ffs_alloc.c revision 1.18 1 1.18 fvdl /* $NetBSD: ffs_alloc.c,v 1.18 1998/03/01 02:23:14 fvdl Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.17 mrg
38 1.17 mrg #include "opt_uvm.h"
39 1.1 mycroft
40 1.1 mycroft #include <sys/param.h>
41 1.1 mycroft #include <sys/systm.h>
42 1.1 mycroft #include <sys/buf.h>
43 1.1 mycroft #include <sys/proc.h>
44 1.1 mycroft #include <sys/vnode.h>
45 1.1 mycroft #include <sys/mount.h>
46 1.1 mycroft #include <sys/kernel.h>
47 1.1 mycroft #include <sys/syslog.h>
48 1.1 mycroft
49 1.1 mycroft #include <vm/vm.h>
50 1.1 mycroft
51 1.1 mycroft #include <ufs/ufs/quota.h>
52 1.1 mycroft #include <ufs/ufs/inode.h>
53 1.9 christos #include <ufs/ufs/ufs_extern.h>
54 1.1 mycroft
55 1.1 mycroft #include <ufs/ffs/fs.h>
56 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
57 1.1 mycroft
58 1.18 fvdl static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
59 1.18 fvdl static ufs_daddr_t ffs_alloccgblk __P((struct fs *, struct cg *, ufs_daddr_t));
60 1.18 fvdl static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
61 1.18 fvdl static ino_t ffs_dirpref __P((struct fs *));
62 1.18 fvdl static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
63 1.18 fvdl static void ffs_fserr __P((struct fs *, u_int, char *));
64 1.18 fvdl static u_long ffs_hashalloc
65 1.18 fvdl __P((struct inode *, int, long, int,
66 1.18 fvdl ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)));
67 1.18 fvdl static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
68 1.18 fvdl static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
69 1.18 fvdl int));
70 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
71 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
72 1.18 fvdl #endif
73 1.1 mycroft
74 1.1 mycroft /*
75 1.1 mycroft * Allocate a block in the file system.
76 1.1 mycroft *
77 1.1 mycroft * The size of the requested block is given, which must be some
78 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
79 1.1 mycroft * A preference may be optionally specified. If a preference is given
80 1.1 mycroft * the following hierarchy is used to allocate a block:
81 1.1 mycroft * 1) allocate the requested block.
82 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
83 1.1 mycroft * 3) allocate a block in the same cylinder group.
84 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
85 1.1 mycroft * available block is located.
86 1.1 mycroft * If no block preference is given the following heirarchy is used
87 1.1 mycroft * to allocate a block:
88 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
89 1.1 mycroft * inode for the file.
90 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
91 1.1 mycroft * available block is located.
92 1.1 mycroft */
93 1.9 christos int
94 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
95 1.1 mycroft register struct inode *ip;
96 1.18 fvdl ufs_daddr_t lbn, bpref;
97 1.1 mycroft int size;
98 1.1 mycroft struct ucred *cred;
99 1.18 fvdl ufs_daddr_t *bnp;
100 1.1 mycroft {
101 1.1 mycroft register struct fs *fs;
102 1.18 fvdl ufs_daddr_t bno;
103 1.9 christos int cg;
104 1.9 christos #ifdef QUOTA
105 1.9 christos int error;
106 1.9 christos #endif
107 1.1 mycroft
108 1.1 mycroft *bnp = 0;
109 1.1 mycroft fs = ip->i_fs;
110 1.1 mycroft #ifdef DIAGNOSTIC
111 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
112 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
113 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
114 1.1 mycroft panic("ffs_alloc: bad size");
115 1.1 mycroft }
116 1.1 mycroft if (cred == NOCRED)
117 1.1 mycroft panic("ffs_alloc: missing credential\n");
118 1.1 mycroft #endif /* DIAGNOSTIC */
119 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
120 1.1 mycroft goto nospace;
121 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
122 1.1 mycroft goto nospace;
123 1.1 mycroft #ifdef QUOTA
124 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
125 1.1 mycroft return (error);
126 1.1 mycroft #endif
127 1.1 mycroft if (bpref >= fs->fs_size)
128 1.1 mycroft bpref = 0;
129 1.1 mycroft if (bpref == 0)
130 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
131 1.1 mycroft else
132 1.1 mycroft cg = dtog(fs, bpref);
133 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
134 1.9 christos ffs_alloccg);
135 1.1 mycroft if (bno > 0) {
136 1.15 bouyer ip->i_ffs_blocks += btodb(size);
137 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
138 1.1 mycroft *bnp = bno;
139 1.1 mycroft return (0);
140 1.1 mycroft }
141 1.1 mycroft #ifdef QUOTA
142 1.1 mycroft /*
143 1.1 mycroft * Restore user's disk quota because allocation failed.
144 1.1 mycroft */
145 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
146 1.1 mycroft #endif
147 1.1 mycroft nospace:
148 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
149 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
150 1.1 mycroft return (ENOSPC);
151 1.1 mycroft }
152 1.1 mycroft
153 1.1 mycroft /*
154 1.1 mycroft * Reallocate a fragment to a bigger size
155 1.1 mycroft *
156 1.1 mycroft * The number and size of the old block is given, and a preference
157 1.1 mycroft * and new size is also specified. The allocator attempts to extend
158 1.1 mycroft * the original block. Failing that, the regular block allocator is
159 1.1 mycroft * invoked to get an appropriate block.
160 1.1 mycroft */
161 1.9 christos int
162 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
163 1.1 mycroft register struct inode *ip;
164 1.18 fvdl ufs_daddr_t lbprev;
165 1.18 fvdl ufs_daddr_t bpref;
166 1.1 mycroft int osize, nsize;
167 1.1 mycroft struct ucred *cred;
168 1.1 mycroft struct buf **bpp;
169 1.1 mycroft {
170 1.1 mycroft register struct fs *fs;
171 1.1 mycroft struct buf *bp;
172 1.1 mycroft int cg, request, error;
173 1.18 fvdl ufs_daddr_t bprev, bno;
174 1.1 mycroft
175 1.1 mycroft *bpp = 0;
176 1.1 mycroft fs = ip->i_fs;
177 1.1 mycroft #ifdef DIAGNOSTIC
178 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
179 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
180 1.13 christos printf(
181 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
182 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
183 1.1 mycroft panic("ffs_realloccg: bad size");
184 1.1 mycroft }
185 1.1 mycroft if (cred == NOCRED)
186 1.1 mycroft panic("ffs_realloccg: missing credential\n");
187 1.1 mycroft #endif /* DIAGNOSTIC */
188 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
189 1.1 mycroft goto nospace;
190 1.15 bouyer if ((bprev = ip->i_ffs_db[lbprev]) == 0) {
191 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
192 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
193 1.1 mycroft panic("ffs_realloccg: bad bprev");
194 1.1 mycroft }
195 1.1 mycroft /*
196 1.1 mycroft * Allocate the extra space in the buffer.
197 1.1 mycroft */
198 1.9 christos if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
199 1.1 mycroft brelse(bp);
200 1.1 mycroft return (error);
201 1.1 mycroft }
202 1.1 mycroft #ifdef QUOTA
203 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
204 1.1 mycroft brelse(bp);
205 1.1 mycroft return (error);
206 1.1 mycroft }
207 1.1 mycroft #endif
208 1.1 mycroft /*
209 1.1 mycroft * Check for extension in the existing location.
210 1.1 mycroft */
211 1.1 mycroft cg = dtog(fs, bprev);
212 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
213 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
214 1.1 mycroft panic("bad blockno");
215 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
216 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
217 1.1 mycroft allocbuf(bp, nsize);
218 1.1 mycroft bp->b_flags |= B_DONE;
219 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
220 1.1 mycroft *bpp = bp;
221 1.1 mycroft return (0);
222 1.1 mycroft }
223 1.1 mycroft /*
224 1.1 mycroft * Allocate a new disk location.
225 1.1 mycroft */
226 1.1 mycroft if (bpref >= fs->fs_size)
227 1.1 mycroft bpref = 0;
228 1.1 mycroft switch ((int)fs->fs_optim) {
229 1.1 mycroft case FS_OPTSPACE:
230 1.1 mycroft /*
231 1.1 mycroft * Allocate an exact sized fragment. Although this makes
232 1.1 mycroft * best use of space, we will waste time relocating it if
233 1.1 mycroft * the file continues to grow. If the fragmentation is
234 1.1 mycroft * less than half of the minimum free reserve, we choose
235 1.1 mycroft * to begin optimizing for time.
236 1.1 mycroft */
237 1.1 mycroft request = nsize;
238 1.1 mycroft if (fs->fs_minfree < 5 ||
239 1.1 mycroft fs->fs_cstotal.cs_nffree >
240 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
241 1.1 mycroft break;
242 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
243 1.1 mycroft fs->fs_fsmnt);
244 1.1 mycroft fs->fs_optim = FS_OPTTIME;
245 1.1 mycroft break;
246 1.1 mycroft case FS_OPTTIME:
247 1.1 mycroft /*
248 1.1 mycroft * At this point we have discovered a file that is trying to
249 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
250 1.1 mycroft * we allocate a full sized block, then free the unused portion.
251 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
252 1.1 mycroft * above will be able to grow it in place without further
253 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
254 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
255 1.1 mycroft * optimizing for space.
256 1.1 mycroft */
257 1.1 mycroft request = fs->fs_bsize;
258 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
259 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
260 1.1 mycroft break;
261 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
262 1.1 mycroft fs->fs_fsmnt);
263 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
264 1.1 mycroft break;
265 1.1 mycroft default:
266 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
267 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
268 1.1 mycroft panic("ffs_realloccg: bad optim");
269 1.1 mycroft /* NOTREACHED */
270 1.1 mycroft }
271 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
272 1.9 christos ffs_alloccg);
273 1.1 mycroft if (bno > 0) {
274 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
275 1.16 mrg #if defined(UVM)
276 1.16 mrg (void) uvm_vnp_uncache(ITOV(ip));
277 1.16 mrg #else
278 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
279 1.16 mrg #endif
280 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
281 1.1 mycroft if (nsize < request)
282 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
283 1.1 mycroft (long)(request - nsize));
284 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
285 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
286 1.1 mycroft allocbuf(bp, nsize);
287 1.1 mycroft bp->b_flags |= B_DONE;
288 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
289 1.1 mycroft *bpp = bp;
290 1.1 mycroft return (0);
291 1.1 mycroft }
292 1.1 mycroft #ifdef QUOTA
293 1.1 mycroft /*
294 1.1 mycroft * Restore user's disk quota because allocation failed.
295 1.1 mycroft */
296 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
297 1.1 mycroft #endif
298 1.1 mycroft brelse(bp);
299 1.1 mycroft nospace:
300 1.1 mycroft /*
301 1.1 mycroft * no space available
302 1.1 mycroft */
303 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
304 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
305 1.1 mycroft return (ENOSPC);
306 1.1 mycroft }
307 1.1 mycroft
308 1.1 mycroft /*
309 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
310 1.1 mycroft *
311 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
312 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
313 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
314 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
315 1.1 mycroft * block immediately preceeding the current range. If successful, the
316 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
317 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
318 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
319 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
320 1.1 mycroft * the previous block allocation will be used.
321 1.1 mycroft */
322 1.3 mycroft #ifdef DEBUG
323 1.1 mycroft #include <sys/sysctl.h>
324 1.5 mycroft int prtrealloc = 0;
325 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
326 1.1 mycroft #endif
327 1.1 mycroft
328 1.18 fvdl int doasyncfree = 1;
329 1.18 fvdl extern int doreallocblks;
330 1.18 fvdl
331 1.1 mycroft int
332 1.9 christos ffs_reallocblks(v)
333 1.9 christos void *v;
334 1.9 christos {
335 1.1 mycroft struct vop_reallocblks_args /* {
336 1.1 mycroft struct vnode *a_vp;
337 1.1 mycroft struct cluster_save *a_buflist;
338 1.9 christos } */ *ap = v;
339 1.1 mycroft struct fs *fs;
340 1.1 mycroft struct inode *ip;
341 1.1 mycroft struct vnode *vp;
342 1.1 mycroft struct buf *sbp, *ebp;
343 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
344 1.1 mycroft struct cluster_save *buflist;
345 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
346 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
347 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
348 1.11 mycroft struct timespec ts;
349 1.1 mycroft
350 1.1 mycroft vp = ap->a_vp;
351 1.1 mycroft ip = VTOI(vp);
352 1.1 mycroft fs = ip->i_fs;
353 1.1 mycroft if (fs->fs_contigsumsize <= 0)
354 1.1 mycroft return (ENOSPC);
355 1.1 mycroft buflist = ap->a_buflist;
356 1.1 mycroft len = buflist->bs_nchildren;
357 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
358 1.1 mycroft end_lbn = start_lbn + len - 1;
359 1.1 mycroft #ifdef DIAGNOSTIC
360 1.18 fvdl for (i = 0; i < len; i++)
361 1.18 fvdl if (!ffs_checkblk(ip,
362 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
363 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
364 1.1 mycroft for (i = 1; i < len; i++)
365 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
366 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
367 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
368 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
369 1.18 fvdl for (i = 1; i < len - 1; i++)
370 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
371 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
372 1.1 mycroft #endif
373 1.1 mycroft /*
374 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
375 1.1 mycroft * the filesystem has decided to move and do not force it back to
376 1.1 mycroft * the previous cylinder group.
377 1.1 mycroft */
378 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
379 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
380 1.1 mycroft return (ENOSPC);
381 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
382 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
383 1.1 mycroft return (ENOSPC);
384 1.1 mycroft /*
385 1.1 mycroft * Get the starting offset and block map for the first block.
386 1.1 mycroft */
387 1.1 mycroft if (start_lvl == 0) {
388 1.15 bouyer sbap = &ip->i_ffs_db[0];
389 1.1 mycroft soff = start_lbn;
390 1.1 mycroft } else {
391 1.1 mycroft idp = &start_ap[start_lvl - 1];
392 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
393 1.1 mycroft brelse(sbp);
394 1.1 mycroft return (ENOSPC);
395 1.1 mycroft }
396 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
397 1.1 mycroft soff = idp->in_off;
398 1.1 mycroft }
399 1.1 mycroft /*
400 1.1 mycroft * Find the preferred location for the cluster.
401 1.1 mycroft */
402 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
403 1.1 mycroft /*
404 1.1 mycroft * If the block range spans two block maps, get the second map.
405 1.1 mycroft */
406 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
407 1.1 mycroft ssize = len;
408 1.1 mycroft } else {
409 1.1 mycroft #ifdef DIAGNOSTIC
410 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
411 1.1 mycroft panic("ffs_reallocblk: start == end");
412 1.1 mycroft #endif
413 1.1 mycroft ssize = len - (idp->in_off + 1);
414 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
415 1.1 mycroft goto fail;
416 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
417 1.1 mycroft }
418 1.1 mycroft /*
419 1.1 mycroft * Search the block map looking for an allocation of the desired size.
420 1.1 mycroft */
421 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
422 1.9 christos len, ffs_clusteralloc)) == 0)
423 1.1 mycroft goto fail;
424 1.1 mycroft /*
425 1.1 mycroft * We have found a new contiguous block.
426 1.1 mycroft *
427 1.1 mycroft * First we have to replace the old block pointers with the new
428 1.1 mycroft * block pointers in the inode and indirect blocks associated
429 1.1 mycroft * with the file.
430 1.1 mycroft */
431 1.5 mycroft #ifdef DEBUG
432 1.5 mycroft if (prtrealloc)
433 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
434 1.5 mycroft start_lbn, end_lbn);
435 1.5 mycroft #endif
436 1.1 mycroft blkno = newblk;
437 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
438 1.1 mycroft if (i == ssize)
439 1.1 mycroft bap = ebap;
440 1.1 mycroft #ifdef DIAGNOSTIC
441 1.18 fvdl if (!ffs_checkblk(ip,
442 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
443 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
444 1.5 mycroft if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
445 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
446 1.1 mycroft #endif
447 1.5 mycroft #ifdef DEBUG
448 1.5 mycroft if (prtrealloc)
449 1.13 christos printf(" %d,", *bap);
450 1.5 mycroft #endif
451 1.1 mycroft *bap++ = blkno;
452 1.1 mycroft }
453 1.1 mycroft /*
454 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
455 1.1 mycroft * For strict correctness, the writes should be synchronous since
456 1.1 mycroft * the old block values may have been written to disk. In practise
457 1.1 mycroft * they are almost never written, but if we are concerned about
458 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
459 1.1 mycroft *
460 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
461 1.1 mycroft * that shows whether the associated buffers and inodes have
462 1.1 mycroft * been written. The flag should be set when the cluster is
463 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
464 1.1 mycroft * We can then check below to see if it is set, and do the
465 1.1 mycroft * synchronous write only when it has been cleared.
466 1.1 mycroft */
467 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
468 1.1 mycroft if (doasyncfree)
469 1.1 mycroft bdwrite(sbp);
470 1.1 mycroft else
471 1.1 mycroft bwrite(sbp);
472 1.1 mycroft } else {
473 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
474 1.11 mycroft if (!doasyncfree) {
475 1.11 mycroft TIMEVAL_TO_TIMESPEC(&time, &ts);
476 1.11 mycroft VOP_UPDATE(vp, &ts, &ts, 1);
477 1.11 mycroft }
478 1.1 mycroft }
479 1.1 mycroft if (ssize < len)
480 1.1 mycroft if (doasyncfree)
481 1.1 mycroft bdwrite(ebp);
482 1.1 mycroft else
483 1.1 mycroft bwrite(ebp);
484 1.1 mycroft /*
485 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
486 1.1 mycroft */
487 1.5 mycroft #ifdef DEBUG
488 1.5 mycroft if (prtrealloc)
489 1.13 christos printf("\n\tnew:");
490 1.5 mycroft #endif
491 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
492 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
493 1.1 mycroft fs->fs_bsize);
494 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
495 1.5 mycroft #ifdef DEBUG
496 1.18 fvdl if (!ffs_checkblk(ip,
497 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
498 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
499 1.5 mycroft if (prtrealloc)
500 1.13 christos printf(" %d,", blkno);
501 1.5 mycroft #endif
502 1.5 mycroft }
503 1.5 mycroft #ifdef DEBUG
504 1.5 mycroft if (prtrealloc) {
505 1.5 mycroft prtrealloc--;
506 1.13 christos printf("\n");
507 1.1 mycroft }
508 1.5 mycroft #endif
509 1.1 mycroft return (0);
510 1.1 mycroft
511 1.1 mycroft fail:
512 1.1 mycroft if (ssize < len)
513 1.1 mycroft brelse(ebp);
514 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
515 1.1 mycroft brelse(sbp);
516 1.1 mycroft return (ENOSPC);
517 1.1 mycroft }
518 1.1 mycroft
519 1.1 mycroft /*
520 1.1 mycroft * Allocate an inode in the file system.
521 1.1 mycroft *
522 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
523 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
524 1.1 mycroft * 1) allocate the preferred inode.
525 1.1 mycroft * 2) allocate an inode in the same cylinder group.
526 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
527 1.1 mycroft * available inode is located.
528 1.1 mycroft * If no inode preference is given the following heirarchy is used
529 1.1 mycroft * to allocate an inode:
530 1.1 mycroft * 1) allocate an inode in cylinder group 0.
531 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
532 1.1 mycroft * available inode is located.
533 1.1 mycroft */
534 1.9 christos int
535 1.9 christos ffs_valloc(v)
536 1.9 christos void *v;
537 1.9 christos {
538 1.1 mycroft struct vop_valloc_args /* {
539 1.1 mycroft struct vnode *a_pvp;
540 1.1 mycroft int a_mode;
541 1.1 mycroft struct ucred *a_cred;
542 1.1 mycroft struct vnode **a_vpp;
543 1.9 christos } */ *ap = v;
544 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
545 1.1 mycroft register struct inode *pip;
546 1.1 mycroft register struct fs *fs;
547 1.1 mycroft register struct inode *ip;
548 1.1 mycroft mode_t mode = ap->a_mode;
549 1.1 mycroft ino_t ino, ipref;
550 1.1 mycroft int cg, error;
551 1.1 mycroft
552 1.1 mycroft *ap->a_vpp = NULL;
553 1.1 mycroft pip = VTOI(pvp);
554 1.1 mycroft fs = pip->i_fs;
555 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
556 1.1 mycroft goto noinodes;
557 1.1 mycroft
558 1.1 mycroft if ((mode & IFMT) == IFDIR)
559 1.1 mycroft ipref = ffs_dirpref(fs);
560 1.1 mycroft else
561 1.1 mycroft ipref = pip->i_number;
562 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
563 1.1 mycroft ipref = 0;
564 1.1 mycroft cg = ino_to_cg(fs, ipref);
565 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
566 1.1 mycroft if (ino == 0)
567 1.1 mycroft goto noinodes;
568 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
569 1.1 mycroft if (error) {
570 1.1 mycroft VOP_VFREE(pvp, ino, mode);
571 1.1 mycroft return (error);
572 1.1 mycroft }
573 1.1 mycroft ip = VTOI(*ap->a_vpp);
574 1.15 bouyer if (ip->i_ffs_mode) {
575 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
576 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
577 1.1 mycroft panic("ffs_valloc: dup alloc");
578 1.1 mycroft }
579 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
580 1.13 christos printf("free inode %s/%d had %d blocks\n",
581 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
582 1.15 bouyer ip->i_ffs_blocks = 0;
583 1.1 mycroft }
584 1.15 bouyer ip->i_ffs_flags = 0;
585 1.1 mycroft /*
586 1.1 mycroft * Set up a new generation number for this inode.
587 1.1 mycroft */
588 1.15 bouyer ip->i_ffs_gen++;
589 1.1 mycroft return (0);
590 1.1 mycroft noinodes:
591 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
592 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
593 1.1 mycroft return (ENOSPC);
594 1.1 mycroft }
595 1.1 mycroft
596 1.1 mycroft /*
597 1.1 mycroft * Find a cylinder to place a directory.
598 1.1 mycroft *
599 1.1 mycroft * The policy implemented by this algorithm is to select from
600 1.1 mycroft * among those cylinder groups with above the average number of
601 1.1 mycroft * free inodes, the one with the smallest number of directories.
602 1.1 mycroft */
603 1.1 mycroft static ino_t
604 1.1 mycroft ffs_dirpref(fs)
605 1.1 mycroft register struct fs *fs;
606 1.1 mycroft {
607 1.1 mycroft int cg, minndir, mincg, avgifree;
608 1.1 mycroft
609 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
610 1.1 mycroft minndir = fs->fs_ipg;
611 1.1 mycroft mincg = 0;
612 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
613 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
614 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
615 1.1 mycroft mincg = cg;
616 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
617 1.1 mycroft }
618 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
619 1.1 mycroft }
620 1.1 mycroft
621 1.1 mycroft /*
622 1.1 mycroft * Select the desired position for the next block in a file. The file is
623 1.1 mycroft * logically divided into sections. The first section is composed of the
624 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
625 1.1 mycroft *
626 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
627 1.1 mycroft * request a block in the same cylinder group as the inode that describes
628 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
629 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
630 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
631 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
632 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
633 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
634 1.1 mycroft * continues until a cylinder group with greater than the average number
635 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
636 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
637 1.1 mycroft * here a best guess is made based upon the logical block number being
638 1.1 mycroft * allocated.
639 1.1 mycroft *
640 1.1 mycroft * If a section is already partially allocated, the policy is to
641 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
642 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
643 1.1 mycroft * so that the disk head will be in transit between them for at least
644 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
645 1.1 mycroft * schedule another I/O transfer.
646 1.1 mycroft */
647 1.18 fvdl ufs_daddr_t
648 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
649 1.1 mycroft struct inode *ip;
650 1.18 fvdl ufs_daddr_t lbn;
651 1.1 mycroft int indx;
652 1.18 fvdl ufs_daddr_t *bap;
653 1.1 mycroft {
654 1.1 mycroft register struct fs *fs;
655 1.1 mycroft register int cg;
656 1.1 mycroft int avgbfree, startcg;
657 1.18 fvdl ufs_daddr_t nextblk;
658 1.1 mycroft
659 1.1 mycroft fs = ip->i_fs;
660 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
661 1.1 mycroft if (lbn < NDADDR) {
662 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
663 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
664 1.1 mycroft }
665 1.1 mycroft /*
666 1.1 mycroft * Find a cylinder with greater than average number of
667 1.1 mycroft * unused data blocks.
668 1.1 mycroft */
669 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
670 1.1 mycroft startcg =
671 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
672 1.1 mycroft else
673 1.1 mycroft startcg = dtog(fs, bap[indx - 1]) + 1;
674 1.1 mycroft startcg %= fs->fs_ncg;
675 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
676 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
677 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
678 1.1 mycroft fs->fs_cgrotor = cg;
679 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
680 1.1 mycroft }
681 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
682 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
683 1.1 mycroft fs->fs_cgrotor = cg;
684 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
685 1.1 mycroft }
686 1.1 mycroft return (NULL);
687 1.1 mycroft }
688 1.1 mycroft /*
689 1.1 mycroft * One or more previous blocks have been laid out. If less
690 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
691 1.1 mycroft * next block is requested contiguously, otherwise it is
692 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
693 1.1 mycroft */
694 1.1 mycroft nextblk = bap[indx - 1] + fs->fs_frag;
695 1.1 mycroft if (indx < fs->fs_maxcontig || bap[indx - fs->fs_maxcontig] +
696 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
697 1.1 mycroft return (nextblk);
698 1.1 mycroft if (fs->fs_rotdelay != 0)
699 1.1 mycroft /*
700 1.1 mycroft * Here we convert ms of delay to frags as:
701 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
702 1.1 mycroft * ((sect/frag) * (ms/sec))
703 1.1 mycroft * then round up to the next block.
704 1.1 mycroft */
705 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
706 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
707 1.1 mycroft return (nextblk);
708 1.1 mycroft }
709 1.1 mycroft
710 1.1 mycroft /*
711 1.1 mycroft * Implement the cylinder overflow algorithm.
712 1.1 mycroft *
713 1.1 mycroft * The policy implemented by this algorithm is:
714 1.1 mycroft * 1) allocate the block in its requested cylinder group.
715 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
716 1.1 mycroft * 3) brute force search for a free block.
717 1.1 mycroft */
718 1.1 mycroft /*VARARGS5*/
719 1.1 mycroft static u_long
720 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
721 1.1 mycroft struct inode *ip;
722 1.1 mycroft int cg;
723 1.1 mycroft long pref;
724 1.1 mycroft int size; /* size for data blocks, mode for inodes */
725 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
726 1.1 mycroft {
727 1.1 mycroft register struct fs *fs;
728 1.1 mycroft long result;
729 1.1 mycroft int i, icg = cg;
730 1.1 mycroft
731 1.1 mycroft fs = ip->i_fs;
732 1.1 mycroft /*
733 1.1 mycroft * 1: preferred cylinder group
734 1.1 mycroft */
735 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
736 1.1 mycroft if (result)
737 1.1 mycroft return (result);
738 1.1 mycroft /*
739 1.1 mycroft * 2: quadratic rehash
740 1.1 mycroft */
741 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
742 1.1 mycroft cg += i;
743 1.1 mycroft if (cg >= fs->fs_ncg)
744 1.1 mycroft cg -= fs->fs_ncg;
745 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
746 1.1 mycroft if (result)
747 1.1 mycroft return (result);
748 1.1 mycroft }
749 1.1 mycroft /*
750 1.1 mycroft * 3: brute force search
751 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
752 1.1 mycroft * and 1 is always checked in the quadratic rehash.
753 1.1 mycroft */
754 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
755 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
756 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
757 1.1 mycroft if (result)
758 1.1 mycroft return (result);
759 1.1 mycroft cg++;
760 1.1 mycroft if (cg == fs->fs_ncg)
761 1.1 mycroft cg = 0;
762 1.1 mycroft }
763 1.1 mycroft return (NULL);
764 1.1 mycroft }
765 1.1 mycroft
766 1.1 mycroft /*
767 1.1 mycroft * Determine whether a fragment can be extended.
768 1.1 mycroft *
769 1.1 mycroft * Check to see if the necessary fragments are available, and
770 1.1 mycroft * if they are, allocate them.
771 1.1 mycroft */
772 1.18 fvdl static ufs_daddr_t
773 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
774 1.1 mycroft struct inode *ip;
775 1.1 mycroft int cg;
776 1.1 mycroft long bprev;
777 1.1 mycroft int osize, nsize;
778 1.1 mycroft {
779 1.1 mycroft register struct fs *fs;
780 1.1 mycroft register struct cg *cgp;
781 1.1 mycroft struct buf *bp;
782 1.1 mycroft long bno;
783 1.1 mycroft int frags, bbase;
784 1.1 mycroft int i, error;
785 1.1 mycroft
786 1.1 mycroft fs = ip->i_fs;
787 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
788 1.1 mycroft return (NULL);
789 1.1 mycroft frags = numfrags(fs, nsize);
790 1.1 mycroft bbase = fragnum(fs, bprev);
791 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
792 1.1 mycroft /* cannot extend across a block boundary */
793 1.1 mycroft return (NULL);
794 1.1 mycroft }
795 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
796 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
797 1.1 mycroft if (error) {
798 1.1 mycroft brelse(bp);
799 1.1 mycroft return (NULL);
800 1.1 mycroft }
801 1.1 mycroft cgp = (struct cg *)bp->b_data;
802 1.1 mycroft if (!cg_chkmagic(cgp)) {
803 1.1 mycroft brelse(bp);
804 1.1 mycroft return (NULL);
805 1.1 mycroft }
806 1.1 mycroft cgp->cg_time = time.tv_sec;
807 1.1 mycroft bno = dtogd(fs, bprev);
808 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
809 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i)) {
810 1.1 mycroft brelse(bp);
811 1.1 mycroft return (NULL);
812 1.1 mycroft }
813 1.1 mycroft /*
814 1.1 mycroft * the current fragment can be extended
815 1.1 mycroft * deduct the count on fragment being extended into
816 1.1 mycroft * increase the count on the remaining fragment (if any)
817 1.1 mycroft * allocate the extended piece
818 1.1 mycroft */
819 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
820 1.1 mycroft if (isclr(cg_blksfree(cgp), bno + i))
821 1.1 mycroft break;
822 1.1 mycroft cgp->cg_frsum[i - numfrags(fs, osize)]--;
823 1.1 mycroft if (i != frags)
824 1.1 mycroft cgp->cg_frsum[i - frags]++;
825 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
826 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
827 1.1 mycroft cgp->cg_cs.cs_nffree--;
828 1.1 mycroft fs->fs_cstotal.cs_nffree--;
829 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
830 1.1 mycroft }
831 1.1 mycroft fs->fs_fmod = 1;
832 1.1 mycroft bdwrite(bp);
833 1.1 mycroft return (bprev);
834 1.1 mycroft }
835 1.1 mycroft
836 1.1 mycroft /*
837 1.1 mycroft * Determine whether a block can be allocated.
838 1.1 mycroft *
839 1.1 mycroft * Check to see if a block of the appropriate size is available,
840 1.1 mycroft * and if it is, allocate it.
841 1.1 mycroft */
842 1.18 fvdl static ufs_daddr_t
843 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
844 1.1 mycroft struct inode *ip;
845 1.1 mycroft int cg;
846 1.18 fvdl ufs_daddr_t bpref;
847 1.1 mycroft int size;
848 1.1 mycroft {
849 1.1 mycroft register struct fs *fs;
850 1.1 mycroft register struct cg *cgp;
851 1.1 mycroft struct buf *bp;
852 1.1 mycroft register int i;
853 1.1 mycroft int error, bno, frags, allocsiz;
854 1.1 mycroft
855 1.1 mycroft fs = ip->i_fs;
856 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
857 1.1 mycroft return (NULL);
858 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
859 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
860 1.1 mycroft if (error) {
861 1.1 mycroft brelse(bp);
862 1.1 mycroft return (NULL);
863 1.1 mycroft }
864 1.1 mycroft cgp = (struct cg *)bp->b_data;
865 1.1 mycroft if (!cg_chkmagic(cgp) ||
866 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
867 1.1 mycroft brelse(bp);
868 1.1 mycroft return (NULL);
869 1.1 mycroft }
870 1.1 mycroft cgp->cg_time = time.tv_sec;
871 1.1 mycroft if (size == fs->fs_bsize) {
872 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
873 1.1 mycroft bdwrite(bp);
874 1.1 mycroft return (bno);
875 1.1 mycroft }
876 1.1 mycroft /*
877 1.1 mycroft * check to see if any fragments are already available
878 1.1 mycroft * allocsiz is the size which will be allocated, hacking
879 1.1 mycroft * it down to a smaller size if necessary
880 1.1 mycroft */
881 1.1 mycroft frags = numfrags(fs, size);
882 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
883 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
884 1.1 mycroft break;
885 1.1 mycroft if (allocsiz == fs->fs_frag) {
886 1.1 mycroft /*
887 1.1 mycroft * no fragments were available, so a block will be
888 1.1 mycroft * allocated, and hacked up
889 1.1 mycroft */
890 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
891 1.1 mycroft brelse(bp);
892 1.1 mycroft return (NULL);
893 1.1 mycroft }
894 1.1 mycroft bno = ffs_alloccgblk(fs, cgp, bpref);
895 1.1 mycroft bpref = dtogd(fs, bno);
896 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
897 1.1 mycroft setbit(cg_blksfree(cgp), bpref + i);
898 1.1 mycroft i = fs->fs_frag - frags;
899 1.1 mycroft cgp->cg_cs.cs_nffree += i;
900 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
901 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
902 1.1 mycroft fs->fs_fmod = 1;
903 1.1 mycroft cgp->cg_frsum[i]++;
904 1.1 mycroft bdwrite(bp);
905 1.1 mycroft return (bno);
906 1.1 mycroft }
907 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
908 1.1 mycroft if (bno < 0) {
909 1.1 mycroft brelse(bp);
910 1.1 mycroft return (NULL);
911 1.1 mycroft }
912 1.1 mycroft for (i = 0; i < frags; i++)
913 1.1 mycroft clrbit(cg_blksfree(cgp), bno + i);
914 1.1 mycroft cgp->cg_cs.cs_nffree -= frags;
915 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
916 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
917 1.1 mycroft fs->fs_fmod = 1;
918 1.1 mycroft cgp->cg_frsum[allocsiz]--;
919 1.1 mycroft if (frags != allocsiz)
920 1.1 mycroft cgp->cg_frsum[allocsiz - frags]++;
921 1.1 mycroft bdwrite(bp);
922 1.1 mycroft return (cg * fs->fs_fpg + bno);
923 1.1 mycroft }
924 1.1 mycroft
925 1.1 mycroft /*
926 1.1 mycroft * Allocate a block in a cylinder group.
927 1.1 mycroft *
928 1.1 mycroft * This algorithm implements the following policy:
929 1.1 mycroft * 1) allocate the requested block.
930 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
931 1.1 mycroft * 3) allocate the next available block on the block rotor for the
932 1.1 mycroft * specified cylinder group.
933 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
934 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
935 1.1 mycroft */
936 1.18 fvdl static ufs_daddr_t
937 1.1 mycroft ffs_alloccgblk(fs, cgp, bpref)
938 1.1 mycroft register struct fs *fs;
939 1.1 mycroft register struct cg *cgp;
940 1.18 fvdl ufs_daddr_t bpref;
941 1.1 mycroft {
942 1.18 fvdl ufs_daddr_t bno, blkno;
943 1.1 mycroft int cylno, pos, delta;
944 1.1 mycroft short *cylbp;
945 1.1 mycroft register int i;
946 1.1 mycroft
947 1.1 mycroft if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
948 1.1 mycroft bpref = cgp->cg_rotor;
949 1.1 mycroft goto norot;
950 1.1 mycroft }
951 1.1 mycroft bpref = blknum(fs, bpref);
952 1.1 mycroft bpref = dtogd(fs, bpref);
953 1.1 mycroft /*
954 1.1 mycroft * if the requested block is available, use it
955 1.1 mycroft */
956 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
957 1.1 mycroft bno = bpref;
958 1.1 mycroft goto gotit;
959 1.1 mycroft }
960 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
961 1.1 mycroft /*
962 1.1 mycroft * Block layout information is not available.
963 1.1 mycroft * Leaving bpref unchanged means we take the
964 1.1 mycroft * next available free block following the one
965 1.1 mycroft * we just allocated. Hopefully this will at
966 1.1 mycroft * least hit a track cache on drives of unknown
967 1.1 mycroft * geometry (e.g. SCSI).
968 1.1 mycroft */
969 1.1 mycroft goto norot;
970 1.1 mycroft }
971 1.6 mycroft /*
972 1.6 mycroft * check for a block available on the same cylinder
973 1.6 mycroft */
974 1.6 mycroft cylno = cbtocylno(fs, bpref);
975 1.6 mycroft if (cg_blktot(cgp)[cylno] == 0)
976 1.6 mycroft goto norot;
977 1.1 mycroft /*
978 1.1 mycroft * check the summary information to see if a block is
979 1.1 mycroft * available in the requested cylinder starting at the
980 1.1 mycroft * requested rotational position and proceeding around.
981 1.1 mycroft */
982 1.1 mycroft cylbp = cg_blks(fs, cgp, cylno);
983 1.1 mycroft pos = cbtorpos(fs, bpref);
984 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
985 1.1 mycroft if (cylbp[i] > 0)
986 1.1 mycroft break;
987 1.1 mycroft if (i == fs->fs_nrpos)
988 1.1 mycroft for (i = 0; i < pos; i++)
989 1.1 mycroft if (cylbp[i] > 0)
990 1.1 mycroft break;
991 1.1 mycroft if (cylbp[i] > 0) {
992 1.1 mycroft /*
993 1.1 mycroft * found a rotational position, now find the actual
994 1.1 mycroft * block. A panic if none is actually there.
995 1.1 mycroft */
996 1.1 mycroft pos = cylno % fs->fs_cpc;
997 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
998 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
999 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1000 1.1 mycroft pos, i, fs->fs_fsmnt);
1001 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1002 1.1 mycroft }
1003 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1004 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
1005 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1006 1.1 mycroft goto gotit;
1007 1.1 mycroft }
1008 1.1 mycroft delta = fs_rotbl(fs)[i];
1009 1.1 mycroft if (delta <= 0 ||
1010 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1011 1.1 mycroft break;
1012 1.1 mycroft i += delta;
1013 1.1 mycroft }
1014 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1015 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1016 1.1 mycroft }
1017 1.1 mycroft norot:
1018 1.1 mycroft /*
1019 1.1 mycroft * no blocks in the requested cylinder, so take next
1020 1.1 mycroft * available one in this cylinder group.
1021 1.1 mycroft */
1022 1.1 mycroft bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1023 1.1 mycroft if (bno < 0)
1024 1.1 mycroft return (NULL);
1025 1.1 mycroft cgp->cg_rotor = bno;
1026 1.1 mycroft gotit:
1027 1.1 mycroft blkno = fragstoblks(fs, bno);
1028 1.1 mycroft ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1029 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, -1);
1030 1.1 mycroft cgp->cg_cs.cs_nbfree--;
1031 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1032 1.1 mycroft fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1033 1.1 mycroft cylno = cbtocylno(fs, bno);
1034 1.1 mycroft cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1035 1.1 mycroft cg_blktot(cgp)[cylno]--;
1036 1.1 mycroft fs->fs_fmod = 1;
1037 1.1 mycroft return (cgp->cg_cgx * fs->fs_fpg + bno);
1038 1.1 mycroft }
1039 1.1 mycroft
1040 1.1 mycroft /*
1041 1.1 mycroft * Determine whether a cluster can be allocated.
1042 1.1 mycroft *
1043 1.1 mycroft * We do not currently check for optimal rotational layout if there
1044 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1045 1.1 mycroft * take the first one that we find following bpref.
1046 1.1 mycroft */
1047 1.18 fvdl static ufs_daddr_t
1048 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1049 1.1 mycroft struct inode *ip;
1050 1.1 mycroft int cg;
1051 1.18 fvdl ufs_daddr_t bpref;
1052 1.1 mycroft int len;
1053 1.1 mycroft {
1054 1.1 mycroft register struct fs *fs;
1055 1.1 mycroft register struct cg *cgp;
1056 1.1 mycroft struct buf *bp;
1057 1.18 fvdl int i, got, run, bno, bit, map;
1058 1.1 mycroft u_char *mapp;
1059 1.5 mycroft int32_t *lp;
1060 1.1 mycroft
1061 1.1 mycroft fs = ip->i_fs;
1062 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1063 1.1 mycroft return (NULL);
1064 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1065 1.1 mycroft NOCRED, &bp))
1066 1.1 mycroft goto fail;
1067 1.1 mycroft cgp = (struct cg *)bp->b_data;
1068 1.1 mycroft if (!cg_chkmagic(cgp))
1069 1.1 mycroft goto fail;
1070 1.1 mycroft /*
1071 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1072 1.1 mycroft * available in this cylinder group.
1073 1.1 mycroft */
1074 1.5 mycroft lp = &cg_clustersum(cgp)[len];
1075 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1076 1.5 mycroft if (*lp++ > 0)
1077 1.1 mycroft break;
1078 1.5 mycroft if (i > fs->fs_contigsumsize) {
1079 1.5 mycroft /*
1080 1.5 mycroft * This is the first time looking for a cluster in this
1081 1.5 mycroft * cylinder group. Update the cluster summary information
1082 1.5 mycroft * to reflect the true maximum sized cluster so that
1083 1.5 mycroft * future cluster allocation requests can avoid reading
1084 1.5 mycroft * the cylinder group map only to find no clusters.
1085 1.5 mycroft */
1086 1.5 mycroft lp = &cg_clustersum(cgp)[len - 1];
1087 1.5 mycroft for (i = len - 1; i > 0; i--)
1088 1.5 mycroft if (*lp-- > 0)
1089 1.5 mycroft break;
1090 1.5 mycroft fs->fs_maxcluster[cg] = i;
1091 1.1 mycroft goto fail;
1092 1.5 mycroft }
1093 1.1 mycroft /*
1094 1.1 mycroft * Search the cluster map to find a big enough cluster.
1095 1.1 mycroft * We take the first one that we find, even if it is larger
1096 1.1 mycroft * than we need as we prefer to get one close to the previous
1097 1.1 mycroft * block allocation. We do not search before the current
1098 1.1 mycroft * preference point as we do not want to allocate a block
1099 1.1 mycroft * that is allocated before the previous one (as we will
1100 1.1 mycroft * then have to wait for another pass of the elevator
1101 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1102 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1103 1.1 mycroft */
1104 1.1 mycroft if (dtog(fs, bpref) != cg)
1105 1.1 mycroft bpref = 0;
1106 1.1 mycroft else
1107 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1108 1.1 mycroft mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1109 1.1 mycroft map = *mapp++;
1110 1.1 mycroft bit = 1 << (bpref % NBBY);
1111 1.18 fvdl for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1112 1.1 mycroft if ((map & bit) == 0) {
1113 1.1 mycroft run = 0;
1114 1.1 mycroft } else {
1115 1.1 mycroft run++;
1116 1.1 mycroft if (run == len)
1117 1.1 mycroft break;
1118 1.1 mycroft }
1119 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1120 1.1 mycroft bit <<= 1;
1121 1.1 mycroft } else {
1122 1.1 mycroft map = *mapp++;
1123 1.1 mycroft bit = 1;
1124 1.1 mycroft }
1125 1.1 mycroft }
1126 1.18 fvdl if (got == cgp->cg_nclusterblks)
1127 1.1 mycroft goto fail;
1128 1.1 mycroft /*
1129 1.1 mycroft * Allocate the cluster that we have found.
1130 1.1 mycroft */
1131 1.18 fvdl for (i = 1; i <= len; i++)
1132 1.18 fvdl if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
1133 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1134 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1135 1.18 fvdl if (dtog(fs, bno) != cg)
1136 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1137 1.1 mycroft len = blkstofrags(fs, len);
1138 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1139 1.18 fvdl if ((got = ffs_alloccgblk(fs, cgp, bno + i)) != bno + i)
1140 1.1 mycroft panic("ffs_clusteralloc: lost block");
1141 1.8 cgd bdwrite(bp);
1142 1.1 mycroft return (bno);
1143 1.1 mycroft
1144 1.1 mycroft fail:
1145 1.1 mycroft brelse(bp);
1146 1.1 mycroft return (0);
1147 1.1 mycroft }
1148 1.1 mycroft
1149 1.1 mycroft /*
1150 1.1 mycroft * Determine whether an inode can be allocated.
1151 1.1 mycroft *
1152 1.1 mycroft * Check to see if an inode is available, and if it is,
1153 1.1 mycroft * allocate it using the following policy:
1154 1.1 mycroft * 1) allocate the requested inode.
1155 1.1 mycroft * 2) allocate the next available inode after the requested
1156 1.1 mycroft * inode in the specified cylinder group.
1157 1.1 mycroft */
1158 1.18 fvdl static ufs_daddr_t
1159 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1160 1.1 mycroft struct inode *ip;
1161 1.1 mycroft int cg;
1162 1.18 fvdl ufs_daddr_t ipref;
1163 1.1 mycroft int mode;
1164 1.1 mycroft {
1165 1.1 mycroft register struct fs *fs;
1166 1.1 mycroft register struct cg *cgp;
1167 1.1 mycroft struct buf *bp;
1168 1.1 mycroft int error, start, len, loc, map, i;
1169 1.1 mycroft
1170 1.1 mycroft fs = ip->i_fs;
1171 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1172 1.1 mycroft return (NULL);
1173 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1174 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1175 1.1 mycroft if (error) {
1176 1.1 mycroft brelse(bp);
1177 1.1 mycroft return (NULL);
1178 1.1 mycroft }
1179 1.1 mycroft cgp = (struct cg *)bp->b_data;
1180 1.1 mycroft if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1181 1.1 mycroft brelse(bp);
1182 1.1 mycroft return (NULL);
1183 1.1 mycroft }
1184 1.1 mycroft cgp->cg_time = time.tv_sec;
1185 1.1 mycroft if (ipref) {
1186 1.1 mycroft ipref %= fs->fs_ipg;
1187 1.1 mycroft if (isclr(cg_inosused(cgp), ipref))
1188 1.1 mycroft goto gotit;
1189 1.1 mycroft }
1190 1.1 mycroft start = cgp->cg_irotor / NBBY;
1191 1.1 mycroft len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1192 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1193 1.1 mycroft if (loc == 0) {
1194 1.1 mycroft len = start + 1;
1195 1.1 mycroft start = 0;
1196 1.1 mycroft loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1197 1.1 mycroft if (loc == 0) {
1198 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1199 1.1 mycroft cg, cgp->cg_irotor, fs->fs_fsmnt);
1200 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1201 1.1 mycroft /* NOTREACHED */
1202 1.1 mycroft }
1203 1.1 mycroft }
1204 1.1 mycroft i = start + len - loc;
1205 1.1 mycroft map = cg_inosused(cgp)[i];
1206 1.1 mycroft ipref = i * NBBY;
1207 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1208 1.1 mycroft if ((map & i) == 0) {
1209 1.1 mycroft cgp->cg_irotor = ipref;
1210 1.1 mycroft goto gotit;
1211 1.1 mycroft }
1212 1.1 mycroft }
1213 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1214 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1215 1.1 mycroft /* NOTREACHED */
1216 1.1 mycroft gotit:
1217 1.1 mycroft setbit(cg_inosused(cgp), ipref);
1218 1.1 mycroft cgp->cg_cs.cs_nifree--;
1219 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1220 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree--;
1221 1.1 mycroft fs->fs_fmod = 1;
1222 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1223 1.1 mycroft cgp->cg_cs.cs_ndir++;
1224 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1225 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1226 1.1 mycroft }
1227 1.1 mycroft bdwrite(bp);
1228 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1229 1.1 mycroft }
1230 1.1 mycroft
1231 1.1 mycroft /*
1232 1.1 mycroft * Free a block or fragment.
1233 1.1 mycroft *
1234 1.1 mycroft * The specified block or fragment is placed back in the
1235 1.1 mycroft * free map. If a fragment is deallocated, a possible
1236 1.1 mycroft * block reassembly is checked.
1237 1.1 mycroft */
1238 1.9 christos void
1239 1.1 mycroft ffs_blkfree(ip, bno, size)
1240 1.1 mycroft register struct inode *ip;
1241 1.18 fvdl ufs_daddr_t bno;
1242 1.1 mycroft long size;
1243 1.1 mycroft {
1244 1.1 mycroft register struct fs *fs;
1245 1.1 mycroft register struct cg *cgp;
1246 1.1 mycroft struct buf *bp;
1247 1.18 fvdl ufs_daddr_t blkno;
1248 1.1 mycroft int i, error, cg, blk, frags, bbase;
1249 1.1 mycroft
1250 1.1 mycroft fs = ip->i_fs;
1251 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1252 1.13 christos printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1253 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1254 1.1 mycroft panic("blkfree: bad size");
1255 1.1 mycroft }
1256 1.1 mycroft cg = dtog(fs, bno);
1257 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1258 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1259 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1260 1.1 mycroft return;
1261 1.1 mycroft }
1262 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1263 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1264 1.1 mycroft if (error) {
1265 1.1 mycroft brelse(bp);
1266 1.1 mycroft return;
1267 1.1 mycroft }
1268 1.1 mycroft cgp = (struct cg *)bp->b_data;
1269 1.1 mycroft if (!cg_chkmagic(cgp)) {
1270 1.1 mycroft brelse(bp);
1271 1.1 mycroft return;
1272 1.1 mycroft }
1273 1.1 mycroft cgp->cg_time = time.tv_sec;
1274 1.1 mycroft bno = dtogd(fs, bno);
1275 1.1 mycroft if (size == fs->fs_bsize) {
1276 1.1 mycroft blkno = fragstoblks(fs, bno);
1277 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1278 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1279 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1280 1.1 mycroft panic("blkfree: freeing free block");
1281 1.1 mycroft }
1282 1.1 mycroft ffs_setblock(fs, cg_blksfree(cgp), blkno);
1283 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1284 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1285 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1286 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1287 1.1 mycroft i = cbtocylno(fs, bno);
1288 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1289 1.1 mycroft cg_blktot(cgp)[i]++;
1290 1.1 mycroft } else {
1291 1.1 mycroft bbase = bno - fragnum(fs, bno);
1292 1.1 mycroft /*
1293 1.1 mycroft * decrement the counts associated with the old frags
1294 1.1 mycroft */
1295 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1296 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1297 1.1 mycroft /*
1298 1.1 mycroft * deallocate the fragment
1299 1.1 mycroft */
1300 1.1 mycroft frags = numfrags(fs, size);
1301 1.1 mycroft for (i = 0; i < frags; i++) {
1302 1.1 mycroft if (isset(cg_blksfree(cgp), bno + i)) {
1303 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1304 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1305 1.1 mycroft panic("blkfree: freeing free frag");
1306 1.1 mycroft }
1307 1.1 mycroft setbit(cg_blksfree(cgp), bno + i);
1308 1.1 mycroft }
1309 1.1 mycroft cgp->cg_cs.cs_nffree += i;
1310 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1311 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree += i;
1312 1.1 mycroft /*
1313 1.1 mycroft * add back in counts associated with the new frags
1314 1.1 mycroft */
1315 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bbase);
1316 1.1 mycroft ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1317 1.1 mycroft /*
1318 1.1 mycroft * if a complete block has been reassembled, account for it
1319 1.1 mycroft */
1320 1.1 mycroft blkno = fragstoblks(fs, bbase);
1321 1.1 mycroft if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1322 1.1 mycroft cgp->cg_cs.cs_nffree -= fs->fs_frag;
1323 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1324 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1325 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, 1);
1326 1.1 mycroft cgp->cg_cs.cs_nbfree++;
1327 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1328 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1329 1.1 mycroft i = cbtocylno(fs, bbase);
1330 1.1 mycroft cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1331 1.1 mycroft cg_blktot(cgp)[i]++;
1332 1.1 mycroft }
1333 1.1 mycroft }
1334 1.1 mycroft fs->fs_fmod = 1;
1335 1.1 mycroft bdwrite(bp);
1336 1.1 mycroft }
1337 1.1 mycroft
1338 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1339 1.18 fvdl /*
1340 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1341 1.18 fvdl * fragment is allocated, false if it is free.
1342 1.18 fvdl */
1343 1.18 fvdl static int
1344 1.18 fvdl ffs_checkblk(ip, bno, size)
1345 1.18 fvdl struct inode *ip;
1346 1.18 fvdl ufs_daddr_t bno;
1347 1.18 fvdl long size;
1348 1.18 fvdl {
1349 1.18 fvdl struct fs *fs;
1350 1.18 fvdl struct cg *cgp;
1351 1.18 fvdl struct buf *bp;
1352 1.18 fvdl int i, error, frags, free;
1353 1.18 fvdl
1354 1.18 fvdl fs = ip->i_fs;
1355 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1356 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1357 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1358 1.18 fvdl panic("checkblk: bad size");
1359 1.18 fvdl }
1360 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1361 1.18 fvdl panic("checkblk: bad block %d", bno);
1362 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1363 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1364 1.18 fvdl if (error) {
1365 1.18 fvdl brelse(bp);
1366 1.18 fvdl return 0;
1367 1.18 fvdl }
1368 1.18 fvdl cgp = (struct cg *)bp->b_data;
1369 1.18 fvdl if (!cg_chkmagic(cgp)) {
1370 1.18 fvdl brelse(bp);
1371 1.18 fvdl return 0;
1372 1.18 fvdl }
1373 1.18 fvdl bno = dtogd(fs, bno);
1374 1.18 fvdl if (size == fs->fs_bsize) {
1375 1.18 fvdl free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
1376 1.18 fvdl } else {
1377 1.18 fvdl frags = numfrags(fs, size);
1378 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1379 1.18 fvdl if (isset(cg_blksfree(cgp), bno + i))
1380 1.18 fvdl free++;
1381 1.18 fvdl if (free != 0 && free != frags)
1382 1.18 fvdl panic("checkblk: partially free fragment");
1383 1.18 fvdl }
1384 1.18 fvdl brelse(bp);
1385 1.18 fvdl return (!free);
1386 1.18 fvdl }
1387 1.18 fvdl #endif /* DIAGNOSTIC */
1388 1.18 fvdl
1389 1.1 mycroft /*
1390 1.1 mycroft * Free an inode.
1391 1.1 mycroft *
1392 1.1 mycroft * The specified inode is placed back in the free map.
1393 1.1 mycroft */
1394 1.1 mycroft int
1395 1.9 christos ffs_vfree(v)
1396 1.9 christos void *v;
1397 1.9 christos {
1398 1.1 mycroft struct vop_vfree_args /* {
1399 1.1 mycroft struct vnode *a_pvp;
1400 1.1 mycroft ino_t a_ino;
1401 1.1 mycroft int a_mode;
1402 1.9 christos } */ *ap = v;
1403 1.1 mycroft register struct fs *fs;
1404 1.1 mycroft register struct cg *cgp;
1405 1.1 mycroft register struct inode *pip;
1406 1.1 mycroft ino_t ino = ap->a_ino;
1407 1.1 mycroft struct buf *bp;
1408 1.1 mycroft int error, cg;
1409 1.1 mycroft
1410 1.1 mycroft pip = VTOI(ap->a_pvp);
1411 1.1 mycroft fs = pip->i_fs;
1412 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1413 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1414 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1415 1.1 mycroft cg = ino_to_cg(fs, ino);
1416 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1417 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1418 1.1 mycroft if (error) {
1419 1.1 mycroft brelse(bp);
1420 1.1 mycroft return (0);
1421 1.1 mycroft }
1422 1.1 mycroft cgp = (struct cg *)bp->b_data;
1423 1.1 mycroft if (!cg_chkmagic(cgp)) {
1424 1.1 mycroft brelse(bp);
1425 1.1 mycroft return (0);
1426 1.1 mycroft }
1427 1.1 mycroft cgp->cg_time = time.tv_sec;
1428 1.1 mycroft ino %= fs->fs_ipg;
1429 1.1 mycroft if (isclr(cg_inosused(cgp), ino)) {
1430 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1431 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1432 1.1 mycroft if (fs->fs_ronly == 0)
1433 1.1 mycroft panic("ifree: freeing free inode");
1434 1.1 mycroft }
1435 1.1 mycroft clrbit(cg_inosused(cgp), ino);
1436 1.1 mycroft if (ino < cgp->cg_irotor)
1437 1.1 mycroft cgp->cg_irotor = ino;
1438 1.1 mycroft cgp->cg_cs.cs_nifree++;
1439 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1440 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1441 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1442 1.1 mycroft cgp->cg_cs.cs_ndir--;
1443 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1444 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1445 1.1 mycroft }
1446 1.1 mycroft fs->fs_fmod = 1;
1447 1.1 mycroft bdwrite(bp);
1448 1.1 mycroft return (0);
1449 1.1 mycroft }
1450 1.1 mycroft
1451 1.1 mycroft /*
1452 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1453 1.1 mycroft *
1454 1.1 mycroft * It is a panic if a request is made to find a block if none are
1455 1.1 mycroft * available.
1456 1.1 mycroft */
1457 1.18 fvdl static ufs_daddr_t
1458 1.1 mycroft ffs_mapsearch(fs, cgp, bpref, allocsiz)
1459 1.1 mycroft register struct fs *fs;
1460 1.1 mycroft register struct cg *cgp;
1461 1.18 fvdl ufs_daddr_t bpref;
1462 1.1 mycroft int allocsiz;
1463 1.1 mycroft {
1464 1.18 fvdl ufs_daddr_t bno;
1465 1.1 mycroft int start, len, loc, i;
1466 1.1 mycroft int blk, field, subfield, pos;
1467 1.1 mycroft
1468 1.1 mycroft /*
1469 1.1 mycroft * find the fragment by searching through the free block
1470 1.1 mycroft * map for an appropriate bit pattern
1471 1.1 mycroft */
1472 1.1 mycroft if (bpref)
1473 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1474 1.1 mycroft else
1475 1.1 mycroft start = cgp->cg_frotor / NBBY;
1476 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1477 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1478 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1479 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1480 1.1 mycroft if (loc == 0) {
1481 1.1 mycroft len = start + 1;
1482 1.1 mycroft start = 0;
1483 1.1 mycroft loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1484 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1485 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1486 1.1 mycroft if (loc == 0) {
1487 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1488 1.1 mycroft start, len, fs->fs_fsmnt);
1489 1.1 mycroft panic("ffs_alloccg: map corrupted");
1490 1.1 mycroft /* NOTREACHED */
1491 1.1 mycroft }
1492 1.1 mycroft }
1493 1.1 mycroft bno = (start + len - loc) * NBBY;
1494 1.1 mycroft cgp->cg_frotor = bno;
1495 1.1 mycroft /*
1496 1.1 mycroft * found the byte in the map
1497 1.1 mycroft * sift through the bits to find the selected frag
1498 1.1 mycroft */
1499 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1500 1.1 mycroft blk = blkmap(fs, cg_blksfree(cgp), bno);
1501 1.1 mycroft blk <<= 1;
1502 1.1 mycroft field = around[allocsiz];
1503 1.1 mycroft subfield = inside[allocsiz];
1504 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1505 1.1 mycroft if ((blk & field) == subfield)
1506 1.1 mycroft return (bno + pos);
1507 1.1 mycroft field <<= 1;
1508 1.1 mycroft subfield <<= 1;
1509 1.1 mycroft }
1510 1.1 mycroft }
1511 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1512 1.1 mycroft panic("ffs_alloccg: block not in map");
1513 1.1 mycroft return (-1);
1514 1.1 mycroft }
1515 1.1 mycroft
1516 1.1 mycroft /*
1517 1.1 mycroft * Update the cluster map because of an allocation or free.
1518 1.1 mycroft *
1519 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1520 1.1 mycroft */
1521 1.9 christos void
1522 1.1 mycroft ffs_clusteracct(fs, cgp, blkno, cnt)
1523 1.1 mycroft struct fs *fs;
1524 1.1 mycroft struct cg *cgp;
1525 1.18 fvdl ufs_daddr_t blkno;
1526 1.1 mycroft int cnt;
1527 1.1 mycroft {
1528 1.4 cgd int32_t *sump;
1529 1.5 mycroft int32_t *lp;
1530 1.1 mycroft u_char *freemapp, *mapp;
1531 1.1 mycroft int i, start, end, forw, back, map, bit;
1532 1.1 mycroft
1533 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1534 1.1 mycroft return;
1535 1.1 mycroft freemapp = cg_clustersfree(cgp);
1536 1.1 mycroft sump = cg_clustersum(cgp);
1537 1.1 mycroft /*
1538 1.1 mycroft * Allocate or clear the actual block.
1539 1.1 mycroft */
1540 1.1 mycroft if (cnt > 0)
1541 1.1 mycroft setbit(freemapp, blkno);
1542 1.1 mycroft else
1543 1.1 mycroft clrbit(freemapp, blkno);
1544 1.1 mycroft /*
1545 1.1 mycroft * Find the size of the cluster going forward.
1546 1.1 mycroft */
1547 1.1 mycroft start = blkno + 1;
1548 1.1 mycroft end = start + fs->fs_contigsumsize;
1549 1.1 mycroft if (end >= cgp->cg_nclusterblks)
1550 1.1 mycroft end = cgp->cg_nclusterblks;
1551 1.1 mycroft mapp = &freemapp[start / NBBY];
1552 1.1 mycroft map = *mapp++;
1553 1.1 mycroft bit = 1 << (start % NBBY);
1554 1.1 mycroft for (i = start; i < end; i++) {
1555 1.1 mycroft if ((map & bit) == 0)
1556 1.1 mycroft break;
1557 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1558 1.1 mycroft bit <<= 1;
1559 1.1 mycroft } else {
1560 1.1 mycroft map = *mapp++;
1561 1.1 mycroft bit = 1;
1562 1.1 mycroft }
1563 1.1 mycroft }
1564 1.1 mycroft forw = i - start;
1565 1.1 mycroft /*
1566 1.1 mycroft * Find the size of the cluster going backward.
1567 1.1 mycroft */
1568 1.1 mycroft start = blkno - 1;
1569 1.1 mycroft end = start - fs->fs_contigsumsize;
1570 1.1 mycroft if (end < 0)
1571 1.1 mycroft end = -1;
1572 1.1 mycroft mapp = &freemapp[start / NBBY];
1573 1.1 mycroft map = *mapp--;
1574 1.1 mycroft bit = 1 << (start % NBBY);
1575 1.1 mycroft for (i = start; i > end; i--) {
1576 1.1 mycroft if ((map & bit) == 0)
1577 1.1 mycroft break;
1578 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1579 1.1 mycroft bit >>= 1;
1580 1.1 mycroft } else {
1581 1.1 mycroft map = *mapp--;
1582 1.1 mycroft bit = 1 << (NBBY - 1);
1583 1.1 mycroft }
1584 1.1 mycroft }
1585 1.1 mycroft back = start - i;
1586 1.1 mycroft /*
1587 1.1 mycroft * Account for old cluster and the possibly new forward and
1588 1.1 mycroft * back clusters.
1589 1.1 mycroft */
1590 1.1 mycroft i = back + forw + 1;
1591 1.1 mycroft if (i > fs->fs_contigsumsize)
1592 1.1 mycroft i = fs->fs_contigsumsize;
1593 1.1 mycroft sump[i] += cnt;
1594 1.1 mycroft if (back > 0)
1595 1.1 mycroft sump[back] -= cnt;
1596 1.1 mycroft if (forw > 0)
1597 1.1 mycroft sump[forw] -= cnt;
1598 1.5 mycroft /*
1599 1.5 mycroft * Update cluster summary information.
1600 1.5 mycroft */
1601 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1602 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1603 1.5 mycroft if (*lp-- > 0)
1604 1.5 mycroft break;
1605 1.5 mycroft fs->fs_maxcluster[cgp->cg_cgx] = i;
1606 1.1 mycroft }
1607 1.1 mycroft
1608 1.1 mycroft /*
1609 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1610 1.1 mycroft *
1611 1.1 mycroft * The form of the error message is:
1612 1.1 mycroft * fs: error message
1613 1.1 mycroft */
1614 1.1 mycroft static void
1615 1.1 mycroft ffs_fserr(fs, uid, cp)
1616 1.1 mycroft struct fs *fs;
1617 1.1 mycroft u_int uid;
1618 1.1 mycroft char *cp;
1619 1.1 mycroft {
1620 1.1 mycroft
1621 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1622 1.1 mycroft }
1623