek 		 * If actually needed size is lower, free the extra blocks now.
   1088      1.152  jdolecek 		 * This is safe to call here, there is no outside reference
   1089      1.152  jdolecek 		 * to this block yet. It is not necessary to keep um_lock
   1090      1.152  jdolecek 		 * locked.
   1091      1.152  jdolecek 		 */
   1092      1.152  jdolecek 		if (realsize != 0 && realsize < size) {
   1093      1.152  jdolecek 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1094      1.152  jdolecek 			    ip->i_devvp->v_rdev,
   1095      1.152  jdolecek 			    bp, blkno + ffs_numfrags(fs, realsize),
   1096      1.152  jdolecek 			    (long)(size - realsize), false);
   1097      1.152  jdolecek 		}
   1098      1.152  jdolecek 
   1099        1.1   mycroft 		bdwrite(bp);
   1100       1.60      fvdl 		return (blkno);
   1101        1.1   mycroft 	}
   1102        1.1   mycroft 	/*
   1103        1.1   mycroft 	 * check to see if any fragments are already available
   1104        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1105        1.1   mycroft 	 * it down to a smaller size if necessary
   1106        1.1   mycroft 	 */
   1107       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1108      1.137  dholland 	frags = ffs_numfrags(fs, size);
   1109        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1110        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1111        1.1   mycroft 			break;
   1112        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1113        1.1   mycroft 		/*
   1114       1.81     perry 		 * no fragments were available, so a block will be
   1115        1.1   mycroft 		 * allocated, and hacked up
   1116        1.1   mycroft 		 */
   1117      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1118      1.101        ad 			goto fail;
   1119      1.101        ad 		mutex_enter(&ump->um_lock);
   1120      1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1121       1.60      fvdl 		bno = dtogd(fs, blkno);
   1122        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1123       1.62      fvdl 			setbit(blksfree, bno + i);
   1124        1.1   mycroft 		i = fs->fs_frag - frags;
   1125       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1126        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1127       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1128        1.1   mycroft 		fs->fs_fmod = 1;
   1129       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1130       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1131      1.101        ad 		mutex_exit(&ump->um_lock);
   1132        1.1   mycroft 		bdwrite(bp);
   1133       1.60      fvdl 		return (blkno);
   1134        1.1   mycroft 	}
   1135       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1136       1.30      fvdl #if 0
   1137       1.30      fvdl 	/*
   1138       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1139       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1140       1.30      fvdl 	 */
   1141      1.101        ad 	if (bno < 0)
   1142      1.101        ad 		goto fail;
   1143       1.30      fvdl #endif
   1144        1.1   mycroft 	for (i = 0; i < frags; i++)
   1145       1.62      fvdl 		clrbit(blksfree, bno + i);
   1146      1.101        ad 	mutex_enter(&ump->um_lock);
   1147       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1148        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1149        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1150        1.1   mycroft 	fs->fs_fmod = 1;
   1151       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1152        1.1   mycroft 	if (frags != allocsiz)
   1153       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1154      1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1155      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1156      1.101        ad 	mutex_exit(&ump->um_lock);
   1157        1.1   mycroft 	bdwrite(bp);
   1158       1.30      fvdl 	return blkno;
   1159      1.101        ad 
   1160      1.101        ad  fail:
   1161      1.132   hannken  	if (bp != NULL)
   1162      1.132   hannken 		brelse(bp, 0);
   1163      1.101        ad  	mutex_enter(&ump->um_lock);
   1164      1.101        ad  	return (0);
   1165        1.1   mycroft }
   1166        1.1   mycroft 
   1167        1.1   mycroft /*
   1168        1.1   mycroft  * Allocate a block in a cylinder group.
   1169        1.1   mycroft  *
   1170        1.1   mycroft  * This algorithm implements the following policy:
   1171        1.1   mycroft  *   1) allocate the requested block.
   1172        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1173        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1174        1.1   mycroft  *      specified cylinder group.
   1175        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1176        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1177        1.1   mycroft  */
   1178       1.58      fvdl static daddr_t
   1179      1.152  jdolecek ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1180      1.152  jdolecek     int flags)
   1181        1.1   mycroft {
   1182       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1183       1.30      fvdl 	struct cg *cgp;
   1184      1.123  sborrill 	int cg;
   1185       1.60      fvdl 	daddr_t blkno;
   1186       1.60      fvdl 	int32_t bno;
   1187       1.60      fvdl 	u_int8_t *blksfree;
   1188       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1189        1.1   mycroft 
   1190      1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1191      1.101        ad 
   1192       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1193       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1194       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1195       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1196       1.60      fvdl 	} else {
   1197      1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1198       1.60      fvdl 		bno = dtogd(fs, bpref);
   1199        1.1   mycroft 		/*
   1200       1.60      fvdl 		 * if the requested block is available, use it
   1201        1.1   mycroft 		 */
   1202      1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1203       1.60      fvdl 			goto gotit;
   1204      1.111    simonb 		/*
   1205      1.111    simonb 		 * if the requested data block isn't available and we are
   1206      1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1207      1.111    simonb 		 */
   1208      1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1209      1.111    simonb 			return (0);
   1210        1.1   mycroft 	}
   1211      1.111    simonb 
   1212        1.1   mycroft 	/*
   1213       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1214        1.1   mycroft 	 */
   1215       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1216      1.152  jdolecek #if 0
   1217      1.152  jdolecek 	/*
   1218      1.152  jdolecek 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1219      1.152  jdolecek 	 */
   1220        1.1   mycroft 	if (bno < 0)
   1221       1.35   thorpej 		return (0);
   1222      1.152  jdolecek #endif
   1223       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1224        1.1   mycroft gotit:
   1225      1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1226       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1227       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1228       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1229        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1230       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1231       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1232       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1233       1.73       dbj 		int cylno;
   1234       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1235       1.75       dbj 		KASSERT(cylno >= 0);
   1236       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1237       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1238       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1239       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1240       1.73       dbj 		    needswap);
   1241       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1242       1.73       dbj 	}
   1243        1.1   mycroft 	fs->fs_fmod = 1;
   1244      1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1245      1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1246       1.30      fvdl 	return (blkno);
   1247        1.1   mycroft }
   1248        1.1   mycroft 
   1249        1.1   mycroft /*
   1250        1.1   mycroft  * Determine whether an inode can be allocated.
   1251        1.1   mycroft  *
   1252        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1253        1.1   mycroft  * allocate it using the following policy:
   1254        1.1   mycroft  *   1) allocate the requested inode.
   1255        1.1   mycroft  *   2) allocate the next available inode after the requested
   1256        1.1   mycroft  *      inode in the specified cylinder group.
   1257        1.1   mycroft  */
   1258       1.58      fvdl static daddr_t
   1259      1.152  jdolecek ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int realsize,
   1260      1.152  jdolecek     int flags)
   1261        1.1   mycroft {
   1262      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1263       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1264       1.33  augustss 	struct cg *cgp;
   1265       1.60      fvdl 	struct buf *bp, *ibp;
   1266       1.60      fvdl 	u_int8_t *inosused;
   1267        1.1   mycroft 	int error, start, len, loc, map, i;
   1268      1.164    kardel 	int32_t initediblk, maxiblk, irotor;
   1269      1.112   hannken 	daddr_t nalloc;
   1270       1.60      fvdl 	struct ufs2_dinode *dp2;
   1271       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1272        1.1   mycroft 
   1273      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1274      1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1275      1.101        ad 
   1276        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1277       1.35   thorpej 		return (0);
   1278      1.101        ad 	mutex_exit(&ump->um_lock);
   1279      1.112   hannken 	ibp = NULL;
   1280      1.164    kardel 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   1281      1.164    kardel 		initediblk = -1;
   1282      1.164    kardel 	} else {
   1283      1.164    kardel 		initediblk = fs->fs_ipg;
   1284      1.164    kardel 	}
   1285      1.164    kardel 	maxiblk = initediblk;
   1286      1.164    kardel 
   1287      1.112   hannken retry:
   1288      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1289      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1290      1.101        ad 	if (error)
   1291      1.101        ad 		goto fail;
   1292        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1293      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1294      1.101        ad 		goto fail;
   1295      1.112   hannken 
   1296      1.112   hannken 	if (ibp != NULL &&
   1297      1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1298      1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1299      1.121        ad 		brelse(ibp, 0);
   1300      1.112   hannken 		ibp = NULL;
   1301      1.112   hannken 	}
   1302      1.112   hannken 	/*
   1303      1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1304      1.112   hannken 	 */
   1305      1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1306      1.164    kardel 	        initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1307      1.164    kardel 		maxiblk = initediblk;
   1308      1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1309      1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1310      1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1311      1.112   hannken 			/*
   1312      1.112   hannken 			 * We have to release the cg buffer here to prevent
   1313      1.112   hannken 			 * a deadlock when reading the inode block will
   1314      1.112   hannken 			 * run a copy-on-write that might use this cg.
   1315      1.112   hannken 			 */
   1316      1.112   hannken 			brelse(bp, 0);
   1317      1.112   hannken 			bp = NULL;
   1318      1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1319      1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1320      1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1321      1.112   hannken 			if (error)
   1322      1.112   hannken 				goto fail;
   1323      1.164    kardel 
   1324      1.164    kardel 			maxiblk += FFS_INOPB(fs);
   1325      1.164    kardel 
   1326      1.112   hannken 			goto retry;
   1327      1.112   hannken 		}
   1328      1.112   hannken 	}
   1329      1.112   hannken 
   1330       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1331       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1332       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1333       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1334       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1335      1.164    kardel 
   1336        1.1   mycroft 	if (ipref) {
   1337        1.1   mycroft 		ipref %= fs->fs_ipg;
   1338      1.164    kardel 		/* safeguard to stay in (to be) allocated range */
   1339      1.164    kardel 		if (ipref < maxiblk && isclr(inosused, ipref))
   1340        1.1   mycroft 			goto gotit;
   1341        1.1   mycroft 	}
   1342      1.164    kardel 
   1343      1.164    kardel 	irotor = ufs_rw32(cgp->cg_irotor, needswap);
   1344      1.164    kardel 
   1345      1.164    kardel 	KASSERTMSG(irotor < initediblk, "%s: allocation botch: cg=%d, irotor %d"
   1346      1.164    kardel 		   " out of bounds, initediblk=%d",
   1347      1.164    kardel 		   __func__, cg, irotor, initediblk);
   1348      1.164    kardel 
   1349      1.164    kardel 	start = irotor / NBBY;
   1350      1.164    kardel 	len = howmany(maxiblk - irotor, NBBY);
   1351       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1352        1.1   mycroft 	if (loc == 0) {
   1353        1.1   mycroft 		len = start + 1;
   1354        1.1   mycroft 		start = 0;
   1355       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1356        1.1   mycroft 		if (loc == 0) {
   1357      1.154  christos 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1358      1.154  christos 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1359      1.154  christos 			    fs->fs_fsmnt);
   1360        1.1   mycroft 			/* NOTREACHED */
   1361        1.1   mycroft 		}
   1362        1.1   mycroft 	}
   1363        1.1   mycroft 	i = start + len - loc;
   1364      1.126     rmind 	map = inosused[i] ^ 0xff;
   1365      1.126     rmind 	if (map == 0) {
   1366      1.154  christos 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1367        1.1   mycroft 	}
   1368      1.164    kardel 
   1369      1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1370      1.164    kardel 
   1371      1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1372      1.164    kardel 
   1373        1.1   mycroft gotit:
   1374      1.164    kardel 	KASSERTMSG(ipref < maxiblk, "%s: allocation botch: cg=%d attempt to "
   1375      1.164    kardel 		   "allocate inode index %d beyond max allocated index %d"
   1376      1.164    kardel 		   " of %d inodes/cg",
   1377      1.164    kardel 		   __func__, cg, (int)ipref, maxiblk, cgp->cg_niblk);
   1378      1.164    kardel 
   1379      1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1380      1.111    simonb 	    mode);
   1381       1.60      fvdl 	/*
   1382       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1383       1.60      fvdl 	 */
   1384      1.112   hannken 	if (ibp != NULL) {
   1385      1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1386      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1387      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1388      1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1389       1.60      fvdl 			/*
   1390       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1391       1.60      fvdl 			 * random, after all.
   1392       1.60      fvdl 			 */
   1393      1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1394       1.60      fvdl 			dp2++;
   1395       1.60      fvdl 		}
   1396      1.134  dholland 		initediblk += FFS_INOPB(fs);
   1397       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1398       1.60      fvdl 	}
   1399       1.60      fvdl 
   1400      1.101        ad 	mutex_enter(&ump->um_lock);
   1401       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1402      1.101        ad 	setbit(inosused, ipref);
   1403      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1404      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1405      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1406      1.101        ad 	fs->fs_fmod = 1;
   1407      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1408      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1409      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1410      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1411      1.101        ad 	}
   1412      1.101        ad 	mutex_exit(&ump->um_lock);
   1413      1.112   hannken 	if (ibp != NULL) {
   1414      1.157   hannken 		bwrite(ibp);
   1415      1.112   hannken 		bwrite(bp);
   1416      1.112   hannken 	} else
   1417      1.112   hannken 		bdwrite(bp);
   1418        1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1419      1.101        ad  fail:
   1420      1.112   hannken 	if (bp != NULL)
   1421      1.112   hannken 		brelse(bp, 0);
   1422      1.112   hannken 	if (ibp != NULL)
   1423      1.121        ad 		brelse(ibp, 0);
   1424      1.101        ad 	mutex_enter(&ump->um_lock);
   1425      1.101        ad 	return (0);
   1426        1.1   mycroft }
   1427        1.1   mycroft 
   1428        1.1   mycroft /*
   1429      1.111    simonb  * Allocate a block or fragment.
   1430      1.111    simonb  *
   1431      1.111    simonb  * The specified block or fragment is removed from the
   1432      1.111    simonb  * free map, possibly fragmenting a block in the process.
   1433      1.111    simonb  *
   1434      1.111    simonb  * This implementation should mirror fs_blkfree
   1435      1.111    simonb  *
   1436      1.111    simonb  * => um_lock not held on entry or exit
   1437      1.111    simonb  */
   1438      1.111    simonb int
   1439      1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1440      1.111    simonb {
   1441      1.116     joerg 	int error;
   1442      1.111    simonb 
   1443      1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1444      1.116     joerg 	    ip->i_dev, ip->i_uid);
   1445      1.116     joerg 	if (error)
   1446      1.116     joerg 		return error;
   1447      1.115     joerg 
   1448      1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1449      1.115     joerg }
   1450      1.115     joerg 
   1451      1.115     joerg int
   1452      1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1453      1.115     joerg {
   1454      1.115     joerg 	struct fs *fs = ump->um_fs;
   1455      1.115     joerg 	struct cg *cgp;
   1456      1.115     joerg 	struct buf *bp;
   1457      1.115     joerg 	int32_t fragno, cgbno;
   1458      1.115     joerg 	int i, error, cg, blk, frags, bbase;
   1459      1.115     joerg 	u_int8_t *blksfree;
   1460      1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1461      1.115     joerg 
   1462      1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1463      1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1464      1.115     joerg 	KASSERT(bno < fs->fs_size);
   1465      1.115     joerg 
   1466      1.115     joerg 	cg = dtog(fs, bno);
   1467      1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1468      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1469      1.111    simonb 	if (error) {
   1470      1.111    simonb 		return error;
   1471      1.111    simonb 	}
   1472      1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1473      1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1474      1.111    simonb 		brelse(bp, 0);
   1475      1.111    simonb 		return EIO;
   1476      1.111    simonb 	}
   1477      1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1478      1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1479      1.111    simonb 	cgbno = dtogd(fs, bno);
   1480      1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1481      1.111    simonb 
   1482      1.111    simonb 	mutex_enter(&ump->um_lock);
   1483      1.111    simonb 	if (size == fs->fs_bsize) {
   1484      1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1485      1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1486      1.111    simonb 			mutex_exit(&ump->um_lock);
   1487      1.111    simonb 			brelse(bp, 0);
   1488      1.111    simonb 			return EBUSY;
   1489      1.111    simonb 		}
   1490      1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1491      1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1492      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1493      1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1494      1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1495      1.111    simonb 	} else {
   1496      1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1497      1.111    simonb 
   1498      1.137  dholland 		frags = ffs_numfrags(fs, size);
   1499      1.111    simonb 		for (i = 0; i < frags; i++) {
   1500      1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1501      1.111    simonb 				mutex_exit(&ump->um_lock);
   1502      1.111    simonb 				brelse(bp, 0);
   1503      1.111    simonb 				return EBUSY;
   1504      1.111    simonb 			}
   1505      1.111    simonb 		}
   1506      1.111    simonb 		/*
   1507      1.111    simonb 		 * if a complete block is being split, account for it
   1508      1.111    simonb 		 */
   1509      1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1510      1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1511      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1512      1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1513      1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1514      1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1515      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1516      1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1517      1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1518      1.111    simonb 		}
   1519      1.111    simonb 		/*
   1520      1.111    simonb 		 * decrement the counts associated with the old frags
   1521      1.111    simonb 		 */
   1522      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1523      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1524      1.111    simonb 		/*
   1525      1.111    simonb 		 * allocate the fragment
   1526      1.111    simonb 		 */
   1527      1.111    simonb 		for (i = 0; i < frags; i++) {
   1528      1.111    simonb 			clrbit(blksfree, cgbno + i);
   1529      1.111    simonb 		}
   1530      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1531      1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1532      1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1533      1.111    simonb 		/*
   1534      1.111    simonb 		 * add back in counts associated with the new frags
   1535      1.111    simonb 		 */
   1536      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1537      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1538      1.111    simonb 	}
   1539      1.111    simonb 	fs->fs_fmod = 1;
   1540      1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1541      1.111    simonb 	mutex_exit(&ump->um_lock);
   1542      1.111    simonb 	bdwrite(bp);
   1543      1.111    simonb 	return 0;
   1544      1.111    simonb }
   1545      1.111    simonb 
   1546      1.111    simonb /*
   1547        1.1   mycroft  * Free a block or fragment.
   1548        1.1   mycroft  *
   1549        1.1   mycroft  * The specified block or fragment is placed back in the
   1550       1.81     perry  * free map. If a fragment is deallocated, a possible
   1551        1.1   mycroft  * block reassembly is checked.
   1552      1.106     pooka  *
   1553      1.106     pooka  * => um_lock not held on entry or exit
   1554        1.1   mycroft  */
   1555      1.131  drochner static void
   1556      1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1557        1.1   mycroft {
   1558       1.33  augustss 	struct cg *cgp;
   1559        1.1   mycroft 	struct buf *bp;
   1560       1.76   hannken 	struct ufsmount *ump;
   1561       1.76   hannken 	daddr_t cgblkno;
   1562      1.116     joerg 	int error, cg;
   1563       1.76   hannken 	dev_t dev;
   1564      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1565      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1566        1.1   mycroft 
   1567      1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1568      1.116     joerg 
   1569       1.76   hannken 	cg = dtog(fs, bno);
   1570      1.116     joerg 	dev = devvp->v_rdev;
   1571      1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1572      1.119     joerg 	KASSERT(fs == ump->um_fs);
   1573      1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1574      1.116     joerg 
   1575      1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1576      1.149      maxv 	    B_MODIFY, &bp);
   1577      1.116     joerg 	if (error) {
   1578      1.116     joerg 		return;
   1579       1.76   hannken 	}
   1580      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1581      1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1582      1.116     joerg 		brelse(bp, 0);
   1583      1.116     joerg 		return;
   1584        1.1   mycroft 	}
   1585       1.76   hannken 
   1586      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1587      1.119     joerg 
   1588      1.119     joerg 	bdwrite(bp);
   1589      1.116     joerg }
   1590      1.116     joerg 
   1591      1.131  drochner struct discardopdata {
   1592      1.131  drochner 	struct work wk; /* must be first */
   1593      1.131  drochner 	struct vnode *devvp;
   1594      1.131  drochner 	daddr_t bno;
   1595      1.131  drochner 	long size;
   1596      1.131  drochner };
   1597      1.131  drochner 
   1598      1.131  drochner struct discarddata {
   1599      1.131  drochner 	struct fs *fs;
   1600      1.131  drochner 	struct discardopdata *entry;
   1601      1.131  drochner 	long maxsize;
   1602      1.131  drochner 	kmutex_t entrylk;
   1603      1.131  drochner 	struct workqueue *wq;
   1604      1.131  drochner 	int wqcnt, wqdraining;
   1605      1.131  drochner 	kmutex_t wqlk;
   1606      1.131  drochner 	kcondvar_t wqcv;
   1607      1.131  drochner 	/* timer for flush? */
   1608      1.131  drochner };
   1609      1.131  drochner 
   1610      1.131  drochner static void
   1611      1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1612      1.131  drochner {
   1613      1.151  riastrad 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1614      1.131  drochner 	long todo;
   1615      1.151  riastrad 	int error;
   1616      1.131  drochner 
   1617      1.131  drochner 	while (td->size) {
   1618      1.161  riastrad 		todo = uimin(td->size,
   1619      1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1620      1.151  riastrad 		error = UFS_WAPBL_BEGIN(mp);
   1621      1.151  riastrad 		if (error) {
   1622      1.151  riastrad 			printf("ffs: failed to begin wapbl transaction"
   1623      1.151  riastrad 			    " for discard: %d\n", error);
   1624      1.151  riastrad 			break;
   1625      1.151  riastrad 		}
   1626      1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1627      1.151  riastrad 		UFS_WAPBL_END(mp);
   1628      1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1629      1.131  drochner 		td->size -= todo;
   1630      1.131  drochner 	}
   1631      1.131  drochner }
   1632      1.131  drochner 
   1633      1.131  drochner static void
   1634      1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1635      1.131  drochner {
   1636      1.131  drochner 	struct discardopdata *td = (void *)wk;
   1637      1.131  drochner 	struct discarddata *ts = arg;
   1638      1.131  drochner 	struct fs *fs = ts->fs;
   1639      1.146  dholland 	off_t start, len;
   1640      1.139    martin #ifdef TRIMDEBUG
   1641      1.131  drochner 	int error;
   1642      1.139    martin #endif
   1643      1.131  drochner 
   1644      1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1645      1.146  dholland #ifndef FFS_FSBTOBYTES
   1646      1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1647      1.146  dholland #endif
   1648      1.146  dholland 
   1649      1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1650      1.146  dholland 	len = td->size;
   1651      1.139    martin #ifdef TRIMDEBUG
   1652      1.139    martin 	error =
   1653      1.139    martin #endif
   1654      1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1655      1.131  drochner #ifdef TRIMDEBUG
   1656      1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1657      1.131  drochner #endif
   1658      1.131  drochner 
   1659      1.131  drochner 	ffs_blkfree_td(fs, td);
   1660      1.131  drochner 	kmem_free(td, sizeof(*td));
   1661      1.131  drochner 	mutex_enter(&ts->wqlk);
   1662      1.131  drochner 	ts->wqcnt--;
   1663      1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1664      1.131  drochner 		cv_signal(&ts->wqcv);
   1665      1.131  drochner 	mutex_exit(&ts->wqlk);
   1666      1.131  drochner }
   1667      1.131  drochner 
   1668      1.131  drochner void *
   1669      1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1670      1.131  drochner {
   1671      1.131  drochner 	struct discarddata *ts;
   1672      1.131  drochner 	int error;
   1673      1.131  drochner 
   1674      1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1675      1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1676      1.160     ozaki 				 PRI_USER, IPL_NONE, 0);
   1677      1.131  drochner 	if (error) {
   1678      1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1679      1.131  drochner 		return NULL;
   1680      1.131  drochner 	}
   1681      1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1682      1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1683      1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1684      1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1685      1.131  drochner 	ts->fs = fs;
   1686      1.131  drochner 	return ts;
   1687      1.131  drochner }
   1688      1.131  drochner 
   1689      1.131  drochner void
   1690      1.131  drochner ffs_discard_finish(void *vts, int flags)
   1691      1.131  drochner {
   1692      1.131  drochner 	struct discarddata *ts = vts;
   1693      1.131  drochner 	struct discardopdata *td = NULL;
   1694      1.131  drochner 
   1695      1.131  drochner 	/* wait for workqueue to drain */
   1696      1.131  drochner 	mutex_enter(&ts->wqlk);
   1697      1.131  drochner 	if (ts->wqcnt) {
   1698      1.131  drochner 		ts->wqdraining = 1;
   1699      1.158   mlelstv 		cv_wait(&ts->wqcv, &ts->wqlk);
   1700      1.131  drochner 	}
   1701      1.131  drochner 	mutex_exit(&ts->wqlk);
   1702      1.131  drochner 
   1703      1.131  drochner 	mutex_enter(&ts->entrylk);
   1704      1.131  drochner 	if (ts->entry) {
   1705      1.131  drochner 		td = ts->entry;
   1706      1.131  drochner 		ts->entry = NULL;
   1707      1.131  drochner 	}
   1708      1.131  drochner 	mutex_exit(&ts->entrylk);
   1709      1.131  drochner 	if (td) {
   1710      1.131  drochner 		/* XXX don't tell disk, its optional */
   1711      1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1712      1.131  drochner #ifdef TRIMDEBUG
   1713      1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1714      1.131  drochner #endif
   1715      1.131  drochner 		kmem_free(td, sizeof(*td));
   1716      1.131  drochner 	}
   1717      1.131  drochner 
   1718      1.131  drochner 	cv_destroy(&ts->wqcv);
   1719      1.131  drochner 	mutex_destroy(&ts->entrylk);
   1720      1.131  drochner 	mutex_destroy(&ts->wqlk);
   1721      1.131  drochner 	workqueue_destroy(ts->wq);
   1722      1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1723      1.131  drochner }
   1724      1.131  drochner 
   1725      1.131  drochner void
   1726      1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1727      1.131  drochner     ino_t inum)
   1728      1.131  drochner {
   1729      1.131  drochner 	struct ufsmount *ump;
   1730      1.131  drochner 	int error;
   1731      1.131  drochner 	dev_t dev;
   1732      1.131  drochner 	struct discarddata *ts;
   1733      1.131  drochner 	struct discardopdata *td;
   1734      1.131  drochner 
   1735      1.131  drochner 	dev = devvp->v_rdev;
   1736      1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1737      1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1738      1.131  drochner 		return;
   1739      1.131  drochner 
   1740      1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1741      1.131  drochner 	if (error)
   1742      1.131  drochner 		return;
   1743      1.131  drochner 
   1744      1.131  drochner 	if (!ump->um_discarddata) {
   1745      1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1746      1.131  drochner 		return;
   1747      1.131  drochner 	}
   1748      1.131  drochner 
   1749      1.131  drochner #ifdef TRIMDEBUG
   1750      1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1751      1.131  drochner #endif
   1752      1.131  drochner 	ts = ump->um_discarddata;
   1753      1.131  drochner 	td = NULL;
   1754      1.131  drochner 
   1755      1.131  drochner 	mutex_enter(&ts->entrylk);
   1756      1.131  drochner 	if (ts->entry) {
   1757      1.131  drochner 		td = ts->entry;
   1758      1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1759      1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1760      1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1761      1.131  drochner 			td->bno = bno;
   1762      1.131  drochner 			td->size += size;
   1763      1.131  drochner 			if (td->size < ts->maxsize) {
   1764      1.131  drochner #ifdef TRIMDEBUG
   1765      1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1766      1.131  drochner #endif
   1767      1.131  drochner 				mutex_exit(&ts->entrylk);
   1768      1.131  drochner 				return;
   1769      1.131  drochner 			}
   1770      1.131  drochner 			size = 0; /* mark done */
   1771      1.131  drochner 		}
   1772      1.131  drochner 		ts->entry = NULL;
   1773      1.131  drochner 	}
   1774      1.131  drochner 	mutex_exit(&ts->entrylk);
   1775      1.131  drochner 
   1776      1.131  drochner 	if (td) {
   1777      1.131  drochner #ifdef TRIMDEBUG
   1778      1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1779      1.131  drochner #endif
   1780      1.131  drochner 		mutex_enter(&ts->wqlk);
   1781      1.131  drochner 		ts->wqcnt++;
   1782      1.131  drochner 		mutex_exit(&ts->wqlk);
   1783      1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1784      1.131  drochner 	}
   1785      1.131  drochner 	if (!size)
   1786      1.131  drochner 		return;
   1787      1.131  drochner 
   1788      1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1789      1.131  drochner 	td->devvp = devvp;
   1790      1.131  drochner 	td->bno = bno;
   1791      1.131  drochner 	td->size = size;
   1792      1.131  drochner 
   1793      1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1794      1.131  drochner 		mutex_enter(&ts->entrylk);
   1795      1.131  drochner 		if (!ts->entry) { /* possible race? */
   1796      1.131  drochner #ifdef TRIMDEBUG
   1797      1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1798      1.131  drochner #endif
   1799      1.131  drochner 			ts->entry = td;
   1800      1.131  drochner 			td = NULL;
   1801      1.131  drochner 		}
   1802      1.131  drochner 		mutex_exit(&ts->entrylk);
   1803      1.131  drochner 	}
   1804      1.131  drochner 	if (td) {
   1805      1.131  drochner #ifdef TRIMDEBUG
   1806      1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1807      1.131  drochner #endif
   1808      1.131  drochner 		mutex_enter(&ts->wqlk);
   1809      1.131  drochner 		ts->wqcnt++;
   1810      1.131  drochner 		mutex_exit(&ts->wqlk);
   1811      1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1812      1.131  drochner 	}
   1813      1.131  drochner }
   1814      1.131  drochner 
   1815      1.116     joerg /*
   1816      1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1817      1.116     joerg  *
   1818      1.116     joerg  * The specified block or fragment is placed back in the
   1819      1.116     joerg  * free map. If a fragment is deallocated, a possible
   1820      1.116     joerg  * block reassembly is checked.
   1821      1.116     joerg  *
   1822      1.116     joerg  * => um_lock not held on entry or exit
   1823      1.116     joerg  */
   1824      1.116     joerg void
   1825      1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1826      1.116     joerg     ino_t inum)
   1827      1.116     joerg {
   1828      1.116     joerg 	struct cg *cgp;
   1829      1.116     joerg 	struct buf *bp;
   1830      1.116     joerg 	struct ufsmount *ump;
   1831      1.116     joerg 	daddr_t cgblkno;
   1832      1.116     joerg 	int error, cg;
   1833      1.116     joerg 	dev_t dev;
   1834      1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1835      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1836      1.116     joerg 
   1837      1.116     joerg 	KASSERT(devvp_is_snapshot);
   1838      1.116     joerg 
   1839      1.116     joerg 	cg = dtog(fs, bno);
   1840      1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1841      1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1842      1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1843      1.116     joerg 
   1844      1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1845      1.116     joerg 	if (error)
   1846        1.1   mycroft 		return;
   1847      1.116     joerg 
   1848      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1849      1.149      maxv 	    B_MODIFY, &bp);
   1850        1.1   mycroft 	if (error) {
   1851        1.1   mycroft 		return;
   1852        1.1   mycroft 	}
   1853        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1854       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1855      1.101        ad 		brelse(bp, 0);
   1856        1.1   mycroft 		return;
   1857        1.1   mycroft 	}
   1858      1.116     joerg 
   1859      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1860      1.119     joerg 
   1861      1.119     joerg 	bdwrite(bp);
   1862      1.116     joerg }
   1863      1.116     joerg 
   1864      1.116     joerg static void
   1865      1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1866      1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1867      1.116     joerg {
   1868      1.116     joerg 	struct cg *cgp;
   1869      1.116     joerg 	int32_t fragno, cgbno;
   1870      1.116     joerg 	int i, cg, blk, frags, bbase;
   1871      1.116     joerg 	u_int8_t *blksfree;
   1872      1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1873      1.116     joerg 
   1874      1.116     joerg 	cg = dtog(fs, bno);
   1875      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1876       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1877       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1878       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1879       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1880       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1881       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1882      1.101        ad 	mutex_enter(&ump->um_lock);
   1883        1.1   mycroft 	if (size == fs->fs_bsize) {
   1884      1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1885       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1886      1.113   hannken 			if (devvp_is_snapshot) {
   1887      1.101        ad 				mutex_exit(&ump->um_lock);
   1888       1.76   hannken 				return;
   1889       1.76   hannken 			}
   1890      1.154  christos 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1891      1.154  christos 			    PRId64 ", fs = %s", __func__,
   1892      1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1893        1.1   mycroft 		}
   1894       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1895       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1896       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1897        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1898        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1899       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1900       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1901       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1902       1.75       dbj 			KASSERT(i >= 0);
   1903       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1904       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1905       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1906       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1907       1.73       dbj 			    needswap);
   1908       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1909       1.73       dbj 		}
   1910        1.1   mycroft 	} else {
   1911      1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1912        1.1   mycroft 		/*
   1913        1.1   mycroft 		 * decrement the counts associated with the old frags
   1914        1.1   mycroft 		 */
   1915       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1916       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1917        1.1   mycroft 		/*
   1918        1.1   mycroft 		 * deallocate the fragment
   1919        1.1   mycroft 		 */
   1920      1.137  dholland 		frags = ffs_numfrags(fs, size);
   1921        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1922       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1923      1.154  christos 				panic("%s: freeing free frag: "
   1924      1.154  christos 				    "dev = 0x%llx, block = %" PRId64
   1925      1.154  christos 				    ", fs = %s", __func__,
   1926      1.120  christos 				    (unsigned long long)dev, bno + i,
   1927      1.120  christos 				    fs->fs_fsmnt);
   1928        1.1   mycroft 			}
   1929       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1930        1.1   mycroft 		}
   1931       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1932        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1933       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1934        1.1   mycroft 		/*
   1935        1.1   mycroft 		 * add back in counts associated with the new frags
   1936        1.1   mycroft 		 */
   1937       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1938       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1939        1.1   mycroft 		/*
   1940        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1941        1.1   mycroft 		 */
   1942      1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1943       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1944       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1945        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1946        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1947       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1948       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1949        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1950        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1951       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1952       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1953       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1954       1.75       dbj 				KASSERT(i >= 0);
   1955       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1956       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1957       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1958       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1959       1.73       dbj 				    bbase)], 1, needswap);
   1960       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1961       1.73       dbj 			}
   1962        1.1   mycroft 		}
   1963        1.1   mycroft 	}
   1964        1.1   mycroft 	fs->fs_fmod = 1;
   1965       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1966      1.101        ad 	mutex_exit(&ump->um_lock);
   1967        1.1   mycroft }
   1968        1.1   mycroft 
   1969        1.1   mycroft /*
   1970        1.1   mycroft  * Free an inode.
   1971       1.30      fvdl  */
   1972       1.30      fvdl int
   1973       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1974       1.30      fvdl {
   1975       1.30      fvdl 
   1976      1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1977       1.30      fvdl }
   1978       1.30      fvdl 
   1979       1.30      fvdl /*
   1980       1.30      fvdl  * Do the actual free operation.
   1981        1.1   mycroft  * The specified inode is placed back in the free map.
   1982      1.111    simonb  *
   1983      1.111    simonb  * => um_lock not held on entry or exit
   1984        1.1   mycroft  */
   1985        1.1   mycroft int
   1986      1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1987      1.119     joerg {
   1988      1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1989      1.119     joerg 	struct fs *fs = ump->um_fs;
   1990      1.119     joerg 	struct vnode *devvp;
   1991      1.119     joerg 	struct cg *cgp;
   1992      1.119     joerg 	struct buf *bp;
   1993      1.119     joerg 	int error, cg;
   1994      1.119     joerg 	daddr_t cgbno;
   1995      1.119     joerg 	dev_t dev;
   1996      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1997      1.119     joerg 
   1998      1.119     joerg 	cg = ino_to_cg(fs, ino);
   1999      1.119     joerg 	devvp = ump->um_devvp;
   2000      1.119     joerg 	dev = devvp->v_rdev;
   2001      1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2002      1.119     joerg 
   2003      1.119     joerg 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2004      1.154  christos 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2005      1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2006      1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2007      1.149      maxv 	    B_MODIFY, &bp);
   2008      1.119     joerg 	if (error) {
   2009      1.119     joerg 		return (error);
   2010      1.119     joerg 	}
   2011      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2012      1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   2013      1.119     joerg 		brelse(bp, 0);
   2014      1.119     joerg 		return (0);
   2015      1.119     joerg 	}
   2016      1.119     joerg 
   2017      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2018      1.119     joerg 
   2019      1.119     joerg 	bdwrite(bp);
   2020      1.119     joerg 
   2021      1.119     joerg 	return 0;
   2022      1.119     joerg }
   2023      1.119     joerg 
   2024      1.119     joerg int
   2025      1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2026        1.9  christos {
   2027      1.101        ad 	struct ufsmount *ump;
   2028       1.33  augustss 	struct cg *cgp;
   2029        1.1   mycroft 	struct buf *bp;
   2030        1.1   mycroft 	int error, cg;
   2031       1.76   hannken 	daddr_t cgbno;
   2032       1.78   hannken 	dev_t dev;
   2033       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2034        1.1   mycroft 
   2035      1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   2036      1.111    simonb 
   2037       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2038      1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2039      1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   2040      1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2041        1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2042      1.154  christos 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2043      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   2044      1.120  christos 		    fs->fs_fsmnt);
   2045      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2046      1.149      maxv 	    B_MODIFY, &bp);
   2047        1.1   mycroft 	if (error) {
   2048       1.30      fvdl 		return (error);
   2049        1.1   mycroft 	}
   2050        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2051       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2052      1.101        ad 		brelse(bp, 0);
   2053        1.1   mycroft 		return (0);
   2054        1.1   mycroft 	}
   2055      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2056      1.119     joerg 
   2057      1.119     joerg 	bdwrite(bp);
   2058      1.119     joerg 
   2059      1.119     joerg 	return 0;
   2060      1.119     joerg }
   2061      1.119     joerg 
   2062      1.119     joerg static void
   2063      1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2064      1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2065      1.119     joerg {
   2066      1.119     joerg 	int cg;
   2067      1.119     joerg 	struct cg *cgp;
   2068      1.119     joerg 	u_int8_t *inosused;
   2069      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2070      1.119     joerg 
   2071      1.119     joerg 	cg = ino_to_cg(fs, ino);
   2072      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2073       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2074       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2075       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2076       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2077       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2078        1.1   mycroft 	ino %= fs->fs_ipg;
   2079       1.62      fvdl 	if (isclr(inosused, ino)) {
   2080      1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2081      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino +
   2082      1.120  christos 		    cg * fs->fs_ipg, fs->fs_fsmnt);
   2083        1.1   mycroft 		if (fs->fs_ronly == 0)
   2084      1.154  christos 			panic("%s: freeing free inode", __func__);
   2085        1.1   mycroft 	}
   2086       1.62      fvdl 	clrbit(inosused, ino);
   2087      1.113   hannken 	if (!devvp_is_snapshot)
   2088      1.119     joerg 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
   2089      1.113   hannken 		    ino + cg * fs->fs_ipg, mode);
   2090       1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   2091       1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   2092       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2093      1.101        ad 	mutex_enter(&ump->um_lock);
   2094        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2095        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2096       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2097       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2098        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2099        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2100        1.1   mycroft 	}
   2101        1.1   mycroft 	fs->fs_fmod = 1;
   2102       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2103      1.101        ad 	mutex_exit(&ump->um_lock);
   2104        1.1   mycroft }
   2105        1.1   mycroft 
   2106        1.1   mycroft /*
   2107       1.76   hannken  * Check to see if a file is free.
   2108       1.76   hannken  */
   2109       1.76   hannken int
   2110       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2111       1.76   hannken {
   2112       1.76   hannken 	struct cg *cgp;
   2113       1.76   hannken 	struct buf *bp;
   2114       1.76   hannken 	daddr_t cgbno;
   2115       1.76   hannken 	int ret, cg;
   2116       1.76   hannken 	u_int8_t *inosused;
   2117      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2118       1.76   hannken 
   2119      1.119     joerg 	KASSERT(devvp_is_snapshot);
   2120      1.119     joerg 
   2121       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2122      1.113   hannken 	if (devvp_is_snapshot)
   2123      1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2124      1.113   hannken 	else
   2125      1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2126       1.76   hannken 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   2127       1.76   hannken 		return 1;
   2128      1.149      maxv 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2129       1.76   hannken 		return 1;
   2130       1.76   hannken 	}
   2131       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2132       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2133      1.101        ad 		brelse(bp, 0);
   2134       1.76   hannken 		return 1;
   2135       1.76   hannken 	}
   2136       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2137       1.76   hannken 	ino %= fs->fs_ipg;
   2138       1.76   hannken 	ret = isclr(inosused, ino);
   2139      1.101        ad 	brelse(bp, 0);
   2140       1.76   hannken 	return ret;
   2141       1.76   hannken }
   2142       1.76   hannken 
   2143       1.76   hannken /*
   2144        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2145        1.1   mycroft  *
   2146        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2147        1.1   mycroft  * available.
   2148        1.1   mycroft  */
   2149       1.60      fvdl static int32_t
   2150       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2151        1.1   mycroft {
   2152       1.60      fvdl 	int32_t bno;
   2153        1.1   mycroft 	int start, len, loc, i;
   2154        1.1   mycroft 	int blk, field, subfield, pos;
   2155       1.19    bouyer 	int ostart, olen;
   2156       1.62      fvdl 	u_int8_t *blksfree;
   2157       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2158        1.1   mycroft 
   2159      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2160      1.101        ad 
   2161        1.1   mycroft 	/*
   2162        1.1   mycroft 	 * find the fragment by searching through the free block
   2163        1.1   mycroft 	 * map for an appropriate bit pattern
   2164        1.1   mycroft 	 */
   2165        1.1   mycroft 	if (bpref)
   2166        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2167        1.1   mycroft 	else
   2168       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2169       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2170        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2171       1.19    bouyer 	ostart = start;
   2172       1.19    bouyer 	olen = len;
   2173       1.45     lukem 	loc = scanc((u_int)len,
   2174       1.62      fvdl 		(const u_char *)&blksfree[start],
   2175       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2176       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2177        1.1   mycroft 	if (loc == 0) {
   2178        1.1   mycroft 		len = start + 1;
   2179        1.1   mycroft 		start = 0;
   2180       1.45     lukem 		loc = scanc((u_int)len,
   2181       1.62      fvdl 			(const u_char *)&blksfree[0],
   2182       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2183       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2184        1.1   mycroft 		if (loc == 0) {
   2185      1.154  christos 			panic("%s: map corrupted: start=%d, len=%d, "
   2186      1.154  christos 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2187      1.154  christos 			    ostart, olen, fs->fs_fsmnt,
   2188      1.154  christos 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2189      1.154  christos 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2190        1.1   mycroft 			/* NOTREACHED */
   2191        1.1   mycroft 		}
   2192        1.1   mycroft 	}
   2193        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2194       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2195        1.1   mycroft 	/*
   2196        1.1   mycroft 	 * found the byte in the map
   2197        1.1   mycroft 	 * sift through the bits to find the selected frag
   2198        1.1   mycroft 	 */
   2199        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2200       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2201        1.1   mycroft 		blk <<= 1;
   2202        1.1   mycroft 		field = around[allocsiz];
   2203        1.1   mycroft 		subfield = inside[allocsiz];
   2204        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2205        1.1   mycroft 			if ((blk & field) == subfield)
   2206        1.1   mycroft 				return (bno + pos);
   2207        1.1   mycroft 			field <<= 1;
   2208        1.1   mycroft 			subfield <<= 1;
   2209        1.1   mycroft 		}
   2210        1.1   mycroft 	}
   2211      1.154  christos 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2212      1.154  christos 	    bno, fs->fs_fsmnt);
   2213       1.58      fvdl 	/* return (-1); */
   2214        1.1   mycroft }
   2215        1.1   mycroft 
   2216        1.1   mycroft /*
   2217        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2218       1.81     perry  *
   2219        1.1   mycroft  * The form of the error message is:
   2220        1.1   mycroft  *	fs: error message
   2221        1.1   mycroft  */
   2222        1.1   mycroft static void
   2223      1.150   mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2224        1.1   mycroft {
   2225      1.150   mlelstv 	KASSERT(cred != NULL);
   2226        1.1   mycroft 
   2227      1.150   mlelstv 	if (cred == NOCRED || cred == FSCRED) {
   2228      1.150   mlelstv 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2229      1.150   mlelstv 		    curproc->p_pid, curproc->p_comm,
   2230      1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2231      1.150   mlelstv 	} else {
   2232      1.150   mlelstv 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2233      1.150   mlelstv 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2234      1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2235      1.150   mlelstv 	}
   2236        1.1   mycroft }
   2237