ffs_alloc.c revision 1.20 1 1.20 ross /* $NetBSD: ffs_alloc.c,v 1.20 1998/03/19 03:42:35 ross Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.17 mrg
38 1.17 mrg #include "opt_uvm.h"
39 1.1 mycroft
40 1.1 mycroft #include <sys/param.h>
41 1.1 mycroft #include <sys/systm.h>
42 1.1 mycroft #include <sys/buf.h>
43 1.1 mycroft #include <sys/proc.h>
44 1.1 mycroft #include <sys/vnode.h>
45 1.1 mycroft #include <sys/mount.h>
46 1.1 mycroft #include <sys/kernel.h>
47 1.1 mycroft #include <sys/syslog.h>
48 1.1 mycroft
49 1.1 mycroft #include <vm/vm.h>
50 1.1 mycroft
51 1.1 mycroft #include <ufs/ufs/quota.h>
52 1.19 bouyer #include <ufs/ufs/ufsmount.h>
53 1.1 mycroft #include <ufs/ufs/inode.h>
54 1.9 christos #include <ufs/ufs/ufs_extern.h>
55 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
56 1.1 mycroft
57 1.1 mycroft #include <ufs/ffs/fs.h>
58 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
59 1.1 mycroft
60 1.19 bouyer static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
61 1.19 bouyer static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
62 1.19 bouyer struct cg *, ufs_daddr_t));
63 1.19 bouyer static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
64 1.19 bouyer static ino_t ffs_dirpref __P((struct fs *));
65 1.19 bouyer static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
66 1.19 bouyer static void ffs_fserr __P((struct fs *, u_int, char *));
67 1.19 bouyer static u_long ffs_hashalloc __P((struct inode *, int, long, int,
68 1.19 bouyer ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
69 1.19 bouyer int)));
70 1.19 bouyer static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
71 1.19 bouyer static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
72 1.19 bouyer ufs_daddr_t, int));
73 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
74 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
75 1.18 fvdl #endif
76 1.1 mycroft
77 1.1 mycroft /*
78 1.1 mycroft * Allocate a block in the file system.
79 1.1 mycroft *
80 1.1 mycroft * The size of the requested block is given, which must be some
81 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
82 1.1 mycroft * A preference may be optionally specified. If a preference is given
83 1.1 mycroft * the following hierarchy is used to allocate a block:
84 1.1 mycroft * 1) allocate the requested block.
85 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
86 1.1 mycroft * 3) allocate a block in the same cylinder group.
87 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
88 1.1 mycroft * available block is located.
89 1.1 mycroft * If no block preference is given the following heirarchy is used
90 1.1 mycroft * to allocate a block:
91 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
92 1.1 mycroft * inode for the file.
93 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
94 1.1 mycroft * available block is located.
95 1.1 mycroft */
96 1.9 christos int
97 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
98 1.1 mycroft register struct inode *ip;
99 1.18 fvdl ufs_daddr_t lbn, bpref;
100 1.1 mycroft int size;
101 1.1 mycroft struct ucred *cred;
102 1.18 fvdl ufs_daddr_t *bnp;
103 1.1 mycroft {
104 1.1 mycroft register struct fs *fs;
105 1.18 fvdl ufs_daddr_t bno;
106 1.9 christos int cg;
107 1.9 christos #ifdef QUOTA
108 1.9 christos int error;
109 1.9 christos #endif
110 1.1 mycroft
111 1.1 mycroft *bnp = 0;
112 1.1 mycroft fs = ip->i_fs;
113 1.1 mycroft #ifdef DIAGNOSTIC
114 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
115 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
116 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
117 1.1 mycroft panic("ffs_alloc: bad size");
118 1.1 mycroft }
119 1.1 mycroft if (cred == NOCRED)
120 1.1 mycroft panic("ffs_alloc: missing credential\n");
121 1.1 mycroft #endif /* DIAGNOSTIC */
122 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
123 1.1 mycroft goto nospace;
124 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
125 1.1 mycroft goto nospace;
126 1.1 mycroft #ifdef QUOTA
127 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
128 1.1 mycroft return (error);
129 1.1 mycroft #endif
130 1.1 mycroft if (bpref >= fs->fs_size)
131 1.1 mycroft bpref = 0;
132 1.1 mycroft if (bpref == 0)
133 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
134 1.1 mycroft else
135 1.1 mycroft cg = dtog(fs, bpref);
136 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
137 1.9 christos ffs_alloccg);
138 1.1 mycroft if (bno > 0) {
139 1.15 bouyer ip->i_ffs_blocks += btodb(size);
140 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
141 1.1 mycroft *bnp = bno;
142 1.1 mycroft return (0);
143 1.1 mycroft }
144 1.1 mycroft #ifdef QUOTA
145 1.1 mycroft /*
146 1.1 mycroft * Restore user's disk quota because allocation failed.
147 1.1 mycroft */
148 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
149 1.1 mycroft #endif
150 1.1 mycroft nospace:
151 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
152 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
153 1.1 mycroft return (ENOSPC);
154 1.1 mycroft }
155 1.1 mycroft
156 1.1 mycroft /*
157 1.1 mycroft * Reallocate a fragment to a bigger size
158 1.1 mycroft *
159 1.1 mycroft * The number and size of the old block is given, and a preference
160 1.1 mycroft * and new size is also specified. The allocator attempts to extend
161 1.1 mycroft * the original block. Failing that, the regular block allocator is
162 1.1 mycroft * invoked to get an appropriate block.
163 1.1 mycroft */
164 1.9 christos int
165 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
166 1.1 mycroft register struct inode *ip;
167 1.18 fvdl ufs_daddr_t lbprev;
168 1.18 fvdl ufs_daddr_t bpref;
169 1.1 mycroft int osize, nsize;
170 1.1 mycroft struct ucred *cred;
171 1.1 mycroft struct buf **bpp;
172 1.1 mycroft {
173 1.1 mycroft register struct fs *fs;
174 1.1 mycroft struct buf *bp;
175 1.1 mycroft int cg, request, error;
176 1.18 fvdl ufs_daddr_t bprev, bno;
177 1.1 mycroft
178 1.1 mycroft *bpp = 0;
179 1.1 mycroft fs = ip->i_fs;
180 1.1 mycroft #ifdef DIAGNOSTIC
181 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
182 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
183 1.13 christos printf(
184 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
185 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
186 1.1 mycroft panic("ffs_realloccg: bad size");
187 1.1 mycroft }
188 1.1 mycroft if (cred == NOCRED)
189 1.1 mycroft panic("ffs_realloccg: missing credential\n");
190 1.1 mycroft #endif /* DIAGNOSTIC */
191 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
192 1.1 mycroft goto nospace;
193 1.19 bouyer if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
194 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
195 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
196 1.1 mycroft panic("ffs_realloccg: bad bprev");
197 1.1 mycroft }
198 1.1 mycroft /*
199 1.1 mycroft * Allocate the extra space in the buffer.
200 1.1 mycroft */
201 1.9 christos if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
202 1.1 mycroft brelse(bp);
203 1.1 mycroft return (error);
204 1.1 mycroft }
205 1.1 mycroft #ifdef QUOTA
206 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
207 1.1 mycroft brelse(bp);
208 1.1 mycroft return (error);
209 1.1 mycroft }
210 1.1 mycroft #endif
211 1.1 mycroft /*
212 1.1 mycroft * Check for extension in the existing location.
213 1.1 mycroft */
214 1.1 mycroft cg = dtog(fs, bprev);
215 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
216 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
217 1.1 mycroft panic("bad blockno");
218 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
219 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
220 1.1 mycroft allocbuf(bp, nsize);
221 1.1 mycroft bp->b_flags |= B_DONE;
222 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
223 1.1 mycroft *bpp = bp;
224 1.1 mycroft return (0);
225 1.1 mycroft }
226 1.1 mycroft /*
227 1.1 mycroft * Allocate a new disk location.
228 1.1 mycroft */
229 1.1 mycroft if (bpref >= fs->fs_size)
230 1.1 mycroft bpref = 0;
231 1.1 mycroft switch ((int)fs->fs_optim) {
232 1.1 mycroft case FS_OPTSPACE:
233 1.1 mycroft /*
234 1.1 mycroft * Allocate an exact sized fragment. Although this makes
235 1.1 mycroft * best use of space, we will waste time relocating it if
236 1.1 mycroft * the file continues to grow. If the fragmentation is
237 1.1 mycroft * less than half of the minimum free reserve, we choose
238 1.1 mycroft * to begin optimizing for time.
239 1.1 mycroft */
240 1.1 mycroft request = nsize;
241 1.1 mycroft if (fs->fs_minfree < 5 ||
242 1.1 mycroft fs->fs_cstotal.cs_nffree >
243 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
244 1.1 mycroft break;
245 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
246 1.1 mycroft fs->fs_fsmnt);
247 1.1 mycroft fs->fs_optim = FS_OPTTIME;
248 1.1 mycroft break;
249 1.1 mycroft case FS_OPTTIME:
250 1.1 mycroft /*
251 1.1 mycroft * At this point we have discovered a file that is trying to
252 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
253 1.1 mycroft * we allocate a full sized block, then free the unused portion.
254 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
255 1.1 mycroft * above will be able to grow it in place without further
256 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
257 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
258 1.1 mycroft * optimizing for space.
259 1.1 mycroft */
260 1.1 mycroft request = fs->fs_bsize;
261 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
262 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
263 1.1 mycroft break;
264 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
265 1.1 mycroft fs->fs_fsmnt);
266 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
267 1.1 mycroft break;
268 1.1 mycroft default:
269 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
270 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
271 1.1 mycroft panic("ffs_realloccg: bad optim");
272 1.1 mycroft /* NOTREACHED */
273 1.1 mycroft }
274 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
275 1.9 christos ffs_alloccg);
276 1.1 mycroft if (bno > 0) {
277 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
278 1.16 mrg #if defined(UVM)
279 1.16 mrg (void) uvm_vnp_uncache(ITOV(ip));
280 1.16 mrg #else
281 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
282 1.16 mrg #endif
283 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
284 1.1 mycroft if (nsize < request)
285 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
286 1.1 mycroft (long)(request - nsize));
287 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
288 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
289 1.1 mycroft allocbuf(bp, nsize);
290 1.1 mycroft bp->b_flags |= B_DONE;
291 1.1 mycroft bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
292 1.1 mycroft *bpp = bp;
293 1.1 mycroft return (0);
294 1.1 mycroft }
295 1.1 mycroft #ifdef QUOTA
296 1.1 mycroft /*
297 1.1 mycroft * Restore user's disk quota because allocation failed.
298 1.1 mycroft */
299 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
300 1.1 mycroft #endif
301 1.1 mycroft brelse(bp);
302 1.1 mycroft nospace:
303 1.1 mycroft /*
304 1.1 mycroft * no space available
305 1.1 mycroft */
306 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
307 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
308 1.1 mycroft return (ENOSPC);
309 1.1 mycroft }
310 1.1 mycroft
311 1.1 mycroft /*
312 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
313 1.1 mycroft *
314 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
315 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
316 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
317 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
318 1.1 mycroft * block immediately preceeding the current range. If successful, the
319 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
320 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
321 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
322 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
323 1.1 mycroft * the previous block allocation will be used.
324 1.1 mycroft */
325 1.3 mycroft #ifdef DEBUG
326 1.1 mycroft #include <sys/sysctl.h>
327 1.5 mycroft int prtrealloc = 0;
328 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
329 1.1 mycroft #endif
330 1.1 mycroft
331 1.18 fvdl int doasyncfree = 1;
332 1.18 fvdl extern int doreallocblks;
333 1.18 fvdl
334 1.1 mycroft int
335 1.9 christos ffs_reallocblks(v)
336 1.9 christos void *v;
337 1.9 christos {
338 1.1 mycroft struct vop_reallocblks_args /* {
339 1.1 mycroft struct vnode *a_vp;
340 1.1 mycroft struct cluster_save *a_buflist;
341 1.9 christos } */ *ap = v;
342 1.1 mycroft struct fs *fs;
343 1.1 mycroft struct inode *ip;
344 1.1 mycroft struct vnode *vp;
345 1.1 mycroft struct buf *sbp, *ebp;
346 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
347 1.1 mycroft struct cluster_save *buflist;
348 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
349 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
350 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
351 1.11 mycroft struct timespec ts;
352 1.1 mycroft
353 1.1 mycroft vp = ap->a_vp;
354 1.1 mycroft ip = VTOI(vp);
355 1.1 mycroft fs = ip->i_fs;
356 1.1 mycroft if (fs->fs_contigsumsize <= 0)
357 1.1 mycroft return (ENOSPC);
358 1.1 mycroft buflist = ap->a_buflist;
359 1.1 mycroft len = buflist->bs_nchildren;
360 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
361 1.1 mycroft end_lbn = start_lbn + len - 1;
362 1.1 mycroft #ifdef DIAGNOSTIC
363 1.18 fvdl for (i = 0; i < len; i++)
364 1.18 fvdl if (!ffs_checkblk(ip,
365 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
366 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
367 1.1 mycroft for (i = 1; i < len; i++)
368 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
369 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
370 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
371 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
372 1.18 fvdl for (i = 1; i < len - 1; i++)
373 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
374 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
375 1.1 mycroft #endif
376 1.1 mycroft /*
377 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
378 1.1 mycroft * the filesystem has decided to move and do not force it back to
379 1.1 mycroft * the previous cylinder group.
380 1.1 mycroft */
381 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
382 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
383 1.1 mycroft return (ENOSPC);
384 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
385 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
386 1.1 mycroft return (ENOSPC);
387 1.1 mycroft /*
388 1.1 mycroft * Get the starting offset and block map for the first block.
389 1.1 mycroft */
390 1.1 mycroft if (start_lvl == 0) {
391 1.15 bouyer sbap = &ip->i_ffs_db[0];
392 1.1 mycroft soff = start_lbn;
393 1.1 mycroft } else {
394 1.1 mycroft idp = &start_ap[start_lvl - 1];
395 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
396 1.1 mycroft brelse(sbp);
397 1.1 mycroft return (ENOSPC);
398 1.1 mycroft }
399 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
400 1.1 mycroft soff = idp->in_off;
401 1.1 mycroft }
402 1.1 mycroft /*
403 1.1 mycroft * Find the preferred location for the cluster.
404 1.1 mycroft */
405 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
406 1.1 mycroft /*
407 1.1 mycroft * If the block range spans two block maps, get the second map.
408 1.1 mycroft */
409 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
410 1.1 mycroft ssize = len;
411 1.1 mycroft } else {
412 1.1 mycroft #ifdef DIAGNOSTIC
413 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
414 1.1 mycroft panic("ffs_reallocblk: start == end");
415 1.1 mycroft #endif
416 1.1 mycroft ssize = len - (idp->in_off + 1);
417 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
418 1.1 mycroft goto fail;
419 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
420 1.1 mycroft }
421 1.1 mycroft /*
422 1.1 mycroft * Search the block map looking for an allocation of the desired size.
423 1.1 mycroft */
424 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
425 1.9 christos len, ffs_clusteralloc)) == 0)
426 1.1 mycroft goto fail;
427 1.1 mycroft /*
428 1.1 mycroft * We have found a new contiguous block.
429 1.1 mycroft *
430 1.1 mycroft * First we have to replace the old block pointers with the new
431 1.1 mycroft * block pointers in the inode and indirect blocks associated
432 1.1 mycroft * with the file.
433 1.1 mycroft */
434 1.5 mycroft #ifdef DEBUG
435 1.5 mycroft if (prtrealloc)
436 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
437 1.5 mycroft start_lbn, end_lbn);
438 1.5 mycroft #endif
439 1.1 mycroft blkno = newblk;
440 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
441 1.1 mycroft if (i == ssize)
442 1.1 mycroft bap = ebap;
443 1.1 mycroft #ifdef DIAGNOSTIC
444 1.18 fvdl if (!ffs_checkblk(ip,
445 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
446 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
447 1.19 bouyer if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
448 1.19 bouyer ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
449 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
450 1.1 mycroft #endif
451 1.5 mycroft #ifdef DEBUG
452 1.5 mycroft if (prtrealloc)
453 1.19 bouyer printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
454 1.5 mycroft #endif
455 1.19 bouyer *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
456 1.1 mycroft }
457 1.1 mycroft /*
458 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
459 1.1 mycroft * For strict correctness, the writes should be synchronous since
460 1.1 mycroft * the old block values may have been written to disk. In practise
461 1.1 mycroft * they are almost never written, but if we are concerned about
462 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
463 1.1 mycroft *
464 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
465 1.1 mycroft * that shows whether the associated buffers and inodes have
466 1.1 mycroft * been written. The flag should be set when the cluster is
467 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
468 1.1 mycroft * We can then check below to see if it is set, and do the
469 1.1 mycroft * synchronous write only when it has been cleared.
470 1.1 mycroft */
471 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
472 1.1 mycroft if (doasyncfree)
473 1.1 mycroft bdwrite(sbp);
474 1.1 mycroft else
475 1.1 mycroft bwrite(sbp);
476 1.1 mycroft } else {
477 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
478 1.11 mycroft if (!doasyncfree) {
479 1.11 mycroft TIMEVAL_TO_TIMESPEC(&time, &ts);
480 1.11 mycroft VOP_UPDATE(vp, &ts, &ts, 1);
481 1.11 mycroft }
482 1.1 mycroft }
483 1.1 mycroft if (ssize < len)
484 1.1 mycroft if (doasyncfree)
485 1.1 mycroft bdwrite(ebp);
486 1.1 mycroft else
487 1.1 mycroft bwrite(ebp);
488 1.1 mycroft /*
489 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
490 1.1 mycroft */
491 1.5 mycroft #ifdef DEBUG
492 1.5 mycroft if (prtrealloc)
493 1.13 christos printf("\n\tnew:");
494 1.5 mycroft #endif
495 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
496 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
497 1.1 mycroft fs->fs_bsize);
498 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
499 1.5 mycroft #ifdef DEBUG
500 1.18 fvdl if (!ffs_checkblk(ip,
501 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
502 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
503 1.5 mycroft if (prtrealloc)
504 1.13 christos printf(" %d,", blkno);
505 1.5 mycroft #endif
506 1.5 mycroft }
507 1.5 mycroft #ifdef DEBUG
508 1.5 mycroft if (prtrealloc) {
509 1.5 mycroft prtrealloc--;
510 1.13 christos printf("\n");
511 1.1 mycroft }
512 1.5 mycroft #endif
513 1.1 mycroft return (0);
514 1.1 mycroft
515 1.1 mycroft fail:
516 1.1 mycroft if (ssize < len)
517 1.1 mycroft brelse(ebp);
518 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
519 1.1 mycroft brelse(sbp);
520 1.1 mycroft return (ENOSPC);
521 1.1 mycroft }
522 1.1 mycroft
523 1.1 mycroft /*
524 1.1 mycroft * Allocate an inode in the file system.
525 1.1 mycroft *
526 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
527 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
528 1.1 mycroft * 1) allocate the preferred inode.
529 1.1 mycroft * 2) allocate an inode in the same cylinder group.
530 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
531 1.1 mycroft * available inode is located.
532 1.1 mycroft * If no inode preference is given the following heirarchy is used
533 1.1 mycroft * to allocate an inode:
534 1.1 mycroft * 1) allocate an inode in cylinder group 0.
535 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
536 1.1 mycroft * available inode is located.
537 1.1 mycroft */
538 1.9 christos int
539 1.9 christos ffs_valloc(v)
540 1.9 christos void *v;
541 1.9 christos {
542 1.1 mycroft struct vop_valloc_args /* {
543 1.1 mycroft struct vnode *a_pvp;
544 1.1 mycroft int a_mode;
545 1.1 mycroft struct ucred *a_cred;
546 1.1 mycroft struct vnode **a_vpp;
547 1.9 christos } */ *ap = v;
548 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
549 1.1 mycroft register struct inode *pip;
550 1.1 mycroft register struct fs *fs;
551 1.1 mycroft register struct inode *ip;
552 1.1 mycroft mode_t mode = ap->a_mode;
553 1.1 mycroft ino_t ino, ipref;
554 1.1 mycroft int cg, error;
555 1.1 mycroft
556 1.1 mycroft *ap->a_vpp = NULL;
557 1.1 mycroft pip = VTOI(pvp);
558 1.1 mycroft fs = pip->i_fs;
559 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
560 1.1 mycroft goto noinodes;
561 1.1 mycroft
562 1.1 mycroft if ((mode & IFMT) == IFDIR)
563 1.1 mycroft ipref = ffs_dirpref(fs);
564 1.1 mycroft else
565 1.1 mycroft ipref = pip->i_number;
566 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
567 1.1 mycroft ipref = 0;
568 1.1 mycroft cg = ino_to_cg(fs, ipref);
569 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
570 1.1 mycroft if (ino == 0)
571 1.1 mycroft goto noinodes;
572 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
573 1.1 mycroft if (error) {
574 1.1 mycroft VOP_VFREE(pvp, ino, mode);
575 1.1 mycroft return (error);
576 1.1 mycroft }
577 1.1 mycroft ip = VTOI(*ap->a_vpp);
578 1.15 bouyer if (ip->i_ffs_mode) {
579 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
580 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
581 1.1 mycroft panic("ffs_valloc: dup alloc");
582 1.1 mycroft }
583 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
584 1.13 christos printf("free inode %s/%d had %d blocks\n",
585 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
586 1.15 bouyer ip->i_ffs_blocks = 0;
587 1.1 mycroft }
588 1.15 bouyer ip->i_ffs_flags = 0;
589 1.1 mycroft /*
590 1.1 mycroft * Set up a new generation number for this inode.
591 1.1 mycroft */
592 1.15 bouyer ip->i_ffs_gen++;
593 1.1 mycroft return (0);
594 1.1 mycroft noinodes:
595 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
596 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
597 1.1 mycroft return (ENOSPC);
598 1.1 mycroft }
599 1.1 mycroft
600 1.1 mycroft /*
601 1.1 mycroft * Find a cylinder to place a directory.
602 1.1 mycroft *
603 1.1 mycroft * The policy implemented by this algorithm is to select from
604 1.1 mycroft * among those cylinder groups with above the average number of
605 1.1 mycroft * free inodes, the one with the smallest number of directories.
606 1.1 mycroft */
607 1.1 mycroft static ino_t
608 1.1 mycroft ffs_dirpref(fs)
609 1.1 mycroft register struct fs *fs;
610 1.1 mycroft {
611 1.1 mycroft int cg, minndir, mincg, avgifree;
612 1.1 mycroft
613 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
614 1.1 mycroft minndir = fs->fs_ipg;
615 1.1 mycroft mincg = 0;
616 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
617 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
618 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
619 1.1 mycroft mincg = cg;
620 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
621 1.1 mycroft }
622 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
623 1.1 mycroft }
624 1.1 mycroft
625 1.1 mycroft /*
626 1.1 mycroft * Select the desired position for the next block in a file. The file is
627 1.1 mycroft * logically divided into sections. The first section is composed of the
628 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
629 1.1 mycroft *
630 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
631 1.1 mycroft * request a block in the same cylinder group as the inode that describes
632 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
633 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
634 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
635 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
636 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
637 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
638 1.1 mycroft * continues until a cylinder group with greater than the average number
639 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
640 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
641 1.1 mycroft * here a best guess is made based upon the logical block number being
642 1.1 mycroft * allocated.
643 1.1 mycroft *
644 1.1 mycroft * If a section is already partially allocated, the policy is to
645 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
646 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
647 1.1 mycroft * so that the disk head will be in transit between them for at least
648 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
649 1.1 mycroft * schedule another I/O transfer.
650 1.1 mycroft */
651 1.18 fvdl ufs_daddr_t
652 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
653 1.1 mycroft struct inode *ip;
654 1.18 fvdl ufs_daddr_t lbn;
655 1.1 mycroft int indx;
656 1.18 fvdl ufs_daddr_t *bap;
657 1.1 mycroft {
658 1.1 mycroft register struct fs *fs;
659 1.1 mycroft register int cg;
660 1.1 mycroft int avgbfree, startcg;
661 1.18 fvdl ufs_daddr_t nextblk;
662 1.1 mycroft
663 1.1 mycroft fs = ip->i_fs;
664 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
665 1.1 mycroft if (lbn < NDADDR) {
666 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
667 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
668 1.1 mycroft }
669 1.1 mycroft /*
670 1.1 mycroft * Find a cylinder with greater than average number of
671 1.1 mycroft * unused data blocks.
672 1.1 mycroft */
673 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
674 1.1 mycroft startcg =
675 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
676 1.1 mycroft else
677 1.19 bouyer startcg = dtog(fs,
678 1.19 bouyer ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
679 1.1 mycroft startcg %= fs->fs_ncg;
680 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
681 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
682 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
683 1.1 mycroft fs->fs_cgrotor = cg;
684 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
685 1.1 mycroft }
686 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
687 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
688 1.1 mycroft fs->fs_cgrotor = cg;
689 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
690 1.1 mycroft }
691 1.1 mycroft return (NULL);
692 1.1 mycroft }
693 1.1 mycroft /*
694 1.1 mycroft * One or more previous blocks have been laid out. If less
695 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
696 1.1 mycroft * next block is requested contiguously, otherwise it is
697 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
698 1.1 mycroft */
699 1.19 bouyer nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
700 1.19 bouyer if (indx < fs->fs_maxcontig ||
701 1.19 bouyer ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
702 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
703 1.1 mycroft return (nextblk);
704 1.1 mycroft if (fs->fs_rotdelay != 0)
705 1.1 mycroft /*
706 1.1 mycroft * Here we convert ms of delay to frags as:
707 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
708 1.1 mycroft * ((sect/frag) * (ms/sec))
709 1.1 mycroft * then round up to the next block.
710 1.1 mycroft */
711 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
712 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
713 1.1 mycroft return (nextblk);
714 1.1 mycroft }
715 1.1 mycroft
716 1.1 mycroft /*
717 1.1 mycroft * Implement the cylinder overflow algorithm.
718 1.1 mycroft *
719 1.1 mycroft * The policy implemented by this algorithm is:
720 1.1 mycroft * 1) allocate the block in its requested cylinder group.
721 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
722 1.1 mycroft * 3) brute force search for a free block.
723 1.1 mycroft */
724 1.1 mycroft /*VARARGS5*/
725 1.1 mycroft static u_long
726 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
727 1.1 mycroft struct inode *ip;
728 1.1 mycroft int cg;
729 1.1 mycroft long pref;
730 1.1 mycroft int size; /* size for data blocks, mode for inodes */
731 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
732 1.1 mycroft {
733 1.1 mycroft register struct fs *fs;
734 1.1 mycroft long result;
735 1.1 mycroft int i, icg = cg;
736 1.1 mycroft
737 1.1 mycroft fs = ip->i_fs;
738 1.1 mycroft /*
739 1.1 mycroft * 1: preferred cylinder group
740 1.1 mycroft */
741 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
742 1.1 mycroft if (result)
743 1.1 mycroft return (result);
744 1.1 mycroft /*
745 1.1 mycroft * 2: quadratic rehash
746 1.1 mycroft */
747 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
748 1.1 mycroft cg += i;
749 1.1 mycroft if (cg >= fs->fs_ncg)
750 1.1 mycroft cg -= fs->fs_ncg;
751 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
752 1.1 mycroft if (result)
753 1.1 mycroft return (result);
754 1.1 mycroft }
755 1.1 mycroft /*
756 1.1 mycroft * 3: brute force search
757 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
758 1.1 mycroft * and 1 is always checked in the quadratic rehash.
759 1.1 mycroft */
760 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
761 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
762 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
763 1.1 mycroft if (result)
764 1.1 mycroft return (result);
765 1.1 mycroft cg++;
766 1.1 mycroft if (cg == fs->fs_ncg)
767 1.1 mycroft cg = 0;
768 1.1 mycroft }
769 1.1 mycroft return (NULL);
770 1.1 mycroft }
771 1.1 mycroft
772 1.1 mycroft /*
773 1.1 mycroft * Determine whether a fragment can be extended.
774 1.1 mycroft *
775 1.1 mycroft * Check to see if the necessary fragments are available, and
776 1.1 mycroft * if they are, allocate them.
777 1.1 mycroft */
778 1.18 fvdl static ufs_daddr_t
779 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
780 1.1 mycroft struct inode *ip;
781 1.1 mycroft int cg;
782 1.1 mycroft long bprev;
783 1.1 mycroft int osize, nsize;
784 1.1 mycroft {
785 1.1 mycroft register struct fs *fs;
786 1.1 mycroft register struct cg *cgp;
787 1.1 mycroft struct buf *bp;
788 1.1 mycroft long bno;
789 1.1 mycroft int frags, bbase;
790 1.1 mycroft int i, error;
791 1.1 mycroft
792 1.1 mycroft fs = ip->i_fs;
793 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
794 1.1 mycroft return (NULL);
795 1.1 mycroft frags = numfrags(fs, nsize);
796 1.1 mycroft bbase = fragnum(fs, bprev);
797 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
798 1.1 mycroft /* cannot extend across a block boundary */
799 1.1 mycroft return (NULL);
800 1.1 mycroft }
801 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
802 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
803 1.1 mycroft if (error) {
804 1.1 mycroft brelse(bp);
805 1.1 mycroft return (NULL);
806 1.1 mycroft }
807 1.1 mycroft cgp = (struct cg *)bp->b_data;
808 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
809 1.1 mycroft brelse(bp);
810 1.1 mycroft return (NULL);
811 1.1 mycroft }
812 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
813 1.1 mycroft bno = dtogd(fs, bprev);
814 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
815 1.19 bouyer if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
816 1.1 mycroft brelse(bp);
817 1.1 mycroft return (NULL);
818 1.1 mycroft }
819 1.1 mycroft /*
820 1.1 mycroft * the current fragment can be extended
821 1.1 mycroft * deduct the count on fragment being extended into
822 1.1 mycroft * increase the count on the remaining fragment (if any)
823 1.1 mycroft * allocate the extended piece
824 1.1 mycroft */
825 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
826 1.19 bouyer if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
827 1.1 mycroft break;
828 1.19 bouyer ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
829 1.1 mycroft if (i != frags)
830 1.19 bouyer ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
831 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
832 1.19 bouyer clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
833 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
834 1.1 mycroft fs->fs_cstotal.cs_nffree--;
835 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
836 1.1 mycroft }
837 1.1 mycroft fs->fs_fmod = 1;
838 1.1 mycroft bdwrite(bp);
839 1.1 mycroft return (bprev);
840 1.1 mycroft }
841 1.1 mycroft
842 1.1 mycroft /*
843 1.1 mycroft * Determine whether a block can be allocated.
844 1.1 mycroft *
845 1.1 mycroft * Check to see if a block of the appropriate size is available,
846 1.1 mycroft * and if it is, allocate it.
847 1.1 mycroft */
848 1.18 fvdl static ufs_daddr_t
849 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
850 1.1 mycroft struct inode *ip;
851 1.1 mycroft int cg;
852 1.18 fvdl ufs_daddr_t bpref;
853 1.1 mycroft int size;
854 1.1 mycroft {
855 1.1 mycroft register struct fs *fs;
856 1.1 mycroft register struct cg *cgp;
857 1.1 mycroft struct buf *bp;
858 1.1 mycroft register int i;
859 1.1 mycroft int error, bno, frags, allocsiz;
860 1.19 bouyer const int needswap = UFS_IPNEEDSWAP(ip);
861 1.1 mycroft
862 1.1 mycroft fs = ip->i_fs;
863 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
864 1.1 mycroft return (NULL);
865 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
866 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
867 1.1 mycroft if (error) {
868 1.1 mycroft brelse(bp);
869 1.1 mycroft return (NULL);
870 1.1 mycroft }
871 1.1 mycroft cgp = (struct cg *)bp->b_data;
872 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
873 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
874 1.1 mycroft brelse(bp);
875 1.1 mycroft return (NULL);
876 1.1 mycroft }
877 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
878 1.1 mycroft if (size == fs->fs_bsize) {
879 1.19 bouyer bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
880 1.1 mycroft bdwrite(bp);
881 1.1 mycroft return (bno);
882 1.1 mycroft }
883 1.1 mycroft /*
884 1.1 mycroft * check to see if any fragments are already available
885 1.1 mycroft * allocsiz is the size which will be allocated, hacking
886 1.1 mycroft * it down to a smaller size if necessary
887 1.1 mycroft */
888 1.1 mycroft frags = numfrags(fs, size);
889 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
890 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
891 1.1 mycroft break;
892 1.1 mycroft if (allocsiz == fs->fs_frag) {
893 1.1 mycroft /*
894 1.1 mycroft * no fragments were available, so a block will be
895 1.1 mycroft * allocated, and hacked up
896 1.1 mycroft */
897 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
898 1.1 mycroft brelse(bp);
899 1.1 mycroft return (NULL);
900 1.1 mycroft }
901 1.19 bouyer bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
902 1.1 mycroft bpref = dtogd(fs, bno);
903 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
904 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bpref + i);
905 1.1 mycroft i = fs->fs_frag - frags;
906 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
907 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
908 1.19 bouyer fs->fs_cs(fs, cg).cs_nffree +=i;
909 1.1 mycroft fs->fs_fmod = 1;
910 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
911 1.1 mycroft bdwrite(bp);
912 1.1 mycroft return (bno);
913 1.1 mycroft }
914 1.19 bouyer bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
915 1.1 mycroft if (bno < 0) {
916 1.1 mycroft brelse(bp);
917 1.1 mycroft return (NULL);
918 1.1 mycroft }
919 1.1 mycroft for (i = 0; i < frags; i++)
920 1.19 bouyer clrbit(cg_blksfree(cgp, needswap), bno + i);
921 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
922 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
923 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
924 1.1 mycroft fs->fs_fmod = 1;
925 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
926 1.1 mycroft if (frags != allocsiz)
927 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
928 1.1 mycroft bdwrite(bp);
929 1.1 mycroft return (cg * fs->fs_fpg + bno);
930 1.1 mycroft }
931 1.1 mycroft
932 1.1 mycroft /*
933 1.1 mycroft * Allocate a block in a cylinder group.
934 1.1 mycroft *
935 1.1 mycroft * This algorithm implements the following policy:
936 1.1 mycroft * 1) allocate the requested block.
937 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
938 1.1 mycroft * 3) allocate the next available block on the block rotor for the
939 1.1 mycroft * specified cylinder group.
940 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
941 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
942 1.1 mycroft */
943 1.18 fvdl static ufs_daddr_t
944 1.19 bouyer ffs_alloccgblk(mp, fs, cgp, bpref)
945 1.19 bouyer struct mount *mp;
946 1.1 mycroft register struct fs *fs;
947 1.1 mycroft register struct cg *cgp;
948 1.18 fvdl ufs_daddr_t bpref;
949 1.1 mycroft {
950 1.18 fvdl ufs_daddr_t bno, blkno;
951 1.1 mycroft int cylno, pos, delta;
952 1.1 mycroft short *cylbp;
953 1.1 mycroft register int i;
954 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(mp);
955 1.1 mycroft
956 1.19 bouyer if (bpref == 0 ||
957 1.19 bouyer dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
958 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
959 1.1 mycroft goto norot;
960 1.1 mycroft }
961 1.1 mycroft bpref = blknum(fs, bpref);
962 1.1 mycroft bpref = dtogd(fs, bpref);
963 1.1 mycroft /*
964 1.1 mycroft * if the requested block is available, use it
965 1.1 mycroft */
966 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
967 1.19 bouyer fragstoblks(fs, bpref))) {
968 1.1 mycroft bno = bpref;
969 1.1 mycroft goto gotit;
970 1.1 mycroft }
971 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
972 1.1 mycroft /*
973 1.1 mycroft * Block layout information is not available.
974 1.1 mycroft * Leaving bpref unchanged means we take the
975 1.1 mycroft * next available free block following the one
976 1.1 mycroft * we just allocated. Hopefully this will at
977 1.1 mycroft * least hit a track cache on drives of unknown
978 1.1 mycroft * geometry (e.g. SCSI).
979 1.1 mycroft */
980 1.1 mycroft goto norot;
981 1.1 mycroft }
982 1.6 mycroft /*
983 1.6 mycroft * check for a block available on the same cylinder
984 1.6 mycroft */
985 1.6 mycroft cylno = cbtocylno(fs, bpref);
986 1.19 bouyer if (cg_blktot(cgp, needswap)[cylno] == 0)
987 1.6 mycroft goto norot;
988 1.1 mycroft /*
989 1.1 mycroft * check the summary information to see if a block is
990 1.1 mycroft * available in the requested cylinder starting at the
991 1.1 mycroft * requested rotational position and proceeding around.
992 1.1 mycroft */
993 1.19 bouyer cylbp = cg_blks(fs, cgp, cylno, needswap);
994 1.1 mycroft pos = cbtorpos(fs, bpref);
995 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
996 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
997 1.1 mycroft break;
998 1.1 mycroft if (i == fs->fs_nrpos)
999 1.1 mycroft for (i = 0; i < pos; i++)
1000 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1001 1.1 mycroft break;
1002 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0) {
1003 1.1 mycroft /*
1004 1.1 mycroft * found a rotational position, now find the actual
1005 1.1 mycroft * block. A panic if none is actually there.
1006 1.1 mycroft */
1007 1.1 mycroft pos = cylno % fs->fs_cpc;
1008 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1009 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
1010 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1011 1.1 mycroft pos, i, fs->fs_fsmnt);
1012 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1013 1.1 mycroft }
1014 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1015 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1016 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1017 1.1 mycroft goto gotit;
1018 1.1 mycroft }
1019 1.1 mycroft delta = fs_rotbl(fs)[i];
1020 1.1 mycroft if (delta <= 0 ||
1021 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1022 1.1 mycroft break;
1023 1.1 mycroft i += delta;
1024 1.1 mycroft }
1025 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1026 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1027 1.1 mycroft }
1028 1.1 mycroft norot:
1029 1.1 mycroft /*
1030 1.1 mycroft * no blocks in the requested cylinder, so take next
1031 1.1 mycroft * available one in this cylinder group.
1032 1.1 mycroft */
1033 1.19 bouyer bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1034 1.1 mycroft if (bno < 0)
1035 1.1 mycroft return (NULL);
1036 1.19 bouyer cgp->cg_rotor = ufs_rw32(bno, needswap);
1037 1.1 mycroft gotit:
1038 1.1 mycroft blkno = fragstoblks(fs, bno);
1039 1.19 bouyer ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1040 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1041 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1042 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1043 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1044 1.1 mycroft cylno = cbtocylno(fs, bno);
1045 1.19 bouyer ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1046 1.19 bouyer needswap);
1047 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1048 1.1 mycroft fs->fs_fmod = 1;
1049 1.19 bouyer return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1050 1.1 mycroft }
1051 1.1 mycroft
1052 1.1 mycroft /*
1053 1.1 mycroft * Determine whether a cluster can be allocated.
1054 1.1 mycroft *
1055 1.1 mycroft * We do not currently check for optimal rotational layout if there
1056 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1057 1.1 mycroft * take the first one that we find following bpref.
1058 1.1 mycroft */
1059 1.18 fvdl static ufs_daddr_t
1060 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1061 1.1 mycroft struct inode *ip;
1062 1.1 mycroft int cg;
1063 1.18 fvdl ufs_daddr_t bpref;
1064 1.1 mycroft int len;
1065 1.1 mycroft {
1066 1.1 mycroft register struct fs *fs;
1067 1.1 mycroft register struct cg *cgp;
1068 1.1 mycroft struct buf *bp;
1069 1.18 fvdl int i, got, run, bno, bit, map;
1070 1.1 mycroft u_char *mapp;
1071 1.5 mycroft int32_t *lp;
1072 1.1 mycroft
1073 1.1 mycroft fs = ip->i_fs;
1074 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1075 1.1 mycroft return (NULL);
1076 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1077 1.1 mycroft NOCRED, &bp))
1078 1.1 mycroft goto fail;
1079 1.1 mycroft cgp = (struct cg *)bp->b_data;
1080 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1081 1.1 mycroft goto fail;
1082 1.1 mycroft /*
1083 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1084 1.1 mycroft * available in this cylinder group.
1085 1.1 mycroft */
1086 1.19 bouyer lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1087 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1088 1.19 bouyer if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1089 1.1 mycroft break;
1090 1.5 mycroft if (i > fs->fs_contigsumsize) {
1091 1.5 mycroft /*
1092 1.5 mycroft * This is the first time looking for a cluster in this
1093 1.5 mycroft * cylinder group. Update the cluster summary information
1094 1.5 mycroft * to reflect the true maximum sized cluster so that
1095 1.5 mycroft * future cluster allocation requests can avoid reading
1096 1.5 mycroft * the cylinder group map only to find no clusters.
1097 1.5 mycroft */
1098 1.19 bouyer lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1099 1.5 mycroft for (i = len - 1; i > 0; i--)
1100 1.19 bouyer if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1101 1.5 mycroft break;
1102 1.5 mycroft fs->fs_maxcluster[cg] = i;
1103 1.1 mycroft goto fail;
1104 1.5 mycroft }
1105 1.1 mycroft /*
1106 1.1 mycroft * Search the cluster map to find a big enough cluster.
1107 1.1 mycroft * We take the first one that we find, even if it is larger
1108 1.1 mycroft * than we need as we prefer to get one close to the previous
1109 1.1 mycroft * block allocation. We do not search before the current
1110 1.1 mycroft * preference point as we do not want to allocate a block
1111 1.1 mycroft * that is allocated before the previous one (as we will
1112 1.1 mycroft * then have to wait for another pass of the elevator
1113 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1114 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1115 1.1 mycroft */
1116 1.1 mycroft if (dtog(fs, bpref) != cg)
1117 1.1 mycroft bpref = 0;
1118 1.1 mycroft else
1119 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1120 1.19 bouyer mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1121 1.1 mycroft map = *mapp++;
1122 1.1 mycroft bit = 1 << (bpref % NBBY);
1123 1.19 bouyer for (run = 0, got = bpref;
1124 1.19 bouyer got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1125 1.1 mycroft if ((map & bit) == 0) {
1126 1.1 mycroft run = 0;
1127 1.1 mycroft } else {
1128 1.1 mycroft run++;
1129 1.1 mycroft if (run == len)
1130 1.1 mycroft break;
1131 1.1 mycroft }
1132 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1133 1.1 mycroft bit <<= 1;
1134 1.1 mycroft } else {
1135 1.1 mycroft map = *mapp++;
1136 1.1 mycroft bit = 1;
1137 1.1 mycroft }
1138 1.1 mycroft }
1139 1.19 bouyer if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1140 1.1 mycroft goto fail;
1141 1.1 mycroft /*
1142 1.1 mycroft * Allocate the cluster that we have found.
1143 1.1 mycroft */
1144 1.18 fvdl for (i = 1; i <= len; i++)
1145 1.19 bouyer if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1146 1.19 bouyer got - run + i))
1147 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1148 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1149 1.18 fvdl if (dtog(fs, bno) != cg)
1150 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1151 1.1 mycroft len = blkstofrags(fs, len);
1152 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1153 1.19 bouyer if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1154 1.19 bouyer != bno + i)
1155 1.1 mycroft panic("ffs_clusteralloc: lost block");
1156 1.8 cgd bdwrite(bp);
1157 1.1 mycroft return (bno);
1158 1.1 mycroft
1159 1.1 mycroft fail:
1160 1.1 mycroft brelse(bp);
1161 1.1 mycroft return (0);
1162 1.1 mycroft }
1163 1.1 mycroft
1164 1.1 mycroft /*
1165 1.1 mycroft * Determine whether an inode can be allocated.
1166 1.1 mycroft *
1167 1.1 mycroft * Check to see if an inode is available, and if it is,
1168 1.1 mycroft * allocate it using the following policy:
1169 1.1 mycroft * 1) allocate the requested inode.
1170 1.1 mycroft * 2) allocate the next available inode after the requested
1171 1.1 mycroft * inode in the specified cylinder group.
1172 1.1 mycroft */
1173 1.18 fvdl static ufs_daddr_t
1174 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1175 1.1 mycroft struct inode *ip;
1176 1.1 mycroft int cg;
1177 1.18 fvdl ufs_daddr_t ipref;
1178 1.1 mycroft int mode;
1179 1.1 mycroft {
1180 1.1 mycroft register struct fs *fs;
1181 1.1 mycroft register struct cg *cgp;
1182 1.1 mycroft struct buf *bp;
1183 1.1 mycroft int error, start, len, loc, map, i;
1184 1.19 bouyer #ifdef FFS_EI
1185 1.19 bouyer const int needswap = UFS_IPNEEDSWAP(ip);
1186 1.19 bouyer #endif
1187 1.1 mycroft
1188 1.1 mycroft fs = ip->i_fs;
1189 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1190 1.1 mycroft return (NULL);
1191 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1192 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1193 1.1 mycroft if (error) {
1194 1.1 mycroft brelse(bp);
1195 1.1 mycroft return (NULL);
1196 1.1 mycroft }
1197 1.1 mycroft cgp = (struct cg *)bp->b_data;
1198 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1199 1.1 mycroft brelse(bp);
1200 1.1 mycroft return (NULL);
1201 1.1 mycroft }
1202 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1203 1.1 mycroft if (ipref) {
1204 1.1 mycroft ipref %= fs->fs_ipg;
1205 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ipref))
1206 1.1 mycroft goto gotit;
1207 1.1 mycroft }
1208 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1209 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1210 1.19 bouyer NBBY);
1211 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1212 1.1 mycroft if (loc == 0) {
1213 1.1 mycroft len = start + 1;
1214 1.1 mycroft start = 0;
1215 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1216 1.1 mycroft if (loc == 0) {
1217 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1218 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1219 1.19 bouyer fs->fs_fsmnt);
1220 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1221 1.1 mycroft /* NOTREACHED */
1222 1.1 mycroft }
1223 1.1 mycroft }
1224 1.1 mycroft i = start + len - loc;
1225 1.19 bouyer map = cg_inosused(cgp, needswap)[i];
1226 1.1 mycroft ipref = i * NBBY;
1227 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1228 1.1 mycroft if ((map & i) == 0) {
1229 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1230 1.1 mycroft goto gotit;
1231 1.1 mycroft }
1232 1.1 mycroft }
1233 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1234 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1235 1.1 mycroft /* NOTREACHED */
1236 1.1 mycroft gotit:
1237 1.19 bouyer setbit(cg_inosused(cgp, needswap), ipref);
1238 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1239 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1240 1.19 bouyer fs->fs_cs(fs, cg).cs_nifree --;
1241 1.1 mycroft fs->fs_fmod = 1;
1242 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1243 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1244 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1245 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1246 1.1 mycroft }
1247 1.1 mycroft bdwrite(bp);
1248 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1249 1.1 mycroft }
1250 1.1 mycroft
1251 1.1 mycroft /*
1252 1.1 mycroft * Free a block or fragment.
1253 1.1 mycroft *
1254 1.1 mycroft * The specified block or fragment is placed back in the
1255 1.1 mycroft * free map. If a fragment is deallocated, a possible
1256 1.1 mycroft * block reassembly is checked.
1257 1.1 mycroft */
1258 1.9 christos void
1259 1.1 mycroft ffs_blkfree(ip, bno, size)
1260 1.1 mycroft register struct inode *ip;
1261 1.18 fvdl ufs_daddr_t bno;
1262 1.1 mycroft long size;
1263 1.1 mycroft {
1264 1.1 mycroft register struct fs *fs;
1265 1.1 mycroft register struct cg *cgp;
1266 1.1 mycroft struct buf *bp;
1267 1.18 fvdl ufs_daddr_t blkno;
1268 1.1 mycroft int i, error, cg, blk, frags, bbase;
1269 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1270 1.1 mycroft
1271 1.1 mycroft fs = ip->i_fs;
1272 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1273 1.13 christos printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1274 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1275 1.1 mycroft panic("blkfree: bad size");
1276 1.1 mycroft }
1277 1.1 mycroft cg = dtog(fs, bno);
1278 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1279 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1280 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1281 1.1 mycroft return;
1282 1.1 mycroft }
1283 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1284 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1285 1.1 mycroft if (error) {
1286 1.1 mycroft brelse(bp);
1287 1.1 mycroft return;
1288 1.1 mycroft }
1289 1.1 mycroft cgp = (struct cg *)bp->b_data;
1290 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1291 1.1 mycroft brelse(bp);
1292 1.1 mycroft return;
1293 1.1 mycroft }
1294 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1295 1.1 mycroft bno = dtogd(fs, bno);
1296 1.1 mycroft if (size == fs->fs_bsize) {
1297 1.1 mycroft blkno = fragstoblks(fs, bno);
1298 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1299 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1300 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1301 1.1 mycroft panic("blkfree: freeing free block");
1302 1.1 mycroft }
1303 1.19 bouyer ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1304 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1305 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1306 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1307 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1308 1.1 mycroft i = cbtocylno(fs, bno);
1309 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1310 1.19 bouyer needswap);
1311 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1312 1.1 mycroft } else {
1313 1.1 mycroft bbase = bno - fragnum(fs, bno);
1314 1.1 mycroft /*
1315 1.1 mycroft * decrement the counts associated with the old frags
1316 1.1 mycroft */
1317 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1318 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1319 1.1 mycroft /*
1320 1.1 mycroft * deallocate the fragment
1321 1.1 mycroft */
1322 1.1 mycroft frags = numfrags(fs, size);
1323 1.1 mycroft for (i = 0; i < frags; i++) {
1324 1.19 bouyer if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1325 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1326 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1327 1.1 mycroft panic("blkfree: freeing free frag");
1328 1.1 mycroft }
1329 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bno + i);
1330 1.1 mycroft }
1331 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1332 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1333 1.19 bouyer fs->fs_cs(fs, cg).cs_nffree +=i;
1334 1.1 mycroft /*
1335 1.1 mycroft * add back in counts associated with the new frags
1336 1.1 mycroft */
1337 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1338 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1339 1.1 mycroft /*
1340 1.1 mycroft * if a complete block has been reassembled, account for it
1341 1.1 mycroft */
1342 1.1 mycroft blkno = fragstoblks(fs, bbase);
1343 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1344 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1345 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1346 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1347 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1348 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1349 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1350 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1351 1.1 mycroft i = cbtocylno(fs, bbase);
1352 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1353 1.19 bouyer needswap);
1354 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1355 1.1 mycroft }
1356 1.1 mycroft }
1357 1.1 mycroft fs->fs_fmod = 1;
1358 1.1 mycroft bdwrite(bp);
1359 1.1 mycroft }
1360 1.1 mycroft
1361 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1362 1.18 fvdl /*
1363 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1364 1.18 fvdl * fragment is allocated, false if it is free.
1365 1.18 fvdl */
1366 1.18 fvdl static int
1367 1.18 fvdl ffs_checkblk(ip, bno, size)
1368 1.18 fvdl struct inode *ip;
1369 1.18 fvdl ufs_daddr_t bno;
1370 1.18 fvdl long size;
1371 1.18 fvdl {
1372 1.18 fvdl struct fs *fs;
1373 1.18 fvdl struct cg *cgp;
1374 1.18 fvdl struct buf *bp;
1375 1.18 fvdl int i, error, frags, free;
1376 1.18 fvdl
1377 1.18 fvdl fs = ip->i_fs;
1378 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1379 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1380 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1381 1.18 fvdl panic("checkblk: bad size");
1382 1.18 fvdl }
1383 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1384 1.18 fvdl panic("checkblk: bad block %d", bno);
1385 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1386 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1387 1.18 fvdl if (error) {
1388 1.18 fvdl brelse(bp);
1389 1.18 fvdl return 0;
1390 1.18 fvdl }
1391 1.18 fvdl cgp = (struct cg *)bp->b_data;
1392 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1393 1.18 fvdl brelse(bp);
1394 1.18 fvdl return 0;
1395 1.18 fvdl }
1396 1.18 fvdl bno = dtogd(fs, bno);
1397 1.18 fvdl if (size == fs->fs_bsize) {
1398 1.19 bouyer free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1399 1.19 bouyer fragstoblks(fs, bno));
1400 1.18 fvdl } else {
1401 1.18 fvdl frags = numfrags(fs, size);
1402 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1403 1.19 bouyer if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1404 1.18 fvdl free++;
1405 1.18 fvdl if (free != 0 && free != frags)
1406 1.18 fvdl panic("checkblk: partially free fragment");
1407 1.18 fvdl }
1408 1.18 fvdl brelse(bp);
1409 1.18 fvdl return (!free);
1410 1.18 fvdl }
1411 1.18 fvdl #endif /* DIAGNOSTIC */
1412 1.18 fvdl
1413 1.1 mycroft /*
1414 1.1 mycroft * Free an inode.
1415 1.1 mycroft *
1416 1.1 mycroft * The specified inode is placed back in the free map.
1417 1.1 mycroft */
1418 1.1 mycroft int
1419 1.9 christos ffs_vfree(v)
1420 1.9 christos void *v;
1421 1.9 christos {
1422 1.1 mycroft struct vop_vfree_args /* {
1423 1.1 mycroft struct vnode *a_pvp;
1424 1.1 mycroft ino_t a_ino;
1425 1.1 mycroft int a_mode;
1426 1.9 christos } */ *ap = v;
1427 1.1 mycroft register struct fs *fs;
1428 1.1 mycroft register struct cg *cgp;
1429 1.1 mycroft register struct inode *pip;
1430 1.1 mycroft ino_t ino = ap->a_ino;
1431 1.1 mycroft struct buf *bp;
1432 1.1 mycroft int error, cg;
1433 1.19 bouyer #ifdef FFS_EI
1434 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1435 1.19 bouyer #endif
1436 1.1 mycroft
1437 1.1 mycroft pip = VTOI(ap->a_pvp);
1438 1.1 mycroft fs = pip->i_fs;
1439 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1440 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1441 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1442 1.1 mycroft cg = ino_to_cg(fs, ino);
1443 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1444 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1445 1.1 mycroft if (error) {
1446 1.1 mycroft brelse(bp);
1447 1.1 mycroft return (0);
1448 1.1 mycroft }
1449 1.1 mycroft cgp = (struct cg *)bp->b_data;
1450 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1451 1.1 mycroft brelse(bp);
1452 1.1 mycroft return (0);
1453 1.1 mycroft }
1454 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1455 1.1 mycroft ino %= fs->fs_ipg;
1456 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ino)) {
1457 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1458 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1459 1.1 mycroft if (fs->fs_ronly == 0)
1460 1.1 mycroft panic("ifree: freeing free inode");
1461 1.1 mycroft }
1462 1.19 bouyer clrbit(cg_inosused(cgp, needswap), ino);
1463 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1464 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1465 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1466 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1467 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1468 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1469 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1470 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1471 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1472 1.1 mycroft }
1473 1.1 mycroft fs->fs_fmod = 1;
1474 1.1 mycroft bdwrite(bp);
1475 1.1 mycroft return (0);
1476 1.1 mycroft }
1477 1.1 mycroft
1478 1.1 mycroft /*
1479 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1480 1.1 mycroft *
1481 1.1 mycroft * It is a panic if a request is made to find a block if none are
1482 1.1 mycroft * available.
1483 1.1 mycroft */
1484 1.18 fvdl static ufs_daddr_t
1485 1.19 bouyer ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1486 1.19 bouyer int needswap;
1487 1.1 mycroft register struct fs *fs;
1488 1.1 mycroft register struct cg *cgp;
1489 1.18 fvdl ufs_daddr_t bpref;
1490 1.1 mycroft int allocsiz;
1491 1.1 mycroft {
1492 1.18 fvdl ufs_daddr_t bno;
1493 1.1 mycroft int start, len, loc, i;
1494 1.1 mycroft int blk, field, subfield, pos;
1495 1.19 bouyer int ostart, olen;
1496 1.1 mycroft
1497 1.1 mycroft /*
1498 1.1 mycroft * find the fragment by searching through the free block
1499 1.1 mycroft * map for an appropriate bit pattern
1500 1.1 mycroft */
1501 1.1 mycroft if (bpref)
1502 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1503 1.1 mycroft else
1504 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1505 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1506 1.19 bouyer ostart = start;
1507 1.19 bouyer olen = len;
1508 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1509 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1510 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1511 1.1 mycroft if (loc == 0) {
1512 1.1 mycroft len = start + 1;
1513 1.1 mycroft start = 0;
1514 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1515 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1516 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1517 1.1 mycroft if (loc == 0) {
1518 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1519 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1520 1.20 ross printf("offset=%d %ld\n",
1521 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1522 1.20 ross (long)cg_blksfree(cgp, needswap) - (long)cgp);
1523 1.1 mycroft panic("ffs_alloccg: map corrupted");
1524 1.1 mycroft /* NOTREACHED */
1525 1.1 mycroft }
1526 1.1 mycroft }
1527 1.1 mycroft bno = (start + len - loc) * NBBY;
1528 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1529 1.1 mycroft /*
1530 1.1 mycroft * found the byte in the map
1531 1.1 mycroft * sift through the bits to find the selected frag
1532 1.1 mycroft */
1533 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1534 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1535 1.1 mycroft blk <<= 1;
1536 1.1 mycroft field = around[allocsiz];
1537 1.1 mycroft subfield = inside[allocsiz];
1538 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1539 1.1 mycroft if ((blk & field) == subfield)
1540 1.1 mycroft return (bno + pos);
1541 1.1 mycroft field <<= 1;
1542 1.1 mycroft subfield <<= 1;
1543 1.1 mycroft }
1544 1.1 mycroft }
1545 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1546 1.1 mycroft panic("ffs_alloccg: block not in map");
1547 1.1 mycroft return (-1);
1548 1.1 mycroft }
1549 1.1 mycroft
1550 1.1 mycroft /*
1551 1.1 mycroft * Update the cluster map because of an allocation or free.
1552 1.1 mycroft *
1553 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1554 1.1 mycroft */
1555 1.9 christos void
1556 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1557 1.19 bouyer int needswap;
1558 1.1 mycroft struct fs *fs;
1559 1.1 mycroft struct cg *cgp;
1560 1.18 fvdl ufs_daddr_t blkno;
1561 1.1 mycroft int cnt;
1562 1.1 mycroft {
1563 1.4 cgd int32_t *sump;
1564 1.5 mycroft int32_t *lp;
1565 1.1 mycroft u_char *freemapp, *mapp;
1566 1.1 mycroft int i, start, end, forw, back, map, bit;
1567 1.1 mycroft
1568 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1569 1.1 mycroft return;
1570 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1571 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1572 1.1 mycroft /*
1573 1.1 mycroft * Allocate or clear the actual block.
1574 1.1 mycroft */
1575 1.1 mycroft if (cnt > 0)
1576 1.1 mycroft setbit(freemapp, blkno);
1577 1.1 mycroft else
1578 1.1 mycroft clrbit(freemapp, blkno);
1579 1.1 mycroft /*
1580 1.1 mycroft * Find the size of the cluster going forward.
1581 1.1 mycroft */
1582 1.1 mycroft start = blkno + 1;
1583 1.1 mycroft end = start + fs->fs_contigsumsize;
1584 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1585 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1586 1.1 mycroft mapp = &freemapp[start / NBBY];
1587 1.1 mycroft map = *mapp++;
1588 1.1 mycroft bit = 1 << (start % NBBY);
1589 1.1 mycroft for (i = start; i < end; i++) {
1590 1.1 mycroft if ((map & bit) == 0)
1591 1.1 mycroft break;
1592 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1593 1.1 mycroft bit <<= 1;
1594 1.1 mycroft } else {
1595 1.1 mycroft map = *mapp++;
1596 1.1 mycroft bit = 1;
1597 1.1 mycroft }
1598 1.1 mycroft }
1599 1.1 mycroft forw = i - start;
1600 1.1 mycroft /*
1601 1.1 mycroft * Find the size of the cluster going backward.
1602 1.1 mycroft */
1603 1.1 mycroft start = blkno - 1;
1604 1.1 mycroft end = start - fs->fs_contigsumsize;
1605 1.1 mycroft if (end < 0)
1606 1.1 mycroft end = -1;
1607 1.1 mycroft mapp = &freemapp[start / NBBY];
1608 1.1 mycroft map = *mapp--;
1609 1.1 mycroft bit = 1 << (start % NBBY);
1610 1.1 mycroft for (i = start; i > end; i--) {
1611 1.1 mycroft if ((map & bit) == 0)
1612 1.1 mycroft break;
1613 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1614 1.1 mycroft bit >>= 1;
1615 1.1 mycroft } else {
1616 1.1 mycroft map = *mapp--;
1617 1.1 mycroft bit = 1 << (NBBY - 1);
1618 1.1 mycroft }
1619 1.1 mycroft }
1620 1.1 mycroft back = start - i;
1621 1.1 mycroft /*
1622 1.1 mycroft * Account for old cluster and the possibly new forward and
1623 1.1 mycroft * back clusters.
1624 1.1 mycroft */
1625 1.1 mycroft i = back + forw + 1;
1626 1.1 mycroft if (i > fs->fs_contigsumsize)
1627 1.1 mycroft i = fs->fs_contigsumsize;
1628 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1629 1.1 mycroft if (back > 0)
1630 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1631 1.1 mycroft if (forw > 0)
1632 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1633 1.19 bouyer
1634 1.5 mycroft /*
1635 1.5 mycroft * Update cluster summary information.
1636 1.5 mycroft */
1637 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1638 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1639 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1640 1.5 mycroft break;
1641 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1642 1.1 mycroft }
1643 1.1 mycroft
1644 1.1 mycroft /*
1645 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1646 1.1 mycroft *
1647 1.1 mycroft * The form of the error message is:
1648 1.1 mycroft * fs: error message
1649 1.1 mycroft */
1650 1.1 mycroft static void
1651 1.1 mycroft ffs_fserr(fs, uid, cp)
1652 1.1 mycroft struct fs *fs;
1653 1.1 mycroft u_int uid;
1654 1.1 mycroft char *cp;
1655 1.1 mycroft {
1656 1.1 mycroft
1657 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1658 1.1 mycroft }
1659