ffs_alloc.c revision 1.27 1 1.27 thorpej /* $NetBSD: ffs_alloc.c,v 1.27 1998/11/12 19:54:41 thorpej Exp $ */
2 1.2 cgd
3 1.1 mycroft /*
4 1.1 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 mycroft *
7 1.1 mycroft * Redistribution and use in source and binary forms, with or without
8 1.1 mycroft * modification, are permitted provided that the following conditions
9 1.1 mycroft * are met:
10 1.1 mycroft * 1. Redistributions of source code must retain the above copyright
11 1.1 mycroft * notice, this list of conditions and the following disclaimer.
12 1.1 mycroft * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mycroft * notice, this list of conditions and the following disclaimer in the
14 1.1 mycroft * documentation and/or other materials provided with the distribution.
15 1.1 mycroft * 3. All advertising materials mentioning features or use of this software
16 1.1 mycroft * must display the following acknowledgement:
17 1.1 mycroft * This product includes software developed by the University of
18 1.1 mycroft * California, Berkeley and its contributors.
19 1.1 mycroft * 4. Neither the name of the University nor the names of its contributors
20 1.1 mycroft * may be used to endorse or promote products derived from this software
21 1.1 mycroft * without specific prior written permission.
22 1.1 mycroft *
23 1.1 mycroft * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 mycroft * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 mycroft * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 mycroft * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 mycroft * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 mycroft * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 mycroft * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 mycroft * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 mycroft * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 mycroft * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 mycroft * SUCH DAMAGE.
34 1.1 mycroft *
35 1.18 fvdl * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
36 1.1 mycroft */
37 1.17 mrg
38 1.22 scottr #if defined(_KERNEL) && !defined(_LKM)
39 1.27 thorpej #include "opt_ffs.h"
40 1.21 scottr #include "opt_quota.h"
41 1.17 mrg #include "opt_uvm.h"
42 1.22 scottr #endif
43 1.1 mycroft
44 1.1 mycroft #include <sys/param.h>
45 1.1 mycroft #include <sys/systm.h>
46 1.1 mycroft #include <sys/buf.h>
47 1.1 mycroft #include <sys/proc.h>
48 1.1 mycroft #include <sys/vnode.h>
49 1.1 mycroft #include <sys/mount.h>
50 1.1 mycroft #include <sys/kernel.h>
51 1.1 mycroft #include <sys/syslog.h>
52 1.1 mycroft
53 1.1 mycroft #include <vm/vm.h>
54 1.1 mycroft
55 1.1 mycroft #include <ufs/ufs/quota.h>
56 1.19 bouyer #include <ufs/ufs/ufsmount.h>
57 1.1 mycroft #include <ufs/ufs/inode.h>
58 1.9 christos #include <ufs/ufs/ufs_extern.h>
59 1.19 bouyer #include <ufs/ufs/ufs_bswap.h>
60 1.1 mycroft
61 1.1 mycroft #include <ufs/ffs/fs.h>
62 1.1 mycroft #include <ufs/ffs/ffs_extern.h>
63 1.1 mycroft
64 1.19 bouyer static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
65 1.19 bouyer static ufs_daddr_t ffs_alloccgblk __P((struct mount *, struct fs *,
66 1.19 bouyer struct cg *, ufs_daddr_t));
67 1.19 bouyer static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t, int));
68 1.19 bouyer static ino_t ffs_dirpref __P((struct fs *));
69 1.19 bouyer static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
70 1.19 bouyer static void ffs_fserr __P((struct fs *, u_int, char *));
71 1.19 bouyer static u_long ffs_hashalloc __P((struct inode *, int, long, int,
72 1.19 bouyer ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t,
73 1.19 bouyer int)));
74 1.19 bouyer static ufs_daddr_t ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
75 1.19 bouyer static ufs_daddr_t ffs_mapsearch __P((int, struct fs *, struct cg *,
76 1.19 bouyer ufs_daddr_t, int));
77 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
78 1.18 fvdl static int ffs_checkblk __P((struct inode *, ufs_daddr_t, long size));
79 1.18 fvdl #endif
80 1.23 drochner
81 1.23 drochner /* in ffs_tables.c */
82 1.23 drochner extern int inside[], around[];
83 1.23 drochner extern u_char *fragtbl[];
84 1.1 mycroft
85 1.1 mycroft /*
86 1.1 mycroft * Allocate a block in the file system.
87 1.1 mycroft *
88 1.1 mycroft * The size of the requested block is given, which must be some
89 1.1 mycroft * multiple of fs_fsize and <= fs_bsize.
90 1.1 mycroft * A preference may be optionally specified. If a preference is given
91 1.1 mycroft * the following hierarchy is used to allocate a block:
92 1.1 mycroft * 1) allocate the requested block.
93 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
94 1.1 mycroft * 3) allocate a block in the same cylinder group.
95 1.1 mycroft * 4) quadradically rehash into other cylinder groups, until an
96 1.1 mycroft * available block is located.
97 1.1 mycroft * If no block preference is given the following heirarchy is used
98 1.1 mycroft * to allocate a block:
99 1.1 mycroft * 1) allocate a block in the cylinder group that contains the
100 1.1 mycroft * inode for the file.
101 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
102 1.1 mycroft * available block is located.
103 1.1 mycroft */
104 1.9 christos int
105 1.1 mycroft ffs_alloc(ip, lbn, bpref, size, cred, bnp)
106 1.1 mycroft register struct inode *ip;
107 1.18 fvdl ufs_daddr_t lbn, bpref;
108 1.1 mycroft int size;
109 1.1 mycroft struct ucred *cred;
110 1.18 fvdl ufs_daddr_t *bnp;
111 1.1 mycroft {
112 1.1 mycroft register struct fs *fs;
113 1.18 fvdl ufs_daddr_t bno;
114 1.9 christos int cg;
115 1.9 christos #ifdef QUOTA
116 1.9 christos int error;
117 1.9 christos #endif
118 1.1 mycroft
119 1.1 mycroft *bnp = 0;
120 1.1 mycroft fs = ip->i_fs;
121 1.1 mycroft #ifdef DIAGNOSTIC
122 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
123 1.13 christos printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
124 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
125 1.1 mycroft panic("ffs_alloc: bad size");
126 1.1 mycroft }
127 1.1 mycroft if (cred == NOCRED)
128 1.1 mycroft panic("ffs_alloc: missing credential\n");
129 1.1 mycroft #endif /* DIAGNOSTIC */
130 1.1 mycroft if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
131 1.1 mycroft goto nospace;
132 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
133 1.1 mycroft goto nospace;
134 1.1 mycroft #ifdef QUOTA
135 1.9 christos if ((error = chkdq(ip, (long)btodb(size), cred, 0)) != 0)
136 1.1 mycroft return (error);
137 1.1 mycroft #endif
138 1.1 mycroft if (bpref >= fs->fs_size)
139 1.1 mycroft bpref = 0;
140 1.1 mycroft if (bpref == 0)
141 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
142 1.1 mycroft else
143 1.1 mycroft cg = dtog(fs, bpref);
144 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
145 1.9 christos ffs_alloccg);
146 1.1 mycroft if (bno > 0) {
147 1.15 bouyer ip->i_ffs_blocks += btodb(size);
148 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
149 1.1 mycroft *bnp = bno;
150 1.1 mycroft return (0);
151 1.1 mycroft }
152 1.1 mycroft #ifdef QUOTA
153 1.1 mycroft /*
154 1.1 mycroft * Restore user's disk quota because allocation failed.
155 1.1 mycroft */
156 1.1 mycroft (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
157 1.1 mycroft #endif
158 1.1 mycroft nospace:
159 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
160 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
161 1.1 mycroft return (ENOSPC);
162 1.1 mycroft }
163 1.1 mycroft
164 1.1 mycroft /*
165 1.1 mycroft * Reallocate a fragment to a bigger size
166 1.1 mycroft *
167 1.1 mycroft * The number and size of the old block is given, and a preference
168 1.1 mycroft * and new size is also specified. The allocator attempts to extend
169 1.1 mycroft * the original block. Failing that, the regular block allocator is
170 1.1 mycroft * invoked to get an appropriate block.
171 1.1 mycroft */
172 1.9 christos int
173 1.1 mycroft ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
174 1.1 mycroft register struct inode *ip;
175 1.18 fvdl ufs_daddr_t lbprev;
176 1.18 fvdl ufs_daddr_t bpref;
177 1.1 mycroft int osize, nsize;
178 1.1 mycroft struct ucred *cred;
179 1.1 mycroft struct buf **bpp;
180 1.1 mycroft {
181 1.1 mycroft register struct fs *fs;
182 1.1 mycroft struct buf *bp;
183 1.1 mycroft int cg, request, error;
184 1.18 fvdl ufs_daddr_t bprev, bno;
185 1.25 thorpej
186 1.1 mycroft *bpp = 0;
187 1.1 mycroft fs = ip->i_fs;
188 1.1 mycroft #ifdef DIAGNOSTIC
189 1.1 mycroft if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
190 1.1 mycroft (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
191 1.13 christos printf(
192 1.1 mycroft "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
193 1.1 mycroft ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
194 1.1 mycroft panic("ffs_realloccg: bad size");
195 1.1 mycroft }
196 1.1 mycroft if (cred == NOCRED)
197 1.1 mycroft panic("ffs_realloccg: missing credential\n");
198 1.1 mycroft #endif /* DIAGNOSTIC */
199 1.1 mycroft if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0)
200 1.1 mycroft goto nospace;
201 1.19 bouyer if ((bprev = ufs_rw32(ip->i_ffs_db[lbprev], UFS_IPNEEDSWAP(ip))) == 0) {
202 1.13 christos printf("dev = 0x%x, bsize = %d, bprev = %d, fs = %s\n",
203 1.1 mycroft ip->i_dev, fs->fs_bsize, bprev, fs->fs_fsmnt);
204 1.1 mycroft panic("ffs_realloccg: bad bprev");
205 1.1 mycroft }
206 1.1 mycroft /*
207 1.1 mycroft * Allocate the extra space in the buffer.
208 1.1 mycroft */
209 1.9 christos if ((error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) != 0) {
210 1.1 mycroft brelse(bp);
211 1.1 mycroft return (error);
212 1.1 mycroft }
213 1.1 mycroft #ifdef QUOTA
214 1.9 christos if ((error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) != 0) {
215 1.1 mycroft brelse(bp);
216 1.1 mycroft return (error);
217 1.1 mycroft }
218 1.1 mycroft #endif
219 1.1 mycroft /*
220 1.1 mycroft * Check for extension in the existing location.
221 1.1 mycroft */
222 1.1 mycroft cg = dtog(fs, bprev);
223 1.9 christos if ((bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize)) != 0) {
224 1.1 mycroft if (bp->b_blkno != fsbtodb(fs, bno))
225 1.1 mycroft panic("bad blockno");
226 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
227 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
228 1.1 mycroft allocbuf(bp, nsize);
229 1.1 mycroft bp->b_flags |= B_DONE;
230 1.24 perry memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
231 1.1 mycroft *bpp = bp;
232 1.1 mycroft return (0);
233 1.1 mycroft }
234 1.1 mycroft /*
235 1.1 mycroft * Allocate a new disk location.
236 1.1 mycroft */
237 1.1 mycroft if (bpref >= fs->fs_size)
238 1.1 mycroft bpref = 0;
239 1.1 mycroft switch ((int)fs->fs_optim) {
240 1.1 mycroft case FS_OPTSPACE:
241 1.1 mycroft /*
242 1.1 mycroft * Allocate an exact sized fragment. Although this makes
243 1.1 mycroft * best use of space, we will waste time relocating it if
244 1.1 mycroft * the file continues to grow. If the fragmentation is
245 1.1 mycroft * less than half of the minimum free reserve, we choose
246 1.1 mycroft * to begin optimizing for time.
247 1.1 mycroft */
248 1.1 mycroft request = nsize;
249 1.1 mycroft if (fs->fs_minfree < 5 ||
250 1.1 mycroft fs->fs_cstotal.cs_nffree >
251 1.1 mycroft fs->fs_dsize * fs->fs_minfree / (2 * 100))
252 1.1 mycroft break;
253 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
254 1.1 mycroft fs->fs_fsmnt);
255 1.1 mycroft fs->fs_optim = FS_OPTTIME;
256 1.1 mycroft break;
257 1.1 mycroft case FS_OPTTIME:
258 1.1 mycroft /*
259 1.1 mycroft * At this point we have discovered a file that is trying to
260 1.1 mycroft * grow a small fragment to a larger fragment. To save time,
261 1.1 mycroft * we allocate a full sized block, then free the unused portion.
262 1.1 mycroft * If the file continues to grow, the `ffs_fragextend' call
263 1.1 mycroft * above will be able to grow it in place without further
264 1.1 mycroft * copying. If aberrant programs cause disk fragmentation to
265 1.1 mycroft * grow within 2% of the free reserve, we choose to begin
266 1.1 mycroft * optimizing for space.
267 1.1 mycroft */
268 1.1 mycroft request = fs->fs_bsize;
269 1.1 mycroft if (fs->fs_cstotal.cs_nffree <
270 1.1 mycroft fs->fs_dsize * (fs->fs_minfree - 2) / 100)
271 1.1 mycroft break;
272 1.1 mycroft log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
273 1.1 mycroft fs->fs_fsmnt);
274 1.1 mycroft fs->fs_optim = FS_OPTSPACE;
275 1.1 mycroft break;
276 1.1 mycroft default:
277 1.13 christos printf("dev = 0x%x, optim = %d, fs = %s\n",
278 1.1 mycroft ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
279 1.1 mycroft panic("ffs_realloccg: bad optim");
280 1.1 mycroft /* NOTREACHED */
281 1.1 mycroft }
282 1.18 fvdl bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
283 1.9 christos ffs_alloccg);
284 1.1 mycroft if (bno > 0) {
285 1.1 mycroft bp->b_blkno = fsbtodb(fs, bno);
286 1.16 mrg #if defined(UVM)
287 1.16 mrg (void) uvm_vnp_uncache(ITOV(ip));
288 1.16 mrg #else
289 1.1 mycroft (void) vnode_pager_uncache(ITOV(ip));
290 1.16 mrg #endif
291 1.1 mycroft ffs_blkfree(ip, bprev, (long)osize);
292 1.1 mycroft if (nsize < request)
293 1.1 mycroft ffs_blkfree(ip, bno + numfrags(fs, nsize),
294 1.1 mycroft (long)(request - nsize));
295 1.15 bouyer ip->i_ffs_blocks += btodb(nsize - osize);
296 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
297 1.1 mycroft allocbuf(bp, nsize);
298 1.1 mycroft bp->b_flags |= B_DONE;
299 1.24 perry memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
300 1.1 mycroft *bpp = bp;
301 1.1 mycroft return (0);
302 1.1 mycroft }
303 1.1 mycroft #ifdef QUOTA
304 1.1 mycroft /*
305 1.1 mycroft * Restore user's disk quota because allocation failed.
306 1.1 mycroft */
307 1.1 mycroft (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
308 1.1 mycroft #endif
309 1.1 mycroft brelse(bp);
310 1.1 mycroft nospace:
311 1.1 mycroft /*
312 1.1 mycroft * no space available
313 1.1 mycroft */
314 1.1 mycroft ffs_fserr(fs, cred->cr_uid, "file system full");
315 1.1 mycroft uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
316 1.1 mycroft return (ENOSPC);
317 1.1 mycroft }
318 1.1 mycroft
319 1.1 mycroft /*
320 1.1 mycroft * Reallocate a sequence of blocks into a contiguous sequence of blocks.
321 1.1 mycroft *
322 1.1 mycroft * The vnode and an array of buffer pointers for a range of sequential
323 1.1 mycroft * logical blocks to be made contiguous is given. The allocator attempts
324 1.1 mycroft * to find a range of sequential blocks starting as close as possible to
325 1.1 mycroft * an fs_rotdelay offset from the end of the allocation for the logical
326 1.1 mycroft * block immediately preceeding the current range. If successful, the
327 1.1 mycroft * physical block numbers in the buffer pointers and in the inode are
328 1.1 mycroft * changed to reflect the new allocation. If unsuccessful, the allocation
329 1.1 mycroft * is left unchanged. The success in doing the reallocation is returned.
330 1.1 mycroft * Note that the error return is not reflected back to the user. Rather
331 1.1 mycroft * the previous block allocation will be used.
332 1.1 mycroft */
333 1.3 mycroft #ifdef DEBUG
334 1.1 mycroft #include <sys/sysctl.h>
335 1.5 mycroft int prtrealloc = 0;
336 1.5 mycroft struct ctldebug debug15 = { "prtrealloc", &prtrealloc };
337 1.1 mycroft #endif
338 1.1 mycroft
339 1.18 fvdl int doasyncfree = 1;
340 1.18 fvdl extern int doreallocblks;
341 1.18 fvdl
342 1.1 mycroft int
343 1.9 christos ffs_reallocblks(v)
344 1.9 christos void *v;
345 1.9 christos {
346 1.1 mycroft struct vop_reallocblks_args /* {
347 1.1 mycroft struct vnode *a_vp;
348 1.1 mycroft struct cluster_save *a_buflist;
349 1.9 christos } */ *ap = v;
350 1.1 mycroft struct fs *fs;
351 1.1 mycroft struct inode *ip;
352 1.1 mycroft struct vnode *vp;
353 1.1 mycroft struct buf *sbp, *ebp;
354 1.18 fvdl ufs_daddr_t *bap, *sbap, *ebap = NULL;
355 1.1 mycroft struct cluster_save *buflist;
356 1.18 fvdl ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
357 1.1 mycroft struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
358 1.1 mycroft int i, len, start_lvl, end_lvl, pref, ssize;
359 1.11 mycroft struct timespec ts;
360 1.1 mycroft
361 1.1 mycroft vp = ap->a_vp;
362 1.1 mycroft ip = VTOI(vp);
363 1.1 mycroft fs = ip->i_fs;
364 1.1 mycroft if (fs->fs_contigsumsize <= 0)
365 1.1 mycroft return (ENOSPC);
366 1.1 mycroft buflist = ap->a_buflist;
367 1.1 mycroft len = buflist->bs_nchildren;
368 1.1 mycroft start_lbn = buflist->bs_children[0]->b_lblkno;
369 1.1 mycroft end_lbn = start_lbn + len - 1;
370 1.1 mycroft #ifdef DIAGNOSTIC
371 1.18 fvdl for (i = 0; i < len; i++)
372 1.18 fvdl if (!ffs_checkblk(ip,
373 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
374 1.18 fvdl panic("ffs_reallocblks: unallocated block 1");
375 1.1 mycroft for (i = 1; i < len; i++)
376 1.1 mycroft if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
377 1.18 fvdl panic("ffs_reallocblks: non-logical cluster");
378 1.18 fvdl blkno = buflist->bs_children[0]->b_blkno;
379 1.18 fvdl ssize = fsbtodb(fs, fs->fs_frag);
380 1.18 fvdl for (i = 1; i < len - 1; i++)
381 1.18 fvdl if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
382 1.18 fvdl panic("ffs_reallocblks: non-physical cluster %d", i);
383 1.1 mycroft #endif
384 1.1 mycroft /*
385 1.1 mycroft * If the latest allocation is in a new cylinder group, assume that
386 1.1 mycroft * the filesystem has decided to move and do not force it back to
387 1.1 mycroft * the previous cylinder group.
388 1.1 mycroft */
389 1.1 mycroft if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
390 1.1 mycroft dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
391 1.1 mycroft return (ENOSPC);
392 1.1 mycroft if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
393 1.1 mycroft ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
394 1.1 mycroft return (ENOSPC);
395 1.1 mycroft /*
396 1.1 mycroft * Get the starting offset and block map for the first block.
397 1.1 mycroft */
398 1.1 mycroft if (start_lvl == 0) {
399 1.15 bouyer sbap = &ip->i_ffs_db[0];
400 1.1 mycroft soff = start_lbn;
401 1.1 mycroft } else {
402 1.1 mycroft idp = &start_ap[start_lvl - 1];
403 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
404 1.1 mycroft brelse(sbp);
405 1.1 mycroft return (ENOSPC);
406 1.1 mycroft }
407 1.18 fvdl sbap = (ufs_daddr_t *)sbp->b_data;
408 1.1 mycroft soff = idp->in_off;
409 1.1 mycroft }
410 1.1 mycroft /*
411 1.1 mycroft * Find the preferred location for the cluster.
412 1.1 mycroft */
413 1.1 mycroft pref = ffs_blkpref(ip, start_lbn, soff, sbap);
414 1.1 mycroft /*
415 1.1 mycroft * If the block range spans two block maps, get the second map.
416 1.1 mycroft */
417 1.1 mycroft if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
418 1.1 mycroft ssize = len;
419 1.1 mycroft } else {
420 1.1 mycroft #ifdef DIAGNOSTIC
421 1.1 mycroft if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
422 1.1 mycroft panic("ffs_reallocblk: start == end");
423 1.1 mycroft #endif
424 1.1 mycroft ssize = len - (idp->in_off + 1);
425 1.1 mycroft if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
426 1.1 mycroft goto fail;
427 1.18 fvdl ebap = (ufs_daddr_t *)ebp->b_data;
428 1.1 mycroft }
429 1.1 mycroft /*
430 1.1 mycroft * Search the block map looking for an allocation of the desired size.
431 1.1 mycroft */
432 1.18 fvdl if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
433 1.9 christos len, ffs_clusteralloc)) == 0)
434 1.1 mycroft goto fail;
435 1.1 mycroft /*
436 1.1 mycroft * We have found a new contiguous block.
437 1.1 mycroft *
438 1.1 mycroft * First we have to replace the old block pointers with the new
439 1.1 mycroft * block pointers in the inode and indirect blocks associated
440 1.1 mycroft * with the file.
441 1.1 mycroft */
442 1.5 mycroft #ifdef DEBUG
443 1.5 mycroft if (prtrealloc)
444 1.13 christos printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
445 1.5 mycroft start_lbn, end_lbn);
446 1.5 mycroft #endif
447 1.1 mycroft blkno = newblk;
448 1.1 mycroft for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
449 1.1 mycroft if (i == ssize)
450 1.1 mycroft bap = ebap;
451 1.1 mycroft #ifdef DIAGNOSTIC
452 1.18 fvdl if (!ffs_checkblk(ip,
453 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
454 1.18 fvdl panic("ffs_reallocblks: unallocated block 2");
455 1.19 bouyer if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) !=
456 1.19 bouyer ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)))
457 1.1 mycroft panic("ffs_reallocblks: alloc mismatch");
458 1.1 mycroft #endif
459 1.5 mycroft #ifdef DEBUG
460 1.5 mycroft if (prtrealloc)
461 1.19 bouyer printf(" %d,", ufs_rw32(*bap, UFS_MPNEEDSWAP(vp->v_mount)));
462 1.5 mycroft #endif
463 1.19 bouyer *bap++ = ufs_rw32(blkno, UFS_MPNEEDSWAP(vp->v_mount));
464 1.1 mycroft }
465 1.1 mycroft /*
466 1.1 mycroft * Next we must write out the modified inode and indirect blocks.
467 1.1 mycroft * For strict correctness, the writes should be synchronous since
468 1.1 mycroft * the old block values may have been written to disk. In practise
469 1.1 mycroft * they are almost never written, but if we are concerned about
470 1.1 mycroft * strict correctness, the `doasyncfree' flag should be set to zero.
471 1.1 mycroft *
472 1.1 mycroft * The test on `doasyncfree' should be changed to test a flag
473 1.1 mycroft * that shows whether the associated buffers and inodes have
474 1.1 mycroft * been written. The flag should be set when the cluster is
475 1.1 mycroft * started and cleared whenever the buffer or inode is flushed.
476 1.1 mycroft * We can then check below to see if it is set, and do the
477 1.1 mycroft * synchronous write only when it has been cleared.
478 1.1 mycroft */
479 1.15 bouyer if (sbap != &ip->i_ffs_db[0]) {
480 1.1 mycroft if (doasyncfree)
481 1.1 mycroft bdwrite(sbp);
482 1.1 mycroft else
483 1.1 mycroft bwrite(sbp);
484 1.1 mycroft } else {
485 1.1 mycroft ip->i_flag |= IN_CHANGE | IN_UPDATE;
486 1.11 mycroft if (!doasyncfree) {
487 1.11 mycroft TIMEVAL_TO_TIMESPEC(&time, &ts);
488 1.11 mycroft VOP_UPDATE(vp, &ts, &ts, 1);
489 1.11 mycroft }
490 1.1 mycroft }
491 1.25 thorpej if (ssize < len) {
492 1.1 mycroft if (doasyncfree)
493 1.1 mycroft bdwrite(ebp);
494 1.1 mycroft else
495 1.1 mycroft bwrite(ebp);
496 1.25 thorpej }
497 1.1 mycroft /*
498 1.1 mycroft * Last, free the old blocks and assign the new blocks to the buffers.
499 1.1 mycroft */
500 1.5 mycroft #ifdef DEBUG
501 1.5 mycroft if (prtrealloc)
502 1.13 christos printf("\n\tnew:");
503 1.5 mycroft #endif
504 1.1 mycroft for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
505 1.1 mycroft ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
506 1.1 mycroft fs->fs_bsize);
507 1.1 mycroft buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
508 1.5 mycroft #ifdef DEBUG
509 1.18 fvdl if (!ffs_checkblk(ip,
510 1.18 fvdl dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
511 1.18 fvdl panic("ffs_reallocblks: unallocated block 3");
512 1.5 mycroft if (prtrealloc)
513 1.13 christos printf(" %d,", blkno);
514 1.5 mycroft #endif
515 1.5 mycroft }
516 1.5 mycroft #ifdef DEBUG
517 1.5 mycroft if (prtrealloc) {
518 1.5 mycroft prtrealloc--;
519 1.13 christos printf("\n");
520 1.1 mycroft }
521 1.5 mycroft #endif
522 1.1 mycroft return (0);
523 1.1 mycroft
524 1.1 mycroft fail:
525 1.1 mycroft if (ssize < len)
526 1.1 mycroft brelse(ebp);
527 1.15 bouyer if (sbap != &ip->i_ffs_db[0])
528 1.1 mycroft brelse(sbp);
529 1.1 mycroft return (ENOSPC);
530 1.1 mycroft }
531 1.1 mycroft
532 1.1 mycroft /*
533 1.1 mycroft * Allocate an inode in the file system.
534 1.1 mycroft *
535 1.1 mycroft * If allocating a directory, use ffs_dirpref to select the inode.
536 1.1 mycroft * If allocating in a directory, the following hierarchy is followed:
537 1.1 mycroft * 1) allocate the preferred inode.
538 1.1 mycroft * 2) allocate an inode in the same cylinder group.
539 1.1 mycroft * 3) quadradically rehash into other cylinder groups, until an
540 1.1 mycroft * available inode is located.
541 1.1 mycroft * If no inode preference is given the following heirarchy is used
542 1.1 mycroft * to allocate an inode:
543 1.1 mycroft * 1) allocate an inode in cylinder group 0.
544 1.1 mycroft * 2) quadradically rehash into other cylinder groups, until an
545 1.1 mycroft * available inode is located.
546 1.1 mycroft */
547 1.9 christos int
548 1.9 christos ffs_valloc(v)
549 1.9 christos void *v;
550 1.9 christos {
551 1.1 mycroft struct vop_valloc_args /* {
552 1.1 mycroft struct vnode *a_pvp;
553 1.1 mycroft int a_mode;
554 1.1 mycroft struct ucred *a_cred;
555 1.1 mycroft struct vnode **a_vpp;
556 1.9 christos } */ *ap = v;
557 1.1 mycroft register struct vnode *pvp = ap->a_pvp;
558 1.1 mycroft register struct inode *pip;
559 1.1 mycroft register struct fs *fs;
560 1.1 mycroft register struct inode *ip;
561 1.1 mycroft mode_t mode = ap->a_mode;
562 1.1 mycroft ino_t ino, ipref;
563 1.1 mycroft int cg, error;
564 1.1 mycroft
565 1.1 mycroft *ap->a_vpp = NULL;
566 1.1 mycroft pip = VTOI(pvp);
567 1.1 mycroft fs = pip->i_fs;
568 1.1 mycroft if (fs->fs_cstotal.cs_nifree == 0)
569 1.1 mycroft goto noinodes;
570 1.1 mycroft
571 1.1 mycroft if ((mode & IFMT) == IFDIR)
572 1.1 mycroft ipref = ffs_dirpref(fs);
573 1.1 mycroft else
574 1.1 mycroft ipref = pip->i_number;
575 1.1 mycroft if (ipref >= fs->fs_ncg * fs->fs_ipg)
576 1.1 mycroft ipref = 0;
577 1.1 mycroft cg = ino_to_cg(fs, ipref);
578 1.1 mycroft ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode, ffs_nodealloccg);
579 1.1 mycroft if (ino == 0)
580 1.1 mycroft goto noinodes;
581 1.1 mycroft error = VFS_VGET(pvp->v_mount, ino, ap->a_vpp);
582 1.1 mycroft if (error) {
583 1.1 mycroft VOP_VFREE(pvp, ino, mode);
584 1.1 mycroft return (error);
585 1.1 mycroft }
586 1.1 mycroft ip = VTOI(*ap->a_vpp);
587 1.15 bouyer if (ip->i_ffs_mode) {
588 1.13 christos printf("mode = 0%o, inum = %d, fs = %s\n",
589 1.15 bouyer ip->i_ffs_mode, ip->i_number, fs->fs_fsmnt);
590 1.1 mycroft panic("ffs_valloc: dup alloc");
591 1.1 mycroft }
592 1.15 bouyer if (ip->i_ffs_blocks) { /* XXX */
593 1.13 christos printf("free inode %s/%d had %d blocks\n",
594 1.15 bouyer fs->fs_fsmnt, ino, ip->i_ffs_blocks);
595 1.15 bouyer ip->i_ffs_blocks = 0;
596 1.1 mycroft }
597 1.15 bouyer ip->i_ffs_flags = 0;
598 1.1 mycroft /*
599 1.1 mycroft * Set up a new generation number for this inode.
600 1.1 mycroft */
601 1.15 bouyer ip->i_ffs_gen++;
602 1.1 mycroft return (0);
603 1.1 mycroft noinodes:
604 1.1 mycroft ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes");
605 1.1 mycroft uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
606 1.1 mycroft return (ENOSPC);
607 1.1 mycroft }
608 1.1 mycroft
609 1.1 mycroft /*
610 1.1 mycroft * Find a cylinder to place a directory.
611 1.1 mycroft *
612 1.1 mycroft * The policy implemented by this algorithm is to select from
613 1.1 mycroft * among those cylinder groups with above the average number of
614 1.1 mycroft * free inodes, the one with the smallest number of directories.
615 1.1 mycroft */
616 1.1 mycroft static ino_t
617 1.1 mycroft ffs_dirpref(fs)
618 1.1 mycroft register struct fs *fs;
619 1.1 mycroft {
620 1.1 mycroft int cg, minndir, mincg, avgifree;
621 1.1 mycroft
622 1.1 mycroft avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
623 1.1 mycroft minndir = fs->fs_ipg;
624 1.1 mycroft mincg = 0;
625 1.1 mycroft for (cg = 0; cg < fs->fs_ncg; cg++)
626 1.1 mycroft if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
627 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
628 1.1 mycroft mincg = cg;
629 1.1 mycroft minndir = fs->fs_cs(fs, cg).cs_ndir;
630 1.1 mycroft }
631 1.1 mycroft return ((ino_t)(fs->fs_ipg * mincg));
632 1.1 mycroft }
633 1.1 mycroft
634 1.1 mycroft /*
635 1.1 mycroft * Select the desired position for the next block in a file. The file is
636 1.1 mycroft * logically divided into sections. The first section is composed of the
637 1.1 mycroft * direct blocks. Each additional section contains fs_maxbpg blocks.
638 1.1 mycroft *
639 1.1 mycroft * If no blocks have been allocated in the first section, the policy is to
640 1.1 mycroft * request a block in the same cylinder group as the inode that describes
641 1.1 mycroft * the file. If no blocks have been allocated in any other section, the
642 1.1 mycroft * policy is to place the section in a cylinder group with a greater than
643 1.1 mycroft * average number of free blocks. An appropriate cylinder group is found
644 1.1 mycroft * by using a rotor that sweeps the cylinder groups. When a new group of
645 1.1 mycroft * blocks is needed, the sweep begins in the cylinder group following the
646 1.1 mycroft * cylinder group from which the previous allocation was made. The sweep
647 1.1 mycroft * continues until a cylinder group with greater than the average number
648 1.1 mycroft * of free blocks is found. If the allocation is for the first block in an
649 1.1 mycroft * indirect block, the information on the previous allocation is unavailable;
650 1.1 mycroft * here a best guess is made based upon the logical block number being
651 1.1 mycroft * allocated.
652 1.1 mycroft *
653 1.1 mycroft * If a section is already partially allocated, the policy is to
654 1.1 mycroft * contiguously allocate fs_maxcontig blocks. The end of one of these
655 1.1 mycroft * contiguous blocks and the beginning of the next is physically separated
656 1.1 mycroft * so that the disk head will be in transit between them for at least
657 1.1 mycroft * fs_rotdelay milliseconds. This is to allow time for the processor to
658 1.1 mycroft * schedule another I/O transfer.
659 1.1 mycroft */
660 1.18 fvdl ufs_daddr_t
661 1.1 mycroft ffs_blkpref(ip, lbn, indx, bap)
662 1.1 mycroft struct inode *ip;
663 1.18 fvdl ufs_daddr_t lbn;
664 1.1 mycroft int indx;
665 1.18 fvdl ufs_daddr_t *bap;
666 1.1 mycroft {
667 1.1 mycroft register struct fs *fs;
668 1.1 mycroft register int cg;
669 1.1 mycroft int avgbfree, startcg;
670 1.18 fvdl ufs_daddr_t nextblk;
671 1.1 mycroft
672 1.1 mycroft fs = ip->i_fs;
673 1.1 mycroft if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
674 1.1 mycroft if (lbn < NDADDR) {
675 1.1 mycroft cg = ino_to_cg(fs, ip->i_number);
676 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
677 1.1 mycroft }
678 1.1 mycroft /*
679 1.1 mycroft * Find a cylinder with greater than average number of
680 1.1 mycroft * unused data blocks.
681 1.1 mycroft */
682 1.1 mycroft if (indx == 0 || bap[indx - 1] == 0)
683 1.1 mycroft startcg =
684 1.1 mycroft ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
685 1.1 mycroft else
686 1.19 bouyer startcg = dtog(fs,
687 1.19 bouyer ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + 1);
688 1.1 mycroft startcg %= fs->fs_ncg;
689 1.1 mycroft avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
690 1.1 mycroft for (cg = startcg; cg < fs->fs_ncg; cg++)
691 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
692 1.1 mycroft fs->fs_cgrotor = cg;
693 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
694 1.1 mycroft }
695 1.1 mycroft for (cg = 0; cg <= startcg; cg++)
696 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
697 1.1 mycroft fs->fs_cgrotor = cg;
698 1.1 mycroft return (fs->fs_fpg * cg + fs->fs_frag);
699 1.1 mycroft }
700 1.1 mycroft return (NULL);
701 1.1 mycroft }
702 1.1 mycroft /*
703 1.1 mycroft * One or more previous blocks have been laid out. If less
704 1.1 mycroft * than fs_maxcontig previous blocks are contiguous, the
705 1.1 mycroft * next block is requested contiguously, otherwise it is
706 1.1 mycroft * requested rotationally delayed by fs_rotdelay milliseconds.
707 1.1 mycroft */
708 1.19 bouyer nextblk = ufs_rw32(bap[indx - 1], UFS_IPNEEDSWAP(ip)) + fs->fs_frag;
709 1.19 bouyer if (indx < fs->fs_maxcontig ||
710 1.19 bouyer ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_IPNEEDSWAP(ip)) +
711 1.1 mycroft blkstofrags(fs, fs->fs_maxcontig) != nextblk)
712 1.1 mycroft return (nextblk);
713 1.1 mycroft if (fs->fs_rotdelay != 0)
714 1.1 mycroft /*
715 1.1 mycroft * Here we convert ms of delay to frags as:
716 1.1 mycroft * (frags) = (ms) * (rev/sec) * (sect/rev) /
717 1.1 mycroft * ((sect/frag) * (ms/sec))
718 1.1 mycroft * then round up to the next block.
719 1.1 mycroft */
720 1.1 mycroft nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
721 1.1 mycroft (NSPF(fs) * 1000), fs->fs_frag);
722 1.1 mycroft return (nextblk);
723 1.1 mycroft }
724 1.1 mycroft
725 1.1 mycroft /*
726 1.1 mycroft * Implement the cylinder overflow algorithm.
727 1.1 mycroft *
728 1.1 mycroft * The policy implemented by this algorithm is:
729 1.1 mycroft * 1) allocate the block in its requested cylinder group.
730 1.1 mycroft * 2) quadradically rehash on the cylinder group number.
731 1.1 mycroft * 3) brute force search for a free block.
732 1.1 mycroft */
733 1.1 mycroft /*VARARGS5*/
734 1.1 mycroft static u_long
735 1.1 mycroft ffs_hashalloc(ip, cg, pref, size, allocator)
736 1.1 mycroft struct inode *ip;
737 1.1 mycroft int cg;
738 1.1 mycroft long pref;
739 1.1 mycroft int size; /* size for data blocks, mode for inodes */
740 1.18 fvdl ufs_daddr_t (*allocator) __P((struct inode *, int, ufs_daddr_t, int));
741 1.1 mycroft {
742 1.1 mycroft register struct fs *fs;
743 1.1 mycroft long result;
744 1.1 mycroft int i, icg = cg;
745 1.1 mycroft
746 1.1 mycroft fs = ip->i_fs;
747 1.1 mycroft /*
748 1.1 mycroft * 1: preferred cylinder group
749 1.1 mycroft */
750 1.1 mycroft result = (*allocator)(ip, cg, pref, size);
751 1.1 mycroft if (result)
752 1.1 mycroft return (result);
753 1.1 mycroft /*
754 1.1 mycroft * 2: quadratic rehash
755 1.1 mycroft */
756 1.1 mycroft for (i = 1; i < fs->fs_ncg; i *= 2) {
757 1.1 mycroft cg += i;
758 1.1 mycroft if (cg >= fs->fs_ncg)
759 1.1 mycroft cg -= fs->fs_ncg;
760 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
761 1.1 mycroft if (result)
762 1.1 mycroft return (result);
763 1.1 mycroft }
764 1.1 mycroft /*
765 1.1 mycroft * 3: brute force search
766 1.1 mycroft * Note that we start at i == 2, since 0 was checked initially,
767 1.1 mycroft * and 1 is always checked in the quadratic rehash.
768 1.1 mycroft */
769 1.1 mycroft cg = (icg + 2) % fs->fs_ncg;
770 1.1 mycroft for (i = 2; i < fs->fs_ncg; i++) {
771 1.1 mycroft result = (*allocator)(ip, cg, 0, size);
772 1.1 mycroft if (result)
773 1.1 mycroft return (result);
774 1.1 mycroft cg++;
775 1.1 mycroft if (cg == fs->fs_ncg)
776 1.1 mycroft cg = 0;
777 1.1 mycroft }
778 1.1 mycroft return (NULL);
779 1.1 mycroft }
780 1.1 mycroft
781 1.1 mycroft /*
782 1.1 mycroft * Determine whether a fragment can be extended.
783 1.1 mycroft *
784 1.1 mycroft * Check to see if the necessary fragments are available, and
785 1.1 mycroft * if they are, allocate them.
786 1.1 mycroft */
787 1.18 fvdl static ufs_daddr_t
788 1.1 mycroft ffs_fragextend(ip, cg, bprev, osize, nsize)
789 1.1 mycroft struct inode *ip;
790 1.1 mycroft int cg;
791 1.1 mycroft long bprev;
792 1.1 mycroft int osize, nsize;
793 1.1 mycroft {
794 1.1 mycroft register struct fs *fs;
795 1.1 mycroft register struct cg *cgp;
796 1.1 mycroft struct buf *bp;
797 1.1 mycroft long bno;
798 1.1 mycroft int frags, bbase;
799 1.1 mycroft int i, error;
800 1.1 mycroft
801 1.1 mycroft fs = ip->i_fs;
802 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
803 1.1 mycroft return (NULL);
804 1.1 mycroft frags = numfrags(fs, nsize);
805 1.1 mycroft bbase = fragnum(fs, bprev);
806 1.1 mycroft if (bbase > fragnum(fs, (bprev + frags - 1))) {
807 1.1 mycroft /* cannot extend across a block boundary */
808 1.1 mycroft return (NULL);
809 1.1 mycroft }
810 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
811 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
812 1.1 mycroft if (error) {
813 1.1 mycroft brelse(bp);
814 1.1 mycroft return (NULL);
815 1.1 mycroft }
816 1.1 mycroft cgp = (struct cg *)bp->b_data;
817 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
818 1.1 mycroft brelse(bp);
819 1.1 mycroft return (NULL);
820 1.1 mycroft }
821 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, UFS_IPNEEDSWAP(ip));
822 1.1 mycroft bno = dtogd(fs, bprev);
823 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++)
824 1.19 bouyer if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i)) {
825 1.1 mycroft brelse(bp);
826 1.1 mycroft return (NULL);
827 1.1 mycroft }
828 1.1 mycroft /*
829 1.1 mycroft * the current fragment can be extended
830 1.1 mycroft * deduct the count on fragment being extended into
831 1.1 mycroft * increase the count on the remaining fragment (if any)
832 1.1 mycroft * allocate the extended piece
833 1.1 mycroft */
834 1.1 mycroft for (i = frags; i < fs->fs_frag - bbase; i++)
835 1.19 bouyer if (isclr(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
836 1.1 mycroft break;
837 1.19 bouyer ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_IPNEEDSWAP(ip));
838 1.1 mycroft if (i != frags)
839 1.19 bouyer ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_IPNEEDSWAP(ip));
840 1.1 mycroft for (i = numfrags(fs, osize); i < frags; i++) {
841 1.19 bouyer clrbit(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i);
842 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_IPNEEDSWAP(ip));
843 1.1 mycroft fs->fs_cstotal.cs_nffree--;
844 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree--;
845 1.1 mycroft }
846 1.1 mycroft fs->fs_fmod = 1;
847 1.1 mycroft bdwrite(bp);
848 1.1 mycroft return (bprev);
849 1.1 mycroft }
850 1.1 mycroft
851 1.1 mycroft /*
852 1.1 mycroft * Determine whether a block can be allocated.
853 1.1 mycroft *
854 1.1 mycroft * Check to see if a block of the appropriate size is available,
855 1.1 mycroft * and if it is, allocate it.
856 1.1 mycroft */
857 1.18 fvdl static ufs_daddr_t
858 1.1 mycroft ffs_alloccg(ip, cg, bpref, size)
859 1.1 mycroft struct inode *ip;
860 1.1 mycroft int cg;
861 1.18 fvdl ufs_daddr_t bpref;
862 1.1 mycroft int size;
863 1.1 mycroft {
864 1.1 mycroft register struct fs *fs;
865 1.1 mycroft register struct cg *cgp;
866 1.1 mycroft struct buf *bp;
867 1.1 mycroft register int i;
868 1.1 mycroft int error, bno, frags, allocsiz;
869 1.19 bouyer const int needswap = UFS_IPNEEDSWAP(ip);
870 1.1 mycroft
871 1.1 mycroft fs = ip->i_fs;
872 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
873 1.1 mycroft return (NULL);
874 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
875 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
876 1.1 mycroft if (error) {
877 1.1 mycroft brelse(bp);
878 1.1 mycroft return (NULL);
879 1.1 mycroft }
880 1.1 mycroft cgp = (struct cg *)bp->b_data;
881 1.19 bouyer if (!cg_chkmagic(cgp, needswap) ||
882 1.1 mycroft (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
883 1.1 mycroft brelse(bp);
884 1.1 mycroft return (NULL);
885 1.1 mycroft }
886 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
887 1.1 mycroft if (size == fs->fs_bsize) {
888 1.19 bouyer bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
889 1.1 mycroft bdwrite(bp);
890 1.1 mycroft return (bno);
891 1.1 mycroft }
892 1.1 mycroft /*
893 1.1 mycroft * check to see if any fragments are already available
894 1.1 mycroft * allocsiz is the size which will be allocated, hacking
895 1.1 mycroft * it down to a smaller size if necessary
896 1.1 mycroft */
897 1.1 mycroft frags = numfrags(fs, size);
898 1.1 mycroft for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
899 1.1 mycroft if (cgp->cg_frsum[allocsiz] != 0)
900 1.1 mycroft break;
901 1.1 mycroft if (allocsiz == fs->fs_frag) {
902 1.1 mycroft /*
903 1.1 mycroft * no fragments were available, so a block will be
904 1.1 mycroft * allocated, and hacked up
905 1.1 mycroft */
906 1.1 mycroft if (cgp->cg_cs.cs_nbfree == 0) {
907 1.1 mycroft brelse(bp);
908 1.1 mycroft return (NULL);
909 1.1 mycroft }
910 1.19 bouyer bno = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bpref);
911 1.1 mycroft bpref = dtogd(fs, bno);
912 1.1 mycroft for (i = frags; i < fs->fs_frag; i++)
913 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bpref + i);
914 1.1 mycroft i = fs->fs_frag - frags;
915 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
916 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
917 1.19 bouyer fs->fs_cs(fs, cg).cs_nffree +=i;
918 1.1 mycroft fs->fs_fmod = 1;
919 1.19 bouyer ufs_add32(cgp->cg_frsum[i], 1, needswap);
920 1.1 mycroft bdwrite(bp);
921 1.1 mycroft return (bno);
922 1.1 mycroft }
923 1.19 bouyer bno = ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz);
924 1.1 mycroft if (bno < 0) {
925 1.1 mycroft brelse(bp);
926 1.1 mycroft return (NULL);
927 1.1 mycroft }
928 1.1 mycroft for (i = 0; i < frags; i++)
929 1.19 bouyer clrbit(cg_blksfree(cgp, needswap), bno + i);
930 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
931 1.1 mycroft fs->fs_cstotal.cs_nffree -= frags;
932 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= frags;
933 1.1 mycroft fs->fs_fmod = 1;
934 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
935 1.1 mycroft if (frags != allocsiz)
936 1.19 bouyer ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
937 1.1 mycroft bdwrite(bp);
938 1.1 mycroft return (cg * fs->fs_fpg + bno);
939 1.1 mycroft }
940 1.1 mycroft
941 1.1 mycroft /*
942 1.1 mycroft * Allocate a block in a cylinder group.
943 1.1 mycroft *
944 1.1 mycroft * This algorithm implements the following policy:
945 1.1 mycroft * 1) allocate the requested block.
946 1.1 mycroft * 2) allocate a rotationally optimal block in the same cylinder.
947 1.1 mycroft * 3) allocate the next available block on the block rotor for the
948 1.1 mycroft * specified cylinder group.
949 1.1 mycroft * Note that this routine only allocates fs_bsize blocks; these
950 1.1 mycroft * blocks may be fragmented by the routine that allocates them.
951 1.1 mycroft */
952 1.18 fvdl static ufs_daddr_t
953 1.19 bouyer ffs_alloccgblk(mp, fs, cgp, bpref)
954 1.19 bouyer struct mount *mp;
955 1.1 mycroft register struct fs *fs;
956 1.1 mycroft register struct cg *cgp;
957 1.18 fvdl ufs_daddr_t bpref;
958 1.1 mycroft {
959 1.18 fvdl ufs_daddr_t bno, blkno;
960 1.1 mycroft int cylno, pos, delta;
961 1.1 mycroft short *cylbp;
962 1.1 mycroft register int i;
963 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(mp);
964 1.1 mycroft
965 1.19 bouyer if (bpref == 0 ||
966 1.19 bouyer dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
967 1.19 bouyer bpref = ufs_rw32(cgp->cg_rotor, needswap);
968 1.1 mycroft goto norot;
969 1.1 mycroft }
970 1.1 mycroft bpref = blknum(fs, bpref);
971 1.1 mycroft bpref = dtogd(fs, bpref);
972 1.1 mycroft /*
973 1.1 mycroft * if the requested block is available, use it
974 1.1 mycroft */
975 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
976 1.19 bouyer fragstoblks(fs, bpref))) {
977 1.1 mycroft bno = bpref;
978 1.1 mycroft goto gotit;
979 1.1 mycroft }
980 1.18 fvdl if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
981 1.1 mycroft /*
982 1.1 mycroft * Block layout information is not available.
983 1.1 mycroft * Leaving bpref unchanged means we take the
984 1.1 mycroft * next available free block following the one
985 1.1 mycroft * we just allocated. Hopefully this will at
986 1.1 mycroft * least hit a track cache on drives of unknown
987 1.1 mycroft * geometry (e.g. SCSI).
988 1.1 mycroft */
989 1.1 mycroft goto norot;
990 1.1 mycroft }
991 1.6 mycroft /*
992 1.6 mycroft * check for a block available on the same cylinder
993 1.6 mycroft */
994 1.6 mycroft cylno = cbtocylno(fs, bpref);
995 1.19 bouyer if (cg_blktot(cgp, needswap)[cylno] == 0)
996 1.6 mycroft goto norot;
997 1.1 mycroft /*
998 1.1 mycroft * check the summary information to see if a block is
999 1.1 mycroft * available in the requested cylinder starting at the
1000 1.1 mycroft * requested rotational position and proceeding around.
1001 1.1 mycroft */
1002 1.19 bouyer cylbp = cg_blks(fs, cgp, cylno, needswap);
1003 1.1 mycroft pos = cbtorpos(fs, bpref);
1004 1.1 mycroft for (i = pos; i < fs->fs_nrpos; i++)
1005 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1006 1.1 mycroft break;
1007 1.1 mycroft if (i == fs->fs_nrpos)
1008 1.1 mycroft for (i = 0; i < pos; i++)
1009 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0)
1010 1.1 mycroft break;
1011 1.19 bouyer if (ufs_rw16(cylbp[i], needswap) > 0) {
1012 1.1 mycroft /*
1013 1.1 mycroft * found a rotational position, now find the actual
1014 1.1 mycroft * block. A panic if none is actually there.
1015 1.1 mycroft */
1016 1.1 mycroft pos = cylno % fs->fs_cpc;
1017 1.1 mycroft bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1018 1.1 mycroft if (fs_postbl(fs, pos)[i] == -1) {
1019 1.13 christos printf("pos = %d, i = %d, fs = %s\n",
1020 1.1 mycroft pos, i, fs->fs_fsmnt);
1021 1.1 mycroft panic("ffs_alloccgblk: cyl groups corrupted");
1022 1.1 mycroft }
1023 1.1 mycroft for (i = fs_postbl(fs, pos)[i];; ) {
1024 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
1025 1.1 mycroft bno = blkstofrags(fs, (bno + i));
1026 1.1 mycroft goto gotit;
1027 1.1 mycroft }
1028 1.1 mycroft delta = fs_rotbl(fs)[i];
1029 1.1 mycroft if (delta <= 0 ||
1030 1.1 mycroft delta + i > fragstoblks(fs, fs->fs_fpg))
1031 1.1 mycroft break;
1032 1.1 mycroft i += delta;
1033 1.1 mycroft }
1034 1.13 christos printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1035 1.1 mycroft panic("ffs_alloccgblk: can't find blk in cyl");
1036 1.1 mycroft }
1037 1.1 mycroft norot:
1038 1.1 mycroft /*
1039 1.1 mycroft * no blocks in the requested cylinder, so take next
1040 1.1 mycroft * available one in this cylinder group.
1041 1.1 mycroft */
1042 1.19 bouyer bno = ffs_mapsearch(needswap, fs, cgp, bpref, (int)fs->fs_frag);
1043 1.1 mycroft if (bno < 0)
1044 1.1 mycroft return (NULL);
1045 1.19 bouyer cgp->cg_rotor = ufs_rw32(bno, needswap);
1046 1.1 mycroft gotit:
1047 1.1 mycroft blkno = fragstoblks(fs, bno);
1048 1.19 bouyer ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
1049 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, -1);
1050 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1051 1.1 mycroft fs->fs_cstotal.cs_nbfree--;
1052 1.19 bouyer fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1053 1.1 mycroft cylno = cbtocylno(fs, bno);
1054 1.19 bouyer ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
1055 1.19 bouyer needswap);
1056 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
1057 1.1 mycroft fs->fs_fmod = 1;
1058 1.19 bouyer return (ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno);
1059 1.1 mycroft }
1060 1.1 mycroft
1061 1.1 mycroft /*
1062 1.1 mycroft * Determine whether a cluster can be allocated.
1063 1.1 mycroft *
1064 1.1 mycroft * We do not currently check for optimal rotational layout if there
1065 1.1 mycroft * are multiple choices in the same cylinder group. Instead we just
1066 1.1 mycroft * take the first one that we find following bpref.
1067 1.1 mycroft */
1068 1.18 fvdl static ufs_daddr_t
1069 1.1 mycroft ffs_clusteralloc(ip, cg, bpref, len)
1070 1.1 mycroft struct inode *ip;
1071 1.1 mycroft int cg;
1072 1.18 fvdl ufs_daddr_t bpref;
1073 1.1 mycroft int len;
1074 1.1 mycroft {
1075 1.1 mycroft register struct fs *fs;
1076 1.1 mycroft register struct cg *cgp;
1077 1.1 mycroft struct buf *bp;
1078 1.18 fvdl int i, got, run, bno, bit, map;
1079 1.1 mycroft u_char *mapp;
1080 1.5 mycroft int32_t *lp;
1081 1.1 mycroft
1082 1.1 mycroft fs = ip->i_fs;
1083 1.5 mycroft if (fs->fs_maxcluster[cg] < len)
1084 1.1 mycroft return (NULL);
1085 1.1 mycroft if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1086 1.1 mycroft NOCRED, &bp))
1087 1.1 mycroft goto fail;
1088 1.1 mycroft cgp = (struct cg *)bp->b_data;
1089 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip)))
1090 1.1 mycroft goto fail;
1091 1.1 mycroft /*
1092 1.1 mycroft * Check to see if a cluster of the needed size (or bigger) is
1093 1.1 mycroft * available in this cylinder group.
1094 1.1 mycroft */
1095 1.19 bouyer lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len];
1096 1.1 mycroft for (i = len; i <= fs->fs_contigsumsize; i++)
1097 1.19 bouyer if (ufs_rw32(*lp++, UFS_IPNEEDSWAP(ip)) > 0)
1098 1.1 mycroft break;
1099 1.5 mycroft if (i > fs->fs_contigsumsize) {
1100 1.5 mycroft /*
1101 1.5 mycroft * This is the first time looking for a cluster in this
1102 1.5 mycroft * cylinder group. Update the cluster summary information
1103 1.5 mycroft * to reflect the true maximum sized cluster so that
1104 1.5 mycroft * future cluster allocation requests can avoid reading
1105 1.5 mycroft * the cylinder group map only to find no clusters.
1106 1.5 mycroft */
1107 1.19 bouyer lp = &cg_clustersum(cgp, UFS_IPNEEDSWAP(ip))[len - 1];
1108 1.5 mycroft for (i = len - 1; i > 0; i--)
1109 1.19 bouyer if (ufs_rw32(*lp--, UFS_IPNEEDSWAP(ip)) > 0)
1110 1.5 mycroft break;
1111 1.5 mycroft fs->fs_maxcluster[cg] = i;
1112 1.1 mycroft goto fail;
1113 1.5 mycroft }
1114 1.1 mycroft /*
1115 1.1 mycroft * Search the cluster map to find a big enough cluster.
1116 1.1 mycroft * We take the first one that we find, even if it is larger
1117 1.1 mycroft * than we need as we prefer to get one close to the previous
1118 1.1 mycroft * block allocation. We do not search before the current
1119 1.1 mycroft * preference point as we do not want to allocate a block
1120 1.1 mycroft * that is allocated before the previous one (as we will
1121 1.1 mycroft * then have to wait for another pass of the elevator
1122 1.1 mycroft * algorithm before it will be read). We prefer to fail and
1123 1.1 mycroft * be recalled to try an allocation in the next cylinder group.
1124 1.1 mycroft */
1125 1.1 mycroft if (dtog(fs, bpref) != cg)
1126 1.1 mycroft bpref = 0;
1127 1.1 mycroft else
1128 1.1 mycroft bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1129 1.19 bouyer mapp = &cg_clustersfree(cgp, UFS_IPNEEDSWAP(ip))[bpref / NBBY];
1130 1.1 mycroft map = *mapp++;
1131 1.1 mycroft bit = 1 << (bpref % NBBY);
1132 1.19 bouyer for (run = 0, got = bpref;
1133 1.19 bouyer got < ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)); got++) {
1134 1.1 mycroft if ((map & bit) == 0) {
1135 1.1 mycroft run = 0;
1136 1.1 mycroft } else {
1137 1.1 mycroft run++;
1138 1.1 mycroft if (run == len)
1139 1.1 mycroft break;
1140 1.1 mycroft }
1141 1.18 fvdl if ((got & (NBBY - 1)) != (NBBY - 1)) {
1142 1.1 mycroft bit <<= 1;
1143 1.1 mycroft } else {
1144 1.1 mycroft map = *mapp++;
1145 1.1 mycroft bit = 1;
1146 1.1 mycroft }
1147 1.1 mycroft }
1148 1.19 bouyer if (got == ufs_rw32(cgp->cg_nclusterblks, UFS_IPNEEDSWAP(ip)))
1149 1.1 mycroft goto fail;
1150 1.1 mycroft /*
1151 1.1 mycroft * Allocate the cluster that we have found.
1152 1.1 mycroft */
1153 1.18 fvdl for (i = 1; i <= len; i++)
1154 1.19 bouyer if (!ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1155 1.19 bouyer got - run + i))
1156 1.18 fvdl panic("ffs_clusteralloc: map mismatch");
1157 1.18 fvdl bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1158 1.18 fvdl if (dtog(fs, bno) != cg)
1159 1.18 fvdl panic("ffs_clusteralloc: allocated out of group");
1160 1.1 mycroft len = blkstofrags(fs, len);
1161 1.1 mycroft for (i = 0; i < len; i += fs->fs_frag)
1162 1.19 bouyer if ((got = ffs_alloccgblk(ITOV(ip)->v_mount, fs, cgp, bno + i))
1163 1.19 bouyer != bno + i)
1164 1.1 mycroft panic("ffs_clusteralloc: lost block");
1165 1.8 cgd bdwrite(bp);
1166 1.1 mycroft return (bno);
1167 1.1 mycroft
1168 1.1 mycroft fail:
1169 1.1 mycroft brelse(bp);
1170 1.1 mycroft return (0);
1171 1.1 mycroft }
1172 1.1 mycroft
1173 1.1 mycroft /*
1174 1.1 mycroft * Determine whether an inode can be allocated.
1175 1.1 mycroft *
1176 1.1 mycroft * Check to see if an inode is available, and if it is,
1177 1.1 mycroft * allocate it using the following policy:
1178 1.1 mycroft * 1) allocate the requested inode.
1179 1.1 mycroft * 2) allocate the next available inode after the requested
1180 1.1 mycroft * inode in the specified cylinder group.
1181 1.1 mycroft */
1182 1.18 fvdl static ufs_daddr_t
1183 1.1 mycroft ffs_nodealloccg(ip, cg, ipref, mode)
1184 1.1 mycroft struct inode *ip;
1185 1.1 mycroft int cg;
1186 1.18 fvdl ufs_daddr_t ipref;
1187 1.1 mycroft int mode;
1188 1.1 mycroft {
1189 1.1 mycroft register struct fs *fs;
1190 1.1 mycroft register struct cg *cgp;
1191 1.1 mycroft struct buf *bp;
1192 1.1 mycroft int error, start, len, loc, map, i;
1193 1.19 bouyer #ifdef FFS_EI
1194 1.19 bouyer const int needswap = UFS_IPNEEDSWAP(ip);
1195 1.19 bouyer #endif
1196 1.1 mycroft
1197 1.1 mycroft fs = ip->i_fs;
1198 1.1 mycroft if (fs->fs_cs(fs, cg).cs_nifree == 0)
1199 1.1 mycroft return (NULL);
1200 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1201 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1202 1.1 mycroft if (error) {
1203 1.1 mycroft brelse(bp);
1204 1.1 mycroft return (NULL);
1205 1.1 mycroft }
1206 1.1 mycroft cgp = (struct cg *)bp->b_data;
1207 1.19 bouyer if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0) {
1208 1.1 mycroft brelse(bp);
1209 1.1 mycroft return (NULL);
1210 1.1 mycroft }
1211 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1212 1.1 mycroft if (ipref) {
1213 1.1 mycroft ipref %= fs->fs_ipg;
1214 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ipref))
1215 1.1 mycroft goto gotit;
1216 1.1 mycroft }
1217 1.19 bouyer start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1218 1.19 bouyer len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1219 1.19 bouyer NBBY);
1220 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[start]);
1221 1.1 mycroft if (loc == 0) {
1222 1.1 mycroft len = start + 1;
1223 1.1 mycroft start = 0;
1224 1.19 bouyer loc = skpc(0xff, len, &cg_inosused(cgp, needswap)[0]);
1225 1.1 mycroft if (loc == 0) {
1226 1.13 christos printf("cg = %d, irotor = %d, fs = %s\n",
1227 1.19 bouyer cg, ufs_rw32(cgp->cg_irotor, needswap),
1228 1.19 bouyer fs->fs_fsmnt);
1229 1.1 mycroft panic("ffs_nodealloccg: map corrupted");
1230 1.1 mycroft /* NOTREACHED */
1231 1.1 mycroft }
1232 1.1 mycroft }
1233 1.1 mycroft i = start + len - loc;
1234 1.19 bouyer map = cg_inosused(cgp, needswap)[i];
1235 1.1 mycroft ipref = i * NBBY;
1236 1.1 mycroft for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1237 1.1 mycroft if ((map & i) == 0) {
1238 1.19 bouyer cgp->cg_irotor = ufs_rw32(ipref, needswap);
1239 1.1 mycroft goto gotit;
1240 1.1 mycroft }
1241 1.1 mycroft }
1242 1.13 christos printf("fs = %s\n", fs->fs_fsmnt);
1243 1.1 mycroft panic("ffs_nodealloccg: block not in map");
1244 1.1 mycroft /* NOTREACHED */
1245 1.1 mycroft gotit:
1246 1.19 bouyer setbit(cg_inosused(cgp, needswap), ipref);
1247 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1248 1.1 mycroft fs->fs_cstotal.cs_nifree--;
1249 1.19 bouyer fs->fs_cs(fs, cg).cs_nifree --;
1250 1.1 mycroft fs->fs_fmod = 1;
1251 1.1 mycroft if ((mode & IFMT) == IFDIR) {
1252 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1253 1.1 mycroft fs->fs_cstotal.cs_ndir++;
1254 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir++;
1255 1.1 mycroft }
1256 1.1 mycroft bdwrite(bp);
1257 1.1 mycroft return (cg * fs->fs_ipg + ipref);
1258 1.1 mycroft }
1259 1.1 mycroft
1260 1.1 mycroft /*
1261 1.1 mycroft * Free a block or fragment.
1262 1.1 mycroft *
1263 1.1 mycroft * The specified block or fragment is placed back in the
1264 1.1 mycroft * free map. If a fragment is deallocated, a possible
1265 1.1 mycroft * block reassembly is checked.
1266 1.1 mycroft */
1267 1.9 christos void
1268 1.1 mycroft ffs_blkfree(ip, bno, size)
1269 1.1 mycroft register struct inode *ip;
1270 1.18 fvdl ufs_daddr_t bno;
1271 1.1 mycroft long size;
1272 1.1 mycroft {
1273 1.1 mycroft register struct fs *fs;
1274 1.1 mycroft register struct cg *cgp;
1275 1.1 mycroft struct buf *bp;
1276 1.18 fvdl ufs_daddr_t blkno;
1277 1.1 mycroft int i, error, cg, blk, frags, bbase;
1278 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(ITOV(ip)->v_mount);
1279 1.1 mycroft
1280 1.1 mycroft fs = ip->i_fs;
1281 1.1 mycroft if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1282 1.13 christos printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n",
1283 1.1 mycroft ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
1284 1.1 mycroft panic("blkfree: bad size");
1285 1.1 mycroft }
1286 1.1 mycroft cg = dtog(fs, bno);
1287 1.1 mycroft if ((u_int)bno >= fs->fs_size) {
1288 1.13 christos printf("bad block %d, ino %d\n", bno, ip->i_number);
1289 1.15 bouyer ffs_fserr(fs, ip->i_ffs_uid, "bad block");
1290 1.1 mycroft return;
1291 1.1 mycroft }
1292 1.1 mycroft error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1293 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1294 1.1 mycroft if (error) {
1295 1.1 mycroft brelse(bp);
1296 1.1 mycroft return;
1297 1.1 mycroft }
1298 1.1 mycroft cgp = (struct cg *)bp->b_data;
1299 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1300 1.1 mycroft brelse(bp);
1301 1.1 mycroft return;
1302 1.1 mycroft }
1303 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1304 1.1 mycroft bno = dtogd(fs, bno);
1305 1.1 mycroft if (size == fs->fs_bsize) {
1306 1.1 mycroft blkno = fragstoblks(fs, bno);
1307 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1308 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1309 1.1 mycroft ip->i_dev, bno, fs->fs_fsmnt);
1310 1.1 mycroft panic("blkfree: freeing free block");
1311 1.1 mycroft }
1312 1.19 bouyer ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
1313 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1314 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1315 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1316 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1317 1.1 mycroft i = cbtocylno(fs, bno);
1318 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
1319 1.19 bouyer needswap);
1320 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1321 1.1 mycroft } else {
1322 1.1 mycroft bbase = bno - fragnum(fs, bno);
1323 1.1 mycroft /*
1324 1.1 mycroft * decrement the counts associated with the old frags
1325 1.1 mycroft */
1326 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1327 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1328 1.1 mycroft /*
1329 1.1 mycroft * deallocate the fragment
1330 1.1 mycroft */
1331 1.1 mycroft frags = numfrags(fs, size);
1332 1.1 mycroft for (i = 0; i < frags; i++) {
1333 1.19 bouyer if (isset(cg_blksfree(cgp, needswap), bno + i)) {
1334 1.13 christos printf("dev = 0x%x, block = %d, fs = %s\n",
1335 1.1 mycroft ip->i_dev, bno + i, fs->fs_fsmnt);
1336 1.1 mycroft panic("blkfree: freeing free frag");
1337 1.1 mycroft }
1338 1.19 bouyer setbit(cg_blksfree(cgp, needswap), bno + i);
1339 1.1 mycroft }
1340 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1341 1.1 mycroft fs->fs_cstotal.cs_nffree += i;
1342 1.19 bouyer fs->fs_cs(fs, cg).cs_nffree +=i;
1343 1.1 mycroft /*
1344 1.1 mycroft * add back in counts associated with the new frags
1345 1.1 mycroft */
1346 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
1347 1.19 bouyer ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1348 1.1 mycroft /*
1349 1.1 mycroft * if a complete block has been reassembled, account for it
1350 1.1 mycroft */
1351 1.1 mycroft blkno = fragstoblks(fs, bbase);
1352 1.19 bouyer if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
1353 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1354 1.1 mycroft fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1355 1.1 mycroft fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1356 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, 1);
1357 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1358 1.1 mycroft fs->fs_cstotal.cs_nbfree++;
1359 1.1 mycroft fs->fs_cs(fs, cg).cs_nbfree++;
1360 1.1 mycroft i = cbtocylno(fs, bbase);
1361 1.19 bouyer ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1,
1362 1.19 bouyer needswap);
1363 1.19 bouyer ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
1364 1.1 mycroft }
1365 1.1 mycroft }
1366 1.1 mycroft fs->fs_fmod = 1;
1367 1.1 mycroft bdwrite(bp);
1368 1.1 mycroft }
1369 1.1 mycroft
1370 1.18 fvdl #if defined(DIAGNOSTIC) || defined(DEBUG)
1371 1.18 fvdl /*
1372 1.18 fvdl * Verify allocation of a block or fragment. Returns true if block or
1373 1.18 fvdl * fragment is allocated, false if it is free.
1374 1.18 fvdl */
1375 1.18 fvdl static int
1376 1.18 fvdl ffs_checkblk(ip, bno, size)
1377 1.18 fvdl struct inode *ip;
1378 1.18 fvdl ufs_daddr_t bno;
1379 1.18 fvdl long size;
1380 1.18 fvdl {
1381 1.18 fvdl struct fs *fs;
1382 1.18 fvdl struct cg *cgp;
1383 1.18 fvdl struct buf *bp;
1384 1.18 fvdl int i, error, frags, free;
1385 1.18 fvdl
1386 1.18 fvdl fs = ip->i_fs;
1387 1.18 fvdl if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1388 1.18 fvdl printf("bsize = %d, size = %ld, fs = %s\n",
1389 1.18 fvdl fs->fs_bsize, size, fs->fs_fsmnt);
1390 1.18 fvdl panic("checkblk: bad size");
1391 1.18 fvdl }
1392 1.18 fvdl if ((u_int)bno >= fs->fs_size)
1393 1.18 fvdl panic("checkblk: bad block %d", bno);
1394 1.18 fvdl error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1395 1.18 fvdl (int)fs->fs_cgsize, NOCRED, &bp);
1396 1.18 fvdl if (error) {
1397 1.18 fvdl brelse(bp);
1398 1.18 fvdl return 0;
1399 1.18 fvdl }
1400 1.18 fvdl cgp = (struct cg *)bp->b_data;
1401 1.19 bouyer if (!cg_chkmagic(cgp, UFS_IPNEEDSWAP(ip))) {
1402 1.18 fvdl brelse(bp);
1403 1.18 fvdl return 0;
1404 1.18 fvdl }
1405 1.18 fvdl bno = dtogd(fs, bno);
1406 1.18 fvdl if (size == fs->fs_bsize) {
1407 1.19 bouyer free = ffs_isblock(fs, cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)),
1408 1.19 bouyer fragstoblks(fs, bno));
1409 1.18 fvdl } else {
1410 1.18 fvdl frags = numfrags(fs, size);
1411 1.18 fvdl for (free = 0, i = 0; i < frags; i++)
1412 1.19 bouyer if (isset(cg_blksfree(cgp, UFS_IPNEEDSWAP(ip)), bno + i))
1413 1.18 fvdl free++;
1414 1.18 fvdl if (free != 0 && free != frags)
1415 1.18 fvdl panic("checkblk: partially free fragment");
1416 1.18 fvdl }
1417 1.18 fvdl brelse(bp);
1418 1.18 fvdl return (!free);
1419 1.18 fvdl }
1420 1.18 fvdl #endif /* DIAGNOSTIC */
1421 1.18 fvdl
1422 1.1 mycroft /*
1423 1.1 mycroft * Free an inode.
1424 1.1 mycroft *
1425 1.1 mycroft * The specified inode is placed back in the free map.
1426 1.1 mycroft */
1427 1.1 mycroft int
1428 1.9 christos ffs_vfree(v)
1429 1.9 christos void *v;
1430 1.9 christos {
1431 1.1 mycroft struct vop_vfree_args /* {
1432 1.1 mycroft struct vnode *a_pvp;
1433 1.1 mycroft ino_t a_ino;
1434 1.1 mycroft int a_mode;
1435 1.9 christos } */ *ap = v;
1436 1.1 mycroft register struct fs *fs;
1437 1.1 mycroft register struct cg *cgp;
1438 1.1 mycroft register struct inode *pip;
1439 1.1 mycroft ino_t ino = ap->a_ino;
1440 1.1 mycroft struct buf *bp;
1441 1.1 mycroft int error, cg;
1442 1.19 bouyer #ifdef FFS_EI
1443 1.19 bouyer const int needswap = UFS_MPNEEDSWAP(ap->a_pvp->v_mount);
1444 1.19 bouyer #endif
1445 1.1 mycroft
1446 1.1 mycroft pip = VTOI(ap->a_pvp);
1447 1.1 mycroft fs = pip->i_fs;
1448 1.1 mycroft if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1449 1.1 mycroft panic("ifree: range: dev = 0x%x, ino = %d, fs = %s\n",
1450 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1451 1.1 mycroft cg = ino_to_cg(fs, ino);
1452 1.1 mycroft error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1453 1.1 mycroft (int)fs->fs_cgsize, NOCRED, &bp);
1454 1.1 mycroft if (error) {
1455 1.1 mycroft brelse(bp);
1456 1.1 mycroft return (0);
1457 1.1 mycroft }
1458 1.1 mycroft cgp = (struct cg *)bp->b_data;
1459 1.19 bouyer if (!cg_chkmagic(cgp, needswap)) {
1460 1.1 mycroft brelse(bp);
1461 1.1 mycroft return (0);
1462 1.1 mycroft }
1463 1.19 bouyer cgp->cg_time = ufs_rw32(time.tv_sec, needswap);
1464 1.1 mycroft ino %= fs->fs_ipg;
1465 1.19 bouyer if (isclr(cg_inosused(cgp, needswap), ino)) {
1466 1.13 christos printf("dev = 0x%x, ino = %d, fs = %s\n",
1467 1.1 mycroft pip->i_dev, ino, fs->fs_fsmnt);
1468 1.1 mycroft if (fs->fs_ronly == 0)
1469 1.1 mycroft panic("ifree: freeing free inode");
1470 1.1 mycroft }
1471 1.19 bouyer clrbit(cg_inosused(cgp, needswap), ino);
1472 1.19 bouyer if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1473 1.19 bouyer cgp->cg_irotor = ufs_rw32(ino, needswap);
1474 1.19 bouyer ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1475 1.1 mycroft fs->fs_cstotal.cs_nifree++;
1476 1.1 mycroft fs->fs_cs(fs, cg).cs_nifree++;
1477 1.1 mycroft if ((ap->a_mode & IFMT) == IFDIR) {
1478 1.19 bouyer ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1479 1.1 mycroft fs->fs_cstotal.cs_ndir--;
1480 1.1 mycroft fs->fs_cs(fs, cg).cs_ndir--;
1481 1.1 mycroft }
1482 1.1 mycroft fs->fs_fmod = 1;
1483 1.1 mycroft bdwrite(bp);
1484 1.1 mycroft return (0);
1485 1.1 mycroft }
1486 1.1 mycroft
1487 1.1 mycroft /*
1488 1.1 mycroft * Find a block of the specified size in the specified cylinder group.
1489 1.1 mycroft *
1490 1.1 mycroft * It is a panic if a request is made to find a block if none are
1491 1.1 mycroft * available.
1492 1.1 mycroft */
1493 1.18 fvdl static ufs_daddr_t
1494 1.19 bouyer ffs_mapsearch(needswap, fs, cgp, bpref, allocsiz)
1495 1.19 bouyer int needswap;
1496 1.1 mycroft register struct fs *fs;
1497 1.1 mycroft register struct cg *cgp;
1498 1.18 fvdl ufs_daddr_t bpref;
1499 1.1 mycroft int allocsiz;
1500 1.1 mycroft {
1501 1.18 fvdl ufs_daddr_t bno;
1502 1.1 mycroft int start, len, loc, i;
1503 1.1 mycroft int blk, field, subfield, pos;
1504 1.19 bouyer int ostart, olen;
1505 1.1 mycroft
1506 1.1 mycroft /*
1507 1.1 mycroft * find the fragment by searching through the free block
1508 1.1 mycroft * map for an appropriate bit pattern
1509 1.1 mycroft */
1510 1.1 mycroft if (bpref)
1511 1.1 mycroft start = dtogd(fs, bpref) / NBBY;
1512 1.1 mycroft else
1513 1.19 bouyer start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1514 1.1 mycroft len = howmany(fs->fs_fpg, NBBY) - start;
1515 1.19 bouyer ostart = start;
1516 1.19 bouyer olen = len;
1517 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[start],
1518 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1519 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1520 1.1 mycroft if (loc == 0) {
1521 1.1 mycroft len = start + 1;
1522 1.1 mycroft start = 0;
1523 1.19 bouyer loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp, needswap)[0],
1524 1.1 mycroft (u_char *)fragtbl[fs->fs_frag],
1525 1.1 mycroft (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1526 1.1 mycroft if (loc == 0) {
1527 1.13 christos printf("start = %d, len = %d, fs = %s\n",
1528 1.19 bouyer ostart, olen, fs->fs_fsmnt);
1529 1.20 ross printf("offset=%d %ld\n",
1530 1.19 bouyer ufs_rw32(cgp->cg_freeoff, needswap),
1531 1.20 ross (long)cg_blksfree(cgp, needswap) - (long)cgp);
1532 1.1 mycroft panic("ffs_alloccg: map corrupted");
1533 1.1 mycroft /* NOTREACHED */
1534 1.1 mycroft }
1535 1.1 mycroft }
1536 1.1 mycroft bno = (start + len - loc) * NBBY;
1537 1.19 bouyer cgp->cg_frotor = ufs_rw32(bno, needswap);
1538 1.1 mycroft /*
1539 1.1 mycroft * found the byte in the map
1540 1.1 mycroft * sift through the bits to find the selected frag
1541 1.1 mycroft */
1542 1.1 mycroft for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1543 1.19 bouyer blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
1544 1.1 mycroft blk <<= 1;
1545 1.1 mycroft field = around[allocsiz];
1546 1.1 mycroft subfield = inside[allocsiz];
1547 1.1 mycroft for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1548 1.1 mycroft if ((blk & field) == subfield)
1549 1.1 mycroft return (bno + pos);
1550 1.1 mycroft field <<= 1;
1551 1.1 mycroft subfield <<= 1;
1552 1.1 mycroft }
1553 1.1 mycroft }
1554 1.13 christos printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1555 1.1 mycroft panic("ffs_alloccg: block not in map");
1556 1.1 mycroft return (-1);
1557 1.1 mycroft }
1558 1.1 mycroft
1559 1.1 mycroft /*
1560 1.1 mycroft * Update the cluster map because of an allocation or free.
1561 1.1 mycroft *
1562 1.1 mycroft * Cnt == 1 means free; cnt == -1 means allocating.
1563 1.1 mycroft */
1564 1.9 christos void
1565 1.19 bouyer ffs_clusteracct(needswap, fs, cgp, blkno, cnt)
1566 1.19 bouyer int needswap;
1567 1.1 mycroft struct fs *fs;
1568 1.1 mycroft struct cg *cgp;
1569 1.18 fvdl ufs_daddr_t blkno;
1570 1.1 mycroft int cnt;
1571 1.1 mycroft {
1572 1.4 cgd int32_t *sump;
1573 1.5 mycroft int32_t *lp;
1574 1.1 mycroft u_char *freemapp, *mapp;
1575 1.1 mycroft int i, start, end, forw, back, map, bit;
1576 1.1 mycroft
1577 1.1 mycroft if (fs->fs_contigsumsize <= 0)
1578 1.1 mycroft return;
1579 1.19 bouyer freemapp = cg_clustersfree(cgp, needswap);
1580 1.19 bouyer sump = cg_clustersum(cgp, needswap);
1581 1.1 mycroft /*
1582 1.1 mycroft * Allocate or clear the actual block.
1583 1.1 mycroft */
1584 1.1 mycroft if (cnt > 0)
1585 1.1 mycroft setbit(freemapp, blkno);
1586 1.1 mycroft else
1587 1.1 mycroft clrbit(freemapp, blkno);
1588 1.1 mycroft /*
1589 1.1 mycroft * Find the size of the cluster going forward.
1590 1.1 mycroft */
1591 1.1 mycroft start = blkno + 1;
1592 1.1 mycroft end = start + fs->fs_contigsumsize;
1593 1.19 bouyer if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
1594 1.19 bouyer end = ufs_rw32(cgp->cg_nclusterblks, needswap);
1595 1.1 mycroft mapp = &freemapp[start / NBBY];
1596 1.1 mycroft map = *mapp++;
1597 1.1 mycroft bit = 1 << (start % NBBY);
1598 1.1 mycroft for (i = start; i < end; i++) {
1599 1.1 mycroft if ((map & bit) == 0)
1600 1.1 mycroft break;
1601 1.1 mycroft if ((i & (NBBY - 1)) != (NBBY - 1)) {
1602 1.1 mycroft bit <<= 1;
1603 1.1 mycroft } else {
1604 1.1 mycroft map = *mapp++;
1605 1.1 mycroft bit = 1;
1606 1.1 mycroft }
1607 1.1 mycroft }
1608 1.1 mycroft forw = i - start;
1609 1.1 mycroft /*
1610 1.1 mycroft * Find the size of the cluster going backward.
1611 1.1 mycroft */
1612 1.1 mycroft start = blkno - 1;
1613 1.1 mycroft end = start - fs->fs_contigsumsize;
1614 1.1 mycroft if (end < 0)
1615 1.1 mycroft end = -1;
1616 1.1 mycroft mapp = &freemapp[start / NBBY];
1617 1.1 mycroft map = *mapp--;
1618 1.1 mycroft bit = 1 << (start % NBBY);
1619 1.1 mycroft for (i = start; i > end; i--) {
1620 1.1 mycroft if ((map & bit) == 0)
1621 1.1 mycroft break;
1622 1.1 mycroft if ((i & (NBBY - 1)) != 0) {
1623 1.1 mycroft bit >>= 1;
1624 1.1 mycroft } else {
1625 1.1 mycroft map = *mapp--;
1626 1.1 mycroft bit = 1 << (NBBY - 1);
1627 1.1 mycroft }
1628 1.1 mycroft }
1629 1.1 mycroft back = start - i;
1630 1.1 mycroft /*
1631 1.1 mycroft * Account for old cluster and the possibly new forward and
1632 1.1 mycroft * back clusters.
1633 1.1 mycroft */
1634 1.1 mycroft i = back + forw + 1;
1635 1.1 mycroft if (i > fs->fs_contigsumsize)
1636 1.1 mycroft i = fs->fs_contigsumsize;
1637 1.19 bouyer ufs_add32(sump[i], cnt, needswap);
1638 1.1 mycroft if (back > 0)
1639 1.19 bouyer ufs_add32(sump[back], -cnt, needswap);
1640 1.1 mycroft if (forw > 0)
1641 1.19 bouyer ufs_add32(sump[forw], -cnt, needswap);
1642 1.19 bouyer
1643 1.5 mycroft /*
1644 1.5 mycroft * Update cluster summary information.
1645 1.5 mycroft */
1646 1.5 mycroft lp = &sump[fs->fs_contigsumsize];
1647 1.5 mycroft for (i = fs->fs_contigsumsize; i > 0; i--)
1648 1.19 bouyer if (ufs_rw32(*lp--, needswap) > 0)
1649 1.5 mycroft break;
1650 1.19 bouyer fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
1651 1.1 mycroft }
1652 1.1 mycroft
1653 1.1 mycroft /*
1654 1.1 mycroft * Fserr prints the name of a file system with an error diagnostic.
1655 1.1 mycroft *
1656 1.1 mycroft * The form of the error message is:
1657 1.1 mycroft * fs: error message
1658 1.1 mycroft */
1659 1.1 mycroft static void
1660 1.1 mycroft ffs_fserr(fs, uid, cp)
1661 1.1 mycroft struct fs *fs;
1662 1.1 mycroft u_int uid;
1663 1.1 mycroft char *cp;
1664 1.1 mycroft {
1665 1.1 mycroft
1666 1.1 mycroft log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
1667 1.1 mycroft }
1668