Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.171.4.1
      1  1.171.4.1    martin /*	$NetBSD: ffs_alloc.c,v 1.171.4.1 2023/05/13 11:51:14 martin Exp $	*/
      2      1.111    simonb 
      3      1.111    simonb /*-
      4      1.122        ad  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
      5      1.111    simonb  * All rights reserved.
      6      1.111    simonb  *
      7      1.111    simonb  * This code is derived from software contributed to The NetBSD Foundation
      8      1.111    simonb  * by Wasabi Systems, Inc.
      9      1.111    simonb  *
     10      1.111    simonb  * Redistribution and use in source and binary forms, with or without
     11      1.111    simonb  * modification, are permitted provided that the following conditions
     12      1.111    simonb  * are met:
     13      1.111    simonb  * 1. Redistributions of source code must retain the above copyright
     14      1.111    simonb  *    notice, this list of conditions and the following disclaimer.
     15      1.111    simonb  * 2. Redistributions in binary form must reproduce the above copyright
     16      1.111    simonb  *    notice, this list of conditions and the following disclaimer in the
     17      1.111    simonb  *    documentation and/or other materials provided with the distribution.
     18      1.111    simonb  *
     19      1.111    simonb  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20      1.111    simonb  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.111    simonb  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.111    simonb  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23      1.111    simonb  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.111    simonb  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.111    simonb  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.111    simonb  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.111    simonb  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.111    simonb  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.111    simonb  * POSSIBILITY OF SUCH DAMAGE.
     30      1.111    simonb  */
     31        1.2       cgd 
     32        1.1   mycroft /*
     33       1.60      fvdl  * Copyright (c) 2002 Networks Associates Technology, Inc.
     34       1.60      fvdl  * All rights reserved.
     35       1.60      fvdl  *
     36       1.60      fvdl  * This software was developed for the FreeBSD Project by Marshall
     37       1.60      fvdl  * Kirk McKusick and Network Associates Laboratories, the Security
     38       1.60      fvdl  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
     39       1.60      fvdl  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
     40       1.60      fvdl  * research program
     41       1.60      fvdl  *
     42        1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
     43        1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
     44        1.1   mycroft  *
     45        1.1   mycroft  * Redistribution and use in source and binary forms, with or without
     46        1.1   mycroft  * modification, are permitted provided that the following conditions
     47        1.1   mycroft  * are met:
     48        1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     49        1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     50        1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     51        1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     52        1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     53       1.69       agc  * 3. Neither the name of the University nor the names of its contributors
     54        1.1   mycroft  *    may be used to endorse or promote products derived from this software
     55        1.1   mycroft  *    without specific prior written permission.
     56        1.1   mycroft  *
     57        1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58        1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59        1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60        1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61        1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62        1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63        1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64        1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65        1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66        1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67        1.1   mycroft  * SUCH DAMAGE.
     68        1.1   mycroft  *
     69       1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     70        1.1   mycroft  */
     71       1.53     lukem 
     72       1.53     lukem #include <sys/cdefs.h>
     73  1.171.4.1    martin __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.171.4.1 2023/05/13 11:51:14 martin Exp $");
     74       1.17       mrg 
     75       1.43       mrg #if defined(_KERNEL_OPT)
     76       1.27   thorpej #include "opt_ffs.h"
     77       1.21    scottr #include "opt_quota.h"
     78      1.129       chs #include "opt_uvm_page_trkown.h"
     79       1.22    scottr #endif
     80        1.1   mycroft 
     81        1.1   mycroft #include <sys/param.h>
     82        1.1   mycroft #include <sys/systm.h>
     83        1.1   mycroft #include <sys/buf.h>
     84      1.130       tls #include <sys/cprng.h>
     85      1.111    simonb #include <sys/kauth.h>
     86      1.111    simonb #include <sys/kernel.h>
     87      1.111    simonb #include <sys/mount.h>
     88        1.1   mycroft #include <sys/proc.h>
     89      1.111    simonb #include <sys/syslog.h>
     90        1.1   mycroft #include <sys/vnode.h>
     91      1.111    simonb #include <sys/wapbl.h>
     92      1.147     joerg #include <sys/cprng.h>
     93       1.29       mrg 
     94       1.76   hannken #include <miscfs/specfs/specdev.h>
     95        1.1   mycroft #include <ufs/ufs/quota.h>
     96       1.19    bouyer #include <ufs/ufs/ufsmount.h>
     97        1.1   mycroft #include <ufs/ufs/inode.h>
     98        1.9  christos #include <ufs/ufs/ufs_extern.h>
     99       1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
    100      1.111    simonb #include <ufs/ufs/ufs_wapbl.h>
    101        1.1   mycroft 
    102        1.1   mycroft #include <ufs/ffs/fs.h>
    103        1.1   mycroft #include <ufs/ffs/ffs_extern.h>
    104        1.1   mycroft 
    105      1.129       chs #ifdef UVM_PAGE_TRKOWN
    106      1.169  riastrad #include <uvm/uvm_object.h>
    107      1.169  riastrad #include <uvm/uvm_page.h>
    108      1.129       chs #endif
    109      1.129       chs 
    110  1.171.4.1    martin static daddr_t ffs_alloccg(struct inode *, u_int, daddr_t, int, int, int);
    111      1.152  jdolecek static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int, int);
    112       1.85   thorpej static ino_t ffs_dirpref(struct inode *);
    113  1.171.4.1    martin static daddr_t ffs_fragextend(struct inode *, u_int, daddr_t, int, int);
    114      1.150   mlelstv static void ffs_fserr(struct fs *, kauth_cred_t, const char *);
    115  1.171.4.1    martin static daddr_t ffs_hashalloc(struct inode *, u_int, daddr_t, int, int, int,
    116  1.171.4.1    martin     daddr_t (*)(struct inode *, u_int, daddr_t, int, int, int));
    117  1.171.4.1    martin static daddr_t ffs_nodealloccg(struct inode *, u_int, daddr_t, int, int, int);
    118       1.85   thorpej static int32_t ffs_mapsearch(struct fs *, struct cg *,
    119       1.85   thorpej 				      daddr_t, int);
    120      1.119     joerg static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
    121      1.116     joerg     daddr_t, long, bool);
    122      1.119     joerg static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
    123      1.119     joerg     int, bool);
    124       1.23  drochner 
    125       1.34  jdolecek /* if 1, changes in optimalization strategy are logged */
    126       1.34  jdolecek int ffs_log_changeopt = 0;
    127       1.34  jdolecek 
    128       1.23  drochner /* in ffs_tables.c */
    129       1.40  jdolecek extern const int inside[], around[];
    130       1.40  jdolecek extern const u_char * const fragtbl[];
    131        1.1   mycroft 
    132      1.116     joerg /* Basic consistency check for block allocations */
    133      1.116     joerg static int
    134      1.116     joerg ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
    135      1.116     joerg     long size, dev_t dev, ino_t inum)
    136      1.116     joerg {
    137      1.134  dholland 	if ((u_int)size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
    138      1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
    139      1.154  christos 		panic("%s: bad size: dev = 0x%llx, bno = %" PRId64
    140      1.154  christos 		    " bsize = %d, size = %ld, fs = %s", func,
    141      1.120  christos 		    (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
    142      1.116     joerg 	}
    143      1.116     joerg 
    144      1.116     joerg 	if (bno >= fs->fs_size) {
    145      1.154  christos 		printf("%s: bad block %" PRId64 ", ino %llu\n", func, bno,
    146      1.116     joerg 		    (unsigned long long)inum);
    147      1.150   mlelstv 		ffs_fserr(fs, NOCRED, "bad block");
    148      1.116     joerg 		return EINVAL;
    149      1.116     joerg 	}
    150      1.116     joerg 	return 0;
    151      1.116     joerg }
    152      1.116     joerg 
    153        1.1   mycroft /*
    154        1.1   mycroft  * Allocate a block in the file system.
    155       1.81     perry  *
    156        1.1   mycroft  * The size of the requested block is given, which must be some
    157        1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
    158        1.1   mycroft  * A preference may be optionally specified. If a preference is given
    159        1.1   mycroft  * the following hierarchy is used to allocate a block:
    160        1.1   mycroft  *   1) allocate the requested block.
    161        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    162        1.1   mycroft  *   3) allocate a block in the same cylinder group.
    163        1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
    164        1.1   mycroft  *      available block is located.
    165       1.47       wiz  * If no block preference is given the following hierarchy is used
    166        1.1   mycroft  * to allocate a block:
    167        1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
    168        1.1   mycroft  *      inode for the file.
    169        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    170        1.1   mycroft  *      available block is located.
    171      1.106     pooka  *
    172      1.106     pooka  * => called with um_lock held
    173      1.106     pooka  * => releases um_lock before returning
    174        1.1   mycroft  */
    175        1.9  christos int
    176      1.152  jdolecek ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
    177      1.152  jdolecek     int flags, kauth_cred_t cred, daddr_t *bnp)
    178        1.1   mycroft {
    179      1.101        ad 	struct ufsmount *ump;
    180       1.62      fvdl 	struct fs *fs;
    181       1.58      fvdl 	daddr_t bno;
    182  1.171.4.1    martin 	u_int cg;
    183      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    184        1.9  christos 	int error;
    185        1.9  christos #endif
    186       1.81     perry 
    187       1.62      fvdl 	fs = ip->i_fs;
    188      1.101        ad 	ump = ip->i_ump;
    189      1.101        ad 
    190      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    191       1.62      fvdl 
    192       1.37       chs #ifdef UVM_PAGE_TRKOWN
    193      1.129       chs 
    194      1.129       chs 	/*
    195      1.129       chs 	 * Sanity-check that allocations within the file size
    196      1.129       chs 	 * do not allow other threads to read the stale contents
    197      1.129       chs 	 * of newly allocated blocks.
    198      1.129       chs 	 * Usually pages will exist to cover the new allocation.
    199      1.129       chs 	 * There is an optimization in ffs_write() where we skip
    200      1.129       chs 	 * creating pages if several conditions are met:
    201      1.129       chs 	 *  - the file must not be mapped (in any user address space).
    202      1.129       chs 	 *  - the write must cover whole pages and whole blocks.
    203      1.129       chs 	 * If those conditions are not met then pages must exist and
    204      1.129       chs 	 * be locked by the current thread.
    205      1.129       chs 	 */
    206      1.129       chs 
    207      1.159       chs 	struct vnode *vp = ITOV(ip);
    208      1.168       chs 	if (vp->v_type == VREG && (flags & IO_EXT) == 0 &&
    209      1.159       chs 	    ffs_lblktosize(fs, (voff_t)lbn) < round_page(vp->v_size) &&
    210      1.159       chs 	    ((vp->v_vflag & VV_MAPPED) != 0 || (size & PAGE_MASK) != 0 ||
    211      1.159       chs 	     ffs_blkoff(fs, size) != 0)) {
    212      1.165  riastrad 		struct vm_page *pg __diagused;
    213      1.129       chs 		struct uvm_object *uobj = &vp->v_uobj;
    214      1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbn));
    215      1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbn) + size);
    216       1.37       chs 
    217      1.166        ad 		rw_enter(uobj->vmobjlock, RW_WRITER);
    218       1.37       chs 		while (off < endoff) {
    219       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    220      1.159       chs 			KASSERT((pg != NULL && pg->owner_tag != NULL &&
    221      1.159       chs 				 pg->owner == curproc->p_pid &&
    222      1.129       chs 				 pg->lowner == curlwp->l_lid));
    223       1.37       chs 			off += PAGE_SIZE;
    224       1.37       chs 		}
    225      1.166        ad 		rw_exit(uobj->vmobjlock);
    226       1.37       chs 	}
    227       1.37       chs #endif
    228       1.37       chs 
    229        1.1   mycroft 	*bnp = 0;
    230      1.156  riastrad 
    231      1.156  riastrad 	KASSERTMSG((cred != NOCRED), "missing credential");
    232      1.156  riastrad 	KASSERTMSG(((u_int)size <= fs->fs_bsize),
    233      1.156  riastrad 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    234      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    235      1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, size) == 0),
    236      1.156  riastrad 	    "bad size: dev = 0x%llx, bsize = %d, size = %d, fs = %s",
    237      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    238      1.156  riastrad 
    239        1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    240        1.1   mycroft 		goto nospace;
    241       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    242      1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    243      1.124      elad 	    NULL, NULL) != 0)
    244        1.1   mycroft 		goto nospace;
    245      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    246      1.101        ad 	mutex_exit(&ump->um_lock);
    247       1.60      fvdl 	if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
    248        1.1   mycroft 		return (error);
    249      1.101        ad 	mutex_enter(&ump->um_lock);
    250        1.1   mycroft #endif
    251      1.111    simonb 
    252        1.1   mycroft 	if (bpref >= fs->fs_size)
    253        1.1   mycroft 		bpref = 0;
    254        1.1   mycroft 	if (bpref == 0)
    255        1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    256        1.1   mycroft 	else
    257        1.1   mycroft 		cg = dtog(fs, bpref);
    258      1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, size, 0, flags, ffs_alloccg);
    259        1.1   mycroft 	if (bno > 0) {
    260       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(size));
    261      1.167  christos 		if (flags & IO_EXT)
    262      1.167  christos 			ip->i_flag |= IN_CHANGE;
    263      1.167  christos 		else
    264      1.167  christos 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    265        1.1   mycroft 		*bnp = bno;
    266        1.1   mycroft 		return (0);
    267        1.1   mycroft 	}
    268      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    269        1.1   mycroft 	/*
    270        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    271        1.1   mycroft 	 */
    272       1.60      fvdl 	(void) chkdq(ip, -btodb(size), cred, FORCE);
    273        1.1   mycroft #endif
    274      1.111    simonb 	if (flags & B_CONTIG) {
    275      1.111    simonb 		/*
    276      1.111    simonb 		 * XXX ump->um_lock handling is "suspect" at best.
    277      1.111    simonb 		 * For the case where ffs_hashalloc() fails early
    278      1.111    simonb 		 * in the B_CONTIG case we reach here with um_lock
    279      1.111    simonb 		 * already unlocked, so we can't release it again
    280      1.111    simonb 		 * like in the normal error path.  See kern/39206.
    281      1.111    simonb 		 *
    282      1.111    simonb 		 *
    283      1.111    simonb 		 * Fail silently - it's up to our caller to report
    284      1.111    simonb 		 * errors.
    285      1.111    simonb 		 */
    286      1.111    simonb 		return (ENOSPC);
    287      1.111    simonb 	}
    288        1.1   mycroft nospace:
    289      1.101        ad 	mutex_exit(&ump->um_lock);
    290      1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    291        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    292        1.1   mycroft 	return (ENOSPC);
    293        1.1   mycroft }
    294        1.1   mycroft 
    295        1.1   mycroft /*
    296        1.1   mycroft  * Reallocate a fragment to a bigger size
    297        1.1   mycroft  *
    298        1.1   mycroft  * The number and size of the old block is given, and a preference
    299        1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    300        1.1   mycroft  * the original block. Failing that, the regular block allocator is
    301        1.1   mycroft  * invoked to get an appropriate block.
    302      1.106     pooka  *
    303      1.106     pooka  * => called with um_lock held
    304      1.106     pooka  * => return with um_lock released
    305        1.1   mycroft  */
    306        1.9  christos int
    307      1.167  christos ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bprev, daddr_t bpref,
    308      1.167  christos     int osize, int nsize, int flags, kauth_cred_t cred, struct buf **bpp,
    309      1.167  christos     daddr_t *blknop)
    310        1.1   mycroft {
    311      1.101        ad 	struct ufsmount *ump;
    312       1.62      fvdl 	struct fs *fs;
    313        1.1   mycroft 	struct buf *bp;
    314  1.171.4.1    martin 	u_int cg, request;
    315  1.171.4.1    martin 	int error;
    316      1.167  christos 	daddr_t bno;
    317       1.25   thorpej 
    318       1.62      fvdl 	fs = ip->i_fs;
    319      1.101        ad 	ump = ip->i_ump;
    320      1.101        ad 
    321      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    322      1.101        ad 
    323       1.37       chs #ifdef UVM_PAGE_TRKOWN
    324      1.129       chs 
    325      1.129       chs 	/*
    326      1.129       chs 	 * Sanity-check that allocations within the file size
    327      1.129       chs 	 * do not allow other threads to read the stale contents
    328      1.129       chs 	 * of newly allocated blocks.
    329      1.129       chs 	 * Unlike in ffs_alloc(), here pages must always exist
    330      1.129       chs 	 * for such allocations, because only the last block of a file
    331      1.129       chs 	 * can be a fragment and ffs_write() will reallocate the
    332      1.129       chs 	 * fragment to the new size using ufs_balloc_range(),
    333      1.129       chs 	 * which always creates pages to cover blocks it allocates.
    334      1.129       chs 	 */
    335      1.129       chs 
    336       1.37       chs 	if (ITOV(ip)->v_type == VREG) {
    337      1.165  riastrad 		struct vm_page *pg __diagused;
    338       1.51       chs 		struct uvm_object *uobj = &ITOV(ip)->v_uobj;
    339      1.137  dholland 		voff_t off = trunc_page(ffs_lblktosize(fs, lbprev));
    340      1.137  dholland 		voff_t endoff = round_page(ffs_lblktosize(fs, lbprev) + osize);
    341       1.37       chs 
    342      1.166        ad 		rw_enter(uobj->vmobjlock, RW_WRITER);
    343       1.37       chs 		while (off < endoff) {
    344       1.37       chs 			pg = uvm_pagelookup(uobj, off);
    345      1.129       chs 			KASSERT(pg->owner == curproc->p_pid &&
    346      1.129       chs 				pg->lowner == curlwp->l_lid);
    347       1.37       chs 			off += PAGE_SIZE;
    348       1.37       chs 		}
    349      1.166        ad 		rw_exit(uobj->vmobjlock);
    350       1.37       chs 	}
    351       1.37       chs #endif
    352       1.37       chs 
    353      1.156  riastrad 	KASSERTMSG((cred != NOCRED), "missing credential");
    354      1.156  riastrad 	KASSERTMSG(((u_int)osize <= fs->fs_bsize),
    355      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    356      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    357      1.156  riastrad 	    fs->fs_fsmnt);
    358      1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, osize) == 0),
    359      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    360      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    361      1.156  riastrad 	    fs->fs_fsmnt);
    362      1.156  riastrad 	KASSERTMSG(((u_int)nsize <= fs->fs_bsize),
    363      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    364      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    365      1.156  riastrad 	    fs->fs_fsmnt);
    366      1.156  riastrad 	KASSERTMSG((ffs_fragoff(fs, nsize) == 0),
    367      1.156  riastrad 	    "bad size: dev=0x%llx, bsize=%d, osize=%d, nsize=%d, fs=%s",
    368      1.156  riastrad 	    (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
    369      1.156  riastrad 	    fs->fs_fsmnt);
    370      1.156  riastrad 
    371       1.99     pooka 	if (freespace(fs, fs->fs_minfree) <= 0 &&
    372      1.124      elad 	    kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
    373      1.124      elad 	    NULL, NULL) != 0) {
    374      1.101        ad 		mutex_exit(&ump->um_lock);
    375        1.1   mycroft 		goto nospace;
    376      1.101        ad 	}
    377       1.60      fvdl 
    378       1.60      fvdl 	if (bprev == 0) {
    379      1.154  christos 		panic("%s: bad bprev: dev = 0x%llx, bsize = %d, bprev = %"
    380      1.154  christos 		    PRId64 ", fs = %s", __func__,
    381      1.120  christos 		    (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
    382      1.120  christos 		    fs->fs_fsmnt);
    383        1.1   mycroft 	}
    384      1.101        ad 	mutex_exit(&ump->um_lock);
    385      1.101        ad 
    386        1.1   mycroft 	/*
    387        1.1   mycroft 	 * Allocate the extra space in the buffer.
    388        1.1   mycroft 	 */
    389       1.37       chs 	if (bpp != NULL &&
    390      1.149      maxv 	    (error = bread(ITOV(ip), lbprev, osize, 0, &bp)) != 0) {
    391        1.1   mycroft 		return (error);
    392        1.1   mycroft 	}
    393      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    394       1.60      fvdl 	if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
    395       1.44       chs 		if (bpp != NULL) {
    396      1.101        ad 			brelse(bp, 0);
    397       1.44       chs 		}
    398        1.1   mycroft 		return (error);
    399        1.1   mycroft 	}
    400        1.1   mycroft #endif
    401        1.1   mycroft 	/*
    402        1.1   mycroft 	 * Check for extension in the existing location.
    403        1.1   mycroft 	 */
    404        1.1   mycroft 	cg = dtog(fs, bprev);
    405      1.101        ad 	mutex_enter(&ump->um_lock);
    406       1.60      fvdl 	if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
    407       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    408      1.167  christos 		if (flags & IO_EXT)
    409      1.167  christos 			ip->i_flag |= IN_CHANGE;
    410      1.167  christos 		else
    411      1.167  christos 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    412       1.37       chs 
    413       1.37       chs 		if (bpp != NULL) {
    414      1.154  christos 			if (bp->b_blkno != FFS_FSBTODB(fs, bno)) {
    415      1.154  christos 				panic("%s: bad blockno %#llx != %#llx",
    416      1.154  christos 				    __func__, (unsigned long long) bp->b_blkno,
    417      1.154  christos 				    (unsigned long long)FFS_FSBTODB(fs, bno));
    418      1.154  christos 			}
    419       1.72        pk 			allocbuf(bp, nsize, 1);
    420       1.98  christos 			memset((char *)bp->b_data + osize, 0, nsize - osize);
    421      1.105        ad 			mutex_enter(bp->b_objlock);
    422      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    423      1.105        ad 			bp->b_oflags |= BO_DONE;
    424      1.105        ad 			mutex_exit(bp->b_objlock);
    425       1.37       chs 			*bpp = bp;
    426       1.37       chs 		}
    427       1.37       chs 		if (blknop != NULL) {
    428       1.37       chs 			*blknop = bno;
    429       1.37       chs 		}
    430        1.1   mycroft 		return (0);
    431        1.1   mycroft 	}
    432        1.1   mycroft 	/*
    433        1.1   mycroft 	 * Allocate a new disk location.
    434        1.1   mycroft 	 */
    435        1.1   mycroft 	if (bpref >= fs->fs_size)
    436        1.1   mycroft 		bpref = 0;
    437        1.1   mycroft 	switch ((int)fs->fs_optim) {
    438        1.1   mycroft 	case FS_OPTSPACE:
    439        1.1   mycroft 		/*
    440       1.81     perry 		 * Allocate an exact sized fragment. Although this makes
    441       1.81     perry 		 * best use of space, we will waste time relocating it if
    442        1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    443        1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    444        1.1   mycroft 		 * to begin optimizing for time.
    445        1.1   mycroft 		 */
    446        1.1   mycroft 		request = nsize;
    447        1.1   mycroft 		if (fs->fs_minfree < 5 ||
    448        1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    449        1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    450        1.1   mycroft 			break;
    451       1.34  jdolecek 
    452       1.34  jdolecek 		if (ffs_log_changeopt) {
    453       1.34  jdolecek 			log(LOG_NOTICE,
    454       1.34  jdolecek 				"%s: optimization changed from SPACE to TIME\n",
    455       1.34  jdolecek 				fs->fs_fsmnt);
    456       1.34  jdolecek 		}
    457       1.34  jdolecek 
    458        1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    459        1.1   mycroft 		break;
    460        1.1   mycroft 	case FS_OPTTIME:
    461        1.1   mycroft 		/*
    462        1.1   mycroft 		 * At this point we have discovered a file that is trying to
    463        1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    464        1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    465        1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    466        1.1   mycroft 		 * above will be able to grow it in place without further
    467        1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    468        1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    469        1.1   mycroft 		 * optimizing for space.
    470        1.1   mycroft 		 */
    471        1.1   mycroft 		request = fs->fs_bsize;
    472        1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    473        1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    474        1.1   mycroft 			break;
    475       1.34  jdolecek 
    476       1.34  jdolecek 		if (ffs_log_changeopt) {
    477       1.34  jdolecek 			log(LOG_NOTICE,
    478       1.34  jdolecek 				"%s: optimization changed from TIME to SPACE\n",
    479       1.34  jdolecek 				fs->fs_fsmnt);
    480       1.34  jdolecek 		}
    481       1.34  jdolecek 
    482        1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    483        1.1   mycroft 		break;
    484        1.1   mycroft 	default:
    485      1.154  christos 		panic("%s: bad optim: dev = 0x%llx, optim = %d, fs = %s",
    486      1.154  christos 		    __func__, (unsigned long long)ip->i_dev, fs->fs_optim,
    487      1.154  christos 		    fs->fs_fsmnt);
    488        1.1   mycroft 		/* NOTREACHED */
    489        1.1   mycroft 	}
    490      1.152  jdolecek 	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, 0, ffs_alloccg);
    491        1.1   mycroft 	if (bno > 0) {
    492      1.153  jdolecek 		/*
    493      1.153  jdolecek 		 * Use forced deallocation registration, we can't handle
    494      1.153  jdolecek 		 * failure here. This is safe, as this place is ever hit
    495      1.153  jdolecek 		 * maximum once per write operation, when fragment is extended
    496      1.153  jdolecek 		 * to longer fragment, or a full block.
    497      1.153  jdolecek 		 */
    498      1.122        ad 		if ((ip->i_ump->um_mountp->mnt_wapbl) &&
    499      1.122        ad 		    (ITOV(ip)->v_type != VREG)) {
    500      1.153  jdolecek 			/* this should never fail */
    501      1.153  jdolecek 			error = UFS_WAPBL_REGISTER_DEALLOCATION_FORCE(
    502      1.136  dholland 			    ip->i_ump->um_mountp, FFS_FSBTODB(fs, bprev),
    503      1.122        ad 			    osize);
    504      1.153  jdolecek 			if (error)
    505      1.153  jdolecek 				panic("ffs_realloccg: dealloc registration failed");
    506      1.122        ad 		} else {
    507      1.122        ad 			ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
    508      1.122        ad 			    ip->i_number);
    509      1.111    simonb 		}
    510       1.65  kristerw 		DIP_ADD(ip, blocks, btodb(nsize - osize));
    511      1.167  christos 		if (flags & IO_EXT)
    512      1.167  christos 			ip->i_flag |= IN_CHANGE;
    513      1.167  christos 		else
    514      1.167  christos 			ip->i_flag |= IN_CHANGE | IN_UPDATE;
    515       1.37       chs 		if (bpp != NULL) {
    516      1.136  dholland 			bp->b_blkno = FFS_FSBTODB(fs, bno);
    517       1.72        pk 			allocbuf(bp, nsize, 1);
    518       1.98  christos 			memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
    519      1.105        ad 			mutex_enter(bp->b_objlock);
    520      1.109        ad 			KASSERT(!cv_has_waiters(&bp->b_done));
    521      1.105        ad 			bp->b_oflags |= BO_DONE;
    522      1.105        ad 			mutex_exit(bp->b_objlock);
    523       1.37       chs 			*bpp = bp;
    524       1.37       chs 		}
    525       1.37       chs 		if (blknop != NULL) {
    526       1.37       chs 			*blknop = bno;
    527       1.37       chs 		}
    528        1.1   mycroft 		return (0);
    529        1.1   mycroft 	}
    530      1.101        ad 	mutex_exit(&ump->um_lock);
    531      1.101        ad 
    532      1.127    bouyer #if defined(QUOTA) || defined(QUOTA2)
    533        1.1   mycroft 	/*
    534        1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    535        1.1   mycroft 	 */
    536       1.60      fvdl 	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
    537        1.1   mycroft #endif
    538       1.37       chs 	if (bpp != NULL) {
    539      1.101        ad 		brelse(bp, 0);
    540       1.37       chs 	}
    541       1.37       chs 
    542        1.1   mycroft nospace:
    543        1.1   mycroft 	/*
    544        1.1   mycroft 	 * no space available
    545        1.1   mycroft 	 */
    546      1.150   mlelstv 	ffs_fserr(fs, cred, "file system full");
    547        1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    548        1.1   mycroft 	return (ENOSPC);
    549        1.1   mycroft }
    550        1.1   mycroft 
    551        1.1   mycroft /*
    552        1.1   mycroft  * Allocate an inode in the file system.
    553       1.81     perry  *
    554        1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    555        1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    556        1.1   mycroft  *   1) allocate the preferred inode.
    557        1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    558        1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    559        1.1   mycroft  *      available inode is located.
    560       1.47       wiz  * If no inode preference is given the following hierarchy is used
    561        1.1   mycroft  * to allocate an inode:
    562        1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    563        1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    564        1.1   mycroft  *      available inode is located.
    565      1.106     pooka  *
    566      1.106     pooka  * => um_lock not held upon entry or return
    567        1.1   mycroft  */
    568        1.9  christos int
    569      1.148   hannken ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred, ino_t *inop)
    570        1.9  christos {
    571      1.101        ad 	struct ufsmount *ump;
    572       1.33  augustss 	struct inode *pip;
    573       1.33  augustss 	struct fs *fs;
    574        1.1   mycroft 	ino_t ino, ipref;
    575  1.171.4.1    martin 	u_int cg;
    576  1.171.4.1    martin 	int error;
    577       1.81     perry 
    578      1.163  jdolecek 	UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
    579      1.163  jdolecek 
    580        1.1   mycroft 	pip = VTOI(pvp);
    581        1.1   mycroft 	fs = pip->i_fs;
    582      1.101        ad 	ump = pip->i_ump;
    583      1.101        ad 
    584      1.111    simonb 	error = UFS_WAPBL_BEGIN(pvp->v_mount);
    585      1.111    simonb 	if (error) {
    586      1.111    simonb 		return error;
    587      1.111    simonb 	}
    588      1.101        ad 	mutex_enter(&ump->um_lock);
    589        1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    590        1.1   mycroft 		goto noinodes;
    591        1.1   mycroft 
    592        1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    593       1.50     lukem 		ipref = ffs_dirpref(pip);
    594       1.50     lukem 	else
    595       1.50     lukem 		ipref = pip->i_number;
    596        1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    597        1.1   mycroft 		ipref = 0;
    598        1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    599       1.50     lukem 	/*
    600       1.50     lukem 	 * Track number of dirs created one after another
    601       1.50     lukem 	 * in a same cg without intervening by files.
    602       1.50     lukem 	 */
    603       1.50     lukem 	if ((mode & IFMT) == IFDIR) {
    604       1.63      fvdl 		if (fs->fs_contigdirs[cg] < 255)
    605       1.50     lukem 			fs->fs_contigdirs[cg]++;
    606       1.50     lukem 	} else {
    607       1.50     lukem 		if (fs->fs_contigdirs[cg] > 0)
    608       1.50     lukem 			fs->fs_contigdirs[cg]--;
    609       1.50     lukem 	}
    610      1.152  jdolecek 	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 0, ffs_nodealloccg);
    611        1.1   mycroft 	if (ino == 0)
    612        1.1   mycroft 		goto noinodes;
    613      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    614      1.148   hannken 	*inop = ino;
    615      1.148   hannken 	return 0;
    616       1.60      fvdl 
    617        1.1   mycroft noinodes:
    618      1.101        ad 	mutex_exit(&ump->um_lock);
    619      1.111    simonb 	UFS_WAPBL_END(pvp->v_mount);
    620      1.150   mlelstv 	ffs_fserr(fs, cred, "out of inodes");
    621        1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    622      1.148   hannken 	return ENOSPC;
    623        1.1   mycroft }
    624        1.1   mycroft 
    625        1.1   mycroft /*
    626       1.50     lukem  * Find a cylinder group in which to place a directory.
    627       1.42  sommerfe  *
    628       1.50     lukem  * The policy implemented by this algorithm is to allocate a
    629       1.50     lukem  * directory inode in the same cylinder group as its parent
    630       1.50     lukem  * directory, but also to reserve space for its files inodes
    631       1.50     lukem  * and data. Restrict the number of directories which may be
    632       1.50     lukem  * allocated one after another in the same cylinder group
    633       1.50     lukem  * without intervening allocation of files.
    634       1.42  sommerfe  *
    635       1.50     lukem  * If we allocate a first level directory then force allocation
    636       1.50     lukem  * in another cylinder group.
    637        1.1   mycroft  */
    638        1.1   mycroft static ino_t
    639       1.85   thorpej ffs_dirpref(struct inode *pip)
    640        1.1   mycroft {
    641       1.50     lukem 	register struct fs *fs;
    642  1.171.4.1    martin 	u_int cg, prefcg;
    643  1.171.4.1    martin 	uint64_t dirsize, cgsize, curdsz;
    644  1.171.4.1    martin 	u_int avgifree, avgbfree, avgndir;
    645  1.171.4.1    martin 	u_int minifree, minbfree, maxndir;
    646  1.171.4.1    martin 	u_int mincg, minndir;
    647  1.171.4.1    martin 	u_int maxcontigdirs;
    648       1.50     lukem 
    649      1.101        ad 	KASSERT(mutex_owned(&pip->i_ump->um_lock));
    650      1.101        ad 
    651       1.50     lukem 	fs = pip->i_fs;
    652        1.1   mycroft 
    653        1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    654       1.50     lukem 	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    655       1.50     lukem 	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
    656       1.50     lukem 
    657       1.50     lukem 	/*
    658       1.50     lukem 	 * Force allocation in another cg if creating a first level dir.
    659       1.50     lukem 	 */
    660      1.102        ad 	if (ITOV(pip)->v_vflag & VV_ROOT) {
    661      1.147     joerg 		prefcg = cprng_fast32() % fs->fs_ncg;
    662       1.50     lukem 		mincg = prefcg;
    663       1.50     lukem 		minndir = fs->fs_ipg;
    664       1.50     lukem 		for (cg = prefcg; cg < fs->fs_ncg; cg++)
    665       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    666       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    667       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    668       1.42  sommerfe 				mincg = cg;
    669       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    670       1.42  sommerfe 			}
    671       1.50     lukem 		for (cg = 0; cg < prefcg; cg++)
    672       1.50     lukem 			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    673       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
    674       1.50     lukem 			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    675       1.50     lukem 				mincg = cg;
    676       1.50     lukem 				minndir = fs->fs_cs(fs, cg).cs_ndir;
    677       1.42  sommerfe 			}
    678       1.50     lukem 		return ((ino_t)(fs->fs_ipg * mincg));
    679       1.42  sommerfe 	}
    680       1.50     lukem 
    681       1.50     lukem 	/*
    682       1.50     lukem 	 * Count various limits which used for
    683       1.50     lukem 	 * optimal allocation of a directory inode.
    684      1.144       bad 	 * Try cylinder groups with >75% avgifree and avgbfree.
    685      1.144       bad 	 * Avoid cylinder groups with no free blocks or inodes as that
    686      1.144       bad 	 * triggers an I/O-expensive cylinder group scan.
    687       1.50     lukem 	 */
    688      1.161  riastrad 	maxndir = uimin(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
    689      1.144       bad 	minifree = avgifree - avgifree / 4;
    690      1.144       bad 	if (minifree < 1)
    691      1.144       bad 		minifree = 1;
    692      1.144       bad 	minbfree = avgbfree - avgbfree / 4;
    693      1.144       bad 	if (minbfree < 1)
    694      1.144       bad 		minbfree = 1;
    695       1.89       dsl 	cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
    696       1.89       dsl 	dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
    697       1.89       dsl 	if (avgndir != 0) {
    698       1.89       dsl 		curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
    699       1.89       dsl 		if (dirsize < curdsz)
    700       1.89       dsl 			dirsize = curdsz;
    701       1.89       dsl 	}
    702       1.89       dsl 	if (cgsize < dirsize * 255)
    703      1.144       bad 		maxcontigdirs = (avgbfree * fs->fs_bsize) / dirsize;
    704       1.89       dsl 	else
    705       1.89       dsl 		maxcontigdirs = 255;
    706       1.50     lukem 	if (fs->fs_avgfpdir > 0)
    707      1.161  riastrad 		maxcontigdirs = uimin(maxcontigdirs,
    708       1.50     lukem 				    fs->fs_ipg / fs->fs_avgfpdir);
    709       1.50     lukem 	if (maxcontigdirs == 0)
    710       1.50     lukem 		maxcontigdirs = 1;
    711       1.50     lukem 
    712       1.50     lukem 	/*
    713       1.81     perry 	 * Limit number of dirs in one cg and reserve space for
    714       1.50     lukem 	 * regular files, but only if we have no deficit in
    715       1.50     lukem 	 * inodes or space.
    716       1.50     lukem 	 */
    717       1.50     lukem 	prefcg = ino_to_cg(fs, pip->i_number);
    718       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    719       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    720       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    721       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    722       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    723       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    724       1.50     lukem 		}
    725       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    726       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
    727       1.50     lukem 		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
    728       1.50     lukem 	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
    729       1.50     lukem 			if (fs->fs_contigdirs[cg] < maxcontigdirs)
    730       1.50     lukem 				return ((ino_t)(fs->fs_ipg * cg));
    731       1.50     lukem 		}
    732       1.50     lukem 	/*
    733       1.50     lukem 	 * This is a backstop when we are deficient in space.
    734       1.50     lukem 	 */
    735       1.50     lukem 	for (cg = prefcg; cg < fs->fs_ncg; cg++)
    736       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    737       1.50     lukem 			return ((ino_t)(fs->fs_ipg * cg));
    738       1.50     lukem 	for (cg = 0; cg < prefcg; cg++)
    739       1.50     lukem 		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
    740       1.50     lukem 			break;
    741       1.50     lukem 	return ((ino_t)(fs->fs_ipg * cg));
    742        1.1   mycroft }
    743        1.1   mycroft 
    744        1.1   mycroft /*
    745        1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    746        1.1   mycroft  * logically divided into sections. The first section is composed of the
    747        1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    748       1.81     perry  *
    749        1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    750        1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    751        1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    752        1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    753        1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    754        1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    755        1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    756        1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    757        1.1   mycroft  * continues until a cylinder group with greater than the average number
    758        1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    759        1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    760        1.1   mycroft  * here a best guess is made based upon the logical block number being
    761        1.1   mycroft  * allocated.
    762       1.81     perry  *
    763        1.1   mycroft  * If a section is already partially allocated, the policy is to
    764        1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    765       1.60      fvdl  * contiguous blocks and the beginning of the next is laid out
    766       1.60      fvdl  * contigously if possible.
    767      1.106     pooka  *
    768      1.106     pooka  * => um_lock held on entry and exit
    769        1.1   mycroft  */
    770       1.58      fvdl daddr_t
    771      1.111    simonb ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
    772       1.85   thorpej     int32_t *bap /* XXX ondisk32 */)
    773        1.1   mycroft {
    774       1.33  augustss 	struct fs *fs;
    775  1.171.4.1    martin 	u_int cg;
    776  1.171.4.1    martin 	u_int avgbfree, startcg;
    777        1.1   mycroft 
    778      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    779      1.101        ad 
    780        1.1   mycroft 	fs = ip->i_fs;
    781      1.111    simonb 
    782      1.111    simonb 	/*
    783      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    784      1.170    andvar 	 * in the inode extensions to return the desired block.
    785      1.111    simonb 	 *
    786      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    787      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    788      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    789      1.111    simonb 	 * block.  For data, return the address of the actual block
    790      1.111    simonb 	 * relative to the address of the first data block.
    791      1.111    simonb 	 */
    792      1.111    simonb 	if (flags & B_CONTIG) {
    793      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    794      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    795      1.111    simonb 		if (flags & B_METAONLY)
    796      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    797      1.111    simonb 		else
    798      1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    799      1.111    simonb 	}
    800      1.111    simonb 
    801        1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    802      1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    803        1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    804      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    805        1.1   mycroft 		}
    806        1.1   mycroft 		/*
    807        1.1   mycroft 		 * Find a cylinder with greater than average number of
    808        1.1   mycroft 		 * unused data blocks.
    809        1.1   mycroft 		 */
    810        1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    811        1.1   mycroft 			startcg =
    812        1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    813        1.1   mycroft 		else
    814       1.19    bouyer 			startcg = dtog(fs,
    815       1.30      fvdl 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    816        1.1   mycroft 		startcg %= fs->fs_ncg;
    817        1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    818        1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    819        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    820      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    821        1.1   mycroft 			}
    822       1.52     lukem 		for (cg = 0; cg < startcg; cg++)
    823        1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    824      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    825        1.1   mycroft 			}
    826       1.35   thorpej 		return (0);
    827        1.1   mycroft 	}
    828        1.1   mycroft 	/*
    829       1.60      fvdl 	 * We just always try to lay things out contiguously.
    830       1.60      fvdl 	 */
    831       1.60      fvdl 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    832       1.60      fvdl }
    833       1.60      fvdl 
    834       1.60      fvdl daddr_t
    835      1.111    simonb ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
    836      1.111    simonb     int64_t *bap)
    837       1.60      fvdl {
    838       1.60      fvdl 	struct fs *fs;
    839  1.171.4.1    martin 	u_int cg;
    840  1.171.4.1    martin 	u_int avgbfree, startcg;
    841       1.60      fvdl 
    842      1.101        ad 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
    843      1.101        ad 
    844       1.60      fvdl 	fs = ip->i_fs;
    845      1.111    simonb 
    846      1.111    simonb 	/*
    847      1.111    simonb 	 * If allocating a contiguous file with B_CONTIG, use the hints
    848      1.170    andvar 	 * in the inode extensions to return the desired block.
    849      1.111    simonb 	 *
    850      1.111    simonb 	 * For metadata (indirect blocks) return the address of where
    851      1.111    simonb 	 * the first indirect block resides - we'll scan for the next
    852      1.111    simonb 	 * available slot if we need to allocate more than one indirect
    853      1.111    simonb 	 * block.  For data, return the address of the actual block
    854      1.111    simonb 	 * relative to the address of the first data block.
    855      1.111    simonb 	 */
    856      1.111    simonb 	if (flags & B_CONTIG) {
    857      1.111    simonb 		KASSERT(ip->i_ffs_first_data_blk != 0);
    858      1.111    simonb 		KASSERT(ip->i_ffs_first_indir_blk != 0);
    859      1.111    simonb 		if (flags & B_METAONLY)
    860      1.111    simonb 			return ip->i_ffs_first_indir_blk;
    861      1.111    simonb 		else
    862      1.138  dholland 			return ip->i_ffs_first_data_blk + ffs_blkstofrags(fs, lbn);
    863      1.111    simonb 	}
    864      1.111    simonb 
    865       1.60      fvdl 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    866      1.134  dholland 		if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
    867       1.60      fvdl 			cg = ino_to_cg(fs, ip->i_number);
    868      1.110    simonb 			return (cgbase(fs, cg) + fs->fs_frag);
    869       1.60      fvdl 		}
    870        1.1   mycroft 		/*
    871       1.60      fvdl 		 * Find a cylinder with greater than average number of
    872       1.60      fvdl 		 * unused data blocks.
    873        1.1   mycroft 		 */
    874       1.60      fvdl 		if (indx == 0 || bap[indx - 1] == 0)
    875       1.60      fvdl 			startcg =
    876       1.60      fvdl 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    877       1.60      fvdl 		else
    878       1.60      fvdl 			startcg = dtog(fs,
    879       1.60      fvdl 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
    880       1.60      fvdl 		startcg %= fs->fs_ncg;
    881       1.60      fvdl 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    882       1.60      fvdl 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    883       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    884      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    885       1.60      fvdl 			}
    886       1.60      fvdl 		for (cg = 0; cg < startcg; cg++)
    887       1.60      fvdl 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    888      1.110    simonb 				return (cgbase(fs, cg) + fs->fs_frag);
    889       1.60      fvdl 			}
    890       1.60      fvdl 		return (0);
    891       1.60      fvdl 	}
    892       1.60      fvdl 	/*
    893       1.60      fvdl 	 * We just always try to lay things out contiguously.
    894       1.60      fvdl 	 */
    895       1.60      fvdl 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
    896        1.1   mycroft }
    897        1.1   mycroft 
    898       1.60      fvdl 
    899        1.1   mycroft /*
    900        1.1   mycroft  * Implement the cylinder overflow algorithm.
    901        1.1   mycroft  *
    902        1.1   mycroft  * The policy implemented by this algorithm is:
    903        1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    904        1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    905        1.1   mycroft  *   3) brute force search for a free block.
    906      1.106     pooka  *
    907      1.106     pooka  * => called with um_lock held
    908      1.106     pooka  * => returns with um_lock released on success, held on failure
    909      1.106     pooka  *    (*allocator releases lock on success, retains lock on failure)
    910        1.1   mycroft  */
    911        1.1   mycroft /*VARARGS5*/
    912       1.58      fvdl static daddr_t
    913  1.171.4.1    martin ffs_hashalloc(struct inode *ip, u_int cg, daddr_t pref,
    914       1.85   thorpej     int size /* size for data blocks, mode for inodes */,
    915      1.152  jdolecek     int realsize,
    916      1.152  jdolecek     int flags,
    917  1.171.4.1    martin     daddr_t (*allocator)(struct inode *, u_int, daddr_t, int, int, int))
    918        1.1   mycroft {
    919       1.33  augustss 	struct fs *fs;
    920       1.58      fvdl 	daddr_t result;
    921  1.171.4.1    martin 	u_int i, icg = cg;
    922        1.1   mycroft 
    923        1.1   mycroft 	fs = ip->i_fs;
    924        1.1   mycroft 	/*
    925        1.1   mycroft 	 * 1: preferred cylinder group
    926        1.1   mycroft 	 */
    927      1.152  jdolecek 	result = (*allocator)(ip, cg, pref, size, realsize, flags);
    928        1.1   mycroft 	if (result)
    929        1.1   mycroft 		return (result);
    930      1.111    simonb 
    931      1.111    simonb 	if (flags & B_CONTIG)
    932      1.111    simonb 		return (result);
    933        1.1   mycroft 	/*
    934        1.1   mycroft 	 * 2: quadratic rehash
    935        1.1   mycroft 	 */
    936        1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    937        1.1   mycroft 		cg += i;
    938        1.1   mycroft 		if (cg >= fs->fs_ncg)
    939        1.1   mycroft 			cg -= fs->fs_ncg;
    940      1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    941        1.1   mycroft 		if (result)
    942        1.1   mycroft 			return (result);
    943        1.1   mycroft 	}
    944        1.1   mycroft 	/*
    945        1.1   mycroft 	 * 3: brute force search
    946        1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    947        1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    948        1.1   mycroft 	 */
    949        1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    950        1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    951      1.152  jdolecek 		result = (*allocator)(ip, cg, 0, size, realsize, flags);
    952        1.1   mycroft 		if (result)
    953        1.1   mycroft 			return (result);
    954        1.1   mycroft 		cg++;
    955        1.1   mycroft 		if (cg == fs->fs_ncg)
    956        1.1   mycroft 			cg = 0;
    957        1.1   mycroft 	}
    958       1.35   thorpej 	return (0);
    959        1.1   mycroft }
    960        1.1   mycroft 
    961        1.1   mycroft /*
    962        1.1   mycroft  * Determine whether a fragment can be extended.
    963        1.1   mycroft  *
    964       1.81     perry  * Check to see if the necessary fragments are available, and
    965        1.1   mycroft  * if they are, allocate them.
    966      1.106     pooka  *
    967      1.106     pooka  * => called with um_lock held
    968      1.106     pooka  * => returns with um_lock released on success, held on failure
    969        1.1   mycroft  */
    970       1.58      fvdl static daddr_t
    971  1.171.4.1    martin ffs_fragextend(struct inode *ip, u_int cg, daddr_t bprev, int osize, int nsize)
    972        1.1   mycroft {
    973      1.101        ad 	struct ufsmount *ump;
    974       1.33  augustss 	struct fs *fs;
    975       1.33  augustss 	struct cg *cgp;
    976        1.1   mycroft 	struct buf *bp;
    977       1.58      fvdl 	daddr_t bno;
    978        1.1   mycroft 	int frags, bbase;
    979        1.1   mycroft 	int i, error;
    980       1.62      fvdl 	u_int8_t *blksfree;
    981        1.1   mycroft 
    982        1.1   mycroft 	fs = ip->i_fs;
    983      1.101        ad 	ump = ip->i_ump;
    984      1.101        ad 
    985      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
    986      1.101        ad 
    987      1.137  dholland 	if (fs->fs_cs(fs, cg).cs_nffree < ffs_numfrags(fs, nsize - osize))
    988       1.35   thorpej 		return (0);
    989      1.137  dholland 	frags = ffs_numfrags(fs, nsize);
    990      1.138  dholland 	bbase = ffs_fragnum(fs, bprev);
    991      1.138  dholland 	if (bbase > ffs_fragnum(fs, (bprev + frags - 1))) {
    992        1.1   mycroft 		/* cannot extend across a block boundary */
    993       1.35   thorpej 		return (0);
    994        1.1   mycroft 	}
    995      1.101        ad 	mutex_exit(&ump->um_lock);
    996      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
    997      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
    998      1.101        ad 	if (error)
    999      1.101        ad 		goto fail;
   1000        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1001      1.101        ad 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
   1002      1.101        ad 		goto fail;
   1003       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
   1004       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1005       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1006       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
   1007        1.1   mycroft 	bno = dtogd(fs, bprev);
   1008       1.62      fvdl 	blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
   1009      1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++)
   1010      1.101        ad 		if (isclr(blksfree, bno + i))
   1011      1.101        ad 			goto fail;
   1012        1.1   mycroft 	/*
   1013        1.1   mycroft 	 * the current fragment can be extended
   1014        1.1   mycroft 	 * deduct the count on fragment being extended into
   1015        1.1   mycroft 	 * increase the count on the remaining fragment (if any)
   1016        1.1   mycroft 	 * allocate the extended piece
   1017        1.1   mycroft 	 */
   1018        1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
   1019       1.62      fvdl 		if (isclr(blksfree, bno + i))
   1020        1.1   mycroft 			break;
   1021      1.137  dholland 	ufs_add32(cgp->cg_frsum[i - ffs_numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
   1022        1.1   mycroft 	if (i != frags)
   1023       1.30      fvdl 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
   1024      1.101        ad 	mutex_enter(&ump->um_lock);
   1025      1.137  dholland 	for (i = ffs_numfrags(fs, osize); i < frags; i++) {
   1026       1.62      fvdl 		clrbit(blksfree, bno + i);
   1027       1.30      fvdl 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
   1028        1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
   1029        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
   1030        1.1   mycroft 	}
   1031        1.1   mycroft 	fs->fs_fmod = 1;
   1032      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1033      1.101        ad 	mutex_exit(&ump->um_lock);
   1034        1.1   mycroft 	bdwrite(bp);
   1035        1.1   mycroft 	return (bprev);
   1036      1.101        ad 
   1037      1.101        ad  fail:
   1038      1.132   hannken  	if (bp != NULL)
   1039      1.132   hannken 		brelse(bp, 0);
   1040      1.101        ad  	mutex_enter(&ump->um_lock);
   1041      1.101        ad  	return (0);
   1042        1.1   mycroft }
   1043        1.1   mycroft 
   1044        1.1   mycroft /*
   1045        1.1   mycroft  * Determine whether a block can be allocated.
   1046        1.1   mycroft  *
   1047        1.1   mycroft  * Check to see if a block of the appropriate size is available,
   1048        1.1   mycroft  * and if it is, allocate it.
   1049        1.1   mycroft  */
   1050       1.58      fvdl static daddr_t
   1051  1.171.4.1    martin ffs_alloccg(struct inode *ip, u_int cg, daddr_t bpref, int size, int realsize,
   1052      1.152  jdolecek     int flags)
   1053        1.1   mycroft {
   1054      1.101        ad 	struct ufsmount *ump;
   1055       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1056       1.30      fvdl 	struct cg *cgp;
   1057        1.1   mycroft 	struct buf *bp;
   1058       1.60      fvdl 	int32_t bno;
   1059       1.60      fvdl 	daddr_t blkno;
   1060       1.30      fvdl 	int error, frags, allocsiz, i;
   1061       1.62      fvdl 	u_int8_t *blksfree;
   1062       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1063        1.1   mycroft 
   1064      1.101        ad 	ump = ip->i_ump;
   1065      1.101        ad 
   1066      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1067      1.101        ad 
   1068        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
   1069       1.35   thorpej 		return (0);
   1070      1.101        ad 	mutex_exit(&ump->um_lock);
   1071      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1072      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1073      1.101        ad 	if (error)
   1074      1.101        ad 		goto fail;
   1075        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1076       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
   1077      1.101        ad 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
   1078      1.101        ad 		goto fail;
   1079       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1080       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1081       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1082       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1083        1.1   mycroft 	if (size == fs->fs_bsize) {
   1084      1.101        ad 		mutex_enter(&ump->um_lock);
   1085      1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1086       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1087      1.101        ad 		mutex_exit(&ump->um_lock);
   1088      1.152  jdolecek 
   1089      1.152  jdolecek 		/*
   1090      1.152  jdolecek 		 * If actually needed size is lower, free the extra blocks now.
   1091      1.152  jdolecek 		 * This is safe to call here, there is no outside reference
   1092      1.152  jdolecek 		 * to this block yet. It is not necessary to keep um_lock
   1093      1.152  jdolecek 		 * locked.
   1094      1.152  jdolecek 		 */
   1095      1.152  jdolecek 		if (realsize != 0 && realsize < size) {
   1096      1.152  jdolecek 			ffs_blkfree_common(ip->i_ump, ip->i_fs,
   1097      1.152  jdolecek 			    ip->i_devvp->v_rdev,
   1098      1.152  jdolecek 			    bp, blkno + ffs_numfrags(fs, realsize),
   1099      1.152  jdolecek 			    (long)(size - realsize), false);
   1100      1.152  jdolecek 		}
   1101      1.152  jdolecek 
   1102        1.1   mycroft 		bdwrite(bp);
   1103       1.60      fvdl 		return (blkno);
   1104        1.1   mycroft 	}
   1105        1.1   mycroft 	/*
   1106        1.1   mycroft 	 * check to see if any fragments are already available
   1107        1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
   1108        1.1   mycroft 	 * it down to a smaller size if necessary
   1109        1.1   mycroft 	 */
   1110       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1111      1.137  dholland 	frags = ffs_numfrags(fs, size);
   1112        1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
   1113        1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
   1114        1.1   mycroft 			break;
   1115        1.1   mycroft 	if (allocsiz == fs->fs_frag) {
   1116        1.1   mycroft 		/*
   1117       1.81     perry 		 * no fragments were available, so a block will be
   1118        1.1   mycroft 		 * allocated, and hacked up
   1119        1.1   mycroft 		 */
   1120      1.101        ad 		if (cgp->cg_cs.cs_nbfree == 0)
   1121      1.101        ad 			goto fail;
   1122      1.101        ad 		mutex_enter(&ump->um_lock);
   1123      1.152  jdolecek 		blkno = ffs_alloccgblk(ip, bp, bpref, realsize, flags);
   1124       1.60      fvdl 		bno = dtogd(fs, blkno);
   1125        1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
   1126       1.62      fvdl 			setbit(blksfree, bno + i);
   1127        1.1   mycroft 		i = fs->fs_frag - frags;
   1128       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1129        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1130       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1131        1.1   mycroft 		fs->fs_fmod = 1;
   1132       1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
   1133       1.76   hannken 		ACTIVECG_CLR(fs, cg);
   1134      1.101        ad 		mutex_exit(&ump->um_lock);
   1135        1.1   mycroft 		bdwrite(bp);
   1136       1.60      fvdl 		return (blkno);
   1137        1.1   mycroft 	}
   1138       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
   1139       1.30      fvdl #if 0
   1140       1.30      fvdl 	/*
   1141       1.30      fvdl 	 * XXX fvdl mapsearch will panic, and never return -1
   1142       1.58      fvdl 	 *          also: returning NULL as daddr_t ?
   1143       1.30      fvdl 	 */
   1144      1.101        ad 	if (bno < 0)
   1145      1.101        ad 		goto fail;
   1146       1.30      fvdl #endif
   1147        1.1   mycroft 	for (i = 0; i < frags; i++)
   1148       1.62      fvdl 		clrbit(blksfree, bno + i);
   1149      1.101        ad 	mutex_enter(&ump->um_lock);
   1150       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
   1151        1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
   1152        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
   1153        1.1   mycroft 	fs->fs_fmod = 1;
   1154       1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
   1155        1.1   mycroft 	if (frags != allocsiz)
   1156       1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
   1157      1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1158      1.101        ad 	ACTIVECG_CLR(fs, cg);
   1159      1.101        ad 	mutex_exit(&ump->um_lock);
   1160        1.1   mycroft 	bdwrite(bp);
   1161       1.30      fvdl 	return blkno;
   1162      1.101        ad 
   1163      1.101        ad  fail:
   1164      1.132   hannken  	if (bp != NULL)
   1165      1.132   hannken 		brelse(bp, 0);
   1166      1.101        ad  	mutex_enter(&ump->um_lock);
   1167      1.101        ad  	return (0);
   1168        1.1   mycroft }
   1169        1.1   mycroft 
   1170        1.1   mycroft /*
   1171        1.1   mycroft  * Allocate a block in a cylinder group.
   1172        1.1   mycroft  *
   1173        1.1   mycroft  * This algorithm implements the following policy:
   1174        1.1   mycroft  *   1) allocate the requested block.
   1175        1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
   1176        1.1   mycroft  *   3) allocate the next available block on the block rotor for the
   1177        1.1   mycroft  *      specified cylinder group.
   1178        1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
   1179        1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
   1180        1.1   mycroft  */
   1181       1.58      fvdl static daddr_t
   1182      1.152  jdolecek ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int realsize,
   1183      1.152  jdolecek     int flags)
   1184        1.1   mycroft {
   1185       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1186       1.30      fvdl 	struct cg *cgp;
   1187      1.123  sborrill 	int cg;
   1188       1.60      fvdl 	daddr_t blkno;
   1189       1.60      fvdl 	int32_t bno;
   1190       1.60      fvdl 	u_int8_t *blksfree;
   1191       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1192        1.1   mycroft 
   1193      1.141    martin 	KASSERT(mutex_owned(&ip->i_ump->um_lock));
   1194      1.101        ad 
   1195       1.30      fvdl 	cgp = (struct cg *)bp->b_data;
   1196       1.60      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1197       1.30      fvdl 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
   1198       1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
   1199       1.60      fvdl 	} else {
   1200      1.138  dholland 		bpref = ffs_blknum(fs, bpref);
   1201       1.60      fvdl 		bno = dtogd(fs, bpref);
   1202        1.1   mycroft 		/*
   1203       1.60      fvdl 		 * if the requested block is available, use it
   1204        1.1   mycroft 		 */
   1205      1.138  dholland 		if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
   1206       1.60      fvdl 			goto gotit;
   1207      1.111    simonb 		/*
   1208      1.111    simonb 		 * if the requested data block isn't available and we are
   1209      1.111    simonb 		 * trying to allocate a contiguous file, return an error.
   1210      1.111    simonb 		 */
   1211      1.111    simonb 		if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
   1212      1.111    simonb 			return (0);
   1213        1.1   mycroft 	}
   1214      1.111    simonb 
   1215        1.1   mycroft 	/*
   1216       1.60      fvdl 	 * Take the next available block in this cylinder group.
   1217        1.1   mycroft 	 */
   1218       1.30      fvdl 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
   1219      1.152  jdolecek #if 0
   1220      1.152  jdolecek 	/*
   1221      1.152  jdolecek 	 * XXX jdolecek ffs_mapsearch() succeeds or panics
   1222      1.152  jdolecek 	 */
   1223        1.1   mycroft 	if (bno < 0)
   1224       1.35   thorpej 		return (0);
   1225      1.152  jdolecek #endif
   1226       1.60      fvdl 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1227        1.1   mycroft gotit:
   1228      1.138  dholland 	blkno = ffs_fragstoblks(fs, bno);
   1229       1.60      fvdl 	ffs_clrblock(fs, blksfree, blkno);
   1230       1.30      fvdl 	ffs_clusteracct(fs, cgp, blkno, -1);
   1231       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1232        1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1233       1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1234       1.73       dbj 	if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1235       1.73       dbj 	    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1236       1.73       dbj 		int cylno;
   1237       1.73       dbj 		cylno = old_cbtocylno(fs, bno);
   1238       1.75       dbj 		KASSERT(cylno >= 0);
   1239       1.75       dbj 		KASSERT(cylno < fs->fs_old_ncyl);
   1240       1.75       dbj 		KASSERT(old_cbtorpos(fs, bno) >= 0);
   1241       1.75       dbj 		KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
   1242       1.73       dbj 		ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
   1243       1.73       dbj 		    needswap);
   1244       1.73       dbj 		ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1245       1.73       dbj 	}
   1246        1.1   mycroft 	fs->fs_fmod = 1;
   1247      1.123  sborrill 	cg = ufs_rw32(cgp->cg_cgx, needswap);
   1248      1.123  sborrill 	blkno = cgbase(fs, cg) + bno;
   1249       1.30      fvdl 	return (blkno);
   1250        1.1   mycroft }
   1251        1.1   mycroft 
   1252        1.1   mycroft /*
   1253        1.1   mycroft  * Determine whether an inode can be allocated.
   1254        1.1   mycroft  *
   1255        1.1   mycroft  * Check to see if an inode is available, and if it is,
   1256        1.1   mycroft  * allocate it using the following policy:
   1257        1.1   mycroft  *   1) allocate the requested inode.
   1258        1.1   mycroft  *   2) allocate the next available inode after the requested
   1259        1.1   mycroft  *      inode in the specified cylinder group.
   1260        1.1   mycroft  */
   1261       1.58      fvdl static daddr_t
   1262  1.171.4.1    martin ffs_nodealloccg(struct inode *ip, u_int cg, daddr_t ipref, int mode, int realsize,
   1263      1.152  jdolecek     int flags)
   1264        1.1   mycroft {
   1265      1.101        ad 	struct ufsmount *ump = ip->i_ump;
   1266       1.62      fvdl 	struct fs *fs = ip->i_fs;
   1267       1.33  augustss 	struct cg *cgp;
   1268       1.60      fvdl 	struct buf *bp, *ibp;
   1269       1.60      fvdl 	u_int8_t *inosused;
   1270        1.1   mycroft 	int error, start, len, loc, map, i;
   1271      1.164    kardel 	int32_t initediblk, maxiblk, irotor;
   1272      1.112   hannken 	daddr_t nalloc;
   1273       1.60      fvdl 	struct ufs2_dinode *dp2;
   1274       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   1275        1.1   mycroft 
   1276      1.101        ad 	KASSERT(mutex_owned(&ump->um_lock));
   1277      1.111    simonb 	UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
   1278      1.101        ad 
   1279        1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1280       1.35   thorpej 		return (0);
   1281      1.101        ad 	mutex_exit(&ump->um_lock);
   1282      1.112   hannken 	ibp = NULL;
   1283      1.164    kardel 	if (fs->fs_magic == FS_UFS2_MAGIC) {
   1284      1.164    kardel 		initediblk = -1;
   1285      1.164    kardel 	} else {
   1286      1.164    kardel 		initediblk = fs->fs_ipg;
   1287      1.164    kardel 	}
   1288      1.164    kardel 	maxiblk = initediblk;
   1289      1.164    kardel 
   1290      1.112   hannken retry:
   1291      1.136  dholland 	error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1292      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1293      1.101        ad 	if (error)
   1294      1.101        ad 		goto fail;
   1295        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1296      1.101        ad 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
   1297      1.101        ad 		goto fail;
   1298      1.112   hannken 
   1299      1.112   hannken 	if (ibp != NULL &&
   1300      1.112   hannken 	    initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
   1301      1.112   hannken 		/* Another thread allocated more inodes so we retry the test. */
   1302      1.121        ad 		brelse(ibp, 0);
   1303      1.112   hannken 		ibp = NULL;
   1304      1.112   hannken 	}
   1305      1.112   hannken 	/*
   1306      1.112   hannken 	 * Check to see if we need to initialize more inodes.
   1307      1.112   hannken 	 */
   1308      1.112   hannken 	if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
   1309      1.164    kardel 	        initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
   1310      1.164    kardel 		maxiblk = initediblk;
   1311      1.112   hannken 		nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
   1312      1.134  dholland 		if (nalloc + FFS_INOPB(fs) > initediblk &&
   1313      1.112   hannken 		    initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
   1314      1.112   hannken 			/*
   1315      1.112   hannken 			 * We have to release the cg buffer here to prevent
   1316      1.112   hannken 			 * a deadlock when reading the inode block will
   1317      1.112   hannken 			 * run a copy-on-write that might use this cg.
   1318      1.112   hannken 			 */
   1319      1.112   hannken 			brelse(bp, 0);
   1320      1.112   hannken 			bp = NULL;
   1321      1.136  dholland 			error = ffs_getblk(ip->i_devvp, FFS_FSBTODB(fs,
   1322      1.112   hannken 			    ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
   1323      1.112   hannken 			    FFS_NOBLK, fs->fs_bsize, false, &ibp);
   1324      1.112   hannken 			if (error)
   1325      1.112   hannken 				goto fail;
   1326      1.164    kardel 
   1327      1.164    kardel 			maxiblk += FFS_INOPB(fs);
   1328      1.164    kardel 
   1329      1.112   hannken 			goto retry;
   1330      1.112   hannken 		}
   1331      1.112   hannken 	}
   1332      1.112   hannken 
   1333       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1334       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1335       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1336       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1337       1.60      fvdl 	inosused = cg_inosused(cgp, needswap);
   1338      1.164    kardel 
   1339        1.1   mycroft 	if (ipref) {
   1340        1.1   mycroft 		ipref %= fs->fs_ipg;
   1341      1.164    kardel 		/* safeguard to stay in (to be) allocated range */
   1342      1.164    kardel 		if (ipref < maxiblk && isclr(inosused, ipref))
   1343        1.1   mycroft 			goto gotit;
   1344        1.1   mycroft 	}
   1345      1.164    kardel 
   1346      1.164    kardel 	irotor = ufs_rw32(cgp->cg_irotor, needswap);
   1347      1.164    kardel 
   1348      1.164    kardel 	KASSERTMSG(irotor < initediblk, "%s: allocation botch: cg=%d, irotor %d"
   1349      1.164    kardel 		   " out of bounds, initediblk=%d",
   1350      1.164    kardel 		   __func__, cg, irotor, initediblk);
   1351      1.164    kardel 
   1352      1.164    kardel 	start = irotor / NBBY;
   1353      1.164    kardel 	len = howmany(maxiblk - irotor, NBBY);
   1354       1.60      fvdl 	loc = skpc(0xff, len, &inosused[start]);
   1355        1.1   mycroft 	if (loc == 0) {
   1356        1.1   mycroft 		len = start + 1;
   1357        1.1   mycroft 		start = 0;
   1358       1.60      fvdl 		loc = skpc(0xff, len, &inosused[0]);
   1359        1.1   mycroft 		if (loc == 0) {
   1360      1.154  christos 			panic("%s: map corrupted: cg=%d, irotor=%d, fs=%s",
   1361      1.154  christos 			    __func__, cg, ufs_rw32(cgp->cg_irotor, needswap),
   1362      1.154  christos 			    fs->fs_fsmnt);
   1363        1.1   mycroft 			/* NOTREACHED */
   1364        1.1   mycroft 		}
   1365        1.1   mycroft 	}
   1366        1.1   mycroft 	i = start + len - loc;
   1367      1.126     rmind 	map = inosused[i] ^ 0xff;
   1368      1.126     rmind 	if (map == 0) {
   1369      1.154  christos 		panic("%s: block not in map: fs=%s", __func__, fs->fs_fsmnt);
   1370        1.1   mycroft 	}
   1371      1.164    kardel 
   1372      1.126     rmind 	ipref = i * NBBY + ffs(map) - 1;
   1373      1.164    kardel 
   1374      1.126     rmind 	cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1375      1.164    kardel 
   1376        1.1   mycroft gotit:
   1377      1.164    kardel 	KASSERTMSG(ipref < maxiblk, "%s: allocation botch: cg=%d attempt to "
   1378      1.164    kardel 		   "allocate inode index %d beyond max allocated index %d"
   1379      1.164    kardel 		   " of %d inodes/cg",
   1380      1.164    kardel 		   __func__, cg, (int)ipref, maxiblk, cgp->cg_niblk);
   1381      1.164    kardel 
   1382      1.111    simonb 	UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
   1383      1.111    simonb 	    mode);
   1384       1.60      fvdl 	/*
   1385       1.60      fvdl 	 * Check to see if we need to initialize more inodes.
   1386       1.60      fvdl 	 */
   1387      1.112   hannken 	if (ibp != NULL) {
   1388      1.112   hannken 		KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
   1389      1.108   hannken 		memset(ibp->b_data, 0, fs->fs_bsize);
   1390      1.108   hannken 		dp2 = (struct ufs2_dinode *)(ibp->b_data);
   1391      1.134  dholland 		for (i = 0; i < FFS_INOPB(fs); i++) {
   1392       1.60      fvdl 			/*
   1393       1.60      fvdl 			 * Don't bother to swap, it's supposed to be
   1394       1.60      fvdl 			 * random, after all.
   1395       1.60      fvdl 			 */
   1396      1.130       tls 			dp2->di_gen = (cprng_fast32() & INT32_MAX) / 2 + 1;
   1397       1.60      fvdl 			dp2++;
   1398       1.60      fvdl 		}
   1399      1.134  dholland 		initediblk += FFS_INOPB(fs);
   1400       1.60      fvdl 		cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
   1401       1.60      fvdl 	}
   1402       1.60      fvdl 
   1403      1.101        ad 	mutex_enter(&ump->um_lock);
   1404       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1405      1.101        ad 	setbit(inosused, ipref);
   1406      1.101        ad 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1407      1.101        ad 	fs->fs_cstotal.cs_nifree--;
   1408      1.101        ad 	fs->fs_cs(fs, cg).cs_nifree--;
   1409      1.101        ad 	fs->fs_fmod = 1;
   1410      1.101        ad 	if ((mode & IFMT) == IFDIR) {
   1411      1.101        ad 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1412      1.101        ad 		fs->fs_cstotal.cs_ndir++;
   1413      1.101        ad 		fs->fs_cs(fs, cg).cs_ndir++;
   1414      1.101        ad 	}
   1415      1.101        ad 	mutex_exit(&ump->um_lock);
   1416      1.112   hannken 	if (ibp != NULL) {
   1417      1.157   hannken 		bwrite(ibp);
   1418      1.112   hannken 		bwrite(bp);
   1419      1.112   hannken 	} else
   1420      1.112   hannken 		bdwrite(bp);
   1421  1.171.4.1    martin 	return ((ino_t)(cg * fs->fs_ipg + ipref));
   1422      1.101        ad  fail:
   1423      1.112   hannken 	if (bp != NULL)
   1424      1.112   hannken 		brelse(bp, 0);
   1425      1.112   hannken 	if (ibp != NULL)
   1426      1.121        ad 		brelse(ibp, 0);
   1427      1.101        ad 	mutex_enter(&ump->um_lock);
   1428      1.101        ad 	return (0);
   1429        1.1   mycroft }
   1430        1.1   mycroft 
   1431        1.1   mycroft /*
   1432      1.111    simonb  * Allocate a block or fragment.
   1433      1.111    simonb  *
   1434      1.111    simonb  * The specified block or fragment is removed from the
   1435      1.111    simonb  * free map, possibly fragmenting a block in the process.
   1436      1.111    simonb  *
   1437      1.111    simonb  * This implementation should mirror fs_blkfree
   1438      1.111    simonb  *
   1439      1.111    simonb  * => um_lock not held on entry or exit
   1440      1.111    simonb  */
   1441      1.111    simonb int
   1442      1.111    simonb ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
   1443      1.111    simonb {
   1444      1.116     joerg 	int error;
   1445      1.111    simonb 
   1446      1.116     joerg 	error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
   1447      1.116     joerg 	    ip->i_dev, ip->i_uid);
   1448      1.116     joerg 	if (error)
   1449      1.116     joerg 		return error;
   1450      1.115     joerg 
   1451      1.115     joerg 	return ffs_blkalloc_ump(ip->i_ump, bno, size);
   1452      1.115     joerg }
   1453      1.115     joerg 
   1454      1.115     joerg int
   1455      1.115     joerg ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
   1456      1.115     joerg {
   1457      1.115     joerg 	struct fs *fs = ump->um_fs;
   1458      1.115     joerg 	struct cg *cgp;
   1459      1.115     joerg 	struct buf *bp;
   1460      1.115     joerg 	int32_t fragno, cgbno;
   1461  1.171.4.1    martin 	int i, error, blk, frags, bbase;
   1462  1.171.4.1    martin 	u_int cg;
   1463      1.115     joerg 	u_int8_t *blksfree;
   1464      1.115     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1465      1.115     joerg 
   1466      1.134  dholland 	KASSERT((u_int)size <= fs->fs_bsize && ffs_fragoff(fs, size) == 0 &&
   1467      1.138  dholland 	    ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) <= fs->fs_frag);
   1468      1.115     joerg 	KASSERT(bno < fs->fs_size);
   1469      1.115     joerg 
   1470      1.115     joerg 	cg = dtog(fs, bno);
   1471      1.136  dholland 	error = bread(ump->um_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
   1472      1.149      maxv 		(int)fs->fs_cgsize, B_MODIFY, &bp);
   1473      1.111    simonb 	if (error) {
   1474      1.111    simonb 		return error;
   1475      1.111    simonb 	}
   1476      1.111    simonb 	cgp = (struct cg *)bp->b_data;
   1477      1.111    simonb 	if (!cg_chkmagic(cgp, needswap)) {
   1478      1.111    simonb 		brelse(bp, 0);
   1479      1.111    simonb 		return EIO;
   1480      1.111    simonb 	}
   1481      1.111    simonb 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1482      1.111    simonb 	cgp->cg_time = ufs_rw64(time_second, needswap);
   1483      1.111    simonb 	cgbno = dtogd(fs, bno);
   1484      1.111    simonb 	blksfree = cg_blksfree(cgp, needswap);
   1485      1.111    simonb 
   1486      1.111    simonb 	mutex_enter(&ump->um_lock);
   1487      1.111    simonb 	if (size == fs->fs_bsize) {
   1488      1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1489      1.111    simonb 		if (!ffs_isblock(fs, blksfree, fragno)) {
   1490      1.111    simonb 			mutex_exit(&ump->um_lock);
   1491      1.111    simonb 			brelse(bp, 0);
   1492      1.111    simonb 			return EBUSY;
   1493      1.111    simonb 		}
   1494      1.111    simonb 		ffs_clrblock(fs, blksfree, fragno);
   1495      1.111    simonb 		ffs_clusteracct(fs, cgp, fragno, -1);
   1496      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1497      1.111    simonb 		fs->fs_cstotal.cs_nbfree--;
   1498      1.111    simonb 		fs->fs_cs(fs, cg).cs_nbfree--;
   1499      1.111    simonb 	} else {
   1500      1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1501      1.111    simonb 
   1502      1.137  dholland 		frags = ffs_numfrags(fs, size);
   1503      1.111    simonb 		for (i = 0; i < frags; i++) {
   1504      1.111    simonb 			if (isclr(blksfree, cgbno + i)) {
   1505      1.111    simonb 				mutex_exit(&ump->um_lock);
   1506      1.111    simonb 				brelse(bp, 0);
   1507      1.111    simonb 				return EBUSY;
   1508      1.111    simonb 			}
   1509      1.111    simonb 		}
   1510      1.111    simonb 		/*
   1511      1.111    simonb 		 * if a complete block is being split, account for it
   1512      1.111    simonb 		 */
   1513      1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1514      1.111    simonb 		if (ffs_isblock(fs, blksfree, fragno)) {
   1515      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
   1516      1.111    simonb 			fs->fs_cstotal.cs_nffree += fs->fs_frag;
   1517      1.111    simonb 			fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
   1518      1.111    simonb 			ffs_clusteracct(fs, cgp, fragno, -1);
   1519      1.111    simonb 			ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1520      1.111    simonb 			fs->fs_cstotal.cs_nbfree--;
   1521      1.111    simonb 			fs->fs_cs(fs, cg).cs_nbfree--;
   1522      1.111    simonb 		}
   1523      1.111    simonb 		/*
   1524      1.111    simonb 		 * decrement the counts associated with the old frags
   1525      1.111    simonb 		 */
   1526      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1527      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1528      1.111    simonb 		/*
   1529      1.111    simonb 		 * allocate the fragment
   1530      1.111    simonb 		 */
   1531      1.111    simonb 		for (i = 0; i < frags; i++) {
   1532      1.111    simonb 			clrbit(blksfree, cgbno + i);
   1533      1.111    simonb 		}
   1534      1.111    simonb 		ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
   1535      1.111    simonb 		fs->fs_cstotal.cs_nffree -= i;
   1536      1.111    simonb 		fs->fs_cs(fs, cg).cs_nffree -= i;
   1537      1.111    simonb 		/*
   1538      1.111    simonb 		 * add back in counts associated with the new frags
   1539      1.111    simonb 		 */
   1540      1.111    simonb 		blk = blkmap(fs, blksfree, bbase);
   1541      1.111    simonb 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1542      1.111    simonb 	}
   1543      1.111    simonb 	fs->fs_fmod = 1;
   1544      1.111    simonb 	ACTIVECG_CLR(fs, cg);
   1545      1.111    simonb 	mutex_exit(&ump->um_lock);
   1546      1.111    simonb 	bdwrite(bp);
   1547      1.111    simonb 	return 0;
   1548      1.111    simonb }
   1549      1.111    simonb 
   1550      1.111    simonb /*
   1551        1.1   mycroft  * Free a block or fragment.
   1552        1.1   mycroft  *
   1553        1.1   mycroft  * The specified block or fragment is placed back in the
   1554       1.81     perry  * free map. If a fragment is deallocated, a possible
   1555        1.1   mycroft  * block reassembly is checked.
   1556      1.106     pooka  *
   1557      1.106     pooka  * => um_lock not held on entry or exit
   1558        1.1   mycroft  */
   1559      1.131  drochner static void
   1560      1.131  drochner ffs_blkfree_cg(struct fs *fs, struct vnode *devvp, daddr_t bno, long size)
   1561        1.1   mycroft {
   1562       1.33  augustss 	struct cg *cgp;
   1563        1.1   mycroft 	struct buf *bp;
   1564       1.76   hannken 	struct ufsmount *ump;
   1565       1.76   hannken 	daddr_t cgblkno;
   1566  1.171.4.1    martin 	int error;
   1567  1.171.4.1    martin 	u_int cg;
   1568       1.76   hannken 	dev_t dev;
   1569      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1570      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1571        1.1   mycroft 
   1572      1.116     joerg 	KASSERT(!devvp_is_snapshot);
   1573      1.116     joerg 
   1574       1.76   hannken 	cg = dtog(fs, bno);
   1575      1.116     joerg 	dev = devvp->v_rdev;
   1576      1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1577      1.119     joerg 	KASSERT(fs == ump->um_fs);
   1578      1.136  dholland 	cgblkno = FFS_FSBTODB(fs, cgtod(fs, cg));
   1579      1.116     joerg 
   1580      1.116     joerg 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1581      1.149      maxv 	    B_MODIFY, &bp);
   1582      1.116     joerg 	if (error) {
   1583      1.116     joerg 		return;
   1584       1.76   hannken 	}
   1585      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1586      1.116     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   1587      1.116     joerg 		brelse(bp, 0);
   1588      1.116     joerg 		return;
   1589        1.1   mycroft 	}
   1590       1.76   hannken 
   1591      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1592      1.119     joerg 
   1593      1.119     joerg 	bdwrite(bp);
   1594      1.116     joerg }
   1595      1.116     joerg 
   1596      1.131  drochner struct discardopdata {
   1597      1.131  drochner 	struct work wk; /* must be first */
   1598      1.131  drochner 	struct vnode *devvp;
   1599      1.131  drochner 	daddr_t bno;
   1600      1.131  drochner 	long size;
   1601      1.131  drochner };
   1602      1.131  drochner 
   1603      1.131  drochner struct discarddata {
   1604      1.131  drochner 	struct fs *fs;
   1605      1.131  drochner 	struct discardopdata *entry;
   1606      1.131  drochner 	long maxsize;
   1607      1.131  drochner 	kmutex_t entrylk;
   1608      1.131  drochner 	struct workqueue *wq;
   1609      1.131  drochner 	int wqcnt, wqdraining;
   1610      1.131  drochner 	kmutex_t wqlk;
   1611      1.131  drochner 	kcondvar_t wqcv;
   1612      1.131  drochner 	/* timer for flush? */
   1613      1.131  drochner };
   1614      1.131  drochner 
   1615      1.131  drochner static void
   1616      1.131  drochner ffs_blkfree_td(struct fs *fs, struct discardopdata *td)
   1617      1.131  drochner {
   1618      1.151  riastrad 	struct mount *mp = spec_node_getmountedfs(td->devvp);
   1619      1.131  drochner 	long todo;
   1620      1.151  riastrad 	int error;
   1621      1.131  drochner 
   1622      1.131  drochner 	while (td->size) {
   1623      1.161  riastrad 		todo = uimin(td->size,
   1624      1.138  dholland 		  ffs_lfragtosize(fs, (fs->fs_frag - ffs_fragnum(fs, td->bno))));
   1625      1.151  riastrad 		error = UFS_WAPBL_BEGIN(mp);
   1626      1.151  riastrad 		if (error) {
   1627      1.151  riastrad 			printf("ffs: failed to begin wapbl transaction"
   1628      1.151  riastrad 			    " for discard: %d\n", error);
   1629      1.151  riastrad 			break;
   1630      1.151  riastrad 		}
   1631      1.131  drochner 		ffs_blkfree_cg(fs, td->devvp, td->bno, todo);
   1632      1.151  riastrad 		UFS_WAPBL_END(mp);
   1633      1.137  dholland 		td->bno += ffs_numfrags(fs, todo);
   1634      1.131  drochner 		td->size -= todo;
   1635      1.131  drochner 	}
   1636      1.131  drochner }
   1637      1.131  drochner 
   1638      1.131  drochner static void
   1639      1.131  drochner ffs_discardcb(struct work *wk, void *arg)
   1640      1.131  drochner {
   1641      1.131  drochner 	struct discardopdata *td = (void *)wk;
   1642      1.131  drochner 	struct discarddata *ts = arg;
   1643      1.131  drochner 	struct fs *fs = ts->fs;
   1644      1.146  dholland 	off_t start, len;
   1645      1.139    martin #ifdef TRIMDEBUG
   1646      1.131  drochner 	int error;
   1647      1.139    martin #endif
   1648      1.131  drochner 
   1649      1.146  dholland /* like FSBTODB but emits bytes; XXX move to fs.h */
   1650      1.146  dholland #ifndef FFS_FSBTOBYTES
   1651      1.146  dholland #define FFS_FSBTOBYTES(fs, b) ((b) << (fs)->fs_fshift)
   1652      1.146  dholland #endif
   1653      1.146  dholland 
   1654      1.146  dholland 	start = FFS_FSBTOBYTES(fs, td->bno);
   1655      1.146  dholland 	len = td->size;
   1656      1.171   hannken 	vn_lock(td->devvp, LK_EXCLUSIVE | LK_RETRY);
   1657      1.139    martin #ifdef TRIMDEBUG
   1658      1.139    martin 	error =
   1659      1.139    martin #endif
   1660      1.146  dholland 		VOP_FDISCARD(td->devvp, start, len);
   1661      1.171   hannken 	VOP_UNLOCK(td->devvp);
   1662      1.131  drochner #ifdef TRIMDEBUG
   1663      1.131  drochner 	printf("trim(%" PRId64 ",%ld):%d\n", td->bno, td->size, error);
   1664      1.131  drochner #endif
   1665      1.131  drochner 
   1666      1.131  drochner 	ffs_blkfree_td(fs, td);
   1667      1.131  drochner 	kmem_free(td, sizeof(*td));
   1668      1.131  drochner 	mutex_enter(&ts->wqlk);
   1669      1.131  drochner 	ts->wqcnt--;
   1670      1.131  drochner 	if (ts->wqdraining && !ts->wqcnt)
   1671      1.131  drochner 		cv_signal(&ts->wqcv);
   1672      1.131  drochner 	mutex_exit(&ts->wqlk);
   1673      1.131  drochner }
   1674      1.131  drochner 
   1675      1.131  drochner void *
   1676      1.131  drochner ffs_discard_init(struct vnode *devvp, struct fs *fs)
   1677      1.131  drochner {
   1678      1.131  drochner 	struct discarddata *ts;
   1679      1.131  drochner 	int error;
   1680      1.131  drochner 
   1681      1.131  drochner 	ts = kmem_zalloc(sizeof (*ts), KM_SLEEP);
   1682      1.131  drochner 	error = workqueue_create(&ts->wq, "trimwq", ffs_discardcb, ts,
   1683      1.160     ozaki 				 PRI_USER, IPL_NONE, 0);
   1684      1.131  drochner 	if (error) {
   1685      1.131  drochner 		kmem_free(ts, sizeof (*ts));
   1686      1.131  drochner 		return NULL;
   1687      1.131  drochner 	}
   1688      1.131  drochner 	mutex_init(&ts->entrylk, MUTEX_DEFAULT, IPL_NONE);
   1689      1.131  drochner 	mutex_init(&ts->wqlk, MUTEX_DEFAULT, IPL_NONE);
   1690      1.131  drochner 	cv_init(&ts->wqcv, "trimwqcv");
   1691      1.146  dholland 	ts->maxsize = 100*1024; /* XXX */
   1692      1.131  drochner 	ts->fs = fs;
   1693      1.131  drochner 	return ts;
   1694      1.131  drochner }
   1695      1.131  drochner 
   1696      1.131  drochner void
   1697      1.131  drochner ffs_discard_finish(void *vts, int flags)
   1698      1.131  drochner {
   1699      1.131  drochner 	struct discarddata *ts = vts;
   1700      1.131  drochner 	struct discardopdata *td = NULL;
   1701      1.131  drochner 
   1702      1.131  drochner 	/* wait for workqueue to drain */
   1703      1.131  drochner 	mutex_enter(&ts->wqlk);
   1704      1.131  drochner 	if (ts->wqcnt) {
   1705      1.131  drochner 		ts->wqdraining = 1;
   1706      1.158   mlelstv 		cv_wait(&ts->wqcv, &ts->wqlk);
   1707      1.131  drochner 	}
   1708      1.131  drochner 	mutex_exit(&ts->wqlk);
   1709      1.131  drochner 
   1710      1.131  drochner 	mutex_enter(&ts->entrylk);
   1711      1.131  drochner 	if (ts->entry) {
   1712      1.131  drochner 		td = ts->entry;
   1713      1.131  drochner 		ts->entry = NULL;
   1714      1.131  drochner 	}
   1715      1.131  drochner 	mutex_exit(&ts->entrylk);
   1716      1.131  drochner 	if (td) {
   1717      1.131  drochner 		/* XXX don't tell disk, its optional */
   1718      1.131  drochner 		ffs_blkfree_td(ts->fs, td);
   1719      1.131  drochner #ifdef TRIMDEBUG
   1720      1.131  drochner 		printf("finish(%" PRId64 ",%ld)\n", td->bno, td->size);
   1721      1.131  drochner #endif
   1722      1.131  drochner 		kmem_free(td, sizeof(*td));
   1723      1.131  drochner 	}
   1724      1.131  drochner 
   1725      1.131  drochner 	cv_destroy(&ts->wqcv);
   1726      1.131  drochner 	mutex_destroy(&ts->entrylk);
   1727      1.131  drochner 	mutex_destroy(&ts->wqlk);
   1728      1.131  drochner 	workqueue_destroy(ts->wq);
   1729      1.131  drochner 	kmem_free(ts, sizeof(*ts));
   1730      1.131  drochner }
   1731      1.131  drochner 
   1732      1.131  drochner void
   1733      1.131  drochner ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1734      1.131  drochner     ino_t inum)
   1735      1.131  drochner {
   1736      1.131  drochner 	struct ufsmount *ump;
   1737      1.131  drochner 	int error;
   1738      1.131  drochner 	dev_t dev;
   1739      1.131  drochner 	struct discarddata *ts;
   1740      1.131  drochner 	struct discardopdata *td;
   1741      1.131  drochner 
   1742      1.131  drochner 	dev = devvp->v_rdev;
   1743      1.140   hannken 	ump = VFSTOUFS(spec_node_getmountedfs(devvp));
   1744      1.131  drochner 	if (ffs_snapblkfree(fs, devvp, bno, size, inum))
   1745      1.131  drochner 		return;
   1746      1.131  drochner 
   1747      1.131  drochner 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1748      1.131  drochner 	if (error)
   1749      1.131  drochner 		return;
   1750      1.131  drochner 
   1751      1.131  drochner 	if (!ump->um_discarddata) {
   1752      1.131  drochner 		ffs_blkfree_cg(fs, devvp, bno, size);
   1753      1.131  drochner 		return;
   1754      1.131  drochner 	}
   1755      1.131  drochner 
   1756      1.131  drochner #ifdef TRIMDEBUG
   1757      1.131  drochner 	printf("blkfree(%" PRId64 ",%ld)\n", bno, size);
   1758      1.131  drochner #endif
   1759      1.131  drochner 	ts = ump->um_discarddata;
   1760      1.131  drochner 	td = NULL;
   1761      1.131  drochner 
   1762      1.131  drochner 	mutex_enter(&ts->entrylk);
   1763      1.131  drochner 	if (ts->entry) {
   1764      1.131  drochner 		td = ts->entry;
   1765      1.131  drochner 		/* ffs deallocs backwards, check for prepend only */
   1766      1.137  dholland 		if (td->bno == bno + ffs_numfrags(fs, size)
   1767      1.131  drochner 		    && td->size + size <= ts->maxsize) {
   1768      1.131  drochner 			td->bno = bno;
   1769      1.131  drochner 			td->size += size;
   1770      1.131  drochner 			if (td->size < ts->maxsize) {
   1771      1.131  drochner #ifdef TRIMDEBUG
   1772      1.131  drochner 				printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1773      1.131  drochner #endif
   1774      1.131  drochner 				mutex_exit(&ts->entrylk);
   1775      1.131  drochner 				return;
   1776      1.131  drochner 			}
   1777      1.131  drochner 			size = 0; /* mark done */
   1778      1.131  drochner 		}
   1779      1.131  drochner 		ts->entry = NULL;
   1780      1.131  drochner 	}
   1781      1.131  drochner 	mutex_exit(&ts->entrylk);
   1782      1.131  drochner 
   1783      1.131  drochner 	if (td) {
   1784      1.131  drochner #ifdef TRIMDEBUG
   1785      1.131  drochner 		printf("enq old(%" PRId64 ",%ld)\n", td->bno, td->size);
   1786      1.131  drochner #endif
   1787      1.131  drochner 		mutex_enter(&ts->wqlk);
   1788      1.131  drochner 		ts->wqcnt++;
   1789      1.131  drochner 		mutex_exit(&ts->wqlk);
   1790      1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1791      1.131  drochner 	}
   1792      1.131  drochner 	if (!size)
   1793      1.131  drochner 		return;
   1794      1.131  drochner 
   1795      1.131  drochner 	td = kmem_alloc(sizeof(*td), KM_SLEEP);
   1796      1.131  drochner 	td->devvp = devvp;
   1797      1.131  drochner 	td->bno = bno;
   1798      1.131  drochner 	td->size = size;
   1799      1.131  drochner 
   1800      1.131  drochner 	if (td->size < ts->maxsize) { /* XXX always the case */
   1801      1.131  drochner 		mutex_enter(&ts->entrylk);
   1802      1.131  drochner 		if (!ts->entry) { /* possible race? */
   1803      1.131  drochner #ifdef TRIMDEBUG
   1804      1.131  drochner 			printf("defer(%" PRId64 ",%ld)\n", td->bno, td->size);
   1805      1.131  drochner #endif
   1806      1.131  drochner 			ts->entry = td;
   1807      1.131  drochner 			td = NULL;
   1808      1.131  drochner 		}
   1809      1.131  drochner 		mutex_exit(&ts->entrylk);
   1810      1.131  drochner 	}
   1811      1.131  drochner 	if (td) {
   1812      1.131  drochner #ifdef TRIMDEBUG
   1813      1.131  drochner 		printf("enq new(%" PRId64 ",%ld)\n", td->bno, td->size);
   1814      1.131  drochner #endif
   1815      1.131  drochner 		mutex_enter(&ts->wqlk);
   1816      1.131  drochner 		ts->wqcnt++;
   1817      1.131  drochner 		mutex_exit(&ts->wqlk);
   1818      1.131  drochner 		workqueue_enqueue(ts->wq, &td->wk, NULL);
   1819      1.131  drochner 	}
   1820      1.131  drochner }
   1821      1.131  drochner 
   1822      1.116     joerg /*
   1823      1.116     joerg  * Free a block or fragment from a snapshot cg copy.
   1824      1.116     joerg  *
   1825      1.116     joerg  * The specified block or fragment is placed back in the
   1826      1.116     joerg  * free map. If a fragment is deallocated, a possible
   1827      1.116     joerg  * block reassembly is checked.
   1828      1.116     joerg  *
   1829      1.116     joerg  * => um_lock not held on entry or exit
   1830      1.116     joerg  */
   1831      1.116     joerg void
   1832      1.116     joerg ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
   1833      1.116     joerg     ino_t inum)
   1834      1.116     joerg {
   1835      1.116     joerg 	struct cg *cgp;
   1836      1.116     joerg 	struct buf *bp;
   1837      1.116     joerg 	struct ufsmount *ump;
   1838      1.116     joerg 	daddr_t cgblkno;
   1839      1.116     joerg 	int error, cg;
   1840      1.116     joerg 	dev_t dev;
   1841      1.116     joerg 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   1842      1.118     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1843      1.116     joerg 
   1844      1.116     joerg 	KASSERT(devvp_is_snapshot);
   1845      1.116     joerg 
   1846      1.116     joerg 	cg = dtog(fs, bno);
   1847      1.116     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   1848      1.116     joerg 	ump = VFSTOUFS(devvp->v_mount);
   1849      1.138  dholland 	cgblkno = ffs_fragstoblks(fs, cgtod(fs, cg));
   1850      1.116     joerg 
   1851      1.116     joerg 	error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
   1852      1.116     joerg 	if (error)
   1853        1.1   mycroft 		return;
   1854      1.116     joerg 
   1855      1.107   hannken 	error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
   1856      1.149      maxv 	    B_MODIFY, &bp);
   1857        1.1   mycroft 	if (error) {
   1858        1.1   mycroft 		return;
   1859        1.1   mycroft 	}
   1860        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1861       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1862      1.101        ad 		brelse(bp, 0);
   1863        1.1   mycroft 		return;
   1864        1.1   mycroft 	}
   1865      1.116     joerg 
   1866      1.119     joerg 	ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
   1867      1.119     joerg 
   1868      1.119     joerg 	bdwrite(bp);
   1869      1.116     joerg }
   1870      1.116     joerg 
   1871      1.116     joerg static void
   1872      1.119     joerg ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   1873      1.119     joerg     struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
   1874      1.116     joerg {
   1875      1.116     joerg 	struct cg *cgp;
   1876      1.116     joerg 	int32_t fragno, cgbno;
   1877  1.171.4.1    martin 	int i, blk, frags, bbase;
   1878  1.171.4.1    martin 	u_int cg;
   1879      1.116     joerg 	u_int8_t *blksfree;
   1880      1.116     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   1881      1.116     joerg 
   1882      1.116     joerg 	cg = dtog(fs, bno);
   1883      1.116     joerg 	cgp = (struct cg *)bp->b_data;
   1884       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   1885       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   1886       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   1887       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   1888       1.60      fvdl 	cgbno = dtogd(fs, bno);
   1889       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   1890      1.101        ad 	mutex_enter(&ump->um_lock);
   1891        1.1   mycroft 	if (size == fs->fs_bsize) {
   1892      1.138  dholland 		fragno = ffs_fragstoblks(fs, cgbno);
   1893       1.62      fvdl 		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
   1894      1.113   hannken 			if (devvp_is_snapshot) {
   1895      1.101        ad 				mutex_exit(&ump->um_lock);
   1896       1.76   hannken 				return;
   1897       1.76   hannken 			}
   1898      1.154  christos 			panic("%s: freeing free block: dev = 0x%llx, block = %"
   1899      1.154  christos 			    PRId64 ", fs = %s", __func__,
   1900      1.120  christos 			    (unsigned long long)dev, bno, fs->fs_fsmnt);
   1901        1.1   mycroft 		}
   1902       1.62      fvdl 		ffs_setblock(fs, blksfree, fragno);
   1903       1.60      fvdl 		ffs_clusteracct(fs, cgp, fragno, 1);
   1904       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1905        1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1906        1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1907       1.73       dbj 		if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1908       1.73       dbj 		    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1909       1.73       dbj 			i = old_cbtocylno(fs, cgbno);
   1910       1.75       dbj 			KASSERT(i >= 0);
   1911       1.75       dbj 			KASSERT(i < fs->fs_old_ncyl);
   1912       1.75       dbj 			KASSERT(old_cbtorpos(fs, cgbno) >= 0);
   1913       1.75       dbj 			KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
   1914       1.73       dbj 			ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
   1915       1.73       dbj 			    needswap);
   1916       1.73       dbj 			ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1917       1.73       dbj 		}
   1918        1.1   mycroft 	} else {
   1919      1.138  dholland 		bbase = cgbno - ffs_fragnum(fs, cgbno);
   1920        1.1   mycroft 		/*
   1921        1.1   mycroft 		 * decrement the counts associated with the old frags
   1922        1.1   mycroft 		 */
   1923       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1924       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1925        1.1   mycroft 		/*
   1926        1.1   mycroft 		 * deallocate the fragment
   1927        1.1   mycroft 		 */
   1928      1.137  dholland 		frags = ffs_numfrags(fs, size);
   1929        1.1   mycroft 		for (i = 0; i < frags; i++) {
   1930       1.62      fvdl 			if (isset(blksfree, cgbno + i)) {
   1931      1.154  christos 				panic("%s: freeing free frag: "
   1932      1.154  christos 				    "dev = 0x%llx, block = %" PRId64
   1933      1.154  christos 				    ", fs = %s", __func__,
   1934      1.120  christos 				    (unsigned long long)dev, bno + i,
   1935      1.120  christos 				    fs->fs_fsmnt);
   1936        1.1   mycroft 			}
   1937       1.62      fvdl 			setbit(blksfree, cgbno + i);
   1938        1.1   mycroft 		}
   1939       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1940        1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1941       1.30      fvdl 		fs->fs_cs(fs, cg).cs_nffree += i;
   1942        1.1   mycroft 		/*
   1943        1.1   mycroft 		 * add back in counts associated with the new frags
   1944        1.1   mycroft 		 */
   1945       1.62      fvdl 		blk = blkmap(fs, blksfree, bbase);
   1946       1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1947        1.1   mycroft 		/*
   1948        1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1949        1.1   mycroft 		 */
   1950      1.138  dholland 		fragno = ffs_fragstoblks(fs, bbase);
   1951       1.62      fvdl 		if (ffs_isblock(fs, blksfree, fragno)) {
   1952       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1953        1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1954        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1955       1.60      fvdl 			ffs_clusteracct(fs, cgp, fragno, 1);
   1956       1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1957        1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1958        1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1959       1.73       dbj 			if ((fs->fs_magic == FS_UFS1_MAGIC) &&
   1960       1.73       dbj 			    ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
   1961       1.73       dbj 				i = old_cbtocylno(fs, bbase);
   1962       1.75       dbj 				KASSERT(i >= 0);
   1963       1.75       dbj 				KASSERT(i < fs->fs_old_ncyl);
   1964       1.75       dbj 				KASSERT(old_cbtorpos(fs, bbase) >= 0);
   1965       1.75       dbj 				KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
   1966       1.73       dbj 				ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
   1967       1.73       dbj 				    bbase)], 1, needswap);
   1968       1.73       dbj 				ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
   1969       1.73       dbj 			}
   1970        1.1   mycroft 		}
   1971        1.1   mycroft 	}
   1972        1.1   mycroft 	fs->fs_fmod = 1;
   1973       1.76   hannken 	ACTIVECG_CLR(fs, cg);
   1974      1.101        ad 	mutex_exit(&ump->um_lock);
   1975        1.1   mycroft }
   1976        1.1   mycroft 
   1977        1.1   mycroft /*
   1978        1.1   mycroft  * Free an inode.
   1979       1.30      fvdl  */
   1980       1.30      fvdl int
   1981       1.88      yamt ffs_vfree(struct vnode *vp, ino_t ino, int mode)
   1982       1.30      fvdl {
   1983       1.30      fvdl 
   1984      1.119     joerg 	return ffs_freefile(vp->v_mount, ino, mode);
   1985       1.30      fvdl }
   1986       1.30      fvdl 
   1987       1.30      fvdl /*
   1988       1.30      fvdl  * Do the actual free operation.
   1989        1.1   mycroft  * The specified inode is placed back in the free map.
   1990      1.111    simonb  *
   1991      1.111    simonb  * => um_lock not held on entry or exit
   1992        1.1   mycroft  */
   1993        1.1   mycroft int
   1994      1.119     joerg ffs_freefile(struct mount *mp, ino_t ino, int mode)
   1995      1.119     joerg {
   1996      1.119     joerg 	struct ufsmount *ump = VFSTOUFS(mp);
   1997      1.119     joerg 	struct fs *fs = ump->um_fs;
   1998      1.119     joerg 	struct vnode *devvp;
   1999      1.119     joerg 	struct cg *cgp;
   2000      1.119     joerg 	struct buf *bp;
   2001  1.171.4.1    martin 	int error;
   2002  1.171.4.1    martin 	u_int cg;
   2003      1.119     joerg 	daddr_t cgbno;
   2004      1.119     joerg 	dev_t dev;
   2005      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2006      1.119     joerg 
   2007      1.119     joerg 	cg = ino_to_cg(fs, ino);
   2008      1.119     joerg 	devvp = ump->um_devvp;
   2009      1.119     joerg 	dev = devvp->v_rdev;
   2010      1.136  dholland 	cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2011      1.119     joerg 
   2012  1.171.4.1    martin 	if (ino >= fs->fs_ipg * fs->fs_ncg)
   2013      1.154  christos 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2014      1.120  christos 		    (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
   2015      1.119     joerg 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2016      1.149      maxv 	    B_MODIFY, &bp);
   2017      1.119     joerg 	if (error) {
   2018      1.119     joerg 		return (error);
   2019      1.119     joerg 	}
   2020      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2021      1.119     joerg 	if (!cg_chkmagic(cgp, needswap)) {
   2022      1.119     joerg 		brelse(bp, 0);
   2023      1.119     joerg 		return (0);
   2024      1.119     joerg 	}
   2025      1.119     joerg 
   2026      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
   2027      1.119     joerg 
   2028      1.119     joerg 	bdwrite(bp);
   2029      1.119     joerg 
   2030      1.119     joerg 	return 0;
   2031      1.119     joerg }
   2032      1.119     joerg 
   2033      1.119     joerg int
   2034      1.119     joerg ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
   2035        1.9  christos {
   2036      1.101        ad 	struct ufsmount *ump;
   2037       1.33  augustss 	struct cg *cgp;
   2038        1.1   mycroft 	struct buf *bp;
   2039        1.1   mycroft 	int error, cg;
   2040       1.76   hannken 	daddr_t cgbno;
   2041       1.78   hannken 	dev_t dev;
   2042       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2043        1.1   mycroft 
   2044      1.119     joerg 	KASSERT(devvp->v_type != VBLK);
   2045      1.111    simonb 
   2046       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2047      1.119     joerg 	dev = VTOI(devvp)->i_devvp->v_rdev;
   2048      1.119     joerg 	ump = VFSTOUFS(devvp->v_mount);
   2049      1.138  dholland 	cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2050  1.171.4.1    martin 	if (ino >= fs->fs_ipg * fs->fs_ncg)
   2051      1.154  christos 		panic("%s: range: dev = 0x%llx, ino = %llu, fs = %s", __func__,
   2052      1.120  christos 		    (unsigned long long)dev, (unsigned long long)ino,
   2053      1.120  christos 		    fs->fs_fsmnt);
   2054      1.107   hannken 	error = bread(devvp, cgbno, (int)fs->fs_cgsize,
   2055      1.149      maxv 	    B_MODIFY, &bp);
   2056        1.1   mycroft 	if (error) {
   2057       1.30      fvdl 		return (error);
   2058        1.1   mycroft 	}
   2059        1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   2060       1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   2061      1.101        ad 		brelse(bp, 0);
   2062        1.1   mycroft 		return (0);
   2063        1.1   mycroft 	}
   2064      1.119     joerg 	ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
   2065      1.119     joerg 
   2066      1.119     joerg 	bdwrite(bp);
   2067      1.119     joerg 
   2068      1.119     joerg 	return 0;
   2069      1.119     joerg }
   2070      1.119     joerg 
   2071      1.119     joerg static void
   2072      1.119     joerg ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
   2073      1.119     joerg     struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
   2074      1.119     joerg {
   2075  1.171.4.1    martin 	u_int cg;
   2076      1.119     joerg 	struct cg *cgp;
   2077      1.119     joerg 	u_int8_t *inosused;
   2078      1.119     joerg 	const int needswap = UFS_FSNEEDSWAP(fs);
   2079  1.171.4.1    martin 	ino_t cgino;
   2080      1.119     joerg 
   2081      1.119     joerg 	cg = ino_to_cg(fs, ino);
   2082      1.119     joerg 	cgp = (struct cg *)bp->b_data;
   2083       1.92    kardel 	cgp->cg_old_time = ufs_rw32(time_second, needswap);
   2084       1.73       dbj 	if ((fs->fs_magic != FS_UFS1_MAGIC) ||
   2085       1.73       dbj 	    (fs->fs_old_flags & FS_FLAGS_UPDATED))
   2086       1.92    kardel 		cgp->cg_time = ufs_rw64(time_second, needswap);
   2087       1.62      fvdl 	inosused = cg_inosused(cgp, needswap);
   2088  1.171.4.1    martin 	cgino = ino % fs->fs_ipg;
   2089  1.171.4.1    martin 	if (isclr(inosused, cgino)) {
   2090      1.120  christos 		printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
   2091  1.171.4.1    martin 		    (unsigned long long)dev, (unsigned long long)ino,
   2092  1.171.4.1    martin 		    fs->fs_fsmnt);
   2093        1.1   mycroft 		if (fs->fs_ronly == 0)
   2094      1.154  christos 			panic("%s: freeing free inode", __func__);
   2095        1.1   mycroft 	}
   2096  1.171.4.1    martin 	clrbit(inosused, cgino);
   2097      1.113   hannken 	if (!devvp_is_snapshot)
   2098  1.171.4.1    martin 		UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp, ino, mode);
   2099  1.171.4.1    martin 	if (cgino < ufs_rw32(cgp->cg_irotor, needswap))
   2100  1.171.4.1    martin 		cgp->cg_irotor = ufs_rw32(cgino, needswap);
   2101       1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   2102      1.101        ad 	mutex_enter(&ump->um_lock);
   2103        1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   2104        1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   2105       1.78   hannken 	if ((mode & IFMT) == IFDIR) {
   2106       1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   2107        1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   2108        1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   2109        1.1   mycroft 	}
   2110        1.1   mycroft 	fs->fs_fmod = 1;
   2111       1.82   hannken 	ACTIVECG_CLR(fs, cg);
   2112      1.101        ad 	mutex_exit(&ump->um_lock);
   2113        1.1   mycroft }
   2114        1.1   mycroft 
   2115        1.1   mycroft /*
   2116       1.76   hannken  * Check to see if a file is free.
   2117       1.76   hannken  */
   2118       1.76   hannken int
   2119       1.85   thorpej ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
   2120       1.76   hannken {
   2121       1.76   hannken 	struct cg *cgp;
   2122       1.76   hannken 	struct buf *bp;
   2123       1.76   hannken 	daddr_t cgbno;
   2124  1.171.4.1    martin 	int ret;
   2125  1.171.4.1    martin 	u_int cg;
   2126       1.76   hannken 	u_int8_t *inosused;
   2127      1.113   hannken 	const bool devvp_is_snapshot = (devvp->v_type != VBLK);
   2128       1.76   hannken 
   2129      1.119     joerg 	KASSERT(devvp_is_snapshot);
   2130      1.119     joerg 
   2131       1.76   hannken 	cg = ino_to_cg(fs, ino);
   2132      1.113   hannken 	if (devvp_is_snapshot)
   2133      1.138  dholland 		cgbno = ffs_fragstoblks(fs, cgtod(fs, cg));
   2134      1.113   hannken 	else
   2135      1.136  dholland 		cgbno = FFS_FSBTODB(fs, cgtod(fs, cg));
   2136  1.171.4.1    martin 	if (ino >= fs->fs_ipg * fs->fs_ncg)
   2137       1.76   hannken 		return 1;
   2138      1.149      maxv 	if (bread(devvp, cgbno, (int)fs->fs_cgsize, 0, &bp)) {
   2139       1.76   hannken 		return 1;
   2140       1.76   hannken 	}
   2141       1.76   hannken 	cgp = (struct cg *)bp->b_data;
   2142       1.76   hannken 	if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
   2143      1.101        ad 		brelse(bp, 0);
   2144       1.76   hannken 		return 1;
   2145       1.76   hannken 	}
   2146       1.76   hannken 	inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
   2147       1.76   hannken 	ino %= fs->fs_ipg;
   2148       1.76   hannken 	ret = isclr(inosused, ino);
   2149      1.101        ad 	brelse(bp, 0);
   2150       1.76   hannken 	return ret;
   2151       1.76   hannken }
   2152       1.76   hannken 
   2153       1.76   hannken /*
   2154        1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   2155        1.1   mycroft  *
   2156        1.1   mycroft  * It is a panic if a request is made to find a block if none are
   2157        1.1   mycroft  * available.
   2158        1.1   mycroft  */
   2159       1.60      fvdl static int32_t
   2160       1.85   thorpej ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
   2161        1.1   mycroft {
   2162       1.60      fvdl 	int32_t bno;
   2163        1.1   mycroft 	int start, len, loc, i;
   2164        1.1   mycroft 	int blk, field, subfield, pos;
   2165       1.19    bouyer 	int ostart, olen;
   2166       1.62      fvdl 	u_int8_t *blksfree;
   2167       1.30      fvdl 	const int needswap = UFS_FSNEEDSWAP(fs);
   2168        1.1   mycroft 
   2169      1.101        ad 	/* KASSERT(mutex_owned(&ump->um_lock)); */
   2170      1.101        ad 
   2171        1.1   mycroft 	/*
   2172        1.1   mycroft 	 * find the fragment by searching through the free block
   2173        1.1   mycroft 	 * map for an appropriate bit pattern
   2174        1.1   mycroft 	 */
   2175        1.1   mycroft 	if (bpref)
   2176        1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   2177        1.1   mycroft 	else
   2178       1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   2179       1.62      fvdl 	blksfree = cg_blksfree(cgp, needswap);
   2180        1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   2181       1.19    bouyer 	ostart = start;
   2182       1.19    bouyer 	olen = len;
   2183       1.45     lukem 	loc = scanc((u_int)len,
   2184       1.62      fvdl 		(const u_char *)&blksfree[start],
   2185       1.45     lukem 		(const u_char *)fragtbl[fs->fs_frag],
   2186       1.54   mycroft 		(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2187        1.1   mycroft 	if (loc == 0) {
   2188        1.1   mycroft 		len = start + 1;
   2189        1.1   mycroft 		start = 0;
   2190       1.45     lukem 		loc = scanc((u_int)len,
   2191       1.62      fvdl 			(const u_char *)&blksfree[0],
   2192       1.45     lukem 			(const u_char *)fragtbl[fs->fs_frag],
   2193       1.54   mycroft 			(1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
   2194        1.1   mycroft 		if (loc == 0) {
   2195      1.154  christos 			panic("%s: map corrupted: start=%d, len=%d, "
   2196      1.154  christos 			    "fs = %s, offset=%d/%ld, cg %d", __func__,
   2197      1.154  christos 			    ostart, olen, fs->fs_fsmnt,
   2198      1.154  christos 			    ufs_rw32(cgp->cg_freeoff, needswap),
   2199      1.154  christos 			    (long)blksfree - (long)cgp, cgp->cg_cgx);
   2200        1.1   mycroft 			/* NOTREACHED */
   2201        1.1   mycroft 		}
   2202        1.1   mycroft 	}
   2203        1.1   mycroft 	bno = (start + len - loc) * NBBY;
   2204       1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   2205        1.1   mycroft 	/*
   2206        1.1   mycroft 	 * found the byte in the map
   2207        1.1   mycroft 	 * sift through the bits to find the selected frag
   2208        1.1   mycroft 	 */
   2209        1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   2210       1.62      fvdl 		blk = blkmap(fs, blksfree, bno);
   2211        1.1   mycroft 		blk <<= 1;
   2212        1.1   mycroft 		field = around[allocsiz];
   2213        1.1   mycroft 		subfield = inside[allocsiz];
   2214        1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   2215        1.1   mycroft 			if ((blk & field) == subfield)
   2216        1.1   mycroft 				return (bno + pos);
   2217        1.1   mycroft 			field <<= 1;
   2218        1.1   mycroft 			subfield <<= 1;
   2219        1.1   mycroft 		}
   2220        1.1   mycroft 	}
   2221      1.154  christos 	panic("%s: block not in map: bno=%d, fs=%s", __func__,
   2222      1.154  christos 	    bno, fs->fs_fsmnt);
   2223       1.58      fvdl 	/* return (-1); */
   2224        1.1   mycroft }
   2225        1.1   mycroft 
   2226        1.1   mycroft /*
   2227        1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   2228       1.81     perry  *
   2229        1.1   mycroft  * The form of the error message is:
   2230        1.1   mycroft  *	fs: error message
   2231        1.1   mycroft  */
   2232        1.1   mycroft static void
   2233      1.150   mlelstv ffs_fserr(struct fs *fs, kauth_cred_t cred, const char *cp)
   2234        1.1   mycroft {
   2235      1.150   mlelstv 	KASSERT(cred != NULL);
   2236        1.1   mycroft 
   2237      1.150   mlelstv 	if (cred == NOCRED || cred == FSCRED) {
   2238      1.150   mlelstv 		log(LOG_ERR, "pid %d, command %s, on %s: %s\n",
   2239      1.150   mlelstv 		    curproc->p_pid, curproc->p_comm,
   2240      1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2241      1.150   mlelstv 	} else {
   2242      1.150   mlelstv 		log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
   2243      1.150   mlelstv 		    kauth_cred_getuid(cred), curproc->p_pid, curproc->p_comm,
   2244      1.150   mlelstv 		    fs->fs_fsmnt, cp);
   2245      1.150   mlelstv 	}
   2246        1.1   mycroft }
   2247