Home | History | Annotate | Line # | Download | only in ffs
ffs_alloc.c revision 1.22
      1  1.22    scottr /*	$NetBSD: ffs_alloc.c,v 1.22 1998/06/09 07:46:32 scottr Exp $	*/
      2   1.2       cgd 
      3   1.1   mycroft /*
      4   1.1   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.1   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1   mycroft  *
      7   1.1   mycroft  * Redistribution and use in source and binary forms, with or without
      8   1.1   mycroft  * modification, are permitted provided that the following conditions
      9   1.1   mycroft  * are met:
     10   1.1   mycroft  * 1. Redistributions of source code must retain the above copyright
     11   1.1   mycroft  *    notice, this list of conditions and the following disclaimer.
     12   1.1   mycroft  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1   mycroft  *    notice, this list of conditions and the following disclaimer in the
     14   1.1   mycroft  *    documentation and/or other materials provided with the distribution.
     15   1.1   mycroft  * 3. All advertising materials mentioning features or use of this software
     16   1.1   mycroft  *    must display the following acknowledgement:
     17   1.1   mycroft  *	This product includes software developed by the University of
     18   1.1   mycroft  *	California, Berkeley and its contributors.
     19   1.1   mycroft  * 4. Neither the name of the University nor the names of its contributors
     20   1.1   mycroft  *    may be used to endorse or promote products derived from this software
     21   1.1   mycroft  *    without specific prior written permission.
     22   1.1   mycroft  *
     23   1.1   mycroft  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24   1.1   mycroft  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25   1.1   mycroft  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26   1.1   mycroft  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27   1.1   mycroft  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28   1.1   mycroft  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29   1.1   mycroft  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30   1.1   mycroft  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31   1.1   mycroft  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32   1.1   mycroft  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33   1.1   mycroft  * SUCH DAMAGE.
     34   1.1   mycroft  *
     35  1.18      fvdl  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
     36   1.1   mycroft  */
     37  1.17       mrg 
     38  1.22    scottr #if defined(_KERNEL) && !defined(_LKM)
     39  1.21    scottr #include "opt_quota.h"
     40  1.17       mrg #include "opt_uvm.h"
     41  1.22    scottr #endif
     42   1.1   mycroft 
     43   1.1   mycroft #include <sys/param.h>
     44   1.1   mycroft #include <sys/systm.h>
     45   1.1   mycroft #include <sys/buf.h>
     46   1.1   mycroft #include <sys/proc.h>
     47   1.1   mycroft #include <sys/vnode.h>
     48   1.1   mycroft #include <sys/mount.h>
     49   1.1   mycroft #include <sys/kernel.h>
     50   1.1   mycroft #include <sys/syslog.h>
     51   1.1   mycroft 
     52   1.1   mycroft #include <vm/vm.h>
     53   1.1   mycroft 
     54   1.1   mycroft #include <ufs/ufs/quota.h>
     55  1.19    bouyer #include <ufs/ufs/ufsmount.h>
     56   1.1   mycroft #include <ufs/ufs/inode.h>
     57   1.9  christos #include <ufs/ufs/ufs_extern.h>
     58  1.19    bouyer #include <ufs/ufs/ufs_bswap.h>
     59   1.1   mycroft 
     60   1.1   mycroft #include <ufs/ffs/fs.h>
     61   1.1   mycroft #include <ufs/ffs/ffs_extern.h>
     62   1.1   mycroft 
     63  1.19    bouyer static ufs_daddr_t	ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
     64  1.19    bouyer static ufs_daddr_t	ffs_alloccgblk __P((struct mount *, struct fs *,
     65  1.19    bouyer 	struct cg *, ufs_daddr_t));
     66  1.19    bouyer static ufs_daddr_t	ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
     67  1.19    bouyer static ino_t	ffs_dirpref __P((struct fs *));
     68  1.19    bouyer static ufs_daddr_t	ffs_fragextend __P((struct inode *, int, long, int, int));
     69  1.19    bouyer static void	ffs_fserr __P((struct fs *, u_int, char *));
     70  1.19    bouyer static u_long	ffs_hashalloc __P((struct inode *, int, long, int,
     71  1.19    bouyer 				   ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
     72  1.19    bouyer 					       int)));
     73  1.19    bouyer static ufs_daddr_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
     74  1.19    bouyer static ufs_daddr_t	ffs_mapsearch __P((int, struct fs *, struct cg *,
     75  1.19    bouyer 					ufs_daddr_t, int));
     76  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
     77  1.18      fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
     78  1.18      fvdl #endif
     79   1.1   mycroft 
     80   1.1   mycroft /*
     81   1.1   mycroft  * Allocate a block in the file system.
     82   1.1   mycroft  *
     83   1.1   mycroft  * The size of the requested block is given, which must be some
     84   1.1   mycroft  * multiple of fs_fsize and <= fs_bsize.
     85   1.1   mycroft  * A preference may be optionally specified. If a preference is given
     86   1.1   mycroft  * the following hierarchy is used to allocate a block:
     87   1.1   mycroft  *   1) allocate the requested block.
     88   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
     89   1.1   mycroft  *   3) allocate a block in the same cylinder group.
     90   1.1   mycroft  *   4) quadradically rehash into other cylinder groups, until an
     91   1.1   mycroft  *      available block is located.
     92   1.1   mycroft  * If no block preference is given the following heirarchy is used
     93   1.1   mycroft  * to allocate a block:
     94   1.1   mycroft  *   1) allocate a block in the cylinder group that contains the
     95   1.1   mycroft  *      inode for the file.
     96   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
     97   1.1   mycroft  *      available block is located.
     98   1.1   mycroft  */
     99   1.9  christos int
    100   1.1   mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
    101   1.1   mycroft 	register struct inode *ip;
    102  1.18      fvdl 	ufs_daddr_t lbn, bpref;
    103   1.1   mycroft 	int size;
    104   1.1   mycroft 	struct ucred *cred;
    105  1.18      fvdl 	ufs_daddr_t *bnp;
    106   1.1   mycroft {
    107   1.1   mycroft 	register struct fs *fs;
    108  1.18      fvdl 	ufs_daddr_t bno;
    109   1.9  christos 	int cg;
    110   1.9  christos #ifdef QUOTA
    111   1.9  christos 	int error;
    112   1.9  christos #endif
    113   1.1   mycroft 
    114   1.1   mycroft 	*bnp = 0;
    115   1.1   mycroft 	fs = ip->i_fs;
    116   1.1   mycroft #ifdef DIAGNOSTIC
    117   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
    118  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
    119   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
    120   1.1   mycroft 		panic("ffs_alloc: bad size");
    121   1.1   mycroft 	}
    122   1.1   mycroft 	if (cred == NOCRED)
    123   1.1   mycroft 		panic("ffs_alloc: missing credential\n");
    124   1.1   mycroft #endif /* DIAGNOSTIC */
    125   1.1   mycroft 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
    126   1.1   mycroft 		goto nospace;
    127   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    128   1.1   mycroft 		goto nospace;
    129   1.1   mycroft #ifdef QUOTA
    130   1.9  christos 	if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
    131   1.1   mycroft 		return (error);
    132   1.1   mycroft #endif
    133   1.1   mycroft 	if (bpref >= fs->fs_size)
    134   1.1   mycroft 		bpref = 0;
    135   1.1   mycroft 	if (bpref == 0)
    136   1.1   mycroft 		cg = ino_to_cg(fs, ip->i_number);
    137   1.1   mycroft 	else
    138   1.1   mycroft 		cg = dtog(fs, bpref);
    139  1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
    140   1.9  christos 	    			     ffs_alloccg);
    141   1.1   mycroft 	if (bno > 0) {
    142  1.15    bouyer 		ip->i_ffs_blocks += btodb(size);
    143   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    144   1.1   mycroft 		*bnp = bno;
    145   1.1   mycroft 		return (0);
    146   1.1   mycroft 	}
    147   1.1   mycroft #ifdef QUOTA
    148   1.1   mycroft 	/*
    149   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    150   1.1   mycroft 	 */
    151   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
    152   1.1   mycroft #endif
    153   1.1   mycroft nospace:
    154   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    155   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    156   1.1   mycroft 	return (ENOSPC);
    157   1.1   mycroft }
    158   1.1   mycroft 
    159   1.1   mycroft /*
    160   1.1   mycroft  * Reallocate a fragment to a bigger size
    161   1.1   mycroft  *
    162   1.1   mycroft  * The number and size of the old block is given, and a preference
    163   1.1   mycroft  * and new size is also specified. The allocator attempts to extend
    164   1.1   mycroft  * the original block. Failing that, the regular block allocator is
    165   1.1   mycroft  * invoked to get an appropriate block.
    166   1.1   mycroft  */
    167   1.9  christos int
    168   1.1   mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
    169   1.1   mycroft 	register struct inode *ip;
    170  1.18      fvdl 	ufs_daddr_t lbprev;
    171  1.18      fvdl 	ufs_daddr_t bpref;
    172   1.1   mycroft 	int osize, nsize;
    173   1.1   mycroft 	struct ucred *cred;
    174   1.1   mycroft 	struct buf **bpp;
    175   1.1   mycroft {
    176   1.1   mycroft 	register struct fs *fs;
    177   1.1   mycroft 	struct buf *bp;
    178   1.1   mycroft 	int cg, request, error;
    179  1.18      fvdl 	ufs_daddr_t bprev, bno;
    180   1.1   mycroft 
    181   1.1   mycroft 	*bpp = 0;
    182   1.1   mycroft 	fs = ip->i_fs;
    183   1.1   mycroft #ifdef DIAGNOSTIC
    184   1.1   mycroft 	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
    185   1.1   mycroft 	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
    186  1.13  christos 		printf(
    187   1.1   mycroft 		    "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
    188   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
    189   1.1   mycroft 		panic("ffs_realloccg: bad size");
    190   1.1   mycroft 	}
    191   1.1   mycroft 	if (cred == NOCRED)
    192   1.1   mycroft 		panic("ffs_realloccg: missing credential\n");
    193   1.1   mycroft #endif /* DIAGNOSTIC */
    194   1.1   mycroft 	if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
    195   1.1   mycroft 		goto nospace;
    196  1.19    bouyer 	if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
    197  1.13  christos 		printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
    198   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
    199   1.1   mycroft 		panic("ffs_realloccg: bad bprev");
    200   1.1   mycroft 	}
    201   1.1   mycroft 	/*
    202   1.1   mycroft 	 * Allocate the extra space in the buffer.
    203   1.1   mycroft 	 */
    204   1.9  christos 	if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
    205   1.1   mycroft 		brelse(bp);
    206   1.1   mycroft 		return (error);
    207   1.1   mycroft 	}
    208   1.1   mycroft #ifdef QUOTA
    209   1.9  christos 	if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
    210   1.1   mycroft 		brelse(bp);
    211   1.1   mycroft 		return (error);
    212   1.1   mycroft 	}
    213   1.1   mycroft #endif
    214   1.1   mycroft 	/*
    215   1.1   mycroft 	 * Check for extension in the existing location.
    216   1.1   mycroft 	 */
    217   1.1   mycroft 	cg = dtog(fs, bprev);
    218   1.9  christos 	if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
    219   1.1   mycroft 		if (bp->b_blkno != fsbtodb(fs, bno))
    220   1.1   mycroft 			panic("bad blockno");
    221  1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    222   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    223   1.1   mycroft 		allocbuf(bp, nsize);
    224   1.1   mycroft 		bp->b_flags |= B_DONE;
    225   1.1   mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    226   1.1   mycroft 		*bpp = bp;
    227   1.1   mycroft 		return (0);
    228   1.1   mycroft 	}
    229   1.1   mycroft 	/*
    230   1.1   mycroft 	 * Allocate a new disk location.
    231   1.1   mycroft 	 */
    232   1.1   mycroft 	if (bpref >= fs->fs_size)
    233   1.1   mycroft 		bpref = 0;
    234   1.1   mycroft 	switch ((int)fs->fs_optim) {
    235   1.1   mycroft 	case FS_OPTSPACE:
    236   1.1   mycroft 		/*
    237   1.1   mycroft 		 * Allocate an exact sized fragment. Although this makes
    238   1.1   mycroft 		 * best use of space, we will waste time relocating it if
    239   1.1   mycroft 		 * the file continues to grow. If the fragmentation is
    240   1.1   mycroft 		 * less than half of the minimum free reserve, we choose
    241   1.1   mycroft 		 * to begin optimizing for time.
    242   1.1   mycroft 		 */
    243   1.1   mycroft 		request = nsize;
    244   1.1   mycroft 		if (fs->fs_minfree < 5 ||
    245   1.1   mycroft 		    fs->fs_cstotal.cs_nffree >
    246   1.1   mycroft 		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
    247   1.1   mycroft 			break;
    248   1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
    249   1.1   mycroft 			fs->fs_fsmnt);
    250   1.1   mycroft 		fs->fs_optim = FS_OPTTIME;
    251   1.1   mycroft 		break;
    252   1.1   mycroft 	case FS_OPTTIME:
    253   1.1   mycroft 		/*
    254   1.1   mycroft 		 * At this point we have discovered a file that is trying to
    255   1.1   mycroft 		 * grow a small fragment to a larger fragment. To save time,
    256   1.1   mycroft 		 * we allocate a full sized block, then free the unused portion.
    257   1.1   mycroft 		 * If the file continues to grow, the `ffs_fragextend' call
    258   1.1   mycroft 		 * above will be able to grow it in place without further
    259   1.1   mycroft 		 * copying. If aberrant programs cause disk fragmentation to
    260   1.1   mycroft 		 * grow within 2% of the free reserve, we choose to begin
    261   1.1   mycroft 		 * optimizing for space.
    262   1.1   mycroft 		 */
    263   1.1   mycroft 		request = fs->fs_bsize;
    264   1.1   mycroft 		if (fs->fs_cstotal.cs_nffree <
    265   1.1   mycroft 		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
    266   1.1   mycroft 			break;
    267   1.1   mycroft 		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
    268   1.1   mycroft 			fs->fs_fsmnt);
    269   1.1   mycroft 		fs->fs_optim = FS_OPTSPACE;
    270   1.1   mycroft 		break;
    271   1.1   mycroft 	default:
    272  1.13  christos 		printf("dev = 0x%x, optim = %d, fs = %s\n",
    273   1.1   mycroft 		    ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
    274   1.1   mycroft 		panic("ffs_realloccg: bad optim");
    275   1.1   mycroft 		/* NOTREACHED */
    276   1.1   mycroft 	}
    277  1.18      fvdl 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
    278   1.9  christos 	    			     ffs_alloccg);
    279   1.1   mycroft 	if (bno > 0) {
    280   1.1   mycroft 		bp->b_blkno = fsbtodb(fs, bno);
    281  1.16       mrg #if defined(UVM)
    282  1.16       mrg 		(void) uvm_vnp_uncache(ITOV(ip));
    283  1.16       mrg #else
    284   1.1   mycroft 		(void) vnode_pager_uncache(ITOV(ip));
    285  1.16       mrg #endif
    286   1.1   mycroft 		ffs_blkfree(ip, bprev, (long)osize);
    287   1.1   mycroft 		if (nsize < request)
    288   1.1   mycroft 			ffs_blkfree(ip, bno + numfrags(fs, nsize),
    289   1.1   mycroft 			    (long)(request - nsize));
    290  1.15    bouyer 		ip->i_ffs_blocks += btodb(nsize - osize);
    291   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    292   1.1   mycroft 		allocbuf(bp, nsize);
    293   1.1   mycroft 		bp->b_flags |= B_DONE;
    294   1.1   mycroft 		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
    295   1.1   mycroft 		*bpp = bp;
    296   1.1   mycroft 		return (0);
    297   1.1   mycroft 	}
    298   1.1   mycroft #ifdef QUOTA
    299   1.1   mycroft 	/*
    300   1.1   mycroft 	 * Restore user's disk quota because allocation failed.
    301   1.1   mycroft 	 */
    302   1.1   mycroft 	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
    303   1.1   mycroft #endif
    304   1.1   mycroft 	brelse(bp);
    305   1.1   mycroft nospace:
    306   1.1   mycroft 	/*
    307   1.1   mycroft 	 * no space available
    308   1.1   mycroft 	 */
    309   1.1   mycroft 	ffs_fserr(fs, cred->cr_uid, "file system full");
    310   1.1   mycroft 	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
    311   1.1   mycroft 	return (ENOSPC);
    312   1.1   mycroft }
    313   1.1   mycroft 
    314   1.1   mycroft /*
    315   1.1   mycroft  * Reallocate a sequence of blocks into a contiguous sequence of blocks.
    316   1.1   mycroft  *
    317   1.1   mycroft  * The vnode and an array of buffer pointers for a range of sequential
    318   1.1   mycroft  * logical blocks to be made contiguous is given. The allocator attempts
    319   1.1   mycroft  * to find a range of sequential blocks starting as close as possible to
    320   1.1   mycroft  * an fs_rotdelay offset from the end of the allocation for the logical
    321   1.1   mycroft  * block immediately preceeding the current range. If successful, the
    322   1.1   mycroft  * physical block numbers in the buffer pointers and in the inode are
    323   1.1   mycroft  * changed to reflect the new allocation. If unsuccessful, the allocation
    324   1.1   mycroft  * is left unchanged. The success in doing the reallocation is returned.
    325   1.1   mycroft  * Note that the error return is not reflected back to the user. Rather
    326   1.1   mycroft  * the previous block allocation will be used.
    327   1.1   mycroft  */
    328   1.3   mycroft #ifdef DEBUG
    329   1.1   mycroft #include <sys/sysctl.h>
    330   1.5   mycroft int prtrealloc = 0;
    331   1.5   mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
    332   1.1   mycroft #endif
    333   1.1   mycroft 
    334  1.18      fvdl int doasyncfree = 1;
    335  1.18      fvdl extern int doreallocblks;
    336  1.18      fvdl 
    337   1.1   mycroft int
    338   1.9  christos ffs_reallocblks(v)
    339   1.9  christos 	void *v;
    340   1.9  christos {
    341   1.1   mycroft 	struct vop_reallocblks_args /* {
    342   1.1   mycroft 		struct vnode *a_vp;
    343   1.1   mycroft 		struct cluster_save *a_buflist;
    344   1.9  christos 	} */ *ap = v;
    345   1.1   mycroft 	struct fs *fs;
    346   1.1   mycroft 	struct inode *ip;
    347   1.1   mycroft 	struct vnode *vp;
    348   1.1   mycroft 	struct buf *sbp, *ebp;
    349  1.18      fvdl 	ufs_daddr_t *bap, *sbap, *ebap = NULL;
    350   1.1   mycroft 	struct cluster_save *buflist;
    351  1.18      fvdl 	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
    352   1.1   mycroft 	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
    353   1.1   mycroft 	int i, len, start_lvl, end_lvl, pref, ssize;
    354  1.11   mycroft 	struct timespec ts;
    355   1.1   mycroft 
    356   1.1   mycroft 	vp = ap->a_vp;
    357   1.1   mycroft 	ip = VTOI(vp);
    358   1.1   mycroft 	fs = ip->i_fs;
    359   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
    360   1.1   mycroft 		return (ENOSPC);
    361   1.1   mycroft 	buflist = ap->a_buflist;
    362   1.1   mycroft 	len = buflist->bs_nchildren;
    363   1.1   mycroft 	start_lbn = buflist->bs_children[0]->b_lblkno;
    364   1.1   mycroft 	end_lbn = start_lbn + len - 1;
    365   1.1   mycroft #ifdef DIAGNOSTIC
    366  1.18      fvdl 	for (i = 0; i < len; i++)
    367  1.18      fvdl 		if (!ffs_checkblk(ip,
    368  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    369  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 1");
    370   1.1   mycroft 	for (i = 1; i < len; i++)
    371   1.1   mycroft 		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
    372  1.18      fvdl 			panic("ffs_reallocblks: non-logical cluster");
    373  1.18      fvdl 	blkno = buflist->bs_children[0]->b_blkno;
    374  1.18      fvdl 	ssize = fsbtodb(fs, fs->fs_frag);
    375  1.18      fvdl 	for (i = 1; i < len - 1; i++)
    376  1.18      fvdl 		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
    377  1.18      fvdl 			panic("ffs_reallocblks: non-physical cluster %d", i);
    378   1.1   mycroft #endif
    379   1.1   mycroft 	/*
    380   1.1   mycroft 	 * If the latest allocation is in a new cylinder group, assume that
    381   1.1   mycroft 	 * the filesystem has decided to move and do not force it back to
    382   1.1   mycroft 	 * the previous cylinder group.
    383   1.1   mycroft 	 */
    384   1.1   mycroft 	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
    385   1.1   mycroft 	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
    386   1.1   mycroft 		return (ENOSPC);
    387   1.1   mycroft 	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
    388   1.1   mycroft 	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
    389   1.1   mycroft 		return (ENOSPC);
    390   1.1   mycroft 	/*
    391   1.1   mycroft 	 * Get the starting offset and block map for the first block.
    392   1.1   mycroft 	 */
    393   1.1   mycroft 	if (start_lvl == 0) {
    394  1.15    bouyer 		sbap = &ip->i_ffs_db[0];
    395   1.1   mycroft 		soff = start_lbn;
    396   1.1   mycroft 	} else {
    397   1.1   mycroft 		idp = &start_ap[start_lvl - 1];
    398   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
    399   1.1   mycroft 			brelse(sbp);
    400   1.1   mycroft 			return (ENOSPC);
    401   1.1   mycroft 		}
    402  1.18      fvdl 		sbap = (ufs_daddr_t *)sbp->b_data;
    403   1.1   mycroft 		soff = idp->in_off;
    404   1.1   mycroft 	}
    405   1.1   mycroft 	/*
    406   1.1   mycroft 	 * Find the preferred location for the cluster.
    407   1.1   mycroft 	 */
    408   1.1   mycroft 	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
    409   1.1   mycroft 	/*
    410   1.1   mycroft 	 * If the block range spans two block maps, get the second map.
    411   1.1   mycroft 	 */
    412   1.1   mycroft 	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
    413   1.1   mycroft 		ssize = len;
    414   1.1   mycroft 	} else {
    415   1.1   mycroft #ifdef DIAGNOSTIC
    416   1.1   mycroft 		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
    417   1.1   mycroft 			panic("ffs_reallocblk: start == end");
    418   1.1   mycroft #endif
    419   1.1   mycroft 		ssize = len - (idp->in_off + 1);
    420   1.1   mycroft 		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
    421   1.1   mycroft 			goto fail;
    422  1.18      fvdl 		ebap = (ufs_daddr_t *)ebp->b_data;
    423   1.1   mycroft 	}
    424   1.1   mycroft 	/*
    425   1.1   mycroft 	 * Search the block map looking for an allocation of the desired size.
    426   1.1   mycroft 	 */
    427  1.18      fvdl 	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
    428   1.9  christos 	    len, ffs_clusteralloc)) == 0)
    429   1.1   mycroft 		goto fail;
    430   1.1   mycroft 	/*
    431   1.1   mycroft 	 * We have found a new contiguous block.
    432   1.1   mycroft 	 *
    433   1.1   mycroft 	 * First we have to replace the old block pointers with the new
    434   1.1   mycroft 	 * block pointers in the inode and indirect blocks associated
    435   1.1   mycroft 	 * with the file.
    436   1.1   mycroft 	 */
    437   1.5   mycroft #ifdef DEBUG
    438   1.5   mycroft 	if (prtrealloc)
    439  1.13  christos 		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
    440   1.5   mycroft 		    start_lbn, end_lbn);
    441   1.5   mycroft #endif
    442   1.1   mycroft 	blkno = newblk;
    443   1.1   mycroft 	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
    444   1.1   mycroft 		if (i == ssize)
    445   1.1   mycroft 			bap = ebap;
    446   1.1   mycroft #ifdef DIAGNOSTIC
    447  1.18      fvdl 		if (!ffs_checkblk(ip,
    448  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    449  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 2");
    450  1.19    bouyer 		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
    451  1.19    bouyer 			ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
    452   1.1   mycroft 			panic("ffs_reallocblks: alloc mismatch");
    453   1.1   mycroft #endif
    454   1.5   mycroft #ifdef DEBUG
    455   1.5   mycroft 		if (prtrealloc)
    456  1.19    bouyer 			printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
    457   1.5   mycroft #endif
    458  1.19    bouyer 		*bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
    459   1.1   mycroft 	}
    460   1.1   mycroft 	/*
    461   1.1   mycroft 	 * Next we must write out the modified inode and indirect blocks.
    462   1.1   mycroft 	 * For strict correctness, the writes should be synchronous since
    463   1.1   mycroft 	 * the old block values may have been written to disk. In practise
    464   1.1   mycroft 	 * they are almost never written, but if we are concerned about
    465   1.1   mycroft 	 * strict correctness, the `doasyncfree' flag should be set to zero.
    466   1.1   mycroft 	 *
    467   1.1   mycroft 	 * The test on `doasyncfree' should be changed to test a flag
    468   1.1   mycroft 	 * that shows whether the associated buffers and inodes have
    469   1.1   mycroft 	 * been written. The flag should be set when the cluster is
    470   1.1   mycroft 	 * started and cleared whenever the buffer or inode is flushed.
    471   1.1   mycroft 	 * We can then check below to see if it is set, and do the
    472   1.1   mycroft 	 * synchronous write only when it has been cleared.
    473   1.1   mycroft 	 */
    474  1.15    bouyer 	if (sbap != &ip->i_ffs_db[0]) {
    475   1.1   mycroft 		if (doasyncfree)
    476   1.1   mycroft 			bdwrite(sbp);
    477   1.1   mycroft 		else
    478   1.1   mycroft 			bwrite(sbp);
    479   1.1   mycroft 	} else {
    480   1.1   mycroft 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
    481  1.11   mycroft 		if (!doasyncfree) {
    482  1.11   mycroft 			TIMEVAL_TO_TIMESPEC(&time, &ts);
    483  1.11   mycroft 			VOP_UPDATE(vp, &ts, &ts, 1);
    484  1.11   mycroft 		}
    485   1.1   mycroft 	}
    486   1.1   mycroft 	if (ssize < len)
    487   1.1   mycroft 		if (doasyncfree)
    488   1.1   mycroft 			bdwrite(ebp);
    489   1.1   mycroft 		else
    490   1.1   mycroft 			bwrite(ebp);
    491   1.1   mycroft 	/*
    492   1.1   mycroft 	 * Last, free the old blocks and assign the new blocks to the buffers.
    493   1.1   mycroft 	 */
    494   1.5   mycroft #ifdef DEBUG
    495   1.5   mycroft 	if (prtrealloc)
    496  1.13  christos 		printf("\n\tnew:");
    497   1.5   mycroft #endif
    498   1.1   mycroft 	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
    499   1.1   mycroft 		ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
    500   1.1   mycroft 		    fs->fs_bsize);
    501   1.1   mycroft 		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
    502   1.5   mycroft #ifdef DEBUG
    503  1.18      fvdl 		if (!ffs_checkblk(ip,
    504  1.18      fvdl 		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
    505  1.18      fvdl 			panic("ffs_reallocblks: unallocated block 3");
    506   1.5   mycroft 		if (prtrealloc)
    507  1.13  christos 			printf(" %d,", blkno);
    508   1.5   mycroft #endif
    509   1.5   mycroft 	}
    510   1.5   mycroft #ifdef DEBUG
    511   1.5   mycroft 	if (prtrealloc) {
    512   1.5   mycroft 		prtrealloc--;
    513  1.13  christos 		printf("\n");
    514   1.1   mycroft 	}
    515   1.5   mycroft #endif
    516   1.1   mycroft 	return (0);
    517   1.1   mycroft 
    518   1.1   mycroft fail:
    519   1.1   mycroft 	if (ssize < len)
    520   1.1   mycroft 		brelse(ebp);
    521  1.15    bouyer 	if (sbap != &ip->i_ffs_db[0])
    522   1.1   mycroft 		brelse(sbp);
    523   1.1   mycroft 	return (ENOSPC);
    524   1.1   mycroft }
    525   1.1   mycroft 
    526   1.1   mycroft /*
    527   1.1   mycroft  * Allocate an inode in the file system.
    528   1.1   mycroft  *
    529   1.1   mycroft  * If allocating a directory, use ffs_dirpref to select the inode.
    530   1.1   mycroft  * If allocating in a directory, the following hierarchy is followed:
    531   1.1   mycroft  *   1) allocate the preferred inode.
    532   1.1   mycroft  *   2) allocate an inode in the same cylinder group.
    533   1.1   mycroft  *   3) quadradically rehash into other cylinder groups, until an
    534   1.1   mycroft  *      available inode is located.
    535   1.1   mycroft  * If no inode preference is given the following heirarchy is used
    536   1.1   mycroft  * to allocate an inode:
    537   1.1   mycroft  *   1) allocate an inode in cylinder group 0.
    538   1.1   mycroft  *   2) quadradically rehash into other cylinder groups, until an
    539   1.1   mycroft  *      available inode is located.
    540   1.1   mycroft  */
    541   1.9  christos int
    542   1.9  christos ffs_valloc(v)
    543   1.9  christos 	void *v;
    544   1.9  christos {
    545   1.1   mycroft 	struct vop_valloc_args /* {
    546   1.1   mycroft 		struct vnode *a_pvp;
    547   1.1   mycroft 		int a_mode;
    548   1.1   mycroft 		struct ucred *a_cred;
    549   1.1   mycroft 		struct vnode **a_vpp;
    550   1.9  christos 	} */ *ap = v;
    551   1.1   mycroft 	register struct vnode *pvp = ap->a_pvp;
    552   1.1   mycroft 	register struct inode *pip;
    553   1.1   mycroft 	register struct fs *fs;
    554   1.1   mycroft 	register struct inode *ip;
    555   1.1   mycroft 	mode_t mode = ap->a_mode;
    556   1.1   mycroft 	ino_t ino, ipref;
    557   1.1   mycroft 	int cg, error;
    558   1.1   mycroft 
    559   1.1   mycroft 	*ap->a_vpp = NULL;
    560   1.1   mycroft 	pip = VTOI(pvp);
    561   1.1   mycroft 	fs = pip->i_fs;
    562   1.1   mycroft 	if (fs->fs_cstotal.cs_nifree == 0)
    563   1.1   mycroft 		goto noinodes;
    564   1.1   mycroft 
    565   1.1   mycroft 	if ((mode & IFMT) == IFDIR)
    566   1.1   mycroft 		ipref = ffs_dirpref(fs);
    567   1.1   mycroft 	else
    568   1.1   mycroft 		ipref = pip->i_number;
    569   1.1   mycroft 	if (ipref >= fs->fs_ncg * fs->fs_ipg)
    570   1.1   mycroft 		ipref = 0;
    571   1.1   mycroft 	cg = ino_to_cg(fs, ipref);
    572   1.1   mycroft 	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
    573   1.1   mycroft 	if (ino == 0)
    574   1.1   mycroft 		goto noinodes;
    575   1.1   mycroft 	error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
    576   1.1   mycroft 	if (error) {
    577   1.1   mycroft 		VOP_VFREE(pvp, ino, mode);
    578   1.1   mycroft 		return (error);
    579   1.1   mycroft 	}
    580   1.1   mycroft 	ip = VTOI(*ap->a_vpp);
    581  1.15    bouyer 	if (ip->i_ffs_mode) {
    582  1.13  christos 		printf("mode = 0%o, inum = %d, fs = %s\n",
    583  1.15    bouyer 		    ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
    584   1.1   mycroft 		panic("ffs_valloc: dup alloc");
    585   1.1   mycroft 	}
    586  1.15    bouyer 	if (ip->i_ffs_blocks) {				/* XXX */
    587  1.13  christos 		printf("free inode %s/%d had %d blocks\n",
    588  1.15    bouyer 		    fs->fs_fsmnt, ino, ip->i_ffs_blocks);
    589  1.15    bouyer 		ip->i_ffs_blocks = 0;
    590   1.1   mycroft 	}
    591  1.15    bouyer 	ip->i_ffs_flags = 0;
    592   1.1   mycroft 	/*
    593   1.1   mycroft 	 * Set up a new generation number for this inode.
    594   1.1   mycroft 	 */
    595  1.15    bouyer 	ip->i_ffs_gen++;
    596   1.1   mycroft 	return (0);
    597   1.1   mycroft noinodes:
    598   1.1   mycroft 	ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
    599   1.1   mycroft 	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
    600   1.1   mycroft 	return (ENOSPC);
    601   1.1   mycroft }
    602   1.1   mycroft 
    603   1.1   mycroft /*
    604   1.1   mycroft  * Find a cylinder to place a directory.
    605   1.1   mycroft  *
    606   1.1   mycroft  * The policy implemented by this algorithm is to select from
    607   1.1   mycroft  * among those cylinder groups with above the average number of
    608   1.1   mycroft  * free inodes, the one with the smallest number of directories.
    609   1.1   mycroft  */
    610   1.1   mycroft static ino_t
    611   1.1   mycroft ffs_dirpref(fs)
    612   1.1   mycroft 	register struct fs *fs;
    613   1.1   mycroft {
    614   1.1   mycroft 	int cg, minndir, mincg, avgifree;
    615   1.1   mycroft 
    616   1.1   mycroft 	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
    617   1.1   mycroft 	minndir = fs->fs_ipg;
    618   1.1   mycroft 	mincg = 0;
    619   1.1   mycroft 	for (cg = 0; cg < fs->fs_ncg; cg++)
    620   1.1   mycroft 		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
    621   1.1   mycroft 		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
    622   1.1   mycroft 			mincg = cg;
    623   1.1   mycroft 			minndir = fs->fs_cs(fs, cg).cs_ndir;
    624   1.1   mycroft 		}
    625   1.1   mycroft 	return ((ino_t)(fs->fs_ipg * mincg));
    626   1.1   mycroft }
    627   1.1   mycroft 
    628   1.1   mycroft /*
    629   1.1   mycroft  * Select the desired position for the next block in a file.  The file is
    630   1.1   mycroft  * logically divided into sections. The first section is composed of the
    631   1.1   mycroft  * direct blocks. Each additional section contains fs_maxbpg blocks.
    632   1.1   mycroft  *
    633   1.1   mycroft  * If no blocks have been allocated in the first section, the policy is to
    634   1.1   mycroft  * request a block in the same cylinder group as the inode that describes
    635   1.1   mycroft  * the file. If no blocks have been allocated in any other section, the
    636   1.1   mycroft  * policy is to place the section in a cylinder group with a greater than
    637   1.1   mycroft  * average number of free blocks.  An appropriate cylinder group is found
    638   1.1   mycroft  * by using a rotor that sweeps the cylinder groups. When a new group of
    639   1.1   mycroft  * blocks is needed, the sweep begins in the cylinder group following the
    640   1.1   mycroft  * cylinder group from which the previous allocation was made. The sweep
    641   1.1   mycroft  * continues until a cylinder group with greater than the average number
    642   1.1   mycroft  * of free blocks is found. If the allocation is for the first block in an
    643   1.1   mycroft  * indirect block, the information on the previous allocation is unavailable;
    644   1.1   mycroft  * here a best guess is made based upon the logical block number being
    645   1.1   mycroft  * allocated.
    646   1.1   mycroft  *
    647   1.1   mycroft  * If a section is already partially allocated, the policy is to
    648   1.1   mycroft  * contiguously allocate fs_maxcontig blocks.  The end of one of these
    649   1.1   mycroft  * contiguous blocks and the beginning of the next is physically separated
    650   1.1   mycroft  * so that the disk head will be in transit between them for at least
    651   1.1   mycroft  * fs_rotdelay milliseconds.  This is to allow time for the processor to
    652   1.1   mycroft  * schedule another I/O transfer.
    653   1.1   mycroft  */
    654  1.18      fvdl ufs_daddr_t
    655   1.1   mycroft ffs_blkpref(ip, lbn, indx, bap)
    656   1.1   mycroft 	struct inode *ip;
    657  1.18      fvdl 	ufs_daddr_t lbn;
    658   1.1   mycroft 	int indx;
    659  1.18      fvdl 	ufs_daddr_t *bap;
    660   1.1   mycroft {
    661   1.1   mycroft 	register struct fs *fs;
    662   1.1   mycroft 	register int cg;
    663   1.1   mycroft 	int avgbfree, startcg;
    664  1.18      fvdl 	ufs_daddr_t nextblk;
    665   1.1   mycroft 
    666   1.1   mycroft 	fs = ip->i_fs;
    667   1.1   mycroft 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
    668   1.1   mycroft 		if (lbn < NDADDR) {
    669   1.1   mycroft 			cg = ino_to_cg(fs, ip->i_number);
    670   1.1   mycroft 			return (fs->fs_fpg * cg + fs->fs_frag);
    671   1.1   mycroft 		}
    672   1.1   mycroft 		/*
    673   1.1   mycroft 		 * Find a cylinder with greater than average number of
    674   1.1   mycroft 		 * unused data blocks.
    675   1.1   mycroft 		 */
    676   1.1   mycroft 		if (indx == 0 || bap[indx - 1] == 0)
    677   1.1   mycroft 			startcg =
    678   1.1   mycroft 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
    679   1.1   mycroft 		else
    680  1.19    bouyer 			startcg = dtog(fs,
    681  1.19    bouyer 				ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
    682   1.1   mycroft 		startcg %= fs->fs_ncg;
    683   1.1   mycroft 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
    684   1.1   mycroft 		for (cg = startcg; cg < fs->fs_ncg; cg++)
    685   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    686   1.1   mycroft 				fs->fs_cgrotor = cg;
    687   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    688   1.1   mycroft 			}
    689   1.1   mycroft 		for (cg = 0; cg <= startcg; cg++)
    690   1.1   mycroft 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
    691   1.1   mycroft 				fs->fs_cgrotor = cg;
    692   1.1   mycroft 				return (fs->fs_fpg * cg + fs->fs_frag);
    693   1.1   mycroft 			}
    694   1.1   mycroft 		return (NULL);
    695   1.1   mycroft 	}
    696   1.1   mycroft 	/*
    697   1.1   mycroft 	 * One or more previous blocks have been laid out. If less
    698   1.1   mycroft 	 * than fs_maxcontig previous blocks are contiguous, the
    699   1.1   mycroft 	 * next block is requested contiguously, otherwise it is
    700   1.1   mycroft 	 * requested rotationally delayed by fs_rotdelay milliseconds.
    701   1.1   mycroft 	 */
    702  1.19    bouyer 	nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
    703  1.19    bouyer 	if (indx < fs->fs_maxcontig ||
    704  1.19    bouyer 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
    705   1.1   mycroft 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
    706   1.1   mycroft 		return (nextblk);
    707   1.1   mycroft 	if (fs->fs_rotdelay != 0)
    708   1.1   mycroft 		/*
    709   1.1   mycroft 		 * Here we convert ms of delay to frags as:
    710   1.1   mycroft 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
    711   1.1   mycroft 		 *	((sect/frag) * (ms/sec))
    712   1.1   mycroft 		 * then round up to the next block.
    713   1.1   mycroft 		 */
    714   1.1   mycroft 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
    715   1.1   mycroft 		    (NSPF(fs) * 1000), fs->fs_frag);
    716   1.1   mycroft 	return (nextblk);
    717   1.1   mycroft }
    718   1.1   mycroft 
    719   1.1   mycroft /*
    720   1.1   mycroft  * Implement the cylinder overflow algorithm.
    721   1.1   mycroft  *
    722   1.1   mycroft  * The policy implemented by this algorithm is:
    723   1.1   mycroft  *   1) allocate the block in its requested cylinder group.
    724   1.1   mycroft  *   2) quadradically rehash on the cylinder group number.
    725   1.1   mycroft  *   3) brute force search for a free block.
    726   1.1   mycroft  */
    727   1.1   mycroft /*VARARGS5*/
    728   1.1   mycroft static u_long
    729   1.1   mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
    730   1.1   mycroft 	struct inode *ip;
    731   1.1   mycroft 	int cg;
    732   1.1   mycroft 	long pref;
    733   1.1   mycroft 	int size;	/* size for data blocks, mode for inodes */
    734  1.18      fvdl 	ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
    735   1.1   mycroft {
    736   1.1   mycroft 	register struct fs *fs;
    737   1.1   mycroft 	long result;
    738   1.1   mycroft 	int i, icg = cg;
    739   1.1   mycroft 
    740   1.1   mycroft 	fs = ip->i_fs;
    741   1.1   mycroft 	/*
    742   1.1   mycroft 	 * 1: preferred cylinder group
    743   1.1   mycroft 	 */
    744   1.1   mycroft 	result = (*allocator)(ip, cg, pref, size);
    745   1.1   mycroft 	if (result)
    746   1.1   mycroft 		return (result);
    747   1.1   mycroft 	/*
    748   1.1   mycroft 	 * 2: quadratic rehash
    749   1.1   mycroft 	 */
    750   1.1   mycroft 	for (i = 1; i < fs->fs_ncg; i *= 2) {
    751   1.1   mycroft 		cg += i;
    752   1.1   mycroft 		if (cg >= fs->fs_ncg)
    753   1.1   mycroft 			cg -= fs->fs_ncg;
    754   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    755   1.1   mycroft 		if (result)
    756   1.1   mycroft 			return (result);
    757   1.1   mycroft 	}
    758   1.1   mycroft 	/*
    759   1.1   mycroft 	 * 3: brute force search
    760   1.1   mycroft 	 * Note that we start at i == 2, since 0 was checked initially,
    761   1.1   mycroft 	 * and 1 is always checked in the quadratic rehash.
    762   1.1   mycroft 	 */
    763   1.1   mycroft 	cg = (icg + 2) % fs->fs_ncg;
    764   1.1   mycroft 	for (i = 2; i < fs->fs_ncg; i++) {
    765   1.1   mycroft 		result = (*allocator)(ip, cg, 0, size);
    766   1.1   mycroft 		if (result)
    767   1.1   mycroft 			return (result);
    768   1.1   mycroft 		cg++;
    769   1.1   mycroft 		if (cg == fs->fs_ncg)
    770   1.1   mycroft 			cg = 0;
    771   1.1   mycroft 	}
    772   1.1   mycroft 	return (NULL);
    773   1.1   mycroft }
    774   1.1   mycroft 
    775   1.1   mycroft /*
    776   1.1   mycroft  * Determine whether a fragment can be extended.
    777   1.1   mycroft  *
    778   1.1   mycroft  * Check to see if the necessary fragments are available, and
    779   1.1   mycroft  * if they are, allocate them.
    780   1.1   mycroft  */
    781  1.18      fvdl static ufs_daddr_t
    782   1.1   mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
    783   1.1   mycroft 	struct inode *ip;
    784   1.1   mycroft 	int cg;
    785   1.1   mycroft 	long bprev;
    786   1.1   mycroft 	int osize, nsize;
    787   1.1   mycroft {
    788   1.1   mycroft 	register struct fs *fs;
    789   1.1   mycroft 	register struct cg *cgp;
    790   1.1   mycroft 	struct buf *bp;
    791   1.1   mycroft 	long bno;
    792   1.1   mycroft 	int frags, bbase;
    793   1.1   mycroft 	int i, error;
    794   1.1   mycroft 
    795   1.1   mycroft 	fs = ip->i_fs;
    796   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
    797   1.1   mycroft 		return (NULL);
    798   1.1   mycroft 	frags = numfrags(fs, nsize);
    799   1.1   mycroft 	bbase = fragnum(fs, bprev);
    800   1.1   mycroft 	if (bbase > fragnum(fs, (bprev + frags - 1))) {
    801   1.1   mycroft 		/* cannot extend across a block boundary */
    802   1.1   mycroft 		return (NULL);
    803   1.1   mycroft 	}
    804   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    805   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    806   1.1   mycroft 	if (error) {
    807   1.1   mycroft 		brelse(bp);
    808   1.1   mycroft 		return (NULL);
    809   1.1   mycroft 	}
    810   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    811  1.19    bouyer 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
    812   1.1   mycroft 		brelse(bp);
    813   1.1   mycroft 		return (NULL);
    814   1.1   mycroft 	}
    815  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
    816   1.1   mycroft 	bno = dtogd(fs, bprev);
    817   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++)
    818  1.19    bouyer 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
    819   1.1   mycroft 			brelse(bp);
    820   1.1   mycroft 			return (NULL);
    821   1.1   mycroft 		}
    822   1.1   mycroft 	/*
    823   1.1   mycroft 	 * the current fragment can be extended
    824   1.1   mycroft 	 * deduct the count on fragment being extended into
    825   1.1   mycroft 	 * increase the count on the remaining fragment (if any)
    826   1.1   mycroft 	 * allocate the extended piece
    827   1.1   mycroft 	 */
    828   1.1   mycroft 	for (i = frags; i < fs->fs_frag - bbase; i++)
    829  1.19    bouyer 		if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
    830   1.1   mycroft 			break;
    831  1.19    bouyer 	ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
    832   1.1   mycroft 	if (i != frags)
    833  1.19    bouyer 		ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
    834   1.1   mycroft 	for (i = numfrags(fs, osize); i < frags; i++) {
    835  1.19    bouyer 		clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
    836  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
    837   1.1   mycroft 		fs->fs_cstotal.cs_nffree--;
    838   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nffree--;
    839   1.1   mycroft 	}
    840   1.1   mycroft 	fs->fs_fmod = 1;
    841   1.1   mycroft 	bdwrite(bp);
    842   1.1   mycroft 	return (bprev);
    843   1.1   mycroft }
    844   1.1   mycroft 
    845   1.1   mycroft /*
    846   1.1   mycroft  * Determine whether a block can be allocated.
    847   1.1   mycroft  *
    848   1.1   mycroft  * Check to see if a block of the appropriate size is available,
    849   1.1   mycroft  * and if it is, allocate it.
    850   1.1   mycroft  */
    851  1.18      fvdl static ufs_daddr_t
    852   1.1   mycroft ffs_alloccg(ip, cg, bpref, size)
    853   1.1   mycroft 	struct inode *ip;
    854   1.1   mycroft 	int cg;
    855  1.18      fvdl 	ufs_daddr_t bpref;
    856   1.1   mycroft 	int size;
    857   1.1   mycroft {
    858   1.1   mycroft 	register struct fs *fs;
    859   1.1   mycroft 	register struct cg *cgp;
    860   1.1   mycroft 	struct buf *bp;
    861   1.1   mycroft 	register int i;
    862   1.1   mycroft 	int error, bno, frags, allocsiz;
    863  1.19    bouyer 	const int needswap = UFS_IPNEEDSWAP(ip);
    864   1.1   mycroft 
    865   1.1   mycroft 	fs = ip->i_fs;
    866   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
    867   1.1   mycroft 		return (NULL);
    868   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
    869   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
    870   1.1   mycroft 	if (error) {
    871   1.1   mycroft 		brelse(bp);
    872   1.1   mycroft 		return (NULL);
    873   1.1   mycroft 	}
    874   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
    875  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) ||
    876   1.1   mycroft 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
    877   1.1   mycroft 		brelse(bp);
    878   1.1   mycroft 		return (NULL);
    879   1.1   mycroft 	}
    880  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
    881   1.1   mycroft 	if (size == fs->fs_bsize) {
    882  1.19    bouyer 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    883   1.1   mycroft 		bdwrite(bp);
    884   1.1   mycroft 		return (bno);
    885   1.1   mycroft 	}
    886   1.1   mycroft 	/*
    887   1.1   mycroft 	 * check to see if any fragments are already available
    888   1.1   mycroft 	 * allocsiz is the size which will be allocated, hacking
    889   1.1   mycroft 	 * it down to a smaller size if necessary
    890   1.1   mycroft 	 */
    891   1.1   mycroft 	frags = numfrags(fs, size);
    892   1.1   mycroft 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
    893   1.1   mycroft 		if (cgp->cg_frsum[allocsiz] != 0)
    894   1.1   mycroft 			break;
    895   1.1   mycroft 	if (allocsiz == fs->fs_frag) {
    896   1.1   mycroft 		/*
    897   1.1   mycroft 		 * no fragments were available, so a block will be
    898   1.1   mycroft 		 * allocated, and hacked up
    899   1.1   mycroft 		 */
    900   1.1   mycroft 		if (cgp->cg_cs.cs_nbfree == 0) {
    901   1.1   mycroft 			brelse(bp);
    902   1.1   mycroft 			return (NULL);
    903   1.1   mycroft 		}
    904  1.19    bouyer 		bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
    905   1.1   mycroft 		bpref = dtogd(fs, bno);
    906   1.1   mycroft 		for (i = frags; i < fs->fs_frag; i++)
    907  1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bpref + i);
    908   1.1   mycroft 		i = fs->fs_frag - frags;
    909  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
    910   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
    911  1.19    bouyer 		fs->fs_cs(fs, cg).cs_nffree +=i;
    912   1.1   mycroft 		fs->fs_fmod = 1;
    913  1.19    bouyer 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
    914   1.1   mycroft 		bdwrite(bp);
    915   1.1   mycroft 		return (bno);
    916   1.1   mycroft 	}
    917  1.19    bouyer 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
    918   1.1   mycroft 	if (bno < 0) {
    919   1.1   mycroft 		brelse(bp);
    920   1.1   mycroft 		return (NULL);
    921   1.1   mycroft 	}
    922   1.1   mycroft 	for (i = 0; i < frags; i++)
    923  1.19    bouyer 		clrbit(cg_blksfree(cgp, needswap), bno + i);
    924  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
    925   1.1   mycroft 	fs->fs_cstotal.cs_nffree -= frags;
    926   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nffree -= frags;
    927   1.1   mycroft 	fs->fs_fmod = 1;
    928  1.19    bouyer 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
    929   1.1   mycroft 	if (frags != allocsiz)
    930  1.19    bouyer 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
    931   1.1   mycroft 	bdwrite(bp);
    932   1.1   mycroft 	return (cg * fs->fs_fpg + bno);
    933   1.1   mycroft }
    934   1.1   mycroft 
    935   1.1   mycroft /*
    936   1.1   mycroft  * Allocate a block in a cylinder group.
    937   1.1   mycroft  *
    938   1.1   mycroft  * This algorithm implements the following policy:
    939   1.1   mycroft  *   1) allocate the requested block.
    940   1.1   mycroft  *   2) allocate a rotationally optimal block in the same cylinder.
    941   1.1   mycroft  *   3) allocate the next available block on the block rotor for the
    942   1.1   mycroft  *      specified cylinder group.
    943   1.1   mycroft  * Note that this routine only allocates fs_bsize blocks; these
    944   1.1   mycroft  * blocks may be fragmented by the routine that allocates them.
    945   1.1   mycroft  */
    946  1.18      fvdl static ufs_daddr_t
    947  1.19    bouyer ffs_alloccgblk(mp, fs, cgp, bpref)
    948  1.19    bouyer 	struct  mount *mp;
    949   1.1   mycroft 	register struct fs *fs;
    950   1.1   mycroft 	register struct cg *cgp;
    951  1.18      fvdl 	ufs_daddr_t bpref;
    952   1.1   mycroft {
    953  1.18      fvdl 	ufs_daddr_t bno, blkno;
    954   1.1   mycroft 	int cylno, pos, delta;
    955   1.1   mycroft 	short *cylbp;
    956   1.1   mycroft 	register int i;
    957  1.19    bouyer 	const int needswap = UFS_MPNEEDSWAP(mp);
    958   1.1   mycroft 
    959  1.19    bouyer 	if (bpref == 0 ||
    960  1.19    bouyer 		dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
    961  1.19    bouyer 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
    962   1.1   mycroft 		goto norot;
    963   1.1   mycroft 	}
    964   1.1   mycroft 	bpref = blknum(fs, bpref);
    965   1.1   mycroft 	bpref = dtogd(fs, bpref);
    966   1.1   mycroft 	/*
    967   1.1   mycroft 	 * if the requested block is available, use it
    968   1.1   mycroft 	 */
    969  1.19    bouyer 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
    970  1.19    bouyer 		fragstoblks(fs, bpref))) {
    971   1.1   mycroft 		bno = bpref;
    972   1.1   mycroft 		goto gotit;
    973   1.1   mycroft 	}
    974  1.18      fvdl 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
    975   1.1   mycroft 		/*
    976   1.1   mycroft 		 * Block layout information is not available.
    977   1.1   mycroft 		 * Leaving bpref unchanged means we take the
    978   1.1   mycroft 		 * next available free block following the one
    979   1.1   mycroft 		 * we just allocated. Hopefully this will at
    980   1.1   mycroft 		 * least hit a track cache on drives of unknown
    981   1.1   mycroft 		 * geometry (e.g. SCSI).
    982   1.1   mycroft 		 */
    983   1.1   mycroft 		goto norot;
    984   1.1   mycroft 	}
    985   1.6   mycroft 	/*
    986   1.6   mycroft 	 * check for a block available on the same cylinder
    987   1.6   mycroft 	 */
    988   1.6   mycroft 	cylno = cbtocylno(fs, bpref);
    989  1.19    bouyer 	if (cg_blktot(cgp, needswap)[cylno] == 0)
    990   1.6   mycroft 		goto norot;
    991   1.1   mycroft 	/*
    992   1.1   mycroft 	 * check the summary information to see if a block is
    993   1.1   mycroft 	 * available in the requested cylinder starting at the
    994   1.1   mycroft 	 * requested rotational position and proceeding around.
    995   1.1   mycroft 	 */
    996  1.19    bouyer 	cylbp = cg_blks(fs, cgp, cylno, needswap);
    997   1.1   mycroft 	pos = cbtorpos(fs, bpref);
    998   1.1   mycroft 	for (i = pos; i < fs->fs_nrpos; i++)
    999  1.19    bouyer 		if (ufs_rw16(cylbp[i], needswap) > 0)
   1000   1.1   mycroft 			break;
   1001   1.1   mycroft 	if (i == fs->fs_nrpos)
   1002   1.1   mycroft 		for (i = 0; i < pos; i++)
   1003  1.19    bouyer 			if (ufs_rw16(cylbp[i], needswap) > 0)
   1004   1.1   mycroft 				break;
   1005  1.19    bouyer 	if (ufs_rw16(cylbp[i], needswap) > 0) {
   1006   1.1   mycroft 		/*
   1007   1.1   mycroft 		 * found a rotational position, now find the actual
   1008   1.1   mycroft 		 * block. A panic if none is actually there.
   1009   1.1   mycroft 		 */
   1010   1.1   mycroft 		pos = cylno % fs->fs_cpc;
   1011   1.1   mycroft 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
   1012   1.1   mycroft 		if (fs_postbl(fs, pos)[i] == -1) {
   1013  1.13  christos 			printf("pos = %d, i = %d, fs = %s\n",
   1014   1.1   mycroft 			    pos, i, fs->fs_fsmnt);
   1015   1.1   mycroft 			panic("ffs_alloccgblk: cyl groups corrupted");
   1016   1.1   mycroft 		}
   1017   1.1   mycroft 		for (i = fs_postbl(fs, pos)[i];; ) {
   1018  1.19    bouyer 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
   1019   1.1   mycroft 				bno = blkstofrags(fs, (bno + i));
   1020   1.1   mycroft 				goto gotit;
   1021   1.1   mycroft 			}
   1022   1.1   mycroft 			delta = fs_rotbl(fs)[i];
   1023   1.1   mycroft 			if (delta <= 0 ||
   1024   1.1   mycroft 			    delta + i > fragstoblks(fs, fs->fs_fpg))
   1025   1.1   mycroft 				break;
   1026   1.1   mycroft 			i += delta;
   1027   1.1   mycroft 		}
   1028  1.13  christos 		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
   1029   1.1   mycroft 		panic("ffs_alloccgblk: can't find blk in cyl");
   1030   1.1   mycroft 	}
   1031   1.1   mycroft norot:
   1032   1.1   mycroft 	/*
   1033   1.1   mycroft 	 * no blocks in the requested cylinder, so take next
   1034   1.1   mycroft 	 * available one in this cylinder group.
   1035   1.1   mycroft 	 */
   1036  1.19    bouyer 	bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
   1037   1.1   mycroft 	if (bno < 0)
   1038   1.1   mycroft 		return (NULL);
   1039  1.19    bouyer 	cgp->cg_rotor = ufs_rw32(bno, needswap);
   1040   1.1   mycroft gotit:
   1041   1.1   mycroft 	blkno = fragstoblks(fs, bno);
   1042  1.19    bouyer 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
   1043  1.19    bouyer 	ffs_clusteracct(needswap, fs, cgp, blkno, -1);
   1044  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
   1045   1.1   mycroft 	fs->fs_cstotal.cs_nbfree--;
   1046  1.19    bouyer 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
   1047   1.1   mycroft 	cylno = cbtocylno(fs, bno);
   1048  1.19    bouyer 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
   1049  1.19    bouyer 		needswap);
   1050  1.19    bouyer 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
   1051   1.1   mycroft 	fs->fs_fmod = 1;
   1052  1.19    bouyer 	return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
   1053   1.1   mycroft }
   1054   1.1   mycroft 
   1055   1.1   mycroft /*
   1056   1.1   mycroft  * Determine whether a cluster can be allocated.
   1057   1.1   mycroft  *
   1058   1.1   mycroft  * We do not currently check for optimal rotational layout if there
   1059   1.1   mycroft  * are multiple choices in the same cylinder group. Instead we just
   1060   1.1   mycroft  * take the first one that we find following bpref.
   1061   1.1   mycroft  */
   1062  1.18      fvdl static ufs_daddr_t
   1063   1.1   mycroft ffs_clusteralloc(ip, cg, bpref, len)
   1064   1.1   mycroft 	struct inode *ip;
   1065   1.1   mycroft 	int cg;
   1066  1.18      fvdl 	ufs_daddr_t bpref;
   1067   1.1   mycroft 	int len;
   1068   1.1   mycroft {
   1069   1.1   mycroft 	register struct fs *fs;
   1070   1.1   mycroft 	register struct cg *cgp;
   1071   1.1   mycroft 	struct buf *bp;
   1072  1.18      fvdl 	int i, got, run, bno, bit, map;
   1073   1.1   mycroft 	u_char *mapp;
   1074   1.5   mycroft 	int32_t *lp;
   1075   1.1   mycroft 
   1076   1.1   mycroft 	fs = ip->i_fs;
   1077   1.5   mycroft 	if (fs->fs_maxcluster[cg] < len)
   1078   1.1   mycroft 		return (NULL);
   1079   1.1   mycroft 	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
   1080   1.1   mycroft 	    NOCRED, &bp))
   1081   1.1   mycroft 		goto fail;
   1082   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1083  1.19    bouyer 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
   1084   1.1   mycroft 		goto fail;
   1085   1.1   mycroft 	/*
   1086   1.1   mycroft 	 * Check to see if a cluster of the needed size (or bigger) is
   1087   1.1   mycroft 	 * available in this cylinder group.
   1088   1.1   mycroft 	 */
   1089  1.19    bouyer 	lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
   1090   1.1   mycroft 	for (i = len; i <= fs->fs_contigsumsize; i++)
   1091  1.19    bouyer 		if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
   1092   1.1   mycroft 			break;
   1093   1.5   mycroft 	if (i > fs->fs_contigsumsize) {
   1094   1.5   mycroft 		/*
   1095   1.5   mycroft 		 * This is the first time looking for a cluster in this
   1096   1.5   mycroft 		 * cylinder group. Update the cluster summary information
   1097   1.5   mycroft 		 * to reflect the true maximum sized cluster so that
   1098   1.5   mycroft 		 * future cluster allocation requests can avoid reading
   1099   1.5   mycroft 		 * the cylinder group map only to find no clusters.
   1100   1.5   mycroft 		 */
   1101  1.19    bouyer 		lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
   1102   1.5   mycroft 		for (i = len - 1; i > 0; i--)
   1103  1.19    bouyer 			if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
   1104   1.5   mycroft 				break;
   1105   1.5   mycroft 		fs->fs_maxcluster[cg] = i;
   1106   1.1   mycroft 		goto fail;
   1107   1.5   mycroft 	}
   1108   1.1   mycroft 	/*
   1109   1.1   mycroft 	 * Search the cluster map to find a big enough cluster.
   1110   1.1   mycroft 	 * We take the first one that we find, even if it is larger
   1111   1.1   mycroft 	 * than we need as we prefer to get one close to the previous
   1112   1.1   mycroft 	 * block allocation. We do not search before the current
   1113   1.1   mycroft 	 * preference point as we do not want to allocate a block
   1114   1.1   mycroft 	 * that is allocated before the previous one (as we will
   1115   1.1   mycroft 	 * then have to wait for another pass of the elevator
   1116   1.1   mycroft 	 * algorithm before it will be read). We prefer to fail and
   1117   1.1   mycroft 	 * be recalled to try an allocation in the next cylinder group.
   1118   1.1   mycroft 	 */
   1119   1.1   mycroft 	if (dtog(fs, bpref) != cg)
   1120   1.1   mycroft 		bpref = 0;
   1121   1.1   mycroft 	else
   1122   1.1   mycroft 		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
   1123  1.19    bouyer 	mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
   1124   1.1   mycroft 	map = *mapp++;
   1125   1.1   mycroft 	bit = 1 << (bpref % NBBY);
   1126  1.19    bouyer 	for (run = 0, got = bpref;
   1127  1.19    bouyer 		got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
   1128   1.1   mycroft 		if ((map & bit) == 0) {
   1129   1.1   mycroft 			run = 0;
   1130   1.1   mycroft 		} else {
   1131   1.1   mycroft 			run++;
   1132   1.1   mycroft 			if (run == len)
   1133   1.1   mycroft 				break;
   1134   1.1   mycroft 		}
   1135  1.18      fvdl 		if ((got & (NBBY - 1)) != (NBBY - 1)) {
   1136   1.1   mycroft 			bit <<= 1;
   1137   1.1   mycroft 		} else {
   1138   1.1   mycroft 			map = *mapp++;
   1139   1.1   mycroft 			bit = 1;
   1140   1.1   mycroft 		}
   1141   1.1   mycroft 	}
   1142  1.19    bouyer 	if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
   1143   1.1   mycroft 		goto fail;
   1144   1.1   mycroft 	/*
   1145   1.1   mycroft 	 * Allocate the cluster that we have found.
   1146   1.1   mycroft 	 */
   1147  1.18      fvdl 	for (i = 1; i <= len; i++)
   1148  1.19    bouyer 		if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1149  1.19    bouyer 			got - run + i))
   1150  1.18      fvdl 			panic("ffs_clusteralloc: map mismatch");
   1151  1.18      fvdl 	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
   1152  1.18      fvdl 	if (dtog(fs, bno) != cg)
   1153  1.18      fvdl 		panic("ffs_clusteralloc: allocated out of group");
   1154   1.1   mycroft 	len = blkstofrags(fs, len);
   1155   1.1   mycroft 	for (i = 0; i < len; i += fs->fs_frag)
   1156  1.19    bouyer 		if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
   1157  1.19    bouyer 			!= bno + i)
   1158   1.1   mycroft 			panic("ffs_clusteralloc: lost block");
   1159   1.8       cgd 	bdwrite(bp);
   1160   1.1   mycroft 	return (bno);
   1161   1.1   mycroft 
   1162   1.1   mycroft fail:
   1163   1.1   mycroft 	brelse(bp);
   1164   1.1   mycroft 	return (0);
   1165   1.1   mycroft }
   1166   1.1   mycroft 
   1167   1.1   mycroft /*
   1168   1.1   mycroft  * Determine whether an inode can be allocated.
   1169   1.1   mycroft  *
   1170   1.1   mycroft  * Check to see if an inode is available, and if it is,
   1171   1.1   mycroft  * allocate it using the following policy:
   1172   1.1   mycroft  *   1) allocate the requested inode.
   1173   1.1   mycroft  *   2) allocate the next available inode after the requested
   1174   1.1   mycroft  *      inode in the specified cylinder group.
   1175   1.1   mycroft  */
   1176  1.18      fvdl static ufs_daddr_t
   1177   1.1   mycroft ffs_nodealloccg(ip, cg, ipref, mode)
   1178   1.1   mycroft 	struct inode *ip;
   1179   1.1   mycroft 	int cg;
   1180  1.18      fvdl 	ufs_daddr_t ipref;
   1181   1.1   mycroft 	int mode;
   1182   1.1   mycroft {
   1183   1.1   mycroft 	register struct fs *fs;
   1184   1.1   mycroft 	register struct cg *cgp;
   1185   1.1   mycroft 	struct buf *bp;
   1186   1.1   mycroft 	int error, start, len, loc, map, i;
   1187  1.19    bouyer #ifdef FFS_EI
   1188  1.19    bouyer 	const int needswap = UFS_IPNEEDSWAP(ip);
   1189  1.19    bouyer #endif
   1190   1.1   mycroft 
   1191   1.1   mycroft 	fs = ip->i_fs;
   1192   1.1   mycroft 	if (fs->fs_cs(fs, cg).cs_nifree == 0)
   1193   1.1   mycroft 		return (NULL);
   1194   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1195   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1196   1.1   mycroft 	if (error) {
   1197   1.1   mycroft 		brelse(bp);
   1198   1.1   mycroft 		return (NULL);
   1199   1.1   mycroft 	}
   1200   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1201  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
   1202   1.1   mycroft 		brelse(bp);
   1203   1.1   mycroft 		return (NULL);
   1204   1.1   mycroft 	}
   1205  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1206   1.1   mycroft 	if (ipref) {
   1207   1.1   mycroft 		ipref %= fs->fs_ipg;
   1208  1.19    bouyer 		if (isclr(cg_inosused(cgp, needswap), ipref))
   1209   1.1   mycroft 			goto gotit;
   1210   1.1   mycroft 	}
   1211  1.19    bouyer 	start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
   1212  1.19    bouyer 	len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
   1213  1.19    bouyer 		NBBY);
   1214  1.19    bouyer 	loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
   1215   1.1   mycroft 	if (loc == 0) {
   1216   1.1   mycroft 		len = start + 1;
   1217   1.1   mycroft 		start = 0;
   1218  1.19    bouyer 		loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
   1219   1.1   mycroft 		if (loc == 0) {
   1220  1.13  christos 			printf("cg = %d, irotor = %d, fs = %s\n",
   1221  1.19    bouyer 			    cg, ufs_rw32(cgp->cg_irotor, needswap),
   1222  1.19    bouyer 				fs->fs_fsmnt);
   1223   1.1   mycroft 			panic("ffs_nodealloccg: map corrupted");
   1224   1.1   mycroft 			/* NOTREACHED */
   1225   1.1   mycroft 		}
   1226   1.1   mycroft 	}
   1227   1.1   mycroft 	i = start + len - loc;
   1228  1.19    bouyer 	map = cg_inosused(cgp, needswap)[i];
   1229   1.1   mycroft 	ipref = i * NBBY;
   1230   1.1   mycroft 	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
   1231   1.1   mycroft 		if ((map & i) == 0) {
   1232  1.19    bouyer 			cgp->cg_irotor = ufs_rw32(ipref, needswap);
   1233   1.1   mycroft 			goto gotit;
   1234   1.1   mycroft 		}
   1235   1.1   mycroft 	}
   1236  1.13  christos 	printf("fs = %s\n", fs->fs_fsmnt);
   1237   1.1   mycroft 	panic("ffs_nodealloccg: block not in map");
   1238   1.1   mycroft 	/* NOTREACHED */
   1239   1.1   mycroft gotit:
   1240  1.19    bouyer 	setbit(cg_inosused(cgp, needswap), ipref);
   1241  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
   1242   1.1   mycroft 	fs->fs_cstotal.cs_nifree--;
   1243  1.19    bouyer 	fs->fs_cs(fs, cg).cs_nifree --;
   1244   1.1   mycroft 	fs->fs_fmod = 1;
   1245   1.1   mycroft 	if ((mode & IFMT) == IFDIR) {
   1246  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
   1247   1.1   mycroft 		fs->fs_cstotal.cs_ndir++;
   1248   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir++;
   1249   1.1   mycroft 	}
   1250   1.1   mycroft 	bdwrite(bp);
   1251   1.1   mycroft 	return (cg * fs->fs_ipg + ipref);
   1252   1.1   mycroft }
   1253   1.1   mycroft 
   1254   1.1   mycroft /*
   1255   1.1   mycroft  * Free a block or fragment.
   1256   1.1   mycroft  *
   1257   1.1   mycroft  * The specified block or fragment is placed back in the
   1258   1.1   mycroft  * free map. If a fragment is deallocated, a possible
   1259   1.1   mycroft  * block reassembly is checked.
   1260   1.1   mycroft  */
   1261   1.9  christos void
   1262   1.1   mycroft ffs_blkfree(ip, bno, size)
   1263   1.1   mycroft 	register struct inode *ip;
   1264  1.18      fvdl 	ufs_daddr_t bno;
   1265   1.1   mycroft 	long size;
   1266   1.1   mycroft {
   1267   1.1   mycroft 	register struct fs *fs;
   1268   1.1   mycroft 	register struct cg *cgp;
   1269   1.1   mycroft 	struct buf *bp;
   1270  1.18      fvdl 	ufs_daddr_t blkno;
   1271   1.1   mycroft 	int i, error, cg, blk, frags, bbase;
   1272  1.19    bouyer 	const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
   1273   1.1   mycroft 
   1274   1.1   mycroft 	fs = ip->i_fs;
   1275   1.1   mycroft 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1276  1.13  christos 		printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
   1277   1.1   mycroft 		    ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
   1278   1.1   mycroft 		panic("blkfree: bad size");
   1279   1.1   mycroft 	}
   1280   1.1   mycroft 	cg = dtog(fs, bno);
   1281   1.1   mycroft 	if ((u_int)bno >= fs->fs_size) {
   1282  1.13  christos 		printf("bad block %d, ino %d\n", bno, ip->i_number);
   1283  1.15    bouyer 		ffs_fserr(fs, ip->i_ffs_uid, "bad block");
   1284   1.1   mycroft 		return;
   1285   1.1   mycroft 	}
   1286   1.1   mycroft 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1287   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1288   1.1   mycroft 	if (error) {
   1289   1.1   mycroft 		brelse(bp);
   1290   1.1   mycroft 		return;
   1291   1.1   mycroft 	}
   1292   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1293  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1294   1.1   mycroft 		brelse(bp);
   1295   1.1   mycroft 		return;
   1296   1.1   mycroft 	}
   1297  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1298   1.1   mycroft 	bno = dtogd(fs, bno);
   1299   1.1   mycroft 	if (size == fs->fs_bsize) {
   1300   1.1   mycroft 		blkno = fragstoblks(fs, bno);
   1301  1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1302  1.13  christos 			printf("dev = 0x%x, block = %d, fs = %s\n",
   1303   1.1   mycroft 			    ip->i_dev, bno, fs->fs_fsmnt);
   1304   1.1   mycroft 			panic("blkfree: freeing free block");
   1305   1.1   mycroft 		}
   1306  1.19    bouyer 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
   1307  1.19    bouyer 		ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1308  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1309   1.1   mycroft 		fs->fs_cstotal.cs_nbfree++;
   1310   1.1   mycroft 		fs->fs_cs(fs, cg).cs_nbfree++;
   1311   1.1   mycroft 		i = cbtocylno(fs, bno);
   1312  1.19    bouyer 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
   1313  1.19    bouyer 			needswap);
   1314  1.19    bouyer 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1315   1.1   mycroft 	} else {
   1316   1.1   mycroft 		bbase = bno - fragnum(fs, bno);
   1317   1.1   mycroft 		/*
   1318   1.1   mycroft 		 * decrement the counts associated with the old frags
   1319   1.1   mycroft 		 */
   1320  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1321  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
   1322   1.1   mycroft 		/*
   1323   1.1   mycroft 		 * deallocate the fragment
   1324   1.1   mycroft 		 */
   1325   1.1   mycroft 		frags = numfrags(fs, size);
   1326   1.1   mycroft 		for (i = 0; i < frags; i++) {
   1327  1.19    bouyer 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
   1328  1.13  christos 				printf("dev = 0x%x, block = %d, fs = %s\n",
   1329   1.1   mycroft 				    ip->i_dev, bno + i, fs->fs_fsmnt);
   1330   1.1   mycroft 				panic("blkfree: freeing free frag");
   1331   1.1   mycroft 			}
   1332  1.19    bouyer 			setbit(cg_blksfree(cgp, needswap), bno + i);
   1333   1.1   mycroft 		}
   1334  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
   1335   1.1   mycroft 		fs->fs_cstotal.cs_nffree += i;
   1336  1.19    bouyer 		fs->fs_cs(fs, cg).cs_nffree +=i;
   1337   1.1   mycroft 		/*
   1338   1.1   mycroft 		 * add back in counts associated with the new frags
   1339   1.1   mycroft 		 */
   1340  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
   1341  1.19    bouyer 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
   1342   1.1   mycroft 		/*
   1343   1.1   mycroft 		 * if a complete block has been reassembled, account for it
   1344   1.1   mycroft 		 */
   1345   1.1   mycroft 		blkno = fragstoblks(fs, bbase);
   1346  1.19    bouyer 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
   1347  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
   1348   1.1   mycroft 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
   1349   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
   1350  1.19    bouyer 			ffs_clusteracct(needswap, fs, cgp, blkno, 1);
   1351  1.19    bouyer 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
   1352   1.1   mycroft 			fs->fs_cstotal.cs_nbfree++;
   1353   1.1   mycroft 			fs->fs_cs(fs, cg).cs_nbfree++;
   1354   1.1   mycroft 			i = cbtocylno(fs, bbase);
   1355  1.19    bouyer 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
   1356  1.19    bouyer 				needswap);
   1357  1.19    bouyer 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
   1358   1.1   mycroft 		}
   1359   1.1   mycroft 	}
   1360   1.1   mycroft 	fs->fs_fmod = 1;
   1361   1.1   mycroft 	bdwrite(bp);
   1362   1.1   mycroft }
   1363   1.1   mycroft 
   1364  1.18      fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
   1365  1.18      fvdl /*
   1366  1.18      fvdl  * Verify allocation of a block or fragment. Returns true if block or
   1367  1.18      fvdl  * fragment is allocated, false if it is free.
   1368  1.18      fvdl  */
   1369  1.18      fvdl static int
   1370  1.18      fvdl ffs_checkblk(ip, bno, size)
   1371  1.18      fvdl 	struct inode *ip;
   1372  1.18      fvdl 	ufs_daddr_t bno;
   1373  1.18      fvdl 	long size;
   1374  1.18      fvdl {
   1375  1.18      fvdl 	struct fs *fs;
   1376  1.18      fvdl 	struct cg *cgp;
   1377  1.18      fvdl 	struct buf *bp;
   1378  1.18      fvdl 	int i, error, frags, free;
   1379  1.18      fvdl 
   1380  1.18      fvdl 	fs = ip->i_fs;
   1381  1.18      fvdl 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
   1382  1.18      fvdl 		printf("bsize = %d, size = %ld, fs = %s\n",
   1383  1.18      fvdl 		    fs->fs_bsize, size, fs->fs_fsmnt);
   1384  1.18      fvdl 		panic("checkblk: bad size");
   1385  1.18      fvdl 	}
   1386  1.18      fvdl 	if ((u_int)bno >= fs->fs_size)
   1387  1.18      fvdl 		panic("checkblk: bad block %d", bno);
   1388  1.18      fvdl 	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
   1389  1.18      fvdl 		(int)fs->fs_cgsize, NOCRED, &bp);
   1390  1.18      fvdl 	if (error) {
   1391  1.18      fvdl 		brelse(bp);
   1392  1.18      fvdl 		return 0;
   1393  1.18      fvdl 	}
   1394  1.18      fvdl 	cgp = (struct cg *)bp->b_data;
   1395  1.19    bouyer 	if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
   1396  1.18      fvdl 		brelse(bp);
   1397  1.18      fvdl 		return 0;
   1398  1.18      fvdl 	}
   1399  1.18      fvdl 	bno = dtogd(fs, bno);
   1400  1.18      fvdl 	if (size == fs->fs_bsize) {
   1401  1.19    bouyer 		free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
   1402  1.19    bouyer 			fragstoblks(fs, bno));
   1403  1.18      fvdl 	} else {
   1404  1.18      fvdl 		frags = numfrags(fs, size);
   1405  1.18      fvdl 		for (free = 0, i = 0; i < frags; i++)
   1406  1.19    bouyer 			if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
   1407  1.18      fvdl 				free++;
   1408  1.18      fvdl 		if (free != 0 && free != frags)
   1409  1.18      fvdl 			panic("checkblk: partially free fragment");
   1410  1.18      fvdl 	}
   1411  1.18      fvdl 	brelse(bp);
   1412  1.18      fvdl 	return (!free);
   1413  1.18      fvdl }
   1414  1.18      fvdl #endif /* DIAGNOSTIC */
   1415  1.18      fvdl 
   1416   1.1   mycroft /*
   1417   1.1   mycroft  * Free an inode.
   1418   1.1   mycroft  *
   1419   1.1   mycroft  * The specified inode is placed back in the free map.
   1420   1.1   mycroft  */
   1421   1.1   mycroft int
   1422   1.9  christos ffs_vfree(v)
   1423   1.9  christos 	void *v;
   1424   1.9  christos {
   1425   1.1   mycroft 	struct vop_vfree_args /* {
   1426   1.1   mycroft 		struct vnode *a_pvp;
   1427   1.1   mycroft 		ino_t a_ino;
   1428   1.1   mycroft 		int a_mode;
   1429   1.9  christos 	} */ *ap = v;
   1430   1.1   mycroft 	register struct fs *fs;
   1431   1.1   mycroft 	register struct cg *cgp;
   1432   1.1   mycroft 	register struct inode *pip;
   1433   1.1   mycroft 	ino_t ino = ap->a_ino;
   1434   1.1   mycroft 	struct buf *bp;
   1435   1.1   mycroft 	int error, cg;
   1436  1.19    bouyer #ifdef FFS_EI
   1437  1.19    bouyer 	const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
   1438  1.19    bouyer #endif
   1439   1.1   mycroft 
   1440   1.1   mycroft 	pip = VTOI(ap->a_pvp);
   1441   1.1   mycroft 	fs = pip->i_fs;
   1442   1.1   mycroft 	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
   1443   1.1   mycroft 		panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
   1444   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1445   1.1   mycroft 	cg = ino_to_cg(fs, ino);
   1446   1.1   mycroft 	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
   1447   1.1   mycroft 		(int)fs->fs_cgsize, NOCRED, &bp);
   1448   1.1   mycroft 	if (error) {
   1449   1.1   mycroft 		brelse(bp);
   1450   1.1   mycroft 		return (0);
   1451   1.1   mycroft 	}
   1452   1.1   mycroft 	cgp = (struct cg *)bp->b_data;
   1453  1.19    bouyer 	if (!cg_chkmagic(cgp, needswap)) {
   1454   1.1   mycroft 		brelse(bp);
   1455   1.1   mycroft 		return (0);
   1456   1.1   mycroft 	}
   1457  1.19    bouyer 	cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
   1458   1.1   mycroft 	ino %= fs->fs_ipg;
   1459  1.19    bouyer 	if (isclr(cg_inosused(cgp, needswap), ino)) {
   1460  1.13  christos 		printf("dev = 0x%x, ino = %d, fs = %s\n",
   1461   1.1   mycroft 		    pip->i_dev, ino, fs->fs_fsmnt);
   1462   1.1   mycroft 		if (fs->fs_ronly == 0)
   1463   1.1   mycroft 			panic("ifree: freeing free inode");
   1464   1.1   mycroft 	}
   1465  1.19    bouyer 	clrbit(cg_inosused(cgp, needswap), ino);
   1466  1.19    bouyer 	if (ino < ufs_rw32(cgp->cg_irotor, needswap))
   1467  1.19    bouyer 		cgp->cg_irotor = ufs_rw32(ino, needswap);
   1468  1.19    bouyer 	ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
   1469   1.1   mycroft 	fs->fs_cstotal.cs_nifree++;
   1470   1.1   mycroft 	fs->fs_cs(fs, cg).cs_nifree++;
   1471   1.1   mycroft 	if ((ap->a_mode & IFMT) == IFDIR) {
   1472  1.19    bouyer 		ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
   1473   1.1   mycroft 		fs->fs_cstotal.cs_ndir--;
   1474   1.1   mycroft 		fs->fs_cs(fs, cg).cs_ndir--;
   1475   1.1   mycroft 	}
   1476   1.1   mycroft 	fs->fs_fmod = 1;
   1477   1.1   mycroft 	bdwrite(bp);
   1478   1.1   mycroft 	return (0);
   1479   1.1   mycroft }
   1480   1.1   mycroft 
   1481   1.1   mycroft /*
   1482   1.1   mycroft  * Find a block of the specified size in the specified cylinder group.
   1483   1.1   mycroft  *
   1484   1.1   mycroft  * It is a panic if a request is made to find a block if none are
   1485   1.1   mycroft  * available.
   1486   1.1   mycroft  */
   1487  1.18      fvdl static ufs_daddr_t
   1488  1.19    bouyer ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
   1489  1.19    bouyer 	int needswap;
   1490   1.1   mycroft 	register struct fs *fs;
   1491   1.1   mycroft 	register struct cg *cgp;
   1492  1.18      fvdl 	ufs_daddr_t bpref;
   1493   1.1   mycroft 	int allocsiz;
   1494   1.1   mycroft {
   1495  1.18      fvdl 	ufs_daddr_t bno;
   1496   1.1   mycroft 	int start, len, loc, i;
   1497   1.1   mycroft 	int blk, field, subfield, pos;
   1498  1.19    bouyer 	int ostart, olen;
   1499   1.1   mycroft 
   1500   1.1   mycroft 	/*
   1501   1.1   mycroft 	 * find the fragment by searching through the free block
   1502   1.1   mycroft 	 * map for an appropriate bit pattern
   1503   1.1   mycroft 	 */
   1504   1.1   mycroft 	if (bpref)
   1505   1.1   mycroft 		start = dtogd(fs, bpref) / NBBY;
   1506   1.1   mycroft 	else
   1507  1.19    bouyer 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
   1508   1.1   mycroft 	len = howmany(fs->fs_fpg, NBBY) - start;
   1509  1.19    bouyer 	ostart = start;
   1510  1.19    bouyer 	olen = len;
   1511  1.19    bouyer 	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
   1512   1.1   mycroft 		(u_char *)fragtbl[fs->fs_frag],
   1513   1.1   mycroft 		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1514   1.1   mycroft 	if (loc == 0) {
   1515   1.1   mycroft 		len = start + 1;
   1516   1.1   mycroft 		start = 0;
   1517  1.19    bouyer 		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
   1518   1.1   mycroft 			(u_char *)fragtbl[fs->fs_frag],
   1519   1.1   mycroft 			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
   1520   1.1   mycroft 		if (loc == 0) {
   1521  1.13  christos 			printf("start = %d, len = %d, fs = %s\n",
   1522  1.19    bouyer 			    ostart, olen, fs->fs_fsmnt);
   1523  1.20      ross 			printf("offset=%d %ld\n",
   1524  1.19    bouyer 				ufs_rw32(cgp->cg_freeoff, needswap),
   1525  1.20      ross 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
   1526   1.1   mycroft 			panic("ffs_alloccg: map corrupted");
   1527   1.1   mycroft 			/* NOTREACHED */
   1528   1.1   mycroft 		}
   1529   1.1   mycroft 	}
   1530   1.1   mycroft 	bno = (start + len - loc) * NBBY;
   1531  1.19    bouyer 	cgp->cg_frotor = ufs_rw32(bno, needswap);
   1532   1.1   mycroft 	/*
   1533   1.1   mycroft 	 * found the byte in the map
   1534   1.1   mycroft 	 * sift through the bits to find the selected frag
   1535   1.1   mycroft 	 */
   1536   1.1   mycroft 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
   1537  1.19    bouyer 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
   1538   1.1   mycroft 		blk <<= 1;
   1539   1.1   mycroft 		field = around[allocsiz];
   1540   1.1   mycroft 		subfield = inside[allocsiz];
   1541   1.1   mycroft 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
   1542   1.1   mycroft 			if ((blk & field) == subfield)
   1543   1.1   mycroft 				return (bno + pos);
   1544   1.1   mycroft 			field <<= 1;
   1545   1.1   mycroft 			subfield <<= 1;
   1546   1.1   mycroft 		}
   1547   1.1   mycroft 	}
   1548  1.13  christos 	printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
   1549   1.1   mycroft 	panic("ffs_alloccg: block not in map");
   1550   1.1   mycroft 	return (-1);
   1551   1.1   mycroft }
   1552   1.1   mycroft 
   1553   1.1   mycroft /*
   1554   1.1   mycroft  * Update the cluster map because of an allocation or free.
   1555   1.1   mycroft  *
   1556   1.1   mycroft  * Cnt == 1 means free; cnt == -1 means allocating.
   1557   1.1   mycroft  */
   1558   1.9  christos void
   1559  1.19    bouyer ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
   1560  1.19    bouyer 	int needswap;
   1561   1.1   mycroft 	struct fs *fs;
   1562   1.1   mycroft 	struct cg *cgp;
   1563  1.18      fvdl 	ufs_daddr_t blkno;
   1564   1.1   mycroft 	int cnt;
   1565   1.1   mycroft {
   1566   1.4       cgd 	int32_t *sump;
   1567   1.5   mycroft 	int32_t *lp;
   1568   1.1   mycroft 	u_char *freemapp, *mapp;
   1569   1.1   mycroft 	int i, start, end, forw, back, map, bit;
   1570   1.1   mycroft 
   1571   1.1   mycroft 	if (fs->fs_contigsumsize <= 0)
   1572   1.1   mycroft 		return;
   1573  1.19    bouyer 	freemapp = cg_clustersfree(cgp, needswap);
   1574  1.19    bouyer 	sump = cg_clustersum(cgp, needswap);
   1575   1.1   mycroft 	/*
   1576   1.1   mycroft 	 * Allocate or clear the actual block.
   1577   1.1   mycroft 	 */
   1578   1.1   mycroft 	if (cnt > 0)
   1579   1.1   mycroft 		setbit(freemapp, blkno);
   1580   1.1   mycroft 	else
   1581   1.1   mycroft 		clrbit(freemapp, blkno);
   1582   1.1   mycroft 	/*
   1583   1.1   mycroft 	 * Find the size of the cluster going forward.
   1584   1.1   mycroft 	 */
   1585   1.1   mycroft 	start = blkno + 1;
   1586   1.1   mycroft 	end = start + fs->fs_contigsumsize;
   1587  1.19    bouyer 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
   1588  1.19    bouyer 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
   1589   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1590   1.1   mycroft 	map = *mapp++;
   1591   1.1   mycroft 	bit = 1 << (start % NBBY);
   1592   1.1   mycroft 	for (i = start; i < end; i++) {
   1593   1.1   mycroft 		if ((map & bit) == 0)
   1594   1.1   mycroft 			break;
   1595   1.1   mycroft 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
   1596   1.1   mycroft 			bit <<= 1;
   1597   1.1   mycroft 		} else {
   1598   1.1   mycroft 			map = *mapp++;
   1599   1.1   mycroft 			bit = 1;
   1600   1.1   mycroft 		}
   1601   1.1   mycroft 	}
   1602   1.1   mycroft 	forw = i - start;
   1603   1.1   mycroft 	/*
   1604   1.1   mycroft 	 * Find the size of the cluster going backward.
   1605   1.1   mycroft 	 */
   1606   1.1   mycroft 	start = blkno - 1;
   1607   1.1   mycroft 	end = start - fs->fs_contigsumsize;
   1608   1.1   mycroft 	if (end < 0)
   1609   1.1   mycroft 		end = -1;
   1610   1.1   mycroft 	mapp = &freemapp[start / NBBY];
   1611   1.1   mycroft 	map = *mapp--;
   1612   1.1   mycroft 	bit = 1 << (start % NBBY);
   1613   1.1   mycroft 	for (i = start; i > end; i--) {
   1614   1.1   mycroft 		if ((map & bit) == 0)
   1615   1.1   mycroft 			break;
   1616   1.1   mycroft 		if ((i & (NBBY - 1)) != 0) {
   1617   1.1   mycroft 			bit >>= 1;
   1618   1.1   mycroft 		} else {
   1619   1.1   mycroft 			map = *mapp--;
   1620   1.1   mycroft 			bit = 1 << (NBBY - 1);
   1621   1.1   mycroft 		}
   1622   1.1   mycroft 	}
   1623   1.1   mycroft 	back = start - i;
   1624   1.1   mycroft 	/*
   1625   1.1   mycroft 	 * Account for old cluster and the possibly new forward and
   1626   1.1   mycroft 	 * back clusters.
   1627   1.1   mycroft 	 */
   1628   1.1   mycroft 	i = back + forw + 1;
   1629   1.1   mycroft 	if (i > fs->fs_contigsumsize)
   1630   1.1   mycroft 		i = fs->fs_contigsumsize;
   1631  1.19    bouyer 	ufs_add32(sump[i], cnt, needswap);
   1632   1.1   mycroft 	if (back > 0)
   1633  1.19    bouyer 		ufs_add32(sump[back], -cnt, needswap);
   1634   1.1   mycroft 	if (forw > 0)
   1635  1.19    bouyer 		ufs_add32(sump[forw], -cnt, needswap);
   1636  1.19    bouyer 
   1637   1.5   mycroft 	/*
   1638   1.5   mycroft 	 * Update cluster summary information.
   1639   1.5   mycroft 	 */
   1640   1.5   mycroft 	lp = &sump[fs->fs_contigsumsize];
   1641   1.5   mycroft 	for (i = fs->fs_contigsumsize; i > 0; i--)
   1642  1.19    bouyer 		if (ufs_rw32(*lp--, needswap) > 0)
   1643   1.5   mycroft 			break;
   1644  1.19    bouyer 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
   1645   1.1   mycroft }
   1646   1.1   mycroft 
   1647   1.1   mycroft /*
   1648   1.1   mycroft  * Fserr prints the name of a file system with an error diagnostic.
   1649   1.1   mycroft  *
   1650   1.1   mycroft  * The form of the error message is:
   1651   1.1   mycroft  *	fs: error message
   1652   1.1   mycroft  */
   1653   1.1   mycroft static void
   1654   1.1   mycroft ffs_fserr(fs, uid, cp)
   1655   1.1   mycroft 	struct fs *fs;
   1656   1.1   mycroft 	u_int uid;
   1657   1.1   mycroft 	char *cp;
   1658   1.1   mycroft {
   1659   1.1   mycroft 
   1660   1.1   mycroft 	log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
   1661   1.1   mycroft }
   1662